当前位置: 仪器信息网 > 行业主题 > >

微米尺度空间分辨率测试系统

仪器信息网微米尺度空间分辨率测试系统专题为您提供2024年最新微米尺度空间分辨率测试系统价格报价、厂家品牌的相关信息, 包括微米尺度空间分辨率测试系统参数、型号等,不管是国产,还是进口品牌的微米尺度空间分辨率测试系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微米尺度空间分辨率测试系统相关的耗材配件、试剂标物,还有微米尺度空间分辨率测试系统相关的最新资讯、资料,以及微米尺度空间分辨率测试系统相关的解决方案。

微米尺度空间分辨率测试系统相关的方案

  • 利用纳米傅立叶红外光谱对纳米尺度污染物进行化学鉴定
    本文展示了纳米傅立叶红外光谱技术(nano-FTIR)的可行性和实验结果。nano-FTIR是将散射型近场光学显微镜与宽带红外激光光源整合获得的。测试结果显示nano-FTIR可以对有机材料获得20nm空间分辨率的红外吸收光谱,实际测量样品体积只相当于10-20L,理论上讲,nano-FTIR吸收光谱与传统FTIR吸收光谱吻合度高,而实验中对PMMA样品的测试也证明了这一点。因此nano-FTIR可以利用标准分子震荡红外数据库来对小量需要高空间分辨率的有机材料进行化学鉴定。本文中以对PMMA样品中的PDMS纳米尺寸污染的鉴定作为例证。
  • 使用新型放大增强方法实现生物医学组织样品的高空间分辨率 FTIR 成像
    傅立叶变换红外 (FTIR) 成像是一项成熟的分析方法,可同时获得微米级范围的光谱和空间信息。这一技术已广泛用于多种不同的应用领域,从高分子科学到生物医学成像。近年来,人们越来越关注通过主要使用基于同步加速器的系统,来提高受到衍射极限制约的 FTIR 成像系统的空间分辨率。在本应用简报中,我们展示了一项使用现有物镜实现放大增强的新型方法。最终,我们的 FTIR 系统显示出 1 ?m/像素级别的高空间分辨率成像能力。独特的是,这种构造在设置不同的放大倍率时不需更换物镜,从而保持了常规物镜相对较大的工作距离(约 21 mm)。
  • 利用双空间滤波提高拉曼成像显微光谱的空间分辨率
    在本申请说明中,将描述拉曼显微光谱的空间分辨率、其一般定义和评估方法。双空间过滤(DSF)系统,JASCO NRS-5000/7000系列拉曼显微光谱仪的标准功能,也将进行解释。关键词:拉曼,拉曼显微镜,双空间过滤,空间分辨率,衍射极限,NRS-4100,NRS-5100,NRS-5200,NRS-7100,NRS-7200
  • 利用非接触式亚微米红外光谱仪次揭示神经元中淀粉样蛋白聚集机理
    近日,瑞典隆德大学的Klementieva教授团队与美国PSC公司的Mustafa Kansiz博士合作,使用全新非接触式亚微米分辨红外测量系统在亚微米尺度上研究了淀粉样蛋白沿着神经突直到树突棘的聚集行为,这是以往的实验技术手段所不可能实现的。在该研究中,他们使用了大脑皮层初神经元,这是因为它们易发生AD病变,且具有特的结构。初神经元的这种形态特征使得可以在单个神经元层面上来测试全新非接触式亚微米分辨红外测量系统的分辨率和准确性。先,他们在反射模式下获得了高质量的红外光谱,且不受米氏散射或基线失真等人为因素的干扰。值得注意的是,全新非接触式亚微米分辨红外测量系统其约为400 nm的横向分辨率,使得他们能够通过比较1740 cm-1处的峰强度来检测脂质含量的差异,以及通过对比酰胺II (1540 cm− 1)与酰胺I特征峰强度(1654 cm− 1)的比值来比较氨基酸(蛋白质)的种类和数量上的差异。这是科学家们次获取单个树突棘的高分辨率的化学图像和红外光谱,以往其它测试方法是无法做到的。
