当前位置: 仪器信息网 > 行业主题 > >

交换器

仪器信息网交换器专题为您提供2024年最新交换器价格报价、厂家品牌的相关信息, 包括交换器参数、型号等,不管是国产,还是进口品牌的交换器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合交换器相关的耗材配件、试剂标物,还有交换器相关的最新资讯、资料,以及交换器相关的解决方案。

交换器相关的论坛

  • 【求助】求助:如何去掉MTS试验机中热交换器中的水垢

    我们的MTS 810.50用了5年,因为冷却水一直不好,前年热交换器堵了,那时我们拿一根细铁丝一个孔一个孔捅开,结果效果也不好,用了两年后,又堵上了,现在细铁丝都伸不进去了。怎么去掉敷着在热交换器里管子上的水垢?注:热交换器管子大概是铜的,直径大概4mm,是很多管子并排一起的。我们试图用醋酸,结果没效果,不敢用稀盐酸,怕弄坏了它。各位有没有什么好的办法呢?

  • 【求助】锅炉用水(离子交换器)

    想问一下离子交换器出来的水,硬度应该是多少,本厂的是0.07,用的是粗盐,以前还能测到无硬度的,现在一般都在0.07左右,不知道哪里出问题了

  • 【资料】除盐离子交换器(对流再生)设计数据

    设 备 名 称 强酸阳离子交换器 强碱阴离子交换器 运 行 滤速(m/h) 20-30 20-30 小反洗 流速(m/h) 5-10 5-10 时间(m/h) 15 15 反 洗 流速(m/h) 5-10 5-10 时间(m/h) 15 15 顶 压 气顶压 压力(MPa) 0.029-0.049(0.3-0.5kgf/cm2) 流量(标准m3/min) 0.2-0.3(除油、除尘净化空气) 水顶压 压力(MPa) 0.049(0.5kgf/cm2) 流量 再生液流量的0.4-1倍 再 生 药剂(100%) H2SO4 HC1 NaOH 再生剂耗量(kg/kgCaCo3) 10 4-5 4-5 置换 流速(m/h) 同 再 生 流 速 时间(min) 计 算 确 定 正洗 水耗(m3/m3R) 5-6 10-12 - 2-2.5 2.5-5 流速(m/h) 15-20 15-20 20-30 15-20 15-20 工作交换容量(kgCaCo3/m3R) 25-32.5 60-50 12.5-15 - 75-90 40-60   其 他  - 再生时间不少于30min 正洗前空气混合,空气压力0.098-0.142MPa(1-1.5kg1/cm2),空气流量2-3标准m3/min,混合时间0.5-1min -   注:1.当水质较好或采用自动控制时,强酸阳、强碱阴离子交换器运行滤速可按30m/h左右计算。 2.混合离子交换器系指体内再生设备。

  • 【求助】康克软化水交换器溶盐罐溶水问题

    [color=#DC143C][em0901][/color]锅炉房用于软化水的美国康克牌软化水交换器的溶盐罐中的水,罐水经常没过罐中盐的高度,说明书中说溶盐罐中的水不能超过罐中的盐,最重要的是软化水交换器经常不停的向溶盐罐中注水,水老漫出溶盐罐。望知道人给予说明。

  • 通风设备之表面式热交换器

    在冬季非常寒冷的地区,不能直接把室外冷空气送入室内,必须对空气进行加热。通常采用表面式热交换器,以热水或蒸汽为热媒进行空气加热。 空气以一定速度从条缝形孔口喷出时,构成一股平面射流。如在其对面设置条缝形吸风口吸入这股气流,在吹、吸风口之间就会构成一道像帷幕一样的气流。利用这种吹吸气流本身所具有的动量隔断气流两侧空气的装置称为气幕。装设在建筑物出入口的气幕称为大门空气幕。大门空气幕可以防止室外风、灰尘、昆虫、污染空气和臭味侵入室内,减少建筑物的热(冷)损失,而且不妨碍人和物的通过。大门空气幕在人员车辆进出频繁的工业厂房、冷藏库、百货公司、剧院等处得到了广泛应用。在民用建筑中大多采用上部送风的上送式,在工业建筑中多采用下送式和侧送式。气幕也用于局部地点控制污染物扩散,作为这种用途的装置称为气幕隔断或吹吸式排风罩,在大型酸洗槽、铸造车间落砂和大型工件油漆等生产过程中已大量采用。与传统的局部排风罩相比,它的动力消耗少,污染控制效果好,不妨碍生产操作。

