太阳能电池量子效率测量系统

仪器信息网太阳能电池量子效率测量系统专题为您提供2024年最新太阳能电池量子效率测量系统价格报价、厂家品牌的相关信息, 包括太阳能电池量子效率测量系统参数、型号等,不管是国产,还是进口品牌的太阳能电池量子效率测量系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合太阳能电池量子效率测量系统相关的耗材配件、试剂标物,还有太阳能电池量子效率测量系统相关的最新资讯、资料,以及太阳能电池量子效率测量系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

太阳能电池量子效率测量系统相关的厂商

  • 400-860-5168转1431
    巨力科技有限公司专门经销欧美、日本等国家制造的先进科学仪器,为客户提供完备的售前咨询和售后服务、技术支持。目前产品涵盖材料科学、微纳米技术、表面测量及表征、半导体、光伏和生命科学等领域。 主要产品:d33测量仪,压电系数测试仪,精密压电测试仪; 电容充放电测量系统高压漏电流及热释电测量系统电滞回线及高压介电击穿强度测量系统低温宽频介电测量系统高场宽频谱介电测量系统kSA MOS US薄膜应力测量系统,kSA MOS Thermal Scan薄膜热应力测量系统,kSA MOS原位薄膜应力测试仪,kSA MOS薄膜残余应力测试仪; kSA 400 RHEED 分析系统; kSA BandiT 测温系统;石磨盘发射率测量系统;kSA RateRat沉积速率检测仪; ALD 原子层沉积系统 碳纳米管生长系统 纳米碳制备CVD炉 石墨烯制备系统SPD喷雾热解成膜系统太阳能电池量子效率测试系统/光谱响应测量系统/IPCE测量系统; AAA级太阳光模拟器,全光谱太阳光模拟器(A+A+A+);高准直太阳光模拟器;稳态太阳光模拟器; 单体测试仪,太阳能电池IV测试仪,全自动太阳能电池IV测试; 大面积组件太阳能模拟器及IV测试系统; 有机太阳能电池太阳光模拟器;光催化太阳光模拟器;有机半导体载流子特性测量系统有机/钙钛矿太阳能电池载流子测量系统钙钛矿太阳能电池/LED寿命分析系统OLED光谱分析系统有机/钙钛矿太阳能电池扩散长度测量系统有机/钙钛矿太阳能电池量子效率测量系统有机/钙钛矿太阳能电池缺陷测量系统有机/钙钛矿太阳能电池制备系统实验室涂布机等等
    留言咨询
  • 广州三赫太阳能科技有限公司是领先的太阳能光伏产品制造商、系统集成服务商。致力于为客户提供个性化、专业化、系统化的太阳能光伏应用工程和风光互补系统工程设计、生产、安装及维护服务。是一家专业从事新能源科技研究及产品开发、生产于一体的高新科技企业。公司技术力量雄厚、生产设备精良、生产工艺先进,拥有高级工程师和专业技术人员团队。  自创建以来,一直坚持绿色环保、节能减排、科技创新的思想,研发并生产了一系列太阳能光伏发电产品,广泛应用于家庭照明、移动电源、通信设备、森林防火、抽水蓄能、道路监控、路灯照明、园林设施、农场养殖、野外露营、船泊照明、屋顶阁楼排气扇、小型电站、航标导航、沙漠山区、农村菜地、无电农村的生活及生产等用电,解决了电网延伸困难地区用电难的问题。产品已畅销欧美、非洲、东南亚等市场,并受到用户一致好评。产品通过了CE、Rohs等认证,并有多项产品获得获得国家专利。 在太阳能应用方面,我们掌握了大量实际应用经验,可全方位为客户提供解决方案,也可按客户的需求量身订造产品,真正做到节约资源,环保节能,让产品稳定可靠的情况下成本降到最低,用户最终受益更高!
    留言咨询
  • 上海波铭科学仪器有限公司成立于2013年,是一家专业从事科学仪器研发、生产、销售于一体的高科技技术企业。公司主要服务于全国各大高校、科研院所和高尖端工业客户。主要提供光学仪器如光栅光谱仪、荧光光谱仪,膜厚测量仪,探测器响应分析仪、太阳能电池量子效率测试系统等科研实验室仪器;及光学机械加工设计,电子测量等专业的解决方案服务。公司以“专注质量、用心服务”为核心价值。希望通过我们的专业水平和不懈努力,力争为中国的科研及精密制造事业贡献一股力量。公司成立多年来,我们一直秉承以用户需求为核心,在专注光学等核心技术市场的同时,已经为超过一百家高校科研院所和企业提供了成套和部分的解决方案服务。优质、用心的服务赢得了众多用户的信赖和好评。公司不仅仅提供专业的光学解决方案服务,同时还建立了完善的售后服务体系。我们相信,通过我们的不断努力和追求,一定能够实现与高校、企业、科研院所的互利共赢!
    留言咨询

