当前位置: 仪器信息网 > 行业主题 > >

精密泵

仪器信息网精密泵专题为您提供2024年最新精密泵价格报价、厂家品牌的相关信息, 包括精密泵参数、型号等,不管是国产,还是进口品牌的精密泵您都可以在这里找到。 除此之外,仪器信息网还免费为您整合精密泵相关的耗材配件、试剂标物,还有精密泵相关的最新资讯、资料,以及精密泵相关的解决方案。

精密泵相关的资讯

  • 蠕动泵在精密传输中的作用
    随着工业现代化的发展,生产线上对于液体输送的要求也越来越高。而如果在传输液体的过程中,采用的方法不当,会带来很多不便和风险,比如信号干扰,流体漏泄,甚至是系统崩溃等。  而蠕动泵则是一种非常实用的输送设备,它通过压缩软管的方式实现液体的输送。相比于一些传统泵的输送方式,并没有机械件接触,所以在液体输送中,不会让液体受到损害,也不会产生杂音和振动,能够更好的保障输送的稳定性和精度。  基于这些特点,蠕动泵在现代工业应用中被广泛地使用。实现了对于输送流量的实时监测和调整。那么在使用蠕动泵的过程中,究竟可以有什么优势呢?  一、减少成本,保证质量  相比于其他一些传输设备,蠕动泵的安装成本和维修成本都非常的低廉。在安装的过程中,它不需要太多的辅助设备,也不需要耗费太多的时间。而在维修的时候,只需要更换软管即可,非常的方便。累积下来,也可以减少企业的成本开支。  除了在成本方面的改善,蠕动泵还可以更好的保证液体的输送质量。它采用软管压缩的方式进行输送,不会对输送的物体造成任何的破坏,保证液体的完整性。而且还能够实现对于流量输出的精密控制,不会产生浪费。  二、提升效率,提高产能  在一些有喷涂要求的行业中,对于喷涂的均匀度和精度有着非常高的要求。而在使用传统的输送方式时,很容易会出现液体的不均匀流量和压力损失,导致喷涂效果不尽如人意。而蠕动泵可以通过提供稳定的流量和压力来实现更为均匀的液体输送,并且可以实现对于出料量的实时监测和调整,进一步提高了生产效率。  三、应用范围广泛  蠕动泵具有很强的适应性,可以输送各种类型的介质和流体。不管是粘稠液体、固体悬浮液体等,都可以非常理想地完成输送工作。同时,蠕动泵的安全性也非常出色,不会产生火花和电磁干扰等严重的安全问题,非常适合在化工、制药、食品加工等需要高度安全性的场合中使用。  总之,蠕动泵作为一种创新型的液体输送设备,具有诸多的优势。它可以在成本、质量和效率等不同方面为企业带来极大的改善和提升,大大提升了生产效益。相信在工业生产中,它的应用前景将越来越广泛。
  • 进口蠕动泵:打造高效精密供应链系统的必备利器
    蠕动泵是一种高效稳定的流体输送设备,在化工、医药、环保等领域被广泛使用。选择和使用进口蠕动泵对于构建高效精密供应链系统至关重要。本文将详细介绍进口蠕动泵的工作原理、优势和应用领域,以及探讨其在供应链管理中的重要性。进口蠕动泵可以提高生产效率、降低成本,保证产品质量和运输安全。让我们一起深入了解。  让我们先了解一下进口蠕动泵的工作原理。这种泵是通过蠕动轮的轴向滑动来推动管道中的液体,从而实现了液体的输送和控制。蠕动泵有着简单的结构、小巧的体积、低噪音、易于维护等特点,适用于输送各种粘度和含有固体颗粒的液体。相对于其他类型的泵,蠕动泵在输送过程中不会产生剪切力或破坏液体结构,因此能够保持液体的原始性质和颗粒分布,确保产品质量的稳定性。  进一步比较进口蠕动泵与国产泵的优势。首先,进口蠕动泵采用先进制造工艺和材料,耐腐蚀性更强,使用寿命更长。其次,进口蠕动泵应用精密控制技术,实现更高的精确度和稳定性,确保输送流量、压力和速度控制更准确。此外,进口蠕动泵具备灵活的泵头结构和多样配件选择,可以适应不同场合需求。最后,进口蠕动泵的售后服务更全面,提供及时技术支持和维修服务,减少生产故障和停机时间。  蠕动泵广泛应用于不同领域。在化工行业中,可用于输送各种酸碱、盐类和有机溶剂,在化肥、涂料和颜料等生产中得到广泛应用。在医药领域,蠕动泵用于输送精细化工品、药液和生物制品,确保药物纯度和有效成分稳定。在环保领域,蠕动泵用于输送废水、废气和污泥等固液混合物,具有高效清洁处理效果。  在供应链管理中,蠕动泵的重要性不可忽视。首先,它具备出色的泵头可调性,可根据不同的流量和压力要求进行精确调节,确保产品稳定供应和质量标准。其次,蠕动泵在输送过程中不会产生涡流和剪切力,有效避免氧化和降解,保持产品性能不变。此外,蠕动泵体积小巧、结构简单,便于安装和维护,提高工作效率并节约成本。最后,蠕动泵提供全程可追溯性,具备灵活的数据采集和分析功能,有助于优化供应链管理,提升企业运营效率和竞争力。  综上所述,进口蠕动泵作为一种高效精密的流体输送装置,在供应链管理中发挥着重要作用。其先进的工作原理、卓越的性能和广泛的应用领域,使其成为建立高效精密供应链系统的关键工具。无论是在化工、医药、环保或其他行业,进口蠕动泵都能够为企业提供稳定的供应和优质的产品,助推企业实现可持续发展。  常州普瑞流体技术有限公司,专业蠕动泵生产商,专注于为全球医疗、制药、化工、环保等企业提供专业的蠕动泵解决方案。公司产品涵盖多个系列、多个型号,无论是在功能、外观、性能、价格、服务等方面。PreFluid可以提供多种标准产品应用解决方案供客户选择,也可以根据具体应用为客户提供定制化服务解决方案满足客户不同的应用需求。产品对标国际,进口平替,欢迎新老客户在线咨询。
