当前位置: 仪器信息网 > 行业主题 > >

信号转导蛋白磷酸化分析系统

仪器信息网信号转导蛋白磷酸化分析系统专题为您提供2024年最新信号转导蛋白磷酸化分析系统价格报价、厂家品牌的相关信息, 包括信号转导蛋白磷酸化分析系统参数、型号等,不管是国产,还是进口品牌的信号转导蛋白磷酸化分析系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合信号转导蛋白磷酸化分析系统相关的耗材配件、试剂标物,还有信号转导蛋白磷酸化分析系统相关的最新资讯、资料,以及信号转导蛋白磷酸化分析系统相关的解决方案。

信号转导蛋白磷酸化分析系统相关的资讯

  • 遗传发育所在植物磷酸化蛋白质组学技术研发方面获进展
    蛋白质磷酸化是在激酶催化下将磷酸基团转移到底物蛋白质上的可逆过程,是能够调控蛋白质结构与功能且参与细胞内信号转导的重要翻译后修饰,在植物的生长、发育、环境适应以及作物的产量和品质调控中发挥着重要作用。深度解析磷酸化蛋白质组,是探讨磷酸化如何参与这些生物学过程以及筛选与作物重要农艺性状相关的关键磷酸化靶点的有效手段。然而,与动物相比,植物磷酸化蛋白质组的深度解析在技术上更具挑战性。这是由于植物细胞具有致密的细胞壁和大量的色素以及其他次生代谢物。前者增加了蛋白质提取的难度,而后者干扰了磷酸肽富集的效率和特异性。 中国科学院遗传与发育生物学研究所汪迎春研究组通过探索一系列的实验条件,研发出高效的植物磷酸化蛋白质组学新技术。该技术的主要特点是利用脱氧胆酸钠高效抽提植物蛋白,同时消除常规方法中导致样品损失和灵敏度降低的两个步骤,即在蛋白酶消化前的样品净化和在磷酸肽富集前的脱盐处理,在色素与其他干扰分子共存的情况下进行高特异性、高灵敏度地磷酸肽富集。 科研人员应用这一方法,在拟南芥、水稻、番茄和衣藻等绿色生物的组织中高效纯化磷酸化蛋白质组(单针质谱可鉴定约11,000个磷酸位点)。由于该技术主要面向高等植物及其他绿色生物(如衣藻),且操作简便,降低了实验所需的人力和试剂费用,因此命名为GreenPhos。GreenPhos可定量分析不同植物的磷酸化蛋白组,分析深度深、定量重复性高,有望成为植物磷酸化蛋白组学的通用技术。研究人员应用该技术,深度解析了拟南芥响应不同时长盐胁迫的差异磷酸化蛋白质组,发现了包括剪接体蛋白和一些激酶响应盐胁迫的磷酸化事件。 11月27日,相关研究成果在线发表在《分子植物》(Molecular Plant,DOI:10.1016/j.molp.2023.11.010)上。研究工作得到国家重点研发计划与中国科学院战略性先导科技专项的支持。中国科学院植物研究所的科研人员参与研究。GreenPhos工作流程及多种绿色生物磷酸化蛋白质组鉴定结果
  • 我国磷酸化蛋白质组分析技术获得新进展
    在国家自然科学基金的大力支持下(项目资助号:21021004),中国科学院大连化学物理研究所邹汉法研究员在磷酸化蛋白质组分析技术方面获得新进展,相关成果发表在最近一期的Nature Protocols上(2013,8,461-480)。(http://www.nature.com/nprot/journal/v8/n3/abs/ nprot.2013.010.html)。  固定化金属离子亲和色谱(IMAC) 是磷酸化蛋白质组学研究中最常用的磷酸化肽段富集技术之一,常规的IMAC使用的螯合基团有三羧甲基乙二胺、次氨基乙酸、亚氨基二乙酸等,在螯合铁、镓等金属离子后可用于磷酸肽的富集。其缺点是特异性不高,在富集磷酸肽的同时也富集了一些酸性肽。研究人员发现了磷酸酯锆或钛表面与磷酸肽之间的高特异性相互作用,并利用这一相互作用建立了以磷酸基团为螯合配体的新一代固定化金属离子亲和色谱技术。实验表明,该新型IMAC对磷酸肽富集的特异性优异,可以有效避免酸性肽段的非特异性吸附。与传统的IMAC相比较,其对磷酸肽的富集能力提高3-10倍,从而大大提高了蛋白质磷酸化分析的检测灵敏度和鉴定覆盖率。该新型IMAC方法自2006年发表首篇论文以来,已在Mol. Cell. Proteomics, J. Proteome Res., Anal. Chem.等蛋白质组学与分析化学权威期刊发表论文20余篇,其中2007年发表在Mol. Cell. Proteomics的一篇论文已经被引用110余次。采用该方法为核心技术进行了人类肝脏蛋白质磷酸化的规模化分离鉴定,建立了迄今为止国际上人类肝脏蛋白质磷酸化的最大数据集 (Mol. Cell. Proteomics,2012,11,1070-1083)。
  • 内毒素信号转导分子诱导性改变的介绍
    (一)TLR4分子表达下调将小鼠腹腔巨噬细胞用内毒素预先处理后,再次用内毒素攻击,则此时细胞因子的分泌显著减少,表现出时间和剂量依赖性的特点。在耐受的巨噬细胞中证实,依赖于TLR4-MyD88信号途径的近侧信号转导分子受到影响。用小剂量内毒素刺激巨噬细胞后数小时内,TLR4 mRNA表达显著下调,24h后才恢复正常水平,而膜表面上TLR4分子在1h开始表现出渐进式下降,其抑制性状态持续超过24h。此时的细胞因子分泌下降与TLR4表达下调有关,也是内毒素耐受的发生机制之一。在内毒素耐受中,TLR4的基本调控因子PU.1和干扰素基因序列结合蛋白(interferon consensus sequence binding protein,ICSBP)是如何相互作用影响Tlr4基因转录的目前还不清楚。(二)IRAK分子改变IRAK为IL-1受体的信号转导分子,现证实其也参与TLR家族的信号转导。过量表达IRAK的显性失活形式能抑制LPS的信号转导,而且在lRAK基因缺陷的293细胞中转染野生型IRAK能使细胞对LPS发生反应。Li等对THP-1细胞进行内毒素攻击时,发现内源性IRAK能够被快速激活,初次内毒素刺激时,LPS可促使IRAK与MyD88迅速结合;在内毒素耐受的THP-1细胞中发现,IRAK表达数量显著下降,只有正常水平的20%,在再次内毒素攻击时,无法诱导出IRAK的酶学活性;同时,IRAK与MyD88发生分离不能结合,无法转导LPS的跨膜信号。可见,IRAK从量和质的两个方面下调内毒素的激活效应。(三)NF-κB复合物分子组成的改变内毒素耐受细胞若再次受到内毒素刺激,则不能有效激活NF-κB。未激活的巨噬细胞、NF-κB组成异源二聚体(p50和p65)形式,并与抑制性IκB结合,滞留在胞质内。当细胞初次受到内毒素刺激后,IκB迅速被IκB激酶(IKK)磷酸化,并经泛蛋白-蛋白质酶体的途径降解。在内毒素耐受细胞中,NF-κB复合物主要为p50/p50,后者缺乏反式转录活性,并能抑制基因表达。p50的前体蛋白为p105,经过酶切生成。在内毒素耐受细胞中,由于p105合成显著增加,p50与p50形成二聚体,而p65 mRNA无改变,故不能诱导p65蛋白表达增加,所以p50/p50占优势,p65/ p50比例下降,并抑制相关基因表达。(四)IκB激酶的改变内毒素耐受的细胞中IKK不能被激活,结果IκB无法降解,持续与NF-κB结合,而NF-κB复合物不能从胞质转位进入胞核内使其调控基因表达。可见,IκB激酶也参与了内毒素耐受的发生。(五)蛋白激酶C的改变内毒素可以激活不同的致分裂原活化蛋白激酶(rmitogen-activated protein kinase,MAPK)的级联反应,包括细胞外信号调节蛋白激酶、JNK(c-Jun N-terminal kinase),p38MAPK/反应激酶途径(p38 MAPK/reactivating kinase pathway)。MAPK可以使下游分子的丝氨酸/苏氨酸发生磷酸化。有活性的细胞外信号调节蛋白激酶使下游分子磷酸化并调节其活性,其中包括其他蛋白激酶、细胞骨架、磷脂酶A2和核转录因子(如Elk1/TCF及c-Jun),调节即刻早期基因的表达。内毒素可激活PI-3K,后者分解膜上的脂质后产生DAG和IP3,IPs进一步激活PKC,并发生多种效应。在内毒素耐受细胞中,使用PKC的激活剂如佛波酯,能恢复细胞因子的合成和分泌,可见PKC也参与内毒素耐受效应。(六)G蛋白与内毒素的耐受用百日咳毒素使巨噬细胞G蛋白亚单位Gi的近C端Cys残基发生核糖基化,修饰后的Gi对受体介导的信号转导无反应而处于持久失活状态,此时用内毒素进行刺激可显著降低细胞因子的合成和分泌。可见G蛋白也参与了机体对内毒素反应的调节。总之,在天然内毒素耐受之外,宿主作为一个整体,其中有多种成分共同参与内毒素耐受的发生,而并非某一个成分单独发挥作用,这也表现出了机体反应的协调性。一旦某个成分逃脱抑制的束缚,则会破坏整个耐受的平衡状态,使耐受现象消失,并摆脱原有的耐受状态,继而下传LPS信号转导,对机体产生效应。
  • 蛋白质组学Cell重磅新成果:黄超兰团队利用新型绝对定量质谱法揭示CD3ε 的多重信号转导功能
    p style="line-height: 1.5em text-align: justify text-indent: 2em "span style="text-align: justify "日前,黄超兰课题组及合作者的最新成果,利用新型绝对定量质谱法解析T细胞受体(TCR)磷酸化修饰动态全过程,揭示了CD3ε 的新型信号转导及其在CAR-T细胞治疗中的应用。相关成果近日发表在《Cell》。/spanbr//pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 193px " src="https://img1.17img.cn/17img/images/202007/uepic/c9be87de-7748-4400-ab38-28fab92a68ad.jpg" title="黄超兰.png" alt="黄超兰.png" width="600" height="193" border="0" vspace="0"//pp style="text-align: justify "strongspan style="text-align: justify "  2020年7月29日,北京大学医学部精准医疗多组学研究中心黄超兰团队,中科院上海生化与细胞所许琛琦团队、美国加州大学圣地亚哥分校惠恩夫团队,联手在Cell上发表了题为“Multiple signaling roles of CD3ε and its application in CAR-T cell therapy”的论文,该研究通过开发基于质谱的绝对定量蛋白质组新方法,揭示了T细胞受体-共受体(TCR-CD3)复合物酪氨酸在不同抗原刺激下的动态磷酸化修饰全貌,解析了不同CD3链ITAM结构域磷酸化特征的奥秘,从中发现了其中一条亚基CD3ε的单磷酸化新功能,有望助力于设计全新的CAR-T疗法。/span/strong/pp style="text-align: justify "strongspan style="text-align: justify "/span/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 245px " src="https://img1.17img.cn/17img/images/202007/uepic/b6abe943-5c1a-4258-8d80-ee14ae449013.jpg" title="high light.png" alt="high light.png" width="600" height="245" border="0" vspace="0"//pp style="line-height: 1.5em text-align: justify "  TCR-CD3复合物在T细胞的发育、激活及对病原的免疫反应中起着决定性作用。这一重要作用来自于CD3链胞内端的免疫受体酪氨酸激活基序(Immunoreceptor tyrosine-based activation motif-ITAM)。而ITAM的多样性功能主要取决于其结构域的酪氨酸(Tyrosine)磷酸化,比如招募SYK激酶家族蛋白ZAP70进而激活下游的信号传导。另外,ITAM的功能也被广泛应用在对嵌合抗原受体(CAR)的研究中。其中CD3ζ亚链便常用于构建CAR-T细胞疗法抗肿瘤活性,但其他CD3链的功能和对于CAR的设计也还有很多未知。/pp style="line-height: 1.5em text-align: justify "  strong深入探索 CD3 ITAM的酪氨酸动态磷酸化模式可为全面理解不同CD3链的功能提供核心信息。/strongTCR-CD3受体复合物有10个ITAM结构域分布着20个磷酸化位点,在时间分辨率下实现对全部磷酸化位点的同时定量分析在技术上极具挑战性。为了直观比较不同TCR刺激下的磷酸化模式,精确绘制出TCR所有酪氨酸磷酸化的动态过程,黄超兰团队开发了一种新颖的绝对定量方法Targeted-IP-Multiplex-Light-Absolute-Quantitative Mass Spectrometry(TIMLAQ-MS)。区别于目前报道的蛋白组绝对定量手段,不需要加入同位素重标的合成肽段,而是巧妙地利用串联质量标签(TMT),设计将6个标准样品和4个分析样品混合起来作为内标。标准样品为不同浓度梯度的合成非重标磷酸化/非磷酸化CD3肽(A)和从未经抗原刺激的T细胞中通过IgG抗体免疫沉淀下来的背景蛋白(B)的混合物 用数据依赖采集(Data-dependent acquisition, DDA)结合平行反应监测(Parallel reaction monitoring, PRM)的方式获得抗原刺激下,TCR-CD3免疫沉淀(IP)复合物中不同酪氨酸位点的磷酸化/非磷酸化在不同时间点的定量结果。strongTIMLAQ 成功绕过了以前的定量方法中通常使用的同位素重标记肽,既节约了成本,又有效降低了方法的复杂性和数据采集误差,进一步提高了定量准确性,最终可完全实现在一次测量中对不同时间点全部ITAM磷酸化修饰的绝对定量,描绘TCR-CD3复合物的酪氨酸动态磷酸化修饰全貌。/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 492px " src="https://img1.17img.cn/17img/images/202007/uepic/17408230-fe19-4e90-a93b-06bbeea1254b.jpg" title="111.png" alt="111.png" width="600" height="492" border="0" vspace="0"//pp style="line-height: 1.5em text-align: center "基于TIMLAQ-MS法的CD3 ITAM磷酸化修饰鉴定/pp style="line-height: 1.5em text-align: justify "  strong利用这一方法鉴定到在不同的TCR刺激条件下,CD3各亚基主要表现为双磷酸化修饰模式,而唯独CD3ε呈现出单磷酸化修饰模式。/strong前研究表明,双磷酸化的ITAM与激酶家族蛋白ZAP70有很强的结合而激活下游信号传导,而单磷酸化的ITAM则表现出很低的结合性。strong本文中这一特殊的新发现驱使作者进一步深入探索CD3ε在TCR通路中的新潜在功能。/strong结果显示,单磷酸化的CD3ε可通过专门募集抑制性Csk激酶减弱TCR信号传导,strong说明TCR中既有激活基元又有抑制基元,总体呈现为一种自制的信号传导机制。/strong作者团队进一步深入研究,发现一旦将CD3ε细胞质结构域整合到第二代CAR中,CD3ε的ITAM结构域可以通过募集Csk减少CAR-T细胞因子的产生,而CD3ε的BRS结构域则可以通过募集p85促进CAR-T细胞的持久性。总体而言,将CD3ε应用于CAR的设计可显著提高CAR-T细胞的抗肿瘤活性。/pp style="line-height: 1.5em text-align: justify " strong 从一个重要的基础生物学问题开始,为解决问题而开发一个新颖方法,得到新发现,再深入探索生物学功能,最后有望贡献在治疗方法上。黄超兰教授,许琛琦教授和惠恩夫教授作为本文的共同通讯作者,完美地演绎了不同交叉领域共同合作而产生的精彩结果。/strong/ppstrong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 338px " src="https://img1.17img.cn/17img/images/202007/uepic/e5f4a9aa-d6b8-4604-a6a5-28e0177de6e9.jpg" title="222.png" alt="222.png" width="600" height="338" border="0" vspace="0"//pp style="text-align: justify "span style="text-align: justify "  黄超兰教授是北京大学医学部精准医疗多组学研究中心主任,北京大学医学部基础医学院长聘副教授,北京大学生命科学联合中心研究员,曼彻斯特大学荣誉教授。近年来,黄超兰教授带领团队积极开发基于质谱的蛋白质组学新方法,实验室拥有国际领先的仪器、技术和方法,致力于为生物学和临床研究中遇到的难题提供最有质量保证的全面蛋白质组和质谱技术手段。 仅从2015年至今,黄教授在高影响因子的杂志上就发表了近50篇文章 (目前已累计发表SCI论文80余篇),不但自己开发最前沿的质谱技术(迄今为止,课题组研发的单细胞蛋白质组技术,在单一体细胞中鉴定的蛋白数量是全球领域最高水平),更发挥了强大的合作力量,以她高超的质谱技术助力了众多科学家的科研发展。曾协助美国普林斯顿大学教授,美国科学院外籍院士颜宁课题组,利用质谱技术有效分析了ACAT1蛋白周围游离的脂质,为ACAT1作用底物的鉴定提供了最为直接有效的证据,相关工作发表在Nature上sup1/sup。最重量级的是协助中科院院士,西湖大学校长施一公教授利用高分辨交联质谱技术对剪接体复合物的成分和相互作用进行准确鉴定,促进了剪接体复合物在冷冻电镜上的超高分辨率结构鉴定,相关工作发表在两篇Science上sup2,3/sup。/span/pp style="text-align: justify line-height: 1.5em text-indent: 2em "strongspan style="text-align: justify "北京大学医学部精准医疗多组学研究中心/span/strongspan style="text-align: justify ",在“双一流”的支持下,正式成立于2018年6月,为北京大学医学部直属二级单位。黄超兰教授担任中心主任。中心主要基于临床医学热点和难点问题,通过临床医学,创新技术和基础学科的交叉,开展协同创新研究和研发,攻克医学重大难题。/spanspan style="text-indent: 2em "以重要的临床问题为根,利用前沿的高通量多组学技术(基因、转录、蛋白、翻译后修饰、代谢、微生物)和人工智能分析手段,结合临床信息,打造成规模化专业化的临床生物标志物(包括疾病预防,诊断,机制,疗效和药物靶点)开发、验证和标准化的创新平台。/span/pp style="text-align: justify "span style="text-align: justify "br//span/pp style="line-height: 1.5em text-align: justify "  原文链接:a href="https://doi.org/10.1016/j.cell.2020.07.018" target="_blank"https://doi.org/10.1016/j.cell.2020.07.018/a/pp style="line-height: 1.5em text-align: justify "br//pp style="line-height: 1.5em text-align: justify "  参考文献:/pp style="line-height: 1.5em text-align: justify " span style="font-size: 14px " sup1 /supQian et al., Nature, 2020 581(7808):333-338/span/pp style="line-height: 1.5em text-align: justify "span style="font-size: 14px "  sup2/sup Yan et al., Science, 2015 349(6253):1182-1191/span/pp style="line-height: 1.5em text-align: justify "span style="font-size: 14px "  sup3 /supWan et al., Science, 2016 351(6272):466-475/span/ppbr//p
  • ​整合结构质谱法和计算模拟法探究糖原磷酸化酶中磷酸化介导的蛋白变构调控和构象动态性
    大家好,本周为大家介绍一篇本课题组发表在ACS Chem. Biol.上的文章,Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling1。变构调节在自然界中广泛存在,可以用于调控细胞过程。糖原磷酸化酶(GP)是第一个被鉴定出的与变构调节相关的磷酸化蛋白。GP是一个分子量约196kD的同源二聚体蛋白,是糖代谢中重要的组分,也是2型糖尿病及癌症的靶点。AMP结合以及Ser14的磷酸化介导了GP的变构调节,使其构象从非活化的T-state GPb(未磷酸化状态)转变为活化的R-state GPa(磷酸化状态)。即使目前X-射线晶体学法解析出了GP的原子级蛋白结构,但受限于较大分子量,其结构动态性的检测较为困难,因此与GP变构调节相关的结构动态变化过程仍较为模糊。核磁共振(NMR)谱及分子动力学(MD)模拟等是探究蛋白质结构动态性的常用方法,但NMR分析存在分子量上限,且样品消耗量大,MD模拟的时间尺度和力场准确度有限。质谱(MS)法具有快速、灵敏的特点,是蛋白质结构、动态性以及构象变化分析中强有力的一款技术。氢氘交换质谱(HDX-MS)通过监测蛋白骨架酰胺氢原子与溶液中氘的交换来反映蛋白质构象动态性,因此适用于探究由配体、蛋白结合或共价修饰引起的蛋白质构象变化。同时,多个软件实现了由HDX-MS数据计算保护因子(PFs)和吉布斯自由能,从而提取残基水平的蛋白动态性信息。此外,在先前的工作中2, 3,我们整合了native MS和top-down方法(native top-down,nTD-MS技术),成功实现了多个蛋白复合物的一级序列到高阶结构等多方面信息的检测(包括测序、翻译后修饰、配体结合、结构稳定性、朝向等)。整合多种结构质谱法(整合结构质谱法)可以有效填补传统生物物理法中结构到动态性联系中的空缺,更好地表征变构调控现象。本文整合了HDX-MS、nTD-MS、PF分析、MD模拟以及变构信号分析检测了磷酸化介导的GP变构调控的结构和动态性基础,为GP的变构调控过程提供了见解。根据X-射线晶体学结构报道(图1a),T-state GPb转变为R-state GPa时,二聚体界面中N-末端尾部、α2、cap’(图1b)以及tower-tower helices区(图1c)发生了明显的结构重排,导致催化位点开放,从而底物磷酸吡哆醛(PLP)可以结合。尽管有晶体学报道,但与变构调控关联的构象动态性仍有待探寻。图1.(a)磷酸化介导T-state GPb(PDB:8GPB)向R-state GPa(PDB:1GPA)的构象转变;亚基相互作用界面:(b)C端区域和(c)tower-tower helices,GPb为蓝色,GPa为绿色。首先我们通过nTD-MS进行了检测。如图2a、b,谱图中观察到了GPb的单体和二聚体信号,其中二聚体为主要形式;GPa除了单体和二聚体外,谱图中还存在少量四聚体,但仍以二聚体为主要形式。当增加sampling cone(SC)电压时,GPb、GPa保留了其二聚体形式(图2c、d)。随后我们选择离子(29+)并在trap池中进行了碎裂(图2e、f、g、h),谱图低质荷比区GPa的碎片相对峰强度较GPb高,说明GP的二聚体互作界面较为稳定,且GPb亚基结构较GPa稳定。nTD-MS不仅能够探究GPb、GPa的结构差异,也能够为接下来的HDX-MS实验做好前期样品质量检查工作。图2.不同活化条件下GPb、GPa的nTD-MS谱图。(a、b)SC=40V;(c、d)SC=150V;(e、f)SC=150V、trap=100eV;(g,h)SC=150V、trap=200eV。左侧为GPb,右侧为GPa。随后我们进行了HDX-MS实验。图3a中展示了五个时间点的HDX heat map。图3b为通过PyHDX软件计算产生的PF值。其中N-端(1-22)以及tower helix前的loop区域(256-261)的氘代值较高、PF值较低,说明这些区域较为柔性或是结构较为无序。此外我们发现,tower-tower helices(262-276)区域的氘代值较低、PF值较高,表明helices的旋转可能是由前端可塑性铰链区触发的,而非helices本身的变形和重塑引起的,这些发现在晶体结构数据中均有吻合之处。除这两个区域外,GPa和GPb基本保持了稳定的整体结构。而从1μs原子级MD模拟计算得到的均方根波动(RMSF)和溶剂可及表面(SASA)中我们也发现(图3c),这两个区域数据与HDX-MS信息有所吻合,但MD模拟中部分区域未和HDX-MS相吻合的区域可能跟序列覆盖不足相关。图3. (a、d)GPb和GPa在不同标记时间下的氘代热图并映射到结构中(PDB: 1GPA)。(b、e)基于HDX-MS数据计算得到的PF值并映射到晶体结构中。(c、f)MD模拟中RMSF和SASA值并映射到结构中。从氘代差异图(图4a)中可以看出,4个区域呈氘代降低趋势(红色方框),多个区域呈氘代上升趋势(蓝色方框)(GPa-GPb)。而PF差的变化趋势与氘代变化趋势基本一致(图4b)。由数据可知,N-端和tower-tower helices的变化说明磷酸化介导的变构稳定了这两个区域,α1-cap-α2区域的动态性轻微下降。除此之外多个区域(尤其是tower-tower helices序列后的区域)均表现为PF值下降,说明相比于GPb,GPa催化位点附近的区域动态性增强了。接下来我们根据HDX kinetic plot特征将其进行了分类,并详细讨论了所属区域的变化。图4.(a)GPa-GPb HDX-MS的氘代差异图。(b)GPb到GPa PF的变化。 首先是N-端和C-端的变化(图5)。N-端残基1-22表现氘代下降,这说明N-端具有一定可塑性。受N-端区域磷酸化和结构变化影响,C-端区域也产生了一定的变化。此外,残基30-50(cap区)和残基111-117(α4back-loop)区表现氘代下降,而103-109(α4front)表现氘代上升。根据晶体结构推测,cap区和α4back-loop的氘代变化受N-末端变化影响,原有的残基相互作用被打破,形成新的残基间相互作用,同时这两个区域也经历了结构重排,因此表现出较明显的氘代变化。残基88-99(β2-α3)和残基125-141(β3-L-α6)氘代上升。总的来说,磷酸化使得cap′/α2界面互作增强了,同时磷酸化基团和精氨酸残基的静电相互作用是cap区产生变化的主要原因,而α1和α2起到锚定作用,其相对位置基本保持不变。图5.GPb(a)和GPa(b)的N-端和C-端区域的局部结构和HDX动力学曲线(c)。 此外,tower-tower helices(α7,残基262-278)区的变化同样值得关注(图6)。250s loop是表面暴露区域,未与其他区域发生接触,其氘代下降可能是因为自身结构的收缩。而肽段262-267和268-274氘代下降提示该区域可能发生了低周转率或强互作的结合反应。280s loop区氘代值上升。这些变化均说明,tower-tower helix的角度的改变不仅影响了二聚体界面结构,而且还影响了其靠近催化位点的周围区域。因此我们结合晶体结构推测,磷酸化和N-端相对位置的改变,使250s loop自身结构收缩,从而打破了Tyr262' -Pro281和Tyr262-Tyr280′之间的相互作用,导致两个亚基的tower helices发生相对滑动,倾斜角度增加。图6.GPb(a)和GPa(b)tower helix区域的局部结构和HDX动力学曲线(c)。 最后是催化位点、PLP结合位点和糖原存储位点的变化情况(图7)。催化位点周围多数区域均表现氘代上升趋势。我们推测,随着Pro281、Ile165和Asn133间的相互作用被打破,Arg569与Ile165、Pro281、Asn133间的互作也随之打破,因此催化位点和PLP结合位点周围的残基溶剂可及性上升,局部区域结构变得更为灵活,催化位点开放并转变为活化构象。糖原储存位点位于GP表面,距离催化位点30Å,除了α23(残基699−708)外,HDX-MS在糖原存储区没有观察到明显的变化。图7.GPb(a)和GPa(b)的催化位点和PLP(橙色)结合位点的局部结构和HDX动力学曲线(c)。结合以上所有数据,我们对磷酸化调节的动态机制进行了推测(流程图1)。磷酸化后,N-端尾部残基与acidic patch的互作被打破,也导致N-端尾部的有序化以及C-端尾部的无序化以及伴随的其他结构变化。通过在pSer14和Arg69和Arg43′之间形成新的盐桥,N-端残基被重定位,随之带来的是Asp838和His36′间的盐桥断裂。随着三级和四级结构的转变,250s loop收缩并发挥类似“门环”的作用,当其收缩时,Tyr262′-Pro281与Tyr262-Tyr280′之间的相互作用、276-279区与162-164区之间的氢键也被打破,导致tower helix发生相对滑动,tower-tower helices之间的作用被打破,同时将结构变化传递到催化位点。最后,280s loop和催化位点以及PLP结合位点附近的残基松动,通往催化位点和底物磷酸盐识别位点的通道打开,酶得以活化。流程图1.GP变构调节过程中,被打破(蓝色)或新形成的(红色)关键残基相互作用。 本文整合nTD-MS、HDX-MS、PF分析和MD模拟检测了GP磷酸化变构调节过程的结构和动态基础,通过该整合结构手段揭示了GP构象柔性、局部动态性以及长程变构调控构象变化中值得关注的信息。各个方法具有各自的优势,但也在一定层面存在局限,我们期待将HDX-MS信息与计算模拟信息进行更深度的整合以实现二者对蛋白质结构更精确的分析。撰稿:罗宇翔编辑:李惠琳原文:Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling李惠琳课题组网址:https://www.x-mol.com/groups/li_huilin参考文献1.Huang, J. Chu, X. Luo, Y. Wang, Y. Zhang, Y. Zhang, Y. Li, H., Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling. ACS Chem. Biol. 2022.2.Li, H. Nguyen, H. H. Ogorzalek Loo, R. R. Campuzano, I. D. G. Loo, J. A., An integrated native mass spectrometry and top-down proteomics method that connects sequence to structure and function of macromolecular complexes. Nat. Chem. 2018, 10 (2), 139-148.3.Li, H. Wongkongkathep, P. Van Orden, S. L. Ogorzalek Loo, R. R. Loo, J. A., Revealing ligand binding sites and quantifying subunit variants of noncovalent protein complexes in a single native top-down FTICR MS experiment. J. Am. Soc. Mass Spectrom. 2014, 25 (12), 2060-8.