太阳能电池量子效率测量系统相关的仪器

  • 太阳能电池量子效率测试系统——SolarCellScan100系列系统功能系统可以实现测试太阳电池的:光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度、量子效率Mapping、反射率Mapping。系统适用范围1、适用于各种材料的太阳电池包括:单晶硅Si、多晶硅mc-Si、非晶硅α-Si、砷化镓GaAs、镓铟磷GaInP、磷化铟InP、锗Ge、碲化镉CdTe、铜铟硒CIS、铜铟镓硒CIGS、染料敏化DSSC、有机太阳电池Organic Solar Cell、聚合物太阳电池Polymer Solar Cell 等2、适用于多种结构的太阳电池包括:单结Single junction、多结multi junction、异质结HIT、薄膜thin film、高聚光HPV 等不同材料或不同结构的太阳电池,在测试过程中会有细节上的差异。比如说:有机太阳电池的测试范围主要集中在可见光波段,而GaAs 太阳电池的测试范围则很可能扩展到红外1.4um 甚至更长波段;单晶硅电池通常需要测内量子效率,而染料敏化太阳电池通常只需要测外量子效率;有机太阳电池测试通常不需要加偏置光,而多结非晶硅薄膜电池则需要加偏置光… … SolarCellScan100 通过主机与各种附件的搭配,可以实现几乎所有种类电池的测试。这种模块化搭配的方式,适合科研用户建立测试平台。 选型列表:型号名称和说明主机SCS1011太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯光源SCS1012太阳能电池量子效率测量系统,含直流测量模式,氙灯光源SCS1013太阳能电池量子效率测量系统,含直流、交流测量模式,溴钨灯光源SCS1014太阳能电池量子效率测量系统,含直流测量模式,溴钨灯光源SCS1015太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯溴钨灯双光源SCS1016太阳能电池量子效率测量系统,含直流测量模式,氙灯溴钨灯双光源附件QE-A1偏置光附件,150W氙灯QE-A2偏置光附件,50W溴钨灯QE-B1标准太阳电池(单晶硅)QE-B1-SP标准太阳电池QE-B2标准铟镓砷探测器(800-1700nm,含标定证书)QE-B3标准硅探测器(300-1100nm,含标定证书)QE-B4标准铟镓砷探测器(800-2500nm,含标定证书)QE-B7透过率测试附件(300-1100nm)QE-B8透过率测试附件(800-1700nm)QE-BVS偏置电压源(±10V可调)QE-C2漫反射率测试附件(300-1700nm)QE-C7标准漫反射板QE-D1二维电动调整台QE-D2手动三维调整台QE-IV-Convertor短路电流放大器专用机型介绍系统功能部分太阳能应用方向的研究人员需要测量量子效率,但本身却不是光电测量方面的行家,卓立汉光在测量平台SolarCellScan100的基础上,进一步开发出以下几套极具针对性的专用机型配置,方便客户使用。以下的专用配置也适合产业化的工业客户使用。1、通用型太阳电池QE测试系统SCS100-Std系统特点符合IEC60904-8国际标准;测量结果高重复性;内外量子效率测量功能;快速导入参数功能;适用于科研级别小样品测试适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、CdTe薄膜电池、CIGS薄膜电池等; 光谱范围: 300~1100nm; 电池结构: 单结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、短路电流密度; 可测样品面积: 30mm×30mm 2.通用型太阳电池QE测试系统SCS100-Exp系统特点符合IEC60904-8国际标准;测量结果高重复性;高度自动化测量;双光源设计;红外光谱范围扩展;薄膜透过率测试功能;小面积、大面积样品测试均适用;适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、有机薄膜电池、CdTe薄膜电池、CIGS薄膜电池、三结砷化镓GaAs电池、非晶/微晶薄膜电池等; 光谱范围: 300~1700nm; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度; 可测样品面积: 156mm×156mm以下 3.晶体硅太阳电池测试专用系统 SCS100-Silicon系统特点集成一体化turnkey系统晶体硅电池测试专用内外量子效率测试快速Mapping扫描功能快速高效售后服务适用范围: 单晶硅电池、多晶硅电池 光谱范围: 300~1100nm 电池结构: 单结太阳电池 可测参数: 光谱响应度、外量子效率、反射率、内量子效率、短路电流密度、*量子效率Mapping、*反射率mapping 可测样品面积: 156mm×156mm 4.