  • 离子交换色谱步骤及作用

    [font=宋体][font=宋体]离子交换层析[/font][font=Calibri](IEX)[/font][font=宋体]是一种主要基于蛋白净电荷的色谱分离方法,通常用于追踪脱酰胺和琥珀酰亚胺的形成。[/font][font=Calibri]IEX[/font][font=宋体]有两种类型:阳离子交换和阴离子交换层析法。当缓冲液[/font][font=Calibri]pH[/font][font=宋体]值高于此[/font][font=Calibri]IP[/font][font=宋体]时,蛋白带负电(阴离子);当[/font][font=Calibri]pH[/font][font=宋体]值低于此[/font][font=Calibri]IP[/font][font=宋体]时,蛋白带正电(阳离子)。下面主要介绍离子交换色谱操作中应注意的一些具体问题。[/font][/font][font=宋体][font=Calibri]1.[/font][font=宋体]色谱柱[/font][/font][font=宋体][font=宋体]离子交换色谱应根据分离样品的数量选择合适的色谱柱,用于离子交换的色谱柱一般又厚又短,不宜过长。直径和柱长的比例通常在[/font][font=Calibri]1:10[/font][font=宋体]到[/font][font=Calibri]1:50[/font][font=宋体]之间,色谱柱应垂直安装。安装立柱时,立柱应平整,不得有气泡。[/font][/font][font=宋体][font=Calibri]2.[/font][font=宋体]平衡缓冲器[/font][/font][font=宋体][font=宋体]离子交换色谱的基本反应过程是离子交换剂与待分离物质和缓冲液中离子的交换,因此离子交换色谱中平衡缓冲液和洗脱缓冲液的离子强度和[/font][font=Calibri]pH[/font][font=宋体]的选择对分离效果有很大影响。[/font][/font][font=宋体][font=宋体]平衡缓冲液是指离子交换柱加载后和样品加载后用于平衡离子交换柱的缓冲液。选择平衡缓冲液的离子强度和[/font][font=Calibri]pH[/font][font=宋体]首先确保待分离的单个物质(如蛋白质)的稳定性。其次,要使每种待分离物质与离子交换剂有适当的组合,并尽量使样品与待分离杂质与离子交换器的组合有更大的差异。通常,待分离的样品与离子交换器具有更稳定的组合。并尽量使杂质不与离子交换剂结合或结合不稳定。在某些情况下(如污水处理),杂质可以与离子交换器牢固结合,样品与离子交换器结合不稳定,也可以达到分离的目的。另外,要注意平衡缓冲液不能与离子交换剂离子有很强的结合力,否则会大大降低交换容量,影响分离效果。选择合适的平衡缓冲液可以直接去除大量杂质。并使以下洗脱具有良好的效果。如果平衡缓冲液不合适,可能会给后续洗脱带来困难,无法获得良好的分离效果。[/font][/font][font=宋体][font=Calibri]3.[/font][font=宋体]样品交付[/font][/font][font=宋体][font=宋体]负载离子交换色谱时,应注意样品液的离子强度和[/font][font=Calibri]pH[/font][font=宋体]值,负载量不宜过大,一般以[/font][font=Calibri]1-5%[/font][font=宋体]的柱床体积为宜,这样样品才能吸附在色谱柱的上层,分离效果更好。[/font][/font][font=宋体][font=Calibri]4.[/font][font=宋体]洗脱缓冲液[/font][/font][font=宋体][font=宋体]梯度洗脱通常用于离子交换色谱,通常有两种方法来改变离子强度和改变[/font][font=Calibri]pH[/font][font=宋体]。改变离子强度通常是通过在洗脱过程中逐渐增加离子强度来实现的,从而洗脱掉与离子交换剂结合的各种组分;对于[/font][font=Calibri]pH[/font][font=宋体]变化的洗脱,阳离子交换剂通常为从低到高的[/font][font=Calibri]pH[/font][font=宋体]洗脱,阴离子交换剂通常是从高到低的[/font][font=Calibri]pH[/font][font=宋体]洗脱。由于[/font][font=Calibri]pH[/font][font=宋体]可能对蛋白质稳定性有很大影响,因此通常使用具有不同离子强度的梯度洗脱。梯度洗脱装置介绍较早,可以有线性梯度、凹梯度、凸梯度和分级梯度洗脱方法。通常,线性梯度洗脱具有更好的分离效果,因此通常使用线性梯度洗脱。[/font][/font][font=宋体]洗脱液的选择也是为了确保所有待分离的组分在整个洗脱液梯度范围内是稳定的。第二种是使结合到离子交换器的所有分离的组分能够在洗脱液梯度范围内洗脱。此外,梯度范围可以尽可能小以提高分辨率。[/font][font=宋体][font=Calibri]5.[/font][font=宋体]洗脱速度[/font][/font][font=宋体]洗脱液的流速也影响离子交换色谱的分离效果,洗脱速率通常保持恒定。一般来说,慢洗脱速度要好于快分辨率,但洗脱速度太慢会造成分离时间长、样品扩散、光谱峰宽、分辨率降低等副作用,因此根据实际情况选择合适的洗脱速度。如果洗脱峰相对集中在某个区域,则应减小梯度范围或降低洗脱速度以提高分辨率。如果分辨率良好,但洗脱峰太宽,则可以适当地提高洗脱速度。[/font][font=宋体][font=Calibri]6.[/font][font=宋体]样品的浓缩和脱盐[/font][/font][font=宋体]通过离子交换色谱法获得的样品通常具有较高的盐浓度、较大的体积和较低的样品浓度。因此,通过离子交换色谱法获得的样品应进行浓缩和脱盐。[/font][font=宋体] [/font][font=宋体][b]离子交换色谱法的应用[/b][/font][font=宋体]离子交换色谱法有着广泛的应用,主要在以下几个方面。[/font][font=宋体][font=Calibri]1.[/font][font=宋体]水处理[/font][/font][font=宋体][font=宋体]离子交换色谱法是一种简单有效的去除水中杂质和离子的方法。聚苯乙烯树脂广泛应用于高纯水的制备、硬水软化和污水处理。纯水可以通过蒸馏制备,但它消耗大量能量,而且制备量小、速度慢、纯度不高。通过离子交换色谱法可以快速、大量地制备高纯水。通常,水依次通过[/font][font=Calibri]H+[/font][font=宋体]型强阳离子交换器,以去除吸附在阳离子交换器上的各种阳离子和杂质;然后,通过[/font][font=Calibri]OH[/font][font=宋体]型强阴离子交换剂,去除阴离子交换剂吸附的各种阴离子和杂质,得到纯水。经过弱阳离子和阴离子交换剂的进一步纯化,可以获得高纯度的纯水。离子交换器在使用一段时间后可以通过再生处理进行再利用。[/font][/font][font=宋体][font=Calibri]2.[/font][font=宋体]小分子的分离和纯化[/font][/font][font=宋体][font=宋体]离子交换色谱法还广泛应用于无机离子、有机酸、核苷酸、氨基酸、抗生素等小分子的分离纯化。例如,分析氨基酸,使用强酸性阳离子聚苯乙烯树脂,将氨基酸混合物置于[/font][font=Calibri]pH2~3[/font][font=宋体]柱上。此时,氨基酸在树脂上结合,然后逐渐提高洗脱液的离子强度和[/font][font=Calibri]pH[/font][font=宋体],从而使各种氨基酸以不同的速率洗脱,并可以分离和鉴定。提供所有自动氨基酸分析仪。[/font][/font][font=宋体][font=Calibri]3.[/font][font=宋体]生物大分子的分离纯化[/font][/font][font=宋体]离子交换色谱法是根据物质带电性质的不同,分离纯化蛋白质等生物大分子的重要手段。由于生物样品中蛋白质的复杂性,仅用一次离子交换色谱法通常很难达到高纯度,并且经常与其他分离方法结合使用。离子交换色谱法分离样品应充分利用根据带电性质进行分离的特点,只要选择合适的条件,离子交换色谱可以获得满意的分离结果。[/font][font=宋体] [/font][font=宋体][font=宋体]更多[url=https://cn.sinobiological.com/resource/protein-review/protein-purification-by-iec][b]离子交换层析蛋白纯化[/b][/url]详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-purification-by-iec[/font][/font]