  • 高内涵——基于FRET分析活细胞中的ERK信号转导
    Extracellular signal-regulated kinase(ERK)是胚胎发生,细胞分化,细胞增殖和细胞死亡调控的关键组成部分。ERK途径起源于质膜中的活化受体,并通过Ras/Raf/MEK至ERK(图1)。图1. Ras/Raf/MEK/ERK信号级联将信号从细胞表面受体如EGF受体(EGFR)传播到细胞内蛋白质。ERK是该途径的最终组分,并且在被生长因子(例如EGF(表皮生长因子))激活后,触发下游效应,如激酶或转录因子的激活。该途径被不同类型的受体激活,包括受体酪氨酸激酶 (例如EGF受体)以及G蛋白偶联受体。作为信号传导途径的最终组分,ERK磷酸化不同的细胞内蛋白质,包括大量其他激酶和转录因子。ERK信号传导途径存在于各种癌症类型中,因此正在研究作为治疗干预的靶标。在这里,我们描述了如何在Operetta CLS高内涵分析系统上自动化研究ERK信号传导的活细胞FRET测定。该测定可以用于药物发现。基于FRET的ERK生物传感器FRET是从供体分子到受体分子的非辐射能量转移。能量转移需要供体和受体间隔小于10nm,因此提供了研究分子接近度变化的敏感工具,例如蛋白质 - 蛋白质相互作用(分子间FRET)或蛋白质的构象变化(分子内FRET)。在这项研究中,我们专注于分子内FRET,使用称为EKAREV的CFP-YFP生物传感器(图2)。稳定表达EKAREV的细胞由Somponnat Sampattavanich博士友情提供(图3)。在该生物传感器中,供体和受体荧光团以单一融合蛋白编码。EKAREV生物传感器经过优化,可以减少随机触发的基础FRET信号,并使其可靠地与距离相关。ERK对EKAREV的磷酸化触发构象变化,使CFP和YFP靠近诱导FRET。图2.细胞外信号调节激酶活性报告基因(EKAREV)的示意图。在该生物传感器中,两种荧光蛋白通过ERK底物结构域,接头和结合结构域分开。一旦ERK底物结构域经过ERK的磷酸化,就会触发构象变化,使CFP和YFP紧密接近并允许FRET发生。EKAREV生物传感器是分子内FRET的实例,其中供体和受体以1:1的固定化学计量存在。因此,进行双通道比率实验就足够了,通道1检测受体发射光(IAcceptor),通道2检测供体发射(IDonor),将得到的两个荧光信号强度进行背景校正,并计算它们的比率以给出相对FRET效率EFRET:测定方法将1.2×104EKAREV细胞/孔接种到CellCarrier-96Ultra微量培养板(PerkinElmer#6055300),150μl培养基(表1)中。孵育2天后(37℃,5%CO2),150μl饥饿培养基洗涤两次并在饥饿培养基中孵育5小时以降低基础ERK活性。另外,在孵育开始时向细胞中加入各种浓度的抑制剂或DMSO。4.5小时后,将细胞核用4μM DRAQ5在37℃,5%CO2下染色30分钟。然后用饥饿培养基洗涤细胞一次,并加入含有8μl 20x浓缩抑制剂或DMSO对照的150μl新鲜饥饿培养基。作为对照,在某一时间点,向细胞中加入8μl20x浓缩诱导物(PMA或EGF)。为了抑制FRET信号,应用PD184352,SCH772984和Ulixertinib。含有或不含有所测试化合物的最高DMSO浓度的培养基用作对照。试剂,化合物和介质列表成像在宽场模式下使用20x高NA物镜(NA 0.8)在Operetta CLS系统上建立长时间实验,获取图像总共97分钟。将FRET诱导化合物添加到血清饥饿细胞后,开始时间序列,测量间隔为每8分钟一次,在此设置中获得了四个渠道:DRAQ5 (ex 615-645,em655-760),CFP(ex 435-460,em 470-515),YFP(ex490-515,em 525-580)和FRET(ex 435-460,em 515-580)(图3)。图3.稳定表达EKAREV生物传感器的人乳腺上皮细胞。细胞核用DRAQ5染色。随后,在Operetta CLS系统上使用宽场模式的20x高NA物镜对细胞成像。分析策略使用Harmony高内涵成像和分析软件进行自动图像分析。简言之,将图像分割成细胞和背景。计算细胞质和背景中的供体和FRET强度,然后计算背景校正的FRET比率作为最终结果(图4)。图4.使用Harmony软件进行比率FRET定量的图像分析工作流程:细胞和背景的细胞质被分段,低表达细胞被强度阈值排除。量化供体和FRET通道的强度及其适当的背景,并计算背景校正的FRET强度比。减去背景强度在活细胞应用中尤其有利,其中具有自发荧光组分的培养基通常导致更高的背景并因此导致更小的测定窗口。结果为了探索是否可以使用基于FRET的生物传感器在Operetta CLS上研究ERK信号传导的调节,用不同的ERK和MEK激活剂和抑制剂处理EKAREV细胞。(图5)。图5.外源添加的活化剂(绿色)和抑制剂(红色)示意图及其对ERK信号通路的影响。表达EKAREV的细胞用EGF或PMA处理以诱导ERK活化,另外,用三种MEK和ERK特异性抑制剂(PD184352,SCH772984,Ulixertinib),在途径的不同位置中断信号转导。PMA和EGF充当Ras/Raf/MEK/ERK信号级联的特异性激活剂。EGF特异性结合细胞表面上的EGF受体,而PMA作为亲脂性,膜可渗透的分子通过直接激活RAF激活该途径。PD184352可以通过选择性抑制MEK1/2来抑制ERK途径,而Ulixertinib和SCH772984都是ERK1/2的有效和选择性抑制剂。首先,为了更多地了解FRET诱导和抑制的动态性质,记录了97分钟的长时实验。正如所料,与未处理的对照相比,单独用EGF或PMA处理细胞导致FRET比率的强烈增加(图6)。大约30分钟后信号处于高位。对照显示较低水平的ERK活化,并且观察到随时间稳定增加。由于ERK1/2可以通过多种生长因子和有丝分裂来调节,这可能是由活细胞成像过程中的自分泌或旁分泌信号引起的。用不同浓度的ERK抑制剂(SCH772984)共同处理细胞导致ERK反应的剂量依赖性降低。在5μMSCH772984中,通过EGF的ERK活化几乎可以忽略不计,表明在该浓度下ERK被完全抑制。请注意,0.5%DMSO是实验中使用的最高浓度,确实对FRET比率有影响,因此需要包括此对照。用第二种ERK1/2特异性抑制剂Ulixertinib获得了类似的结果(数据未显示)。图6.在Operetta CLS系统上使用基于EKAREV FRET的生物传感器的ERK信号传导的时间进程。通过EGF或PMA刺激ERK诱导快速FRET信号增加,在约30分钟后平稳。高浓度的SCH772984(5μM)导致几乎完全抑制ERK活化(1μg/ ml EGF),没有可测量的FRET信号增加。较高稀释度的SCH772984仅部分抑制EGF诱导的ERK活化。control显示没有任何处理的样品有中间轻微上升的FRET信号。0.5%DMSO略微抑制FRET信号,这是实验中使用的DMSO的最高浓度。测定统计:Z' = 0.87(在时间点32分钟计算,DMSO为阴性,EGF为阳性对照)当FRET信号在32分钟后达到恒定水平时,选择该时间点以确定SCH772984的IC50值。用1μg/ mL EGF和系列稀释的SCH772984处理EKAREV细胞,稀释范围为10pM至3μM。计算的IC50值为272nM的剂量反应曲线如图7所示。图7.ERK抑制剂SCH772984导致基于FRET的EKAREV信号的剂量依赖性降低。在1μg/ ml EGF存在下,用递增浓度的SCH772984处理EKAREV细胞。在孵育32分钟后,在Operetta CLS系统上测定FRET比率,因为信号在此时间点稳定。高Z' 值(Z' = 0.89)显示出优异的分析性能。为了研究EKAREV FRET成像测定是否可用于研究直接作用于MEK1/2的途径调节,测试了MEK1/2抑制剂PD184352对PMA化细胞的作用(图8)。如图所示,PD184352抑制PMA诱导的ERK活化。图8.在Operetta CLS系统上测量的PD184352对PMA活化的Ras/Raf/MEK/ERK信号级联的抑制。EKAREV细胞用另一组活化剂和抑制剂(PMA+PD184352)处理,其作用在RAF/MEK的上游(与图5比较)。用200或2000nM PMA处理的EKAREV细胞显示出高FRET反应(诱导后32分钟)。通过将细胞与MEK1/2特异性抑制剂PD184352以10μM的浓度共孵育来抑制活化。结论EKAREV FRET生物传感器可用于Operetta CLS系统的活细胞成像测定,以研究ERK的激活和抑制。级联内不同靶标的调节很容易测量,因此这种方法可以有助于鉴定干扰Ras/Raf/MEK/ERK信号级联的新化合物。该测定在活细胞中进行,因此它可用于分析ERK信号传导动力学,而定量ERK磷酸化的常规生物化学技术通常是终点测定。尽管细胞群中生物传感器表达水平相对不均匀(图3),但FRET比率的计算提供了特别好的化验数据和统计数据,Z' 值高于0.87。EKAREV生物传感器的优化设计,Operetta CLS系统的高质量成像以及Harmony内图像分析的出色工具都有助于提高这里提供的高含量FRET分析的稳定性。Harmony软件的构建模块概念允许创建易于设置和理解的图像分析序列,并且不需要专业的图像分析知识。该测定还提供了Opera Phenix™ 高含量筛选系统的可比较结果和测定统计数据。由于Operetta CLS和Opera Phenix系统比传统显微镜具有更高的通量,基于FRET的生物传感器的高含量成像为药物发现和细胞信号传导中的基础研究开辟了新的可能性。参考文献1. Pearson, G., Robinson, F., Beers Gibson, T., Xu, B-E.,Karandikar, M., Berman, K. & Cobb, M. H. (2001).Mitogen-Activated Protein (MAP) Kinase Pathways: Regulation and Physiological Functions. Endocrine Reviews, 22(2), 153-183. doi/10.1210/edrv.22.2.04282. Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M.,Roberts, K. & Walter, P. (2007) Molecular Biology of the Cell,Garland Science., 5th revised edition, ISBN-10: 08153410593. McCubrey, J. A, Steelman, L. S., Chappell, W. H., Abrams,S. L., Wong, E. W. T., Chang, F., Lehmann, B., Terrian, D.M., Milella, M., Tafuri, A., Stivala, F., Libra, M., Basecke, J.,Evangelisti, C., Martelli, A. M., and Franklin, R. A. (2007):Roles of the Raf/ MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et Biophysica Acta, 1773,1263–84. doi:10.1016/j.bbamcr.2006.10.0014. F?rster, T. (1948). Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik 437 (1-2), 55-75.5. Sun, Y., Wallrabe, H., Seo, S.-A., & Periasamy, A. (2012). FRET microscopy in 2010: The legacy of Theodor F?rster on the 100th anniversary of his birth. Chemphyschem., 12(3), 462–474.doi:10.1002/cphc.201000664. FRET6. Fassler, M., Boettcher, K., Malle, M. (2015): Measuring FRET using the Opera Phenix High Content Screening System: A High Throughput Assay to Study Protein-Protein Interactions,Application Note published by PerkinElmer, In., Waltham,MA, USA7. Komatsu, N., Aoki, K., Yamada, M., Yukinaga, H., Fujita,Y., Kamioka, Y., & Matsuda, M. (2011). Development of an optimized backbone of FRET biosensors for kinases and GTPases.Mol Biol Cell, 22, 4647-56. doi/10.1091/mbc.E11-01-00728. Harvey, C. D., Ehrhardt, A. G., Cellurale, C., Zhong, H., Yasuda,R., Davis, R. J., & Svoboda K. (2008). A genetically encoded fluorescent sensor of ERK activity. PNAS, 105(49), 19264-19269. doi_10.1073_pnas.080459点击链接了解更多珀金埃尔默高内涵相关资料http://e86.me/0ZaJW1关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 张玉奎院士、张丽华研究员团队蛋白质组学最新成果:N-磷酸化蛋白质组的深度覆盖分析新方法
    仪器信息网讯 近日,中国科学院大连物理研究所生物分子高效分离与表征研究组(1810组)张丽华研究员和张玉奎院士团队,蛋白组组学分析最新成果发表于《自然-通讯》(Nature Communications)上。团队发展了N-磷酸化肽段高选择性富集新方法,并结合肽段的高效分离和高灵敏度鉴定,实现了N-磷酸化蛋白质组的深度覆盖分析。  与研究相对深入的发生在丝氨酸、苏氨酸和酪氨酸侧链氨基上的蛋白质O-磷酸化修饰相比,发生在蛋白质组氨酸、精氨酸和赖氨酸上的N-磷酸化修饰,由于P-N酰胺键具有较高的吉布斯自由能,且易发生水解,目前仍缺乏有效的N-磷酸化蛋白质组分析方法,制约了人们对其生物学功能的认识。  团队研制了具有核壳结构的亚二微米硅球,并通过在硅球表面键合双二甲基吡啶胺双锌分子,在中性条件下实现了N-磷酸化肽段的高效、高选择性、快速富集 通过基于该材料的on-tip富集方法和液质联用分离鉴定的结合,不仅从HeLa细胞中鉴定到3384个N-磷酸化位点(目前最大的哺乳动物N-磷酸化数据集),而且还发现N-磷酸化位点附近亮氨酸高度表达 建立的N-磷酸化蛋白质组分析新方法不仅为深入研究其生物学功能提供了基础数据,而且也为推动精准医学、合成生物学等领域的发展提供了技术支撑。  上述工作得到国家自然科学基金、国家重点研发计划、中科院大连化物所创新基金等项目的资助。文章链接:《自然-通讯》(Nature Communications)。
  • 磷酸化蛋白,液体活检全新维度——访北美华人质谱学会主席陶纬国教授
    p  span style="font-family: 楷体,楷体_GB2312, SimKai "回顾2017年,基于质谱的临床研究有一项突破性发现。普渡大学陶纬国教授团队在2017年3月20日的《美国国家科学院院刊》(PNAS)杂志上发表文章称,他们从人体血液中发现2400多种磷酸化蛋白。该发现首次证明了磷酸化蛋白可以作为基于液体活检的疾病标志物,能用于对癌症等重大疾病更早、更精准的非侵入性诊断,为 “液体活检”提供了全新的检测维度。近日,仪器信息网专访了陶纬国。/span/pp style="text-align: center "img title="1.jpg" src="http://img1.17img.cn/17img/images/201801/insimg/a21a903c-0479-4776-9e2a-5b5c719f76fc.jpg"//pp style="text-align: center "strong普渡大学 陶纬国教授/strong/pp  span style="color: rgb(255, 0, 0) "strong磷酸化蛋白突破性发现/strong/span/pp  通过液体活检来诊断肿瘤和癌症等疾病一直是临床科学家关注的焦点,研究对象多集中在循环肿瘤细胞(CTC)和循环肿瘤DNA(ctDNA),但是二者都有局限性:由于CTC在血清中的浓度非常低,取少量血液对其检测难度很大 癌症有很多基因突变,而这些突变不一定会显现出来,因此基于ctDNA进行的液体活检的诊断结果只能预测患病的概率,并不能确诊。/pp  蛋白质磷酸化是调节和控制蛋白质活力和功能的最基本,最普遍,也是最重要的机制,同时,与许多疾病的发生密切相关。在众多肿瘤致病机理中,当前学术界对蛋白质磷酸化机理的研究最为清楚,80%-90%的癌症都跟蛋白质磷酸化有关。因此,许多抗肿瘤药物的研制都着眼于磷酸化蛋白。理论上,磷酸化蛋白作为相关基因突变的表达,在临床上能够帮助医生做出更明确的诊断。但是,有关基于液体活检的磷酸化蛋白研究还很少。此前,有个别报道在血液中发现几十种磷酸化蛋白,均是高丰度蛋白,生物学意义不大。“原因就是磷酸化蛋白一旦从细胞进入血液中就被肝脏分泌的磷酸酶水解了。”陶纬国解释说,“所以虽然磷酸化蛋白跟癌症关系非常密切,但人们无法对其进行检测。”/pp  陶纬国团队是如何从人体血液中检测到大量磷酸化蛋白的呢?这要从三年前的一篇文献报道说起,当时陶纬国从这篇文章中了解到外泌体和微囊的结构,“当我看到类似于纳米微粒的外泌体、微囊结构时,我认为可能会有磷酸化蛋白被包裹在外泌体中,然后进入血液。如果真是这样,被外泌体包裹的磷酸化蛋白可能会避免被血液中的磷酸酶水解。”于是陶纬国团队对血液中的外泌体、微囊进行了超速离心分离、提取,然后用质谱进行检测。一周以后,实验结果让所有人都惊呆了,他们从中发现了几千个磷酸化蛋白。这个突破性的发现使得临床科学家们今后可以在1毫升血浆里找到几千个磷酸化的位点,并从中筛选出不同疾病的生物标志物。之后,陶纬国团队对乳腺癌病人血清中的磷酸化蛋白做了研究,发现乳腺癌病人体内的磷酸化蛋白与其病症密切相关。/pp  那么,磷酸化蛋白液体活检何时能够应用临床呢?陶纬国回答说:“虽然现在还不好断言,但我认为3-5年内都有可能。”他进一步解释,随着质谱技术的显著提升,一些原来检测不到的生物标志物现在能够检测了,后面的工作主要是考察重复性有多好,假阳性有多低。/pp  谈及未来的工作,陶纬国表示,一方面会继续做乳腺癌的磷酸化蛋白生物标志物确认的工作 另一方面也会做其他疾病磷酸化蛋白生物标志物找筛的工作,“还有很多其它疾病,比如阿尔茨海默病、帕金森综合征等,也都是蛋白磷酸化有关。”/pp  span style="color: rgb(255, 0, 0) "strong质谱用于生物大分子检测的思考/strong/span/pp  陶纬国教授做蛋白组学研究至今已有十几年,用到的研究工具主要是质谱。在攻读博士期间,陶纬国师从普渡大学著名质谱专家Graham Cooks教授。博士毕业后,陶纬国加入了西雅图系统生物研究所,在Leroy Hood教授(自动DNA测序仪发明人)和Ruedi Aebersold教授(著名蛋白质组学专家)课题组继续博士后研究。从那时起,陶纬国就开始了他的磷酸化蛋白质组学检测的研究,“重回普渡教书以后,我的工作基本上是围绕着怎么去提高磷酸化蛋白分析手段来开展的。质谱在我的工作扮演着中心角色,包括方法开发,蛋白生物标志物早筛,全靠质谱来做。”首先是早筛,用质谱(Orbitrap)筛选出相关的生物标志物(磷酸化蛋白) 然后对病人的样本进行检测,用统计学的方法对检测结果进行分类 最后,分析统计学上有意义的、跟病人相关的磷酸化蛋白。/pp  在过去二三十年里,质谱在生物大分子检测方面有几个重要的技术突破。首先,80年代末90年代初, ESI和MALDI的出现,使质谱能够用于分析生物样品 第二,近十几年来,高分辨质谱的飞跃发展,大大提升生物大分子的分析效率。“我读博士后时(2002年),很多仪器还是低分辨的,生物样品还是挺难做的,做完一个磷酸化的蛋白,单是数据库检索就要三天,而且,相对来说,得到的数据假阳性高。现在的高分辨质谱解谱很容易,差不多半个小时就够了,假阳性也降低很多。”此外,陶纬国还说到,“UPLC与质谱的结合在技术上是很大的进步,使色谱的分离效率赶上了质谱的速度,现在一个小时能检测到几千个蛋白,非常快。”/pp  同时,陶纬国也指出了目前利用质谱来检测生物大分子的难点。第一,生物样品基体复杂。“像我们实验室做磷酸化蛋白,它本身丰度就很低,假如样本不经过任何分离的话,谱图上将会只能看到高丰度蛋白。”第二,质谱检测假阳性比较高。“其实还是需要统计学算法方面的开发,来解决假阳性率高的问题,这也是现在很多质谱开发者在做的工作。”/pp  现如今质谱产品更新迭代非常快,对于质谱工作者来说,是好,也是坏。“新产品的确扫描速度更快了,精度更高。但是,也给质谱工作者带来了不小的压力。特别是像我们这种使用高分辨大仪器的,没有那么多钱换来换去。可是如果你想要紧跟前沿,这些新仪器又十分必要。”陶纬国说,这是目前质谱工作者普遍面临的两难境地。/pp  span style="color: rgb(255, 0, 0) "strong整合临床大数据/strong/span/pp  2017年,陶纬国作为海外高层次人才被东南大学引进回国。谈及回国的初衷,陶纬国表示,国内拥有更多、更丰富的病人样本,这是他选择回国的原因之一。此外,国内对于高分辨质谱等大型仪器的投入力度也更大,有助于前沿研究的开展。谈到选择东南大学的原因,陶纬国说到:“东南大学的生物医学工程学院有转化医学,有生物,然后又有工程,包括产业化,比较适合我。”/pp  现在国内,整合医学大数据来服务大健康的概念很热,“在全国,包括南京,都已经有相关工作在开展”。从临床检测这个角度来说,陶纬国希望找到办法来整合DNA检测,microRNA检测,磷酸化蛋白检测几个维度的数据,从而获得更为精准的临床诊断结果。“比如检测一个肿瘤,通过对DNA、mRNA、磷酸化蛋白、糖基检测多维度数据的不断积累,数据会越来越多,结合人工智能、计算机算法,检测结果会越来越精准。 我回来能赶上这个机会也是不容易。”陶纬国如是说到。/pp  目前,医学大数据的采集方式主要为第二代、第三代测序。“但是,质谱也是很重要的一块儿。”陶纬国指出,“比如乳腺癌,基因突变仅仅代表一种患病的可能性,但是到底有没有癌症还是要通过蛋白检测来确定,所以用质谱来检测蛋白的存在、活性、功能,比基因层面更可靠。所以,质谱检测肯定会慢慢跟上来。”/pp  陶纬国在东南大学生物医学工程学院的新实验室是电子生物国家重点实验室。对于自己的工作重心,陶纬国表示,现在是过渡时期,未来会逐步将重心转至国内。“国内实验室刚刚开始,看起来前途光明。”/pp span style="color: rgb(255, 0, 0) "strong 热衷学界公益事务 出任CASMS主席/strong/span/pp  作为质谱生物大分子检测方面的专家,陶纬国于2017年6月份当选北美华人质谱学会(CASMS)主席。该学会汇聚了众多顶尖的华人质谱学者,已经成为质谱学界重要的华人力量。在一年一度的“美国质谱年会(ASMS)”期间举行“北美华人质谱学术会议”已经成为CASMS的传统。据陶纬国介绍,CASMS已有二三十年的历史,目前注册人数在800人左右,覆盖了北美地区绝大部分优秀的华人质谱学者。ASMS每年参会人数6000-7000人,相当一部分是华人,中国面孔越来越多。“在美国,有很多华人学者做了非常出色的工作,但他们并没有获得相匹配的影响力和威望。” 陶纬国说,“我们学会的宗旨就是提升华人质谱学者在世界质谱领域的影响力。当然, 中国本身的国际地位的重要性是显而易见的。”/pp  CASMS的另一个宗旨是促进世界华人质谱界的互相交流。每两年召开一次的“世界华人质谱学术研讨会”是全世界华人的质谱盛会,汇聚了中国内地、台湾、香港、新加坡和北美地区的质谱学者,CASMS是该会议4个主办方之一。2016年,CASMS主办了第六届“世界华人质谱学术研讨会”,这是该会议首次在美国召开,恰逢该会议召开十周年。“我认为非常有意义,促进了两岸三地华人质谱学者的交流合作。我的亲身体会是通过这个会议结识了很多优秀学者,而在此前很多同仁相互间是不认识的。”/pp  未来,除了重要的线下会议组织工作,陶纬国希望通过加强线上日常交流,来使学会内部联系更为紧密。/pp  span style="font-family: 楷体,楷体_GB2312, SimKai "strong后记:/strong临床质谱技术被认为是医学诊断的下一个“基因测序”,应用前景被普遍看好。质谱用于临床检验具有灵敏度高、特异性高、重现性好的优点,可在临床多个领域对传统诊断方法学进行替代。陶纬国教授团队的磷酸化蛋白研究进一步提升了临床质谱应用的含金量。基于该研究,临床科学家们将会找到更多可靠的疾病标志物,从而实现癌症等重大疾病的早期发现和精准诊断。/span/pp style="text-align: right "采访编辑:李博/p
