当前位置: 仪器信息网 > 行业主题 > >

颗粒浓度速度分布测量装置

仪器信息网颗粒浓度速度分布测量装置专题为您提供2024年最新颗粒浓度速度分布测量装置价格报价、厂家品牌的相关信息, 包括颗粒浓度速度分布测量装置参数、型号等,不管是国产,还是进口品牌的颗粒浓度速度分布测量装置您都可以在这里找到。 除此之外,仪器信息网还免费为您整合颗粒浓度速度分布测量装置相关的耗材配件、试剂标物,还有颗粒浓度速度分布测量装置相关的最新资讯、资料,以及颗粒浓度速度分布测量装置相关的解决方案。

颗粒浓度速度分布测量装置相关的资讯

  • 【标准解读】扫描电子显微术测量纳米颗粒粒度及形状分布
    纳米颗粒因尺度效应而具有传统大颗粒所不具备的独特性能,被广泛应用于生物医药、化工、日用品、润滑产品、新能源等领域。而纳米颗粒的粒度形状分布,直接关系到相应产品的性能质量及安全性,需要进行准确的测量表征。扫描电子显微镜(SEM)作为最直观、准确的显微测量仪器之一,在纳米颗粒测量表征中不可或缺。本标准等同采用ISO 19749:2021《Nanotechnologies — Measurements of particle size and shape distributions by scanning electron microscopy》,从很大程度上完善和补充国内现有标准的不足,给出较为完整的颗粒粒径测量的分析评价方法,对于采用不同扫描电子显微镜(SEM)得到的颗粒测量结果一致性评判,具有重要的参考价值。视具体需求以及仪器性能而定,本标准中涉及到的方法,也适用于更大尺寸的颗粒测量。一、背景纳米颗粒形态多种多样,很多情况下也会存在聚集、团聚的现象,这为SEM的观测与分析带来了较大的挑战。由于不同设备、不同人员的操作习惯以及采用不同分析策略所引起的粒度粒形测量结果的一致性问题也十分值得探讨。现行的相关国家标准大多关注采用SEM手段对特定被测对象的特征进行测量、表征、区分、定义等,具有较强的针对性,但缺乏系统性,特别是对设备性能的计量评定、样品处理及制样过程、图像处理的依据、测量结果的准确性与统计性等技术内容并未给出更为充分的、本质的、系统的说明。二、规范性引用文件本标准在制定过程中,在符合等同采用国际标准的要求的基础上,充分参照了现行相关国家标准中的相关术语及技术内容的表述,包括计量学、粒度分析、数理统计、微束分析、颗粒表征、纳米科技等各个专业领域;同时,在一些习惯性表达上,也充分征求了行业专家、资深从业者、用户的意见和建议,力求做到专业、通俗、易懂。三、制定过程本标准涉及的专业领域较为广泛,因此集合了国内相关领域的一批权威代表性机构和企业合作完成。牵头单位为中国计量科学研究院,主要参加单位包括国家纳米科学中心、北京市科学技术研究院分析测试研究所(北京理化分析测试中心)、山东省计量科学研究院、卡尔蔡司(上海)管理有限公司、北京海岸鸿蒙标准物质技术有限责任公司、中国检验检疫科学研究院、北京粉体技术协会等。对于标准中的重要技术内容,如SEM性能验证方法、典型样品(宽窄分布颗粒样品)制样方法、比对报告中涉及的颗粒测试及统计方法(算法)等均进行了方法学验证,验证了标准中相关技术操作的可行性。修正了ISO 19749:2021中的一些编辑性错误。四、适用范围本标准适用于各类纳米颗粒及其团聚、聚集体,甚至更大尺寸颗粒的粒度及形状分布测量。前提应将SEM作为一个测量系统进行评定,以确定所用SEM的性能范围,这包括设备自身的扫描分辨力、漂移、洁净度等特性。同时,也取决于观测者所需要的测量准确性。高的测量准确性需要高性能的SEM设备+高精度校准+洁净的样品前处理+匹配的测试参数+足够多的被测颗粒数量+合适的阈值算法,其中每一步都会影响最终的测试结果。因此,根据实际工作中对测试结果准确性、重复性和一致性的需求,可对上述环节进行不同程度的限定。五、主要内容本标准涉及的主要内容覆盖SEM测量颗粒粒度及形状分布的全流程,从一般原理到设备校准,样品制备到测试参数选用,图像采集到数据处理,均给出了较为详细的阐述,并在附录中给出了实用的案例。术语及定义:包括纳米技术的通用术语,图像分析、统计学和计量学专业核心术语、SEM核心术语等。一般原理:概括性地介绍了SEM成像原理及粒度、粒形测量原理。样品制备:较为系统地介绍了典型的粉末及悬浮液从取样、制样到分散的过程,并重点阐述了颗粒在硅基底和TEM栅网上的沉积方法。可根据需求,采用几种不同层次的硅片清洗与处理方法,一方面确保硅片的洁净,另一方面可使其表面带有正电或负电的捕获分子层,以确保颗粒在硅片上的有效分散。必要时采用TEM栅网,可提高颗粒与背底的对比度。考虑样本颗粒数量时,一般而言假设颗粒是对数正态分布的,本标准给出了一个颗粒数与误差和置信区间的计算公式可供参考。SEM设备的评价方法:给出了SEM成像能力的影响因素,包括空间分辨率、漂移、污染、水平垂直范围及线性度、噪声等,具体的验证方法在附件中有较为详细的描述,此外也可依照其他相关的技术规范或标准定期进行校准。图像采集:重点给出了不同粒度测量时放大倍率和像素分辨率的选择策略,取决于实际的测量需求。测量者需要充分考虑要求的误差和放大倍率来计算所需的像素分辨率,当颗粒分布较宽时可能有必要在不同放大倍率下进行拍摄,以兼顾颗粒的测量效率及测量精度。颗粒分析方法:手动分析可能准确率很高,能较好地界定测量区域以及筛选合格的颗粒(例如单分散颗粒体系中去除黏连颗粒),但采用软件自动处理往往更为高效。采用软件处理时,阈值的设定会对颗粒的筛选、粒度的大小产生较为关键的影响,必要的时候可以采用自动处理与手动处理相结合的方式。数据分析:给出了筛选数据可采用的统计学方法(方差分析、成对方差分析、双变量分析等方法)、模型拟合方法的参考,重点讲解了不确定度的来源与计算。结合60 nm颗粒测量结果,阐述了典型的不确定度来源。在上述基础上,给出了测量报告的信息及内容。本文作者: 黄鹭 副研究员; 中国计量科学研究院 前沿计量科学中心 Email:huangl@nim.ac.cn常怀秋 高级工程师; 国家纳米科学中心 技术发展部 Email:changhq@nanoctr.cn
  • 【好书推荐】《颗粒粒度测量技术及应用》(第2版)出版
    自然界中很多物质属于颗粒,例如黏土、沙子和灰尘;人类的食物也往往是颗粒,例如谷粒、豆子、盐和蔗糖;很多加工物,例如煤炭、催化剂、水泥、化肥、颜料、药物和炸药也大多属于粉体或颗粒。颗粒学是一门多交叉学科,由多基础科学和大量相关的应用技术组成,涉及化学、物理、数学、生物、医学、材料等若干基础科学,与工艺、工程应用技术密切相关。颗粒(包括固体颗粒、液滴、气泡)与能源、 动力、环境、机械、医药、化工、轻工、冶金、材料、食品、集成电路、气象等行业密切相关,同时也会影响到人们的日常生活。据文献介绍,70% 以上的工业产品都涉及颗粒,近年来经常出现的沙尘暴、冬季大范围的浓雾等都与空气中的颗粒物有关。颗粒粒径和形貌是颗粒的最重要参数。上海理工大学颗粒与两相流测量研究所所长蔡小舒教授及课题组成员长期从事颗粒粒度测量方面的研究和教学工作,先后得到国家自然科学基金重点项目和面上项目、国家 863计划项目、国家 973计划项目、上海市“科技创新行动计划”纳米科技项目等多个项目的支持,开展光散射理论、基于光散射原理的多种颗粒测量方法、基于超声的多种颗粒测量方法、纳米颗粒测量方法、图像法、颗粒在线测量等方面的研究,在颗粒测量基础理论和测量方法及技术方面取得多项成果。《颗粒粒度测量技术及应用》(第一版)左图:蔡小舒教授;右图:《颗粒粒度测量技术及应用》(第一版)《颗粒粒度测量技术及应用》(第一版)是蔡小舒教授等从 20 世纪 80 年代到 2010 年二十多年在颗粒测量理论、方法、技术和应用研究的总结,反映了我国和国际上当时颗粒测量的技术水平。第一版系统介绍了颗粒的基础知识以及颗粒粒径分布的表征方法,全面系统地讨论了有关光散射颗粒粒径测量方面的基础知识,归纳总结基于散射光能测量和透射光能测量的多种颗粒测量方法、纳米颗粒粒度的测量方法以及蔡小舒教授等开展在线颗粒测量应用研究的具体例子。成为从事颗粒测量技术研究和仪器开发的研究人员和工程技术人员的最主要参考书,也是众多涉及颗粒制备与应用的科技人员的重要参考书。时任中国颗粒学会名誉理事长的郭慕孙院士对该书的出版表示肯定,并为该书作序,推荐给从事颗粒研究、加工、应用的科技人员。随着科技的发展,颗粒测量技术也在不断迎来新的挑战、迈向新的高度。颗粒测量方法、技术和仪器有了很大的发展进步,出现了不少新的技术和仪器,远心镜头、液体变焦镜头、各种新型激光光源和发光二极管(LED)光源等光电子技术和计算机技术等硬件技术的发展,以及金属氧化物半导体器件(CMOS)技术的发展推动了各种数字相机技术的飞速发展。颗粒粒度涉及的范围也越来越广泛:▪ 大气环境污染,雾霾使得 PM2.5 成为家喻户晓的名词,新冠病毒的传播更使气溶胶这样的专业词汇得到普及。▪ 纳米颗粒、生物颗粒、微泡、药物颗粒、能源颗粒等新的颗粒应用以及越来越广泛的在线测试需求促进了颗粒测试技术的快速发展。高浓度纳米颗粒粒度测量探针▪ 大数据分析、人工智能算法等手段被引入到测量数据的处理中。众多领域对颗粒测试的需求、软硬件技术的发展等诸多因素,催生出许多新的颗粒测量方法和技术手段。例如,图像测量方法不再局限于对微米级以上颗粒的成像测量,也应用于纳米颗粒的粒度测试;又如,将图像测量方法与光散射等其他方法融合,形成了多种包括气溶胶等在内的在线颗粒测量新方法。纳米颗粒粒度仪 很显然,颗粒测量技术的飞速发展使得 2010 年出版的《颗粒粒度测量技术及应用》一书已不能满足当前颗粒研究者的需要,内容亟需更新。经典再版 全面更新为此,在化学工业出版社的支持下和国家科学技术学术著作出版基金的再次资助下,第二版图书于2023年1月正式出版了。第二版图书在保持上一版结构框架的基础上,对图书内容进行了重新撰写,主要体现在以下几方面:▪ 对部分章节结构作了调整,如将原第 7 章“纳米颗粒的测量”中,有关动态光散射原理的纳米颗粒测量内容并入第 5 章“动态光散射法纳米颗粒测量技术”,有关超声纳米颗粒测量的内容并入第 6 章“超声法颗粒测量技术”,将第 7 章改写成“图像法颗粒粒度测量技术”。▪ 补充了作者团队自第一版出版后 12 年来在光散射理论及测量、超声理论及测量、图像法测量、纳米颗粒测量、多方法融合测量、在线测量等技术及应用的研究成果。▪ 补充修订了与颗粒测量相关的国际标准和国家标准目录等内容。▪ 本书不仅可作为从事颗粒相关研究和应用的科研与工程技术人员的主要参考书,也可供相关专业研究生学习和参考。本书作者深深感谢郭慕孙先生生前的支持和鼓励,谨以本书第二版出版纪念郭慕孙先生逝世10周年。《颗粒粒度测量技术及应用》(第二版)「聚焦颗粒测量技术」「注重技术发展与应用」蔡小舒 苏明旭 沈建琪 等著责任编辑:李晓红书号:978-7-122-42009-1定价:198.00元▲ 长按识别 即可优惠购买本书图书分为四部分。第一部分介绍了颗粒粒度的基本知识;第二部分系统介绍了光散射理论、超声散射理论和图像处理理论等,以及基于上述理论发展的各种颗粒测量技术,其粒度测量范围覆盖了在科学研究及各领域和行业应用涉及的从纳米到毫米粒度范围;第三部分介绍了颗粒粒度测量仪器和应用,并引入其它颗粒测量技术作为补充;第四部分为作者多年来收集的大量物质的折射率和其它物性参数,以及国际和国内有关颗粒测量的标准等资料。本书适合从事颗粒科学研究与应用的科研人员和工程技术人员参考,也可作为高等学校相关学科教师和研究生的教材或参考书。# 目录预览 #第1章 颗粒基本知识 / 0011.1 概述 / 0011.2 颗粒的几何特性 / 0021.2.1 颗粒的形状 / 0021.2.2 颗粒的比表面积 / 0031.2.3 颗粒的密度 / 0031.3 颗粒粒度及粒度分布 / 0041.3.1 单个颗粒的粒度 / 0041.3.2 颗粒群的粒径分布 / 0061.3.3 颗粒群的平均粒度 / 0111.4 标准颗粒和颗粒测量标准 / 0131.4.1 标准颗粒 / 0131.4.2 颗粒测量标准 / 0171.5 颗粒测量中的样品分散与制备 / 0171.5.1 颗粒分散方法 / 0171.5.2 颗粒样品制备 / 0191.5.3 常见测量问题讨论 / 020参考文献 / 022第2章 光散射理论基础 / 0232.1 衍射散射基本理论 / 0232.1.1 惠更斯-菲涅耳原理 / 0232.1.2 巴比涅原理 / 0252.1.3 衍射的分类 / 0262.1.4 夫琅和费单缝衍射 / 0262.1.5 夫琅和费圆孔衍射 / 0282.2 光散射基本理论 / 0302.2.1 光散射概述 / 0302.2.2 光散射基本知识 / 0322.2.3 经典Mie光散射理论 / 0352.2.4 Mie散射的德拜级数展开 / 0522.3 几何光学对散射的描述 / 0562.3.1 概述 / 0562.3.2 几何光学近似方法 / 0572.4 非平面波的散射理论 / 0642.4.1 广义Mie理论 / 0642.4.2 波束因子的区域近似计算 / 0692.4.3 高斯波束照射 / 0702.4.4 角谱展开法 / 071参考文献 / 076第3章 散射光能颗粒测量技术 / 0813.1 概述 / 0813.2 基于衍射理论的激光粒度仪 / 0843.2.1 衍射散射式激光粒度仪的基本原理 / 0843.2.2 多元光电探测器各环的光能分布 / 0863.2.3 衍射散射法的数据处理方法 / 0893.3 基于Mie散射理论的激光粒度仪 / 0933.3.1 基于Mie理论激光粒度仪的基本原理 / 0933.3.2 粒径与光能变化关系的反常现象 / 0963.4 影响激光粒度仪测量精度的几个因素 / 0993.4.1 接收透镜焦距的合理选择 / 0993.4.2 被测试样的浓度 / 1003.4.3 被测试样轴向位置的影响 / 1023.4.4 被测试样折射率的影响 / 1043.4.5 光电探测器对中不良的影响 / 1043.4.6 非球形颗粒的测量 / 1063.4.7 仪器的检验 / 1063.5 激光粒度仪测量下限的延伸 / 1063.5.1 倒置傅里叶变换光学系统 / 1083.5.2 双镜头技术 / 1093.5.3 双光源技术 / 1103.5.4 偏振光散射强度差(PIDS)技术 / 1113.5.5 全方位多角度技术 / 1123.5.6 激光粒度仪的测量上限 / 1143.5.7 国产激光粒度仪的新发展 / 1153.6 角散射颗粒测量技术 / 1203.6.1 角散射式颗粒计数器的工作原理 / 1213.6.2 角散射式颗粒计数器的散射光能与粒径曲线 / 1223.6.3 角散射式颗粒计数器F-D曲线的讨论 / 1243.6.4 角散射式颗粒计数器的测量区及其定义 / 1283.6.5 角散射式颗粒计数器的计数效率 / 1323.6.6 角散射式颗粒计数器的主要技术性能指标 / 1323.7 彩虹测量技术 / 1353.7.1 彩虹技术的原理 / 1363.7.2 彩虹法液滴测量 / 1373.8 干涉粒子成像技术 / 1413.8.1 干涉粒子成像技术介绍 / 1413.8.2 干涉粒子成像法颗粒测量 / 1423.9 数字全息技术及其应用 / 1443.9.1 数字全息技术介绍 / 1443.9.2 数字全息技术的应用 / 146参考文献 / 151第4章 透射光能颗粒测量技术 / 1584.1 消光法 / 1584.1.1 概述 / 1584.1.2 消光法测量原理 / 1584.1.3 消光系数 / 1604.1.4 消光法数据处理方法 / 1634.1.5 消光法颗粒浓度测量 / 1704.1.6 消光法粒径测量范围及影响测量精度的因素 / 1704.1.7 消光法颗粒测量装置和仪器 / 1724.2 光脉动法颗粒测量技术 / 1744.2.1 光脉动法的基本原理 / 1754.2.2 光脉动法测量颗粒粒径分布 / 1784.2.3 光脉动法测量的影响因素 / 1834.3 消光起伏频谱法 / 1854.3.1 数学模型 / 1854.3.2 测量方法和测量原理 / 1884.3.3 消光起伏频谱法的发展现状 / 197参考文献 / 198第5章 动态光散射法纳米颗粒测量技术 / 2025.1 概述 / 2025.2 纳米颗粒动态光散射测量基本原理 / 2045.2.1 动态光散射基本原理 / 2045.2.2 动态光散射纳米颗粒粒度测量技术的基本概念和关系式 / 2075.2.3 动态光散射纳米颗粒测量典型装置 / 2115.2.4 数据处理方法 / 2135.3 图像动态光散射测量 / 2205.3.1 图像动态光散射测量方法(IDLS) / 2205.3.2 超快图像动态光散射测量方法(UIDLS) / 2225.3.3 偏振图像动态光散射法测量非球形纳米颗粒 / 2245.4 纳米颗粒跟踪测量法(PTA) / 2295.5 高浓度纳米颗粒测量 / 231参考文献 / 234第6章 超声法颗粒测量技术 / 2376.1 声和超声 / 2376.1.1 声和超声的产生 / 2376.1.2 超声波特征量 / 2386.2 超声法颗粒测量基本概念 / 2426.2.1 声衰减、声速及声阻抗测量 / 2446.2.2 能量损失机理 / 2486.3 超声法颗粒测量理论 / 2506.3.1 ECAH 理论模型 / 2516.3.2 ECAH理论模型的拓展和简化 / 2626.3.3 耦合相模型 / 2776.3.4 蒙特卡罗方法 / 2836.4 超声法颗粒测量过程和应用 / 2886.4.1 颗粒粒径及分布测量过程 / 2886.4.2 在线测量 / 2986.4.3 基于电声学理论的Zeta电势测量 / 2996.5 超声法颗粒检测技术注意事项 / 3006.6 总结 / 301参考文献 / 301第7章 图像法颗粒粒度测量技术 / 3047.1 图像法概述 / 3047.2 成像系统 / 3057.2.1 光学镜头 / 3057.2.2 图像传感器 / 3087.2.3 照明光源 / 3107.3 显微镜 / 3117.4 动态颗粒图像测量 / 3177.5 颗粒图像处理与分析 / 3187.5.1 图像类型及转换 / 3187.5.2 常用的几种图像处理方法 / 3207.5.3 颗粒图像分析处理流程 / 3237.5.4 颗粒粒径分析结果表示 / 3237.6 图像法与光散射结合的颗粒测量技术 / 3277.6.1 侧向散射成像法颗粒测量 / 3277.6.2 后向散射成像法颗粒测量 / 3307.6.3 多波段消光成像法颗粒测量 / 3317.7 彩色颗粒图像的识别 / 3347.7.1 彩色图像的色彩空间及变换 / 3347.7.2 彩色颗粒图像的分割 / 3367.8 总结 / 338参考文献 / 339第8章 反演算法 / 3418.1 反演问题的积分方程离散化 / 3418.2 约束算法 / 3438.2.1 颗粒粒径求解的一般讨论 / 3438.2.2 约束算法在光散射颗粒测量中的应用 / 3458.2.3 约束算法在超声颗粒测量中的应用 / 3548.3 非约束算法 / 3628.3.1 非约束算法的一般讨论 / 3628.3.2 Chahine算法及其改进 / 3658.3.3 投影算法 / 3678.3.4 松弛算法 / 3688.3.5 Chahine算法和松弛算法计算实例 / 371参考文献 / 372第9章 电感应法(库尔特法)和沉降法颗粒测量技术 / 3759.1 电感应法(库尔特法) / 3759.1.1 电感应法的基本原理 / 3769.1.2 仪器的配置与使用 / 3779.1.3 测量误差 / 3809.1.4 小结 / 3839.2 沉降法 / 3849.2.1 颗粒在液体中沉降的Stokes公式 / 3849.2.2 颗粒达到最终沉降速度所需的时间 / 3869.2.3 临界直径及测量上限 / 3879.2.4 布朗运动及测量下限 / 3889.2.5 Stokes公式的其它影响因素 / 3899.2.6 测量方法及仪器类型 / 3919.2.7 沉降天平 / 3949.2.8 光透沉降法 / 396参考文献 / 399第10章 工业应用及在线测量 / 40110.1 喷雾液滴在线测量 / 40110.1.1 激光前向散射法测量 / 40210.1.2 消光起伏频谱法测量 / 40410.1.3 图像法测量 / 40510.1.4 彩虹法测量 / 40610.1.5 其它散射法测量 / 40810.2 乳浊液中液体颗粒大小的测量 / 41010.3 汽轮机湿蒸汽在线测量 / 41110.4 烟气轮机入口颗粒在线测量 / 41410.5 烟雾在线测量探针 / 41510.6 动态图像法测量快速流动颗粒 / 41710.7 粉体颗粒粒度、浓度和速度在线测量 / 41910.7.1 电厂气力输送煤粉粒径、浓度和速度在线测量 / 41910.7.2 水泥在线测量 / 42110.8 超细颗粒折射率测量 / 42310.9 超声测量高浓度水煤浆 / 42410.10 结晶过程颗粒超声在线测量 / 42510.11 含气泡气液两相流超声测量 / 42610.12 排放和环境颗粒测量 / 42810.12.1 PM2.5测量 / 42810.12.2 图像后向散射法无组织排放烟尘浓度遥测 / 43010.12.3 图像侧向散射法餐饮油烟排放监测 / 43210.13 图像动态光散射测量纳米颗粒 / 43510.13.1 纳米颗粒合成制备过程原位在线测量 / 43510.13.2 非球形纳米颗粒形貌拟球形度Ω测量 / 43810.13.3 纳米气泡测量 / 439参考文献 / 440附录 / 443附录1 国内外主要颗粒仪器生产厂商 / 443附录2 颗粒表征国家标准和国际标准 / 445附录3 国内外标准颗粒主要生产厂商 / 453附录4 液体的黏度和折射率 / 455附录5 固体化合物的折射率 / 458附录6 分散剂类别 / 473
  • NASA发布全球污染颗粒浓度地图 中国情况最严重