  • 实验室超纯水机中离子交换树脂的污染及处理

    [b]一、悬浮物的污堵及处理[/b]原水中的悬浮物会堵塞树脂层中的孔隙,从而增大其水流阻力,增大运行压降,也会覆盖在树脂颗粒的表面,因而降低树脂的工作交换容量。为防止悬浮物的污堵,主要是加强对原水的预处理,以降低水中悬浮物的含量。为清除积聚在树脂层中的悬浮物,可采用增加反洗次数和时间或使用压缩空气擦洗等方法。 常用化学除盐系统对进水悬浮物的要求一般如下:[align=center][table][tr][td=1,1,266][b]化学除盐单元[/b][/td][td=1,1,239][b]悬浮物(mg/L)[/b][/td][/tr][tr][td=1,1,266]强酸阳(顺流再生)[/td][td=1,1,239]< 5[/td][/tr][tr][td=1,1,266]强酸阳(对流再生)[/td][td=1,1,239]< 2[/td][/tr][tr][td=1,1,266]强酸阳(浮床)[/td][td=1,1,239]< 2[/td][/tr][tr][td=1,1,266]强酸阳(顺流)→强酸阳(浮床)[/td][td=1,1,239]< 5[/td][/tr][tr][td=1,1,266]阳双层床、双室床[/td][td=1,1,239]< 2[/td][/tr][tr][td=1,1,266]阳双室浮床[/td][td=1,1,239]< 2[/td][/tr][tr][td=1,1,266]弱酸阳(顺流)→强酸阳(顺流)[/td][td=1,1,239]< 5[/td][/tr][tr][td=1,1,266]弱酸阳(顺流)→强酸阳(浮床)[/td][td=1,1,239]< 5[/td][/tr][/table][/align][b]二、铁的污染及处理:[/b]阳、阴树脂都可能发生铁的污染。被污染树脂的外观为深棕色,严重时可以变为黑色。一般情况下,每100g树脂中的含铁量超过150mg时,就应进行处理。铁的存在会加速阴树脂的降解。阳树脂使用中,原水带入的铁离子,大部分以Fe[sup]2+[/sup]存在,它们被树脂吸收以后,部分被氧化为Fe3+,再生时不能完全被H+交换出来,因而滞留于树脂中造成铁的污染。使用铁盐作为混凝剂时,部分矾花带入阳床,过滤作用使之积聚在树脂层表面,再生时,酸液溶解了矾花,使之成为Fe[sup]3+[/sup],部分被阳树脂所吸收,造成铁的污染。工业盐酸中的大量Fe[sup]3+[/sup],也会对树脂造成一定的铁污染。用于钠离子交换的阳树脂更容易受到铁的污染。阴树脂中的铁含量有时会比阳树脂的大许多倍。阴树脂的铁主要来源于再生液。一般隔膜法生产的烧碱,其中含有0.01%~0.03%的Fe[sub]2[/sub]O[sub]3[/sub],同时,还含有6~7mg/L的NaClO[sub]3[/sub]。这样的烧碱在贮存和输送过程中与铁容器、管道(无防腐层)接触,将生成高铁酸盐(FeO[sub]4[/sub])。高铁酸盐随碱液进入阴床后,因pH值的降低,将发生分解,其反应式如下:2FeO[sub]4[/sub][sup]2-[/sup] + 10H[sup]+[/sup] → 2Fe[sup]3+[/sup] + 2/3 O[sub]2[/sub] + 5 H[sub]2[/sub]OFe[sup]3+[/sup]进一步生成Fe(OH)[sub]3[/sub],附着于阴树脂颗粒上,造成铁的污染。树脂遭受铁的污染以后,在一般的再生过程中不能除去,必须用盐酸进行清洗。常用的清洗方法是用10%HCl溶液,在进行此方法前,必须检查交换器设备的耐腐蚀性能,否则须用加抑制剂的盐酸。将相当于树脂床体积0.5倍的10%HCl溶液从树脂床顶部进入(要考虑到树脂床内的残余存水,保持HCl溶液的浓度),从树脂床底部疏出相当于床内残余存水的水量,将溶液搅拌,并与树脂接触12小时。疏出酸液,自上而下淋洗,然后反洗30分钟,除去疏松物质,再将树脂床再生后即可投运。[b]防止树脂发生铁污染的措施有:1. [/b]减少阳床进水的含铁量。对含铁量高的地下水应先经过曝气处理及锰砂过滤除铁。对含铁量高的地表水或使用铁盐作为凝聚剂时,应添加碱性药剂,如Ca(OH)[sub]2[/sub]或NaOH,提高水的pH值,防止铁离子带入阳床。[b]2. [/b]对输送高含铁量原水的管道及贮槽应考虑采取必要的防腐措施,以减少原水的铁含量。[b]3. [/b]阴床再生用烧碱的贮槽及输送管道应采取衬胶防腐,以减少碱再生液的含铁量。[b]4. [/b]当树脂的含铁量超过150g/gR时,应进行酸洗。[b]三、硫酸钙的污染及处理:[/b]使用硫酸再生钙型阳树脂时,如果再生液的浓度过高,或流速过慢,在靠近树脂颗粒处,再生出的Ca[sup]2+[/sup]与溶液中的SO[sub]4[/sub][sup]2-[/sup]浓度超过CaSO[sub]4[/sub]的溶度积就会产生CaSO[sub]4[/sub]沉淀,并附在树脂颗粒上,不仅再生后清洗困难,洗出液中总有硬度,影响离子交换反应的进行,运行中还会溶于出水中,使硬度含量增加,降低阳床的交换量。硫酸钙在25℃时的溶度积为2000ppm,随温度增高溶解度减小,因此很难除去。防止硫酸钙沉淀的措施,一是降低再生液硫酸的浓度,二是加快再生液的流速。也可采用分步再生方法,使再生液浓度逐步加大,再生流速逐步减慢。一旦发现树脂中与硫酸钙沉淀时,目前最常用的方法是先以大量软水进行反洗,然后再用~10 % HCl(3个床体积)以2.0 L / h / L反复清洗,但须注意HCl及硫酸钙的溶解速度很慢,因此须多次清洗。另一方法是用EDTA钠盐,但价格很高,且是放热反应,使用时须注意。[b]四、硅的污染及处理:[/b]硅化合物污染发生在强碱阴离子交换器中,尤其是在强、弱型阴树脂联合应用的设备和系统中,其结果往往导致阴离子交换器除硅效率下降。阴床的强碱树脂再生不当、失效的树脂未及时再生或阴树脂再生不彻底,会发生硅酸在树脂颗粒内部聚合的现象,而难以再生,这种现象是硅在树脂内的积聚,不属于硅的污染。硅的污染是指再生过程中,已从树脂上再生出来的硅酸盐,由于再生液pH值的降低,大量的硅酸以胶体状态析出,严重时再生液可以变成胶冻状,被覆于树脂表面,影响树脂的交换容量,并造成出水SiO2含量增高。顺流再生固定床和移动床一般不会发生硅的污染。硅的污染主要发生于原水中硅的含量与总阴离子含量(不包括碱度)比值高的对流再生单床,尤其是在弱、强型阴离子交换树脂联合应用的设备和系统中。清洗二氧化硅污染可用烧碱,建议用量为130 ~ 160 g/L,浓度为2.0 %,处理温度为50℃~60℃。树脂床须先浸泡,如条件不允许,可将溶液以2个床体积/小时的流速通过树脂床,这方法的关键是保持较高温度及接触时间。[b]防止硅污染的主要措施有:1. [/b]阴床失效后要及时再生,不在失效态备用。[b]2. [/b]再生碱液应加热,Ⅰ型树脂不高于40℃,Ⅱ型树脂不高于35℃。[b]3. [/b]降低再生液的浓度至2 % NaOH。[b]4. [/b]再生液的流速不低于5 m / h,但应保持进再生液的时间不少于30min。[b]5.[/b] 联合应用系统中要从设计上保证弱型树脂先失效。[b]五、油的污染及处理:[/b]矿物油对树脂的污染主要是吸附于骨架上或被覆于树脂颗粒的表面,造成树脂微孔的污堵,致使树脂交换容量降低,周期制水量明显减少。矿物油的来源有:■ 渗入地下的矿物油随原水带入交换器。■ 使用蒸汽混合加热原水时,油随蒸汽带入原水。■燃油锅炉使用蒸汽雾化燃油,当油压高于蒸汽压力时,重油(或原油)漏入蒸汽,经过凝气器进入凝结水除盐系统。■炼油厂或化工厂生产流程中的油通过蒸汽系统漏入原水。化学除盐设备进水中含油量为0.5mg/L时,几个月内即可出现树脂被油污染的现象。[b]处理油污染树脂的方法:[/b]首先,应迅速查明油的来源,排除故障,防止油的继续漏入。必要时,应清理设备内积存的油污。轻微污染的树脂不一定需要处理,可以在多次再生中逐渐恢复其交换容量。严重污染的树脂,应通过小型试验,选择适当的处理方法。[b]1. [/b]用NaOH溶液循环清洗使用38 ~ 40 ℃的8 % ~ 9 % NaOH溶液,从碱箱(约10m3)经过阴床、阳床后,再回到碱箱循环清洗(具体时间由小型试验确定),并补充NaOH溶液,保持溶液浓度,利用NaOH对矿物油的乳化作用,清除油污。[b]2. [/b]用溶剂清洗可以使用石油醚或200号溶剂汽油对树脂进行清洗,清洗过程中要严密防火。[b]3. [/b]使用溶剂与表面活性剂联合清洗使用树脂体积20 % 的200号溶剂汽油和TX-10(非离子型,全名为聚氯乙烯辛烷基苯酚)20kg,加入交换器后,保持温度45 ~ 50 ℃,用无油压缩空气搅拌并擦洗,30 min后再加入200 kg TX-10表面活性剂,继续搅拌,使油乳化。最后,从交换器顶部进水,将乳化液从底部排出,至冲洗干净为止。[b]六、有机物的污染及处理:[/b]有机物对阴树脂的污染原因及处理方法都比较复杂,将另行说明。