  • 成果|利用氢氘交换质谱分析糖原磷酸化酶的瞬时态的结构动力学
    大家好,本周为大家介绍一篇发表在J. Am. Chem. Soc.上的文章,Transient Structural Dynamics of Glycogen Phosphorylase from Nonequilibrium Hydrogen/Deuterium-Exchange Mass Spectrometry,文章作者是英国埃克塞特大学的Jonathan J. Phillips。  变构调节指在蛋白质的正构位点上的变化通过蛋白质内部传递,最终影响到变构位点的结构,从而调整白质功能。理解蛋白质功能转换背后的特定结构动态变化对于分子生物学和药物发现领域至关重要。尽管变构现象自从提出以来已有广泛的研究,但是关于信号如何在蛋白质内部长距离传递的具体机制仍然不甚清楚。很大程度上是由于缺乏能够在时间和空间上高分辨率测量这些信号的生物物理方法。糖原磷酸化酶(glycogen phosphorylase,GlyP)是研究变构调节常用的标准蛋白,GlyP与II型糖尿病和转移性癌症的治疗密切相关。GlyP作为一种典型的变构酶,其活性受磷酸化修饰、多种天然配体和药物的调控。本文旨在通过开发和应用非平衡毫秒级氢/氘交换质谱(neHDX-MS)技术,来精确定位GlyP在变构激活和抑制期间的动态结构变化。这项技术能够提供蛋白质在毫秒时间尺度上的局部结构动态信息,有助于揭示变构调节过程中的瞬态结构特征,从而为理解蛋白质的动态行为和设计变构调节剂提供重要的结构信息。  作者首先确定了能够完全激活或抑制GlyP的条件。25 mM 的AMP能实现GlyPb的最大激活(图1A)。32 mM咖啡因足以完全抑制GlyPa(图1B)。并且观察到50ms内AMP和咖啡因能够达到最佳激活/抑制状态(图1C和1D)。  图1.糖原磷酸化酶b的变构激活和糖原磷酸化酶a的抑制。  随后作者通过neHDX-MS捕捉由AMP引起的GlyPb变构激活过程中的局部结构扰动。通过激活过渡态与未激活和激活状态之间的HDX差异,作者将这些肽段分成了七个类群。其中重点值得关注的类群是c、d(其他类群对应区域及趋势不在此详细介绍),因为他们的HDX行为与未激活和激活时的稳定态都有明显差异,这些局部区域的结构变化是过渡态的独特体现(图2A)。其中,c类群主要涵盖了tower helix区(图2B),说明该区域在从未激活到激活状态的过渡态中,表现出相较于前后二者皆较高的动态性。d类群涵盖活性位点,说明活性稳点结构在因结合发生了结构稳定化现象。为了从原子水平理解这些瞬态结构变化,研究人员使用了一种基于Energy Calculation and Dynamics(ENCAD)的方法,Climber,来模拟从非活性状态到活性状态转变过程中的过渡态内部作用变化。结果显示,tower helix在激活过程中经历了氢键先断裂后形成的变化,这与观察到的HDX增加相一致(图4A)。  图2.GlyPB中表现不同结构动力学行为的类群。  图3.局部区域HDX动力学。  图4.GlyP在活性和非活性状态之间的结构插值。  随后作者探讨了咖啡因如何通过变构抑制影响GlyPa的结构动态。同样作者也比较了抑制过渡态与未抑制和抑制状态之间的HDX差异,分成了七个类群。在这几组类群中,仅有m表现出较未抑制和抑制状态都较明显的氘代上升趋势(图2C、图3C&D)。m区域涵盖了tower helix区(图2D),说明该区域在未抑制状态到完全抑制状态的过渡阶段内,发生了局部去结构化现象。此外,在280s loop和250′ loop区域也表现出类似的瞬时去稳定化现象。结合AMP激活实验中的现象表明,尽管咖啡因和AMP作用于GlyP的不同位点,但它们都可能通过类似的变构路径(即tower helix的去稳定化)来引起GlyP的变构调节,从而实现对该蛋白功能的调控。同样在Climber分析中,可以观察到对应区域发生了氢键重排,与neHDX-MS结果呼应(图4B)。  本文讨论了GlyP的变构调节中间态涉及的局部结构动态变化,并通过毫秒级neHDX-MS揭示了这些变化。结果表明激活和抑制过渡态都涉及到tower helix的氢键断裂和局部结构重排,这是两个途径的共同特点。本研究的亮点在于开发了一种新的neHDX-MS方法,能够在毫秒时间尺度上观察蛋白质的变构结构动态。这种方法不仅对理解GlyP的变构机制具有重要意义,而且可以广泛应用于不同蛋白质的变构研究,为理解蛋白质的变构调节提供了新的视角和工具。  撰稿:罗宇翔  编辑:李惠琳  文章引用:Transient Structural Dynamics of Glycogen Phosphorylase from Nonequilibrium Hydrogen/Deuterium-Exchange Mass Spectrometry  参考文献  Kish, M. Ivory, D. P. Phillips, J. J., Transient Structural Dynamics of Glycogen Phosphorylase from Nonequilibrium Hydrogen/Deuterium-Exchange Mass Spectrometry. J. Am. Chem. Soc. 2023, 146 (1), 298-307.
  • 大会报告:蛋白质组数据处理技术研究进展
    仪器信息网讯,2010年5月15日,蛋白质组数据处理暨全国生物质谱学术交流会”在云南省丽江市召开。会议为期两天,主要讨论了蛋白质组学技术和应用、数据挖掘和生物质谱等方面的现状及其进展。在所有的大会报告中,除一些关于蛋白质组学技术最新研究进展的大会特邀报告外,第一天的专家报告集中讨论了糖蛋白组的最新分析技术与研究进展,第二天的报告集中讨论了蛋白质数据处理技术,包括蛋白质组生物数据库及分析平台的构建、数据统计分析方法的研究等方面。  蛋白质组数据库被认为是蛋白质组知识的储存库,包含所有鉴定的蛋白质信息。而基于质谱技术的蛋白质组学数据分析,是识别新型生物标记物模式的有效手段。质谱仪检测的数据含有大量潜在信息,因此,建立完善的蛋白质组学数据库,开发实用性强的数据处理软件工具,以及提供良好的蛋白质组数据分析、处理方对蛋白质组学的发展至关重要。在本次大会上,中国科学院计算技术研究所贺思敏研究员、浙江大学生物医学工程与仪器科学学院段会龙教授、国防科技大学机电工程与自动化学院谢红卫教授等专家学者作了关于此方面最新研究进展的报告,本文作简要报道:  报告题目: 蛋白质组数据分析软件pFind系统新进展  报告人:中国科学院计算技术研究所贺思敏研究员贺思敏研究员  pFind系统是中国科学院计算技术研究所自2002年开始持续研发的蛋白质组数据分析软件,可以替代同类国际主流软件,已安装在国内多家蛋白质组学重点研究单位,并在ABRF组织的国际评测以及核心岩藻糖化修饰位点鉴定等科研实战中表现出色。  贺思敏研究员在报告中首先介绍pFind系统不同于国际同类软件的核心算法设计和系统实现,然后介绍pFind系统近期在开放式修饰类型发现、高精度一级质谱分析、新型碎裂方式串联质谱分析、肽序列从头测序、标记定量分析以及并行加速系统研制等方面的进展,最后介绍了pFind系统的下一步研究设想。  报告题目:构建心血管蛋白质组生物医学数据库及分析平台  报告人:浙江大学生物医学工程与仪器科学学院段会龙教授段会龙教授  心血管疾病是威胁人类健康的主要疾病。以高分辨率质谱技术为基础的心脏蛋白质组研究是发展心血管研究的一个重要方向。段会龙课题组通过对心血管医学和生物学、蛋白质组学和生物医学信息学的多学科交叉研究,构建了心血管生物医学数据库,重点在心血管蛋白质组数据集成、处理和分析,生物医学数据库体系构建、数据共享和发布等诸多关键技术上进行突破。  该课题组目前已完成了如下工作:  (1)心血管蛋白质组数据体系结构:构建了以蛋白质组信息为主体的数据库体系结构,以心脏线粒体蛋白质组为基础建立了核心数据集,该核心数据集包含了1663种心脏线粒体蛋白质以及与之相对应的2万7千多个生物质谱谱图。  (2)心血管蛋白质组数据库搜索引擎:初步建立了数据搜索引擎,可通过蛋白、肽段序列等信息对相应的生物质谱谱图进行检索,实现了与欧洲生物信息学研究所 (EBI) 的IPI蛋白质数据库间的数据关联。  (3)心血管生物医学数据库平台:研究和开发了相应的数据库网络公共平台。该网络平台的首个版本将在2010年末面向全世界发布,通过对心血管生物医学数据信息和资源的实时共享,服务于全世界心血管研究群体。  报告题目:大规模蛋白质组研究中的质谱数据定量分析方法  报告人:国防科技大学机电工程与自动化学院谢红卫教授谢红卫教授  谢红卫教授利用一系列大规模定量分析的数据集,包括稳定同位素标记和进行重复实验的无标记定量数据,进行了一系列分析和研究,目前取得了很大的结果:  (1)总结了无标记和稳定同位素标记定量数据分析的典型流程,并且结合实际的数据分析结果,初步研究了各种分析流程优势和问题。  (2)针对丁来那个信息提取问题,利用重复实验数据集,比较优化了其关键步骤。  (3)利用实际实验数据,初步研究了同位素分布实验误差和质荷比误差等对定量分析参数选择有重要影响的问题。  (4)针对定量计算速度慢的问题,提出了索引文件和基于hash表的信息检索方式,将定量计算的时间缩短为原来的1/10。  (5)设计了一种可逆的色谱保留时间对齐模型,大大缩短了无标记定量数据处理中色谱保留时间对齐的计算复杂度。  (6)提出了一种以信号强度为参量的差异分布模型,能够提高差异检验的灵敏度。  (7)开发了无标记定量软件LFQuant、标记定量软件SILVER,已经无鉴定定量分析工具XICFinder。其中SILVER能够支持自定义标记方法,提供了图形化界面。LFQuant速度和定量精度等性能经过了多次优化。  报告题目:多层次蛋白质磷酸化分析中的数据处理方法研究  报告人:中国科学院大连化学物理研究所叶明亮研究员叶明亮研究员  叶明亮研究员在报告中提到,根据研究目的的不同,蛋白质磷酸化的分析可以划分为三个层次:信号转导通路中关键节点蛋白质的磷酸化、生物体内的所有蛋白质的磷酸化(即磷酸化蛋白质组)、生物体内的所有激酶与底物的相互作用(磷酸化调控网络)。不同层次的分析有不同的目的,样品的复杂度也不同,因此需要不同的数据处理方法。  在节点蛋白质的磷酸化分析方面,为实现对某一感兴趣蛋白质中磷酸化位点的全面分析鉴定,发展了一种基于改进的目标-伪数据库用于数据检索,来高覆盖率、高可靠鉴定简单蛋白样品中的磷酸化位点信息的方法。并且从搜库耗时上,允许用多种低特异性的酶来提高简单蛋白样品的序列鉴定的覆盖度,从而更加全面的鉴定样品的磷酸化位点信息。  在磷酸化蛋白质组层次上要实现在保持较高可信度和灵敏度的情况下对海量质谱数据以及检索数据进行自动化处理。针对磷酸化蛋白质组学中磷酸化肽段鉴定难,假阳性率高,主要依赖于人工验证的现状,发展了一种结合MS2和MS3图谱以及正伪数据库检索的自动磷酸化肽段鉴定方法。该方法结合了MS2和MS3的鉴定信息,提高了磷酸化肽段鉴定的灵敏度和可信度,可以自动的对磷酸化肽段进行鉴定而无需进一步的人工验证。利用这种方法,结合磷酸肽的多维分析已经可以从人肝组织中鉴定超过8000个磷酸化位点。最近,其课题组还发展了一种基于分类筛选的磷酸化肽段鉴定方法,该方法结合了MS2/MS3方法的高可信度,并且考虑了部分不易发生中性丢失的磷酸化肽段的鉴定,进一步提高了磷酸化肽段鉴定的灵敏度。  在磷酸化调控网络层次主要是揭示激酶与底物蛋白质上磷酸化位点的对应关系,叶明亮研究员表示,这是该课题组今后研究的一个重要方向,目前已经在与合作者利用生物信息学的方法模拟构建磷酸化网络图。
  • 迎接蛋白组学样品处理新挑战 ——Empore StageTips助力高通量检测
    蛋白组学脱胎于人类基因组计划中的功能基因组学,是研究细胞、组织或完整生物体所拥有的全套蛋白质的学科,“全景式地研究在各种特定情况下的蛋白质谱”。(贺福初,中国蛋白质组计划,中国科学基金,2002,264-268)蛋白组学的实验过程高度依赖优化的样品前处理。其中,蛋白消解和质谱分析这两步之间的处理过程对整体分析质量和灵敏度有着非常重要的影响。一种名为StageTips的关键技术于2003年由南丹麦大学蛋白质组学领域著名学者Matthias Mann首次报道,并因其高效和简便而在蛋白组学研究中得到广泛使用。许多研究机构根据自身课题特点开发了StageTips的应用规程。StageTips是一种填充了Empore膜片的微量移液管。其全称是“Stop and go extraction tips”,喻意为蛋白分解产生的肽被Empore膜片拦截,然后由适当的溶剂释放出来。这个过程中,盐份去除,肽得到纯化和浓缩,或者预分馏。Empore膜片由高分子纤维网固定住的功能颗粒构成,同时具有极佳的物理特性(如柔软、致密)和化学特性(如高保留因子),使StageTips特别适用于LC/MS分析之前处理肽溶液样品。膜片中功能颗粒种类的多样性使StageTips具有多种不同性能,可以根据应用内容有多种选择,并可以在一支StageTips中组合使用。a - 单层Empore膜片的StageTips(放大图中为Empore膜片材料结构示意) b – 多层膜片的StageTips ;图1 StageTips外观Empore相对于用松散颗粒制成的产品有多种优势,包括:颗粒填充致密无沟流;无需筛板;洗脱体积小;容量可由增加膜片层数而扩大。图2. Empore StageTips 质量控制:这些数据显示SDB-RPS StageTips 在不同批次和同一批次内测试结果的良好可重复性和可靠性,证实生产工艺的优越性。应用实例一美国著名医院Mayo Clinic 于2020 开发了基于StageTips和临床质谱的 新冠病毒快速诊断方案,可以达到和PCR相似的精度。----------------------------------------------------------------------------------------------------图3. Mayo Clinics 新冠病毒高通量检测方案:基于StageTips 和OrbiTrap LC-MS。应用实例二高通量磷酸化蛋白质组学检测----------------------------------------------------------------------------------------------------DNA转录成mRNA要再翻译成具有特定氨基酸序列的蛋白质才能在体内发挥功能,其中大部分蛋白质往往还需要经过化学修饰才能具备真正的活性,这种修饰称为翻译后修饰(PTM)。翻译修饰的过程,就是在蛋白质氨基酸序列中添加特定氨基酸或改变特定化学官能团的过程,进而改变蛋白质的结构。已有实验证明有三百多种潜在的PTM类型,并且同一个蛋白质可能在多个位点发生修饰,这就促成了蛋白结构和功能上的多样性。在众多的PTM类型中,磷酸化修饰(Phosphorylation modification)的蛋白占到了所有蛋白质约三分之一,是最普遍的修饰类型之一。会影响到细胞内信号转导、细胞结构、细胞增殖、凋亡、转录、代谢过程以及调控病原微生物的适应能力等等,所以在不同细胞中,蛋白磷酸化水平会呈现不同的差异,特定位点的磷酸化程度可能从小于1%到大于90%。图 4. StageTips 用于高通量磷酸化蛋白质组学检测磷酸化蛋白质组学是研究这个蛋白质磷酸化修饰的重要方法之一。如图四所示,通过采用基于StageTips的高通量蛋白质组学样品制备方法,相对于传统样品制备方法来说,所需要的检测样品少了10倍,检测时间减少3倍,但定量化磷酸化位点增加了3倍,极大了提高了研究效率。高碱性条件下的分馏可大大提高蛋白质检出率。相比于传统的方法,比如离线HPLC 泵,或者散装填料装的Tips,Empore C18 Stage Tips 更为高效,同时成本更低。图五显示的数据表明通过StageTips 在高碱性条件下的分馏样品处理,蛋白质检出量增加了50%,同时蛋白质覆盖率提高了10%。图5: HeLa细胞系用 Empore C18 StageTips在高碱性条件下进行分馏处理可大大增加蛋白质和多肽的检出水平Empore还具有自身优势,其中可供选择的功能颗粒和应用如下表所示。【说明】Empore最早由3M公司生产,2019年,莱伯泰科从3M公司收购了Empore的生产线,由旗下CDS公司全面掌握生产工艺并生产和销售。收购之后,许多将Empore作为关键材料的高科技产品得以继续生产。
  • 蛋白质靶向探针有望应用于超分辨率显微成像
    北京大学化学与分子工程学院教授陈鹏正在实验中。  作为生物体内含量最多的一类生物大分子,蛋白质是生物功能的主要执行者,在各种生命活动中扮演着关键角色。科学家一直在探索适用于活体环境的蛋白质操纵工具,以实现对目标蛋白质结构和功能的深入研究,这已经成为当今化学生物学领域的前沿热点之一。  在国家自然科学基金委“基于化学小分子探针的信号转导过程研究”重大研究计划的资助下,科学家们围绕“蛋白质靶向探针的发现及其在信号转导研究中的应用”取得了多项进展。  据北京大学化学与分子工程学院教授陈鹏介绍,国内多个课题组通过化学脱笼技术、双光子和近红外调控技术以及靶向小分子探针等策略,实现了细胞内蛋白质的特异激活,并研究了细胞信号转导过程的分子机制。  在化学脱笼技术方面,陈鹏课题组将非天然氨基酸定点插入技术与生物正交的“化学脱笼”反应相结合,提出了一种理性设计小分子激活剂的全新策略。例如,由蛋白激酶介导的磷酸化是细胞信号转导的关键过程,对绝大多数生理活动都有重要影响,但很多激酶在正常生理及病理条件下的分子机理还不明确。利用小分子激活剂可以在激酶的信号转导研究中获得新的信息。“我们在活细胞内激活‘效应蛋白OspF’,发现这种蛋白使细胞核内的‘磷酸化Erk蛋白’发生了由不可逆去磷酸化介导的‘核质转运’现象。”陈鹏表示。  近年来,蛋白质光控技术成为研究细胞信号转导的又一有力工具。其中,与紫外光激发探针相比,利用双光子激发的探针可以极大地降低细胞毒性,具有广阔的应用前景。清华大学刘磊课题组以蛋白质化学合成为核心技术,发展了靶向免疫蛋白的光控探针,并使用新发展的蛋白质探针研究了免疫细胞在精确的时空刺激下的定向运动。该探针将为理解和控制活体组织中细胞定位及与定位相关的细胞生命活动提供理想的分子工具。北京大学陈兴课题组则发展了利用近红外光激活并调控细胞信号转导通路的新方法。  在靶向蛋白质生成与降解方面,华东理工大学杨弋课题组利用天然光敏元件,构建了方便使用的光控基因表达系统。实验中,研究人员利用光对活细胞或活体动物的蛋白质生成水平进行了时间、空间上的精确调控,成功地控制了糖尿病小鼠体内胰岛素的生成与血糖浓度。  清华大学李艳梅课题组则利用蛋白质可调降解策略,实现了细胞内靶标蛋白质水平的降低,以达到降低其活性的目的。研究人员针对阿尔茨海默氏症相关重要“非酶蛋白Tau”在病人脑中含量异常升高的现象,采用“识别—切割”策略,对细胞内这类蛋白的含量进行调控。  在超高亮度光激活荧光蛋白质方面,研究人员围绕发展具有更高亮度及转化效率的荧光蛋白突变体这一难点,开展了诸多工作。中科院生物物理所徐涛课题组设计了新型单体光活化荧光蛋白,并成功应用于活细胞的超分辨率显微成像。实验中,研究人员解析了一种目前具有最高光子输出信号的荧光蛋白晶体结构,并发现其在亮度、稳定性、光子负荷等方面具有最佳整体性能,有望作为新的探针应用于超分辨率显微成像中。
  • 世界最强X射线激光破解细胞信号传导密码
    p  中科院上海药物研究所徐华强研究员领衔的国际交叉团队经过联合攻关,成功解析了磷酸化视紫红质(Rhodopsin)与阻遏蛋白(Arrestin)复合物的晶体结构,并破解了负责关闭GPCR传导信号的磷酸化密码。7月27日,相关研究成果以封面文章发表于《细胞》杂志。/pp  生命的功能是依靠信号传导密码来体现或来执行的。G蛋白偶联受体(GPCR)是人体内最大的细胞膜表面受体家族,通过G蛋白和阻遏蛋白这两条主要信号通路,承担着细胞信号转导的“信号兵”的职责。当受到外界信号刺激,GPCR激活G蛋白发出“开放”信号。而“关闭”信号的则来自于磷酸化密码——GPCR尾部一旦被磷酸化,随即将激活阻遏蛋白并与之形成紧密结合为复合物,从而关闭传导信号。因此鉴定与解释GPCR磷酸化密码是当今细胞信号传导领域的重要科学问题。/pp  据悉,徐华强领衔的交叉团队在2015年成功解析GPCR与阻遏蛋白复合物的完整复合体结构的基础上,对于该结构的尾部高分辨率结构与磷酸化机制展开攻关。/pp  “我们利用世界上最强X射线激光,看清楚了复合晶体的尾部结构信息,并从中解析了其尾部磷酸化招募并与阻遏蛋白结合的过程。”徐华强将研究过程比喻为生命密码的层层解密,“为了验证磷酸化密码的普适性,我们试验了96%的GPCR蛋白,发现70%-80%GPCR的“关闭”信号都由磷酸化密码控制。”最后通过一系列验证生物学功能验证,GPCR招募阻遏蛋白的磷酸化密码就此破解——GPCR通过其尾部氨基酸的磷酸化招募并与阻遏蛋白结合,同时发现该密码对整个GPCR蛋白组具有普遍性。/pp  据了解,结构生物学的重大突破往往与同步辐射光源+X射线自由电子激光的组合密切相关。目前全球已有6个这样的组合,分别位于德国、美国、日本、韩国、瑞士和意大利。 “我们非常期待我国自有的重大科技基础设施,如正在建设与推进中的软X射线与硬X射线自由电子激光装置。”徐华强表示,“这些大科学平台能够为科学家提供更先进、丰富的综合实验手段。”/pp  据介绍,这项研究获得国家“重大新药创制”重大专项、973、先导专项以及国际项目等基金的资助。合作研究机构包括加拿大多伦多大学、斯克利普斯研究所、德国Desy自由电子激光科学中心、德国汉堡超快成像中心、加州大学洛杉矶分校、南加州大学、上海科技大学和范德堡大学等。/p