  • 太美了!突破极限!力显超高分辨率显微镜带您看清纳米世界!(上)
    力显智能现已发布的超高分辨率显微成像系统 iSTORM,成功实现了光学显微镜对衍射极限的突破,使得在20纳米的分辨率尺度上从事生物大分子的单分子定位与计数、亚细胞及大分子复合物结构解析、生物大分子生物动力学等的研究成为现实,从而给生命科学、医学等领域带来重大突破。
  • 摄入药物的毛发的纵横两截面的高空间分辨率质谱成像
    毛发有时被比作记录用药历史的磁带,但具体的药物摄入机制尚未阐明。毛发内所含药物的可视化是法医学和法医毒理学面临的主要且最为困难的主题之一。此外,为了在微观尺度上可视化隐藏在复杂基质中的微量药物,以高空间分辨率和高灵敏度检测药物是很重要的。如前所述,使用iMLayer和iMScope进行的高空间分辨率MS成像可以轻松且清晰地观察药物在毛发样品的纵截面和横截面中的定位。该方法不仅可以应用于法医学领域毛发中的药物分析和兴奋剂检测等,还有助于保持并改善头发发质以及用于健康程度分析,例如各种护发产品的开发和评估。
  • 利用非接触亚微米分辨红外拉曼同步测量系统分析人体血红细胞
    红外一直以来都是一种经典的结构分析的光谱手段,它能够有效反映分子在组分中的分布,并且无需标记。但是由于其制样困难、信噪比差、无法观测溶液中的样品等缺点,使得红外在生物领域上难以满足科研工作者的需要。 mIRage是PSC公司新研发的非接触式、亚微米分辨、高信噪比的新型红外拉曼同步测量系统。它较传统的FTIR显微镜来说分辨率有了显著地提升。其分辨率可达400~500 nm。更难能可贵的是,它特的热膨胀红外测量技术,能够做到真正的环境友好,能够在溶液中直接分析细胞、组织、材料表面的红外光谱。此外,mIRage还可搭配拉曼光谱模块,通过红外光谱与拉曼光谱的共同分析,能够帮助研究人员快速准确地确定样品组成结构信息,突破传统荧光分析的限制。
  • 日立纳米尺度3D光学干涉测量系统 ----多层膜无损测量分析
    对于材料和加工工业中广泛使用的纸制品、树脂产品、金属镀膜等,表面形貌和表面粗糙度测量在防止故障或质量控制中起重要作用。尤其,当多层薄膜出现不良产品时,需要确定是表面,界面或是层内哪个部位出现了问题。在大多数情况下,是进行切割以确定异常部位。但是,某些样品是不能进行切割的,无损检测就变得极为重要。纳米尺度3D光学干涉测量系统VS1800,可同时满足上述高精度的表面形貌测量及对多层膜的无损测量,在材料和加工工业中实现了广泛的应用。
  • 飞纳电镜纤维统计分析测量系统在过滤产品中的应用
    飞纳台式扫描电镜(Phenom SEM)具有卓越的空间分辨率和景深,可以在纳米尺度上研究纤维特性,使质量控制工程师可以快速评估过滤产品的性能。
  • CHDF4000高分辨率纳米粒度仪测试前的样品准备详情
    采用美国MASS公司CHDF系列高分辨率纳米粒度分析仪进行样品的粒径分布测试前,样品应进行一系列的处理,文章对CHDF测试前的样品准备要求进行了讲解。
  • 超高分辨率质谱成像系统TransMIT AP-SMALDI 10及其在生物学研究中的应用