  • 【分享】离子交换纯水设备概述

    【离子交换纯水设备概述】 离子交换系统是通过阴、阳离子交换树脂对水中的各种阴、阳离子进行置换的一种传统水处理工艺,阴、阳离子交换树脂按不同比例进行搭配可组成离子交换阳床系统,离子交换阴床系统及离子交换混床(复床)系统,而混床(复床)系统又通常是用在反渗透等水处理工艺之后用来制取超纯水,高纯水的终端工艺,他是目前用来制备超纯水、高纯水不可替代的手段之一。其出水电导率可低于1uS/cm以下,出水电阻率达到1MΩ.cm以上,根据不同的水质及使用要求,出水电阻率可控制在1~18MΩ.cm之间。被广泛应用在电子、电力超纯水,化工,电镀超纯水,锅炉补给水及医药用超纯水等工业超纯水,高纯水的制备上。采用阴床,阳床,混床去离子超纯水处理设备采用反渗透主机加两级混床去离子超纯水处理设备 离子交换树脂的工作原理   采用离子交换方法,可以把水中呈离子态的阳、阴离子去除,以氯化钠(NaCl)代表水中无机盐类,水质除盐的基本反应可以用下列方程式表达:  1、阳离子交换树脂:R—H+Na+ R—Na+H+  2、阴离子交换树脂:R—OH+Cl- R—Cl+OH-  阳、阴离子交换树脂总的反应式即可写成:  RH+ROH+NaCl——RNa+RCL+H2O  由此可看出,水中的NaCl已分别被树脂上的H+和OH-所取代,而反应生成物只有H2O,故达到了去除水中盐的作用。离子交换阴树脂离子交换阳树脂离子交换抛光树脂离子交换柱 离子交换树脂的预处理 阳离子交换树脂的预处理  先用清水对树脂进行冲洗,然后用4~5%的HCl和NaOH在交换柱中依次交替浸泡2~4小时,在酸碱之间用大量清水淋洗至出水接近中性,如此重复2~3次,每次酸碱用量为树脂体积的2倍。最后一次处理应用4~5%的HCl溶液进行,放尽酸液,用清水淋洗至中性即可待用。阴离子交换树脂的预处理  先用清水对树脂进行冲洗,然后用4 ~5%的NaOH和HCl在交换柱中依次交替浸泡2 ~4小时,在碱酸之间用大量清水淋洗至出水接近中性,如此重复2~3次,每次酸碱用量为树脂体积的2倍。最后一次处理应用4~5%的NaOH溶液进行,用放尽碱液,用清水淋洗至中性即可待用。 离子交换树脂再生工艺   离子交换树脂在使用一段时间后,吸附的杂质接近饱和状态,就要进行再生处理,使之恢复原来的组成和性能。目前,国内树脂的再生常用化学药剂酸碱法使失效的树脂恢复交换能力,酸的使用通常采用HCl或H2SO4,调配浓度为3-5%左右;碱的使用一般采用NaOH,调配浓度为3-5%左右。  一、反洗分层:  反洗流速10米/时,反洗时间15分钟,以沉降后阳,阴树脂层界面是否清晰判别分层效果。  二、进再生液:  用20分钟左右的时间泵完所需的再生液,浸泡2-3个小时后采用正洗的方法,阴树脂冲洗至出水碱度PH=8-9左右,阳树脂冲洗至出水酸度PH=5-6左右。  三混合:  从底部进入氮气(也可用压缩空气,真空抽气等)进行混合,进气压0.1~0.15MPa,进气量2.5~3.0米3/(米2分),混合时间一般为5~10分种,以柱内树脂充分混合为终点。有机玻璃柱超纯水 离子交换柱装置(4吨)有机玻璃柱超纯水 离子交换柱装置(0.5吨) 有机玻璃柱超纯水 离子交换柱装置(1吨) 离子交换树脂超纯水制备工艺的特点及应用领域   离子交换设备是传统的去离子水设备,它的产水水质稳定,造价相对较低。在以往的电厂锅炉补给水都是采用阳床+阴床+混床处理工艺。  近年来,随着反渗透、EDI等工艺的发展,离子交换设备操作复杂,不容易实现自动化,浪费酸碱,运行成本高等缺点更加突出,目前更多的应用于反渗透的深度处理。  小型的离子交换设备常采用有机玻璃交换柱,有利于观察树脂运行情况。如混合离子交换器再生分层是否充分,阳离子是否“中毒”等,树脂损耗情况等。  大型的离子交换设备则采用碳钢内衬环氧树脂或衬胶,中间预留可视装置,以便于离子再生时在线观测再生液水位状况。1、工业超纯水处理工艺,是目前工业用超纯水的制备上应用最多的一种工艺之一。2、食品工业离子交换树脂可用于制糖、味精、酒的精制、生物制品等工业装置上。3、制药工业离子交换树脂对发展新一代的抗菌素及对原有抗菌素的质量改良具有重要作用。链霉素的开发成功即是突出的例子。4、合成化学和石油化学工业在有机合成中常用酸和碱作催化剂进行酯化、水解、酯交换、水合等反应。5、电镀废液中的金属离子,回收电影制片废液里的有用物质等。 6、湿法冶金及其他离子交换树脂可以从贫铀矿里分离、浓缩、提纯铀及提取稀土元素和贵金属。