  • 质谱分析法又立功!新的帕金森病诊断尿液蛋白质标记物被发现
    普渡大学和Tymora Analytical Operations的科学家团队通过对尿液胞外囊泡(EVs)蛋白质和磷酸化蛋白质进行质谱分析识别了一组可用于诊断帕金森病的蛋白质标志物。该项工作于本月发表在Communication Medicine,其中详细介绍了研究工作。该研究的部分资助来源于迈克尔J福克斯帕金森研究基金会,该组织的一部分工作就是探究EVs分析是否能识别新型的帕金森病标志物。EVs是由细胞分泌到各种体液中,被认为能反映来源细胞的分子组成。鉴于检测源自癌细胞的外泌体中的蛋白质或核酸比检测患者血液或尿液中自由循环的癌细胞相关核酸或蛋白质可能更容易的想法,胞外囊泡已成为液体活检研究的一个热门领域。同样的思路也适用于神经退行性疾病,尤其是从血液或尿液样本中寻找这些疾病的标志物,血液或尿液相比于脑脊液易于获取,但含有的相关标志物浓度通常较低。总部位于印第安纳州威斯特拉法叶市的Tymora是普渡大学化学生物学和分析化学教授安迪陶(Andy Tao)实验室的衍生企业。Tymora的首席执行官是Communication Medicine论文的通讯作者之一Anton Iliuk。Tymora专注于EVs的蛋白质组学和磷酸化蛋白组学分析,将其作为研究服务出售给外部合作伙伴以及用于其内部生物标志物和诊断方法的开发工作。2018年,该公司及其合作者在Journal of Proteome Research杂志上发表了一项研究,在该研究中,他们在尿液中收集的EVs中鉴定出约860种磷酸化蛋白质和超过2,000种未修饰的蛋白质。迈克尔J福克斯帕金森研究基金会的研究项目副总裁Shalini Padmanabhan是该论文的作者之一,她表示,基金会的研究人员在阅读该研究时“对结果很有兴趣”,因为鉴定到的蛋白中包括几种与帕金森病有关的蛋白质。Padmanabhan指出,当时基金会已经收集了大量来自帕金森病患者的尿液样本,并由Tymora技术看到一个检验新方法(识别帕金森病患者EVs蛋白质特征相对于健康对照组的变化)的机会。研究人员使用Tymora的EVtrap技术从哥伦比亚大学欧文医学中心收集的82个尿液样本中分离出EVs(21个健康对照组,13个携带与帕金森病相关的LRRK2突变但健康的人,28名没有LRRK2突变的帕金森病患者和20名携带LRRK2突变的帕金森病患者)。EVtrap方法使用包被疏水和亲水基团的磁珠来结合EVs的脂质双层膜。该方法可灵敏且可重复地捕获EVs,同时限制高浓度循环蛋白的捕获,这是相对于其他一些EV富集方法的优势。在分离出外泌体后,研究人员在赛默飞Q-Exactive HF-X仪器上进行LC-MS分析其蛋白质。他们识别4,476个独特的蛋白质和2,680个独特的磷酸化蛋白质,从中筛选出48个潜在的标记物,并最终确定了6个最佳标志物。他们发现,这六个标志物组合可以在曲线下面积为0.94的情况下区分健康人群和帕金森病患者。随后,研究人员用两个实验验证了这些表现最佳的蛋白质和与帕金森有关的其它蛋白质。其中一个实验利用靶向质谱技术测定13名健康对照组和23名帕金森病患者的蛋白质,另一个实验使用免疫方法测定10名健康对照组和10名帕金森病患者的蛋白质。Tao 表示,他的实验室继续与哥伦比亚大学的研究小组合作获取更多的样本,并且正在与普渡大学的同事Jean-Christophe Rochet合作研究蛋白质聚集在帕金森病、阿尔茨海默病和Lewy小体痴呆等神经退行性疾病中的作用。Tao 和 Rochet 正在探讨的一个问题是外泌体是否可能成为突触核蛋白α-synuclein(α-syn)的有用来源。在帕金森病患者中,错误折叠的α-syn聚集形成路易氏小体在大脑中积累,被认为会引起神经元损伤,也被认为是潜在的药物靶标和生物标志物。对于帕金森病的诊断,α突触核蛋白种子扩增检测方法前景光明。该方法通过将来自患者的αSyn与正常αSyn孵育并观察其是否产生帕金森病的特征性聚集物。通常,αSyn突触核蛋白样品从患者脑脊液中收集,需要进行脊髓穿刺。这促使研究人员探索通过血液或尿液样品等微创性的方式收集这种蛋白质,其中外泌体是一种潜在的采样途径。Padmanabhan指出,“虽然α-synuclein的分布范围及与帕金森病生物学相关性的全面了解仍不充分,但已有人提出外泌体可能富集有α-synuclein,包括病理性形式。”她补充说,到目前为止,福克斯基金会将外泌体用作αSyn的样本来源的主要工作侧重于在血液中的外泌体,“血液中α Syn的存在已经有研究支持”。然而,她表示该组织“继续探索所有可能的CSF替代方案,以改进临床使用的检测,作为我们持续开展的突触核蛋白生物学研究项目的一部分”。CEO Iliuk表示Tymora不打算继续开发Communication Medicine论文中确定的标记物,但他指出,神经退行性疾病,特别是阿尔茨海默病,已成为Tymora内部生物标志物开发工作和为外部客户工作的重点。Iliuk指出,虽然血浆被广泛认为是临床诊断阿尔茨海默病生物标志物的最切实可行的替代样本,但帕金森病的研究显示了尿液EVs作为神经退行性疾病生物标志物来源的潜力。他说:“我们在血浆方面做了相当多的工作,我认为那是主要关注的地方。但是我们最近一直在研究尿液。现在还处于非常初期的阶段,人们对其作为一种可行的样本还存在很多犹豫,因为它距离大脑太远了,所以并不是一个合情合理的选择。但我认为帕金森病的研究表明神经退行性疾病的标志物可以传播到尿液中并被检测到。”福克斯基金会支持了许多其他在尿液中寻找帕金森病蛋白标记物的努力,包括2021年由马克斯普朗克生物化学研究所蛋白质组学和信号转导部门主任Matthias Mann实验室发表的蛋白质组学研究,该研究确定了几种潜在的帕金森病蛋白标志物。文章链接:https://www.nature.com/articles/s43856-023-00294-w
  • 布鲁克在ASMS上发布CCS-Enabled 4D-蛋白质组重要进展
    * 布鲁克 PaSER™ 软件现在将具有变革性的支持 CCS 的 DIA-NN 深度神经网络学习与突破性的 dia-PASEF 功能相结合,以实现:* 40 分钟梯度从细胞裂解物中定量 8000种蛋白质* 在 Evosep One 上 4.8 分钟方法,定量 5000 种蛋白质* 只需 10 ng 细胞裂解物消化液,95 分钟梯度即可定量 5000 种蛋白质* timsTOF Pro上开发 CCS 加持的 “prm Live” 功能,实现低成本靶向蛋白质组学研究,可同时定量 1800 个以上的肽段,并保证最高的灵敏度和良好的 CVs* 基于 CCS 的 TIMScore™ 算法也获得重大进展,大大提升了磷酸化肽和蛋白质鉴定覆盖率,并且提高了肽段鉴定的可靠性* 用于高置信度序列确证的全新 OligoQuest™ 软件和工作流程,能支持RNA和修饰寡核苷酸的药物开发* SCiLS™ autopilot 软件,用于使用布鲁克 IntelliSlides™ 在 timsTOF fleX 和 rapifleX MALDI 平台上进行自动质谱成像 (MSI) 采集* 展示2021年6月推出的两个新产品:* timsTOF SCP 用于无偏单细胞蛋白质组学 (SCP),例如,用于空间癌症生物学,研究基于不同细胞类型的特异性蛋白质组,并将它们与 sc-RNA-seq 转录组相关联。* 第二代的 timsTOF Pro 2, 带来前所未有的蛋白质组学分析深度和通量。———————————————————————————————————————————2021 年 11 月 2 日美国费城 —— 布鲁克在第 69 届 ASMS 会议上宣布了新产品 CCS-enabled 4D-蛋白质组学,用于增强 timsTOF Pro 2、timsTOF fleX 和 timsTOF SCP 质谱仪的主要功能。布鲁克生命科学质谱副总裁 Rohan Thakur 博士表示:“斯克利普斯研究所 Yates 实验室开发的 TIMScore 是通过针对正向和诱饵/反向肽评估预测的实验 CCS 来增加肽选择的精确度。在我们与柏林 Charité 医学院 Ralser 实验室的合作中,CCS 值的效用增强了 DIA-NN,并且在我们与乌得勒支大学 Scheltema 实验室的合作中,它还增强了对 PhoX™ 交联肽的检测。最后,Dana-Farber 癌症研究所Marto实验室刚刚发布了支持 CCS 的 prm Live,其中具有实时保留时间校正功能,可对 1800 多种肽进行平行靶向的高灵敏度、低 CV 定量。”A. CCS-enabled DIA-NN 支持的 PaSER ,可用于 dia-PASEF 工作流程转化蛋白质组学需要高通量、短梯度和蛋白质组深度覆盖,它可以由dia- PASEF实现。这一成果发表在《Nature Methods》[Mann,Nat Meth 2020],得到了各种蛋白质组学软件包的支持,包括dia-NN、Spectronaut、MaxQuant和PEAKS Online。DIA-NN 软件 [Demichev, Nat Methods. 2020] 1.8 版包含用于深度神经网络学习的全新 CCS 支持模块,以在 dia-PASEF 中对肽谱匹配进行评分 [Demichev, bioRxiv 2021]。目前布鲁克正在与柏林Charité 医学院的Vadim Demichev博士和Markus Ralser博士合作,将CCS-enabled DIA-NN集成到timsTOF平台的PaSER GPU蛋白质组学软件中,能够增强鉴定和定量。Ralser 教授及其同事的工作加速了大样本队列中的转化蛋白质组学,并且通过使用 dia-PASEF 实现了在 5 分钟的采集时间内鉴定超过5000 种的量化蛋白质这一革命性的提升。柏林Charité 医学院爱因斯坦生物化学教授Markus Ralser博士评论道:“timsTOF Pro出色的性能令人印象深刻。我们也很高兴看到布鲁克将Vadim Demichev的DIA-NN开源版本纳入其PaSER实时蛋白质组学工作流程,并期待与布鲁克的合作能进一步改进4D-蛋白质组学工作流程。”图:dia-PASEF 扫描功能的图形表示B. prm-PASEF Live 增加了靶向肽的数量并进行高灵敏度定量分析与传统prm方法相比,prm-PASEF工作流程在靶向更多化合物的同时保持了非常高的灵敏度。现在新的prm-PASEF 编辑器可以独立使用,也可以在与 Skyline™ 一起使用来建立 prm 方法。Jarrod Marto 教授等人在《Analytic Chemistry》最近发表的一篇论文 《PRM-LIVE with Trapped Ion Mobility Spectrometry and Its Application in Selectivity Profiling of Kinase Inhibitors》对prm-PASEF Live进行了介绍,文中采用动态调整保留时间窗口的方式,以使用 iRT 肽作为保留时间标准,在 60 分钟的采集中定量来自细胞裂解液的 1857 种肽段,以实现可重现的多目标监测。这种创新的prm-PASEF Live概念克服了色谱保留时间漂移的问题,提高了在多目标监测中的定量精度和重现性。C. TIMScore 加入 CCS-enabled 数据库搜索引擎在4D-蛋白质组学应用中,CCS值可用于非标记定量的“Match Between Runs”[Cox,MCP 2020]。TIMScore利用机器学习产生CCS值,并将CCS值应用于搜索引擎的算法中,使搜索引擎能够大幅提高肽段和蛋白质鉴定数目,同时保持更严格的假阳性率(FDR)。数十万个实验数据点被用来训练ML算法,该算法能够准确预测胰蛋白酶和磷酸化肽的CCS值。磷酸化在细胞信号转导和生物学中起着关键作用,但磷酸化肽准确鉴定难度大。在Dana-Farber癌症研究所,TIMScore使Eric Fischer教授提供的未富集白血病细胞系样本中磷酸化肽的鉴定数量提升了10% 以上。南佛罗里达州大学的Stanley Stevens教授补充说:“TIMScore 使从小鼠小胶质细胞系中富集的磷酸化肽的鉴定增加了 11%。CCS值和4D-蛋白质组学已经成为我们基于质谱的蛋白质组学的应用中不可或缺的技术。TIMScore有望改变DDA搜索的执行方式,鉴定更多有意义的肽段和蛋白质,使我们能够使用CCS值进行更深入的蛋白质组研究。”图:TIMScore,机器学习支持CCS预测,可减少肽模糊度并提高置信度D. 全新发布 OligoQuest™ 布鲁克发布了最新软件OligoQuest,作为面向生物制药客户的合规软件套装BioPharma Compass 中的一部分,该软件强化了RNA 和寡核苷酸表征功能。OligoQuest 结合 maXis II 和 timsTOF Pro 等质谱仪上同位素高准确度测定功能,能够对核酸大分子进行准确表征,例如sgRNA及其杂质。并且,布鲁克特有的PASEF扫描模式,可快速深度覆盖复杂样品信息,例如酶解mRNA等。OligoQuest软件是与RiboDynamics,LLC共同开发,其所提供的算法和工作流程,可以用来注释大于100个碱基的核酸二级谱图。RiboDynamics 首席执行官Dan Fabris和康涅狄格大学高级教授 Harold S. Schwenk 解释说:“同位素高准确度与超高分辨率质谱相结合,对于高度修饰的 RNA 分析前景广阔,这是之前的商业软件无法提供的。 使用 OligoQuest 简化相应的分析工作,将大大加速 RNA 领域的研究和开发。” 图:OligoQuest 界面显示 3' - 和 5' -末端和内部片段匹配以进行序列确认E. 用于自动 MALDI 质谱成像(MSI)的 SCiLS autopilot布鲁克今年推出了SCiLS autopilot软件结合IntelliSlides玻片用于MALDI 成像的自动设置。SCiLS autopilot 自动完成从玻片载入到数据采集的六项关键性能优化。样本的扫描图像由IntelliSlide 上的条形码上登记注册和自动检测组织边缘,然后进行多步骤自动优化,以减少 MALDI 成像所需的时间和经验,并确保重复性和图像质量。通过 SCiLS autopilot 进行自动化,非专业用户可以方便的使用 MALDI 成像,将生理组织背景添加到 4D-Omics 研究中。布鲁克 MALDI 成像业务总监 Michael Easterling 博士表示:“随着 MALDI 成像在生物制药中的广泛应用,智能自动化对于确保MALDI成像的无缝整合和结果准确度至关重要。数据采集和处理软件与成像质谱平台(如 timsTOF fleX)的深度系统集成,为多组学研究提供了空间生理信息。”图:实现快速、精确的 MALDI 成像测量自动设置参考文献: [Mann, Nat Methods 2020]: https://doi.org/10.1038/s41592-020-00998-0 [Demichev, Nat Methods. 2020]: https://dx.doi.org/10.1038%2Fs41592-019-0638-x [Demichev, bioRxiv 2021]: https://doi.org/10.1101/2021.03.08.434385 [Cox, MCP 2020]: https://doi.org/10.1074/mcp.tir119.001720 [Marto, Anal. Chem. 2021]: https://doi.org/10.1021/acs.analchem.1c02349
  • Exact Sciences斥资1500万美元收购OmicEra布局蛋白质组学早筛
    近日,Exact Sciences(以下简称Exact)以1500万美元收购了位于德国Planegg的OmicEra诊断公司,布局血浆蛋白质组学领域。据Exact CSO Jorge Garces称,Exact决定收购OmicEra是考虑到其拥有基于质谱的蛋白质组学的最新技术发展,以便于Exact能利用该技术进一步发现癌症早期生物标志物。专注蛋白质组学的OmicEra 顶级人才来自Mann实验室OmicEra于2019年由德国马克斯-普朗克生物化学研究所蛋白质组学和信号转导系主任Matthias Mann实验室的研究人员创立。该公司专门从事基于质谱的蛋白质组学,特别是血浆蛋白质组学,该公司的联合创始人兼CSO Philipp Geyer在Mann的实验室担任博士生和博士后时在这一领域做了大量工作。由于血浆易于取样,Exact和许多在癌症早期检测领域的竞争对手一样,正在开发基于血液的临床检测产品。然而,血浆已被证明是蛋白质组学工作的一个极具挑战的样本类型,因为它的动态范围大,这使得基于质谱的实验难以达到显著的覆盖深度。虽然质谱工作流程可以常规地表征组织样本中的5000个或更多的蛋白质,但它们通常在血浆中的蛋白质数量只能达到500个左右。研究人员努力将这一数字提高到3000或更多,但即便如此,仅3000的数量也与生物标记物发现和验证所需的高通量水平还有距离。不过,血浆中的500个蛋白质比起以前的技术也有了重大改进,而质谱和样品制备技术的不断发展可以进一步提高这种实验的覆盖率。Garces强调,布鲁克公司的TimsTOF系列质谱仪的出现是他认为推动血浆蛋白质组学发展的一个重要节点。TimsTOF仪器使用捕获离子迁移率光谱技术(TIMS)来收集和分离基于其碰撞截面的离子。这种碰撞截面数据提供了一个额外的信息层,研究人员可以用它来进行蛋白质鉴定,提高质谱数据的质量。此外,研究人员还利用TIMS离子阱的设计来开发新的质谱工作流程,以提高检测灵敏度。在上周的美国质谱学会年会上,布鲁克公司推出了TIMSTOF的最新版本——TIMSTOF HT,与以前的版本相比,该版本可覆盖的动态范围更大,这一特点可以进一步地帮助血研究人员进行血浆分析。布鲁克公司对TimsTOF系统的开发是与Mann实验室合作完成的,该实验室还领导了该平台的大部分测定开发工作。除了Geyer之外,OmicEra的另外三位联合创始人——首席执行官Ole Vorm、首席技术官Sebastian Virreira Winter和首席商务官Sophia Doll——都曾是Mann实验室的研究员。“OmicEra这些人才给我们带来了大量的专业知识。”Garces说,“他们很多是TimsTOF系统测试网站的测试者,有强大的数据分析能力,也有质谱分析的专业知识。"OmicEra质谱技术助力CancerSEEK 推动癌症早筛领域发展Garces表示,Exact对蛋白质的修饰的研究非常感兴趣,尤其是磷酸化。磷酸化和其他修饰能够作为识别癌症的一个重要信号。而新的质谱平台可以让我们真正开始区分这些以前无法解决的变化类型。除了对蛋白质水平进行定量,我们还能检测出疾病导致的修饰和特殊的蛋白质变化。"同时,Garces也透露,Exact在工作中也在使用各种非质谱蛋白分析工具,不过并没有透露Exact正在与哪些其他公司合作,但他强调SomaLogic、Olink、Seer、Nautilus Biotechnology和Quantum-Si是拥有相关技术的公司。蛋白质标记物在CancerSEEK多癌症早期检测测定中发挥了作用,该测定来源于Exact收购的Thrive Earlier Detection。在2018年的《科学》研究中,详细介绍了CancerSEEK的原始版本,开发该检测的约翰霍普金斯大学团队使用在Bio-Rad公司的Bio-plex 200平台上运行的Luminex免疫测定,寻找可以帮助区分癌症患者和健康对照的血浆蛋白标记物,确定了8种潜在的有用蛋白。在2020年发表的DETECT-A研究中,则详细说明了CancerSEEK测试在大约1万名妇女队列中的表现,他们测量了9种血浆蛋白标志物的水平,以帮助研究人员检测潜在的癌症。JHU研究员Bert Vogelstein(CancerSEEK测试的开发者之一)实验室的前教员Qing Wang在2017年接受采访时详细介绍了该实验室的血浆蛋白工作,指出血浆蛋白标记物将比ctDNA更敏感,因为ctDNA在早期癌症中往往不存在可测量的水平。然而,蛋白质对癌症的特异性往往不高,这也是JHU研究人员正在解决的一个挑战。Garces说:“Exact打算利用OmicEra质谱技术来帮助CancerSEEK技术发展。随着我们继续加强和发展CancerSEEK技术,希望未来能够在多种癌症早期检测中使用它。”收购OmicEra极具意义 但血浆蛋白组学仍有瓶颈不过,总的来说,血浆蛋白组学到目前仍有待进一步发展,其在癌症早期检测的发展也具有一定的挑战性。本月,Mann和他的同事在《自然医学》上发表了一篇论文,介绍了一套用于诊断酒精相关肝病(ALD)的血浆蛋白标志物组合panel。Mann指出,这项研究是首次证明基于血浆蛋白的测试可以提供相当于或优于现有临床工具的性能。不过他说:“与ctDNA一样,一些癌症可能无法释放足够的蛋白质到血液中,因而难以通过血浆蛋白质组学进行检测。”不过,他相信Exact收购OmicEra是有意义的。他说:"如果我是Exact,我也会投资质谱领域,因为在许多情景下它都是一个非常有用的技术。”
  • 用ETD线性离子阱质谱成功鉴定蛋白和翻译后修饰