  • 美国Era精密可编程注射泵进入中国市场
    美国Era公司精密可编程注射泵已进入中国市场,主要型号有NE-1000、NE-4000、NE-1600、NE-1800。其中主打的型号是NE-1000,其它的型号倒是NE-1000的升级改装型号。  NE-1000的注射器的容量达到60ml ,注射速率可以从0.73uL/hr-2100mL/hr调节 ,采用节省空间的设计,小巧结实的外观,为你实验室节省空间。该产品有注入和回抽功能 ,可编程控制,最大41阶命令(注射的速率、注射的容量、插入暂停),一台电脑可以控制100台注射泵,注射的精度小于正负1%。  此次Era可编程注射泵进入中国市场给中国客户解决了编程控制液体的注射问题,而且在价格的方面也是中国客户完全能够接受的。     上海纳锘仪器有限公司  地址:上海市莲花南路1388弄8号楼碧恒广场1503-1504室[201108]  电话:021-60900829,60900830,61131031,61131051  传真:021-61131052  E-Mail:info@nano-instru.com  --------------------------------------------------------------------------------  浙江办事处  地址:浙江杭州莫干山路425号瑞祺大厦814室[204888]  电话:0571-81954578  传真:0571-81954579  E-Mail:sales@nano-instru.com  纳锘仪器--提供给您纳米级的专业细致服务!
  • 艺达思携V系列精密柱塞泵参展CMEF
    IDEX Health & Science将借助第65届中国国际医疗器械博览会/CMEF推出全新V-系列精密柱塞泵 该系列产品延续了VFP17分配泵的技术优势,将为您带来更耐用 、更可控及更灵活的全新体验。三种选择助您达成多样化仪器设计目标。预期泵寿命高达2百万至5百万次。 如何选择多岐管板或管道组件来连接仪器液路? IDEX Health & Science 公司集两种技术于一体,为您解决各种微流控领域流体输送挑战。了解IDEX Health &Science 更多信息请访问我们公司网站,在线观看医疗临床诊断微流控优化技术系列技术交流会资料。设计工程师和科学家们将针对当前IVD临床诊断仪器中泵、阀、连接件和除泡器技术进行比较。请点击下载最新仪器设计资讯样本查阅用于优化生命科学流体技术的组件和服务。请点击索取最新V系列产品资料 - 帮助您根据应用选择合适的型号。
  • 央视关注!国仪量子持续助力量子精密测量产业化发展
    近日,央视《经济半小时》栏目聚焦报道合肥“场景创新”相关经验成绩,国仪量子发展的量子精密测量技术产业化成果受到关注。在采访中,国仪量子董事长贺羽表示,国仪量子源于中国科学技术大学,承接了实验室的科技成果转化。目前,我们(国仪量子)可以在一个比头发丝还要细一百倍、肉眼看不见的这样的一根针尖上,去人工制备一个量子传感器,这个传感器它的大小大概只有原子尺度,它有更高的分辨率和更高的灵敏度,可以测到过去我们测不到的信号。比如,人在想问题时大脑产生的磁场。这么精细灵敏的传感器,可以应用于对癫痫的病灶定位、测心脏产生的磁场,可以对心肌缺血和冠心病进行早期的筛查和诊断。震撼发布!引领磁传感领域进入量子时代作为量子信息技术产业化的引领者,国仪量子在今年世界制造业大会期间,面向全球发布了一款可用于心磁、脑磁、地磁等弱磁场精密测量的“量子自旋磁力仪”。该设备利用碱金属原子外层电子自旋性质,以泵浦激光作为操控手段,使碱金属原子产生自旋极化。在外界弱磁场的作用下,碱金属原子发生拉莫尔进动,改变对检测激光的吸收,从而实现高灵敏度的磁场测量。量子自旋磁力仪具有灵敏度高、体积小、能耗低、易于携带的特点,未来将引领人类在科学研究、生物医学等磁传感领域进入量子时代。量子精密测量,赋能产业焕新!国仪量子的核心技术是以量子精密测量为代表的先进测量技术,致力于为全球范围内企业、政府、研究机构提供以增强型量子传感器为代表的核心关键器件、用于分析测试的科学仪器装备、赋能行业应用的核心技术解决方案等优质的产品和服务。  测量是科学技术的基础,以量子精密测量为代表的先进测量技术成果不断涌现,必将进一步提高人类科技发展水平,变革生产制造模式,促进社会经济发展转型升级。今年5月,国仪量子联合权威专家团队,与新能源、半导体、生命科学、医疗健康、能源勘探、航空航天、 基础科研、计量学等领域的一线行业伙伴,联合编撰并发布了《量子精密测量行业赋能白皮书》。从用户维度出发,通过大量的案例切入行业痛点,针对性提出赋能解决方案。