  • 【原创】样杯状态传感器故障

    当固体杯放入 Loading Position 时,如果状态显示为 Liquid,则手动方式可以正常测量,但Sample changer 不能工作(交换器抓起杯子,移动到Loading Position 上方时,Cap 立即Close,样品杯不能放入 Airlock)。 仪器是帕纳科Axios

  • 【分享】离子交换纯水设备概述

    【离子交换纯水设备概述】 离子交换系统是通过阴、阳离子交换树脂对水中的各种阴、阳离子进行置换的一种传统水处理工艺,阴、阳离子交换树脂按不同比例进行搭配可组成离子交换阳床系统,离子交换阴床系统及离子交换混床(复床)系统,而混床(复床)系统又通常是用在反渗透等水处理工艺之后用来制取超纯水,高纯水的终端工艺,他是目前用来制备超纯水、高纯水不可替代的手段之一。其出水电导率可低于1uS/cm以下,出水电阻率达到1MΩ.cm以上,根据不同的水质及使用要求,出水电阻率可控制在1~18MΩ.cm之间。被广泛应用在电子、电力超纯水,化工,电镀超纯水,锅炉补给水及医药用超纯水等工业超纯水,高纯水的制备上。采用阴床,阳床,混床去离子超纯水处理设备采用反渗透主机加两级混床去离子超纯水处理设备 离子交换树脂的工作原理   采用离子交换方法,可以把水中呈离子态的阳、阴离子去除,以氯化钠(NaCl)代表水中无机盐类,水质除盐的基本反应可以用下列方程式表达:  1、阳离子交换树脂:R—H+Na+ R—Na+H+  2、阴离子交换树脂:R—OH+Cl- R—Cl+OH-  阳、阴离子交换树脂总的反应式即可写成:  RH+ROH+NaCl——RNa+RCL+H2O  由此可看出,水中的NaCl已分别被树脂上的H+和OH-所取代,而反应生成物只有H2O,故达到了去除水中盐的作用。离子交换阴树脂离子交换阳树脂离子交换抛光树脂离子交换柱 离子交换树脂的预处理 阳离子交换树脂的预处理  先用清水对树脂进行冲洗,然后用4~5%的HCl和NaOH在交换柱中依次交替浸泡2~4小时,在酸碱之间用大量清水淋洗至出水接近中性,如此重复2~3次,每次酸碱用量为树脂体积的2倍。最后一次处理应用4~5%的HCl溶液进行,放尽酸液,用清水淋洗至中性即可待用。阴离子交换树脂的预处理  先用清水对树脂进行冲洗,然后用4 ~5%的NaOH和HCl在交换柱中依次交替浸泡2 ~4小时,在碱酸之间用大量清水淋洗至出水接近中性,如此重复2~3次,每次酸碱用量为树脂体积的2倍。最后一次处理应用4~5%的NaOH溶液进行,用放尽碱液,用清水淋洗至中性即可待用。 离子交换树脂再生工艺   离子交换树脂在使用一段时间后,吸附的杂质接近饱和状态,就要进行再生处理,使之恢复原来的组成和性能。目前,国内树脂的再生常用化学药剂酸碱法使失效的树脂恢复交换能力,酸的使用通常采用HCl或H2SO4,调配浓度为3-5%左右;碱的使用一般采用NaOH,调配浓度为3-5%左右。  一、反洗分层:  反洗流速10米/时,反洗时间15分钟,以沉降后阳,阴树脂层界面是否清晰判别分层效果。  二、进再生液:  用20分钟左右的时间泵完所需的再生液,浸泡2-3个小时后采用正洗的方法,阴树脂冲洗至出水碱度PH=8-9左右,阳树脂冲洗至出水酸度PH=5-6左右。  三混合:  从底部进入氮气(也可用压缩空气,真空抽气等)进行混合,进气压0.1~0.15MPa,进气量2.5~3.0米3/(米2分),混合时间一般为5~10分种,以柱内树脂充分混合为终点。有机玻璃柱超纯水离子交换柱装置(4吨)有机玻璃柱超纯水离子交换柱装置(0.5吨) 有机玻璃柱超纯水 离子交换柱装置(1吨) 离子交换树脂超纯水制备工艺的特点及应用领域   离子交换设备是传统的去离子水设备,它的产水水质稳定,造价相对较低。在以往的电厂锅炉补给水都是采用阳床+阴床+混床处理工艺。  近年来,随着反渗透、EDI等工艺的发展,离子交换设备操作复杂,不容易实现自动化,浪费酸碱,运行成本高等缺点更加突出,目前更多的应用于反渗透的深度处理。  小型的离子交换设备常采用有机玻璃交换柱,有利于观察树脂运行情况。如混合离子交换器再生分层是否充分,阳离子是否“中毒”等,树脂损耗情况等。  大型的离子交换设备则采用碳钢内衬环氧树脂或衬胶,中间预留可视装置,以便于离子再生时在线观测再生液水位状况。1、工业超纯水处理工艺,是目前工业用超纯水的制备上应用最多的一种工艺之一。2、食品工业离子交换树脂可用于制糖、味精、酒的精制、生物制品等工业装置上。3、制药工业离子交换树脂对发展新一代的抗菌素及对原有抗菌素的质量改良具有重要作用。链霉素的开发成功即是突出的例子。4、合成化学和石油化学工业在有机合成中常用酸和碱作催化剂进行酯化、水解、酯交换、水合等反应。5、电镀废液中的金属离子,回收电影制片废液里的有用物质等。 6、湿法冶金及其他离子交换树脂可以从贫铀矿里分离、浓缩、提纯铀及提取稀土元素和贵金属。 [URL=http://www.sc-woter.com/]http://www.sc-woter.com/[/URL]