    流行病学家怀疑,空气中的某些污染颗粒,使得每年有多达数百万的人过早死亡。然而,在许多发展中国家,由于地表空气污染检测器的缺乏以及其他现实因素,我们无法得到关于这种污染颗粒的具体数据,哪怕是粗略的统计数字也很难估算。这些有问题的颗粒物,被称为细颗粒物(PM2.5),它的直径小于或等于2.5微米,约为人类头发丝的十分之一。这些小颗粒可以穿过人体正常的防御通道,渗透到肺部深处。  为了弥补地表PM2.5测量手段的缺失,环境学专家希望利用卫星来提供一个地球全景图。然而,卫星仪器通常很难实现近地面空气中细颗粒物的精确测量。问题就在于:大多数卫星仪器无法将那些浮于地表的和悬于大气层中的细颗粒物区分清楚。此外,云层也会遮挡卫星仪器的视角。还有明亮的陆地表面,诸如雪地,沙漠,和城市的一些中心区域,这些也极大妨碍了卫星仪器的观测。  然而,今年夏天,卫星的观测视野略微变得清晰。因此,最新一期《环境健康展望(Environmental Health Perspectives)》杂志得以发表首张PM2.5长期观测的全球地图。加拿大研究人员,来自达尔豪斯大学(Dalhousie University,该学校位于美丽的海港城市–哈里法斯,新斯科舍省)的Aaron van Donkelaar和Randall Martin将两台NASA卫星仪器监测仪器得到的气溶胶总量相加,并且与电脑模型计算出的气溶胶垂直分布量结合在一起,制作出了这张地图。     【图中:颜色由深蓝,浅蓝,到黄色,暗红,代表着PM2.5的浓度越来越高】  他们的地图,显示了2001年至2006年PM2.5的平均值。它为这种危害人类健康的细颗粒物研究,提供了一个迄今为止最全面的看法。然而,相对那些早已建立了完善地面监测网络的发达地区,这项新混合技术并没有给它们带来更为精确的污染指数测量结果。  不过,这张地图首次给一些发展中国家提供了PM2.5卫星测量数据,这些国家还从未有过对其空气污染水平的评估。  该图显示,从北非撒哈拉沙漠一直延伸到东亚的一大片区域,PM2.5污染指数相当严重。结合人口密度考量,它表明,全世界超过80%的人口正在呼吸着严重污染的空气,污染指数甚至超过了世界卫生组织给出的最小安全值,即每立方米10微克。美国PM2.5水平相对较低,不过中西部和东部一些中心区域的污染,依然清晰可见。  “我们还要继续完善这张地图,但它已经是一个了不起的飞跃,”该地图的缔造者之一,大气科学家马丁说道:“对于那些没有能力进行地表测量的地区,我们希望这些数据对他们能有所裨益。”  PM2.5健康影响的探讨  让我们深吸一口气。就算空气看起来纯净透明,可以肯定的是,你已经吸入了数以百万计的PM2.5颗粒。虽然这种颗粒人的肉眼不可见,但它在地球的大气层中却无处不在,而且它们的生成机制有自然因素,也有人为因素。研究人员仍在努力量化PM2.5自然与人为产生因素的精确百分比,显而易见的是,这两种来源都对新地图中的那些热点区域起到了推波助澜的作用。  比如说,大风在阿拉伯和撒哈拉沙漠区域卷起了大量沙尘。而在许多高度城市化的地区,比如中国东部和印度北部,有很多没有安装使用过滤装置的发电厂和工厂,它们在燃烧煤的过程中,产生了盈千累万的硫酸盐和烟尘微粒。机动车尾气也制造出相当多数量的硝酸盐和其他微粒。此外,还有农作物废弃物焚烧和柴油发动机燃烧产生的煤烟颗粒,科学家们称之为黑碳物质。  美国杨百翰大学的教授,流行病学家,及该领域世界领先的专家之一Arden Pope为我们解释道,城市空气中,人为产生的颗粒往往占据主导地位。人们天天呼吸着这些空气,同时这些粒子也让医学专家最为头疼。这是因为,较小的PM2.5颗粒可以穿透人体呼吸道的防御毛发状结构,也就是鼻腔中的鼻纤毛。这些鼻纤毛在人体结构中起到一个相当不错的,筛选较大颗粒的作用。  一些细小的颗粒能深达人体肺部,有些超细颗粒甚至可以渗透进血液,从而引发人体整个范围的疾病,包括哮喘,心血管疾病,支气管炎,等等等等。美国心脏协会估计,仅在美国,被PM2.5颗粒污染的空气就导致每年约60,000人死亡。  虽然我们已经知道,PM2.5是一类可以造成人类健康隐患的粒子,研究者们还未成功地筛选出,该为此负责任的特定类型粒子。Pope教授谈道:“哪些类型的粒子对人体最为有害,关于这个问题人们仍在争论不休,我们暂时还不明了,最具危害性的,到底是硫酸盐,硝酸盐,还是细微粉尘颗粒。“  现有的最大症结是:PM2.5中各种颗粒混杂,而且经常还产生新的混合粒子,卫星仪器和地面监测仪器很难去辨别解析出其中的单个粒子。  卫星技术引导PM2.5研究的未来  对于试图解决这一问题,和PM2.5其他未解谜团的研究者而言,这张新的地图,以及围绕它的相关研究,都将在未来引导他们的研究方向。比如,最基本的问题:全球各地,空气污染危及健康的具体人数到底是多少? 马丁说:“我们可以清楚地看到,为数不少的人们暴露在高浓度悬浮颗粒环境中,不过,到目前为止,还没有人去研究这在人类死亡和疾病中的关系。流行病学主要关注的还是发达国家,比如北美和欧洲。”  现在,有了这张地图和一些相关数据,流行病学家可以开始着手研究长期暴露在高浓度微粒的环境中,会给人类健康造成何种影响。尤其是,亚洲那些快速发展的城市,和北非一些沙尘区域,此项研究一向匮乏。这些新的信息对于美国或西欧一些地区也将大有裨益,那些区域长久以来都使用地表探测器的结果作为衡量空气质量的标准。  研究人员从多个仪器中采集数据,有装载在Terra卫星上的多角度成像光谱仪(MISR),还有Aqua和Terra卫星上的中等分辨率成像光谱仪(MODIS),此外,他们还使用一种化学输送模型,也即GEOS-Chem技术来绘制这张新地图。  然而,制作这张地图的研究人员强调,我们并不能从此地图得出关于全球各地区PM2.5的排放量水平的结论。来自马里兰州NASA戈达德航天中心(Goddard Space Flight Center),且参与发布这份报告的遥感专家Ralph Kahn对此进行了详细解释,尽管研究人员Aaron van Donkelaar通过应用数据融合技术,给我们提供了一个更为清晰的细微颗粒全球视野,可是,对于某些区域来讲,不确定的因素可能使它们的PM2.5预估值偏低了25%或更多。  为了提高对悬浮颗粒的了解,NASA的科学家们计划参加一系列的现场活动,以及众多的卫星飞行任务。以NASA戈达德航天中心为例,中心管理人员正致力于加强和扩大一个名为AERONET的全球网络,该网络将所有的地表颗粒监测器紧密相连。此外,今年的晚些时候,来自纽约戈达德太空研究所(GISS)的科学家们也将着手分析从Glory卫星接收到的第一份数据。该卫星携带了一种创新性仪器—偏光仪,它可以采用新的方式去测量细微颗粒特性,实现对现有空间气溶胶技术测量仪器的互补。  戈达德地球科学技术中心主管Raymond Hoff坦言:“要实现利用卫星技术测量空气污染的全部潜能,我们还有很多工作要做。”他最近在《空气与废物管理协会》学术期刊中发表了一系列详实论述,然后,他补充说道:“但是,这已经是我们迈出的重要一步。” ( 译言社翻译美国国家航空航天局
  • “小贝开讲”之如何快速实现悬浮液、粉体颗粒粒度分布的准确分析
    时间:2018年12月12日 14:00 - 15:00内容简介:作为应用领域最广的粒度分析设备,激光衍射粒度仪有着其它粒度分析设备没有的更宽的测量范围,更高的重复性,更快的测量速度以及更简便的操作。但我们所测样品种类繁多,粒度分布极广,所以如何确保仪器上下限粒度的极限测量?如何确保快速准确区分单峰、多峰样品?如何简化并规范操作流程?这些都是我们关注的焦点。 本讲座将通过对样品的前处理探讨,以及测试过程中对激光粒度仪LS 13 320 XR软硬件设计的详细剖析,为您快速获知任何所测样品的准确粒度分布提供有力保障。主讲人简介:史艳轻产品应用技术专家 贝克曼库尔特生命科学市场部 在粉体制备、颗粒表征以及颗粒特性产品应用领域工作多年,有着丰富的样品颗粒分析和检测经验,现为贝克曼库尔特公司颗粒特性和计数产品专员,负责颗粒产品的技术和应用开发等相关工作。美国贝克曼库尔特公司于1997年由贝克曼公司和库尔特公司合并成立,现已成为世界著名的颗粒分析仪器公司。作为颗粒特性分析领域的先驱和领导者,贝克曼库尔特专注于为全球用户创造卓越的价值。众多应用领域如食品、制药、化工等和国际组织如美国ASTM,国家航空航天局 (NASA)等均将贝克曼库尔特的技术和产品定为标准方法或质量控制的专用仪器。秉承“为全球客户提供富于创新和值得信赖的科学解决方案”的使命,贝克曼库尔特不忘初心,不断创新,致力于为客户提供完整领先的颗粒表征及粒度分析解决方案。
  • 蔡小舒教授:浅谈光散射颗粒在线测量技术
    p style="text-align: justify text-indent: 2em "strong编者按:/strongSARI疫情无疑是当前最牵动人心的事件,肆虐的疫情对新冠病毒快速检测、肺部用药、医疗方案等方面的研究提出了越来越高的要求。而“粒度”作为重要的颗粒物理参数对于这些研究也有重要意义。例如,2019-nCoV病毒就属于纳米颗粒,而呼吸道不同位置的用药对粒度也有不同要求。因此在医药领域,颗粒在线测量还有巨大的潜力空间待科学家们挖掘。因此,仪器信息网特约span style="color: rgb(0, 176, 240) "strong上海理工大学蔡小舒教授/strong/span为广大网友畅叙颗粒在线测量技术的脉络。虽不能直接为抗疫一线带来助益,但在家隔离的诸位仁人志士若能有缘读到,或将对未来医学等的发展和颗粒检测技术的应用带来更多的思考和契机。/pp style="text-align: justify text-indent: 2em "在今天的文章中,蔡老师重点介绍了光散射在线测量方法(正文如下):/pp style="text-align: justify text-indent: 2em "颗粒,包括固体颗粒、液体颗粒(如喷雾液滴、水中的油滴等)和气体颗粒(如液体中的气泡,气体中悬浮的气泡等)在动力、化工、材料、医药、冶金等各行各业中广泛存在。据有文献报道,80%以上的产品与颗粒有关。/pp style="text-align: justify text-indent: 0em " /pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/d57d16e5-39e5-4d52-af56-4628425d716d.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术1.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术1.png"//pp style="text-align: justify text-indent: 2em "颗粒的粒度是描述颗粒最重要的物理参数,不同的应用对于颗粒粒度的要求是不同的。如在呼吸道疾病治疗中用的鼻喷剂及喷雾剂,就需要控制药物雾滴的大小来达到雾滴沉积到呼吸道具体需要药物治疗部位的目的,这才能保证药液的效果。对于需要肺部用药,药液雾滴粒度应比较很小,才能随吸入的空气流动到达肺部。大一些的药液液滴会沉积在支气管或气管里,达不到肺部用药的目的。而对于喉部或气管的疾病,液滴的粒度就必须比较大,让它们能在喉部或气管里沉积。对于支气管部位的疾病,其雾滴的粒度就要介于2者之间。这就需要对鼻喷剂的喷嘴进行精心设计,以保证雾滴的粒度可以满足治疗不同疾病的需要。/pp style="text-align: justify text-indent: 2em "在工业生产等中,经常遇到需要对颗粒进行在线检测要求,如颗粒的制备、雾化、管道输运等过程中。对颗粒粒度进行在线实时检测,然后将检测结果实时送到控制系统,对生产系统进行调整和控制,不仅可以提高产品质量,还可以提高产品生产效率。如在燃烧过程中,在线实时检测燃料粒度可以提高燃烧效率,降低污染物的产生。磨料生产中在线检测磨料粒度并反馈控制,可以极大提高磨料的质量。这样的例子可以在许许多多的场合找到。/pp style="text-align: justify text-indent: 2em "目前已有许多颗粒粒度测量仪器能对从数纳米到数千微米的颗粒进行测量,但这些仪器基本上是用于实验室分析,并不能用于在线测量。颗粒在线测量的特点是:/pp style="text-align: justify text-indent: 2em "1. 测量环境复杂,条件恶劣,如可能有高温、高压、高湿、工作环境温度变化大、存在振动、颗粒流动速度快、信号发射和接收部分的污染等,还必须考虑测量装置的磨损等;/pp style="text-align: justify text-indent: 2em "2. 测量要求高,测量时间要短,实时性好,不能因为仪器问题影响生产过程等;/pp style="text-align: justify text-indent: 2em "3. 测量对象要求不同,如高浓度及浓度变化大、被测材料不同、粒度范围不同、或粒度范围变化大等;/pp style="text-align: justify text-indent: 2em "4. 希望在线测量仪器结构简单、可靠、抗干扰、易安装、易维护或免维护等。/pp style="text-align: justify text-indent: 2em "5. 不仅测量颗粒粒度及分布,还经常希望得到颗粒的浓度,流量、形貌等参数,甚至成分参数。/pp style="text-align: justify text-indent: 2em "在线测量按照取样方式可以分成直接在线测量(in-line)和取样在线测量(on-line)2类。在直接在线测量(in-line)方法中,测量装置不对被测颗粒进行取样,被测颗粒直接流过测量区进行测量。在这类测量方法中,由于不能对被测颗粒的浓度进行调整来满足测量方法的需要,并且用户对颗粒在线测量的要求和测量对象及环境等的不同,仪器的通用性差,必须精心考虑设计测量系统来满足测量的要求。因此,这类在线测量仪器一般都是个性化的仪器,需要根据测量现场要求来设计研制。而对于取样在线测量(on-line)中,由于连续取出的颗粒样品可以根据测量装置对于颗粒浓度的要求进行稀释调整,同时可以对其中的团聚颗粒采取分散措施,大都可以设计生产相对通用的在线测量仪器。/pp style="text-align: justify text-indent: 2em "目前常用的在线颗粒粒度测量仪器的基本测量原理有光散射,超声,图像等。其中光散射大都用于气固或气液颗粒的在线测量,而超声则用于液体中颗粒的在线测量,图像法既可以用于气固、气液颗粒的测量,也可以用于液固、液液颗粒的测量。下面先重点介绍光散射在线测量方法:/pp style="text-align: center text-indent: 2em "span style="color: rgb(0, 0, 0) "strong光散射在线测量方法/strong/span/pp style="text-align: justify text-indent: 2em "光散射的基本原理是当一束激光入射到颗粒时,颗粒会向整个空间散射入射光,如图是激光入射到有颗粒的水中,颗粒向各个方向散射入射激光的照片。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/a6f9425c-dcf9-47c9-b4c9-22f75bfea916.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术2.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术2.png"//pp style="text-align: justify text-indent: 2em "根据测量颗粒散射光原理的不同,可以把光散射颗粒在线测量方法分成几类:前向静态光散射法,侧向光散射法,后向光散射法,消光法,光脉动法等。在实际应用中针对不同的测量对象,须采用不同的测量方法。/pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 176, 240) "前向静态光散射法:/span/strong这与常用的激光粒度仪的测量原理一样,一束激光从被测颗粒一端入射,在透射端安装接收散射光信号的探测器,对测量得到的散射信号进行分析反演计算,最终得到颗粒的粒度分布和平均粒径等参数。国内外一些颗粒仪器测量公司都有基于该原理的激光在线测量仪。该类仪器的特点是:颗粒粒度测量范围大,可以从亚微米到数百微米,测量速度快,一般采用连续取样方式(on-line)实现连续实时测量。但仪器复杂,安装使用要求高,无法识别颗粒是否团聚,而团聚颗粒会造成较大的测量偏差。为防止环境振动对测量的影响,除在仪器结构上采取措施外,在安装结构上也要采取措施,尽量保证仪器运行时的稳定。为防止被测颗粒对激光器和接收透镜表面的污染,须设置无油无水的压缩空气保护(俗称扫气或气帘)光学元件表面。/pp style="text-align: justify text-indent: 2em "基于该原理的在线激光粒度测量仪器可用于管内粉体颗粒的粒度在线测量和喷雾液滴测量。在在线测量管内粉体粒度时,由于颗粒浓度较高,都配有连续取样系统,将被测颗粒样品连续从管道中取出,经分散和稀释到合适浓度后送到仪器的测量区。下图是安装在现场的激光颗粒粒度在线测量仪以及仪器输出的在线测量结果。根据需要,软件可以输出实时的颗粒粒度分布,以及D50等随时间变化的曲线。为防止取样出来的颗粒发生团聚,影响测量的准确性,在取样系统中应布置使颗粒分散的气流,以尽可能保证进入测量区的颗粒处于分散良好的状态。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/b22b2599-d21f-4f9e-b16e-537e32d204fc.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术3.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术3.png"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strong消光法:/strong/span当激光入射到被测颗粒时,部分入射光被颗粒散射,偏离原入射方向,部分被颗粒吸收,其余部分则透射到另一侧。透射光强由于消光作用而衰减,其衰减程度含有被测颗粒的粒度信息和浓度信息。当采用多个不同波长的激光入射,颗粒对不同波长光的散射作用不同,透射光强的衰减也不同。根据多波长消光法的理论模型,由测得的不同波长的透射光强的衰减,可以反演计算得到被测颗粒的粒度和浓度。/pp style="text-align: justify text-indent: 2em "该方法的特点是结构简单,对振动不敏感,但粒度测量范围较小,合适的测量范围是大约0.05微米到5微米左右。对于浓度不高的测量对象,发射和接收可以直接安装在管道2侧。在管道上开设装有石英玻璃的透明测量窗,激光束从1侧从测量窗入射,在另一侧测量窗外布置光接收器件和信号放大电路等。为防止颗粒污染测量窗口,同样需要设置无油无水的压缩空气进行保护。下图是消光法测量原理的示意图和测量装置安装在工业管道上在线测量颗粒粒度和浓度,以及烟道上在线测量烟尘的浓度。/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/06be3f94-1969-48f0-a900-3db071faadcd.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术4.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术4.png"//pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em " /spanbr//pp style="text-align: justify text-indent: 2em "由于消光法的光路结构简单,可以做成探针形式,用于浓度相对较高的颗粒在线测量。下图是用于汽轮机内湿蒸汽水滴粒度和浓度测量的探针系统。在探针端部的矩形窗口就是测量区。含有细微水滴的蒸汽高速流过该测量区,仪器就可以测得水滴的大小和浓度,进而得到蒸汽的湿度。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/2cf913f6-abe3-41f3-b835-2248a3818d08.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术5.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术5.png"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strong光脉动法:/strong/span在消光法测量中,测量光束的直径远大于被测颗粒的粒度,在测量区中颗粒数目巨大,透射光强的变化仅与测量区中的颗粒浓度变化有关,与颗粒粒度无关。但将测量光束减小到与被测颗粒粒度同一数量级时,且测量区长度较小时,透射光强信号会出现随机变化,这种随机变化是由于在测量区内颗粒数目和大小随时间变化造成的。分析这种随机变化的信号,根据光脉动原理,可以得到颗粒的平均粒度和浓度。并可能可以得到颗粒的粒度分布。下图是光脉动法的原理示意图和透射脉动光强信号。/pp style="text-align: justify text-indent: 2em "这种测量方法的最大特点是测量原理简单,易于实现在线测量,粒度测量范围可根据测量对象的大小,通过改变光束直径来调整,可以在10-数千微米之间。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/d69f90e5-d64b-409e-9232-b2c847816b4c.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术6.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术6.png"//pp style="text-align: justify text-indent: 2em "根据该原理可以在线测量粉体颗粒的粒度和浓度。如果间隔一定距离布置1对测量光束,对2个随机序列信号用互相关法原理处理,不仅可以得到颗粒的粒度,还可以得到颗粒的速度,span style="text-indent: 2em "进而得到颗粒的流量。下图是安装在现场的基于该原理的颗粒粒度在线测量装置。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/a489deae-c7cf-405b-a5f6-765c92c0bdf5.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术7.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术7.png"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strong消光起伏相关光谱法: /strong/span与消光法和光脉动法不同,在该测量方法中,光束的直径小于被测颗粒的粒径,其透射光强不再是如消光法那样是平稳的,也不是如光脉动法那样是连续的高频脉动信号,而是如下图所示,成不连续的脉动信号。当颗粒通过测量光束时,由于颗粒尺寸大于测量光束的直径,入射激光被完全遮挡住,透射光强为零。当没有颗粒通过测量光束时,透射光强为1。采用消光起伏相关光谱法的模型对测得的时间序列信号进行分析,同样可以得到被测颗粒的粒度分布。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/788dfd6a-64c4-4942-a74b-a23cd1c19bbf.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术8.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术8.png"//pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 176, 240) "后向散射法:/span/strong对于高浓度悬浮液、乳剂等,光无法透射过被测颗粒,散射光也会被颗粒所吸收或散射,但会产生后向散射。颗粒浓度越高,这种后向散射光的强度也越高,且与颗粒的粒度有关。根据该原理,可以采用后向散射方法进行高浓度液液或液气颗粒体系,如悬乳剂、高浓度微气泡等的在线测量。该测量方法的特点是浓度测量范围大,可以到体积浓度百分之几十,而粒度测量范围较小,从亚微米到数微米。经过标定,还可以测量颗粒的浓度。