  • 天津三英精密仪器亮相印度NDE展会
    2019年12月5日,印度班加罗尔(Bengaluru)无损检测会议NDE(NDE Science & Technology)正式开幕。来自全球各地的产品供应商为与会客户展示各种无损检测仪器,包括各种涡流、超声、射线和CT等无损检测仪器设备。印度NDE会议,是由印度无损检测学会组织的无损检测会议以及展会(Indian Society for Non–Destructive Testing ,ISNT ),主题是探讨和交流NDE科学技术。 印度NDE 近年来,印度作为成长的新兴经济体之一,拥有强劲的市场需求,使其成为许多中国企业拓展海外市场的选择。本次展会,当地经销商向来自全球各地,更多的是当地观众,展示了我公司的几款工业CT产品,吸引了众多客户前来参观了解。 天津三英精密仪器亮相印度班加罗尔(Bengaluru)NDE展会 工业CT作为无损检测领域的重要检测设备,对产品质量控制有重要的意义。随着市场对产品质量的要求越来越高,天津三英精密仪器提供性能稳定可靠、操作简单便捷的工业CT产品和及时优质的产品服务。
  • 上海光机所在SEL-100PW激光装置前端精密光同步方面取得进展
    近期,中国科学院上海光学精密机械研究所强场激光物理国家重点实验室在SEL-100PW激光前端精密光同步方面取得进展。科研团队基于自主建设的时间同步系统实现了超快强激光飞秒级同步。相关研究成果以Timing fluctuation correction for the front end of a 100-PW laser为题,发表在《高功率激光科学与工程》(High Power Laser Science and Engineering)上。高精度时间同步是促进超快强激光装置与加速器光源等大科学装置协同工作和融合发展的关键技术之一。“硬X射线自由电子激光装置”是我国在建的科技基础设施项目。该项目将建设一台100PW超强激光和一台硬X射线自由电子激光,通过泵浦-探测实验研究极端条件下真空量子电动力学、高能量密度物理等基础科学问题。由于超强激光和X射线激光的脉冲宽度均在20fs量级,两者之间的飞秒级同步是泵浦-探测实验成功开展的基础。科研团队发展了激光同步技术,对激光装置前端作了高精度时间抖动测量和实时反馈,实现了复杂强激光系统的飞秒级同步。激光装置前端结构如图1所示。该研究利用平衡光学互相关测量、时间延迟反馈等技术,分别对种子源系统、预放大系统作了时间抖动的测量和校正(结果如图2所示)。基于自主搭建的时间同步系统,种子源系统的同步精度达到1.82fs,预防大系统的同步精度达到4.48fs,实现了百太瓦级激光系统的飞秒级同步。该研究为超强激光及同类大科学装置的同步系统建设奠定了技术基础,并为基于超强激光和自由电子激光的联合实验研究提供了条件。研究工作得到硬X射线自由电子激光装置项目、国家自然科学基金、中国科学院稳定支持基础研究领域青年团队计划等的支持。图1. 100PW激光装置前端同步系统示意图。图2. 时间同步结果。(a)(d)分别为预防大和种子源系统时间同步结果;(b)(e)分别为开环状态下两系统时间漂移情况;(c)(f)为对应环境温度波动。
  • 中国科大利用量子精密测量技术搜寻宇称破缺的新相互作用
    中国科学技术大学中国科学院微观磁共振重点实验室彭新华教授、江敏副研究员等在量子精密测量和检验超越标准模型领域取得重要进展,利用自主研制的量子自旋放大技术实现了对一类超越标准模型的宇称破缺相互作用的超灵敏检验,实验结果提升国际纪录至少5个数量级,弥补了现有天文学观测的空白。相关研究成果于1月6日以“Search for exotic parity-violation interactions with quantum spin amplifiers”为题在线发表于国际学术期刊《Science Advances》上[Sci. Adv. 9, eade0353 (2023)]。粒子物理标准模型是20世纪物理学建立的最伟大的模型之一。然而,尽管标准模型取得了巨大的成功,但许多物理现象如暗物质、暗能量、中微子振荡、正反物质不对称性等无法被很好解释。为此,许多理论预言了可能存在超越标准模型的新轻玻色子,如轴子、暗光子、Z玻色子等,其可以作为暗物质的候选粒子,补充现有的标准模型理论。这些新粒子的能量可能跨度几十个量级的范围。对于低能区的新粒子 (远小于1eV),更加凸显出粒子的波动性,它们的德布罗意波长甚至要比现在的大型对撞机还要大,因此不适于使用粒子对撞器与加速器等高能装置进行研究。