  • 氙灯老化试验箱制冷系统的工作状态

    氙灯老化试验箱制冷系统的工作状态

    原文来源:氙灯老化试验箱制冷系统的工作状态 编辑:林频仪器  [b]氙灯老化试验箱[/b]的制冷系统的检修不仅要求检修人员具备较高的理论知识,最终判断试验箱的制冷系统是不是处在工作状态。[align=center][img=,348,348]http://ng1.17img.cn/bbsfiles/images/2017/11/201711020832_01_1037_3.jpg!w348x348.jpg[/img][/align]  1、制冷系统压缩机  制冷系统压缩机正常工作时有嗡嗡声音,并有轻微的振动。排气管烫手而回气管冻手,制冷的时候一般都有凝露水煮,制热的时候可能有微霜,压缩机内部拥有着过载的保护器,在压缩机处于高温过电流的时候,导致保护器断开,切开压缩机内部电路,等到温度正常的时候,保护器就会自动闭合。  2、制冷系统室内、外侧热交换器  制冷系统制冷时,试验时外的交换器进口处会很烫手,出口处的温度降低,室内的热交换器会冻手,耳翅片的表面会有凝结的水路,而在制热的时候,室外的交换器会很冻手,可能还会有霜,室内热交换器烫手。  还有更多详情请关注林频的官方网站,我们每日在线为您解答!

  • 分析氙灯光老化试验箱制冷系统各部件工作状态

    分析氙灯光老化试验箱制冷系统各部件工作状态

    [b]氙灯光老化试验箱[/b]制冷系统的检修不仅要求检修人员具备较高的理论知识,尤其要具有较丰富的临场经验。因此,判定试验箱制冷系统各部件是否处于正常工作状态显得尤为重要。  1、[b]氙灯光老化试验箱[/b]制冷系统压缩机  制冷系统压缩机正常工作时有嗡嗡声音,并有轻微的振动。排气管烫手,回气管冻手,制冷时一般有凝露水珠,制热时可能有微霜。压缩机内部有过载保护器,在压缩机处于高温过电流时,保护器断开,切断压缩机的内部电路,当温度正常时,该保护器自动闭合。  2、制冷系统室内、外侧热交换器  [b]氙灯光老化试验箱[/b]制冷系统制冷时,室外热交换器进口处烫手,出口处温度降低 室内热交换器冻手,翅片表面有凝露水珠。制热时,室外热交换器冻手,可能还会有霜、室内热交换器烫手。热交换器的外观应为,翅片均匀整齐,无划伤无积尘,焊口均匀,无开裂。整个热交换器通风状态良好。  3、制冷系统毛细管  智能氙灯光老化试验箱的节流元件均选用毛细管,其内径一般在0.6mm~2.0 mm之间。正常工作时有轻微抖动并伴有轻微冷媒流动声音。毛细管进口处为高压液体,温度较高,而毛细管出口处为低压饱和气液混合物,温度较低,但不应有结霜情况。[img=,650,650]http://ng1.17img.cn/bbsfiles/images/2017/08/201708101654_01_3081755_3.jpg[/img]

  • 【分享】冷却器相关知识

    冷却器可使液体快速冷却至低温或者超低温, 可以替代干冰进行超低温实验, 冷却效率高, 占用体积小, 降温速度快。冷却器是换热设备的一类,用以冷却流体。通常用水或空气为冷却剂以除去热量。有间壁式冷却器、喷淋式冷却器、夹套式冷却器和蛇管式冷却器等。  冷却器 以间壁式、混合式、蓄热式交换器为主要对象,冷却器的工作原理、传热计算、结构计算、流动阻力计算和设计程序,在热交换器一书中均有较多插图和详尽的例题。  冷却器分列管式:(固定折板式,浮头式,双重管式,U形管式,立式、卧式等),风冷式:(间接式、固定式及浮动式或支撑式和悬挂式等),水冷式等。其中风冷式安装方便,运行费用低,适合水资源不足的地方;而水冷式具有体积小,冷却效率高,能用于高温、高湿、多尘的环境中。水冷式冷却器特点:冷却水从管内流过,油从列管间流过,中间折板使油折流,并采用双程或四程流动方式,强化冷却效果。风冷式冷却器特点:用风冷却油,结构简单、体积小、重量轻、热阻小、换热面积大、使用、安装方便。  但是风冷式冷却器在夏季高温下难以冷却,过高的进风温度是一座难以克服的大山,所以在随着科学技术的发展,在原风冷的基础上,吸收水冷却的优点,出现了闭式循环水风冷却器,又名闭式冷却塔,它是水冷和风冷相结合的产儿,刷新了常温冷却器的新纪元,对传统的水冷、风冷进行了有效改造。   另外还有取样冷却器分汽取样冷却器、 炉水取样冷却器,取样冷却器原理是盘管热交换,取样冷却器用于锅炉房或发电厂内汽水化验取样冷却。

  • 【分享】分子生物学实验室常规仪器设备

    本文源自:生物秀冰箱、液氮罐、培养箱、水浴锅、烘箱蒸馏水皿、离子交换器、超纯水( 实验室超纯水器)详细介绍请[URL=http://www.bbioo.com/bio101/2008/22846.htm]http://www.bbioo.com/bio101/2008/22846.htm[/URL]

  • 用无线路由器代替交换机,好吗?