/pp style="text-align: justify text-indent: 2em "合适的光路设计还可以用于气固颗粒的在线测量,以及测量气、液、固3相流动中的离散相颗粒的粒度和浓度。/pp style="text-align: justify text-indent: 2em "后向散射法测量可以做成结构非常紧凑的光纤探针形式,带尾纤的激光器发出的激光经光纤入射到被测颗粒,其后向散射光被同一根光纤接收,也可以是另一根光纤接收,然后由光纤另一端的光电探测器将后向散射光信号转换成电信号进行反演计算处理,最后得到颗粒的粒度。下图是后向散射测量的原理示意图和后向散射探针。该探针可以插入如悬乳液等高浓度颗粒两相流中进行在线测量。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/40bb4eb7-28dd-4fb5-8750-9533e649894a.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术9.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术9.png"//pp style="text-align: justify text-indent: 2em "strong style="text-indent: 2em "作者简介:/strongbr//pp style="text-align: justify text-indent: 2em "img style="max-width: 100% max-height: 100% width: 300px height: 217px float: left " src="https://img1.17img.cn/17img/images/202002/uepic/1a4277d5-fe8a-48ce-a42e-05a480160d54.jpg" title="蔡小舒.jpg" alt="蔡小舒.jpg" width="300" height="217" border="0" vspace="0"/蔡小舒,上海理工大学教授。研究领域涉及到颗粒测量、两相流在线测量、燃烧检测诊断、排放和环境监测、湍流等,近年来开始涉足生命科学的测量研究。先后承担了国家两机项目、国家自然科学基金重点项目、仪器重大专项项目、面上项目、科技部和上海市项目等纵向项目,国际合作项目以及企业委托项目。/pp style="text-indent: 2em text-align: justify "曾任中国颗粒学会、中国计量测试学会、中国工程热物理学会、中国动力工程学会、上海颗粒学会等学术组织的副理事长、常务理事、理事、理事长等,是《Proceedings of IMechE Part A: Journal of Power and Energy》、《Particuology》、《KONA Powder and Particle Journal》、《Frontiers in Energy》等SCI刊物和一些国内学术刊物的编委,多个国际学术会议的名誉主席,主席等。/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "/spanbr//pp style="text-align: center text-indent: 0em "strongspan style="text-indent: 2em "欲知相关仪器可点击进入/spanspan style="text-indent: 2em text-decoration: underline "a href="https://www.instrument.com.cn/zc/670.html" target="_self" style="color: rgb(0, 176, 240) "span style="text-decoration: underline text-indent: 2em color: rgb(0, 176, 240) "在线粒度仪/span/a/spanspan style="text-indent: 2em "专场/span/strong/p
  • 蔡小舒教授:颗粒粒度及气溶胶在线测量的图像魔法
    p style="text-align: justify text-indent: 2em "说起图像法,大家很自然会联想到相机。对,图像法就是用相机作为传感器测量颗粒粒度。其实,图像法并不是一种新的测量方法,这是一种已有很多年历史的测量方法。早期的相机采用胶片作为传感器,记录被测物体的影像,然后将影像投影到工具投影仪上,在投影仪上用标尺或后期发展的坐标传感器量出被测物体的大小。下图是一种显微投影仪的照片,显微物镜把胶片上的图像投影到屏幕上,在屏幕上量出物体图像的尺寸。对于颗粒样品,则可以直接在显微镜下进行观测测量。很显然,在用胶片作为传感器的时期,图像法是不可能用于在线测量的。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/21f18409-d7be-4568-a7cb-255a0d29561b.jpg" title="图片1.jpg" alt="图片1.jpg"//pp style="text-align: center text-indent: 0em "strong显微投影仪/strong/pp style="text-indent: 0em text-align: center "span style="color: rgb(255, 0, 0) "(友情提示:移动端用户下方点击阅读全文,/span/pp style="text-indent: 0em text-align: center "span style="color: rgb(255, 0, 0) "再点击取消即可阅读全文,也欢迎下载APP体验阅读新感受)/span/pp style="text-align: justify text-indent: 2em "图像法作为颗粒粒度测量,尤其是颗粒粒度在线测量的新方法再次出现并得到日益广泛的应用,得益于CCD和CMOS的发明,数码相机的飞速发展,以及光学镜头、光源、计算机技术以及图像处理算法的飞速发展。数码相机的核心是CCD/CMOS传感器,尤其是近年来CMOS技术的发展使其性能得到很大提高,几乎占据了绝大部分的数字传感器。下图是CMOS传感器的照片。在CCD/CMOS传感器中,代替胶片中感光粒子的是按矩阵排列的像素。如果在每个像素前按规律设置红(R),绿(G)和蓝(B)三色滤色片,则可以得到彩色图像。这样CCD/CMOS就将图像自然分解成了成可以用计算机处理的离散信号。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/fc747ae3-b89b-426c-8014-114e41854faa.jpg" title="图像2.png" alt="图像2.png"//pp style="text-align: justify text-indent: 2em "图像法在线测量装置主要包括:相机、镜头、光源、取样装置等。其中相机是最关键的设备。为得到清晰的被测颗粒的影像边缘,一般在在线测量中采用逆光(背光)照明方式,相机在测量区一侧,光源在测量区另一侧,如图所示。span style="color: rgb(0, 176, 240) "strong由于光的穿透能力不强,因此图像法不能用于高浓度颗粒的直接在线测量(in-line)。对于高浓度颗粒,必须采用取样方式测量(on-line)/strong/span。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/fc188c81-6aa1-4737-96b1-bf330735261e.jpg" title="图片3.jpg" alt="图片3.jpg"//pp style="text-align: center text-indent: 0em "strong图像法在线测量原理示意图/strong/pp style="text-align: justify text-indent: 2em "与图像法静态测量要求不同,在图像法在线测量中,被测颗粒不是静止不动的,而是在运动的,甚至运动速度很高。为得到清晰的颗粒图像,就要“冻结”运动颗粒的影像,这就要求图像的曝光时间要与被测颗粒的运动速度相匹配。对于高速运动的颗粒,要求的曝光时间要短,低速的可以稍长。 曝光时间还与拍摄图像时所用镜头的放大倍率有关,放大倍率大,要求的曝光时间就短,放大倍率小,曝光时间就可以长一些。 曝光时间可以由相机的快门控制,也可以由光源的脉冲宽度控制。目前工业相机的电子快门时间最短可以到1微秒,而作为照明光源的脉冲激光的脉冲宽度可以达到几个纳秒。曝光时间越短,需要的光源强度就越大,这就给光源提出了高的要求。工业相机的电子快门分成滚动快门(rolling shutter)和全局快门(global shutter)2类。span style="color: rgb(0, 176, 240) "为保证曝光时运动颗粒图像不发生畸变,在图像法在线测量中必须采用全局快门/span。/pp style="text-align: justify text-indent: 2em "作为在线测量,图像法装置不能像显微镜那样通过更换不同放大倍率的显微物镜来适应不同大小颗粒的测量,这就希望像素尺寸尽量小,以得到高的图像分辨率。通常,滚动快门的CMOS的像素小于全局快门,目前滚动快门的CMOS的最小像素已达到1.5微米,而全局快门的最小的像素是3.8微米。/pp style="text-align: justify text-indent: 2em "在图像法测量中,相机镜头是关键的设备。图像法能进行在线颗粒测量,很大程度上是依赖于strongspan style="color: rgb(0, 176, 240) "远心镜头/span/strong的发明和发展。用相机拍摄物体,通常图像存在远小近大的现象。而在线测量不能控制被测颗粒一定会处于镜头的焦平面位置,这就会造成颗粒的影像大小与颗粒的真实尺寸不同。远心镜头的出现,很好解决了这个问题。被测颗粒处于不同位置时,远心镜头获得的颗粒图像大小并不会随位置变化而变化。这就使得图像法可以用于颗粒的在线测量。远心镜头有定倍率和工作距离,以及可变放大倍率和工作距离2类,可以根据需要采用其中一种。/pp style="text-align: justify text-indent: 2em "在图像法在线测量中最大问题是被测颗粒不仅存在于测量区中,有些还处于离焦位置,颗粒图像是不清晰的。下图中就同时存在清晰颗粒、离焦程度不大和离焦尺度大的模糊颗粒影像。strongspan style="color: rgb(0, 176, 240) "对于离焦颗粒图像,可以有2种处理方法/span/strong,对于离焦程度大的模糊影像,直接剔除,不予处理。对于离焦程度不大的模糊图像,可以采用图像处理算法来恢复,得到颗粒的粒度。/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "在图像法在线测量中,一般都需要用取样装置将被测粉体样品从生产工业管路中去出,在取样时,必须采取措施防止颗粒样品发生团聚,如用无油无水的压缩空气分散样品颗粒。下面3个图给出了在在线测量取样中没有对颗粒采取分散措施,分散不足和充分分散后的颗粒图像。可以明显看出充分分散的重要性。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/59590f06-6860-4880-955a-367e24cc5746.jpg" title="图像4.png" alt="图像4.png"//pp style="text-align: justify text-indent: 2em "图像法在线测量不仅可以给出被测颗粒的粒度,还可以得到被测颗粒的形貌参数,这是其它颗粒测量方法不能做到的。/pp style="text-align: justify text-indent: 2em "strong图像法与RGB三波段消光法融合在线测量/strong/pp style="text-align: justify text-indent: 2em "受光学原理和硬件的限制,strongspan style="color: rgb(0, 176, 240) "图像法在线测量下限一般在2-3微米/span/strong。但在工业过程中存在着大量亚微米颗粒中同时存在有少量较大颗粒,并都需要测量其粒度的情况。这时可以strongspan style="color: rgb(0, 176, 240) "将图像法与多波长消光法相结合,用图像法测量较大颗粒的粒度,而用多波长消光法测量亚微米颗粒的粒度/span/strong。/pp style="text-align: justify text-indent: 2em "彩色相机中的CMOS传感器可以认为是RGB三个波段光探测器件,当采用白光作为光源,对获得的图像可以分别用图像处理算法处理其中的大颗粒影像,用多波长消光法处理背景图像中的RGB信息来分别获得大颗粒和亚微米颗粒的粒度。如下图是用彩色相机获得的高速流动中的湿蒸汽两相流图像,其中高速流动的较大水滴的轨迹宽度对应其粒度,而长度对应其速度,背景是较高浓度的小水滴,无法用图像识别。此时,可以分别对如圆圈中的大水滴影像用图像处理算法处理,得到其粒度和速度,而对矩形框内的亚微米颗粒用RGB三波段消光法进行数据处理,得到小水滴的粒度及分布。/pp style="text-align: justify text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/009bf84a-9554-447d-945d-c6bdbe8cb4f2.jpg" title="图片5.jpg" alt="图片5.jpg"//pp style="text-align: center text-indent: 0em "strong同时存在大小颗粒的图像/strong/pp style="text-align: center text-indent: 0em "strong图像法与后向光散射融合测量大气颗粒和排放烟尘浓度/strong/pp style="text-align: justify text-indent: 2em "图像法不仅可以测量成像的颗粒的粒度,还可以strongspan style="color: rgb(0, 176, 240) "与光散射结合测量无法成像的大气中气溶胶颗粒的浓度和排放烟尘的浓度/span/strong。气溶胶是空气中悬浮颗粒与大气构成的体系,悬浮颗粒包括固体颗粒,液体颗粒,生物颗粒等。由于气溶胶颗粒粒度很小,受气流和布朗运动的作用,会在大气中长时间扩散传播,PM2.5就属于气溶胶范畴。下图分别是室内和大空间悬浮的气溶胶颗粒在激光照射下的散射光。strongspan style="color: rgb(0, 176, 240) "该散射光强与悬浮颗粒的粒度、浓度和测量散射角度有关/span/strong。用相机作为传感器,将相机聚焦于激光照射的要测量区域,得到气溶胶后向散射强度后,用米散射理论和相关数学模型进行数据处理,可以得到空间的气溶胶浓度。该方法可以用于烟囱排放烟尘浓度的远距离遥测。如果同时用多个波长的激光进行测量,还可能可以得到悬浮颗粒的平均粒度和分布。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/2f6469fd-9884-41c8-9b57-af11b16bc8b0.jpg" title="图像6.png" alt="图像6.png"//pp style="text-align: justify text-indent: 2em "strongimg style="max-width: 100% max-height: 100% float: left width: 125px height: 125px " src="https://img1.17img.cn/17img/images/202002/uepic/01e065bd-c5ef-4e1a-9570-1808f883e70a.jpg" title="蔡小舒_.jpg" alt="蔡小舒_.jpg" width="125" height="125" border="0" vspace="0"/span style="color: rgb(0, 176, 240) "作/spanspan style="color: rgb(0, 176, 240) "者简介:/span/strong曾任中国颗粒学会、中国计量测试学会、中国工程热物理学会、中国动力工程学会、上海颗粒学会等学术组织的副理事长、常务理事、理事、理事长等,是《Proceedings of IMechE Part A: Journal of Power and Energy》、《Particuology》、《KONA Powder and Particle Journal》、《Frontiers in Energy》等SCI刊物和一些国内学术刊物的编委,多个国际学术会议的名誉主席,主席等。/p
  • 中科院化学所“生物颗粒离子阱质谱装置”通过验收
    中科院条件保障与财务局近日组织专家对中科院化学所研究员聂宗秀主持承担的中科院科研装备研制项目“生物颗粒离子阱质谱装置”进行了结题验收。验收专家组一致认为该项目圆满完成了研制任务,达到了预期目标,同意通过验收。  包括细菌、病毒和细胞在内的生物颗粒在物质循环、生物进化和环境保护中扮演着重要的角色。因此,测量起源各异、个体微小的生物粒子的质量及其在特定群体中的分布和变异情况,对于了解它们的结构和特性非常有帮助。理论上可以采取类似分子质谱的方法,通过精确测定某一个生物颗粒的质量,推断其生物属性。因此,发展精确测量完整生物颗粒质量的质谱技术更具有重大的学术意义和应用价值。然而,生物颗粒的质量已远远超出现代质谱仪的测量范围,使用质谱技术测量病毒、细菌、细胞等生物颗粒是一个巨大的挑战。  该项目针对商用质谱存在的关键科学与技术问题,在质谱理论、仪器构建及新方法应用方面开展了系列探索性研究。科研人员首先研究了非线性离子阱质谱理论,为高性能质谱仪器研发奠定了基础。同时,为破解商用质谱仪无法测量完整颗粒质量的难题,科研人员还研制了离子阱颗粒质谱装置。此外,通用、免标记纳米颗粒在生物组织中的质谱成像及定量新方法也在该研究中成功建立。  “生物颗粒离子阱质谱装置”的研制成功,将质谱测定的质量范围从小于106的分子拓展至约1013的颗粒物,成功实现了颗粒物的质谱分析。利用该装置,项目组发展了对颗粒物的比表面积、尺寸分布及表面吸附量等进行多参数表征的质谱测定新方法,并成功应用于细胞质量的测定、颗粒吸附量“称量”、色谱填料综合表征等。同时,项目组通过相关质谱理论的研究,获得了非线性离子阱的离子运动特性和稳定区,为发展和提高囚禁质谱技术提供了新思路。
  • 区域颗粒物时空立体分布雷达组网监测
    p■ 系统概述/pp 近年来,对于环境质量检测的联网综合监测系统的需求越来越迫切,这一类联网综合测量系统的特点是利用分布在区域内相关的多个单点测量设备的数据,再结合相关气象及环境信息数据,使用一定的算法分析模型计算出区域内各空间位置的环境数据从而对区域内总体的环境质量情况有一个明确的掌握和了解,进而还可以预算出未来一段时间内的区域环境质量情况变化做到对环境质量的提前预警预报。激光雷达设备由于其能向一定程度的高空探测环境数据,所以如果使用相关算法分析模型利用激光雷达测量的高度空间的环境测量数据作为基础数据来进行计算繁衍,就可以在很大程度上进行区域内空间立体环境质量数据的监测和预测,对于整个区域的立体空间环境监测和预报有着很大的现实意义,比如一个城市区域或一个工业园区空间立体监测等。/ppimg title="640.webp.jpg" src="http://img1.17img.cn/17img/images/201601/uepic/53deeae0-078b-4d52-a0a2-cc8b1303ed58.jpg"//pp■ 系统功能说明/pp(1) 雷达组网解决的问题/pp※ 空间立体评价区域环境空气质量:区域污染的时空立体演变情况、区域污染的生消过程、典型区域污染过程的解析、区域污染的主要来源等;/pp※ 区域污染贡献率问题:区域污染输送通量计算,本地污染及外来污染所占的贡献率;/pp※ 区域环境空气质量预警预测:通过相应的计算模型结合环境气象信息来预测未来一段时间内空间立体区域的环境空气质量变化;/pp(2)雷达组网系统主要有四个部分的功能/pp※ 区域内联网的雷达设备信息及状态监视/pp※ 区域内联网的各雷达单点设备数据收集与显示/pp※ 区域立体空间雷达数据的由点到面的同化繁衍计算/pp※ 区域立体空间雷达数据的未来发展预测数据的计算/pp /pp(3) 雷达组网系统中实时雷达测量数据主要有以下类型/pp※ 355消光系数/pp※ 532消光系数/pp※ 退偏振度/pp※ 波长指数/pp※ 颗粒物浓度空间分布/pp※ 边界层/pp※ 能见度/pp※ 光学厚度/pp※ 污染物分布/pp※ 污染物输送通量/pp(4) 雷达组网系统会使用相关计算模型结合相关环境和气象数据来进行区域空间立体雷达检测数据的同化繁衍计算,可以在系统中进行立体空间雷达数据的展示/pp style="TEXT-ALIGN: center"img title="6401.webp.jpg" src="http://img1.17img.cn/17img/images/201601/uepic/f30a694d-a87f-4f6b-b39e-6c3efec20b9b.jpg"//pp※ 各高度水平层面的雷达数据繁衍计算/pp※ 各垂直剖面的的雷达数据数据繁衍计算/pp(5) 雷达组网系统会使用相关计算模型结合相关环境和气象数据来进行区域空间立体雷达检测数据的未来一段时间的预测计算,可以对未来的空气质量的变化趋势进行提前预警预测/ppbr//pp 安徽蓝盾LGJ-01激光雷达系统以激光为光源,运用空间遥感技术原理,利用其发射的激光与大气的相互作用,产生包含气体分子和气溶胶粒子有关信息的辐射信号,再结合相关反演算法就可以从中得到关于气体分子和气溶胶粒子的信息。/pp 本激光雷达同时发射出355nm和532nm激光,利用接收望远镜收集气溶胶、沙尘暴粒子等对激光的后向散射信号,通过接收355nm信号以及532nm的2路消偏信号,分析其回波强度和消偏振特性,可解析出大气中粒子的属性,识别沙尘暴粒子(非球形)及气溶胶粒子的垂直廓线信息。/pp 该款雷达可置于室内、室外环境(配置箱体)。/pp 适用于:环境监测、气象探测、相关研究单位。/pp style="TEXT-ALIGN: center"img style="WIDTH: 1px HEIGHT: 1px" title="6402.webp.jpg" src="http://img1.17img.cn/17img/images/201601/uepic/04c46d7b-7571-4eba-acc3-91b50e2c18ac.jpg"/img style="WIDTH: 357px HEIGHT: 327px" title="6402.webp.jpg" src="http://img1.17img.cn/17img/images/201601/uepic/22393891-a47c-4092-b5ef-91ac27bb9f77.jpg"//ppbr//pp关注微信公众号“蓝盾环保”请扫描以下二维码,为您提供及时的环保行业动态信息和解决方案!/pp style="TEXT-ALIGN: center"img style="WIDTH: 307px HEIGHT: 244px" title="6403.webp.jpg" src="http://img1.17img.cn/17img/images/201601/uepic/3f91991c-3402-4a9a-92a0-fdc9f5958ad4.jpg"//p