薄膜太阳电池QE测试专用系统 SCS100-Film系统特点集成一体化turnkey系统;大面积薄膜电池测试专用;超大样品室,光纤传导;背面电极快速连接;反射率、内外量子效率同步测试;快速高效售后服务。适用范围: 非晶硅薄膜电池、CIGS薄膜电池、CdTe薄膜电池、非晶/微晶双结薄膜电池、非晶/微晶/微晶锗硅三结薄膜电池等; 光谱范围: 300~1700nm ; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、反射率、透射率、内量子效率、短路电流密度; 可测样品面积: 300mm×300mm 5.光电化学太阳电池测试专用系统 SCS100-PEC系统特点光电化学类太阳电池专用配置方案;直流测量模式;低杂散光暗箱;电解池样品测试附件;经济型价格适用范围: 染料敏化太阳电池; 光谱范围: 300~1100nm; 电池结构: 光电化学相关的纳米晶太阳电池; 可测参数: IPCE; 可测样品面积: 50mm×50mm
    留言咨询
  • 太阳能电池量子效率测试系统——SolarCellScan100系列系统功能系统可以实现测试太阳电池的:光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度、量子效率Mapping、反射率Mapping。系统适用范围1、适用于各种材料的太阳电池包括:单晶硅Si、多晶硅mc-Si、非晶硅α-Si、砷化镓GaAs、镓铟磷GaInP、磷化铟InP、锗Ge、碲化镉CdTe、铜铟硒CIS、铜铟镓硒CIGS、染料敏化DSSC、有机太阳电池Organic Solar Cell、聚合物太阳电池Polymer Solar Cell 等2、适用于多种结构的太阳电池包括:单结Single junction、多结multi junction、异质结HIT、薄膜thin film、高聚光HPV 等不同材料或不同结构的太阳电池,在测试过程中会有细节上的差异。比如说:有机太阳电池的测试范围主要集中在可见光波段,而GaAs 太阳电池的测试范围则很可能扩展到红外1.4um 甚至更长波段;单晶硅电池通常需要测内量子效率,而染料敏化太阳电池通常只需要测外量子效率;有机太阳电池测试通常不需要加偏置光,而多结非晶硅薄膜电池则需要加偏置光……SolarCellScan100 通过主机与各种附件的搭配,可以实现几乎所有种类电池的测试。这种模块化搭配的方式,适合科研用户建立测试平台。 选型列表:型号名称和说明主机SCS1011太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯光源SCS1012太阳能电池量子效率测量系统,含直流测量模式,氙灯光源SCS1013太阳能电池量子效率测量系统,含直流、交流测量模式,溴钨灯光源SCS1014太阳能电池量子效率测量系统,含直流测量模式,溴钨灯光源SCS1015太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯溴钨灯双光源SCS1016太阳能电池量子效率测量系统,含直流测量模式,氙灯溴钨灯双光源附件QE-A1偏置光附件,150W氙灯QE-A2偏置光附件,50W溴钨灯QE-B1标准太阳电池(单晶硅)QE-B1-SP标准太阳电池QE-B2标准铟镓砷探测器(800-1700nm,含标定证书)QE-B3标准硅探测器(300-1100nm,含标定证书)QE-B4标准铟镓砷探测器(800-2500nm,含标定证书)QE-B7透过率测试附件(300-1100nm)QE-B8透过率测试附件(800-1700nm)QE-BVS偏置电压源(±10V可调)QE-C2漫反射率测试附件(300-1700nm)QE-C7标准漫反射板QE-D1二维电动调整台QE-D2手动三维调整台QE-IV-Convertor短路电流放大器专用机型介绍系统功能部分太阳能应用方向的研究人员需要测量量子效率,但本身却不是光电测量方面的行家,卓立汉光在测量平台SolarCellScan100的基础上,进一步开发出以下几套极具针对性的专用机型配置,方便客户使用。以下的专用配置也适合产业化的工业客户使用。1、通用型太阳电池QE测试系统SCS100-Std系统特点符合IEC60904-8国际标准;测量结果高重复性;内外量子效率测量功能;快速导入参数功能;适用于科研级别小样品测试适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、CdTe薄膜电池、CIGS薄膜电池等; 光谱范围: 300~1100nm; 电池结构: 单结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、短路电流密度; 可测样品面积: 30mm×30mm 2.