    1)常压到中压的操作环境,极大简化了样品制备的方法,无需昂贵的导电靶板(如ITO导电玻璃),极大的节约了成本;2)能够获得 5 μ m的高空间分辨率,全景呈现了分析物在组织中的分布和细微差别,可用于单细胞质谱成像分析;3)激光束和离子流的同轴设计解决了高空间分辨率和低采样量之间的矛盾;4)具有独立开发的用于高分辨质谱成像的数据分析处理软件;5)与Thermo Scientific™ Q Exactive™ 系列质谱仪兼容,实现未知化合物的准确鉴定。
  • 通过快速高分辨率LA-ICP-TOFMS成像显示海洋结核中的关键金属
    在早期成岩作用期间,多金属结核是深海中最普遍的关键金属储层之一。包括REY(稀土元素+Y)在内的微量元素可以提供丰富的信息来记录源到汇(STS)过程和关键金属富集机制。元素成像显示多元素分布,是展示各元素浓度相互关系的重要“透视”技术。然而,由于分析时间长和横向分辨率低,宏观(几毫米)和微观(几十微米)区域的传统元素成像仍然是一个主要挑战。在这里,应用电感耦合等离子体飞行时间质谱(ICP-TOFMS),结合配备了低分散双体积样品池和双同心注射器的激光剥蚀系统(LA),在宏观和微观尺度上完成元素成像。LA-ICP-TOFMS成像分别应用于整个多金属结核(10*9mm2@40μm2斑点大小,1300μm/s扫描速度和15Hz频率)和带有微层的微区(700*350μm2@1μm2,200μm/s和200 Hz)元素成像。结核内元素分布模式主要受产状矿物控制。例如,一些金属(例如Cu,Co,Ni)与Mn相似,表明这些金属存在于Mn相矿物中。这些元素从内层到外层有先减少后增加的趋势,这表明氧化还原环境在生长过程中可能经历了从有氧到低氧再到有氧的过程。实验结果证明了LA-ICP-TOFMS分析软质和多孔材料的可行性,与传统的LA-ICP-QMS相比,其优点包括更短的时间和更高的横向分辨率,扩展了深海早期成岩沉积物样品的地球化学成像技术。
  • 德国TransMIT 1.4μ m超高分辨率MALDI质谱成像技术诞生
    1)常压到中压的操作环境,极大简化了样品制备的方法,无需昂贵的导电靶板(如ITO导电玻璃),极大的节约了成本;2)能够获得 5 μ m的高空间分辨率,全景呈现了分析物在组织中的分布和细微差别,可用于单细胞质谱成像分析;3)激光束和离子流的同轴设计解决了高空间分辨率和低采样量之间的矛盾;4)具有独立开发的用于高分辨质谱成像的数据分析处理软件;5)与Thermo Scientific™ Q Exactive™ 系列质谱仪兼容,实现未知化合物的准确鉴定。
  • 纳秒、飞秒激光剥蚀-高空间分辨率ICP-MS法准确测定硅酸盐玻璃中的多种元素(英文原文)
    尽管LA-ICP-MS有大量的成功应用,但是元素分离仍然是地球科学应用中的主要局限,这种局限在高空间分辨率分析中尤其突出。本研究采用193nm ArF准分子纳秒(ns)激光器和257nm飞秒(fs)激光剥蚀电感耦合等离子体质谱法,研究了硅酸盐玻璃NIST SRM 610和GSE-1G的元素分离和质量载荷效应。与在ns-LA-ICP-MS中观测到的相反,在fs-LA-ICP-MS中,16-24μ m的小粒子的分离效率低于40-60μ m的大粒子分离效率。在193nm准分子激光LA-ICP-MS中观察,硅酸盐玻璃材料NIST SRM 610和GSE-1G中的Li、Na、Si、K、V、Cr、Mn、Fe、Co、Ni、Cu、Rb、Cs和U的分离行为存在显著差异,利用257nm fs-LA-ICP-MS在高空间分辨率下消除了这些差异。此外,与ns-LA-ICP-MS相比,fs-LA-ICP-MS的质量负载效应和与基体相关的质量负载效应也有所降低。