    现在很多人用的手机都可以用无线WiFi了,于是有人为了节省手机流量,悄悄将单位的交换机改用无线路由器代替。同时有另一部分人担心,这种无线路由器的辐射。会不会对人身体有害。。。。。。你觉得用无线路由器代替交换机,好吗?

  • 发反传统的便携式预处理器在超低排放的应用-气态除湿

    随着“超低排放”限值的实施,这种低浓度SO[sub]2[/sub]的排放现状对各级环境监测部门在执行适用性检测、技术验收以及比对监测过程中使用的现场监测系统的灵敏度、检测限、准确度等指标提出了更高要求。 各级环境监测部门使用的便携式烟气分析仪不断的更新换代,从早期定电位电解法便携式烟气分析仪到现在的非分散红外吸收法(NDIR)便携式烟气分析仪、非分散紫外吸收法(NDUV)便携式分析仪及差分光学吸收法(DOAS)便携式分析仪等。便携式分析仪的SO[sub]2[/sub]检测量程也从早期的0~1000PPM到0~200PPM,再到近年来0~50PPM乃至更低量程,目的都是为了能够在“超低排放”下更好、更稳定准确的测量出烟气中气态污染物的浓度。但常常会遇到在“高湿低硫”的烟气监测中,监测值几乎为0的情况,其主要原因则是监测系统中的便携式预处理器在除湿的过程中析出冷凝液,并与烟气接触,造成烟气中的SO[sub]2[/sub]组分被冷凝液吸收而引起。针对这个问题,我探讨了两种类型的便携式预处理器结构原理以及在“高湿低硫”烟气比对测试中的应用。 1. 便携式烟气预处理系统 烟气预处理系统的主要功能就是将烟气在不影响待测物浓度的情况下处理成接近标准气般的高品质气体,以满足分析仪的准确、稳定的分析要求,这主要就是指烟气的除尘和除湿。便携式烟气预处理系统一般包括过滤器、烟气“除湿”器、采样泵、蠕动泵和相关的控制部件,其中最为核心的就是“除湿”器。目前,最常见的就是冷凝器来对烟气除湿,采用的是冷却除湿法;冷凝器控制冷却温度位于2℃-5℃,将烟气中的水蒸气快速冷凝从而脱除水分,达到“除湿”的目的。另一种,独特技术的Nafion管进行烟气除湿,采用的是Nafion干燥法;Nafion管是以磺酸基的化学亲和力为基础,管内外的湿度差为驱动力进行水分子迁移,达到“除湿”的目的。1.1 基本原理 半导体制冷是由J.C.A.珀耳帖在1834年发现了热电致冷和致热现象-即[url=http://baike.baidu.com/view/2280842.htm][color=windowtext]温差电效应[/color][/url],由N、P型材料组成一对热电偶, 当热电偶通入直流电流后,因直流电通入的方向不同,将在电偶结点处产生吸热和放热现象,称这种现象为[url=http://baike.baidu.com/view/212653.htm][color=windowtext]珀尔帖效应[/color][/url]。通过改变电流的大小即可控制制冷温度,因此电子制冷器具有容易控温、无机械转动部件、无工作噪声、无制冷剂的腐蚀和污染、可小型化等特点应用在便携式烟气预处理器中。 将电子制冷器的冷端与圆柱形薄壁热交换器的外罩上紧密接触,通过制冷器来降低热交换器外壳的温度至设定值,烟气流经热交换器内时被迅速降温,烟气中的水蒸气冷凝,析出冷凝液存于热交换器内的内壁上,并逐渐从内壁上滑落,通过蠕动泵将冷凝液从排水口排出。烟气在通过热交换器后,去除存于烟气中的水蒸气而达到“除湿”的目的。电子冷凝器除湿后烟气的极限露点约为+2℃-+5℃。1.2应用分析 连接便携式采样探头,通电预热,设定冷却温度并待预处理稳定后,将采样探头放入烟道抽取烟气。烟气通过预处理内的取样泵进行抽取,流经采样探头与伴热管线后进入烟气预处理器进行“除湿”和“除尘”,输出干燥洁净的烟气至分析仪进行污染物的浓度分析。在“超低排放”的实际应用中,脱硫后的烟气露点约为45℃-65℃。烟气经过高温采样探头和高温伴热管线后进入便携式烟气预处理器,但由于伴热管线的后端至冷凝器入口端的管线没有任何的加温或者保温措施,烟气中的水蒸气会在此段管路内出现冷凝,造成SO[sub]2[/sub]组分被冷凝液吸收。其次,“高湿低硫”的烟气在热交换器内进行冷却除湿的过程中,同样会接触热交换器内壁上析出的冷凝液而引起SO[sub]2[/sub]组分的损失。研究发现,SO[sub]2[/sub]组分根据不同条件在电子冷凝器中的丢失率约为3%-10%,并随着烟气含水量的增大而增大;而在相同水分含量的烟气中,SO[sub]2[/sub]组分的丢失率随着SO[sub]2[/sub]浓度的降低而增大。 此外,由于电子冷凝器本身的局限性,制冷的效果将受到外部环境的影响。在室温环境25℃下,电子冷凝器可以处理含水量30%左右的烟气至出口露点约5℃~8℃左右,除湿率约为95%;当环境温度升高至35℃以上后,其制冷效率将直线降低,这将直接影响烟气的“除湿”效率,会将含有水蒸气的烟气送入分析仪,进而造成污染物浓度的偏差。因此,便携式电子冷凝预处理适用的烟气条件为“低湿低硫”或“高湿高硫”的情况下使用。2. 便携式烟气预处理器-Nafion干燥法2.1系统结构烟气Nafion干燥的方法主要运用Nafion管这个核心部件,Nafion管内外的湿度差为驱动力进行水分子迁移,进行气态除湿。2、基本原理 Nafion管的干燥原理完全不同于多微孔膜材料,没有物理意义上的小孔,且不会基于气体分子的大小来迁移气体。相反,Nafion管中气体的迁移是以其对磺酸基的化学亲和力为基础的。由于磺酸基具有很高的亲水性,所以Nafion管壁吸收气态水分子,会从一个磺酸基向另一个磺酸基传递,直到最终到达另外一侧的管壁,而气态水分子则会被干燥的反吹气带走。因此,Nafion管除湿的驱动力是管内外的湿度差,而非压力差或温度差。即使Nafion管内压力低于其周围的压力,Nafion管照样能对气体进行干燥。只要管内外湿度差存在,水分子的迁移就始终进行,因此Nafion的“除湿”过程,没有任何机械传动,无能量耗损,除湿反应快速等特点应用于便携式烟气预处理器中。便携式预处理采用了独特的设计方式,使用两根Nafion管来创建湿度差来进行烟气干燥。空气干燥管则是抽取环境空气进行干燥,将产生的干燥、洁净空气作为烟气干燥管的反吹气持续的对烟气进行干燥,将Nafion管内烟气里的水分子通过管壁迁移至管外,再由反吹气将水分子带走,进而达到“除湿”的目的。Nafion管除湿后烟气的露点突破了电子冷凝器的极限,到达0℃乃至-15℃烟气露点。2.3应用分析便携式Nafion干燥预处理器在“超低排放”的应用中,由于采用的是气态除湿将烟气内的水分子迁移走,需要杜绝烟气中水蒸气的冷凝的发生。便携式预处理器内则设立了一个独立的加温区域,通常设定至70℃-75℃,烟气干燥管的一半位于此区域,防止在水分子的迁移的过程中产生冷凝。在实际使用中,便携式的高温采样探头和高温伴热管线连接至预处理器的烟气入口,通电预热并稳定后,采样探头伸入烟道内抽取烟气。伴热管线的末端管线虽然没有加温或保温,但是连接在便携式烟气预处理的烟气入口上,位于预处理的独立加温区,这样就防止了此段管线内冷凝水的出现,同时减少了SO[sub]2[/sub]组分丢失率。另外,其独特的Nafion干燥技术在样气管路内不会产生冷凝水,再次大大降低了SO[sub]2[/sub]组分的丢失率。研究发现,SO[sub]2[/sub]组分根据不同条件在Nafion干燥管中的丢失率约为1%-2%,而且烟气含水量的变化及SO[sub]2[/sub]浓度的变化对此影响不大。便携式Nafion干燥预处理器可以处理含水量在40%左右烟气至出口露点约-5℃~0℃,除湿率约为98%~99%,并且外部环境温度对此影响较小,尤为适用于“高湿低硫”的烟气监测中。尽管Nafion便携式预处理器的除湿性能要优于冷凝便携式预处理器,但是Nafion材质的特性对其使用还有着些许限制。当Nafion管内附着大量颗粒污染物或油类聚集,将导致除湿性能的急速衰减;虽然Nafion可以快速的迁移水分子,但是对于液态水却无法迅速排出从而造成SO[sub]2[/sub]组分丢失; 使用Nafion预处理器的监测系统的监测结果相对于使用电子冷凝预处理器的监测系统更加的接近于CEMS的测量值。其中,二氧化硫的浓度差异相对于氮氧化物和氧含量来说则更加的明显,原因是电子冷凝预处理器在干燥烟气的过程中析出了大量的冷凝液,造成了二氧化硫组分的丢失,但氮氧化物和氧含量不会因冷凝液的产生而被吸收。