通用型太阳电池QE测试系统SCS100-Exp系统特点符合IEC60904-8国际标准;测量结果高重复性;高度自动化测量;双光源设计;红外光谱范围扩展;薄膜透过率测试功能;小面积、大面积样品测试均适用;适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、有机薄膜电池、CdTe薄膜电池、CIGS薄膜电池、三结砷化镓GaAs电池、非晶/微晶薄膜电池等; 光谱范围: 300~1700nm; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度; 可测样品面积: 156mm×156mm以下 3.晶体硅太阳电池测试专用系统 SCS100-Silicon系统特点集成一体化turnkey系统晶体硅电池测试专用内外量子效率测试快速Mapping扫描功能快速高效售后服务适用范围: 单晶硅电池、多晶硅电池 光谱范围: 300~1100nm 电池结构: 单结太阳电池 可测参数: 光谱响应度、外量子效率、反射率、内量子效率、短路电流密度、*量子效率Mapping、*反射率mapping 可测样品面积: 156mm×156mm 4.薄膜太阳电池QE测试专用系统 SCS100-Film系统特点集成一体化turnkey系统;大面积薄膜电池测试专用;超大样品室,光纤传导;背面电极快速连接;反射率、内外量子效率同步测试;快速高效售后服务。适用范围: 非晶硅薄膜电池、CIGS薄膜电池、CdTe薄膜电池、非晶/微晶双结薄膜电池、非晶/微晶/微晶锗硅三结薄膜电池等; 光谱范围: 300~1700nm ; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、反射率、透射率、内量子效率、短路电流密度; 可测样品面积: 300mm×300mm 5.光电化学太阳电池测试专用系统 SCS100-PEC系统特点光电化学类太阳电池专用配置方案;直流测量模式;低杂散光暗箱;电解池样品测试附件;经济型价格适用范围: 染料敏化太阳电池; 光谱范围: 300~1100nm; 电池结构: 光电化学相关的纳米晶太阳电池; 可测参数: IPCE; 可测样品面积: 50mm×50mm
    留言咨询
  • 太阳能电池量子效率测试系统功能 适用电池:全系列太阳能电池 光谱范围:300-1100nm,可扩展至1700nm 可测量参数:光谱响应度、外量子效率、光子电子转换效率、内量子效率、反射率、透射率、积分短路电流密度、光束诱导电流、量子效率制图、反射率制图、光束诱导电流制图 可测样品尺寸:156mmX156mm 可测样品模式:交、直流测试法、交、直流偏置光测试法 太阳能电池量子效率测试系统特点 1. 全光谱太阳光模拟,双光源切换可选,高光强稳定性 系统采用符合最新IEC60904 标准的双光源配置,采用氙灯和溴钨灯来覆盖太阳光谱的整个范围。无论是氙灯还是溴钨灯,都可以提供超高的光强稳定性,从而保证系统测试结果的高重复性。当不同的波段光谱测量时,选择合适的光源波长与相匹配的标准探测器,可以最大限度的优化太阳能电池量子效率的测试结果。 1000s 的持续光强测试与局部放大图测试光源:氙灯或溴钨灯 测试时间:1000s 光源时间不稳定度:0.8% 2. 高重复性测试结果系统从光源的稳定性、单色仪的波长准确性与重复性、特有的光路设计、样品的加持、数据的采集方式上确保测试结果的高重复性。 5 次每次间隔1 小时的测试结果与全波段重复性测试 3. 窗口化软件设计 在系统软件设计中,将实用的仪器控制部分汇总到一个界面,将实用的仪器参数设置部分汇总到另一个界面,从而最大限度的将控制操作简化,实现一键运行。 仪器参数设置可以按照不同样品的测试需求保存为独立的配置文件并导出,从而实现快速还原与测试的功能,随时调出原有保留的参数设置。同样配置的不同系统之间也可以统一相互调用。系统软件可以准确得到理论积分电流密度值,并按照需求保存原始数据,支持ASCII、Excel、XML 等多种格式数据导出。以便使用主流数据处理软件调用,方便后续数据处理与分析。 4. 快速Mapping功能快速Mapping 功能包括:1)量子效率Mapping 功能2)反射率Mapping 功能3)光束诱导电流(LBIC)功能该功能针对100mmX100mm 以上的较大面积的成品太阳能电池片,用户可以从Mapping 功能获得的数据中得到关于电池片的少子扩散情况、电池片缺陷分布等信息。缺陷分布等信息 上图显示6 寸单晶硅电池IQE mapping,样品右上角IQE 数值明显低于其他区域,因为那里有肉眼无法直接观察到的缺陷上图显示单晶硅电池的反射率mapping,均匀度明显不好,这显示出酸洗过程中酸液有残留,影响了整个电池的反射率均匀性 上述Mapping 数据是在同一个电池片上用400nm、650nm 和950nm 三个波长做QE(LBIC) 扫描得到的。650nm 和950nm 的扫描数据显示电池具有良好的均匀性,但400nm 扫描数据上,我们发现电池边缘有不均匀区域。 不同的测试波长对样品的穿透深度不同。蓝光波长短,穿透深度浅,因此很容易将样品制备过程中产生的表面裂痕等问题反映出来; 近红外光波长相对较长,穿透深度更深,更加适用于扩散长度的计算,从而能反映样品材料内部的缺陷等问题。
    留言咨询