除Sb、Pb、Bi外,元素分离与所选的激光通量无关,与ns-或fs-LA-ICP-MS无关。在本研究中,选择24μ m光斑来测试LA-ICP-MS在高空间分辨率下的分析能力。我们使用fs-LA-ICP-MS对MPI-DING、USGS、NIST玻璃样片中的大部分元素的测试数据与参考值具有一致性,误差小于10%。对于ns激光剥蚀分析,其准确性高度依赖于使用的校准策略(传统的外部校准方法或100%氧化物归一化方法)和选择的外部参考物质(NIST SRM 610或GSE-1G)。与193nm准分子LA-ICP-MS相比,fs-LA-ICP-MS中较少的激光诱导元素分离和基体效应使其更适合于高空间分辨率硅酸盐材料的分析。
  • 微球显微镜(超高分辨率显微镜)在半导体材料领域的应用
    用户可以使用微球显微镜(超高分辨率显微镜)通过光学方式检查样品,获得由裂缝或灯丝桥引起的纳米级故障。用户还可以检查样品是否符合预期尺寸、形状以及它们的图形/布局,并保留光学显微镜的所有优势——快速、样品无损、全真彩色。
  • 利用亚微米空间分辨同步IR+Raman光谱成像分析PLA/PHA生物微塑料薄片
    来源于石油中的塑料产品已经成为现代生活不可分割的一部分,它们性能优异,用途广泛且材料相对便宜,但同时也引发了人们对于塑料垃圾在环境中的累积问题的担忧,迫使我们尽快采取行动探索替代传统塑料的新型材料形式。生物塑料, 如聚乳酸(PLA)和聚羟基烷酸酯(PHA)等均来源于天然资源(如糖,植物油等),它们在适当的条件下可发生生物降解,因此其制成的产品即使不小心泄漏到环境中,也不会像传统塑料一样长期残留在土壤和水道中,而是终回归自然,安全而又环保。 虽然典型的PLA和PHA在分子层面上基本不混溶,但得益于其优异的相容性,它们可以以不同比例形成复合材料,创造出许多性质迥异的有用材料。为了更好地理解这两种材料在微观上的相互作用,美国特拉华大学Isao Noda教授课题组与Photothermal Spectroscopy Corp公司合作,利用光学光热红外技术(O-PTIR)技术及新一代的非接触亚微米分辨红外拉曼同步测量系统mIRage对PLA和PHA的复合薄片进行红外拉曼同步成像分析,探究这两种材料结合的方式和内在机理。
  • 活细胞脂肪代谢过程新手段——光学红外显微成像!非接触式亚微米分辨红外拉曼同步测量
    近期,耶鲁大学成功安装了非接触亚微米分辨红外拉曼同步测量系统——mIRage,并在活细胞脂肪代谢研究中取得了新的进展!非接触亚微米分辨红外拉曼同步测量系统——mIRage在细胞成像中具有优异的潜力,可以提供脂质种类的信息,提供对低浓度物质如游离脂肪酸的定位,并允许对每个样品的脂质和蛋白质光谱特征进行全面位置光谱分析,并且能够应用长时间观测。这项技术未来将可以用于绘制细胞系和细胞内DNL的比率、疾病状态,进一步揭示DNL 导致代谢紊乱的原因。在评估针对调节DNL和治疗疾病的药物方面提供诸多帮助。
  • 高分辨率是自信地进行化合物检测的可靠保证
    • 具备无可比拟的常规高质量分辨能力和稳定的亚 ppm 级质量精确度的Thermo Scientific Q Exactive GC 质谱仪是实现化合物检测、筛查、定量以及未知化合物鉴定、结构解析的独一无二的强大工具。• 将氯苯胺灵与背景干扰离子有效区别,要求质谱分辨率不低于 60,000 FWHM(m/z200)。这个分辨率要求对于检测其他化合物同样必要。• Q Exactive GC 质谱系统可为复杂基质样本中目标化合物检测提供高灵敏度分析结果,更重要的是,在不同质谱分辨率(在 m/z 200,标准质量分辨率为 15–120K FWHM)模式下,仪器始终保持高灵敏度。• 卓越的亚 ppm 级质量准确度可通过缩小质量偏差范围有效加快未知物的鉴定进程。