  • 【分享】台湾将多项信息技术设备纳入强制检验

    2011年5月3日,台澎金马单独关税区经济部标准检验局根据商品检验法发布公告,拟将用于信息技术设备或网络使用的服务器、路由器、桥接器、交换器和集线器纳入强制性检验的范围。自2012年1月1日起,所有此类产品进口或在台湾、澎湖、金门及马祖单独关税区销售时必须符合安全和EMC检验要求。所有上述产品的技术要求是与相关IEC 或CISPR标准一致的CNS标准。对于服务器,有2个可选合格评定程序供生产商和进口商选择,即产品认证登记(RPC)或核准型号批量检验(TABI)制度。对于路由器、桥接器、交换器和集线器,适用合格声明制度。拟生效日期2012年1月1日。

  • 阳离子交换量蒸发器

    阳离子交换量可以用作水质氨氮的定氮仪吗,我比较了一下,差一个蒸汽发生器,请问会有影响吗

  • 【分享】十二月第三周主打——除湿机

    除湿机又称为抽湿机,一般可分为家用除湿机和工业除湿机两大类,属于制冷空调家庭中的一个小成员。通常,除湿机由压缩机、热交换器、风扇、盛水器、机壳及控制器组成,其工作原理是:由风扇将潮湿空气抽入机内,通过热交换器,此时空气中的水份冷凝成水珠,变成干燥的空气排出机外,如此循环使室内湿度降低。目前全球除湿机的主要产地集中在意大利、日本、中国和中国台湾等地,中国在全球除湿机市场中的地位日益显著。特别是工业除湿机,应用在医药,医院,电子,计算机,食品行业居多,以出口和国内消费为主;只是家用除湿机才刚刚起步,没有完全被中国的消费者认知。

  • 【求助】交换性阳离子和交换性钠

    请问各位专家对于PH 8.5 左右的土壤样品 测其阳离子交换量和交换性钠这两个指标的具体试验方法和原理,我们想用测交换性阳离子的交换性溶液直接再测交换性钠,可以吗?应如何操作,注意那些问题?另外,交换性钠和土壤交换性盐基中的钠是不是一回事?

  • 【转帖】除湿机使用常识

    除湿机的原理及用途   除湿机由压缩机、热交换器、风扇、盛水器、机壳及控制器组成,其工作原理是:由风扇将潮湿空气抽入机内,通过热交换器,此时空气中的水份冷凝成水珠,变成干燥的空气排出机外,如此循环使室内湿度降低。   因此除湿机广泛应用于实验室、计算机室、计量室、图书室、档案室、办公室、仪器仪表房、医院、配电间、银行、物资储备、食品及农作物仓库等场所,使电子产品、光学仪器、精密设备及贵重物品避免了潮湿、霉变的噩运。   近年来随着人民的生活水平不断提高,人们的消费观念的更新,除湿机也逐步走入家庭,成为许多家庭中不可或缺的一员。特别在梅雨季节,它们成了高档服装皮具、高档家用电器的保护神,成了风湿、呼吸系统等疾病的病人以及老人、产妇及婴幼儿的保健员,为所有需要适宜湿度的用户创造一个良好的环境。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制