太阳能电池量子效率测量系统相关的资讯

  • 量子点太阳能电池外量子效率首超100%
    据美国物理学家组织网12月16日(北京时间)报道,美国国家可再生能源实验室(NREL)研制出一种新式的量子点太阳能电池,当其被太阳能光谱的高能区域发出的光子激活时,会产生外量子效率最高达114%的感光电流。发表于12月16日出版的《科学》杂志上的这一最新研究为科学家们研制出第三代太阳能电池奠定了基础。  当光子入射到太阳能电池表面时,部分光子会激发光敏材料产生电子空穴对,形成感光电流,此时产生的电子数与入射光子数之比称为感光电流的外量子效率。迄今为止,还没有任何一种太阳能电池在太阳能光谱内光波的照射下,显示出超过100%的外量子效率。  现在,NREL团队首次在量子点太阳能电池上实现了这一点。他们在一个叠层量子点太阳能电池上获得了114%的外量子效率。该电池由具有减反光涂层的玻璃(其包含有一薄层透明的导体)、一层纳米结构的氧化锌、一层经过处理的硒化铅量子点以及薄薄一层用作电极的金组成。  太阳能光子产生超过100%外量子效率基于载子倍增(MEG)过程,借助这一过程,单个被吸收的高能光子能激发多个电子空穴对。NREL团队首次在量子点太阳能电池的感光电流内展示了MEG,科学家们可借此改善太阳能电池的转化效率。研究结果显示,在模拟太阳光的照射下,新量子点太阳能电池的光电转化效率高于4.5%。目前,这种太阳能电池还没有达到最优化,因此,其能源转化效率相对来说偏低。  与传统的太阳能电池相比,量子点太阳能电池内的MEG能将电池的理论热力能转化效率提高35% 量子点太阳能电池也可使用廉价且产量高的卷对卷制程制造而成 其另外一个优势是每单位面积的制造成本很低,科学家们将其称为第三代(下一代)太阳能电池。(记者 刘霞)  所谓第一代太阳能电池是指目前最常见的晶体硅电池,第二代是薄膜电池 第三代,则应该是具有更高转化效率的新型电池的总称。而让单个高能光子激发多个电子空穴对正是提高转化效率的途径之一。不过现有技术并不能有效分离、收集大量的电子空穴对,这也就是新电池转化效率偏低的主要原因。虽然现在看起来,让这么多自由电子白白溜走显得过于奢侈,但如此高的外量子效率还是让我们备受鼓舞——一旦突破电子空穴对收集的技术瓶颈,太阳能电池的发展将会翻开全新一页!
  • 美研发病毒可将太阳能电池效率提高三成
    M13病毒可提高太阳能电池性能  美国麻省理工学院4月26日在其网站上宣称,该校研究人员日前开发出了一种新技术,可通过一种名为“M13”的病毒将太阳能电池的光电转换效率提高近三成。相关论文发表在最新一期《自然纳米技术》杂志上。  先前的研究已经发现,碳纳米管可以提高太阳能电池的转换效率。理想的情况下,碳纳米管会收集更多的电子,提高太阳能电池的表面积,从而产生更大的电流。但麻省理工学院的研究人员发现,该技术也存有一定的局限性。碳纳米管有两种,按功能可分为半导体类碳纳米管和导线类碳纳米管,两种纳米管不但在作用上不同,还容易发生聚集,从而严重影响转化效率。  研究人员经研究发现,M13病毒可以很好地解决这一问题。这种病毒长度为880纳米,结构简单易于操控,且对人体无害。M13病毒中的一种肽可使其附着在碳纳米管上,从而保证纳米管处于恰当的位置上,避免与其他碳纳米管发生黏连。每个病毒使用300个左右的蛋白质分子可以控制大约5到10个纳米管。实验显示,采用病毒结构的新型太阳能电池可将光电转化效率从普通太阳能电池的8%提高到10.6%,而新系统在重量上只增加了0.1%。  研究人员发现,除可固定碳纳米管外,M13病毒还会产生出二氧化钛,而二氧化钛颗粒可有效提高电子的传输效率。这种物质同样也是“格雷策尔电池”中的主要组成部分。“格雷策尔电池”也被称为染料敏化太阳能电池,工作原理是通过模仿光合作用产生电能。其发明人瑞士洛桑联邦高等理工学院光子学和界面试验室主任迈克尔格雷策尔曾因该技术被授予芬兰2010年“千年技术奖”。此外,M13病毒还会让碳纳米管具有水溶性,使其在室温条件下可更方便地加入到太阳能电池板中,从而降低生产成本。  研究人员称,关于两种碳纳米管在太阳能电池中具有不同效用的发现也是此次研究的一项重要成果,此前还没有被实验证明过。半导体纳米管可以提高太阳能电池的性能,但导线类纳米管的作用却正好相反。该发现或有助于设计出更有效的纳米电池、压电材料或其他与电力相关的材料。  负责该项研究的麻省理工学院教授安吉拉贝尔彻说,该技术还可以用来设计其他病毒增强型太阳能电池,包括量子点和有机太阳能电池。在提高普通太阳能电池的转化效率上该技术也有很大的潜力,不过这有赖于生物技术的进一步发展。
  • GISAXS揭示了用于太阳能电池的PbS量子点的堆积
    量子点是大约2到10纳米大小的半导体纳米晶体。由于其可调的光电特性,它们被广泛应用于LED、单电子晶体管、医疗成像和太阳能电池等领域。当用于太阳能电池时,光在量子点中产生一个电子-空穴对,可以通过施加电化学能将其分离。电子和空穴的流动产生了电流。 硫化铅(PbS)量子点具有高效、低成本和高空气稳定性等优点,是一种很有前景的光伏材料。不同的量子点合成方法可以产生不同的晶体面,从而导致不同的配体结合特性,反过来影响所谓的“陷阱态“的出现。这些陷阱态限制了太阳能电池的性能,而使陷阱态钝化是提高这些器件功率转换效率的重要策略。 华中科技大学、慕尼黑工业大学、南方科技大学以及深圳大学合作发表的一篇论文表明,可以通过控制量子点的合成来控制Pbs量子点结晶面的形成【1】。在热力学控制下,它们主要形成了带有{100}和{111}晶面的截断八面体(见下图c),而在动力学生长机制下,生成普通的八面体(见下图d),且只显示{111}晶面。 掠入射小角X射线散射(GISAXS)是研究这些量子点形状差异的有效方法,因为它对材料的堆积方式非常敏感。量子点在旋涂层薄膜中的排列是由粒子的形状决定的,因此也决定了粒子的端点。八面体则以体心立方/四方(BCC/BCT)布局堆叠,而截断的八面体以面心立方(FCC)的方式堆积成球体。从这些超点阵模型(用白点表示)计算出的布拉格峰与GISAXS结果(上图a和b)相吻合。此外,GISAXS结果可以计算晶格常数。 其他几个关于GISAXS和掠入射广角X射线散射(GIWAXS)用于研究量子点的有趣案例可以在下面引用的最近的一篇论文中找到【2】。GISAXS是一种对表面敏感的技术,可以提供纳米尺度((1 - 200 nm)的纳米结构薄膜的结构信息,由于X射线光束覆盖区域面积大,这些信息具有统计相关性。通过改变X射线散射仪的测量配置,可以在GIWAXS测量模式下研究较短长度(0.1 - 1 nm)下的样品参数。在论文中,作者介绍了测量不同超晶格结构的例子。表明GISAXS/GIWAXS是了解量子点自组装和结构的一种有价值的技术。 参考文献:[1] The research was originally published in the following articles:Yong Xia, Wei Chen, Peng Zhang, Sisi Liu, Kang Wang, Xiaokun Yang, Haodong Tang, Linyuan Lian, Jungang He, Xinxing Liu, Guijie Liang, Manlin Tan, Liang Gao, Huan Liu, Haisheng Song, Daoli Zhang, Jianbo Gao, Kai Wang, Xinzheng Lan, Xiuwen Zhang, Peter Müller-Buschbaum, Jiang Tang, and Jianbing Zhang,Facet Control for Trap-State Suppression in Colloidal Quantum Dot Solids. Adv Funct Mat, 30 (2020)[2] Saxena, V. & Portale, G. Contribution of Ex-Situ and In-Situ X-ray Grazing Incidence Scattering Techniques to the Understanding of Quantum Dot Self-Assembly: A Review. Nanomaterials 10, 2240 (2020).