量子传感器如原子磁力仪、原子钟弥补了高能装置对这类超轻暗物质候选粒子的探测空白,但因这些新粒子与标准模型内粒子的相互作用十分微弱,亟需一种高灵敏度的量子传感器对标准模型外的新物理进行研究。图1 检验新相互作用的实验装置和相应的磁探测灵敏度。  彭新华教授研究组利用近期发展的量子自旋放大器技术(图1A)[Nat. Phys. 17, 1402–1407 (2021)],实现了对待测磁信号2个数量级的放大(图1B),并将其应用于超越标准模型的新粒子与新相互作用的搜寻,在国际上提出了“蓝宝石”研究计划,英文缩写SAHPPHIRE(SpinAmplifier for Particle PHysIcs REsearch)。该计划的首批实验约束了一种由Z玻色子诱导的自旋相互作用,如图1C所示,此类奇异相互作用是宇称不守恒的,其强度正比于自旋源内的电子自旋数量。因此本实验采用了两个原子气体室,一个利用惰性气体氙原子作为自旋传感器,一个利用碱金属铷原子作为自旋源。自旋源内的碱金属原子通过激光泵浦实现约1014的电子极化自旋数量,并由泵浦光间断极化,从而产生一个交流的震荡奇异场作用于量子自旋传感器上,并被进一步放大和探测。相较于其他应用于新物理搜寻的共振技术,量子自旋放大器中的铷原子充当嵌入式磁强计,实现了惰性气体氙原子的连续极化和原位测量。相比之下,原位测量提供的一个显著优势是由于大费米接触放大因子而增强核共振信号。此外,由于氙核自旋通过与极化铷原子的自旋交换碰撞而连续极化,自旋放大器可实现对奇异场的连续搜索。由于这些独特的优点,自旋放大器更适用于奇异相互作用的超灵敏连续波检测。正因如此,本实验对电子与中子之间的宇称破缺奇异相互作用的约束较国际前沿实验界限提高了5个数量级(如图2A),且对中子与质子之间的奇异相互作用进行了首次探索(如图2B)。不仅如此,SAPPHIRE计划仍有很大的性能提升空间,研究人员提出利用K-3He自旋放大器与固体自旋源,有望将对此类奇异相互作用的实验约束界限进一步提升8个量级。 图2 新奇相互作用实验界限。审稿人对这一工作有高度评价:“The result is a clearly a major improvement for the field”(该领域的一个重大提升),“What is particularly remarkable about these results is that they have established strong new constraints, which have improved prior bounds by several orders of magnitude, in a region of parameter space where there are little or no constraints from astrophysics ”(该实验最引人注目的是在一个几乎没有天体物理学约束的参数空间区域建立了强有力的新约束,将先前的约束提高了多个数量级)。这一成果展示了SAPPHIRE计划下量子精密测量技术与粒子物理学研究的有机结合,有望激发宇宙天文学、粒子物理学和原子分子物理学等多个基础科学的广泛兴趣。中国科学院微观磁共振重点实验室博士研究生王元泓和黄颖为该文共同第一作者,彭新华教授和江敏副研究员为该文共同通讯作者。该研究得到了科技部、国家自然科学基金委和安徽省的资助。
  • 思尔达发布上海思尔达恒温槽/精密恒温槽/水浴/粘度测定新品
    仪器简介:JWC-32C1精密恒温槽是根据石油化工、化纤塑料等行业材料分析和生产检验的需要而专门生产的新型设备,97年全新推出。该机由恒温槽主机及冷源组成,不受环境温度的影响,没有半导体制冷的那种需外接冷却水的麻烦和短寿命的缺陷,可以方便地获得低于室温的恒温值。主机的前后设置了大平面视窗,可一排放置六支毛细管粘度计,后侧平面背景灯,观察毛细管特别清晰,最适于乌氏、奥氏、平氏粘度测试及其它理化实验。调整后毛细管粘度计将自动垂直。冷源也可单独用于其它需冷却的仪器设备及场所。技术参数:● 主要技术指标控温范围: 0~85℃ 数显分辨率: 0.01℃槽温波动: ± 0.01℃ 槽温分布: ± 0.01℃工作室尺寸: 64× 19.5× 34cm3(l× w× h) 视窗尺寸: 47.5× 27cm(l× h)制 冷 量: 220Kcal /h 冷源温度: -15℃(输出短路时)加热功率: 1kw电源: 主机220V10A50Hz 冷源220V6A50Hz外形尺寸: 主机75× 26/38(带灯箱/不带灯箱)× 61cm3      冷源34× 25× 41.5cm3主要特点:● 制冷采用全封闭制冷压缩机,对储冷器制冷,储冷器与恒温槽间由泵及胶管连接冷液的流通,对恒温槽制冷。● 加热采用电加热器,由电子P.I.D调节器实现变功率控制,以平衡制冷量使温度稳定。● 搅拌设置定向导流装置,水流平稳,温度均匀。