  • 综述:细胞外泌体颗粒表征测量技术新进展
    外泌体最早发现于体外培养的绵羊红细胞上清液中,是细胞主动分泌的大小较为均一,直径为40~100纳米,密度1.10~1.18 g/ml的囊泡样小体。  细胞外泌体携带多种蛋白质、mRNA、miRNA,参与细胞通讯、细胞迁移、血管新生和肿瘤细胞生长等过程并且有可能成为药物的天然载体,应用于临床治疗。然而,测量技术手段的局限限制了外泌体在这些领域的研究进展。所以,在这篇文章中,总结了外泌体的纯化方法,比较了现存各种外泌体测量技术,重点介绍了一种新的测量技术,纳米微粒追踪分析术,在外泌体尺寸和表征研究中的应用。  1. 外泌体提取及方法学评价  到目前为止,仍没有一种方法能同时保证外泌体的含量、纯度、生物活性。  1.1 离心法  这是目前外泌体提取最常用的方法。简单来说,收集细胞培养液以后依次在300 g、2 000 g、10 000 g离心去除细胞碎片和大分子蛋白质,最后100 000 g离心得到外泌体。此种方法得到的外泌体量多,但是纯度不足,电镜鉴定时发现外泌体聚集成块,由于微泡和外泌体没有非常统一的鉴定标准,也有一些研究认为此种方法得到的是微泡不是外泌体。  1.2 过滤离心  过滤离心是利用不同截留相对分子质量(MWCO)的超滤膜离心分离外泌体。截留相对分子质量是指能自由通过某种有孔材料的分子中最大分子的相对分子质量。外泌体是一个囊状小体,相对分子质量大于一般蛋白质,因此选择不同大小的MWCO膜可使外泌体与其他大分子物质分离。这种操作简单、省时,不影响外泌体的生物活性,但同样存在纯度不足的问题。  1.3 密度梯度离心法  密度梯度离心是将样本和梯度材料一起超速离心,样品中的不同组分沉降到各自的等密度区,分为连续和不连续梯度离心法。用于密度梯度离心法的介质要求对细胞无毒,在高浓度时粘度不高且易将pH调至中性。实验中常用蔗糖密度梯度离心法,在离心法的基础上,预先将两种浓度蔗糖溶液(如2.5 M 和0.25 M)配成连续梯度体系置于超速离心管中,样本铺在蔗糖溶液上,100 000 g离心16 h,外泌体会沉降到等密度区(1.10~1.18 g/ml)。用此种方法分离到的外泌体纯度高,但是前期准备工作繁杂,耗时,量少。  1.4 免疫磁珠法  免疫磁珠是包被有单克隆抗体的球型磁性微粒,可特异性地与靶物质结合。同样,在离心法的基础上,预先使磁珠包被针对外泌体相关抗原的抗体(如CD9、CD63、Alix)与外泌体共同孵育,蒸馏水冲洗后,重悬于PBS缓冲液中。这种方法可以保证外泌体形态的完整,特异性高、操作简单、不需要昂贵的仪器设备, 但是非中性pH和非生理性盐浓度会影响外泌体生物活性,不便进行下一步的实验。  1.5 色谱法  色谱法是利用根据凝胶孔隙的孔径大小与样品分子尺寸的相对关系而对溶质进行分离的分析方法。样品中大分子不能进入凝胶孔,只能沿多孔凝胶粒子之间的空隙通过色谱柱,首先被流动相洗脱出来 小分子可进入凝胶中绝大部分孔洞,在柱中受到更强地滞留,更慢地被洗脱出。分离到的外泌体在电镜下大小均一,但是需要特殊的设备,应用不广泛。  2. 外泌体测量各种方法的比较  2.1 电子显微镜  扫描电子显微镜(SEM)的工作原理是以能量为1-30KV间的电子束,以光栅状扫描方式照射到被分析试样的表面上,利用入射电子和试样表面物质相互作用所产生的二次电子和背散射电子成象,获得试样表面微观组织结构和形貌信息。高的分辨率。由于超高真空技术的发展,场发射电子枪的应用得到普及,现代先进的扫描电镜的分辨率已经达到1纳米左右,足够用来进行外泌体尺寸的测量。鉴于SEM的工作特点,在外泌体研究中,能够直接观察到样品中外泌体的形态。并且SEM具有很高的分辨率,能够鉴别不同大小不一的外泌体。但SEM对样品的预处理和制备上面要求较高,样品的准备阶段比较复杂,不适合对外泌体进行大量快速的测量。而且由于外泌体经过了预处理和制备过程,无法准确的进行外泌体浓度的测量。  2.2 动态光散射技术  动态光散射是收集溶液中做布朗运动的颗粒散射光强度起伏的变化,通过相关器将光强的波动转化为相关曲线,从而得到光强波动的速度,计算出粒子的扩散速度信息和粒子的粒径。小颗粒样品的布朗运动速度快,光强波动较快,相关曲线衰减较快,大颗粒反之(图1)。  图1 大颗粒和小颗粒光强波动及相关曲线  在外泌体研究中,动态光散射测量敏感度较高,测量下限为10纳米。相对于SEM技术来说,样品制备简单,只需要简单的过滤,测量速度较快。但是动态光散射技术由于是测量光强的波动数据,所以大颗粒的光强波动信号会掩盖较小颗粒的光强波动信号,所以动态光散射不适合大小不一的复杂外泌体样本的测量,只适合通过色谱法制备的大小均一的外泌体的尺寸测量,并且无法测量样品中外泌体的浓度。  2.3 纳米微粒追踪分析术  纳米微粒追踪分析术(以下简称NTA)是一种比较新颖的研究纳米颗粒的方法,它可以直接和实时的观测纳米颗粒。NTA通过光学显微镜收集纳米颗粒的散射光信号,拍摄一段纳米颗粒在溶液中做布朗运动的影像,对每个颗粒的布朗运动进行追踪和分析,从而计算出纳米颗粒的流体力学半径和浓度。  NTA系统的工作原理是将一束能量集中的激光穿过玻璃棱镜对样品(悬浮颗粒的溶液)进行照射(光路图见图2)。图2 NTA激光光路图    激光光束从较小角度入射进入样品溶液,照亮溶液中的颗粒。配备相机的光学显微镜,被放置在特定的位置上,收集视野中被照亮的纳米颗粒发射出的光散射信号。 样品池有大约500微米的深度,采样点激光照亮宽度为20微米,这个数值和光学显微镜的聚焦的视野深度相匹配。相机会进行60秒的影像拍摄,每秒30个采样画面。颗粒的运动过程被NTA软件进行分析。NTA软件在每幅被记录的画面中鉴别和追踪做布朗运动的纳米颗粒。  根据颗粒的运动速度,通过二维 Stokes-Einstein方程计算颗粒流体力学半径  在方程中2是均方位移,KB是Boltzmann常数 T是溶液的温度,单位是Kelvin;ts是采样时间,例如,1/30 fpsec = 33 msec;&eta 是溶液粘度;dh是流体力学直径。 NTA检测颗粒大小的范围和颗粒本身的折光指数相关。测量的下限取决于被研究颗粒和背景之间信噪比,也就是颗粒的散射光强度和背景的光强差距。颗粒的散射光强度根据Rayleigh散射方程,受到以下因素的影响   其中,d是颗粒的直径,&lambda 是入射光的波长,n是颗粒和溶液的折光系数比。通常来说,生物样品,如外泌体等,折光系数较低,所以测量下限为30-40纳米。  由于NTA技术是直接追踪样品中每一个纳米颗粒,决定了NTA对复杂的样品具有极高的分辨率,为了证明NTA对于复杂样品的分辨能力,我们将100纳米和300纳米两种不同大小的聚苯乙烯颗粒按照5:1的数量混合,使用NTA进行测量(图3A)。尽管其分布图形有一定的重叠,但两种不同大小的纳米颗粒的峰清楚的区分开来。这种对复杂样品的分辨能力对于外泌体这样的研究对象来说是非常重要的。  NTA也能对样品浓度进行直接测量。对一系列浓度为1× 108-8× 108的100纳米单分散样品进行测量,可以看到NTA测量浓度结果和实际浓度存在着很好的线性相关(图3B)。对于多分散体系,测量结果的准确取决于仪器参数的设定(照相机快门速度和光圈),恰当的参数设定可以保证不同大小颗粒都被NTA软件追踪和计算。图3 A. 100纳米和300纳米混合样品NTA测量 B. NTA测量浓度和样品实际浓度线性相关  NTA还具有分析荧光样品的能力,NTA有四种不同波长405纳米, 488纳米, 532纳米和635纳米的激光器可以选择,在搭配相应的滤光片,从而实现对荧光样品的测量。将100纳米的荧光标记的颗粒和200纳米的非荧光颗粒用同一溶剂做成混合样品,使用NTA进行测量(图4),图4中,蓝色的线显示为NTA的光散射模式,可以看到尽管100纳米和200nm纳米颗粒的分布图有重叠,但还是清楚的区分了100纳米和200纳米的峰值。然后使用荧光滤光片进行分析,只观测到100纳米的荧光标记的纳米颗粒(红线) 图4 NTA荧光样品测量  由于外泌体表面有标志物CD9,CD63等跨膜分子的存在,在复杂的背景环境下(如血清中),可以用荧光抗体标记外泌体,在用NTA的荧光测量功能实现在复杂背景下对外泌体的测量。NTA相比较于流式细胞仪的荧光功能,分辨率较高,测量荧光颗粒的下限可以达到30-40纳米,而流式细胞仪的测量下限为400纳米,即使对于最新一代的数码流式细胞仪,其测量下限已经达到100纳米,但由于它仍然建立在监测光信号的基础上,所以测量和准确性和分辨率仍然不可靠。所以在外泌体荧光功能测量上,NTA具有独特的优势。  3. 总结  外泌体作为生物标志物的研究目前处于起步阶段,但临床应用已显示出良好的前景。 在临床诊断中,简单快速的在复杂的生物背景下(如血浆,尿液)测量外泌体浓度,大小和表征数据是必备的要求。目前存在的方法都无法完美的解决这一问题。NTA作为一个相对新的测量技术,具有实时观测,较高的分辨率,准确的浓度测量和荧光测量功能,提供了对外泌体大小和浓度研究的新的思路。  (作者:张帅,英国马尔文仪器公司生物科学专家,负责生命科学相关产品的推广与技术支持。)  注:文中观点不代表本网立场,仅供读者参考。
  • 新品发布|便携式油液颗粒计数器简介【霍尔德】
    霍尔德上市新品啦!2024年01月04日上市了一款便携式油液颗粒计数器【便携式油液颗粒计数器←点击此处可直接转到产品界面,咨询更方便】对润滑油颗粒度的评估,我们通常从两个方面展开:颗粒尺寸分布以及颗粒浓度。通过细致地检测和分析,我们可以深入了解润滑油的清洁度、颗粒污染程度,以及颗粒的细致尺寸和分布情况。通过这样的评估,我们可以精确判断润滑油的有效寿命,洞察设备的健康状况,从而制定出更合适的维护计划。这就好比为设备进行定期体检,提前预警可能存在的问题,预防潜在的故障。而定期监测和控制润滑油颗粒度,无疑是维护设备性能、延长设备寿命的重要手段。这就像是为设备提供了一份全面的保健方案,确保其始终处于最佳状态。便携式油液颗粒计数器是采用国际液压标准委员会指定的光阻(遮光)法计数原理,专门用于现场油液污染度等级快速检测装置。具有体积小、质量轻、检测速度快、精度高、重复性好等优点,可在高温高压等及其恶劣的条件下工作。内置微水传感器和温度传感器,在进行污染度检测的同时,可对水含量和油液温度一并检测。适用于发动机油、齿轮油、变压器油(即绝缘油)、液压油、润滑油、合成油等油液,可广泛应用于电力电厂、航空航天、石油化工、交通港口、钢铁冶金、汽车制造等领域。自动颗粒计数器主要特点:1.采用光阻(遮光)法原理,使用高精度激光传感器,体积小、精度高、性能稳定;2.适用于实验室或现场检测,也可选配减压装置用于在线高压测量,实时监测用油系统中的颗粒污染度;3.可外接压力舱形成正/负压,实现高粘度样品的检测和样品脱气;4.内置数据分析系统,能显示各通道粒径的真实数据并自动判定样品等级;5.管路采用316L及PTFE材料,满足各类有机溶剂及油品的检测;6.具有体积冲洗和时长冲洗模式,方便用户对设备的使用和维护;7.内置ISO4406、NAS1638、SAE4059、GJB420A、GJB420B、ГOCT17216、GB/T14039等颗粒污染度等级标准;8.内置校准功能,可按GB/T21540、ISO4402、GB/T18854等标准进行校准;9.内置数据分析系统,可根据标准自动判定样品等级,具有数据自动处理、打印功能;10.可设定任意报警级别,实现污染度或洁净度检测;11.内置微水传感器和温度传感器;12.中英文输入,一键切换,具有预设、输入、修改、存储功能,操作方便快捷;13.超大存储,可选择存储在仪器内部或外部存储设备中;14.嵌入式设计,高强度外壳,便于携带,适合各类工程机械技术指标:光 源:半导体激光器;检测速度:20-60mL/min;离线检测样品粘度:≤100cSt,粘度高时可选配压力舱;在线检测压力:0.1~0.6Mpa(选配减压装置最高压力可达42Mpa);粒径范围:1~500μm;接口:USB接口、电源接口;数据存储:提供1000组数据存储空间,并支持优盘存储;灵 敏 度:0.8μm或4μm(c);极限重合误差:40000粒/ml;计数体积:1~999ml;计数准确性:误差<±10%;防护等级:IP67;测试时间间隔:1秒~24小时;检测样品温度:0~80℃;水活性参考值:0~1aw(±0.05aw);水含量:0~360ppm(±10%);工作温度:-20~60℃;供 电: AC 220V±10%、50/60Hz;重量:2.5kg;体积:275×220×107mm
  • 众瑞仪器发布ZR-7010型 便携式空气颗粒物浓度测定仪新品
    详细介绍产品简介 该仪器采用β射线吸收称重原理,对捕集到滤膜上的PM2.5或PM10颗粒进行自动准确测量,自动连续监测环境PM2.5和PM10的浓度。该仪器体积小,便于携带安装,具有防尘防雨特性,可在户外长时间连续自动工作。该仪器符合GB3095-2012和HJ653-2013的相关规定,广泛适用于常规环境空气质量监测、环境评价、科学研究、应急监测以及环境空气监测站数据比对等场合。执行标准GB3095-2012 环境空气质量标准HJ653-2013 环境空气颗粒物(PM10和PM2.5)连续自动监测系统技术要求及检测方法Q/0212ZRB013-2014 便携式空气PM2.5浓度测定仪技术特点采用β射线吸收称重+DHS(动态加热系统)原理直接测量颗粒物质量浓度,不受颗粒物化特性的影响,无需修正,全天候实时提供精确数据;具有动态温湿度补偿功能,符合国家标准,可以保证对半挥发性硝酸盐和有机物的准确测量;可选配不同的切割器进行PM10和PM2.5浓度的实时测量;采用低活度C14β源,安全稳定;采用宽温型工业触摸屏,操作方便快捷;采样进气管有加热装置,根据设定的湿度值对采样空气进行自动除湿;自动测量温湿度和气压等参数,并自动换算标准状态采样体积;仪器可自动存储历史数据、可现场打印或用U盘导出;具备数字和模拟输出接口,可方便连接数采仪进行联网传输;具备无线通讯模块,可远程查询仪器工作状态和实时测量数据;仪器具有停电后自动保存当前数据,当来电后仪器能够保持继续采样;仪器有独立的断带、滤纸用尽以及机械故障等测试程序;出现问题仪器自动报警,并进行仪器保护;便携性好,现场安装迅速,交直流两用,连续自动运行,可适用于多种测试用途;可选配风向风速传感器,具有自动加热和数据记录功能。创新点:1、采用β 射线吸收称重+DHS(动态加热系统)原理直接测量颗粒物质量浓度,不受颗粒物化特性的影响,无需修正,全天候实时提供精确数据;2、具有动态温湿度补偿功能,符合国家标准,可以保证对半挥发性硝酸盐和有机物的准确测量;3、采样进气管有加热装置,根据设定的湿度值对采样空气进行自动除湿;4、自动测量温湿度和气压等参数,并自动换算标准状态采样体积;5、便携性好,现场安装迅速,交直流两用,连续自动运行,可适用于多种测试用途;6、可选配风向风速传感器,具有自动加热和数据记录功能。ZR-7010型 便携式空气颗粒物浓度测定仪
  • “高端装置扭矩速度测量”重大仪器项目启动
    2月28日,国家重大科学仪器设备开发专项&mdash &mdash &ldquo 高端动力装置扭矩和速度测量仪器设备的研发与应用&rdquo 项目启动会,在中国计量科学研究院(以下简称&ldquo 中国计量院&rdquo )召开。会议由国家质检总局科技司主持,科技部条财司副司长吴学梯、国家质检总局科技司副司长王越薇、中国计量院副院长宋淑英等领导及项目监理组、总体组、技术专家委员会、用户委员会和管理办公室等近百人参加了本次启动会。  图1:科技部条财司副司长吴学梯在启动会上讲话  启动会上,科技部条财司副司长吴学梯介绍了国家重大科学仪器设备开发专项的设立背景和目标定位,要求&ldquo 高端动力装置扭矩和速度测量仪器设备的研发与应用&rdquo 项目组瞄准产品开发目标,积极推进产业化 更加关注产品的知识产权 按照项目管理办法,落实好法人负责制的各项要求 严格进行项目经费管理,并希望相关项目参与单位加强协作,潜心开发,实现科学仪器设备自主创新。同时他对该项目利用信息化系统的创新管理方式表示肯定,并希望其能够得到进一步推广运用。  图2:项目总体组组长、中国计量院副院长宋淑英讲话  项目总体组组长、中国计量院副院长宋淑英对与会领导、专家对中国计量院科技事业发展的关心支持和帮助表示感谢。她指出,&ldquo 高端动力装置扭矩和速度测量仪器设备的研发与应用&rdquo 项目是近年来中国计量院在重大仪器方面获得的第3个国家支持项目。作为项目牵头单位,中国计量院将继续做好支持和服务工作,与各项目参与单位团结协作,确保项目顺利实施,为我国摆脱高端测量仪器完全依赖进口的局面作出应有贡献。  图3:项目负责人、中国计量院力学与声学研究所所长张跃汇报项目总体情况  项目负责人、中国计量院力学与声学研究所所长张跃研究员就项目背景、总体目标、任务分解、预期成果及进度和经费安排等相关情况进行了汇报。项目办公室汇报了项目实施管理办法 各任务负责人分别汇报了任务的研究内容、考核指标、实施方案、进度及经费安排等。  与会专家在认真听取汇报的基础上,展开热烈讨论,对项目进行点评,并提出实施意见建议。  高端动力装备在装备制造业中占有举足轻重的地位,是各种重大成套技术装备的核心组成部分,例如,风力发电机组、大型舰船推进系统、高速列车动力系统及转向架、航空发动机、高档数控机床等。高端动力装备对国民经济的发展起着突出的作用,同时也代表了我国先进制造业,特别是装备制造业的能力和水平。  而目前,我国大量的扭矩和速度参数测量系统,包括功率、最大扭矩、最高车速、加速度等,尤其是高端测量仪器依赖进口,并无法在国内溯源,严重制约了我国自主动力扭矩和速度测量仪器的可靠计量、研发与应用,从而制约了我国高技术含量、高国际竞争力的核心工业产品的自主研制和生产,开展具有自主知识产权的高端动力装置扭矩和速度测量仪器设备的研制需求迫切。  该项目总体目标为:开展高端动力装置机械功率关键参数扭矩和速度精密测量技术的研究,攻克扭矩标准装置中高精密空气轴承支撑部件的核心技术及双天线雷达测速收发模块的关键技术。研究建立具有自主知识产权的高端动力装置的扭矩测量仪器(20kNm扭矩标准机)、高端动力装置速度测量仪器(双天线雷达测速仪器)和加速度计动态特性校准装置,填补国内空白,达到高端动力装置扭矩测量和速度测量的国际先进水平。  据介绍,项目研制成果将有望为我国高端动力装备扭矩与速度等功率测量建立可靠的计量溯源体系,并将在仪器开发、产业化示范、节能减排等方面起到重要的推动作用。  图4:启动会现场  该项目的组织实施单位为国家质检总局,由中国计量科学研究院牵头,并负责其中4个任务,任务承担单位还包括清华大学、中国船舶重工集团第七〇四研究所、浙江省计量科学研究院、北京化工大学、辽宁省计量科学研究院、湖南省计量科学研究院、苏州苏试试验仪器股份有限公司与长沙普德利生科技有限公司等8家单位。项目起止时间为2012年10月至于2016年9月。主要包括12个任务:20kNm高准确度扭矩标准装置的研发、高准确度大质量参数测量装置的研制、高精度宽量程多普勒雷达测速技术的研究及其测量装置的研制、加速度计动态特性计量技术的研究与校准装置的建立、空气轴承支撑技术的研发、无扰动质量参数自动测量技术的研发、加速度计动态模型及参数辨识的研究、测速测距雷达测速仪在交通领域的应用研究、空气轴承支撑技术在高准确度扭矩标准机及船舶装配质量控制中的应用、安全气囊加速度计校准装置在汽车行业的应用以及双天线雷达测速仪在高铁行业的应用研究等。
  • 聚焦颗粒和液滴测量技术——第12届中国多相流测试学术会议分会场侧记
    仪器信息网讯 2021年5月15-16日,中国计量测试学会多相流测试专业委员会第十二届年会暨中国多相流测试学术会议在吉林成功召开。会议由中国计量测试学会多相流测试专业委员会主办,东北电力大学能源与动力工程学院、吉林省电机工程学会共同承办。15日下午,5个不同主题的分会场同期举办,会期1天,吸引了相关领域与会者的热烈关注。颗粒和液滴测量技术分会场共设置4个特邀报告和26个主题报告,精彩纷呈;由8位分会场主席相继主持。以下为部分精彩报告摘要。颗粒和液滴测量技术分会场天津大学教授 谭超报告题目:《超声/电学双模态层析成像系统》多相流广泛存在于自然界和工业生产中,是一种复杂和时变的流体结构,被测参数多,测量人员难以在非扰动的条件下准确、可靠地获取关键过程参数,实现流动过程的可视化动态监测。其中,流态分布的多变性、流态转变的瞬态性以及流场与测量场的耦合性是制约多相流参数检测技术发展的瓶颈问题。报告详细介绍了谭超及其研究团队在过程层析成像方面的研究进展;团队采用模块化设计,通过电阻层析成像、电容层析成像、超声层析成像多模态组合方式,可获得多相流电导率、介电常数、声阻抗、传播时间、多普勒频移等更丰富的信息。中国科学院上海高等研究院副研究员 赵陆海波报告题目:《气液鼓泡体系多尺度气泡可视化实验及模拟研究》气液鼓泡体系反应器因其结构简单、传质传热性能好等优点被广泛应用于能源和环境等领域,如费托合成、加氢反应、羰基化反应、CO2吸收转化、废水处理等过程,核心是对于气泡流动过程多尺度现象认识及流控、传质和反应过程强化的应用。赵陆海波与研究团队采用光场成像等可视化测量方法研究多尺度气泡尺寸时空分布,并结合群平衡模型(Population Balance Model—PBM)建立可预测多尺度气泡鼓泡过程预测的CFD模型,通过电阻层析成像(Electrical Resistance Tomography—ERT)验证了模型的准确性,初步建立了可应用于多相反应过程强化研究的可视化测量及数值模拟方法。中国矿业大学副教授 董良报告题目:《数字孪生智能选矿中的多相流测试技术》全球步入以智能制造为主导的时代,选矿技术也应顺应国家战略规划需求,向智能化方向发展。数字孪生以数字化方式创建物理实体的虚拟模型,通过虚实交互反馈、数据融合分析、决策迭代优化等手段,可为选矿过程提供更加实时、高效、智能的运行或操作服务。报告重点阐述了智能选矿过程涉及的重介质分选过程智能化、浮选过程智能化、粗煤泥分选智能化等关键技术,并对颗粒粒度、密度、浓度等在线测试技术提出数字孪生智能选矿中的多相流智能感知需求,为智能选矿提供技术指导。上海理工大学副教授 于海涛报告题目:《基于高斯光束入射下彩虹散射的液滴测量研究 》雾化广泛应用在燃烧、医药、农业、消防、日常生活等领域,在雾化燃烧、雾化干燥、雾化冷却等众多过程中,测量液滴粒径大小及分布、速度、温度、蒸发速率等参数,对雾化过程中气液流动、传热机理的研究极为重要。在众多液滴测量技术中,彩虹测量技术是液滴测量的重要方法之一,可以实现液滴粒径、折射率和温度的同步测量。于海涛及其研究团队专注于高斯光束入射下彩虹散射的液滴测量研究,报告基于德拜级数展开理论和广义洛伦兹-米理论研究液滴的彩虹散射特性,并根据彩虹散射计算液滴的折射率和粒径。现场精彩一览伴随着分论坛的结束,大会圆满闭幕。第13届中国多相流测试学术会议将由中国计量大学承办,2022年杭州再会!