  • 阴极发光设备(SEM-CL)在光束敏感光电材料(杂化卤化物钙钛矿)方面的应用
    卤化物钙钛矿已成为下一代光电应用(如太阳能电池和发光二极管)的特殊候选者。钙钛矿薄膜在微观和纳米尺度上具有非均质性。对纳米尺度的理解是开发和改进这些新型材料的基础。CL允许在高空间分辨率下探测材料的特性。然而,这些软半导体对电子束损伤非常敏感,这主要阻碍了CL的使用。
  • 一种利用复享光学显微拉曼系统在微米尺度下对石墨烯层数进行鉴别的方法
    显微拉曼在石墨烯表征中的应用石墨烯是目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料。就石墨烯材料及其器件的研究而言,鉴别 石墨烯层数 以及量化其无序性的影响是至关重要的,而显微 拉曼光谱,是用于表征上述两种性能的便捷又可行的方法。
  • 岛津分析仪锂离子电池电解液检测解决方案
    岛津公司作为综合性的仪器生产商,为电池材料的性能测试和结构表征提供综合解决方案。X 射线光电子能谱仪(XPS)以光电效应为基础,致力于材料表面和界面的元素状态分析,不仅可以给出元素成分的半定量信息,还可以通过化学位移给出元素的价态信息,采用多模式氩离子刻蚀技术还可以提供沿深度的二维元素分布信息,同时可以实现原位充放电过程中的元素追踪检测;电子探针显微分析仪(EPMA)以聚焦电子束为探针,可以提供纳米尺度上的形貌像和微米尺度上元素分布信息,和SEM-EDS相比,EPMA 以其高稳定性的电子束流和波长色散的分光技术,提供更高分辨率的元素信息,在新材料开发和失效分析等领域有着不可替代的作用;扫描探针显微镜(SPM)可以查看纳米尺度上的样品形貌,追加可控气氛分析室可以观察不同气氛时样品表面情况,为表面分析和界面分析提供强有力的表征手段;X 射线衍射仪(XRD)致力于提供样品的晶体结构信息,可以实现原位充放电过程中的结构变化监测;能量色散型X射线荧光分析仪(EDX)具有高灵敏度、高分辨率以及卓越的通用性的特点,通过工作曲线法,以及具有专利的FP和背景FP法快速地进行元素的定性和定量测试,可应对电池三元材料及原材料的成分测试。此外,还有多种成分及结构分析 手段,如ICP、EDX用于正负极组分的检测、GC/GCMS用于电解液添加成分的检测、FTIR用于表面有机基团的检测、SALD用于材料粒径的检测等。
  • 岛津分析仪锂离子电池整体解决方案
    岛津公司作为综合性的仪器生产商,为电池材料的性能测试和结构表征提供综合解决方案。X 射线光电子能谱仪(XPS)以光电效应为基础,致力于材料表面和界面的元素状态分析,不仅可以给出元素成分的半定量信息,还可以通过化学位移给出元素的价态信息,采用多模式氩离子刻蚀技术还可以提供沿深度的二维元素分布信息,同时可以实现原位充放电过程中的元素追踪检测;电子探针显微分析仪(EPMA)以聚焦电子束为探针,可以提供纳米尺度上的形貌像和微米尺度上元素分布信息,和SEM-EDS相比,EPMA 以其高稳定性的电子束流和波长色散的分光技术,提供更高分辨率的元素信息,在新材料开发和失效分析等领域有着不可替代的作用;扫描探针显微镜(SPM)可以查看纳米尺度上的样品形貌,追加可控气氛分析室可以观察不同气氛时样品表面情况,为表面分析和界面分析提供强有力的表征手段;X 射线衍射仪(XRD)致力于提供样品的晶体结构信息,可以实现原位充放电过程中的结构变化监测;能量色散型X射线荧光分析仪(EDX)具有高灵敏度、高分辨率以及卓越的通用性的特点,通过工作曲线法,以及具有专利的FP和背景FP法快速地进行元素的定性和定量测试,可应对电池三元材料及原材料的成分测试。