    在翻译后修饰和/或极碱肽的序列分析方面,电子转移裂解( ETD )线性离子阱质谱是很有优势的工具。传统的诱导活化裂解(CAD)常用来鉴定蛋白,并试图确定和找到他们修饰的位点,但这种技术有其本身固有的缺点,下面将详细叙述。与线性离子阱的结合使用的ETD是蛋白质组学研究的一个可靠的技术,可以很容易鉴定用CAD不能鉴定的多肽。ETD 是一个相对较新的肽/蛋白质碎裂的技术,能够大大推进质谱鉴定蛋白质这个领域的进步。 翻译后修饰 翻译后修饰(PTM)是翻译后的蛋白质进行的一种化学修饰,是蛋白质生物合成的后续步骤之一。蛋白的分析及其翻译后修饰的分析对于研究许多疾病是非常重要的,如癌症、糖尿病、心血管疾病和神经退行性疾病---阿尔茨海默病。这是因为在蛋白质的合成的过程中以及合成之后,可能发生各种蛋白修饰。对于正常细胞的功能,这些修饰是必须的,但调节这些修饰的变化可能会导致疾病的发生,如阿尔茨海默病,癌症和勃起功能障碍。蛋白质修饰可提高/降低蛋白质的活性,可以与其他蛋白质发生相互作用和将某一蛋白质定位到细胞的特定地方。 翻译后修饰,如磷酸化,乙酰化和甲基化被用作化学开关,激活/灭活组蛋白基因转录调控, DNA复制和DNA损伤修复。组蛋白是染色质的主要蛋白,DNA盘绕时,它们起到线轴的作用,而且在基因调控中发挥重要作用。因此,鉴定这种翻译后修饰是必需的,因为它在生物系统中对于某些蛋白的功能和作用至关重要。 用CAD鉴定蛋白 质谱在确定蛋白及其翻译后修饰上发挥了不可或缺的作用。CAD是一种常见的分析鉴定蛋白质的技术。一般用胰蛋白酶将蛋白质消化成较小的多肽,然后用反相色谱将其分离,并直接注入电喷雾质谱仪检测,通过串联质谱( MS / MS法)获得序列信息。通过电喷雾电离这些多肽形成几种带电状态的肽离子,而较低带电状态的最适合CAD分析。低能量的CAD串联质谱一直是最常用的分析方法,通过裂解肽离子进行后续的序列分析。 翻译后修饰分析,如磷酸化,磺酸化和糖基化很难用CAD进行分析,因为这些修饰通常是不稳定且容易丢失肽骨架的碎裂信息,从而导致很少或几乎不能得到肽序列和磷酸化位点。利用常规的CAD质谱对于含多个碱性残基多肽测序也是极为困难。 根据不同的蛋白质序列,有时胰蛋白酶会产生过小或过大的肽段。在这种情况下,缺乏可信的序列分析手段。因此CAD对短的,低带电的多肽是最有效的。对于鉴定蛋白和了解蛋白的生物学功能,这是一种广泛使用的方法,然而,限制了研究者分析了所有的肽段,这也阻止多个翻译后修饰位点的检测和了解这些蛋白的生物学功能。 先进的碎裂方式:ETD ETD是基于离子/离子气相化学一种碎裂多肽的新方法。ETD通过从阴离子自由基到质子肽转移电子的化学能量将肽碎裂,这引起多肽骨干的分裂。 ETD产生的骨干肽序列和肽侧链的信息往往与CAD互补。 ETD已成功应用与线性离子阱以及其前身三维离子阱。虽然ETD在三维阱的执行价格具有竞争力且和CAD自身相比提供了独特好处 ,这样的组合并没有提供蛋白质组学分析所需的技术能力。非线性离子阱的ETD,它一直未能很好控制裂解过程,而且由于三维阱离子存储能力的有限不能处理大量的多肽。基于此,研究人员已经提出ETD功能应用于线性离子阱(Thermo Scientific LTQ XL mass spectrometer质谱仪) 。 相对于传统的CAD技术, ETD提供了更稳定的方法来定性PTMs,鉴定大型多肽或甚至整个蛋白质。 ETD能够将普通翻译后修饰的多肽,或者多个碱性残基的多肽甚至整个蛋白质生成离子。 ETD也可以轻易碎裂含有二硫键的的多肽。 ETD是为更复杂的FT-ICR仪器开发相似的裂解技术。使用电子转移试剂,而不是影响肽碎裂的自由电子使ETD在广泛使用的射频四极离子阱中得到应用。射频离子阱质谱仪具有低成本,低维护费用以及更易接受优点,相对于CAD碎裂方法,ETD碎裂技术能够产生更多的产物离子,利于肽段的解读。 ETD的线性离子阱提供了强有力的工具鉴定蛋白及其翻译后修饰 。LTQ XL线性离子阱质谱仪比其他任何离子阱提供更多的结构信息,ETD能够得到常规方法无法得到的序列信息。相比非线性离子阱,ETD的线性离子阱的显著特征在于离子和离子发生反应。虽然ETD功能是完全自动的且通常无需用户干预,但是当需要对离子数进行累积的时候,用户可通过软件完全控制线性离子阱的离子。线性离子阱质谱仪有能力处理大量的样品,并分析低浓度的大分子和小分子。与非线性离子阱的相比,该过程更为复杂和费时 应用实例 在最近的应用中,极碱的多肽和大量重要的翻译后修饰已经用含CAD和ETD线性离子阱质谱分析了。通常CAD碎裂方式产生的普通只显示有限的肽碎裂信息。然而,用ETD碎裂这些多肽的时候, 肽骨架碎裂信息能完全或几乎完全产生,因此得到更广泛的多肽序列的信息。 ETD的灵敏度和稳定性对于蛋白质组学分析是必不可少的。 ETD提供了高度可靠的解决方案,此方案具有用户友好性,几乎不需要日常维护,并提供高度准确的数据,而且ETD的数据分析有相应的软件支持,非常方便简单。 结论: 在蛋白质组学研究领域,ETD的应用对于研究疾病的机理,如癌症,药物开发研究以及细胞功能和信号转导有重大意义,ETD将扩大目前的分析,包括更多的碱性、非胰酶切肽段和蛋白质。它们能确定各种翻译后修饰以及鉴定新的蛋白亚型。 配备ETD的线性离子阱质谱可应用于蛋白质组学各个领域内。ETD的线性离子阱将继续推动蛋白质组学的发展,而且已被证明是替代CAD一种有效技术,而且ETD同样可以应用于非线性离子阱进行肽序列分析。在不久的将来,配备ETD的线性离子阱预计将成为碎裂技术的一种新选择。 参考文献 Leann M. Mikesh et al, The utility of ETD mass spectrometry in proteomic analysis, Biochemica et Biophysica Acta (2006), doi:10.1016/j.bbapap.2006.10.003关于 Thermo Fisher Scientific (赛默飞世尔科技,原热电公司) Thermo Fisher Scientific纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过100亿美元,拥有员工约30000人,在全球范围内服务超过350000家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于ThermoScientific和FisherScientific这两个主要的品牌,帮助客户解决在分析化学领域从常规的测试到复杂的研发项目中所遇到的各种挑战。ThermoScientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。FisherScientific为卫生保健,科学研究,以及安全和教育领域的客户提供一系列的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,提升客户价值,帮助股东提高收益,
  • timsTOF Pro - 建立鸟枪法蛋白质组学新标准
    p style="text-align: center "img width="400" height="421" title="timsTOF_Pro nanoELUTE_3D - 副本.jpg" style="width: 400px height: 421px " src="http://img1.17img.cn/17img/images/201709/insimg/8d5e882d-5789-4139-96ed-72ffb33c9c92.jpg" border="0" vspace="0" hspace="0"/  /pp 基于质谱(MS)的蛋白质组学已经成为鉴定和定量成千上万种蛋白质的有力技术。然而,由于目前质谱仪的速度、灵敏度和分辨率有限,完整蛋白质组的覆盖范围仍然非常有挑战性。具有并行累积串行碎片(PASEF)采集模式的timsTOF Pro科院提供极高的速度和灵敏度,从而使用低采样量就可以达到深入研究鸟枪法蛋白质组学和磷酸化蛋白质组学的目的。/pp  strongTIMS-通过额外的分离维度更有信心/strong/pp  timsTOF Pro允许由于其被捕获的离子迁移率分离的附加维度而单独使用质谱法是不可能的区别肽,并让您深入蛋白质组。/pp strong PASEF - 世界级测序速度/strong/pp  由PASEF供电的timsTOF Pro通过将四极隔离质谱窗与TIMS漏斗的特定肽包的洗脱时间同步,提供高达120 Hz的测序速度,而不会损失灵敏度。/pp strong timsTOF Pro - 所需样品量极低( 200 ng)/strong/pp  由于并行堆积和串行碎片技术,timsTOF Pro很少损失离子。被捕获的离子迁移谱可以产生更好的信噪比,信号的噪声分布可以同时集中。/pp style="text-align: center "img width="116" height="132" title="10_mann.jpg" style="width: 156px height: 190px " src="http://img1.17img.cn/17img/images/201709/insimg/bf51c18f-2289-4393-abf9-5a538148939c.jpg"//pp  现在我们知道,当进行二维(保留时间和m / z)分析时,肽混合物仍然非常复杂。原则上增加一个维度还有很长的路要走。除了附加的分离维度之外,timsTOF Pro还可以提供极高的速度和灵敏度,可以使用较少的样品进行深入的蛋白质组学分析。“/pp style="text-align: right "——德国Max-Planck生物化学研究所 蛋白质组学与信号转导司Matthias Mann教授/pp  /pp /p
  • 应用分享|近红外二区发射Au纳米团簇的磷酸化用于靶向骨成像和改进类风湿关节炎治疗
    近日,The Lancet Rheumatology发表一项研究预测到2050年全球骨关节炎的患病率情况,研究显示,截止到2020年,全球骨关节炎患者增加到5.95亿,约占全球人口的7.6%,增幅高达132%。由此可见,开发针对骨相关疾病的精准无创诊疗技术迫在眉睫,因为它不仅可以连续监测骨代谢、生长、转移、给药和指导手术,而且可以实现骨疾病的高效治疗。然而,设计精准无创的骨疾病诊疗探针是极具挑战的工作。应 用 报 道今年9月,青岛科技大学袁勋教授团队在《Aggregate WILEY》报道了一种新型的金团簇基骨靶向诊疗探针[1],实现了高时空分辨的体内骨靶向近红外二区(NIR-II)荧光成像和增强的类风湿性关节炎治疗。图1. Au44MBA26-P团簇的体内特异性骨靶向和高分辨率成像该探针的设计关键在于将原子级精确的NIR-II发射Au44团簇的表面进行磷酸化。一方面,Au44团簇的表面磷酸化大大增强了探针的骨靶向能力,使骨主要成分羟基磷灰石对磷酸化前后的Au44团簇探针的理论max吸附量提高了1.36倍,使该团簇探针实现了高对比度和高分辨率的体内骨靶向NIR-II荧光成像(信噪比提升1.4倍,见图1)。图2. Au44MBA26-P团簇对胶原免疫诱导大鼠类风湿性关节炎(CIA)模型的治疗作用另一方面,该团簇探针作为一种新型纳米药物,具有直接的生物效应,可显著抑制脂多糖诱导的小鼠巨噬细胞促炎因子的产生。在II型胶原诱导的大鼠类风湿性关节炎治疗中,该团簇探针表现出优异的抗炎和免疫调节作用,可将破坏的软骨恢复到接近正常状态,比临床治疗药物甲氨蝶呤效果更为显著(图2),且具有良好的肾脏清除率和优良的生物相容性。本研究提出了一种金属纳米团簇基诊疗探针的设计范例,为高分辨率骨靶向荧光成像和类风湿性关节炎治疗提供了新思路。图3.睿光NirVivo-Pro 近红外二区小动物活体荧光成像系统助力科研研究[1]: Phosphorylation of NIR-II emitting Au nanoclusters for targeted bone imaging and improved rheumatoid arthritis therapyhttps://linkinghub.elsevier.com/retrieve/pii/S0142961223001382产 品 推 荐近红外二区小动物活体荧光成像系统NirVivo-Pro 活体荧光成像系统是北京睿光科技自主研发的一款专门用于近红外二区的光学成像系统。该系统可实现高质量荧光图像的采集及图像处理,实时地观察基因在活体动物体内的表达、肿瘤的发生、生长、转移及药物的治疗效果,对同一个动物进行时间、环境、发展和治疗影响跟踪,可用于生命科学、医学研究及药物开发等应用领域。产品特点
  • 郝海平/叶慧团队联合王南溪揭示人类蛋白组乳酰化修饰
    细胞中的信号转导在很大程度上依赖于蛋白质氨基酸侧链的翻译后修饰状态。当翻译后修饰发生在不同位点、占据不同比例和产生多样的修饰组合,这会使得同一个底物蛋白被“装扮”成了构象、功能、结合伴侣、定位存在巨大差异的蛋白质变体。这激发了研究者们研究蛋白质翻译后修饰的热情。近年来,人们对经典的翻译后修饰如磷酸化、糖基化、乙酰化、泛素化、甲基化等已经有了深入了解。然而,有趣的是在赖氨酸残基上仍旧不断有新的酰化修饰如巴豆酰化、丁酰化、丙二酰化、琥珀酰化被发现。同样在赖氨酸残基上,2019年芝加哥大学赵英明教授课题组首次报道了在组蛋白上发现了乳酰化,并且证明组蛋白乳酰化修饰是由乳酸衍生而来的,该修饰在不同的生物学场景中具有和组蛋白乙酰化不重叠的转录调控功能。这无疑是解答了细胞是如何感知代谢变化、启动转录调节机制的一项重要发现。但是有趣的问题尚待解答:乳酰化是一种广泛存在于人类细胞、组织中的翻译后修饰吗?乳酰化可能发生在人类非组蛋白的赖氨酸残基上吗?非组蛋白的乳酰化修饰水平如何,是否具有生物学调控作用?为了解答这些问题,中国药科大学郝海平/叶慧团队联合南京中医药大学王南溪教授进行了探索。他们的最新研究成果Cyclic immonium ion of lactyllysine reveals widespread lactylation in the human proteome于2022年6月27日发表在Nature Methods。该工作首次鉴定并确证了携带乳酰化修饰赖氨酸的多肽所产生的特征环状亚胺离子,应用该离子从现有的非富集、大规模的人类蛋白质组数据资源中挖掘出全新的乳酰化修饰底物蛋白和位点的信息,并通过向代谢酶定点引入乳酰化修饰,初步确证了乳酰化发生在人类的非组蛋白底物上同样具有重要的调控功能。该研究的灵感来自于对蛋白组翻译后修饰研究的规律总结:磷酸化、乙酰化等翻译后修饰均可产生具有诊断意义的特征离子。乳酰化修饰是否也会产生诊断离子?为了验证此猜想,该团队提出在共享的海量人类蛋白质组数据库中探究乳酰化修饰是否存在新的底物。然而,从非富集的蛋白质组数据中检索修饰位点的假阳性率极高,若能发现修饰特异性的特征离子则能通过谱图筛选,显著降低赖氨酸位点存在修饰的假阳性率,揭示真实的修饰靶标,指导后续的生物学功能探索。基于此需求,该团队通过合成和研究模型乳酰化肽段的谱图,首次发现了携带乳酰化修饰赖氨酸的多肽在质谱碰撞室中经过二级断裂会形成链状亚胺离子,该离子经过脱氨环化再形成次生碎片——环状亚胺离子。该团队通过分析化学修饰和生物样本中富集出的阳性乳酰化肽段,再以近十万条人类蛋白质组的非修饰合成肽段谱图作为阴性对照,确证了环状亚胺离子指征乳酰化修饰的灵敏度和特异性,能作为判定数据库搜索获得的乳酰化修饰新位点的金标准。基于该诊断离子策略,研究者从现有的非富集、大规模人类蛋白质组数据资源中挖掘了大量全新的乳酰化修饰底物蛋白及其位点的信息,特别是从2020年Nature Methods[7]发表的多种人类细胞系的蛋白质组热稳定性Meltome Atlas数据资源里发现乳酰化修饰高度富集在糖酵解通路代谢酶这一现象。其中,乳酰化修饰的代谢酶ALDOA在多种人类肿瘤细胞系中具有保守性且修饰占位比高,引发了乳酰化修饰能调节代谢酶活性等功能,进而调控糖酵解通路的猜想。郝海平、叶慧团队进一步联合王南溪课题组,利用先进的化学生物学技术——基因密码子扩展技术,首次实现向靶蛋白ALDOA定点引入乳酰化修饰,发现修饰后酶活性显著降低,揭示了乳酸蓄积后,通过共价修饰糖酵解通路中上游代谢酶,抑制糖酵解活跃度的反馈调节机制,对生物化学领域现有的“终产物抑制”的调控模式进行了补充。综上,该研究表明乳酰化是广泛存在于人类组织、细胞中的一种非组蛋白特异性的翻译后修饰,对非组蛋白的底物蛋白也具有调控功能。该分析策略可为揭示乳酸更多的共价修饰靶标,阐释乳酰化修饰的动态变化与乳酸紊乱在炎症、肿瘤等重大慢性疾病发生发展中的重要作用之间的因果关系,进而发现新的疾病治疗靶点提供线索。2019级博士研究生皖宁和2018级硕士研究生王念为本论文的共同第一作者,叶慧研究员、郝海平教授、王南溪教授为本文的共同通讯作者。该工作获得了王广基院士和江苏省药物代谢动力学重点实验室以及谭仁祥教授和中药品质与效能国家重点实验室(培育)的大力支持。示意图 环状亚胺离子示踪技术揭示保守的乳酰化修饰人醛缩酶,该修饰具有酶活抑制作用作者简介:郝海平教授主要从事代谢调控与靶标发现/确证研究、中药及天然药物体内过程及作用机理研究。提出了“反向药代动力学”、代谢处置导向的作用靶标与机理研究的学术思想;在胆汁酸、色氨酸等内源活性代谢调控研究中取得重要研究成果。在Cell Metab, Nat Commun, Trends Pharmacol Sci等发表代表性工作。叶慧研究员致力于组学技术驱动的小分子靶标发现研究。旨在通过发现疾病状态下紊乱的内源性代谢物的结合靶标蛋白,阐明其调控模式,发现具有转化价值的治疗靶点。代表性工作发表于APSB, Redox Biol, Anal Chem, Mol Cell Proteomics等。王南溪教授的研究兴趣集中在通过基因密码子扩展等技术开发新的蛋白质研究工具,从而探索生命过程和开发生物技术药物。代表性工作发表于JACS, Angew等。郝海平/叶慧团队长期招收具有生物信息学、代谢调控、靶标发现等背景的博士生/硕士生,简历投递邮箱:haipinghao@cpu.edu.cn和cpuyehui@cpu.edu.cn;欢迎报考王南溪教授的博士生/硕士生,简历投递邮箱:nanxi.wang@njucm.edu.cn。文章发表链接: https://www.nature.com/articles/s41592-022-01523-1
  • 低温电镜解析蛋白结构十大进展
    结构生物学领域有一条不成文的观点:结构决定功能。只有知道生物分子的原子排布,科学家们才能了解这个蛋白的功能。几十年来,分析蛋白结构有一个无冕之王——X射线晶体衍射。在X射线晶体衍射中,科学家们让蛋白结晶,然后利用X射线照射,随后根据X射线的衍射来重建蛋白的结构。在蛋白质数据银行(Protein Data Bank)的100000多条蛋白词目里,超过90%的蛋白结构是利用X射线晶体衍射技术解析得到的。  尽管X射线晶体衍射一直是结构生物学家的最佳工具,但是它存在较大的限制。科学家们将蛋白进行大块结晶通常需要多年的时间。而很多基础蛋白分子,例如嵌在细胞膜上的蛋白,或是形成复合体的蛋白却无法被结晶。  X射线晶体衍射技术(X-ray crystallography)即将成为历史,低温电子显微技术(cryo-electron microscopy, 也称作electron cryomicroscopy, cryo-EM)引发结构生物学变革。  低温电子显微镜适用于研究大的、稳定的分子,这些分子能够承受电子的轰击,而不发生变形——由多个蛋白组成的分子机器是最好的样本。因此由RNA紧紧围绕的核糖体是最佳的样本。三位化学家用X射线晶体衍射研究核糖体溶液的工作在2009年获得了诺贝尔化学奖,但这些工作花了几十年。近几年,低温电镜研究者们也陷入了“核糖体热”。多个团队研究了多种生物的核糖体,包括人类核糖体的首个高清模型。X射线晶体衍射的研究成果远远落后于LMB的Venki Ramakrishnan实验室,Venki获得了2009年的诺奖。Venki表示,对于大分子来说,低温电子显微镜远比X射线晶体衍射要实用。  这几年,低温电子显微镜的相关文章有很多:2015年一年,这个技术就用于100多个分子的结构研究。X-射线晶体衍射只能对单个、静态的蛋白晶体成像,但低温电子显微镜能够对蛋白的多种构象进行成像,帮助科学家们推断蛋白的功能。  现在低温电镜迅猛发展,专家们正在寻找更大的挑战作为下一个解析目标。对很多人来说,最想解析的是夹在细胞膜内的蛋白。这些蛋白是细胞信号通路中的关键分子,也是比较热门的药物靶标。这些蛋白很难结晶,而低温电子显微镜不大可能对单个蛋白进行成像,这是因为很难从背景噪音中提取这些信号。  这些困难都无法阻挡加利福利亚大学(University of California)的生物物理学家程亦凡。他计划解析一种细小的膜蛋白TRPV1。TRPV1是检测辣椒中引起灼烧感的物质的受体,并与其它痛感蛋白紧密相关。加利福利亚大学病理学家David Julius等人之前尝试结晶TRPV1,结果失败。用低温电子显微镜解析TRPV1项目,一开始进展缓慢。但2013年底,技术进步使得这一项目有了重大突破,他们获得了分辨率为0.34纳米的TRPV1蛋白的结构。该成果的发表对于领域来说,无异于惊雷。因为这证实了低温电子显微镜能够解析小的、重要的分子。  尽管低温电子显微镜发展迅速,很多研究者认为,它仍有巨大提升空间。他们希望能制造出更灵敏的电子探测器,以及更好地制备蛋白样本的方法。这样的话,就能够对更小的、更动态的分子进行成像,并且分辨率更高。5月,有研究者发表了一篇细菌蛋白的结构,分辨率达到了0.22纳米。这也显示了低温显微镜的潜力。  1997年时,英国医学研究委员会分子生物学实验室结构生物学家Richard Henderson非常坚定地宣称,低温电镜会成为解析蛋白结构的主流工具。在将近20年后的今天,他的预测比当年有了更多底气。Henderson表示,如果低温电镜保持这样的势头继续发展,技术问题也得以解决,那么低温电镜不仅会成为解析蛋白结构的第一选择,而是主流选择。这个目标已经离我们不远了。  1. 施一公小组在《Science》发两篇论文报道剪接体三维结构    U4/U6.U5 tri-snRNP电镜密度及三维结构示意图。  2015年8月21日,清华大学生命科学学院施一公教授研究组在国际顶级期刊《科学》(Science)同时在线发表了两篇背靠背研究长文,题目分别为“3.6埃的酵母剪接体结构”(Structure of a Yeast Spliceosome at 3.6 Angstrom Resolution)和“前体信使RNA剪接的结构基础”(Structural Basis of Pre-mRNA Splicing)。第一篇文章报道了通过单颗粒冷冻电子显微技术(冷冻电镜)解析的酵母剪接体近原子分辨率的三维结构,第二篇文章在此结构的基础上进行了详细分析,阐述了剪接体对前体信使RNA执行剪接的基本工作机理。清华大学生命学院博士后闫创业、医学院博士研究生杭婧和万蕊雪为两篇文章的共同第一作者。  这一研究成果具有极为重大的意义。自上世纪70年代后期RNA剪接的发现以来,科学家们一直在步履维艰地探索其中的分子奥秘,期待早日揭示这个复杂过程的分子机理。施一公院士研究组对剪接体近原子分辨率结构的解析,不仅初步解答了这一基础生命科学领域长期以来备受关注的核心问题,又为进一步揭示与剪接体相关疾病的发病机理提供了结构基础和理论指导。详细新闻报道参见:施一公研究组在《科学》发表论文报道剪接体组装过程重要复合物U4/U6.U5 tri-snRNP的三维结构。(Science, 20 Aug 2015, doi: 10.1126/science.aac7629 doi: 10.1126/science.aac8159)  2. Science:HIV重大突破!史上最详细HIV包膜三维结构出炉!    这项研究首次解析出HIV Env三聚体处于自然状态下的高分辨率结构图,其中HIV利用Env三聚体侵入宿主细胞。图片来自The Scripps Research Institute。  在一项新的研究中,TSRI的研究人员解析出负责识别和感染宿主细胞的HIV蛋白的高分辨率结构图片。相关研究结果发表在2016年3月4日那期Science期刊上,论文标题为“Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer”。  这项研究是首次解析出这种被称作包膜糖蛋白三聚体(envelope glycoprotein trimer,以下称Env三聚体)的HIV蛋白处于自然状态下的结构图。这些也包括详细地绘制这种蛋白底部的脆弱位点图,以及能够中和HIV的抗体结合位点图。(Science, 04 Mar 2016, doi: 10.1126/science.aad2450)  3. Nature:史上最详细转录因子TFIID三维结构出炉,力助揭示人类基因表达秘密  在一项新的研究中,来自美国加州大学伯克利分校、劳伦斯伯克利国家实验室和西班牙国家研究委员会(CSIC)罗卡索拉诺物理化学研究所的研究人员在理解我们体内被称作转录起始前复合物(pre-initiation complex, PIC)的分子机构(molecular machinery)如何发现合适的DNA片段进行转录方面取得重大进展。他们史无前例地详细呈现一种被称作TFIID的转录因子所发挥的作用。相关研究结果于2016年3月23日在线发表在Nature期刊上,论文标题为“Structure of promoter-bound TFIID and model of human pre-initiation complex assembly”。论文通信作者是劳伦斯伯克利国家实验室生物物理学家Eva Nogales,论文第一作者是Nogales实验室生物物理学研究生Robert Louder。