● 操作面专配粘度测试架,也可根据用户需要定作。创新点:JWC-32C1精密恒温槽设有液晶显示,连续地显示恒温槽的实际温度,数显分辨率、温度分布及波动均控制在± 0.01℃以内,自92年科研成果产业化至今,仍是国内精度较高、功能较全的恒温槽,为执行ASTM、ISO、JIS等国际标准及新国标创造了条件。JWC-32C1精密恒温槽由恒温槽主机(JWC-32C1)及由压缩机制冷机组组成的冷源(XWC-100/1制冷循环槽)组成,不论环境温度如何,都可方便地获得低于室温的恒温要求,不但保证了在高温季节的使用,还保证了在低温时仍然具有的高精度,而且没有半导体温差电制冷技术所产生的低功效、必须外接保证一定压力的冷水源等的缺陷。冷源另可作独立的冷源使用,向外方提供的最低温度可达-15℃以下。JWC-32C1精密恒温槽,烤漆机身,不锈钢面,造型美观,操作方便。按下电源开关,恒温槽在机内数字系统的控制下,即自动按照预置的温度进行恒温;面板上发光二极管指示了机内加热的情况,恒温槽前后两侧均设有大面积观察窗,通过后侧背景灯箱乳白色光源,可清晰地观察到槽内整个实验进程。安置在槽顶部的样品架配件,可配合各类实验方便地进行(可能需要协议提供、定作)。JWC系列精密恒温槽,特别适用于特性黏度、黏数的实验。上海思尔达恒温槽/精密恒温槽/水浴/粘度测定
  • 中国科大在量子精密测量和检验超越标准模型领域取得重要进展
    中国科学技术大学中国科学院微观磁共振重点实验室彭新华教授、江敏副研究员等在量子精密测量和检验超越标准模型领域取得重要进展,利用自主研制的量子自旋放大技术实现了对一类超越标准模型的宇称破缺相互作用的超灵敏检验,实验结果提升国际纪录至少5个数量级,弥补了现有天文学观测的空白。相关研究成果于1月6日以“Search for exotic parity-violation interactions with quantum spin amplifiers”为题在线发表于国际学术期刊《Science Advances》上[Sci. Adv. 9, eade0353 (2023)]。粒子物理标准模型是20世纪物理学建立的最伟大的模型之一。然而,尽管标准模型取得了巨大的成功,但许多物理现象如暗物质、暗能量、中微子振荡、正反物质不对称性等无法被很好解释。为此,许多理论预言了可能存在超越标准模型的新轻玻色子,如轴子、暗光子、Z玻色子等,其可以作为暗物质的候选粒子,补充现有的标准模型理论。这些新粒子的能量可能跨度几十个量级的范围。对于低能区的新粒子 (远小于1eV),更加凸显出粒子的波动性,它们的德布罗意波长甚至要比现在的大型对撞机还要大,因此不适于使用粒子对撞器与加速器等高能装置进行研究。量子传感器如原子磁力仪、原子钟弥补了高能装置对这类超轻暗物质候选粒子的探测空白,但因这些新粒子与标准模型内粒子的相互作用十分微弱,亟需一种高灵敏度的量子传感器对标准模型外的新物理进行研究。图1 检验新相互作用的实验装置和相应的磁探测灵敏度。彭新华教授研究组利用近期发展的量子自旋放大器技术(图1A)[Nat. Phys. 17, 1402–1407 (2021)],实现了对待测磁信号2个数量级的放大(图1B),并将其应用于超越标准模型的新粒子与新相互作用的搜寻,在国际上提出了“蓝宝石”研究计划,英文缩写SAHPPHIRE(SpinAmplifier for Particle PHysIcs REsearch)。该计划的首批实验约束了一种由Z玻色子诱导的自旋相互作用,如图1C所示,此类奇异相互作用是宇称不守恒的,其强度正比于自旋源内的电子自旋数量。因此本实验采用了两个原子气体室,一个利用惰性气体氙原子作为自旋传感器,一个利用碱金属铷原子作为自旋源。自旋源内的碱金属原子通过激光泵浦实现约1014的电子极化自旋数量,并由泵浦光间断极化,从而产生一个交流的震荡奇异场作用于量子自旋传感器上,并被进一步放大和探测。相较于其他应用于新物理搜寻的共振技术,量子自旋放大器中的铷原子充当嵌入式磁强计,实现了惰性气体氙原子的连续极化和原位测量。相比之下,原位测量提供的一个显著优势是由于大费米接触放大因子而增强核共振信号。此外,由于氙核自旋通过与极化铷原子的自旋交换碰撞而连续极化,自旋放大器可实现对奇异场的连续搜索。由于这些独特的优点,自旋放大器更适用于奇异相互作用的超灵敏连续波检测。正因如此,本实验对电子与中子之间的宇称破缺奇异相互作用的约束较国际前沿实验界限提高了5个数量级(如图2A),且对中子与质子之间的奇异相互作用进行了首次探索(如图2B)。不仅如此,SAPPHIRE计划仍有很大的性能提升空间,研究人员提出利用K-3He自旋放大器与固体自旋源,有望将对此类奇异相互作用的实验约束界限进一步提升8个量级。图2 新奇相互作用实验界限。