此外,还有多种成分及结构分析 手段,如ICP、EDX用于正负极组分的检测、GC/GCMS用于电解液添加成分的检测、FTIR用于表面有机基团的检测、SALD用于材料粒径的检测等。
  • 岛津分析仪锂离子电池正、负极检测解决方案
    岛津公司作为综合性的仪器生产商,为电池材料的性能测试和结构表征提供综合解决方案。X 射线光电子能谱仪(XPS)以光电效应为基础,致力于材料表面和界面的元素状态分析,不仅可以给出元素成分的半定量信息,还可以通过化学位移给出元素的价态信息,采用多模式氩离子刻蚀技术还可以提供沿深度的二维元素分布信息,同时可以实现原位充放电过程中的元素追踪检测;电子探针显微分析仪(EPMA)以聚焦电子束为探针,可以提供纳米尺度上的形貌像和微米尺度上元素分布信息,和SEM-EDS相比,EPMA 以其高稳定性的电子束流和波长色散的分光技术,提供更高分辨率的元素信息,在新材料开发和失效分析等领域有着不可替代的作用;扫描探针显微镜(SPM)可以查看纳米尺度上的样品形貌,追加可控气氛分析室可以观察不同气氛时样品表面情况,为表面分析和界面分析提供强有力的表征手段;X 射线衍射仪(XRD)致力于提供样品的晶体结构信息,可以实现原位充放电过程中的结构变化监测;能量色散型X射线荧光分析仪(EDX)具有高灵敏度、高分辨率以及卓越的通用性的特点,通过工作曲线法,以及具有专利的FP和背景FP法快速地进行元素的定性和定量测试,可应对电池三元材料及原材料的成分测试。此外,还有多种成分及结构分析 手段,如ICP、EDX用于正负极组分的检测、GC/GCMS用于电解液添加成分的检测、FTIR用于表面有机基团的检测、SALD用于材料粒径的检测等。
  • 利用纳米分辨傅里叶红外光谱与成像技术研究单病毒膜渗透行为
    近年来,流感病毒(IFV, 结构示意图1)已被用作包膜病毒的原型来研究病毒进入宿主细胞的过程。IFV中血凝素(HA)是嵌入IFV包膜的主要表面糖蛋白。 HA负责IFV与宿主细胞受体的连接,并在病毒进入过程中参与介导膜融合。众多研究已经为靶标和病毒膜之间的融合机制建立了一个公认的模型。该模型认为只有在靶标和病毒膜发生膜融合时才可形成孔从而介导病毒-细胞膜渗透行为。然而,其他报道也观察到在融合发生之前靶标和病毒膜的破裂。此外,关于腺病毒蛋白与宿主细胞的研究显示,宿主细胞膜可能在没有膜融合的情况下被破坏而进入病毒。另一方面,病毒包膜和靶宿主细胞膜具有不同的化学组成或结构,各个膜中形成孔的要求不同,因此靶宿主或病毒膜破裂也可能立地被诱导。综上所述,关于病毒-细胞膜渗透行为的机理还存在一定的争议,明确单个病毒与宿主细胞的复杂融合机制,可为设计抗病毒化合物提供有利信息。然而,常规的病毒整体融合测定法是对膜融合事件的集体响应,不能对细微、尤其是在纳米尺度复杂的融合细节进行直接和定量的研究,因此无法直接量化一些可以通过研究单个病毒、纳米尺度表面糖蛋白和脂包膜来获得的融合细节。例如,病毒感染过程在分子水平上引起的病毒膜和宿主细胞膜的化学和结构组成改变,可以通过分子特异性红外光谱技术来探测。