其他作者是Yuan He、José Ramón López-Blanco、Jie Fang和Pablo Chacón。  这一发现是非常重要的,这是因为它为科学家们理解和治疗一系列恶性肿瘤铺平道路。Eva Nogales说,“理解细胞中的这种调节过程是操纵它或当它变坏时修复它的唯一方式。基因表达是包括从胚胎发育到癌症在内的很多重要生物学过程的关键。一旦我们能够操纵这些基本机制,那么我们就能够要么校正应当或不应当存在的基因表达,要么阻止这种过程[即基因表达]失去控制时的恶性状态。”(Nature, 31 March 2016, doi:10.1038/nature17394)  4. Science:科学家成功解析人类剪接体关键结构   在最近发表的一篇Science研究论文中,来自德国的科学家们利用冷冻电镜技术首次在分子级分辨率水平上重现了人类剪接体中一个关键复合体——U4/U6.U5 tri-snRNP的结构。剪接体是一种由RNA和蛋白质组成的用于切掉mRNA前体中内含子的分子机器。该研究解析的U4/U6.U5 tri-snRNP是构成剪接体的一个重要组成部分,研究人员利用单颗粒冷冻电镜获得了人类U4/U6.U5 tri-snRNP的三维结构,该复合体分子量达到180万道尔顿,解析分辨率达到7埃。该研究模型揭示了Brr2 RNA解螺旋酶如何在分离的人类tri-snRNP中通过空间结构阻止未成熟的U4/U6 RNA发生解链,还展现了泛素C端水解酶样蛋白Sad1如何将Brr2固定在预激活位置。  研究人员将他们获得的结构模型与酿酒酵母tri-snRNP以及裂殖酵母剪接体的结构进行了对比,结果表明Brr2在剪接体激活过程中发生了显著的构象变化,支架蛋白Prp8也发生了结构变化以容纳剪接体的催化RNA网络。(Science, 25 Mar 2016, doi: 10.1126/science.aad2085)  5. 北京大学毛有东、欧阳颀课题组与其合作者在Science发表炎症复合体冷冻电镜结构    炎症复合体三维结构  北京大学物理学院毛有东研究员、北京大学物理学院/定量生物学中心欧阳颀院士与哈佛医学院吴皓教授合作利用冷冻电子显微镜技术解析了近原子分辨率的炎症复合体的三维结构,首次阐释了其复合物在免疫信号转导过程中的单向多聚活化的分子结构机理。该研究工作以“Cryo-EM Structure of the Activated NAIP2/NLRC4 Inflammasome Reveals Nucleated Polymerization”为题于2015年10月8日在线发表在国际期刊Science。  先天免疫是人类免疫系统的重要组成部分,炎症复合体在触发先天免疫响应的过程中起到了关键信号转导的效应器作用,从而启动细胞凋亡等免疫应答和炎症反应。炎症复合体是胞浆内一组复杂的多蛋白复合体,是胱天蛋白酶活化所必需的反应平台,其复合物单体由多个结构域构成,并在上游蛋白的激活下诱导组装形成环状复合物。炎症复合体的结构对于认识先天免疫的信号转导过程、免疫调控和病原诱导活化等免疫响应机理具有关键的核心价值,因而成为国内外一流结构生物学和免疫学实验室追捧的研究对象。(Science, 23 Oct 2015, 10.1126/science.aac5789)  6. Nature:施一公团队揭示γ -分泌酶原子分辨率结构    人体γ -分泌酶3.4埃三维结构  日前,清华大学教授施一公团队与国外学者合作,构建了分辨率高达3.4埃的人体γ -分泌酶的电镜结构,并且基于结构分析了γ -分泌酶致病突变体的功能,为理解γ -分泌酶的工作机制以及阿尔茨海默氏症的发病机理提供了重要基础。相关成果8月18日在《自然》发表。  阿尔茨海默氏症是最为严峻的老年神经退行性疾病之一,但其发病机理尚待揭示。目前研究已知β -淀粉样沉淀是该病的标志性症状之一。而β -淀粉样沉淀的产生是APP蛋白经过一系列蛋白酶切割产生的短肽聚集而来。在此切割过程中,最关键的蛋白酶是γ -分泌酶。γ -分泌酶由四个跨膜蛋白亚基组成,其中,编码Presenilin(PS1)蛋白的基因中有200多个突变与阿尔茨海默氏症病人相关。γ -分泌酶在阿尔茨海默氏症的发病中扮演着重要角色。  研究人员通过收集更多的数据、大量的计算并升级分类方法,计算构建出3.4埃原子分辨率γ -分泌酶的三维结构,可以观察到绝大部分氨基酸的侧链以及胞外区部分糖基化修饰和结合的脂类分子。在高分辨结构的基础上,施一公研究组对PS1上的致病性突变体进行了研究,发现这些突变主要集中在两个较为集中的区域内。他们对于其中一些突变体进行了生化性质的研究,发现这些突变会影响γ -分泌酶对于底物APP的酶切活性,然而对切割活性的影响却有所不同。(Nature, 10 September 2015, doi:10.1038/nature14892)  7. Nature:人类核糖体结构终于被解析!    核糖体是进行蛋白质翻译的机器,能够催化蛋白质合成。目前,许多研究已经对多种生物的核糖体结构进行了原子水平的结构解析,但获得人核糖体结构一直存在很大挑战,这一问题的解决对于人类疾病的深入了解以及治疗手段和策略的开发都有重要意义。  近日,著名国际学术期刊nature在线发表了法国科学家关于人类核糖体结构解析的最新研究进展。  在该项研究中,研究人员利用高分辨率单颗粒低温电子显微镜以及原子模型构建的方法获得了人类核糖体接近原子水平的结构。该核糖体结构的平均分辨率为3.6A,接近最稳定区域的2.9A分辨率水平。这一研究成果对人类核糖体RNA,氨基酸侧链的实体结构,特别是转运RNA结合位点以及tRNA脱离位点处的特定分子相互作用提供了深入见解,揭示了核糖体大小亚基接触面的原子细节,发现在核糖体大小亚基的旋转运动过程中,其接触面发生了强烈的重构过程。(Nature, 30 April 2015, doi:10.1038/nature14427)  8. Nature:日本科学家成功解析代谢关键因子受体结构  近日,著名国际学术期刊nature在线发表了日本科学家的最新研究进展,他们利用结构生物学方法对脂联素(adiponectin)受体,AdipoR1和AdipoR2,进行了结构解析,发现脂联素受体具有与G蛋白偶联受体不同的七次跨膜螺旋,对于靶向脂联素受体的肥胖及其相关代谢疾病治疗方法开发具有重要意义。  在该项研究中,研究人员对人类AdipoR1和AdipoR2的晶体结构进行了解析,分辨率分别达到2.9 ?和2.4 ?,他们通过解析发现脂联素受体是具有不同结构的一类新受体。脂联素受体的这种七次跨膜螺旋在构象上与G蛋白偶联受体的七次跨膜螺旋不同,在这种新的 七次跨膜螺旋中,由三个保守组氨酸残基协同一个锌离子形成了一个大的腔体。这种锌结合结构可能在adiponectin刺激的AMPK磷酸化和UCP2表达上调方面具有一定作用。(Nature, 16 April 2015, doi:10.1038/nature14301 )  9. Molecular Cell:中国科学家揭示A型流感病毒RNA聚合酶复合体的三维冷冻电镜结构  2015年1月22日,中科院生物物理所刘迎芳研究组与清华大学王宏伟研究组在著名期刊Molecular Cell杂志在线发表了题目为 “Cryo-EM Structure of Influenza Virus RNA Polymerase Complex at 4.3 ? Resolution”的论文,揭示了流感病毒RNA聚合酶复合体的结构和功能。  生物物理所刘迎芳和清华大学王宏伟课题组等中外多方参与的实验室通过使用最新的高分辨率单颗粒冷冻电镜三维重构技术,解析了含有A型流感病毒RNA聚合酶大部分成分的4.3埃分辨率的四聚体电镜结构。该复合体涵盖了流感病毒聚合酶催化活性的核心区域。从三维重构密度图中可以清晰识别出该空腔内PB1上的催化结构域以及结合的RNA复制起始链,据此,研究人员推测这是进行RNA合成反应的区域。这一活性中心结构与正链RNA聚合酶具有相似性,研究人员也因此提出了流感病毒合成新生RNA链的机制。(Molecular Cell, 5 March 2015, doi:10.1016/j.molcel.2014.12.031)  10. Cell:科学家获得首个中介体复合物精确结构图    中介体复合物(Mediator Complex)是细胞中最大也最为复杂的分子机器之一。现在,来自斯克利普斯研究所(TSRI)的科学家们在《细胞》杂志上报告称,他们利用用电镜获得了首个中介体复合物(Mediator)的精确结构图。  Mediator是所有动植物细胞中的关键分子机器,对于绝大多数基因的转录有着至关重要的调控作用。Mediator拥有二十多个蛋白亚基,解析它的结构是基础细胞生物学的一大进步。这一成果能够为许多疾病提供宝贵的线索(从癌症到遗传性的发育疾病)。论文资深作者,TSRI副教授Francisco Asturias表示:"明确这些大分子机器的结构和作用机制,可以帮助我们理解许多关键的细胞过程。"  在这项新研究中,研究人员获得了高纯度的酵母Mediator,并通过电镜成像得到了迄今为止最为清晰的Mediator3D模型,分辨率达到约18埃。随后他们又进行了多种生化分析,例如在逐个去除蛋白亚基的同时观察电镜图像发生的改变。他们由此确定了酵母Mediator25个蛋白亚基的精确定位。  项新研究获得的结构图谱,全面修正了之前的Mediator' 粗略模型。论文第一作者Kuang-LeiTsai表示:"定位了所有的蛋白亚基之后,我们发现头部模块应该位于Mediator的顶部而不是底部。"此外,研究人员还对人类Mediator进行了深入研究。Tsai说:"大体上看,人类和酵母的Mediator总体结构颇为类似。"最后研究人员在结构数据的基础上,为人们展示了Mediator调控转录时的构象变化。(Cell, 29 May 2014, doi: 10.1016/j.cell.2014.05.015)
  • 赛默飞世尔科技推出新的蛋白质组学解决方案
    2008年8月18日,服务科技,世界领先的赛默飞世尔科技在2008年人类蛋白质组大会(HUPO 2008)上推出新的蛋白质组学工作流程解决方案,以及两个Thermo Scientific软件升级包。不久前推出的Proteome Discoverer 软件平台是一个综合性的、可拓展软件平台,可以对蛋白质组的数据进行定性和定量分析,作为Proteome Discoverer 的补充,新加入的部分将进一步升级Thermo Scientific Proteome Dynamics。  Proteome Dynamics是一套完整的蛋白质组解决方案,包括试剂,样品制备试剂盒和操作流程,质谱仪和具有特定功能的生物软件,以方便识别,定量和定性鉴定蛋白质。推出新品包括以下几个方面  • 自动化的磷酸化肽段工作流程—一套完整可自动化分析磷酸化肽段的操作流程  • SIEVE™ 1.2---主要对软件中无标记差异分析部分进行升级。基于液相色谱质谱数据比较对蛋白和肽段的变化进行衡量和鉴定  • ProSightPC™ 2.0—拓展了业界领先的自上而下的鉴定能力,支持所有高质量准确度的串联质谱实验的蛋白鉴定和表征  在过去的十年里,蛋白质组学领域大步发展,它对生物和医药领域的尖端科技产生了深远的影响。Thermo Fisher一直致力于蛋白质组科学的发展,打破了传统定性蛋白质组分析,转向更高级的定量蛋白质组,因而创造了蛋白质组动态研究蓝图。  新型自动化磷酸化肽段分析流程将Thermo Scientific技术与Pierce磷酸化肽段富集试剂盒、Kingfisher Flex 磁珠纯化系统和LTQ Orbitrap™ XL ETD 杂交质谱仪结合起来,可以完全实现对磷酸化肽段进行分析。致力于构建信号途径的科学家会发现固定化金属和金属氧化物的亲和色谱能够富集磷酸化肽段,然后用质谱对其分析是一个功能强大的技术。然而,样品的复杂度和低通量制备步骤成为一个主要的障碍。新型Thermo Scientific的整合操作流程对这类难题提供了一个简单、有效的解决方案。“样品制备和分析过程的每一部都是经过优化的。”Thermo Fisher Scientific 蛋白质学市场总监Andreas Huhmer说,“该工作流程可以使科学家实现整个过程无缝连接。  在2008年的人类蛋白质组大会上发布的另一款软件是Thermo Scientific 的SIEVE 1.2。通过比较“健康”或对照组和“疾病”或处理不需要同位素标记的样品的液相色谱质谱数据组,SIEVE可自动对无标记的蛋白和肽段进行差异分析。之前,研究者只能比较成对的数据。然而,在生物标志物发现的研究领域内,观察数据趋势是必须的,SIEVE 1.2 可以实现在单个趋势分析中观察多时间点和剂量点。  “SIEVE第一次发布后,我们从客户收到反馈的主要问题是SIEVE如何根据时间不同监控蛋白变化,如何更方便的在肽段和蛋白水平上解释其统计结果。”Thermo Fisher Scientific 蛋白质学市场程序经理Amy Zumwalt说,“为了满足这一需求,我们在这个版本中加入了趋势分析功能,并且完全重新构建了用户界面。新的向导界面将使差异实验结果和解释统计结果变得更容易。”  同样首次发布的软件还有Thermo Scientific 的ProSightPC 2.0,它最初是设计来方便“自上而下”(top-down)蛋白质定性鉴定。而现在可以支持所有高质量精度、高分辨率的串联质谱蛋白实验。ProSightPC 2.0可以实现对高质量精度的二级质谱数据进行高通量分析,无论其来自是“自上而下”(top-down),“自中而下”(middle-down),还是“自下而上”(bottom-up)的实验,而且可表征已知的翻译后修饰蛋白(PTM)。“Thermo Scientific 的ProSightPC 2.0是专门面向杂交质谱技术的,现在也可以支持新型LTQ Orbitrap XL ETD质谱的数据。”Andreas Huhmer说,“这给研究人员提供了独一无二的工具,可以对蛋白异构体和变异体的错综复杂的差异进行分析.  SIEVE采用一种新型图形界面,更易使用,而且重要的是它现在可以对液相色谱质谱的数据文件自动进行分析。而以前在处理数据之前必须手动挑选峰。而现在选择整个色谱图就可以对所有的峰进行自动分析了。  如需对Proteome Dynamics了解更多信息,请于2008年8月16日至20日访问阿姆斯特丹的HUPO #34展台,或致电800-810-5118或400-650-5118,电邮sales.china@thermofisher.com 或者访问www.thermo.com/orbitrap。  Thermo Scientific是Thermo Fisher Scientific的一部分,是全球科学服务领域的领导者  关于赛默飞世尔科技(Thermo Fisher Scientific)  Thermo Fisher Scientific(赛默飞世尔科技)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过100亿美元,拥有员工约33,000人,在全球范围内服务超过350,000家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域从常规的测试到复杂的研发项目中所遇到的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健,科学研究,以及安全和教育领域的客户提供一系列的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲了解更多信息,请登陆:www.thermofisher.com
  • 葛瑛团队成果:利用Top-down蛋白质组学建立缺血性心肌病的肌节proteoform图谱
    大家好,本周为大家分享一篇发表在J. Proteome Res上的文章:Defining the Sarcomeric Proteoform Landscape in Ischemic Cardiomyopathy by Top-Down Proteomics[1],文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授。缺血性心肌病(Ischemic cardiomyopathy,ICM)是一种高度异质性的心血管疾病,大多数是由于左心室收缩功能障碍使得流向心脏的血液减少,从而导致氧气剥夺和心肌缺氧。ICM是心力衰竭的主要病因,是造成全球死亡率升高和疾病负担增加的主要因素之一,但其潜在的分子机制还有待深入研究。肌节作为心脏收缩的基本单位,由以肌动蛋白为基础的细肌丝和以肌球蛋白为基础的粗肌丝组成,它们附着在一个Z盘结构上。研究发现肌节蛋白质翻译后修饰(PTMs)和亚型的改变在心脏生理病理进程中扮演着重要角色。基于质谱的Top-down蛋白质组技术是以完整蛋白质为分析对象,可以提供不同表型心脏病蛋白质PTMs和亚型变化等生物信息,但目前还缺乏ICM肌节proteoforms图谱变化的相关报道。因此,作者利用Top-down蛋白质组学技术,在正常和ICM条件下构建了肌节proteoform图谱,并探究其变化对ICM发病机制的影响,从而为人类ICM的研究提供独到的见解。为了揭示ICM的分子变化情况,作者首先利用不同的pH条件,去除心脏功能正常的供体左心室(Left ventricular,LV)心肌组织(donor,n=16)和ICM患者LV心尖组织(ICM,n=16)的胞质蛋白质,对富集到的肌节蛋白质进行LC-MS/MS检测分析(图1)。心尖是在ICM患者进行左心室辅助装置植入手术期间获取的,实验已经证明LV和心尖组织具有相似的肌节proteoform图谱,两者可以进行相互比较。通过去卷积图谱上proteoform的峰强度与同一蛋白质所有proteoforms的总强度之比来进行蛋白质修饰水平的定量,而蛋白质表达的定量则依赖提取离子色谱图(EIC)峰下面积(AUC)的积分来计算。整个实验流程,从样品制备到LC-MS/MS分析,用时不到3h,表明该方法具有快速与高通量的优点。  图1. 非标记Top-down蛋白质组学的实验流程:对无心脏病史的非衰竭供体(donor,n=16)和ICM患者(ICM,n=16)的LV组织进行肌节蛋白质的提取,然后进行LC-MS/MS分析。Top-down蛋白质组学策略提供了正常供体和ICM心脏组织中的proteoform图谱,如图2所示。作者检测到了许多肌丝蛋白,包括心肌肌钙蛋白I(cardiac troponin I,cTnI)、肌钙蛋白C(troponin C,TnC)、原肌球蛋白(tropomyosin,Tpm)亚型、α-肌动蛋白(α-肌动蛋白)亚型、心室型肌球蛋白轻链2(MLC-2v)、心室型肌球蛋白轻链1(MLC-1v)和心房型肌球蛋白轻链1(MLC-1a),同时也检测到了多种Z盘蛋白,包括ENH2、肌肉LIM蛋白(muscle LIM protein,MLP)、富含半胱氨酸蛋白2(cysteine rich protein 2,CRIP2)、cypher-5、cypher-6、elfin、calsarcin-1(Ca1-1)和四个半LIM结构域蛋白2(four and a half LIM domains 2,FHL2)(图2)。随后,作者采用碰撞活化解离(CAD)模式对所有检测到的肌节蛋白质进行MS/MS分析,以进一步表征蛋白质。比如,实验结果显示MLC-2v上的磷酸化位点位于Ser19,并且实现了21%的序列覆盖率,这些数据表明Top-down的MS/MS分析可以对完整肌丝蛋白质进行测序,以用于蛋白质的鉴定和表征。  图2. 正常供体和ICM患者心脏组织中的proteoform图谱。(a)代表性的基峰色谱图(BPC)表明肌节蛋白和Z盘蛋白呈高分辨分离(MLP、CRIP2、cTnT、ENH2、cypher-6、elfin、cypher-5、FHL2、calsarcin-1、cTnI、Tpm、MLC-1V、MLC-1a、MLC-2v、α-actin和TnC) (b)去卷积质谱图显示肌节蛋白和Z盘蛋白的多样性,红色p和pp分别表示单磷酸化和双磷酸化形式的proteoform。  紧接着,作者对3个正常供体组织样本进行了LC-MS/MS检测,结果表明它们的BPC和总离子色谱图(TIC),以及质谱信号强度的重现性非常好,证明了该分析方法稳健的重现性。为了比较两组样本间的蛋白质表达水平,作者对来自同一正常供体的组织样本,分别提取50、400、500、600、750、1000和1200 ng的总蛋白质进行LC-MS/MS检测以评估仪器响应线性,结果如图3a所示,它们表现出高度相似的proteoform图谱。图3b展示了代表性肌节蛋白(ENH2、cTnI、α-Tpm、MLC-1v、MLC-2v和TnC)的EIC,通过测定每个EIC的AUC丰度总和,建立了250~1200 ng的相互线性范围。如图3c所示,不同总蛋白量相关性结果的R2均大于0.99,表明该检测方法具有优异的重现性、灵敏度和线性,所以有信心将其用于样本间的蛋白质定量。  图3. 关键肌节蛋白相互线性范围响应的测定。(a)50、400、500、600、750、1000和1200 ng总蛋白质的BPC,proteoform图谱高度相似 (b)ENH2、cTnI、α-Tpm、MLC-1v、MLC-2v和TnC的EIC(结合同一蛋白质所有proteoforms前3~5个最丰富电荷状态的离子) (c)每个肌节蛋白的AUC与250~1200 ng总蛋白(每个点重复3次)显示出相互线性相关(R20.99)。与正常供体样本相比,作者在ICM组中检测到了cTnI和ENH2的PTM和表达水平的显著变化。在供体和ICM组中,作者检测到了三种主要的cTnI proteoforms,包括未磷酸化的cTnI、单磷酸化的cTnI(pcTnI)和双磷酸化的cTnI(ppcTnI)同样也在两组中检测到了未磷酸化的ENH2和单磷酸化的ENH2(pENH2)(图4a)。与供体组相比,实验观察到ICM组LV组织中cTnI和ENH2表达水平的显著降低(图4b),同时发现它们的总磷酸化水平在ICM组中也显著降低(图4c),其中cTnI和ENH2的总磷酸化水平分别降低了35%和34%。此外,为了确定ICM组织中cTnI和ENH2磷酸化水平的降低是否相互依赖,作者对两者磷酸化水平进行了线性拟合,发现cTnI和ENH2磷酸化水平表现出很强的线性相关(r=0.8926,p0.00001)(图4d)。这些发现也与作者先前对肥厚型心肌病(Hypertrophic cardiomyopathy,HCM)患者心脏的研究结果相一致(Ying Ge, et al. Proc Natl Acad Sci USA. 2020 117(40):24691-24700),表明可能是由异常的PKA信号通路介导了cTnI和ENH2磷酸化水平的协同降低。  图4. ICM组中cTnI和ENH2磷酸化水平协同降低。(a)正常供体(蓝色)和ICM(红色)中代表性去卷积质谱图和EIC,红色p和pp分别表示单磷酸化和双磷酸化 (b)cTnI和ENH2表达水平的定量,两组在p0.05时被认为有统计学差异 (c)用mol pi/mol protein计算cTnI和ENH2总磷酸化,水平线代表组内中间值,两组在p0.001时被认为有统计学差异 (d)cTnI和ENH2磷酸化水平间的线性相关性(r=0.8926,p0.00001:线性相关性很强)。  Tpm是一种细丝相关蛋白,共有几种可以与cTnT和α-actin相互作用以调控肌肉收缩的蛋白质亚型。