  • 青岛众瑞参与的国家标准《环境空气 颗粒物质量浓度测定 重量法》正式发布实施
    由中国计量院牵头,我公司参与的国家标准《环境空气 颗粒物质量浓度测定 重量法》正式发布实施。《环境空气 颗粒物质量浓度测定 重量法》国家标准为环境空气中颗粒物质量浓度的滤膜采样手工测定提供指导,进一步完善我国环境空气中颗粒物质量浓度测量的标准化体系。环境空气中颗粒物(tsp、pm10、pm2.5等)是一种常规的污染物,对人体健康、能见度和生态等都有着非常重要的影响。因此,对这类污染物的质量浓度测定是大气环境研究中的重要工作。环境空气中颗粒物质量浓度测定方法包括:重量法、微量振荡天平(teom)法、?射线测量法等。各种方法各有优劣。重量法是直接、可靠的测量方法,可直接溯源至质量、时间、流量、压力等国家计量基准、标准。其他测量方法的测量结果必须使用重量法进行校准。即,重量法是环境空气中颗粒物质量浓度测量的基准方法,是验证其他方法是否准确,保证其测量结果溯源性的基础。关于我们 青岛众瑞智能仪器有限公司成立于2007年,专注于环境监测仪器、计量校准分析仪器、微生物及气溶胶检测等仪器的研发、生产和销售。成立十余年来,始终坚持“以质量求生存,以服务求市场,以科技求发展”,聚焦核心科技,现已申获国家专利245项,其中已授权176项,已授权发明专利19项,实用新型138项,取得软件著作权59项。面向未来,众瑞仍将秉承“用心做好仪器”的理念,不忘使命担当,让仪器连接世界,用检测创造美好!
  • 岛津携纳米粒径分析装置IG-1000参加2010中国颗粒学会盛会
    2010中国颗粒学会盛会于8月15日-18日在西安举行,这是国内颗粒分析行业最重要的学术会议,颗粒分析专家和年轻学者汇聚一堂,交流各自学术研究成果。作为分析仪器界最大供应商之一,颗粒分析仪器的知名专业生产厂商,岛津公司盛装出席,展出了岛津公司最新的纳米粒径分析装置IG-1000。会议上还通过报告的形式将岛津公司颗粒分析的最新技术和应用进展与与会专家学者进行了分享汇报。用户在岛津展台前就颗粒分析技术问题进行交流 此次会议上岛津的单纳米分析装置IG-1000备受关注。IG方法(Induced Grating method)是岛津公司开发的独一无二的纳米粒径测定技术,为此IG-1000获得了2009 Pittcon大奖,这是全球分析仪器界对于岛津公司先进粒度分析技术的充分肯定。 岛津公司纳米分析技术专家安国玉经理向与会的各位专家学者详细介绍了岛津IG-1000在纳米分析行业的最新应用以及IG-1000的测定优势所在。与目前采用散射光的动态光散射仪器(DLS)方法相比较, 优势明显。测定范围最低到0.5nm,在单一纳米颗粒领域可以获得十分良好的信噪比(S/N),灵敏度也非常高。即便样品中含有少量的粗大粒子时对测定也没有影响,分布广的样品可以得到正确的结果,克服了以往DLS产品耐污染性差的缺点。IG-1000不使用散射光,因此不受物理参数的限制,不要求输入折射率因子(refractive index)作为测量条件。IG-1000测定结果可以与其他纳米粒子测定手段如TEM和SEM等所得结果吻合。IG-1000的方便可靠之处还在于,可利用原始数据(衍射光强度对时间的变化)来进行测定结果的可靠性验证。 岛津公司纳米分析专家安国玉经理在进行IG-1000的报告 此次会议上岛津公司粒度分析仪器应用工程师冯旭先生也就其在卫生陶瓷洁具分析中的应用方法开发结果与各位进行了分享。卫生陶瓷洁具行业涉及到多种粉体原料的分析测试,粉体材料的粒径会影响到最终产品的外观美观度和耐用度,因为粉体原料的粒径分析至关重要,所以岛津公司近期就如何使用粒度分析仪器得到准确的结果进行了研究并与颗粒分析工作者进行分享。 岛津公司粒度分析仪器应用工程师冯旭先生在作报告 岛津公司粒度测定装置种类齐全,单一纳米粒径的新产品IG-1000可以与岛津其他多种型号的激光粒度仪联合使用,实现了从纳米到微米范围的可靠测定。
  • 山东攻克低浓度颗粒物测定 新方法填补国内空白
    日前,《山东省固定污染源废气低浓度颗粒物的测定重量法》发布实施,填补了国内低浓度颗粒物测定空白。要加快燃煤锅炉和工业炉窑现有除尘设施升级改造,确保颗粒物排放浓度稳定达标排放,新方法的出台无疑将大大推进山东节能减排工作进程。  &ldquo 《山东省固定污染源废气低浓度颗粒物的测定重量法》(以下简称《重量法》)的发布实施,填补了国内测定固定污染源废气中颗粒物浓度50mg/m3的方法空白,为执行最高允许颗粒物排放浓度限值10mg/m³ 以下提供了判别监测方法标准。&rdquo 山东省环保厅副厅长谢锋如是说。  据了解,《重量法》日前已由山东省环保厅和省质监局发布为山东省推荐性环境保护地方标准,并于日前实施。  原标准有缺陷 亟待制定新标准  按照国家《大气污染防治行动计划》和山东省《大气污染防治规划一期(2013~2015)行动计划》的要求,要加快燃煤锅炉和工业炉窑现有除尘设施升级改造,确保颗粒物排放浓度稳定达标排放。  山东省大部分单机装机容量30万千瓦以上机组采用了双室四电场静除尘器和炉外湿法脱硫的除尘技术,颗粒物浓度低于50mg/m³ 。部分电厂对现有除尘设施进行或将要进行升级改造,将静电除尘器改造为电袋复合除尘、纯布袋除尘、电除尘器内部改造或增加湿式电除尘,颗粒物浓度低于30mg/m³ ,有些甚至设计达到5mg/m³ 。同时,国家和山东省近期颁布的《火电厂大气污染物排放标准》(GB13223-2011)和《火电厂大气污染物排放标准》(DB37/664)等一系列标准中均把固定源废气中颗粒物排放浓度降至30mg/m³ 以下。  随着环境管理日趋严格和环境污染治理技术的不断进步,现有颗粒物监测方法GB/T16157,已逐渐暴露出不能准确测量和不适应低浓度颗粒物监测的缺陷,已不能满足对固定源颗粒物排放监管和环境管理的需要。  山东省从2013年开始,就已经在全国率先着手开展低浓度颗粒物的方法储备和现场实际验证,具备了比较丰富的监测经验,积累了大量的监测数据,取得了比较好的效果,为《重量法》的制定奠定了良好基础。  据了解,低浓度颗粒物的采样及分析技术在国外发达国家已开展了研究,检测方法主要是手工称重法。但目前国内还没有关于低浓度颗粒物检测的方法标准,所以无法对其进行规范。  国内大部分标准方法均将GB/T16157作为测量固定源颗粒物浓度的依据,方法测定低于50mg/m3的颗粒物时误差较大,在低浓度颗粒物采样和分析中,无法准确定量,产生的误差降低颗粒物采样准确度,对测定结果产生较大影响。因此,《重量法》的制定对山东省低浓度颗粒物的测定方法规范具有重要意义。  制定原则和测定方法有哪些?  《重量法》编制负责人、山东省环境监测中心站的潘光说,本着科学性、先进性和可操作性为原则,在原《固定污染源排气中颗粒物测定与气态污染物采样方法》基础上,按照国家《大气污染防治行动计划》和山东省《大气污染防治规划一期(2013~2015)行动计划》的有关要求,同时参考美国、欧盟的相关标准,在我国现有标准、规定和监测站实际工作要求的基础上,结合山东省实际情况和当前的科学技术水平,不断深入研究和完善,制定了《重量法》。  据了解,《重量法》技术要求的制定原则,一是方法的测定内容、基本要求、测定原理等需满足相关环境标准和环保工作的要求 二是测定方法具有可实施性,通过标准规定的检测方法,有效监测山东省地方规定的排放标准限值,保证高准确度,满足目前环保工作的需要 三是测定方法具有普遍适用性、功能完整性。  低浓度颗粒物测定的方法原理是遵循等速采样原理,使进入采样嘴排气的流速等于测点排气的流速 采用滤膜替代滤筒,以减少捕获颗粒物介质的自重,GB/T16157中使用的1#滤筒自重约2g,3#滤筒自重约1g,而直径47mm的玻璃或石英纤维滤膜自重0.2mg。由称重法确定颗粒物的质量和采集颗粒物的抽气体积来计算颗粒物浓度。  如何规范低浓度颗粒物测定?  《重量法》涉及到采样工况、采样位置和采样点,基本与GB/T16157的规定一致,但规定测孔直径为100mm,采样平台在GB/T16157的基础上提出了更具体的要求,特别强调在采样平台要设置低压配电箱,以满足采样时供电的需要。  采样时间是保证采集颗粒物样品的时间代表性,颗粒物量是保证称量的准确性。当排气中颗粒物浓度低时,需要通过延长采样时间或在规定的时间内增大采样体积获得足够质量的颗粒物。除加热采样系统中有关部件到选择的温度、滤膜的毛面朝上放置、每个样品采样时间不小于30min(对于执行颗粒排放限值低于20mg/m³ 的固定污染源,采样体积不小于1m3)外,其余应符合GB/T16157相关规定。在每个系列测量后制备一个全程空白样品。采样完毕后,用密封帽将采样嘴密封放回原容器中带回实验室。  在样品分析中,根据不同的测试需求可选用整体称重或分体称重,对两种称重方式做了详细的说明,要求全程空白值应当单独报告,不得从测量颗粒物结果中扣除全程空白值。  《重量法》提出,要注意标识、手套、测试工况、防止污染、滤膜托架加热、颗粒物测定结果判断、有效数据个数等事项。称重前对称量部件或盛称量部件的容器进行标识,每一个标识必须保持唯一性和可追溯性。采样前后,处理(放置、安装、取出、标记、转移)和称重称量容器以及称量部件时应戴无粉末、抗静电的一次性手套。应在排污企业设施正常运行,工况达到设计规模或稳定出力或有关大气污染物排放标准规定的条件下测试颗粒物浓度和排气参数。
  • 国内外知名厂商亮相西安颗粒学术盛会
    仪器信息网讯 2010年8月16日,“中国颗粒学会第七届(2010年)学术年会暨海峡两岸颗粒技术研讨会”在西安市陕西宾馆隆重开幕。其中,“颗粒测试与应用”分场的相关厂商报告简介如下:美国贝克曼库尔特颗粒部全球技术总监许人良博士报告题目:亚微米与纳米颗粒表征技术最新进展  许人良博士主要介绍了动态光散射技术、亚微米纳米颗粒追踪技术、库尔特(电阻法)计数器、Zeta电位测量技术等方面的新进展。许人良博士表示:“随着科学技术的发展,表征10μm以上的颗粒技术更新换代趋近完成,目前的技术进展主要集中在10μm以下的颗粒表征领域。这些新技术所表征的材料浓度很高,测量下限延伸到纳米以下,与纳米技术发展紧密相关。”珠海欧美克科技有限公司董事长张福根博士报告题目:静态光散射粒度测量的理论下限及实现极限测量的技术方案  经过实验研究,张福根博士得出结论:“(1)0.02μm作为测量下限是比较合理的 (2)垂直偏振光比水平偏振光的灵敏度更高 (3)小颗粒的散射光能分布的特异性体现在大角散射区。”同时,针对于极限测量的主要障碍——全反射,除了现行的多光束(多波长)及异型窗口解决方案外,张福根博士提出了“测量窗口斜置、大角探测排布器由里到外间隔逐渐加大、高功率的线偏振激光”等不同解决方案。德国Retsch(莱驰)公司中国区经理董亮先生报告题目:动态数字成像技术在现代粒度及粒形分析中的应用  董亮先生表示:“传统粒径分析技术分析样品量少,信息量也少,重现性不佳,尤其是对于不规则样品。作为一家专业生产实验室固体样品前处理的全球知名厂家,德国RETSCH推出了全球第一台采用动态数字成像技术的粒度分析仪,采用专利双镜头设计,可精确到每一个颗粒的形态分析和信息采集,重现性好,提供数据信息量大。”微纳颗粒技术有限公司董事长兼首席专家任中京先生报告题目:动态光散射原理纳米激光粒度仪的研究进展  任中京先生首先介绍了动态光散射的原理、运算规律以及测试流程。任中京先生谈到:“纳米粒度仪的关键技术是动态光散射信号采集、数字相关器以及相关信号的解读。目前动态光散射技术已趋成熟,国内相关器技术也已达到国际先进水平,济南微纳已率先在国内推出了Winner801光相关纳米粒度仪,可以满足纳米颗粒测试需要,打破了国外仪器垄断我国纳米测试领域的历史。”岛津国际贸易(上海)有限公司冯旭先生报告题目:激光粒度在陶瓷卫生洁具行业的应用  冯旭先生通过举例向大家说明了激光粒度在陶瓷卫生洁具中的广泛应用。冯旭先生说到:“陶瓷卫生洁具是由坯体和釉面两种材料在高温中烧制而成,其质量由这两种原材料的粒度分布决定。激光粒度测试的散射光强度分布决定了颗粒粒度的分布,目前,在陶瓷卫生洁具方面主要存在取样不均匀、分散效果不好、折射率选择等问题。”丹东百特仪器有限公司总经理董青云先生报告题目:激光粒度仪扩大量程和提高性能的途径与实践  董青云先生谈到:“扩大量程的途径主在光路系统、镜头以及探测器等方面。光路系统同时接收前向和后向散射光信号 镜头是一个透镜组,消场曲、消色差,接收不同角度的散射信号 探测器阵列为高性能的前向和后向。基于以上三面的实践,丹东百特推出的Bettersize2000通过理论模拟与反演结果的对比,在准确性、分辨率、重复性、适用性多方面的表现均十分突出。”马尔文仪器有限公司宁辉先生报告题目:纳米粒度表征的技术指标及其验证  宁辉先生首先向大家介绍了动态光散射技术的布朗运动原理、相关运算规律以及多指数分析模型,同时,宁辉先生还介绍到:“动态光散射的仪器性能涉及仪器硬件设计和使用、软件的计算方法。其指标主要包括粒径检测范围、浓度检测范围、灵敏度以及分辨率。其中,通过与分离技术相结合,可以提高动态光散射技术的分辨率。”成都精新粉体测试设备有限公司总经理周定益先生报告题目:光子相关光谱法纳米激光粒度仪简介  周定益先生表示:“光子相关光谱法是测试纳米最有效的方法。其实现的基础之一就是硬件相关器,通常制造商利用其来实现纳米测量。目前,成都精新已率先提出智能自相关器,代替了传统的硬件相关器,并于2007年成功研制出使用智能自相关器的纳米激光粒度仪JL-1198型和JL-1197型两款纳米激光粒度仪。其中,JL-1197型粒度仪同时具有光子相关光谱法、激光散射两种原理测试功能。”堀场贸易(上海)有限公司梁世健先生报告题目:HORIBA激光粒度测量技术的新进展  梁世健先生说到:“日本堀场以其高精尖的产品成功地将市场拓展到了全球各个国家和地区,其产品已被广泛地应用到汽车、半导体、新材料、能源、冶金、食品加工以及科学研究等领域的产品研发和质量控制中。其中,HORIBA激光粒度仪采用最为精确的光散射理论—Mie理论,测量范围为0.3nm-8μm,准确度高,重现性好。”岛津国际贸易(上海)有限公司安国玉先生报告题目:岛津纳米粒径测定装置IG-1000在纳米材料行业中的应用  安国玉先生表示:“纳米粒子材料技术研发和应用中的关键环节就是需要进行纳米粒径的测定。诱导光栅法是由介电电泳力使粒子构成衍射光栅,从光栅的扩散速度求得纳米粒子大小。日本岛津公司采用该技术推出了新型纳米粒径测定装置IG-1000。与传统的散射光的方法相比,在单一纳米颗粒领域可以获得良好的S/N比。”北京金埃谱科技有限公司总经理夏攀先生报告题目:比表面积及孔径测试技术及其在分体行业中的应用  夏攀先生首先介绍了比表面积定义、孔容积定义以及比表面积及孔径测试技术的相关标准方法。另外,夏攀先生还说到:“比表面积的测试方法可分别按照理论计算方法和吸附量测定方法的不同来分类,不同分类方法之间相互关联,同属于国际和国内标准的规定方法,其中,国内目前常采用的是‘直接对比法’。”科艺仪器有限公司汪洁女士报告题目:革新技术和——可视化纳米颗粒分析仪  汪洁女士说到:“NanoSight的关键技术为一个专用的光学器件和特殊配置的激光束。通过视频对布朗运动的分析测量颗粒大小,同时,也可通过视频观测到很多单独的纳米粒子。通过观测分析,可以得到高分辨率的粒径分布、颗粒浓度以及包含具有诸如相对光散射强度或荧光等特性的纳米颗粒。”
  • Day2之颗粒测试技术多领域应用探讨——第十一届全国颗粒测试学术会议
    p  strong仪器信息网讯/strong 2017年11月16日,为期两天的a href="http://www.instrument.com.cn/news/20171117/233615.shtml" target="_self" title="" style="text-decoration: underline color: rgb(0, 176, 240) "span style="color: rgb(0, 176, 240) "strong“第十一届全国颗粒测试学术会议暨2017全国粉体测试技术应用研讨会”/strong/span/a在广州如期召开。大会由中国颗粒学会颗粒测试专业委员会主办,华南师范大学物理与电信工程学院、珠海真理光学仪器有限公司承办,会议吸引来自全国各地高校院所、检测机构、仪器设备厂商等颗粒测试‘圈’内120余名专家学者参会。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/6820d2cb-3b42-4aaf-807d-a28bbce0c8a4.jpg" title="01.jpg"//ppbr//pp style="text-align: center "strong会议现场/strong/pp  会议第二天(17日),精彩报告继续上演,共13个学术报告依次进行,依次就颗粒测试技术多领域应用进行探讨,以下为摘录部分精彩内容:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/b9bb6030-76dd-4bc4-a0df-cf0a94fe31b7.jpg" title="IMG_9497.jpg"//pp style="text-align: center "strong报告人:张红霞(天津大学)/strong/pp style="text-align: center "strong  报告题目: 基于干涉成像技术的透明椭球粒子测量/strong/pp  干涉粒子成像(IPI)技术被广泛应用于粒子测量领域,来自于透明球形粒子反射和折射的散射光,在聚焦像面上产生两点像,在离焦像面上产生干涉条纹图,通过测量两点像距离或者干涉条纹频率可以获得粒子的尺寸信息,但对透明椭球形粒子的测量还有待深入研究。张红霞等采用热拉伸法,以标准球形粒子为原料制作椭球粒子,搭建IPI实验系统,采用双CCD同时获取粒子在相互垂直的两种偏振态下的干涉图像,实现球形粒子与椭球形粒子的形态判别及转向判别。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/847db6ee-f89e-4b75-9d6a-70e62b46d9be.jpg" title="IMG_9506.jpg"//pp style="text-align: center "  strong报告人:刘忍肖(国家纳米科学中心)/strong/pp style="text-align: center "strong  报告题目:XRF检测石墨烯粉体材料中的主要杂质元素/strong/pp  石墨烯粉体是我国已具备规模化生产能力的主要石墨烯材料类型,建立准确可靠的物理结构和化学成分分析方法对实现其在多个工业领域的应用至关重要。刘忍肖等发展了一种可对石墨烯粉体材料中所含杂质元素进行快速、无损分析的检测方法。技术内容是基于X射线荧光光谱(XRF)技术对未处理或压片成型的石墨烯材料进行无损、快速检测,信誉ICP-OES、ICP-MS、SEM/EDS等通用测试方法的测试结果进行比对验证,有望成为对石墨烯粉体杂质元素快速、简单、经济、无损、通用的定性半定量分析测试方法。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/59a3cd28-4401-40c5-a79e-74ebbc99c5f3.jpg" title="IMG_9508.jpg"//pp style="text-align: center "  strong报告人:邱健(华南师范大大学)/strong/pp style="text-align: center "strong  报告题目:关于动态光散射技术三个问题的研究/strong/pp  为提高颗粒测量性能及拓展应用领域,邱健就三个方面的技术问题与大家展开探讨:即探测区杂散光对相干因子的影响、表面效应对颗粒布朗运动的影响、颗粒的定向运动方向对测量的影响等。经过实验得出系列结论:相干因子随着相干或者非相干杂散光的比例增大而减小;相干因子要高,就一定要控制杂散光;在一维宽度受限区域内,颗粒粒径的测量值大于实际值;扩散系数变化与受限宽度有近似线性关系等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/2776d10d-de3e-42c3-a5bc-b672c730193e.jpg" title="IMG_9525.jpg"//pp style="text-align: center "  strong报告人:朱晓阳(国家纳米科学中心)/strong/pp style="text-align: center "strong  报告题目:原子力显微镜在纳米材料高度测量中的应用/strong/pp  纳米尺度检测与表征是纳米科技得以发展的必要条件,AFM作为表面分析设备,因其在高度测量中的准确性和高分辨率被广泛应用在纳米材料的研究中。朱晓阳在报告中详细介绍了用AFM测量纳米片层结构和纳米颗粒高度时的测量过程、数据分析及处理过程和高度测量值的不确定度评定办法。该方法可用于以石墨烯为代表的二维纳米片层材料厚度及层数的测量,及纳米颗粒粒径分析。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/edd56e09-949e-4d72-8baf-ba78a6b085b4.jpg" title="IMG_9545.jpg"//pp style="text-align: center " strong报告人:申晋(山东理工大学)/strong/pp style="text-align: center "strong  报告题目:多角度动态光散射测量的粒度分布加权反演/strong/pp  申晋首先介绍了动态光散射与多角度测量的定义,接着通过自相关函数的加权反演、模拟及实测研究,得出以下结论:DLS测量受噪声和ACF数据的低信息量制约,优化DLS测量系统可降低噪声,MDLS可增加测量数据中的粒度信息;从含噪数据中有效提取粒度信息对MDLS PSD的准确测量具有重要作用;采用基于信息特征加权昂发进行MDLS数据反演能有效提高信息利用,降低噪声影响。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/7192a00a-2d45-4c34-ba8f-706df26ddccf.jpg" title="IMG_9574.jpg"//pp style="text-align: center "  strong报告人:黄晓群(厦门理工学院)/strong/pp style="text-align: center "strong  报告题目:基于散射光偏振分析的流动中球形粒子粒径与速度的同步测量/strong/pp  根据米氏散射理论,单一球形粒子散射光偏振度取决于入射光波长,观测角,粒子直径以及相对折射率。