审稿人对这一工作有高度评价:“The result is a clearly a major improvement for the field”(该领域的一个重大提升),“What is particularly remarkable about these results is that they have established strong new constraints, which have improved prior bounds by several orders of magnitude, in a region of parameter space wher there are little or no constraints from astrophysics ”(该实验最引人注目的是在一个几乎没有天体物理学约束的参数空间区域建立了强有力的新约束,将先前的约束提高了多个数量级)。这一成果展示了SAPPHIRE计划下量子精密测量技术与粒子物理学研究的有机结合,有望激发宇宙天文学、粒子物理学和原子分子物理学等多个基础科学的广泛兴趣。中国科学院微观磁共振重点实验室博士研究生王元泓和黄颖为该文共同第一作者,彭新华教授和江敏副研究员为该文共同通讯作者。该研究得到了科技部、国家自然科学基金委和安徽省的资助。
  • 中国科大彭新华、江敏等利用量子精密测量技术实现新玻色子的超灵敏观测约束
    中国科学技术大学中科院微观磁共振重点实验室彭新华教授、江敏副研究员等在量子精密测量和超越标准模型领域取得重要进展,利用超灵敏量子精密测量技术实现了超越标准模型的新玻色子直接搜寻,质量大于65μeV的轴子观测界限提升国际纪录至少10个数量级。相关研究成果于7月26日以“Limits on Axions and Axionlike Particles within the Axion Window Using a Spin-Based Amplifier”为题发表于国际著名学术期刊《Physical Review Letters》上[Phys. Rev. Lett. 129, 051801 (2022)]。国际知名学术网站Phys.org以“Usingquantum technology to constrain new particles”为题专文报道了该工作。粒子物理标准模型的建立是20世纪物理学取得的最重大成就之一,成功预言希格斯玻色子和W±、Z0玻色子等,极大促进了基础物理学研究。尽管已经取得了巨大的成功,标准模型仍然存在着许多疑难问题,包括强CP问题、中微子振荡、重子不对称性以及暗物质和暗能量。为解决这些难题,许多理论预言存在超越标准模型的新粒子和相互作用。两位诺贝尔奖得主Weinberg和Wilczek提出一种新玻色子——轴子(Axion),其存在可以完美的解释量子色动力学中的“强CP”问题。轴子还可以作为暗物质候选粒子,有望解答“宇宙由何组成?”这一世界性难题。世界上的大型高能实验室比如瑞士的CERN、德国的DESY、日本的KEK、韩国的IBS 等均投入大量精力搜寻轴子。在美国至少有五个正在运行的轴子搜寻实验,例如通过微波腔的ADMX、HAYSTACK 和用超导电路的DM Radio、ABRACADABRA 等。轴子质量分布范围是搜寻实验中极为关键的参数。根据以往的理论,轴子质量的可能范围跨度接近100个数量级,如果逐一搜寻,将耗费巨大的时间成本以及对探测技术要求极高,这为实验搜寻带来了极大的挑战。近期,国际上多项理论工作如高温晶格QCD、SMATH和轴子弦网络理论等研究了轴子质量分布范围,预言轴子质量有可能分布在10 μeV~1 meV,即著名的“轴子窗口”。这些工作引起了大家的广泛关注,然而由于实验技术限制,大部分实验室搜寻和天文学观测无法对轴子窗口内的轴子进行高灵敏搜寻。图1:本工作的实验(A)与轴子诱导的中子-电子耦合强度界限图(B)彭新华教授研究组将量子精密测量技术应用于轴子实验搜寻,原创提出“Sapphire” 研究计划(SpinAmplifier forParticlePHysIcsREsearch),核心是利用自旋量子放大器探测新粒子信号,为轴子研究提供了全新的“桌面式”超灵敏搜寻方法。在该工作中,研究人员制备了两个原子蒸气室,分别是惰性气体氙原子(xeon-129)和碱金属铷原子(rubidium-87),二者均通过激光泵浦技术实现接近了100%的自旋极化度。轴子可以作为力传播子(诺贝尓奖得主Wilczek于1984年理论预言),使得两团极化原子之间发生一种全新的极弱耦合作用,这等同于铷原子在氙原子上产生一个等效的磁场(如图1A所示)。轴子的质量决定了这一耦合作用的力程范围(即两个原子蒸气室的距离),因此为了搜寻特定质量范围的轴子,可以通过调节原子蒸气室之间的距离来实现。为了瞄准轴子窗口这一质量范围,需要将两个原子蒸气室之间的距离调节到厘米级别甚至更短。这对实验搜寻带来了两个巨大的挑战:(1)轴子等效磁场极其微弱,需要发展超灵敏的磁场探测技术;(2)由于两个原子蒸气室距离十分靠近,相互之间会产生经典的磁场干扰,导致轴子信号无法高灵敏识别。