作者在先前的研究中证实了人类心脏中存在α-Tpm、β-Tpm、和κ-Tpm,其中α-Tpm是表达最为丰富的亚型(Ying Ge, et al. J Muscle Res Cell Motil. 2013 34(3-4):199-210)。在本项研究中,未磷酸化的α-Tpm、单磷酸化的α-Tpm(pα-Tpm)和单磷酸化的κ-Tpm(pκ-Tpm)是主要检测到的TPM亚型(图5a),而未磷酸化的κ-Tpm、γ-Tpm和skβ-Tpm丰度较低。与正常供体组相比,skβ-Tpm在ICM组中的表达显著降低,而α-Tpm和κ-Tpm在两组比较中无显著变化(图5c)。γ-Tpm的丰度太低,致使很难对其进行准确定量。尽管Tpm亚型的比例变化对心脏功能的影响还不得而知,但skβ-Tpm在ICM组中表达水平的显著降低同样也在先前HCM患者心脏中观察到(Ying Ge, et al. Proc Natl Acad Sci USA. 2020 117(40):24691-24700),因此有理由推断skβ-Tpm表达水平的变化可能会改变心脏功能,并使得ICM患者心脏收缩功能受损。除此之外,在正常供体组和ICM组中也都检测到了α-actin的两种亚型:骨骼肌α激动蛋白(Skeletal α-actin,α-SKA)和心脏α肌动蛋白(Cardiac α-actin,α-CAA),如图5b所示。它们在心肌中共表达,在肌节结构和完整性中具有重要作用。与正常供体组相比,实验观察到α-SKA在ICM组中的表达显著增加(图5d)。结合作者先前观察到α-SKA在非衰竭供体心脏中的表达显著增加(Ying Ge, et al. Anal Chem. 2015 87(16):8399-8406),实验结果说明衰竭心脏中表达上调的α-SKA可以作为一种有前景的心脏病生物标志物。  图5. Tpm和α-actin不同亚型的表达。(a)Tpm在正常供体(蓝色)和ICM(红色)中的代表性去卷积质谱图,共鉴定到α-Tpm、β-Tpm、κ-Tpm和γ-Tpm四种亚型,红色p表示单磷酸化和双磷酸化 (b)α-CAA和α-SKA在正常供体(蓝色)和ICM(红色)中的代表性去卷积质谱图 (c~d)依据AUC进行Tpm和α-actin亚型的定量,两组在p0.005时被认为有统计学差异。  作者也对Z盘蛋白质进行了鉴定和定量,例如MLP和Cal-1。图6a和图6c分别对应两种蛋白质的去卷积质谱图,其中MLP为未磷酸化和单磷酸化形式(pMLP),Cal-1则表现出多种磷酸化proteoforms,包括单磷酸化(pCal-1)、双磷酸化(ppCal-1)和三磷酸化(pppCal-1)。与正常供体组相比,实验观察到MLP和Cal-1的总磷酸化水平在ICM组中的表达显著增加,分别增加了27%和4%(图6b和图6d)。MLP和Cal-1都与心肌病的发病相关,但目前尚未清楚PTMs如何影响其中的分子机制。本项研究首次揭示了ICM患者中MLP和Cal-1的磷酸化水平增加,但两者的总磷酸化水平呈负线性相关,说明它们不太可能被相同的激酶磷酸化或是在Z盘上有着密切的相互作用。  图6. MLP和Cal-1在ICM组中的磷酸化水平增加。(b)MLP在正常供体(蓝色)和ICM(红色)中的代表性去卷积质谱图,红色p分别表示单磷酸化的MLP (b)MLP总磷酸化的计算,两组在p0.01时被认为有统计学差异 (c)Cal-1在正常供体(蓝色)和ICM(红色)中的代表性去卷积质谱图,红色p、pp和ppp分别表示单磷酸化、双磷酸化和三磷酸化的Cal-1 (d)Cal-1总磷酸化的计算,两组在p0.05时被认为有统计学差异。基于质谱的Top-down蛋白质组学技术,本研究对供体和ICM心脏组织中的proteoform图谱进行了详细分析,观察到多个蛋白质在表达和修饰水平上发生了显著改变,总的结果在proteoform层面揭示了与晚期缺血性心力衰竭相关的分子变化。值得注意的是,作者发现cTnI和ENH2磷酸化水平在ICM组中协同降低,表明缺血性心力衰竭时PKA信号通路出现异常。此外,在ICM组中也观察到了MLP和Cal-1这两种Z盘蛋白磷酸化水平的显著增加,并且也检测到了ICM组中Tpm和α-actin不同蛋白亚型的表达变化。总的来说,本研究强调了在proteoform水平研究ICM的必要性,有助于揭示ICM的发病进程和开发可行的治疗方案。  撰稿:陈昌明  编辑:李惠琳  原文:Defining the Sarcomeric Proteoform Landscape in Ischemic Cardiomyopathy by Top-Down Proteomics李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  1. Chapman EA, Aballo TJ, Melby JA, et al. Defining the Sarcomeric Proteoform Landscape in Ischemic Cardiomyopathy by Top-Down Proteomics. Journal of Proteome Research. 2023, 22 (3): 931-941.
  • 胃癌靶向治疗新思路, Biacore觅得赫赛汀有效增敏剂
    胃癌是我国最常见的消化系统恶性肿瘤之一,患病率高,进展较快,严重影响人民健康。目前,由于胃癌的肿瘤异质性和化疗药物的耐药等问题,进展期胃癌综合治疗效果欠佳,因而开发新型胃癌治疗药物意义重大。曲妥珠单抗(trastuzumab)通过与HER2受体的细胞外区域结合, 抑制HER2同源二聚,从而阻止HER2 介导的信号转导,并且促进抗体依赖的细胞毒性作用,导致表达HER2 的细胞死亡,在胃癌中显示出生存获益。但是,许多接受曲妥珠单抗治疗的HER2阳性胃癌患者由于细胞敏感性不足和耐药性导致患者的用药反应差,对于临床治疗仍然具有巨大的挑战。2021兰州大学第二医院萃英生物医学研究中心焦作义团队在Nature Communications发表题为“Hyperactivation of HER2-SHCBP1-PLK1 axis promotes tumor cell mitosis and impairs trastuzumab sensitivity to gastric cancer”的研究论文,报道了HER2下游存在的一条新的信号通路HER2/Shc1/SHCBP1/PLK1,该信号通路的异常激活与曲妥珠单抗耐药密切相关。并据此筛选发现了新型的SHCBP1-PLK1复合体的抑制剂茶黄素-3, 3’-双没食子酸(TFBG),可显著增敏曲妥珠单抗治疗胃癌的疗效。如图1所示,HER2和其他表皮生长因子受体(ERBBs)始终使用Shc1(一种细胞内支架蛋白)募集细胞质靶标激活下游途径,包括促分裂原活化蛋白激酶(MAPK)和磷脂酰肌醇3-激酶(PI3K)途径,并通过增加细胞增殖,转移和侵袭来促进肿瘤发生。SHCBP1是一种Shc1结合蛋白,在HER2激活后与支架蛋白Shc1脱离。释放的SHCBP1在Ser273磷酸化后进入细胞核,从而对HER2级联反应,然后通过与PLK1结合促进有丝分裂相互作用因子MISP的磷酸化来调控细胞有丝分裂。同时,Shc1被募集到HER2进行MAPK或PI3K途径激活。HER2-SHCBP1-PLK1这一关键的信号通路驱动曲妥珠单抗敏感并在治疗上具有针对性。图1 胃癌治疗靶点HER2下游新的信号通路HER2/Shc1/SHCBP1/PLK1据此研究人员采用虚拟筛选和SPR的方法,寻找抑制SHCBP1–PLK1结合的天然产物。在用Biacore进行小分子筛选时,将PLK1偶联到CM5芯片上,40个小分子化合物以100uM的浓度进样,经过分子量校正后通过与阳参的对比可以得到候选的小分子抑制剂(图2)。图2 Biacore对40个小分子化合物进行亲和力筛选最终研究人员选择了亲和力最强的小分子TFBG,与PLK1的亲和力为4.67 ×10-7M(图3)。TFBG对SHCBP1–PLK1互作的抑制也通过后续的Co-IP和细胞FERT实验得到了验证。在动物实验中,TFBG治疗与曲妥珠单抗联合显示出显著的生长抑制和肿瘤消退,表明在HER2阳性胃癌治疗中的潜在临床应用。图3 Biacore检测TFBG与PLK1的亲和力回顾整篇文章,研究人员采用LC-MS/MS、免疫组化、FERT、原位杂交等多种方法明确了HER2下游新的信号通路HER2/Shc1/SHCBP1/PLK1,然后以抑制SHCBP1–PLK1互作为目标,找到了小分子抑制剂TFBG,最后在细胞实验和动物实验中,TFBG联合曲妥珠单抗的方案都显示了显著的抗肿瘤效果,为胃癌临床靶向治疗提供了新思路,也对天然药物研发产生了有力推动作用。图4 文章整体思路高灵敏度的Biacore在小分子抑制剂的筛选和表征中可以输出可靠的数据,无人值守的操作能够满足高通量筛选的需求,兼具了数据质量和筛选效率。智能的筛选分析模块可以自动对样品进行分子量校正,方便直接用响应值的高低进行比较,并且可以根据需求自动进行排序或者划分阈值线,直观地呈现筛选结果,极大地提高实验效率,保证在药物开发过程中的高效性。Biacore,for a better life参考文献:Shi, Wengui et al. “Hyperactivation of HER2-SHCBP1-PLK1 axis promotes tumor cell mitosis and impairs trastuzumab sensitivity to gastric cancer.” Nature communications vol. 12,1 2812. 14 May. 2021, doi:10.1038/s41467-021-23053-8关注德泉兴业,了解更多实验室仪器实验信息!
  • 密理博运用MAGPIX探索生物标志物系列讲座火速报名中
    默克密理博与路明克斯联合讲座之让MAGPIX与您一起开启生物标志物探索之旅北京站地点:好苑建国酒店(建国门内大街17号),2011年6月20日下午13:30-14:00 开场致辞14:00-14:45 Luminex公司及MAGPIX 技术简介14:45-15:00 茶歇15:00-15:45 Milliplex及MAGPIX技术在心血管系统疾病、神经退行性疾病及肿瘤标志物研究的应用15:45-16:15 革命性的信号转导磷酸化位点定量检测技术----EpiQuant16:15-16:35 革命性的mRNA检测新技术---qBeads (无需PCR,一步直达)16:35-17:00 默克密理博生物标志物收费服务注册登记及抽奖地点:北京大学医学部(PUHSC)逸夫楼,2011年6月21日上午09:00-09:30 开场致辞09:30-10:15 Luminex公司及MAGPIX 技术简介10:15-10:30 茶歇10:30-11:15 Milliplex及MAGPIX技术在心血管系统疾病、神经退行性疾病及肿瘤标志物研究的应用11:15-11:45 革命性的信号转导磷酸化位点定量检测技术----EpiQuant11:45-12:05 革命性的mRNA检测新技术---qBeads (无需PCR,一步直达)12:00-12:30 默克密理博生物标志物收费服务注册登记及抽奖12:30-13:30 午餐上海站地点:好望角大酒店 (肇嘉浜路500号),2011年6月22日下午13:30-14:00 开场致辞14:00-14:45 Luminex公司及MAGPIX 技术简介14:45-15:00 茶歇15:00-15:45 Milliplex及MAGPIX技术在心血管系统疾病、神经退行性疾病及肿瘤标志物研究的应用15:45-16:15 革命性的信号转导磷酸化位点定量检测技术----EpiQuant16:15-16:35 革命性的mRNA检测新技术---qBeads (无需PCR,一步直达)16:35-17:00 默克密理博生物标志物收费服务注册登记及抽奖广州站地点:中山大学医学院,2011年6月24日下午13:30-14:00 开场致辞14:00-14:45 Luminex公司及MAGPIX 技术简介14:45-15:00 茶歇15:00-15:45 Milliplex及MAGPIX技术在心血管系统疾病、神经退行性疾病及肿瘤标志物研究的应用15:45-16:15 革命性的信号转导磷酸化位点定量检测技术----EpiQuant16:15-16:35 革命性的mRNA检测新技术---qBeads (无需PCR,一步直达)16:35-17:00 默克密理博生物标志物收费服务注册登记及抽奖报名参加本次讲座现在就注册登记默克密理博的生物标志物收费服务,即刻享有MAGPIX的新一代技术!所有与会者都有机会赢取本次活动大奖----时尚iPod NANO!
  • ​ 王方军、田瑞军等用高能紫外激光解离质谱实现蛋白质识别机制解析
    近日,中科院大连化学物理研究所研究员王方军团队与南方科技大学教授田瑞军、副教授李鹏飞等人合作,利用193nm紫外激光解离—质谱装置,实现了免疫共受体CD28磷酸化胞质端与激酶PKCθ的C2结构域识别结合机制解析。相关研究成果发表在Cell Chemical Biology上。与常规毫秒级碰撞诱导质谱解离(CID)相比,5ns单脉冲193nm紫外激光解离(UVPD)可直接激发非变性蛋白质骨架共价键至高能态引发高效解离,激发解离速率提升6个数量级,位点解离效率和碎片离子产率与其局部非共价作用和微观结构密切相关,通过碎片离子和解离产率分析可同时获得蛋白质序列和结构信息。目前,193nm紫外激光解离质谱尚未商品化设备,仅在少数实验室有自主搭建设备。免疫共受体CD28是癌症免疫治疗的重要靶点,其胞质端酪氨酸磷酸化激活引起的下游蛋白识别结合机制尚不清楚。本工作中,研究人员采用光亲和质谱法发现CD28磷酸化胞质端与激酶PKCθ的C2结构域特异性结合;利用193nm紫外激光解离质谱对C2结合前后进行了全序列覆盖位点光解离效率的差异分析,发现了光解离效率显著下降的三个关键结合区域和核心识别位点K49、H63、R68;证明了高能紫外激光解离策略在蛋白质动态识别结构变化分析中的高灵敏度和单位点分辨高精度优势。团队通过交叉学科联合攻关,在大连相干光源搭建了193nm紫外激光解离-高分辨质谱装置,在前期工作中通过高能光子对多肽分子的高效激发解离实现了多磷酸化肽修饰位点精确定位和蛋白质组学规模化序列鉴定。相关论文信息:https://doi.org/10.1016/j.chembiol.2022.01.005
  • “蛋白质组学研究技术与方法进展”会议精彩视频出炉
    p style="text-indent: 2em "6月18日,仪器信息网主办的“蛋白质组学研究技术与方法进展”主题网络研讨会成功召开,会议为期半天,共吸引近700人报名参会。会议现场,网友纷纷积极提问,与在线专家形成良好的互动氛围。br//pp style="text-indent: 2em "为方便更多从事蛋白质组学研究的科研人员学习相关技术,现特将会议内容剪辑整理,点击strong报告题目/strong或strong报告图片/strong即可进入视频页面。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "a href="https://www.instrument.com.cn/webinar/video_112929.html" target="_blank"img style="width: 550px height: 413px " src="https://img1.17img.cn/17img/images/202006/uepic/13b79024-5ab6-46a9-ba61-aa729fa12726.jpg" title="1.jpg" width="550" height="413" border="0" vspace="0" alt="1.jpg"//a/pp style="text-align: center "报告嘉宾:邓海腾(清华大学 )/pp style="text-align: center "报告题目:《a href="https://www.instrument.com.cn/webinar/video_112929.html" target="_blank"功能蛋白质组学技术的进展和挑战》/a/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "随着质谱技术的发展,高通量地检测细胞、体液和组织中的蛋白表达谱已经成为常规分析,蛋白质组学的研究重心开始从揭示蛋白的表达水平转移到蛋白的生物学功能研究上。在本次讲座中,我将和大家一起探讨常用的功能蛋白质组学方法和在分子生物学研究中的应用,以及功能蛋白质组学分析面临的挑战。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "a href="https://www.instrument.com.cn/webinar/video_112930.html" target="_blank"img style="width: 550px height: 413px " src="https://img1.17img.cn/17img/images/202006/uepic/e6517efa-7c9c-4df5-8b90-784a1ff0e53d.jpg" title="2.jpg" width="550" height="413" border="0" vspace="0" alt="2.jpg"//a/pp style="text-align: center "报告嘉宾:申华莉(复旦大学 ) /pp style="text-align: center "报告题目:a href="https://www.instrument.com.cn/webinar/video_112930.html" target="_blank"《拟靶向质谱定量技术用于大规模生物标志物筛选》/a/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "血液包含了人体各器官实时的生理病理状态信息,是最理想的检测目标样本。目前的血清标志物研究方法通量小、效率低,导致血清标志物发现少,向临床转化效率低。我们利用MRM技术的特点实现血清中标志物的高灵敏、高精确定量,并通过时间窗口的设置大幅度提高MRM检测的通量。这一策略可以实现高灵敏、高通量的血清标志物筛选。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "a href="https://www.instrument.com.cn/webinar/video_112932.html" target="_blank"img style="width: 550px height: 413px " src="https://img1.17img.cn/17img/images/202006/uepic/3ecece59-eff5-4527-b974-047f2710ee1a.jpg" title="3.jpg" width="550" height="413" border="0" vspace="0" alt="3.jpg"//a/pp style="text-align: center "报告嘉宾:田瑞军(南方科技大学 )/pp style="text-align: center "报告题目:a href="https://www.instrument.com.cn/webinar/video_112932.html" target="_blank"《基于生物质谱技术的动态蛋白质复合物分析及生物医学应用》/a/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "蛋白质复合物是介导细胞微环境信号转导网络的关键分子机制,一般都经历一个由细胞间、细胞膜、细胞质到细胞核的“链条式”激活和动态组装的过程。目前针对细胞信号转导的蛋白质组学研究大多集中于对蛋白质表达量及其翻译后修饰的分析,仅能阐述通路节点的变化,无法诠释信号蛋白的动态组装和信号传递过程。本团队致力于开发基于生物质谱技术的蛋白质组学新方法和新技术,并专注于其在动态蛋白质复合物及肿瘤微环境信号转导研究方面的应用。最近,我们设计合成出一种具有酪氨酸磷酸化识别蛋白结构域SH2、光交联基团和富集基团的化学生物三功能亲和探针,实现了对疏水性动态受体膜蛋白复合物及相关药物靶点蛋白的高效富集和质谱精准鉴定;发展了样品前处理新技术SISPROT,实现了微纳克级别亲和富集样品前处理的集成化和通量化操作,并实现了受体膜蛋白相关复合物分钟级别动态变化规律的高准确度定量表征;发展了通用的受体膜蛋白复合物多维度协同富集和蛋白质组学分析方法,并成功地用于胰腺癌肿瘤微环境受体膜蛋白复合物的规模化发现。上述研究发现并验证了胰腺癌的新药靶点和疾病标志物白血病抑制因子LIF,并促成了首个针对胰腺癌的anti-LIF抗体药物的美国一期临床试验。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "a href="https://www.instrument.com.cn/webinar/video_112935.html" target="_blank"img style="width: 550px height: 413px " src="https://img1.17img.cn/17img/images/202006/uepic/79709921-762a-47fe-b158-b7195b607ca9.jpg" title="4.jpg" width="550" height="413" border="0" vspace="0" alt="4.jpg"//a/pp style="text-align: center "报告嘉宾:陆豪杰(复旦大学 ) /pp style="text-align: center "报告题目:a href="https://www.instrument.com.cn/webinar/video_112935.html" target="_blank"《定量蛋白质翻译后修饰组学》/a/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "对蛋白质翻译后修饰的定量分析可以帮助我们了解和调控生命过程。蛋白质翻译后修饰使蛋白功能多样以满足复杂的生命过程,同时使得蛋白质的结构复杂。基于生物质谱的组学技术,极大推动翻译后修饰的规模化定量分析。我们发展了一系列方法用于蛋白质后修饰组的定量研究,包括蛋白质的糖基化、泛素化、棕榈酰化、4-羟基壬烯醛(HNE)修饰以及蛋白质的N/C末端。