然而,单个病毒、表面糖蛋白和脂包膜尺寸小于红外光的衍射限,限制了单个病毒的红外光谱研究。因此,找到一个既可以提供纳米高空间分辨率,还能探测机械、化学特性(分子特异红外光谱)和环境影响的工具,使其可在单病毒水平上研究病毒膜融合过程是十分重要的。来自美国乔治亚大学和乔治亚州立大学的Sampath Gamage和Yohannes Abate等研究者采用 nano-FTIR & neaSNOM研究了单个原型包膜流感病毒X31在不同pH值环境中发生的结构变化。同时,还定量评估了在环境pH值变化期间,抗病毒化合物(化合物136)阻止病毒膜破坏的有效性,提供了一种抑制病毒进入细胞的新机制。
  • 用STORM成像揭示细胞间隧道纳米管(TNTs)的结构和组织
    隧道纳米管(TNTs)是一种纳米级的、富含肌动蛋白的、用于细胞间通讯的瞬时细胞间管。结构的复杂性和空间组织所涉及的组成部分的TNTs仍然未知。在本次研究中,STORM超分辨率成像技术被运用到结构组织的微丝和微管在细胞间的TNT在纳米尺度上。作者的研究结果揭示了不同的分布的微丝和交织结构的微管在TNT,促进TNT通信。
  • 电磁透镜和像差:哪些因素会影响扫描电镜的分辨率?
    分辨率是扫描电镜(SEM)最重要的参数之一。分辨率越好,可以看到的特征尺寸越小。分辨率的好坏往往取决于聚焦在样品上的电子束斑的直径(即束斑尺寸)。
  • 岛津分析仪锂离子电池隔膜检测解决方案
    岛津公司作为综合性的仪器生产商,为电池材料的性能测试和结构表征提供综合解决方案。X 射线光电子能谱仪(XPS)以光电效应为基础,致力于材料表面和界面的元素状态分析,不仅可以给出元素成分的半定量信息,还可以通过化学位移给出元素的价态信息,采用多模式氩离子刻蚀技术还可以提供沿深度的二维元素分布信息,同时可以实现原位充放电过程中的元素追踪检测;电子探针显微分析仪(EPMA)以聚焦电子束为探针,可以提供纳米尺度上的形貌像和微米尺度上元素分布信息,和SEM-EDS相比,EPMA 以其高稳定性的电子束流和波长色散的分光技术,提供更高分辨率的元素信息,在新材料开发和失效分析等领域有着不可替代的作用;扫描探针显微镜(SPM)可以查看纳米尺度上的样品形貌,追加可控气氛分析室可以观察不同气氛时样品表面情况,为表面分析和界面分析提供强有力的表征手段;X 射线衍射仪(XRD)致力于提供样品的晶体结构信息,可以实现原位充放电过程中的结构变化监测;能量色散型X射线荧光分析仪(EDX)具有高灵敏度、高分辨率以及卓越的通用性的特点,通过工作曲线法,以及具有专利的FP和背景FP法快速地进行元素的定性和定量测试,可应对电池三元材料及原材料的成分测试。此外,还有多种成分及结构分析 手段,如ICP、EDX用于正负极组分的检测、GC/GCMS用于电解液添加成分的检测、FTIR用于表面有机基团的检测、SALD用于材料粒径的检测等。
  • 高分子材料的高分辨率三维成像-应用指南
    要想认识高分子材料的微观结构和性能,获得其高分辨率三维成像至关重要。Thermo Scientific Apreo VolumeScope的一大亮点,就是在其SEM的真空室内设置了一个超薄切片机,在对材料试样进行自动化连续切片的同时完成高分辨率电镜原位成像,即SBF-SEM。后续的SEM图像重构则会生成相应的高分辨率三维数据集,以便进行进一步的分析。我们以滤膜和共混物为例,提供这两种高分子材料的数据采集示例。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制