太阳能电池量子效率测量系统相关的方案

  • AM1.5G A+级太阳光模拟器及量子效率量测提升全聚合物太阳能电池效率
    全聚合物太阳能电池(all-PSCs)凭借其出色的稳定性和机械耐用性,被认为是未来太阳能电池应用的重要方向。全聚合物太阳能电池主要由供体和受体两种有机聚合物材料组成,其基本结构包括以下:l 透明导电电极: 通常由氧化铟锡(ITO)制成,用于光的透射和电子的导电。l 电子传输层: 提高电子从活性层向电极的传输效率。l 活性层: 由供体和受体材料组成,是光生电荷的主要产生区域。供体材料吸收光子产生激子(电子-空穴对),激子在受体材料处分离成自由电子和空穴。l 空穴传输层: 提高空穴从活性层向电极的传输效率。l 金属电极: 通常由银或铝制成,用于收集和导出电荷。近年来,全聚合物太阳能电池的研究发展迅速:l 材料发展: 随着非富勒烯受体材料的快速发展,APSCs的光/热稳定性和柔韧拉伸性能显着提高。l 转换效率: 研究显示,聚合物太阳能电池的转换效率已突破10%,这使其成为一种有竞争力的替代传统硅基太阳能电池的技术。l 机械灵活性: APSCs表现出优异的透明性、溶液加工性和机械灵活性,使其在柔性电源系统中有广泛应用前景。然而,由于其效率长期落后于小分子受体基太阳能电池,限制了其进一步发展。如何有效平衡并提升开路电压(Voc)和短路电流密度(Jsc)成为全聚合物太阳能电池领域的一大难题。近期,香港科技大学颜河教授团队在国际顶级期刊 Energy & Environmental Science 上发表了突破性研究成果, 成功开发了一种名为PYO-V的新型聚合物受体, 它可以通过调节分子结构, 实现更宽的光谱吸收和更高的能量级, 从而有效提升了全聚合物太阳能电池的性能, 并实现了高效的多功能光伏应用。颜河教授是香港科技大学化学系教授,长期致力于有机光伏材料与器件方面的研究, 在国际著名期刊发表了200余篇高质量学术论文。 他的团队致力于突破现有全聚合物太阳能电池的技术瓶颈, 为下一代高效稳定的光伏器件的开发提供新的思路和方向。
  • 流量控制如何提高太阳能电池效率
    随着当今世界越来越依赖风能和太阳能等可持续能源,有一个问题随之而来:如何进一步改善光伏(PV)太阳能电池的光电效率?从物理学角度广泛使用的晶体硅基太阳能电池的效率不超过29%。目前电池的最大效率约21%至22%,因此还有改进的空间。
  • 红外量子点合成及其红外太阳能电池应用研究分享
    华中科技大学光学与电子信息学院张建兵团队长期致力于硫化铅(PbS)和硒化铅(PbSe)红外量子点的合成及其光电器件研究,近两年团队取得了系列进展。在本系列中,我们将为大家展示课题组在基于PbS、PbSe量子点的红外太阳能电池领域的研究进展。