针对以上难题,该工作利用近期自主提出的自旋量子放大器作为轴子等效磁场的传感器[Nat. Phys. 17, 1402 (2021);PRL 128, 233201 (2022) ],实现了2个数量级的磁场放大,实验测量精度达到了0.1飞特斯拉(1飞特斯拉=10-15特斯拉),这意味着轴子产生的等效磁场至少比地磁场小1万亿倍。另一方面,研究人员为两个原子蒸气室专门研发了小型磁场屏蔽,将经典干扰磁场降低到0.003飞特斯拉水平,相比实验测量精度可以忽略不计。实验结果表明,在搜索范围内未发现轴子存在的证据,由此给出了轴子窗口内最强的中子-电子耦合界限,创造了新的国际最佳界限(如图1B)。审稿人高度评价该工作是“a substantial improvement in sensitivity in a theoretically interesting mass region for axions”和“a clever new implementation"。这一成果展示了量子精密测量技术在粒子物理研究领域应用的新潜力,有望突破一系列现有的实验界限,从而激发对宇宙天文学、原子分子物理学等多个基础科学的广泛兴趣。中科院微观磁共振重点实验室博士研究生王元泓和苏昊文为该文共同第一作者,江敏副研究员和彭新华教授为共同通讯作者。该研究得到了科技部、国家自然科学基金委和安徽省的资助。论文连接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.051801Phys.org报道:https://phys.org/news/2022-07-quantum-technology-constrain-particles.html
  • 摩方精密多款新品发布,微纳3D打印再添力作
    9月12日,重庆摩方精密科技股份有限公司(以下简称:摩方精密)亮相TCT Asia 2023,携多款新品于展位现场重磅发布,为微纳3D打印市场再添力作。工业级3D打印新作,全面进发小批量规模化生产摩方精密副总裁周建林在新品发布会上致辞,分享了摩方精密的品牌发展历程,以及在超高精密3D打印设备的研发成果。他提到,近几年摩方精密不仅在设备制造创新迭代升级,同时也在加紧布局终端应用的多类场景,此次新品发布的新设备、新终端、新材料及解决方案,也更好地诠释了摩方精密在精密电子和生物医疗两大领域的深耕成果。摩方精密坚持以客户为本,不断在行业深耕发展,为客户创造价值。本次发布的新一代工业级3D打印设备microArchS350,是摩方精密在精密电子领域的创新之作,可用于小批量、规模化精密仪器的生产制造。microArch S350依旧保持了摩方精密超高公差控制能力,将加工公差保持在±50μm,可达到QC-T-29017-1991汽车模制塑料零件高精度公差级别,充分满足工业应用的极致细节要求。为进一步提升科研及工业制造效率,microArch S350将幅面尺寸增加至100 mm(L)*100 mm(W)* 50 mm(H),可实现模型的小批量一体成型。摩方精密二代机标配的创新技术——薄膜滚刀涂层技术,使microArch S350在工作中加快树脂流平,并适应更高粘度(~5000cps)树脂的加工。在兼具单投影模式、拼接模式、重复阵列三种打印模式的同时,摩方精密不断优化用户体验感,为microArch S350配置了磁吸装置和侧移式绷膜,简化了用户在拆装组件过程中的操作步骤。在自动化和智能化设置方面,设备配备了自动供液系统,可实现打印材料精准给量。另外,为进一步方便用户使用,摩方精密同时发布了两款新型树脂材料,一款是具备高韧性、易拉伸、耐疲劳的韧性树脂ST1400,一款是用于POM 注塑、PDMS翻模的可溶性牺牲树脂,两者均可适配microArch S350机型使用。首款终端应用发布、先锋破局生命科学新领域原创牵引,创新蝶变。摩方精密躬身入局,不断开拓新终端、新应用。此次新品发布,更是带来了在生物医疗领域的全新突破——毛细血管器官芯片,这是一款可实现更高细胞培养密度、连续数周的长期培养时间、更接近人体器官功能性的各种类器官的体外3D培养芯片。这也是摩方精密首次打印制作可直接用于体外的医疗器械终端应用,是突破传统打印样件用于模型验证的颠覆性创新。毛细血管器官芯片可应用在疾病模型分析、新药开发研究、生理模型探究、精准医疗研发、化妆品检测、环境评估、航天医学等领域的检测分析,具有非常广阔的应用前景。摩方精密产品应用总监彭瑛在现场展示了摩方精密圣地亚哥研究院利用毛细血管器官芯片,经灌输培养后成功得到了结直肠癌类器官和肾近端小管类器官。并对结直肠癌类器官进行预测药物的准确性分析,经过细胞活力检测结果,充分验证了结直肠癌类器官芯片的单方药物,和复方药物治疗结果与体内药物反应具有高度一致性。通过多项实验结果,充分验证了通过毛细血管器官芯片的灌输系统,可实现营养物质及代谢废物的物质交换过程,高度模拟出人体真实器官的体外构建平台,从而成功培育出人体类器官,极大提高了药物反应的预测精准度,从而有效节约科研时间和成本。毛细血管器官芯片是由摩方精密microArch S230设备制作,为方便用户配套使用,摩方精密也专门提供了定制化芯片夹具和灌输系统。越是细微之处,更能彰显摩方精密秉持的人性化服务和用户友好型使用理念。摩方精密本次发布的新设备、新终端、新材料及解决方案,被行业广泛认为是微纳3D打印在精密电子和生物医疗行业的又一次创新突破,将进一步助推增材制造技术在精密制造和生命科学领域的跨越式发展。