当其他条件确定时,可建立起粒子直径和散射光偏振度的关系,从而通过反演计算得到粒径。黄晓群等采用此散射光偏振分析法对自由扩散于空气中的DEHS粒子进行粒径测量。同时,将实验光路与PIV相结合,基于粒子图像对散射光两线性偏振分量比例进行分析计算,达到同步测量颗粒粒度和速度的目的。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/6ca6e9d1-4416-4dfc-9564-5cc682c7631c.jpg" title="IMG_9604.jpg"//pp style="text-align: center "  strong报告人:王瑞敏(国家纳米科学中心)/strong/pp style="text-align: center "strong  报告题目:多尺寸金纳米颗粒混合体系中蛋白质竞争吸附的同时监测/strong/pp  报告中,王瑞敏介绍到,深入理解纳米颗粒与蛋白质的相互作用是研究纳米材料在生物医药领域应用及其生物安全性的重要基础。纳米颗粒的表面化学、粒径及形状等因素都会影响其与蛋白质的相互作用。发展可以同时分析多尺寸纳米颗粒对蛋白竞争吸附的方法非常重要。其课题组基于DCS技术,对此进行了研究,利用DCS颗粒分析的高分辨率,实现了溶液中六种粒径的金纳米颗粒与牛血清蛋白之间的竞争吸附行为的同时监测。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/dc721eb1-7a5d-4cd6-b51d-ed2ea706a438.jpg" title="IMG_9624.jpg"//pp style="text-align: center "  strong报告人:徐捷(天津大学)/strong/pp style="text-align: center "strong  报告题目:颗粒光散射中偏振的研究及应用综述/strong/pp  偏振是光波一个固有参量,在小颗粒光散射中有着重要应用。报告中,徐捷简介了偏振的定义及描述方法后,对各个领域的偏振散射的研究和应用进行综述。发现偏振多用于纳米级小颗粒粒径的测量,散射光的偏振与颗粒形状、均匀性、朝向和各向异性等具有很大关系。基于光散射的颗粒测量中,虽然各种方法有所侧重,但一般都是综合利用散射光的偏振、强度、相位等参量。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/911374f0-51bc-484a-913c-5dcc4f80b315.jpg" title="IMG_9632.jpg"//pp style="text-align: center "  strong报告人:孙辉(上海理工大学)/strong/pp style="text-align: center "strong  报告题目:基于一阶彩虹区域高斯光散射的液滴测量研究/strong/pp  雾化广泛应用于燃烧、医药、农业、消防、日常生活等领域,实现雾化过程液滴粒度大小及分布、速度、温度、蒸发速率等参数的测量,对雾化过程中气液流动、传热机理的研究极为重要。据孙辉介绍,光学测量法具有无需取样、非接触、快速等优点,而其中的彩虹技术既可以实现液滴颗粒的测量,也可以测量液滴的折射率和温度。采用高斯光束作为光源,既可以较好的定义测量区的大小,又可以得到较高的光能聚集区,因此可以有效避免多个液滴同时出现在测量区的情况、减小颗粒之间复散射的影响,又可以提高信号强度。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/222c7877-4557-482f-b897-1803b9995c46.jpg" title="IMG_9637.jpg"//pp style="text-align: center "  strong报告人:潘林超(天津大学)/strong/pp style="text-align: center "strong  报告题目:基于环形样品池的激光粒度测量方法/strong/pp  潘林超等为了扩展散射角的接受范围,提高激光粒度仪对亚微米颗粒的测量精度和分辨率,提出了一种结构简单的环形样品池方法。该方法理论上可以连续无缝地接收0-180度散射光,且具有测量下限低的优势。同时,基于环形样品池测量方法,搭建了新型激光粒度仪测量装置,并对50/100/200/400nm的标准粒子样品及有它们组合而成的混合样品进行了测量,并与传统样品池的测量结果进行了比对。结果表明,对于亚微米颗粒,环形样品池方法具有测量下限低、测量精度高、分辨率高和可靠性高的特点。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/802155a1-0ed6-4107-b884-fa48270c9372.jpg" title="IMG_9676.jpg"//pp style="text-align: center "  strong报告人:李庆浩(东南大学)/strong/pp style="text-align: center "strong  报告题目:基于光场成像的气液两相流中气泡三维测量方法/strong/pp  李庆浩在报告中提出一种基于光场成像的气液两相流中气泡三维测量方法,解决了传统成像仅能进行二位测量的问题。利用Paytrix光场相机记录气液两相流场的光场信息,结合光场计算成像技术获取两相流场内气泡的全聚焦图像和重聚焦图像序列。对全聚焦图像和重聚焦图像进行处理,可以获得气泡的三维空间分布、尺寸分布及体积含气率等信息。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/9fdac427-ffa1-493d-9621-7ec7159521ce.jpg" title="IMG_9683.jpg"//pp style="text-align: center "  strong报告人:胡华(天津大学,真理光学)/strong/pp style="text-align: center "strong  报告题目:激光粒度仪测量上限研究/strong/pp  基于米氏散射原理的激光粒度仪是颗粒测量领域应用最广泛的仪器,测量上限是仪器的重要指标之一。报告中,胡华等将奇异值分解方法引入到激光粒度仪光能系数矩阵的特性分析中,定义可以反映粒度变化相对相对的光能分布变化的灵敏度参数,给出了一组特定参数下的测量上限,进而推广得到仪器测量上限与仪器物理参数之间的解析表达式,实验结果证明了该表达式的正确性。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/7515e57e-ebf1-4571-b8b4-3fbda8867c81.jpg" title="IMG_9688.jpg"//pp style="text-align: center "  strong报告人:潘志成(东南大学)/strong/pp style="text-align: center "strong  报告题目:气液两相流中气泡尺寸分布数字图像测量方法研究/strong/pp  鼓泡塔是一种常见的气液反应器,鼓泡塔中气泡的大小和浓度对于研究鼓泡塔中传质过程有着重要意义。潘志成等利用高速摄像法和数字图像处理技术实现鼓泡塔中气泡尺寸分布的测量,分析了气泡尺寸分布规律。实验与分析结果表明,该方法能有效获取水中气泡的尺寸分布情况,并且能够分离粘连气泡,在气液两相流中气泡参数在线测量方面具有较好的应用前景。/pp style="text-align: center "------------------------------------------------/pp strong附/strong:/ppspan style="color: rgb(0, 176, 240) text-decoration: none "strong /strong/spanspan style="text-decoration: underline color: rgb(0, 176, 240) "stronga href="http://www.instrument.com.cn/news/20171117/233615.shtml" target="_self" title="" style="text-decoration: underline color: rgb(0, 176, 240) "Day1之颗粒‘圈’群贤毕至,第十一届全国颗粒测试学术会议广州召开/a/strong/span/ppspan style="color: rgb(0, 176, 240) text-decoration: none " /spanspan style="color: rgb(0, 176, 240) text-decoration: none " /spanspan style="text-decoration: underline "strongspan style="text-decoration: underline color: rgb(0, 176, 240) "a href="http://www.instrument.com.cn/news/20171118/233737.shtml" target="_self" title="" style="color: rgb(0, 176, 240) "图说,颗粒会精彩8环节速览——第十一届全国颗粒测试学术会议回看/a/span/strong/span/p
  • 用单粒子ICP-MS对废水中的银纳米颗粒的分析测量
    “纳米银”是“银纳米颗粒”的简称或俗称,指由银原子组成的颗粒,其粒径通常在1~100nm范围。银材料表面具有抑菌性质早已为人熟知,其机理是位于材料表面的银原子可以被环境中的氧气缓慢氧化,释放出游离的银离子(Ag+),这些银离子通过与细菌壁上巯基结合,阻断细菌的呼吸链,最终杀死附着在材料表面的细菌。由于纳米颗粒的小尺寸效应和表面效应,随着颗粒尺寸的减小,纳米银的表面原子数与其内部原子数的比例急速升高,最终导致其银离子的释放速率显著增高,杀菌效果更加显著。利用纳米银抑菌特性的各种产品,包括纺织品、化妆品、药品等,以及其他工业产品,越来越多的研发并被投入使用。这些纳米银最终将会进入到环境中,对生态环境和生物健康产生影响。快速地检测和表征在各种不同的环境基体下的纳米粒子的技术手段因此显得极为必要,而珀金埃尔默公司的单颗粒ICP-MS技术则可以很好的应对这项挑战。本实验带您了解不同的废水中,单颗粒ICP-MS测定纳米银的能力。样品水样:是从加拿大魁北克省蒙特利尔附近的污水处理厂抽取。废水:是经过污水处理厂最终处理后排放到河里的废水,在二级沉降池后收集。混合溶液:经过生物处理后离开曝气池,到达二级沉降池处理悬浮物和沉积物的废水,从二级曝气池收集。海藻酸盐:一种在废水中可以检测到并由废水中溶解性有机碳组成的ppm级多糖。海藻酸盐溶液被用作于比较废水样品的一个已知的控制和替代物。用去离子水溶解从褐藻提取的海藻酸钠(Sigma-Aldrich, St. Louis, Missouri, USA)配制成浓度为6ppm的海藻酸盐溶液,并震荡一个小时。实验平均粒径为67.8±7.6nm的用PVP包裹的Ag ENPs标准品(用TEM定值,nanoComposix™ Inc., San Diego, California, USA),加入10mL到所有样品中,使浓度为10ppb(5,000,000粒/mL)。样品用去离子水稀释10-1000倍,测试前超声5分钟。所有样品一式三份。使用PerkinElmer NexION 300D/350D ICP-MS进行分析,采用SP-ICP-MS模式,在Syngistix™ 软件纳米分析模块下进行。实验参数如表1所示。实验结果图1显示了0.1ppb(50,000粒/mL)Ag ENPs标准品的粒径分布,相当于66.1±0.1nm的平均粒径,浓度为52,302±2102粒/mL。对粒径的测试结果和TEM定值的一致性表明海藻酸盐基并不影响测量精度。图1:在6ppm海藻酸盐溶液中的Ag的粒径分布在确定海藻酸盐溶液技术的准确度的基础上,排放废水和混合溶液样品进行下一步的测量。图2和图3显示了废水和混合溶液各自的粒径分布。分析前样品稀释100倍,表2显示了粒径大小和颗粒浓度的测试结果。另外,平均粒径与证书标称值一致,颗粒浓度接近计算值,表明没有废水基体会影响测量结果。这些结果表明,可以准确测量在废水样品中的Ag ENPs。图2:稀释100倍废水中Ag的粒径分布图3:稀释100倍的混合溶液中Ag的粒径分布结论实验证明SP-ICP-MS具有准确测试三种不同类型废水样品中的银纳米粒子的能力。虽然废水基体很复杂,但是它们不会抑制SP-ICP-MS准确测量粒径和纳米粒子浓度的能力。想要了解更多详情,请扫描二维码下载完整的应用报告。
  • 《环境空气 颗粒物质量浓度测定 重量法 》(GB/T 39193-2020)正式发布!
    p  近日,国家标准化管理委员会官网发布2020年第21号中国国家标准公告,公告中显示“国家市场监督管理总局(国家标准化管理委员会)批准《标准轨距铁路限界 第1部分:机车车辆限界》等106项国家标准和2项国家标准修改单,现予以公布。”/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/62141723-65e5-4f99-9aa3-4217f0ac365f.jpg" title="公告.jpg" alt="公告.jpg"//pp  小编注意到,其中有一项环境监测相关标准——《环境空气 颗粒物质量浓度测定 重量法 》(GB/T 39193-2020)。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/96245c7b-8b3a-4aeb-a582-c3ba7fe938ed.jpg" title="标准..png" alt="标准..png"//pp  《环境空气 颗粒物质量浓度测定 重量法 》(GB/T 39193-2020)规定了环境空气颗粒物滤膜采样称量测定方法,包括原理与方法,仪器和设备,采样与称量,结果计算与表述,测量结果的不确定度评定,质量控制与质量保证。本标准适用于使用滤膜称重的方法测量环境空气的颗粒物质量浓度。/pp  该国标主要起草单位有中国计量科学研究院 、青岛市计量技术研究院 、中国环境监测总站 、丹东百特仪器有限公司 、中国气象科学研究院 、中国环境科学研究院 、青岛众瑞智能仪器有限公司 、深圳国技仪器有限公司 、河南省计量科学研究院 、浙江多普勒环保科技有限公司 、浙江瑞堂塑料科技股份有限公司 、北京市理化分析测试中心 、中国科学院过程工程研究所 、北京粉体技术协会 、青岛崂应环境科技有限公司 、华南师范大学 、青岛容广电子技术有限公司 、中国计量大学 、中机生产力促进中心 。/pp  据介绍,该标准于2020年10月11日经国家市场监督管理总局(国家标准化管理委员会)批准发布,并将于2021年5月1日实施。/pp  附:a href="https://www.instrument.com.cn/download/shtml/960385.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "strongspan style="color: rgb(0, 112, 192) "《环境空气 颗粒物质量浓度测定 重量法 》(GB/T 39193-2020)/span/strong/a/p
  • 经典库尔特原理及其发展——颗粒表征电阻法(下)
    前文回顾:发明人库尔特的传奇人生——颗粒表征电阻法(上)一、经典库尔特原理在经典电阻法测量中,壁上带有一个小孔的玻璃管被放置在含有低浓度颗粒的弱电解质悬浮液中,该小孔使得管内外的液体相通,并通过一个在孔内另一个在孔外的两个电极建立一个电场。通常是在一片红宝石圆片上打上直径精确控制的小孔,然后将此圆片通过粘结或烧结贴在小孔管壁上有孔的位置。由于悬浮液中的电解质,在两电极加了一定电压后(或通了一定电流后), 小孔内会有一定的电流流过(或两端有一定的电压),并在那小孔附近产生一个所谓的“感应区”。含颗粒的液体从小孔管外被真空或其他方法抽取而穿过小孔进入小孔管。当颗粒通过感应区时,颗粒的浸入体积取代了等同体积的电解液从而使感应区的电阻发生短暂的变化。这种电阻变化导致产生相应的电流脉冲或电压脉冲。图1 颗粒通过小孔时由于电阻变化而产生脉冲在测量血球细胞等生物颗粒时所用的电解质为生理盐水(0.9%氯化钠溶液),这也是人体内液体的渗透压浓度,红细胞可以在这个渗透压浓度中正常生存,浓度过低会发生红细胞的破裂,浓度过高会发生细胞的皱缩改变。在测量工业颗粒时,通常也用同样的电解质溶液,对粒度在小孔管测量下限附近的颗粒,用 4%的氯化钠溶液以增加测量灵敏度。当颗粒必须悬浮在有机溶剂内时,也可以加入适用于该有机溶液的电解质后,再用此有机 溶液内进行测量。通过测量电脉冲的数量及其振幅,可以获取有关颗粒数量和每个颗粒体积的信息。测量过程中检测到的脉冲数是测量到的颗粒数,脉冲的振幅与颗粒的体积成正比,从而可以获得颗粒粒度及其分布。由于每秒钟可测量多达 1 万个颗粒,整个测量通常在数分钟内可以完成。在使用已知粒度的标准物质进行校准后,颗粒体积测量的准确度通常在 1-2%以内。通过小孔的液体体积可以通过精确的计量装置来测量,这样就能从测量体积内的颗粒计数得到很准确的颗粒数量浓度。 为了能单独测量每个颗粒,悬浮液浓度必须能保证当含颗粒液体通过小孔时,颗粒是一个一个通过小孔,否则就会将两个颗粒计为一个,体积测量也会发生错误。由于浓度太高出现的重合效应会带来两种后果:1)两个颗粒被计为一个大颗粒;2)两个本来处于单个颗粒探测阈值之下而测不到的颗粒被计为一个大颗粒。颗粒通过小孔时可有不同的途径,可以径直地通过小孔,但也可能通过非轴向的途径通过。非轴向通过时不但速度会较慢,所受的电流密度也较大,结果会产生表观较大体积的后果,也有可能将一个颗粒计成两个[1]。现代商业仪器通过脉冲图形分析可以矫正由于非轴向流动对颗粒粒度测量或计数的影响。图2 颗粒的轴向流动与非轴向流动以及产生的脉冲经典库尔特原理的粒度测量下限由区分通过小孔的颗粒产生的信号与各种背景噪声的能力所决定。测量上限由在样品烧杯中均匀悬浮颗粒的能力决定。每个小孔可用于测量直径等于 2%至 80%小孔直径范围内的颗粒,即 40:1 的动态范围。实用中的小孔直径通常为 15 µm 至 2000 µm,所测颗粒粒度的范围为 0.3 µm 至 1600 µm。如果要测量的样品粒度分布范围比任何单个小孔所能测量的范围更宽,则可以使用两个或两个以上不同小孔直径的小孔管,将样品根据小孔的直径用湿法筛分或其他分离方法分级,以免大颗粒堵住小孔,然后将用不同小孔管分别测试得到的分布重叠起来,以提供完整的颗粒分布。譬如一个粒径分布为从 0.6 µm 至 240 µm 的样品,便可以用 30 µm、140 µm、400 µm 三根小孔管来进行测量。 库尔特原理的优点在于颗粒的体积与计数是每个颗粒单独测量的,所以有极高的分辨率,可以测量极稀或极少个数颗粒的样品。由于体积是直接测量而不是如激光衍射等技术的结果是通过某个模型计算出来的,所以不受模型与实际颗粒差别的影响,结果一般也不会因颗粒形状而产生偏差。该方法的最大局限是只能测量能悬浮在水相或非水相电解质溶液中的颗粒。使用当代微电子技术,测量中的每个脉冲过程都可以打上时间标记后详细记录下来用于回放或进行详细的脉冲图形分析。如果在测量过程中,颗粒有变化(如凝聚或溶解过程,细胞的生长或死亡过程等),则可以根据不同时间的脉冲对颗粒粒度进行动态跟踪。 对于球状或长短比很接近的非球状颗粒,脉冲类似于正弦波,波峰的两侧是对称的。对很长的棒状颗粒,如果是径直地通过小孔,则有可能当大部分进入感应区后,此颗粒还有部分在感应区外,这样产生的脉冲就是平台型的,从平台的宽度可以估计出棒的长度。对所有颗粒的脉冲图形进行分析,可以分辨出样品中的不同形状的颗粒。 大部分生物与工业颗粒是非导电与非多孔性的。对于含贯通孔或盲孔的颗粒,由于孔隙中填满了电解质溶液,在颗粒通过小孔时,这些体积并没有被非导电的颗粒物质所替代而对电脉冲有所贡献,所以电感应区法测量这些颗粒时,所测到的是颗粒的固体体积,其等效球直径将小于颗粒的包络等效球直径。对于孔隙率极高的如海绵状颗粒,测出的等效球直径可以比如用激光粒度仪测出的包络等效球小好几倍。 只要所加电场的电压不是太高,通常为 10 V 至 15 V,导电颗粒譬如金属颗粒也可以用电阻法进行测量,还可以添加 0.5%的溴棕三甲铵溶液阻止表面层的形成。当在一定电流获得结果后,可以使用一半的电流和两倍的增益重复进行分析,应该得到同样的结果。否则应使用更小的电流重复该过程,直到进一步降低电流时结果不变。 在各种制造过程中,例如在制造和使用化学机械抛光浆料、食品乳液、药品、油漆和印刷碳粉时,往往在产品的大量小颗粒中混有少量的聚合物或杂质大颗粒,这些大颗粒会严重影响产品质量,需要进行对其进行粒度与数量的表征。使用库尔特原理时,如果选择检测阈值远超过小颗粒粒度的小孔管(小孔直径比小颗粒大 50 倍以上),则可以含大量小颗粒的悬浮液作为基础液体,选择适当的仪器设置与直径在大颗粒平均直径的 1.2 倍至 50 倍左右的小孔,来检测那些平均直径比小颗粒至少大 5 倍的大颗粒 [2]。 二、库尔特原理的新发展 可调电阻脉冲感应法可调电阻脉冲感应法(TRPS)是在 21 世纪初发明的,用库尔特原理测量纳米颗粒的粒度与计数。在这一方法中,一个封闭的容器中间有一片弹性热塑性聚氨酯膜,膜上面有个小孔,小孔的大小(从 300 nm 至 15 m)可根据撑着膜的装置的拉伸而变来达到测量不同粒度的样品。与经典的电阻法仪器一样,在小孔两边各有一个电极,测量由于颗粒通过小孔而产生的电流(电压) 变化。它的主要应用是测量生物纳米颗粒如病毒,这类仪器不用真空抽取液体,而是用压力将携带颗粒的液体压过小孔。压力与电压都可调节以适用于不同的样 品。由于弹性膜的特性,此小孔很难做到均匀的圆形,大小也很难控制,每次测得的在一定压力、一定小孔直径下电脉冲高度与粒度的关系,需要通过测量标准颗粒来进行标定而确定。图3 可调电阻脉冲感应法示意图当小孔上有足够的压力差时,对流是主要的液体传输机制。 由于流体流速与施加的压力下降成正比,颗粒浓度可以从脉冲频率与施加压力之间线性关系的斜率求出。但是需要用已知浓度的标准颗粒在不同压力下进行标定以得到比例系数[3]。 这个技术在给定小孔直径的检测范围下限为能导致相对电流变化 0.05%的颗粒直径。