太阳能电池量子效率测量系统相关的资料

太阳能电池量子效率测量系统相关的试剂

太阳能电池量子效率测量系统相关的论坛

  • 太阳能电池全套测试系统

    太阳能电池(光电材料)I-V特性测试系统 目前,石油、天然气等不可再生能源价格的居高不下,使得人类对太阳能电池(光电材料)的研究开发进入了一个新的阶段,国内很多实验室和科研院校也都加紧了对太阳能电池材料(光电材料)的研究和开发。 太阳能电池(光电材料)测试作为太阳能电池(光电材料)研究开发的一个环节,至关重要,需要专业的测试系统来完成。针对当前人们对太阳能电池材料(光电材料)的研究和开发,以及太阳能电池(光电材料)研究人员搭建太阳能电池(光电材料)测试系统的耗时耗力,我公司特推出太阳能电池(光电材料)测试系统,并已在很多太阳能电池材料(光电材料)研究、测试实验室广泛使用。 一、我公司太阳能电池(光电材料)测试系统的优势: 1. 技术服务全面 我公司始终把客户需求摆在首要位置,针对客户特殊需求量身定做,为客户提供全套解决方案,终身提供技术服务,为客户节省了搭建太阳能电池(光电材料)测试系统所消耗的时间和人力物力,同时也得到了客户的一致好评。 2. 针对性强 凭借雄厚的光电技术知识和行业经验,针对不同类型的太阳能电池(光电材料)以及客户对测试系统的不同需求,我公司对太阳能电池(光电材料)测试系统也做出了相应的调整,以达到较好的测试效果。目前,针对硅太阳能电池、多元化合物为材料的太阳能电池、功能高分子材料制备的大阳能电池、纳米晶太阳能电池等不同的太阳能电池,我公司也都搭建了不同的测试系统。 3. 性价比高 我公司太阳能电池(光电材料)测试系统采用国外知名公司仪器集成,信噪比高,性能稳定,技术先进,对太阳能电池(光电材料)的测试过程实现自动化,过程简单方便,测试结果在行业内也会具有一定的权威性和说服力。同时,我公司推出的整套太阳能电池(光电材料)测试系统具有很高的性价比。 4. 成熟的太阳能电池(光电材料)测试系统 凭借测试系统的高性价比以及全面的技术服务,我公司太阳能电池(光电材料)测试系统已在国内很多单位的实验室投入使用,包括清华大学等知名大学、国家权威的太阳能计量单位、中国科学院等研究机构以及众多的太阳能相关企业,经过大量客户对我公司太阳能电池(光电材料)测试系统的使用,证明了我公司的太阳能电池(光电材料)测试系统的成熟。 二、太阳能电池(光电材料)光谱响应测试系统简介 太阳能电池(光电材料)光谱响应测试,或称量子效率QE(Quantum Efficiency)测试,或光电转化效率IPCE (Monochromatic Incident Photon-to-Electron Conversion Efficiency) 测试等,广义来说,就是测量光电材料的光电特性在不同波长光照条件下的数值,所谓光电特性包括:光生电流、光导等。我公司的光谱测试系统由宽带光源、单色仪、信号放大模块、光强校准模块、计算机控制和数据采集处理模块组成。我们可以与用户密切协作,根据用户需要测试的样品的类型、测试指标、测试条件,设计和组建最适合每个客户测试需要的系统。 三、太阳能电池I-V特性测试系统简介 我公司太阳能电池I-V特性测试系统主要用来测试太阳能电池的I-V特性等。光源光谱和强度特性可模拟各种条件下的太阳光谱(AM0、AM1.0、AM1.5、AM1.5Global、AM2.0、AM2.0Global),稳定性高,均匀性好,均可达到A类标准,多种光照射面积尺寸;样品台可控温;高精度表头、可调负载和配套软件组成的系统能够通过计算机对测试参数进行设置,并且读取数据,在计算机内进行数据处理,绘制I-V和曲线和显示其它参数并打印输出;系统还可根据客户的具体情况和特殊需求进行相应的系统扩展太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统   太阳能电池测试行业长期的经验,使得我公司太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统始终处于行业领先位置。符合IEC, JIS, ASTM标准规定,我公司太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统具有很高的稳定性和重复性。   作为光伏器件厂商和科研工作者,为了获得高效的产品,就需要一套高性能太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统来帮助完成产品改进。我公司太阳能电池(光电材料)IPCE/QE/量子效率[font=宋体, MS So

  • 专家创新胶体量子点太阳能电池转化效率纪录

    一个国际科研团队撰文指出,他们使用无机配位体替代有机分子来包裹量子点并让其表面钝化,研制出了迄今转化效率最高的胶体量子点太阳能电池。据美国物理学家组织网9月18日报道,一个国际科研团队在最新一期的《自然-材料学》杂志上撰文指出,他们使用无机配位体替代有机分子来包裹量子点并让其表面钝化(不易与其他物质发生化学反应),研制出了迄今转化效率最高(达6%)的胶体量子点(CQD)太阳能电池。吸光纳米粒子量子点是纳米尺度的半导体,其能捕捉光线(既可吸收可见光,也可吸收不可见光)并将其转化为能源。人们可将其喷洒到包括塑料在内的柔性材料表面,制造出比硅基太阳能电池更便宜、更经久耐用的太阳能电池。而且,胶体量子点电池的理论转化效率可高达42%,超过硅基太阳能电池31%的理论转化率。今年7月,多伦多大学的科学家研制出了转化效率为4.2%的胶体量子点太阳能电池。胶体量子点太阳能电池研制领域最大的挑战在于如何使量子点紧密结合在一起,因为量子点之间的距离越大,转化效率越低。然而,量子点通常由多出其1—2纳米的有机分子包裹,在纳米尺度上,这有点大,而有机分子是制造胶体的重要成分。为此,加拿大多伦多大学、沙特阿拉伯阿卜杜拉国王科技大学、美国宾夕法尼亚州立大学的科学家们开始考虑使用无机配位体来让量子点紧紧依附在一起,以尽可能节省空间。结果,科学家们不使用“庞大”的有机分子也获得了胶体的特征。“我们在每个量子点周围包裹了一单层原子,它们将量子点包裹成非常紧密的固体。”该研究的领导者、多伦多大学电子与计算机工程系博士后唐江(音译)表示。研究合作者、宾夕法尼亚州立大学的约翰-艾斯拜瑞说:“最新研究表明,我们能剔除电荷陷阱——电子陷入的位置。量子点紧密地结合在一起以及消除电荷陷阱,双管齐下使电子能快速且平滑地通过太阳能电池。”美国国家可再生能源实验室委派的实验室证实,新研制出的胶体量子点太阳能电池不仅电流达到了最高值,高达6%的整体能量转化效率也创下了纪录。“最新研究表明,无机配位体在构建实用设备方面具有强大的作用。”量子点太阳能电池研制领域的领导者、芝加哥大学教授德米特里·塔拉品说,“新的表面化学为我们制造高效且稳定的量子点太阳能电池铺平了道路,也将对其他利用胶体纳米晶体制造的电子和光电耦合设备产生影响。全无机方法的好处包括能显著改善电子的运输速度,让设备更加稳定等。”