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "a href="https://www.instrument.com.cn/webinar/video_112933.html" target="_blank"img style="width: 550px height: 413px " src="https://img1.17img.cn/17img/images/202006/uepic/b27ac34d-5153-4f1c-9d16-8a679f98d718.jpg" title="6.jpg" width="550" height="413" border="0" vspace="0" alt="6.jpg"//a/pp style="text-align: center "报告嘉宾:隋欣煜(安捷伦)/pp style="text-align: center "报告题目:a href="https://www.instrument.com.cn/webinar/video_112933.html" target="_blank"《安捷伦蛋白组学样品前处理自动化解决方案》/a/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "AssayMAP Bravo生物样品前处理工作站,由96通道的注射器式移液头、微量色谱小柱、功能全面的工作站台面和为生物制药专家量身定制的操作软件组成,利用自动化操作来减少人为实验操作带来的误差,提升实验结果的稳定性,减少污染的可能性,同时利用自动化精准的时间控制和操作,来优化实验流程,提高实验室运行效率,同时适应未来趋势,节省时间和体力让实验人员从事更加有深度的分析和探索职能。/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "●AssayMAP Bravo仪器功能介绍;/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "●AssayMAP Bravo实验的稳定结果;/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "●AssayMAP Bravo在蛋白组学前处理的应用和文献解读;/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "a href="https://www.instrument.com.cn/webinar/video_112931.html" target="_blank"img style="width: 550px height: 413px " src="https://img1.17img.cn/17img/images/202006/uepic/9d190992-caea-4b22-afb1-1f04a98f1095.jpg" title="5.jpg" width="550" height="413" border="0" vspace="0" alt="5.jpg"//a/pp style="text-align: center "报告嘉宾:陈宁(布鲁克· 道尔顿)/pp style="text-align: center "报告题目:a href="https://www.instrument.com.cn/webinar/video_112931.html" target="_blank"《布鲁克4D-Proteomics™ 研究方案及dia-PASEF@、prm-PASEF@最新技术进展》/a/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "随着分析技术的不断发展,高分辨率质谱已成为蛋白质组学研究的核心仪器。由于生物样本的高复杂性和宽动态范围,蛋白质组学的深度研究仍面临极大挑战。捕集型离子淌度的引入,带领着传统蛋白质组学进入了4D新时代,带来了鉴定深度、定量准确性、扫描速度、仪器稳定性等性能的全面提升。本次报告将主要介绍4D-ProteomicsTM研究方案,以及dia-PASEF® 、prm-PASEF® 技术进展。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "a href="https://www.instrument.com.cn/webinar/video_112934.html" target="_blank"img style="width: 550px height: 413px " src="https://img1.17img.cn/17img/images/202006/uepic/074d05d3-7121-4343-adc9-0205390abdb5.jpg" title="7.jpg" width="550" height="413" border="0" vspace="0" alt="7.jpg"//a/pp style="text-align: center "报告嘉宾:周岳(赛默飞 )/pp style="text-align: center "报告题目:a href="https://www.instrument.com.cn/webinar/video_112934.html" target="_blank"《突破蛋白质组学分析的极限——赛默飞蛋白质组学技术最新进展》/a/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "赛默飞近几年在蛋白质组学领域开发了多种新技术来突破蛋白质组分析的极限。FAIMS Pro离子淌度可以接在Orbitrap质谱的前端选择特定的离子进入质谱,提高了蛋白质组学的覆盖度和定量准确性,同时也提高了质谱的稳定性。Orbitrap Eclipse独有的实时检索算法(RTS)使TMT定量的覆盖度和准确度可以兼得,加上TMT 16plex标记试剂的推出,使得TMT定量具有更高的通量。靶标定量一直是蛋白质组学的最后一环也是最关键的一环,基于Orbitrap质谱的独有SureQuant定量方法可以在很短的梯度内绝对定量500多个蛋白,同时不需要太多方法优化,该方法可以很快地在实验室间进行方法转移。/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em "点击链接,观看全部“蛋白质组学研究技术与方法进展”网络会议视频: a href="https://www.instrument.com.cn/webinar/Video/Video/Collection/10572" target="_blank"https://www.instrument.com.cn/webinar/Video/Video/Collection/10572/a/p
  • 肿瘤免疫微环境中的金属蛋白酶|附相关会议
    金属蛋白酶(MP)是一个在其活性中心具有金属离子的大型蛋白酶家族。根据结构域的不同,金属蛋白酶可分为多种亚型,主要包括基质金属蛋白酶(MMPs)、解整合素金属蛋白酶(ADAMs)以及具有血栓反应蛋白基序的ADAMs(ADAMTS)。它们具有蛋白质水解、细胞粘附和细胞外基质重塑等多种功能。相关会议推荐点击可免费报名金属蛋白酶在多种类型的癌症中表达,并通过调节信号转导和肿瘤微环境参与涉及肿瘤发生、发展、侵袭和转移的许多病理过程。因此,更好地了解MP在癌症免疫调节中的表达模式和功能将有助于开发更有效的癌症诊断和免疫治疗方法。MP的结构和表达基质金属蛋白酶(MMP)在脊椎动物中,MMP家族由28个成员组成,至少23个在人体组织中表达,其中14个在脉管系统中表达。基质金属蛋白酶通常根据其底物和其结构域的组织结构分为胶原酶(MMP1、MMP8、MMP13)、明胶酶(MMP2、MMP9)、溶血素(MMP3、MMP10、MMP11)、基质溶素(MMP7、MMP26)、膜型MMPs(MT MMPs)或其他MMPs。MMP家族有一个共同的核心结构。典型的MMPs由大约80个氨基酸的前肽、170个氨基酸的金属蛋白酶催化结构域、可变长度的连接肽或铰链区和约200个氨基酸的血红素蛋白结构域组成。不同类型的MMP具有不同于典型MMP的特定结构特征。例如,MT MMPs缺乏前结构域,而MMP7、MMP26和MMP23缺乏Hpx结构域和连接肽。此外,MMP2和MMP9包含纤连蛋白的三个重复。MMPs中的这些不同结构域、模块和基序参与与其他分子的相互作用,从而影响或决定MMP活性、底物特异性、细胞和组织定位。MMPs已在多种人类癌症中检测到,MMPs的高表达通常与大多数癌症的生存率降低有关,包括结直肠癌、肺癌、乳腺癌、卵巢癌和胃癌。其中MMP2和MMP9,能够降解基底膜中的IV型胶原,是研究最广泛的金属蛋白酶,与各种癌症患者的疾病进展和生存率降低相关。解整合素金属蛋白酶(ADAM)ADAMs是锚定在细胞表面膜上的I型跨膜蛋白,迄今已发现30多种。与MMPs类似,ADAMs包括前结构域和锌结合金属蛋白酶结构域。ADAM还包括一个在细胞表面蛋白中独特的去整合素结构域。ADAM的金属蛋白酶结构域高度保守,大多数ADAM都有一个富含半胱氨酸的结构域和跨膜区域相邻的EGF样结构域,然后是一个长度和序列在不同ADAM家族成员之间变化很大的胞内区。由于这些结构域的存在,ADAM可以结合底物并影响细胞粘附和迁移的变化,以及细胞表面分子的蛋白水解释放。它们的主要底物是完整的跨膜蛋白,如生长因子、粘附分子和细胞因子的前体形式。癌细胞通常表达高水平的ADAM,ADAM17是所有ADAM蛋白中研究最广泛的。一项评估ADAM17作为卵巢癌潜在血液生物标志物的研究表明,与对照组相比,培养的卵巢癌细胞系的培养基上清液以及卵巢癌患者的血清和腹水中的ADAM17水平明显更高。具有血栓反应蛋白基序的ADAM(ADAMTS)ADAM不同,ADAMTS是一种分泌型金属蛋白酶,其特征在于辅助结构域包含血栓反应蛋白1型重复序列(TSR)和间隔区,并且缺少跨膜区、胞内域和(EGF)样结构域,人ADAMTS家族包括19种蛋白。ADAMTS蛋白酶参与前胶原和von Willebrand因子的成熟,以及与形态发生、血管生成和癌症相关的ECM蛋白水解。研究表明,不同的ADAMTS具有不同的生物学功能,并且个体ADAMTS可以在不同的癌症中或根据临床环境发挥不同的作用。与MMPs和ADAMs相比,ADAMTS在TME中的参与研究较少,因此迫切需要系统地研究其在癌症中的功能。涉及癌细胞免疫相关MP的信号通路信号转导途径由多个分子组成,它们相互识别和相互作用,并传递信号以调节许多重要的生物学过程,如肿瘤细胞增殖、转移和免疫调节。三种信号通路尤其与免疫调节中的MP密切相关。肿瘤坏死因子信号肿瘤坏死因子-α(TNF-α)是一种重要的促炎细胞因子,参与免疫系统的维持和稳态,以及炎症和宿主防御。可溶性TNF-α通过蛋白水解酶ADAM17,也称为TNF-a转换酶(TACE),从跨膜TNF-α(tmTNF-α)裂解,该酶可通过激活TNF-α来协调免疫和炎症反应。鉴于ADAM17对TNF信号通路的受体和配体的作用,ADAM17被认为以多种方式影响TNF-α信号传导。例如,可溶性TNF-α产生的减少将导致tmTNF-α的积累,其将与TNFR2结合并导致不同的生物学结果。转化生长因子–β转化生长因子-β(TGF-β)作为肿瘤行为的关键调节因子,在肿瘤侵袭和转移、免疫调节和治疗抵抗中发挥重要作用。TGF-β也是TME免疫抑制的核心,根据具体情况对免疫系统具有多效性功能。MMP9和MMP2是已知的两种金属蛋白酶,可切割未激活的TGF-β前体并产生不同的TGF-β蛋白水解切割产物,从而导致TGF-β活化。此外,与CD44结合的MMP9降解纤连蛋白导致活性TGF-β的释放。癌细胞中MMP9的水平不仅可能影响TGF-β的蛋白水解,还可能影响TGFβ和TGF信号通路下游物质的表达。对乳腺癌中MMP9与TGF信号通路之间关系的研究表明,乳腺癌细胞中MMP9的过表达不仅显著上调了SMAD2、SMAD3和SMAD4的表达,还增强了SMAD2的磷酸化。Notch信号通路Notch信号涉及肿瘤生物学的多个方面,其在免疫应答的发展和调节中的作用比较复杂,包括塑造免疫系统和TME的组成部分,例如抗原呈递细胞、T细胞亚群和癌细胞之间的复杂串扰。特别是,Notch在不同免疫细胞的发育和维持中发挥着关键作用。配体与Notch受体结合后,下游信号由包括ADAM家族成员在内的一些蛋白酶介导。首先,受体/配体相互作用暴露了蛋白水解切割位点S2,其被ADAM金属蛋白酶切割。γ-分泌酶介导的S3处的后续裂解发生在跨膜区,导致Notch胞内结构域(NICD)的释放,该结构域转移到细胞核中,并将MAML与RBPJ结合,触发靶基因如Myc、P21和HES1的转录。已知ADAM10和ADAM17参与裂解S2,而ADAM17导致配体非依赖性Notch激活,ADAM10导致配体依赖性激活。MP对肿瘤微环境的调节TME是指肿瘤细胞周围的微环境,包括血管、免疫细胞、成纤维细胞、骨髓源性抑制细胞、各种信号分子和ECM。TME在调节癌症的免疫反应中起着关键作用。MP对ECM的影响ECM是TME基质的非细胞成分,ECM的重塑在癌症的发展和体内稳态以及免疫细胞募集和组织转移中起着重要作用。癌症进展过程中ECM的广泛重塑导致其密度和组成发生变化,具体而言,蛋白酶诱导的ECM成分的分解对于肿瘤细胞跨越组织屏障至关重要。MMPs和ADAMs是参与ECM降解的主要酶,参与ECM降解的MMPs可大致分为膜锚定MMPs和可溶性MMPs。ECM降解主要通过MT1 MMP激活的可溶性MMP(如MMP2、MMP9和MMP13)实现。ECM有三个主要成分:纤维、蛋白聚糖和多糖。MMPs通过与这些基质结合以促进各种ECM蛋白的周转,在组织重塑中发挥重要作用。MMPs降解ECM的具体机制尚不清楚,需要进一步研究。MP与免疫细胞之间的关系MP在促进免疫细胞活性和调节免疫细胞迁移方面发挥重要作用。MP和免疫细胞之间的关系如下图所示。ADAM10和ADAM17在静止的CD4+Th细胞表面表达,对调节CD4+Th的发育和功能很重要。ADAM10/17在T细胞共刺激受体以及共抑制受体的脱落中发挥关键作用。例如,CD154(CD40L)是一种II型膜共刺激受体,在T细胞和APC之间的相互作用后,CD154表达在几个小时内迅速上调,随后在ADAM10和ADAM17裂解后从T细胞表面释放。此外,ADAM10和ADAM17还作用于共刺激受体CD137,以及抑制性受体LAG-3、TIM-3,sLAG-3和sTIM-3的可溶性形式都是在ADAM10和ADAM17蛋白水解裂解后形成的。B细胞是体液免疫的关键细胞成分,位于脾脏中边缘区B细胞(MZB)表达高水平的CD80/86共刺激分子,导致T细胞活化。Notch2信号传导是MZB细胞发育所必需的,在MZB的发育过程中,Notch2异二聚体与基质细胞和APC上的DLL1等配体结合,这启动了一种未知的金属蛋白酶水解受体,导致Notch胞内结构域的释放,该结构域转移到细胞核并触发下游靶基因的表达。这种未知的金属蛋白酶可能是ADAM10。NK细胞表达IgG Fc受体FcγRIII(CD16),CD16分子可被ADAM17从活化的NK细胞表面裂解,ADAM17的抑制会削弱CD16和CD62L的胞外脱落,从而显著增加细胞内TNF-α和IFN-γ的水平。此外,MMPs和ADAMS可以从肿瘤细胞表面切割活化受体NKG2D的配体。这些裂解蛋白的可溶性形式与NKG2D结合,并诱导该受体的内吞和降解,导致肿瘤逃避监控。总的来说,ADAM17裂解的多种底物与NK细胞的不同作用有关。肿瘤相关巨噬细胞(TAM)有助于癌症的发生和恶性进展,高水平的TAM与预后不良和总体生存率降低有关。在多种癌症中,发现TAM通过分泌MMPs促进肿瘤血管生成和侵袭,并调节免疫反应。MMP的调节与TAM分泌的趋化因子密切相关。与MPs相关的免疫调节细胞因子多种来源于肿瘤细胞的细胞因子,包括TGF-β、EGF、HGF和TNF-α,介导许多MP的表达。其中最重要的是MMP9,其在血清和与肿瘤相关的组织中升高,并参与ECM的降解,以促进癌症中免疫细胞的迁移。此外,这些细胞因子必须被MP切割以参与肿瘤免疫过程。例如,被ADAM17切割的TmTNF-α产生活性sTNF-α。IL-12在T细胞发育和扩增中也起着关键作用,未激活的IL-12前体需要在被MMP14切割之后在TME中转变为活性状态。金属蛋白酶和血管生成迄今为止,已经报道了几种类型的肿瘤血管生成,包括萌芽血管生成和血管生成拟态(VM)。萌芽血管生成是通过血管基底膜中各种水解酶(如MP和组织纤溶酶)的上调实现的,这导致基底膜和ECM的降解和重塑。例如,在胰腺神经内分泌肿瘤中,MMP9分泌增加会从基质中释放出隔离的VEGF,从而将血管静止转变为活跃的血管生成。在肺癌细胞中,MMP2活性的抑制减少了其与整合素AVB3的相互作用,并抑制了下游PI3K/AKT信号介导的VEGF的表达,导致血管生成减少。VM是侵袭性肿瘤形成新血管的新模型,为肿瘤生长提供血液供应。研究表明,实体瘤的初始缺氧环境与VM密不可分,缺氧与MMPs的表达和活性密切相关。低氧诱导因子-1α(HIF-1α)已被证明直接调节MMP14、MMP9和MMP2的表达。靶向MP的免疫治疗鉴于MP在癌症免疫调节中的作用,人们开始探索靶向MP的免疫治疗,临床试验中出现了多种广谱MP抑制剂。然而,由于药物的非特异性靶向和MP在免疫调节中的复杂作用,MP抑制剂迄今未能改善癌症患者的生存和预后。最近,有报道称MP抑制剂可用于联合治疗,以提高免疫治疗的疗效。SB-3CT作为一种MMP2/9抑制剂,被认为可以提高抗PD-1和抗CTLA-4治疗黑色素瘤和肺癌小鼠模型的疗效。SB-3CT治疗不仅通过减少多种致癌途径导致PD-L1表达减少,而且与抗PD-1治疗相结合,显著改善了免疫细胞浸润和T细胞的细胞毒性。此外,SB-3CT与抗CTLA-4的组合增强了PD-L1表达的下调,并增加了肿瘤中活化的肿瘤浸润CD8+T细胞的丰度。Andecaliximab(GS-5745)是一种选择性抑制MMP9的单克隆抗体,GS-5745通过与MMP9前体结合并阻止MMP9活化来抑制MMP9,而与活性MMP9的结合则抑制其活性。Fab 3369作用于MMP14,阻断细胞表面表达的内源性MMP14,并抑制三阴性乳腺癌(TNBC)中ECM的降解。此外,有多种抗体可有效抑制ADAM17,包括A12、A9和MED13622。还有一些小分子抑制剂在临床开发中,在临床试验中显示出积极的效果。小结MP在TME中的免疫调节中发挥重要作用,包括ECM重塑、信号通路转导、细胞因子脱落和释放以及促进血管生成。与MP相关的新兴技术和药物在癌症诊断和治疗中得到了越来越多的探索。因此,更好地了解MP在癌症免疫调节中的表达模式和功能将有助于开发更有效的癌症诊断和免疫治疗方法。基于MP的探索和新技术具有巨大潜力,它们可能会为未来的癌症诊断和治疗提供有效的策略。参考文献:1.Immunomodulatory role of metalloproteases in cancers: Current progress and future trends. Front Immunol.2022 13: 1064033.
  • 全球首发!景杰生物全息空间蛋白质组学“透视”微观蛋白世界
    在世界经济论坛发布的《2023年十大新兴技术报告》中,空间组学被评选为未来最有潜力对世界产生积极影响的十大新兴技术之一。这标志着空间组学不仅在科研领域取得了显著成果,更有望为医学、农业等多个领域带来革命性的突破。在这一技术浪潮中,景杰生物以其卓越的科研实力和前瞻性的战略布局,成为空间蛋白质组学领域的佼佼者。自2021年6月首次推出空间蛋白质组以来,景杰生物不断对技术与体系进行全面优化,一次次刷新着空间蛋白质组学的研究边界。如今,景杰生物再次重磅推出“全息空间蛋白质组学”,为空间蛋白质组学研究提供了更为强大的工具。全息空间蛋白质组学依托于景杰生物创新的10X Proteomics平台,该技术能够支持组织微环境的全覆盖高深度蛋白质组空间检测。在实验中,景杰生物研发团队选择了癌症石蜡样本,运用全流程的先进仪器设施,如徕卡冷冻切片机、数字玻片扫描系统和蔡司激光捕获显微切割仪,进行一站式操作。经过烤片、脱蜡、复水、HE染色等一系列步骤后,成像技术精准定位目标区域,并进行无间隔地切割取样。酶解后使用Orbitrap Astral / timsTOF 最新款高性能质谱平台进行蛋白质组学检测,从而得到与组织微环境图像匹配的全覆盖空间蛋白质组学数据。通过对目标区域进行全覆盖检测,得到了带有空间位置信息的100份蛋白质组学数据,每份数据对应精细组织,无间隔地构成了“全息”的空间蛋白质组学数据集。这些数据集共检测到5500多个蛋白,平均每个样本可检测到4100多个蛋白,是目前最大最全面的全息空间蛋白质组学数据集之一。对于全息空间蛋白质组学得到的庞大数据集而言,如何有效地利用生信分析手段进行挖掘和展示是大家的重要关注点。为此,景杰生物生信和人工智能团队借鉴空间转录组的分析经验,针对全息空间蛋白质组学开发了一系列工具,帮助我们“看得见、挖得深、画得漂亮、画得清晰”。通过以上数据分析方案,可实现与空间转录组学类似的:全息空间样本点无监督聚类分析、类间差异分析/差异蛋白功能注释、单个差异蛋白空间可视化、基于清晰的组织病理特征注释和指定病理分组差异分析、基于反卷积等算法注释细胞类型得分/比例等等个性化分析。相信这样一套分析的组合拳,一方面可以将蛋白信息清晰还原到组织空间微环境中,另一方面也可以与临床病理信息精准结合,定会成为空间蛋白质组学研究的标杆,加速精准医学和基础研究。随着本次全息空间蛋白质组学发布,景杰生物已搭建成全球首个结合空间蛋白质组学、空间磷酸化修饰组学以及全息空间蛋白质组学的一站式空间组学平台。包含了既可以满足个性化选取不规则点位进行蛋白质组精准检测的空间蛋白质组学,又可以进行个性化选取不规则形状点位进行磷酸化修饰精准检测的空间磷酸化修饰组学,本次又实现对组织微环境进行高分辨率全覆盖式蛋白质组精准检测的全息空间蛋白质组学,满足蛋白质组研究的多项需求,为空间蛋白质组学研究提供更多选择。展望未来,全息空间蛋白质组学将在癌症研究、神经科学、免疫学等多个领域发挥重要作用。而景杰生物作为空间蛋白质组学的先驱和引领者,将不遗余力全面推进空间蛋白质组学的技术进步,为前沿研究保驾护航!
  • 王方军:高能紫外激光解离质谱实现蛋白质识别机制解析
    近日,大连化物所生物分子结构表征新方法研究组(1822组)王方军研究员团队与南方科技大学田瑞军教授、李鹏飞副教授等人合作,利用193nm紫外激光解离—质谱装置,实现了免疫共受体CD28磷酸化胞质端与激酶PKCθ的C2结构域识别结合机制解析。 与常规毫秒级碰撞诱导质谱解离(CID)相比,5ns单脉冲193nm紫外激光解离(UVPD)可直接激发非变性蛋白质骨架共价键至高能态引发高效解离,激发解离速率提升6个数量级,位点解离效率和碎片离子产率与其局部非共价作用和微观结构密切相关,通过碎片离子和解离产率分析可同时获得蛋白质序列和结构信息。目前,193nm紫外激光解离质谱尚未商品化设备,仅在少数实验室有自主搭建设备。  免疫共受体CD28是癌症免疫治疗的重要靶点,其胞质端酪氨酸磷酸化激活引起的下游蛋白识别结合机制尚不清楚。本工作中,研究人员采用光亲和质谱法发现CD28磷酸化胞质端与激酶PKCθ的C2结构域特异性结合;利用193nm紫外激光解离质谱对C2结合前后进行了全序列覆盖位点光解离效率的差异分析,发现了光解离效率显著下降的三个关键结合区域和核心识别位点K49、H63、R68;证明了高能紫外激光解离策略在蛋白质动态识别结构变化分析中的高灵敏度和单位点分辨高精度优势。  大连化物所王方军和肖春雷研究员通过交叉学科联合攻关,在大连相干光源搭建了193nm紫外激光解离-高分辨质谱装置,在前期工作中通过高能光子对多肽分子的高效激发解离实现了多磷酸化肽修饰位点精确定位(Chin. Chem. Lett.,2018)和蛋白质组学规模化序列鉴定(Anal. Chim. Acta.,2021)。  相关研究结果以“Motif-dependent Immune Co-receptor Interactome Profiling by Photoaffinity Chemical Proteomics”为题,于近日发表于Cell Chemical Biology上。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制