检测范围的上限为小孔孔径的一半,这样能保持较低程度的小孔阻塞。典型的圆锥形小孔的动态范围 为 5:1 至 15:1,可测量的粒径范围通常从 40 nm 至 10 µm。 此技术也可在测量颗粒度的同时测量颗粒的 zeta 电位,但是测量的准确度与精确度都还有待提高,如何排除布朗运动对电泳迁移率测量的影响也是一个难题[4]。微型化的库尔特计数仪随着库尔特原理在生物领域与纳米材料领域不断扩展的应用,出现了好几类小型化(手提式)、微型化的库尔特计数仪。这些装置主要用于生物颗粒的检测与计数,粒度不是这些应用主要关心的参数,小孔的直径都在数百微米以内。与上述使用宏观压力的方法不同的是很多这些设计使用的是微流控技术,整个装置的核心部分就是一个微芯片,携带颗粒的液体在微通道中流动,小孔是微通道中的关卡。除了需要考虑液体微流对测量带来的影响,以及可以小至 10 nm 的微纳米级电极的生产及埋入,其余的测量原理和计算与经典的库尔特计数器并无两致。这些微芯片可以使用平版印刷、玻璃蚀刻、 防蚀层清除、面板覆盖等步骤用玻璃片制作[5], 也可以使用三维打印的方式制作[6]。一些这类微流控电阻法装置已商业化。图4 微流计数仪示意图利用库尔特原理高精度快速的进行 DNA 测序近年来库尔特原理还被用于进行高精度、快速、检测误差极小的 DNA 或肽链测序。这个技术利用不同类型的纳米孔,如石墨烯形成的纳米孔或生物蛋白质分子的纳米孔,例如耻垢分枝杆菌孔蛋白 A(MspA)。当线性化的 DNA-肽复合物缓慢通过纳米孔时,由于不同碱基对所加电场中电流电压的响应不同,通过精确地测量电流的变化就可对肽链测序。由于此过程不影响肽链的完整性,如果将实验设计成由于电极极性的变化而肽链可以来 回反复地通过同一小孔,就可以反复地读取肽链中的碱基,在单氨基酸变异鉴定中的检测误差率可小于 10-6[7,8]。图5 纳米孔 DNA 测序库尔特原理的标准化 早在 2000 年,国际标准化组织就已成文了电感应区法测量颗粒分布的国际标准(ISO 13319),并得到了广泛引用。在 2007 年与 2021 年国际标准化组织又前后两次对此标准进行了修订。中国国家标委会也在 2013 年对此标准进行了采标,成为中国国家标准(GB/T 29025-2012)。参考文献【1】Berge, L.I., Jossang, T., Feder, J., Off-axis Response for Particles Passing through Long Apertures in Coulter-type Counters, Meas Sci Technol, 1990, 1(6), 471-474. 【2】Xu, R., Yang, Y., Method of Characterizing Particles, US Patent 8,395,398, 2013. 【3】Pei, Y., Vogel, R., Minelli, C., Tunable Resistive Pulse Sensing (TRPS), In Characterization of Nanoparticles, Measurement Processes for Nanoparticles, Eds. Hodoroaba, V., Unger, W.E.S., Shard, A.G., Elsevier, Amsterdam, 2020, Chpt.3.1.4, pp117-136.【4】Blundell, E.L.C.J, Vogel, R., Platt, M., Particle-by-Particle Charge Analysis of DNA-Modified Nanoparticles Using Tunable Resistive Pulse Sensing, Langmuir, 2016, 32(4), 1082–1090. 【5】Zhang, W., Hu, Y., Choi, G., Liang, S., Liu, M., Guan, W., Microfluidic Multiple Cross-Correlated Coulter Counter for Improved Particle Size Analysis, Sensor Actuat B: Chem, 2019, 296, 126615. 【6】Pollard, M., Hunsicker, E., Platt, M., A Tunable Three-Dimensional Printed Microfluidic Resistive Pulse Sensor for the Characterization of Algae and Microplastics, ACS Sens, 2020, 5(8), 2578–2586. 【7】Derrington, I.M., Butler, T.Z., Collins, M.D., Manrao, E., Pavlenok, M., Niederweis, M., Gundlach, J.H., Nanopore DNA sequencing with MspA, P Natl Acad Sci, 107(37), 16060-16065, 2010. 【8】Brinkerhoff, H., Kang, A.S.W., Liu, J., Aksimentiev, A., Dekker, C., Multiple Rereads of Single Proteins at Single– Amino Acid Resolution Using Nanopores, Science, 374(6574), 1509-1513, 2021. 作者简介许人良,国际标委会颗粒表征专家。1980年代前往美国就学,受教于20世纪物理化学大师彼得德拜的关门弟子、光散射巨擘朱鹏年和国际荧光物理化学权威魏尼克的门下,获博士及MBA学位。曾在多家跨国企业内任研发与管理等职位,包括美国贝克曼库尔特仪器公司颗粒部全球技术总监,英国马尔文仪器公司亚太区技术总监,美国麦克仪器公司中国区总经理,资深首席科学家。也曾任中国数所大学的兼职教授。 国际标准化组织资深专家与召集人,执笔与主持过多个颗粒表征国际标准 美国标准测试材料学会与化学学会的获奖者 中国颗粒学会高级理事,颗粒测试专业委员会常务理事 中国3个全国专业标准化技术委员会的委员 与中国颗粒学会共同主持设立了《麦克仪器-中国颗粒学报最佳论文奖》浸淫颗粒表征近半个世纪,除去70多篇专业学术论文、SCI援引近5000、数个美国专利之外,著有400页业内经典英文专著《Particle Characterization: Light Scattering Methods》,以及即将由化学工业出版社出版的《颗粒表征的光学技术及其应用》。点击图片查看更多表征技术
  • “高端动力装置扭矩和速度测量仪器设备的研发与应用”项目启动
    2月28日,国家重大科学仪器设备开发专项——“高端动力装置扭矩和速度测量仪器设备的研发与应用”项目启动会,在中国计量科学研究院(以下简称“中国计量院”)召开。会议由国家质检总局科技司主持,科技部条财司副司长吴学梯、国家质检总局科技司副司长王越薇、中国计量院副院长宋淑英等领导及项目监理组、总体组、技术专家委员会、用户委员会和管理办公室等近百人参加了本次启动会。 科技部条财司副司长吴学梯在启动会上讲话  启动会上,科技部条财司副司长吴学梯介绍了国家重大科学仪器设备开发专项的设立背景和目标定位,要求“高端动力装置扭矩和速度测量仪器设备的研发与应用”项目组瞄准产品开发目标,积极推进产业化 更加关注产品的知识产权 按照项目管理办法,落实好法人负责制的各项要求 严格进行项目经费管理,并希望相关项目参与单位加强协作,潜心开发,实现科学仪器设备自主创新。同时他对该项目利用信息化系统的创新管理方式表示肯定,并希望其能够得到进一步推广运用。  项目总体组组长、中国计量院副院长宋淑英对与会领导、专家对中国计量院科技事业发展的关心支持和帮助表示感谢。她指出,“高端动力装置扭矩和速度测量仪器设备的研发与应用”项目是近年来中国计量院在重大仪器方面获得的第3个国家支持项目。作为项目牵头单位,中国计量院将继续做好支持和服务工作,与各项目参与单位团结协作,确保项目顺利实施,为我国摆脱高端测量仪器完全依赖进口的局面作出应有贡献。  项目负责人、中国计量院力学与声学研究所所长张跃研究员就项目背景、总体目标、任务分解、预期成果及进度和经费安排等相关情况进行了汇报。项目办公室汇报了项目实施管理办法 各任务负责人分别汇报了任务的研究内容、考核指标、实施方案、进度及经费安排等。  与会专家在认真听取汇报的基础上,展开热烈讨论,对项目进行点评,并提出实施意见建议。  高端动力装备在装备制造业中占有举足轻重的地位,是各种重大成套技术装备的核心组成部分,例如,风力发电机组、大型舰船推进系统、高速列车动力系统及转向架、航空发动机、高档数控机床等。高端动力装备对国民经济的发展起着突出的作用,同时也代表了我国先进制造业,特别是装备制造业的能力和水平。  而目前,我国大量的扭矩和速度参数测量系统,包括功率、最大扭矩、最高车速、加速度等,尤其是高端测量仪器依赖进口,并无法在国内溯源,严重制约了我国自主动力扭矩和速度测量仪器的可靠计量、研发与应用,从而制约了我国高技术含量、高国际竞争力的核心工业产品的自主研制和生产,开展具有自主知识产权的高端动力装置扭矩和速度测量仪器设备的研制需求迫切。  国家重大科学仪器设备开发专项“高端动力装置扭矩和速度测量仪器设备的研发与应用”项目总体目标为:开展高端动力装置机械功率关键参数扭矩和速度精密测量技术的研究,攻克扭矩标准装置中高精密空气轴承支撑部件的核心技术及双天线雷达测速收发模块的关键技术。研究建立具有自主知识产权的高端动力装置的扭矩测量仪器(20kNm扭矩标准机)、高端动力装置速度测量仪器(双天线雷达测速仪器)和加速度计动态特性校准装置,填补国内空白,达到高端动力装置扭矩测量和速度测量的国际先进水平。  据介绍,项目研制成果将有望为我国高端动力装备扭矩与速度等功率测量建立可靠的计量溯源体系,并将在仪器开发、产业化示范、节能减排等方面起到重要的推动作用。  该项目的组织实施单位为国家质检总局,由中国计量科学研究院牵头,并负责其中4个任务,任务承担单位还包括清华大学、中国船舶重工集团第七〇四研究所、浙江省计量科学研究院、北京化工大学、辽宁省计量科学研究院、湖南省计量科学研究院、苏州苏试试验仪器股份有限公司与长沙普德利生科技有限公司等8家单位。项目起止时间为2012年10月至于2016年9月。主要包括12个任务:20kNm高准确度扭矩标准装置的研发、高准确度大质量参数测量装置的研制、高精度宽量程多普勒雷达测速技术的研究及其测量装置的研制、加速度计动态特性计量技术的研究与校准装置的建立、空气轴承支撑技术的研发、无扰动质量参数自动测量技术的研发、加速度计动态模型及参数辨识的研究、测速测距雷达测速仪在交通领域的应用研究、空气轴承支撑技术在高准确度扭矩标准机及船舶装配质量控制中的应用、安全气囊加速度计校准装置在汽车行业的应用以及双天线雷达测速仪在高铁行业的应用研究等。
  • 【新品来袭】MS3000 新增实时颗粒形状测量功能——Hydro Insight 线上发布会
    粒度测量,您是否也有困惑?为什么激光粒度仪会出现异常结果?造成粒度分布图“拖尾峰”的原因到底是什么?采用筛分法的测量结果为什么和激光粒度仪的结果无法对应?有些样品粒度分布结果一致,为什么最终产品性能却差异很大? 众所周知,激光粒度仪测量粒度分布是基于激光衍射的原理,用激光照射颗粒产生散射,测量散射光角度和强度的分布,通过米氏理论计算得到颗粒的大小和分布。这其中用到了非常重要的等效圆球的概念,即无论分散后的颗粒形状如何,都被等效为体积相同的球形来计算其直径。但很多时候,影响粉末材料性能的不只是颗粒大小及分布,颗粒的真实形状、分散情况也会对材料的堆积密度、流动性能以及溶解速度等指标造成很大的影响。因而,如何为性能优异的Mastersizer智能激光粒度仪增添一双可以看得到颗粒形貌的“眼睛”,成为马尔文帕纳科研发人员的重要任务。如今,Hydro Insight 实时动态图像分析仪应运而生,它开启了Mastersizer 3000激光粒度仪的实时动态图像功能,在粒度分析过程中,帮助您实时地、更直观地观察颗粒的形貌,一次测量即可获得粒度分布以及多种形状参数的结果,使您更能洞悉您的颗粒材料,测量的结果也更具有说服力和指导意义。# 线上发布会 #Hydro Insight 实时动态图像分析仪 想了解Hydro Insight 实时动态图像分析仪如何配合粒度分析利器Mastersizer 3000工作,它又有什么非选不可的理由呢?欢迎您参与11月26日(周五)上午10:30-11:40《马尔文帕纳科实时动态图像分析仪线上发布会》,您将了解到Hydro Insight如何为您解决颗粒测量中的困惑,以及它与激光衍射、静态图像法等分析方法的差异。发布会还将安排应用演示环节,为您展示真实的测量过程和分析结果。此次发布会还将安排抽奖环节,萌宠双狮、电脑包、榨汁杯等精美礼品将轮番上场,期待您的热情参与!注册报名:http://malvernpanalytical.mikecrm.com/28YiEaO 直播新品发布日程安排时间内容10:30-10:35开场白10:35-11:15新品发布Hydro Insight ,为您打开深入探究颗粒形貌的窗口11:15-11:35演示环节 & 在线提问11:35-11:40抽奖时间 发布会主讲嘉宾:黎小宇 女士应用实验室主管2008年毕业于华东师范大学分析化学专业,同年加入马尔文帕纳科公司,一直从事激光粒度仪、图像粒度仪和纳米粒度及Zeta电位仪的应用和技术支持工作。
  • 小颗粒 大学科——WCPT7侧记
    &ldquo 世界颗粒学大会&rdquo 是由美国、英国、德国、日本、澳大利亚等多国科学家联合发起的世界颗粒学研究及技术领域最主要的会议之一,自1990年开始举办,每四年举办一次,分别在欧洲/非洲、亚洲/澳洲、美洲三个地区轮流举办。第七届世界颗粒学大会(简称WCPT7,2014年5月19~22日)为该系列会议首次在中国举办。世界颗粒大会开幕式现场  作为科学仪器行业的网络媒体,仪器信息网也派出记者参加了本次大会的&ldquo Instrumentations and methods&rdquo 分会场。通过头两天的会议,笔者在这里简要谈谈自己的观感。由于线头很多,难免挂一漏万,还望谅解。&ldquo Instrumentations and methods&rdquo 分会场  首先,仪器厂家的报告几乎顶起了半边天,以20日该分会场的报告为例,总计21个口头报告中,其中有11个报告是来自与颗粒测量相关的仪器制造商和颗粒标样制造商。最为引人注目的是来自德国的Sympatec GmbH,当天一共贡献了四个口头报告。不过这倒是从一个侧面反映了&ldquo 仪器研发主体应该是制造商&rdquo &mdash &mdash 这一中国科学仪器行业一直在追求的目标。不过很遗憾,这些报告里面并没有来自中国厂家的代表(其他分会场可能有,譬如禾信公司,但也是凤毛麟角)。其次是该分会场里来自德国的参会者众多,虽然笔者没有进行统计,可能不是很准确,但总的感觉是经常能听到带着德国口音的英文在耳边响起。  当今,在许多行业:像火电厂、制药、化工或食品过程生产等,颗粒尺寸是一个非常重要的参数。而对于尺寸参数进行有效地测量和控制,可以极大地改善生产效率和产品质量。譬如,对于火电厂而言,燃烧的效率和质量控制,部分地取决于经粉碎后的煤颗粒的尺寸。因此,开发一个可靠的、高性价比以及准确度高的测量系统,无论是对于科研人员或是工程师而言,都非常有吸引力。这也可能是大会组织者设立该分会场的初衷之一。  如果按照应用,颗粒尺寸测量可以大致被分为离线和在线两类。如果根据测量方法,又可以分为基于经典物理方法(沉降和筛分)、基于激光光散射技术以及基于成像技术等。从这两天该分会的报告来看,这些领域基本上都有所涉及。大部分报告者的工作是围绕着这三类技术而展开的。  譬如:利用激光干涉成像测量技术(如:ILIDS、2D-FFT),研究两相流干涉图像中颗粒的空间位置、颗粒直径和速度场分布等信息;通过采用多波长光源的分析离心沉降技术,实现无需折光指数即可获得基于体积的颗粒尺寸分布;采用广角光散射技术可对颗粒的聚结物进行在线表征;通过将动态光散射技术和拉曼光谱及显微镜技术结合在一起,从而实现对蛋白质稳定性、聚结态和高阶结构的深入研究;通过光子交叉相关光谱法技术,来消除高浓度样品的多重散射;通过基于模糊图像处理的动态颗粒测量装置及方法实现动态颗粒的三维测量;通过离散成像来实现对颗粒尺寸的高精度、准确测量;通过多角度光散射技术和激光诱导白炽光技术的结合,来实现对烟尘颗粒的二维尺寸测量;通过小角X射线散射技术或纳米颗粒可视化追踪技术,实现对纳米颗粒的测量;通过全新的微波传感器来实现对颗粒工艺过程的二维和三维监控 等等。  尽管近些年来,也陆续出现了一些新的颗粒测量技术,例如静电传感器方法或是基于声波和振动分析的尺寸测量方法。不过鉴于它们较差的准确度,或者是技术本身的梗阻,因此,可以预期在未来相当长的一段时期内,基于光散射和基于成像技术的颗粒测量手段应该依然会处于主导地位。(主编当班)
  • HORIBA收购MANTA :拓展颗粒表征业务 布局制药等市场
    p  strong仪器信息网讯/strong 2019年1月28日,株式会社堀场制作所 (HORIBA, Ltd.)宣布,集团旗下美国子公司HORIBA Instruments Incorporated(总部位于美国Irvine 以下称“HORIBA Instruments”)于1月24日,以全部股份收购的形式完成对MANTA Instruments, Inc.(总部位于美国圣地亚哥 以下简称“MANTA”)的收购。/pp  MANTA的纳米颗粒表征技术因其突破性的多光谱纳米颗粒跟踪技术而享有盛誉,该技术是由加州大学圣地亚哥分校(University of California, San Diego)开发并申请专利的。HORIBA Instruments完成对MANTA的收购后,这家领先的纳米颗粒跟踪分析系统开发商、制造商和供应商将成为HORIBA Instruments的全资子公司。这扩展了HORIBA颗粒表征仪器技术。/pp strong 关于收购的原因/目标/strong/pp  HORIBA开发、制造和销售用于生命科学、半导体制造过程和环境过程的纳米颗粒跟踪分析系统。/pp  最新型号的MANTA纳米粒子跟踪分析系统ViewSizer® 3000,发出一束激光在纳米颗粒布朗运动流体中跟踪它们,通过图像分析,高分辨的评估颗粒大小分布、数量浓度,及10纳米量级粒子的聚集状态。在荧光模式中,还可以测量荧光标记的颗粒。该创新仪器有望满足生命科学和制药研究市场的客户需求,这些领域更需要颗粒数浓度的测量数据。同样,在化妆品、催化剂和半导体领域也有很大客户需求,在这些领域中,纳米区域的测量也是必不可少的。/pp style="text-align: center "img src="http://www.mantainc.com/wp-content/uploads/2017/02/MANTA-Nanoparticle-Tracking-Analysis.gif"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "可视化纳米颗粒表征/spanbr//pp  这种创新的仪器预计将满足生命科学和药物研究市场的客户需求,这些市场需要颗粒数浓度的数据,以及化妆品、催化剂和半导体市场的客户需求,在这些市场中,纳米区域的测量是必不可少的。MANTA的ViewSizer3000® 所属的颗粒表征仪器市场容量预计在2019年将达到20.6亿日元,并且到2022年,市场容量将以8.4%的复合平均增长率(CAGR)继续扩大(根据该公司数据评估)。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/5bf4e241-1b9f-4a52-ac75-7112487a34f9.jpg" title="0.jpg" alt="0.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "ViewSizer® 3000 nanoparticle tracking analysis system/span/pp  strong目标领域及行业应用/strong/pp  生命科学——蛋白质的聚集/结晶,外泌体,病毒和抗体药物的研究和开发/pp  农业和林业,水和家用电子产品——具有抗菌和净化性能的精细气泡/pp  半导体材料——半导体晶圆抛光的生产控制和半导体超纯水的质量控制/pp  环境——水的质量监测和处理(水中纳米颗粒的数量)/pp  药品,食品和化妆品——制药行业的颗粒浓度控制,超低浓度样品。/pp  功能纳米材料——催化剂材料和碳纳米管/pp  催化剂和可充电电池——新材料的研究,开发,改进和质量控制/pp strong 整合时间表/strong/pp  收购过程完成后,MANTA的开发和生产功能将转移到HORIBA Instruments,从而通过利用HORIBA的专有技术开始开发下一代机型。MANTA的图像处理技术结合现有的光学技术,有望在颗粒测量外,为体外诊断,再生医学以及生物制药的研究和开发做出贡献。 HORIBA还计划将这项先进技术应用于半导体领域的CMP(化学机械抛光)浆料和环境领域的水中纳米粒子测量。/pp strong 关于MANTA /strong/pp style="text-align: left " img src="https://img1.17img.cn/17img/images/201901/uepic/8a385250-a5e5-4b66-81c2-9819a1e83d18.jpg" title="2.jpg" alt="2.jpg" style="width: 163px height: 50px " width="163" vspace="0" height="50" border="0"//pp  公司名称:MANTA Instruments, Inc./pp  CEO: Rick Cooper/pp  地址:7770 Regents Rd#113-573 San Diego, CA USA/pp  创立时间:2014年9月/pp  业务部门:纳米颗粒跟踪分析系统的制造和销售/pp  职工数:6/pp  strong关于HORIBA/strong/pp style="text-align: left " img src="https://img1.17img.cn/17img/images/201901/uepic/80cad1d9-58d1-43b6-8eac-8a943d112f8c.jpg" title="3.jpg" alt="3.jpg"//pp  株式会社堀场制作所 (HORIBA, Ltd.)创立于1953年,65年时间,集团实现了长期稳步发展。目前,旗下五大业务部门汽车测试系统、过程& 环境、医疗、半导体、科学仪器事业部等都享有各自领域的全球强势产品技术:发动机尾气检测系统全球市场占有80%、烟道排气装置全球市场占有20%、红细胞CRP分析日本国内占有100%、质量流量控制器全球市场占有60%、拉曼光谱仪全球市场占有35%、光栅全球市场占有35%......截至2017年12月31日,全球员工7399人,2017年合并净销售额1953亿日元。/p