  • 黑磷-提升太阳能电池效率的新思路

    研制高效的低成本的太阳能电池是全球共同面临的巨大挑战。染料敏化太阳能电池因其具有成本低廉、工艺简单、可小型化、环境友好等优点,展现出广阔的产业化前景。而实现太阳能电池高转化效率的首要途径是尽可能提高太阳光的利用率,这就要求电池电极能最大限度地捕捉太阳发出的各种光线,并实现高效的光电转换。新材料的研发为提升太阳能电池的效率提供了新思路。黑磷,作为一种具有二维层状结构的直接带隙半导体材料,展现出优异的光电性能,被广泛视为新的“超级材料”,在半导体工业、光电器件、光学探测、传感器、光热治疗等多个领域展现出巨大的潜在应用价值。近期研究发现,大小仅为几个纳米的黑磷量子点还具有很高的近红外消光系数,可实现近红外光的高效吸收。近期,中国科学院深圳先进技术研究院喻学锋研究员与中南大学杨英副教授以及肖思副教授等合作,创新性地将黑磷量子点应用于构筑染料敏化太阳能电池的光阴极。团队利用黑磷量子点的近红外强吸收和高光电转换能力,将黑磷量子点沉积于多孔导电聚苯胺薄膜表面,制备出可红外光响应的光阴极,与光阳极形成互补的光吸收,将器件的光吸收范围扩展至可见-红外波段,从而组装成可双面进光的准固态染料敏化太阳能电池。电池性能测试结果表明,沉积黑磷量子点后光阴极实现了对低能红外光子的充分利用,并有效增加了器件的光生载流子浓度,从而将太阳能电池的光电转换效率提高了20%。该研究成果表明黑磷在太阳能电池、光伏器件等领域的巨大应用潜力。相关论文发表在AdvancedMaterials(DOI: 10.1002/adma.201602382),并被选为当期封面故事。巨纳集团低维材料在线商城91cailiao.cn,专注材料服务,主要销售以低维材料为代表的相关的实验室耗材和工具,比如各类二维材料(包括狄拉克材料),一维材料,零维材料,黑磷BP,石墨烯,纳米管,HOPG,天然石墨NG,二硫化钼MoS2,二硒化钼MoSe2,二硫化钨WS2,hBN氮化硼晶体,黑磷,二碲化钨WTe2,二硫化铼ReS2,二硒化铼ReSe2量子点,纳米线,纳米颗粒,分子筛,PMMA.....积极为广大科研院所提供更加优异的低维材料,推动新型材料的研究。

太阳能电池量子效率测量系统相关的耗材

  • 太阳能电池夹具(Jig)
    - C-Si太阳能电池测试.- Bus-Bar接触.- 太阳能电池I-V测试.- 太阳能电池EL成像.联系方式:025-84615783
  • 太阳能电池硅片清洗花篮可定制
    太阳能电池硅片清洗花篮 品牌:瑞尼克型号:RNKHL加工定制:是用途:清洗别名:花篮、承载篮用于半导体硅片,晶片,玻璃,液晶屏等清洗、腐蚀设备的承载花篮,太阳能电池片花蓝、太阳能硅片花蓝_太阳能硅片承载器、光伏电池片花蓝、光伏硅片花蓝,用于太阳能电池硅片清洗设备中,用于承载方形太阳能电池硅片,材质为PTFE,本产品即在100℃以下的NaOH溶液、HCl溶液、HF等溶液中对硅片进行清洗、转换,且长期使用不变形、不污染硅片.特点:1.外观纯白色。2.耐高低温:可使用温度-200℃~+250℃。3.耐腐蚀:耐强酸、强碱、王水和有机溶剂,且无溶出、吸附和析出现象。4.防污染:金属元素空白值低。5.绝缘性:不受环境及频率的影响,介质损耗小,击穿电压高。6.耐大气老化,耐辐照和较低的渗透性。7.自润滑性:具有塑料中小的摩擦系数。8.表面不粘性:是一种表面能小的固体材料。9.机械性质较软,具有非常低的表面能。聚四氟乙烯(PTFE)系列产品:培养皿、坩埚、试剂瓶、试管、镊子、药匙、烧瓶、烧杯、漏斗、容量瓶、蒸发皿、表面皿、阀门、接头、离心管等。
  • PTFE太阳能电池硅片清洗花篮可定制
    太阳能电池硅片清洗花篮 品牌:瑞尼克型号:RNKHL加工定制:是 用途:清洗 别名:花篮、承载篮 用于半导体硅片,晶片,玻璃,液晶屏等清洗、腐蚀设备的承载花篮,太阳能电池片花蓝、太阳能硅片花蓝_太阳能硅片承载器、光伏电池片花蓝、光伏硅片花蓝,用于太阳能电池硅片清洗设备中,用于承载方形太阳能电池硅片,材质为PTFE,本产品即在100℃以下的NaOH溶液、HCl溶液、HF等溶液中对硅片进行清洗、转换,且长期使用不变形、不污染硅片.特点:1.外观纯白色。2.耐高低温:可使用温度-200℃~+250℃。3.耐腐蚀:耐强酸、强碱、王水和有机溶剂,且无溶出、吸附和析出现象。4.防污染:金属元素空白值低。5.绝缘性:不受环境及频率的影响,介质损耗小,击穿电压高。6.耐大气老化,耐辐照和较低的渗透性。7.自润滑性:具有塑料中小的摩擦系数。8.表面不粘性:是一种表面能小的固体材料。 9.机械性质较软,具有非常低的表面能。聚四氟乙烯(PTFE)系列产品:培养皿、坩埚、试剂瓶、试管、镊子、药匙、烧瓶、烧杯、漏斗、容量瓶、蒸发皿、表面皿、阀门、接头、离心管等。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制