  • 2014上海颗粒学会年会暨颗粒表征应用技术会举办
    仪器信息网讯 在IPB 2014举办期间,由上海市颗粒学会主办、马尔文仪器公司赞助的&ldquo 2014上海市颗粒学会年会暨颗粒表征应用技术会&rdquo 于2014年10月14日上午在上海国际展览中心召开。本次会议旨在加强颗粒材料领域的学术交流,促进本市颗粒领域的科学研究、技术进步和产品开发应用等方面的发展,方便学术界与产业界的交流和合作。会议现场上海理工大学动力工程学院蔡小舒教授主持会议  作为上海颗粒学会理事长,蔡小舒教授就上海市颗粒学会第七届理事会情况向与会人士作了简单介绍。据了解,上海市颗粒学会第七届理事会由19位科研院高校的专家学者及2位颗粒测试仪器公司负责人共同组成,其中9位理事为最新加入的。上海理工大学周骛博士报告题目:图像法颗粒多参数在线测量  目前,简单的粒度测量已经不能再满足用户在生产、科研工作中提出的高要求,而伴随着计算机和图像传感器技术近来的快速发展,基于数字图像处理的颗粒测量技术应运而生,并且发展速度非常迅猛。在当天的报告中,周骛博士介绍到,通过对图像获取硬件的研制和图像处理分析算法的研究,单帧单曝光图像法可用于三维颗粒场多参数在线测量,并且多方法多传感器的结合可以为复杂颗粒系统提供更多信息,如图像法颗粒在线测量参数包括颗粒粒度及分布、速度及分布、颗粒浓度和颗粒流量等。同济大学李建波博士报告题目:基于磁热效应的纳米药物传输系统的制备及其在肿瘤热化疗中的应用研究  鉴于目前肝癌治疗方法的局限性,我国亟需开发更加安全有效的化疗药物载体系统,以提高化疗效果。李建波博士所在团队研发出的高SAR纳米磁流体,具有超顺磁性、良好胶体稳定性和生物相容性等特点。经过实验验证,这种纳米磁流体可对肿瘤细胞可以起到高效的磁热疗作用,并在优化磁场条件下,可通过诱导凋亡的方式消灭肿瘤细胞保证磁热疗的安全性。在这种基础上,该团队还进行了肿瘤的词热化疗协同增效研究与肿瘤耐药性的磁热化疗逆转研究,均获得了良好的实验成果。华东理工大学沈建华博士报告题目:多功能金纳米核壳杂化材料的制备及应用  金纳米粒子具有小的尺寸和高的表面能,结构和性能都不稳定,如果将金纳米与其他材料杂化,不仅能提高Au(金)的特性,还能引入其他材料的特性,例如将Au与Fe3O4杂化后的新型材料,不仅具有Au的催化、生物、光学等性能,同时还拥有Fe3O4的磁分离、核磁显影等优势。在此基础上,沈建华博士所在团队不断尝试研发出的金纳米核壳杂化材料,在催化特性、等离子共振、拉曼增强、生物传感等方面均有着很明显的特色优势。英国马尔文仪器公司梅洁报告题目:纳米颗粒跟踪分析技术(NTA)的原理及其应用  梅洁介绍到,鉴于纳米颗粒很小,不能被显微镜直接观测到,如此可以借助入射激光将颗粒照亮,研究人员就能观察到单个粒子并跟踪其布朗运动轨迹,从而基于单个粒子在短时间内快速制出每个粒子的粒径分布图。该技术可以跟踪每一个纳米颗粒的运动轨迹,以此得到整个样品体系的粒径分布信息,同时实时监测样品的运动、聚集过程。其典型应用表现在蛋白质聚集、药物传输、纳米颗粒毒理、病毒和疫苗等研究领域。华东师范大学卜凡兴报告题目:微/纳米结构材料的界面法合成及性能研究  金属氧化物微纳米结构材料拥有奇特的功能特性,在生物医学、能源催化及纳米器件等领域有广泛应用。而对特殊结构与形貌的金属氧化物材料制备与性能研究,对胶体与界面化学、结晶学等基础研究领域有重要的研究意义。卜凡兴介绍到,通过实验研究发现,液-液两相界面是一个可以有效合成具有特殊形貌的金属氧化物微纳米结构材料的体系,由此合成的具有特殊形貌的微纳米结构材料往往表现出一些特殊的功能特性。
  • 广州标际发布医用口罩颗粒物过滤效率测试仪YQ—300新品
    用途用于日常防护型口罩、医用口罩对颗粒物过滤效率的测试以及测定普通类织物、医用防护口罩对于恒定流量的气流的阻碍性能。适用于医疗器械检验中心、安全防护检验中心、劳动防护检验中心、药品检验中心、疾病预防控制中心、纺织品检测中心、医院、口罩生产企业等。符合标准GB/T 32610-2016 、GB 2626-2006 、GB 19082-2009 、GB 19083-2010 GB 24539-2009 、YY 0469-2011技术参数 项目技术参数过滤效率检测范围0-99.999%过滤效率检测流量计范围(10-100)L/min,精度2.5级过滤效率采样频率1-9999次/min可任意设置过滤效率颗粒物浓度(20-30)mg/m3计数中位径盐颗粒物(0.075±0.02)μm、油颗粒物(0.185±0.02)μm粒度分布几何标准偏差盐颗粒物≤1.86、油颗粒物≤1.60动态检测范围0.001-100 )mg/m3,精度1%仪器准确度等级(精度等级)460mm×525mm×1430mm差压传感器量程0~500Pa电源AC 220V,50Hz 产品特点1、 采用冷发生气溶胶发生器产生出连续稳定的气溶胶粒子,加注溶液方便。2、 采用高精度PM2.5传感器对气溶胶浓度进行测量。3、 全程颗粒物防泄漏设计,保护实验人员安全。4、 气溶胶发生器2套:盐性颗粒物气溶胶发生器和油性颗粒物气溶胶发生器。5、 配有气溶胶颗粒物静电荷中和装置。6、 气动夹具并配有保护装置,使用安全方便。7、 配置温湿度传感器,实时显示环境温湿度(温湿度要求:25℃±5℃,30%RH±10%RH)。8、 配置玻璃转子流量计、真空泵、激光尘埃粒子计数器。9、控制系统:计算机控制试验过程,自动采集数据,配置专用电脑和测试软件。 10、计算机自动测试气体浓度,自动计算过滤效率;可保存、输出、查询、打印测试数据。广州标际包装设备有限公司是具有自主知识产权的高新技术服务型企业。公司专业从事包装检测仪器及其软件的研发、生产、销售、服务,已经为全世界40多个国家地区超过10000家企事业单位提供了具有竞争力的实验室建设方案。服务遍布国家质检药检机构、科研院校、包装、印刷、食品、医药、日化、化工、新能源、新材料等领域。创新点:1、采用冷发生气溶胶发生器产生出连续稳定的气溶胶粒子,加注溶液方便。2、采用高精度PM2.5传感器对气溶胶浓度进行测量。3、 全程颗粒物防泄漏设计,保护实验人员安全。医用口罩颗粒物过滤效率测试仪YQ—300
  • 【热点应用】质子交换膜燃料电池生产中催化剂浆料的颗粒特性表征
    燃料电池(Fuel Cell)市场前景 为缓解世界性能源危机的加剧,减少传统能源对环境造成的污染;有序推进碳中和的各项任务目标,不断深化能源结构优化,提高能源开发整体效益成为摆在我国科研工作人员及新能源产业开发从业者面前的重要课题。 燃料电池(Fuel Cell)是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、热能发电和原子能发电之后的第四种发电技术。 燃料电池用燃料和氧气作为原料;同时没有机械传动部件,故没有噪声污染,排放出的有害气体极少。由此可见,从节约能源和保护生态环境的角度来看,燃料电池是最有发展前途的发电技术[1]。 作为一种新的高能量密度、高能量转化率、环保型的电源装置受到全世界的广泛关注,并具有广阔的应用前景。 一、质子交换膜燃料电池目前,燃料电池主要被分为六类[2]。碱性燃料电池(AFC,Alkaline Fuel Cell)、磷酸盐燃料电池(PAFC,Phosphorous Acid Fuel)、熔融碳酸盐燃料电池(MCFC,Molten Carbonate Fuel Cell)、固体氧化物燃料电池(SOFC,Solid Oxide Fuel Cell)、质子交换膜燃料电池(PEMFC,Proton Exchange Membrane Fuel Cell)和直接甲醇燃料电池(DMFC,Direct Methanol Fuel Cell)。采用聚合物质子交换膜作电解质的PEMFC,与其它几种类型燃料电池相比,具有工作温度低、启动速度快、模块式安装和操作方便等优点,被认为是电动车、潜艇、各种可移动电源、供电电网和固定电源等的最佳替代电源[3]。如图1所示,膜电极(membrance-electrode assembly, MEA)是由质子交换膜、催化层与扩散层 3 个部分组成,是质子交换膜燃料电池 (PEMFC)电化学反应的主要场所,也是决定质子交换膜燃料电池 (PEMFC) 的成本、性能和耐久性的核心关键部件。 二、质子交换膜燃料电池的催化剂浆料分析 催化剂浆料涂布是膜电极生产的关键步骤之一,要求催化层涂敷均匀,同时尽量减少铂含量以降低成本,因此必须对浆料进行严格的质量控制。 催化剂浆料的颗粒粒度和分散性能会影响浆料粘度、聚合物电解质的分布和形态、催化剂的利用率、催化剂和聚合物电解质的相互作用以及催化层的均匀性和连续性等重要参数,最终影响膜电极的电化学性能[4]。 如图 2 所示,常见的活性催化剂为铂基纳米颗粒,最佳粒度范围为 2~5nm,但这些纳米颗粒不是独立存在的,而是分散在碳载体颗粒上。单个碳载体颗粒的粒度范围为 20~40nm,在浆料中碳载体通常以团聚体的形式存在,粒度在亚微米至微米范围。聚合物电解质分散成不同形态(棒状或线团)、粒度在 70 nm~2.5 µm 之间的团聚体,与碳载催化剂混合形成催化剂浆料。催化剂和聚合物电解质分散在特定的溶剂中,需要控制团聚物的粒度,优化催化剂和电解质导体团聚物的相互作用。 对于聚合物电解质团聚体,粒度在200~400 nm范围有利于提高氢气/空气的反应性能。碳载体催化剂会出现未充分分散或过度分散的情况[5]。 在未充分分散时,碳载体是高度团聚的;离子交联聚合物只覆盖在团聚物外部,内部的铂催化剂无法与电解质充分接触,因此利用率不高。 过度分散时,团聚物破裂,铂催化剂颗粒与碳载体分离,影响其在氧化还原反应中的活性。 理想的分散状态是形成由碳载体催化剂组成的小团聚体,电解质聚合物在这些团聚体上均匀分布,能够提高催化剂的利用率[6]。 粒度是催化剂浆料的关键性指标,但浆料由不同尺度的颗粒混合物组成,要准确测量浆料的粒度有一定的难度,目前还没有一种技术可以全面表征所有颗粒的粒度。 X 射线衍射 (XRD)、激光衍射 (LD) 和动态光散射 (DLS) 是三种常用的材料表征技术,用于表征不同尺度的颗粒,结合三种技术能够全面表征催化剂浆料中的颗粒特性。 三、马尔文帕纳科解决方案 —— X 射线衍射技术X 射线衍射 (XRD) 通常用于确定小于 100 nm 的纳米晶粒尺寸。快速测量单个衍射峰(1~3 分钟),足以利用峰宽的 Scherrer 分析来计算晶粒尺寸。另外,如果测量多个衍射峰(20 分钟以上),则可采用全谱拟合技术,更精确地计算晶粒尺寸和点阵参数。图 3 显示了使用 Aeris 台式 X 射线衍射仪收集的 X 射线衍射数据,样品是分散在三种不同碳载体颗粒上的催化 Pt 粉末。 如表 1 所示,分散在 Ketjenblack EC-300J 碳黑上的 Pt 的平均晶粒尺寸比分散在 Vulcan XC72 碳或 Vulcan XC72R 碳上的 Pt 略小。晶粒尺寸的变化会改变催化活性和耐用性。全谱拟合分析还表明,EC-300J 上分散的 Pt 比 Vulcan XC72 或 Vulcan XC72R 上的 Pt 的点阵参数更大。该点阵参数也大于已公布的 Pt 的参考值 3.9231 Å。[6]较大的点阵参7数可能表明表面引起了点阵应变或合金杂质可能改变催化活性。 XRD 可以分析分散体、固体碎片以及粉末。例如,碳载体 Pt 催化剂纳米颗粒可以在粉末分散到浆料中后和浆料印刷并固化在膜片或气体扩散层上后进行测量。图 4 显示了 40% Pt 在 Vulcan XC72 碳上的 XRD 数据,这些碳可作为粉末、浆料和催化剂涂覆膜 (CCM) 上的固化电极层。在所有情况下,Pt 衍射峰均可通过其他成分中解析出纳米粒尺寸计算,如表 2 所总结。 如图4所示,浆料和催化剂涂覆膜(CCM)样品与粉末样品相比,铂衍射峰变窄,说明这两中样品的铂晶粒尺寸变大。铂催化剂的这种粗化现象可能表明,在溶剂中的碳载体催化剂粉分散过程中,浆料变得过热。因此,在超声处理过程中,通常使用 5℃ 的水浴对浆料进行冷却。[8]在加工过程中,晶粒尺寸的变化(如颗粒粗化),会影响催化剂活性。 四、马尔文帕纳科解决方案—— 激光衍射技术激光衍射技术 (LD)是测量颗粒粒度分布的常用分析方法,粒度范围从十几纳米到几个毫米。动态范围宽,非常适合分析催化剂浆料的粒度分布。激光衍射法操作简便,测试速度快,通常不到1分钟,也非常适合生产过程控制。此外,激光衍射技术还可以研究工艺条件变化对浆料粒度分布的影响。 图 5 是使用 Mastersizer 3000 激光粒度仪对稀释后的催化剂浆料重复5次的粒度测试结果。该浆料中颗粒的粒度呈双峰分布,峰值在1 µm左右的颗粒占最大体积分数,20nm左右的颗粒体积分数占比较小。如表 3 所示,该浆料的粒度分布结果相对标准偏差(RSD)1%,具有高度的重复性。 激光衍射法通常测量的是催化剂浆料中碳载催化剂团聚物的粒度分布。分散良好的催化剂浆料中,碳载催化剂团聚物典型的粒度范围在 100 nm 至 1 µm 之间。但是图 5 中可以观察到100nm 以下的颗粒,表明在分散过程中能量输入过高导致铂催化剂颗粒从载体上脱落,使浆料过度分散。众所周知,催化剂颗粒的粒度对电池性能影响很大。如果催化浆料分散不好,会导致催化剂利用率和传质效率下降,降低电池性能。适当的分散能够改善催化浆料的分散状态(进而改善电池的整体性能),但过度分散也会导致催化剂颗粒从碳载体上脱落,最终影响电池性能。 激光衍射法也可以研究颗粒的易碎性,优化分散过程。将铂担载量40%的Vulcan XC72R 碳载催化剂粉末加入到异丙醇中,在剪切条件下进行分散,使用Mastersizer 3000监测浆料粒度随剪切时间的的变化。如图 6 所示,随着剪切时间的延长,10-100 µm 团聚体颗粒的数量减少,而 10µm 以下的颗粒数量增加。2 小时后,仍有大量团聚物 (10 µm) 存在,这说明还需要增加剪切或者使用更高能量的分散方法进一步分散,才能达到合格的催化剂浆料要求。 五、马尔文帕纳科解决方案 —— 动态光散射技术 与激光衍射法相比,动态光散射 (DLS) 更适合于测量纳米级颗粒的平均粒度,范围从1 nm 至 1 µm。 将催化剂浆料以 1:10 比例分散在异丙醇(IPA)中,用Zetasizer Ultra纳米粒度仪测量催化浆料的平均粒度。稀释后的浆料仍然是高度不透明的,采用非侵入背散射 (NIBS)技术进行测量,重复测量5次。如图 7 所示,尽管浆料不透明,5次测量的相关曲线的一致性很好。图 8 是催化剂浆料的粒度分布图。如表 4所示,体积平均粒度为 1.04 µm,多分散指数也比较大(0.1)说明浆料的粒度分布宽,与激光衍射法的结果吻合。动态光散射技术(DLS)主要是检测颗粒的布朗运动产生的散射光光强波动,颗粒的散射光强与粒径的 6 次方成正比,大颗粒的信号很容易掩盖小颗粒的信号,因此动态光散射法(DLS)没有观察到激光衍射法测得的小颗粒。 动态光散射技术还可用于测量催化剂浆料的 Zeta 电位,研究电解质聚合物与碳载催化剂之间的相互作用,确定电解质聚合物在催化剂上的均匀分布。Zeta电位与浆料的离子浓度有关,可以通过对碳载体颗粒功能化改性或者改变电解质聚合物浓度来调节。通常来讲,特别是在介电常数较高的分散介质(如甲醇)中,Zeta 电位越高,浆料的稳定性越好。Zeta 电位分析还可以用于优化配方,改进浆料的稳定性。事实上,已经有研究报道可以通过模型根据初级颗粒的粒度和体系的Zeta 电位来预测催化剂浆料稳定[9]。 六、结论 通过X射线衍射技术发现,浆料和阴极催化剂涂覆膜中的晶粒尺寸比催化剂粉末大。这种颗粒粗化现象通常是由于浆料在分散过程中过热引起的。激光衍射法检测到在20 nm附近有大量初级颗粒,说明催化剂浆料出现了过度分散的现象。 联合使用激光衍射、X射线衍射和动态光散射技术,可以从不同尺度表征催化剂浆料,优化和监测催化浆料配方和稳定性。使用 Mastersizer 3000 激光粒度仪测量催化剂浆料的粒度分布,可评估临界颗粒分散的有效性。使用 Zetasizer 纳米粒度及Zeta电位仪进行 Zeta 电位测量,可研究聚合物电解质和碳载催化剂的相互作用,预测浆料稳定性。使用 Aeris 台式 X 射线衍射仪,可以测量纳米催化剂的晶粒尺寸,验证防止纳米颗粒粗化的方法的有效性。 参考文献[1] 陈光. 新材料概论:科学出版社,2003年[2] Kamaruzzaman.Sopian ,Wan Ramli Wan Daud.Challenges and Future Developments in Proton Exchange Membrane Fuel Cells [J].Renewable.Energy.2006,31(5):719~727[3] 胡嫦娥,刘琼,周敏. 质子交换膜燃料电池的研究现状. 新能源网. 2016.[4] D. Papageorgopoulos, US Dept. of Energy Hydrogen and Fuel Cells Program Report, FY 2018 Annual Progress Report[5] Orfanidi et al, J. Electrochem. Soc.165 (2018) F1254[6] Wang et al, ACS Appl. Energy Mater. (2019) DOI: 10.1021/acsaem.9b01037[7] Swanson Natl. Bur. Stand. (U.S.) Circ. (1953) 539 1 31[8] Sharma et al, Materials chemistry and Physics 226 (2019) 66-72[9] Shukla et al, J. Electrochem. Soc.164 (2017) F600-F609 关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。
  • 济南微纳研制世界首台大颗粒计数器
    济南微纳仪器公司研发团队成功研制出世界上第一台Winner大颗粒计数器, 该产品采用遮光原理对气体活透明液体中的大颗粒(粒径400um-5cm)进行测量,填补了国内该项目研究的空白。该计数器体积小,在对大颗粒进行连续、高速、精确、稳定地不接触测量的同时得到大颗粒的浓度和粒径分布,性能超过其他相关性能的分级设备。  该产品的性能特点:  1. 世界首创的大颗粒技术器   2.粒径数值精确,分辨率高(优于100um)   3.测量速度快,流量大   4.非接触式测量   5.与分级设备相比,具有样品需求少,体积少,代表性强等特点。  备注:有测试和控制需求的客户请致电:0531-88876019,我们将竭诚为您提供相关服务。
  • 全新升级|在线式颗粒计数器 现场测量油液污染度
    霍尔德上市新品啦!2024年01月09日上市了一款在线式颗粒计数器【在线式颗粒计数器←点击此处可直接转到产品界面,咨询更方便】配电变压器多暴露在露天环境中,其绝缘油(变压器油)受外部杂质、空气接触以及设备高温运行的影响,逐渐变质。一旦绝缘油变质,它原有的灭弧、冷却和绝缘功能就会丧失。为了防止因油质变差导致的安全运行问题,我们必须对正常运行的配电变压器定期进行油样化验分析,并根据分析结果采取相应的处理措施,确保油质的稳定,从而保障变压器的正常运行。在线式颗粒计数器是采用国际液压标准委员会指定的光阻(遮光)法计数原理,专门用于现场在线测量的、油液污染度等级检测装置。具有体积小、质量轻、检测速度快、精度高、重复性好等优点,可在高温高压等及其恶劣的条件下工作。适用于发动机油、齿轮油、变压器油(即绝缘油)、液压油、润滑油、合成油、水基类(水基液压油、水乙二醇等)、醇类、酮类等一切透光溶剂,可广泛应用于电力电厂、航空航天、石油化工、交通港口、钢铁冶金、汽车制造等领域。主要特点:1.采用光阻(遮光)法原理,使用高精度激光传感器,体积小、精度高、性能稳定;2.适用于现场的在线检测,可实时监测用油系统中的颗粒污染度;3.内置数据分析系统,能显示各通道粒径的真实数据并自动判定样品等级;4.标准款可直接耐压100公斤,可选配减压阀用于在线高压测量;5.具有体积冲洗和时长冲洗模式,方便用户对设备的使用和维护;6.内置ISO4406、NAS1638、SAE4059、GJB420A、GJB420B、ГOCT17216、GB/T14039等颗粒污染度等级标准;7.内置校准功能,可按GB/T21540、ISO4402、ISO11171、GB/T18854等标准进行校准,一次测试可以给出所有内置标准结果;8.可独立设定所有标准任意报警级别,实现污染度或洁净度检测;9.RS232或RS485接口,支持标准Modbus协议可连接电脑、上位机、打印机、PC系统或其它设备进行数据监控、处理;10.超大存储,可选择存储在仪器内部或外部存储设备中;11.坚固外型结构,适合复杂工作环境;12.下进上出的模式有利于限度减小在线气泡对测试结果的干扰;13.可连续测试也可任意设置测试时间间隔;14.中英文双系统,客户可自由切换,适合外销出口;15.触屏或者薄膜按键操作,可自由切换,仪器界面可自由控制远端打印机的开关;16.可选接4G/5G模块,支持手机或电脑端远程数据监控、历史数据、曲线查询(选配);17.内置水分和温度传感器模块,可同时输出四种参数信息(选配)技术指标:光源:半导体激光器;流速范围:5-500m/min;检测样品粘度:≤650cSt;在线检测压力:0.1~10Mpa(选配减压装置最高压力可达42Mpa);粒径范围:1~600μm;接口:USB接口、RS232接口、RS485接口;数据存储:提供1000组数据存储空间,并支持优盘存储;灵敏度:1μm或4μm(c);极限重合误差:40000粒/m;计数体积:1~999m;计数准确性:±0.5个污染度等级。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制