  • 摩方精密获全球精密制造行业重量级殊荣“日本精密工学会制造奖”
    2022年9月8日,摩方精密被日本精密工学会正式授予“日本精密工学会制造奖”,成为全球第三家获得该奖项的非日本本土企业,也是第一家来自中国的企业,而此前获得过此殊荣的国外企业,只有德国的两家公司。这也是摩方精密继获得国际光学工程学会棱镜奖、TCT2022最佳硬件及聚合物系统奖后,再次斩获国际重量级奖项。 日本精密工学会成立于1933 年,到目前为止,在全球范围内已拥有包括高等院校、研究机构以及知名企业在内的5500多个成员,在世界精密制造工业领域中,尤其是在精密设计、精密加工、精密机械、精密计量、环境工学、表面材料、医学器械等诸多领域,始终占据着领导者地位。日本精密工学会设奖目的在于,一方面奖励具有卓越的开发力和工业改善力的优秀新型产品或具有促进制造业发展作用的高新技术;另一方面奖励在精密工程领域开发出具有高社会价值产品和技术的优秀企业,以肯定他们的努力和贡献,支持他们进一步发展。因此,此次获奖,无疑对摩方精密在精密加工制造领域的技术实力和突出贡献给予了高度的肯定和莫大的鼓励。摩方精密作为全球微纳3D打印和精密加工领域先行者和领导者,今后将凭借领先于行业的卓越技术实力,为全球制造产业的发展、科学技术的进步做出更大的贡献。
  • 输注泵老大浙江史密斯被收购
    近日,联赢医疗科技有限公司(以下简称“联赢医疗”)发文宣布,已与美国ICU Medical达成交易协议,全资收购其旗下浙江史密斯医学仪器有限公司(以下简称“浙江史密斯”)。此前,该公司于2008年被英国史密斯集团以4.4亿元收购并更为现名,10余年来产品以品牌佳士比™(GRASEBY™)畅销海内外。此次收购现已完成,联赢医疗将保证浙江史密斯医学仪器有限公司的日常生产供应及销售服务体系稳定,同时加快老产品升级换代和新产品研发,为客户持续创造更大的价值。01 市场占有率第一,却被“几经转手”浙江史密斯前身为浙江大学医学仪器有限公司,公司于1987年成功研发中国第一台微量注射泵WZ-50并生产投入市场,其后多年稳居国内输注泵类产品市场第一,同时出口欧美等10余个国家和地区。2008年,公司被英国史密斯集团以4.4亿元收购并更为现名,10余年来产品以品牌佳士比™(GRASEBY™)畅销海内外。史密斯医疗公开资料显示,Smiths Medical(史密斯医疗)的业务包括注射器和动态输注设备、血管通路和重要护理产品。其在中国拥有多个分支机构,包括:2007年9月27日成立的史密斯医疗器械(北京)有限公司;2008年史密斯医疗收购浙大医学仪器有限公司,收购后更名为浙江史密斯医疗器械有限公司;2015年4月1日成立的史密斯医疗器械(北京)有限公司上海分公司。2018年11月,史密斯集团宣布将剥离医疗业务,之所以如此心急,是因为2018年医疗部门拖累了集团的整体表现,并且与史密斯集团的工业业务相距甚远,不能形成矩阵效应。2022年1月6日,史密斯集团宣布以24亿美元的价格将其医疗部门史密斯医疗出售给美国输液设备龙头企业ICU Medical。彼时,ICU Medical表示,将两家公司的现有业务合并后,公司将成为一家全球领先的输液治疗公司。仅一年时间,ICU Medical就将旗下浙江史密斯医学仪器有限公司出售给联赢医疗。ICU MedicalICU Medical创立于1984年, 主要有三大产品线,分别是输液疗法(IV治疗)、肿瘤学以及重症监护。成立以来,ICU Medical保持了有机增长,并通过收购将业务延伸到了全球90多个国家和地区。其中几项大的并购业务包括:2009年,ICU Medical从Hospira收购了原Abbott Laboratories的重症监护业务,扩大了其生产空间。2015年10月,ICU Medical以5950万美元的价格,收购了Excelsior Medical公司的SwabCap®无针输液接头消毒帽。该笔收购旨在通过直接及OEM联合生产的方式,增强公司输液治疗产品的供给,及公司在全球范围内开发新客户的机会。SwabCap无针输液接头消毒帽2017年2月,ICU Medical以10亿美元的现金和股票收购了辉瑞公司(Pfizer)的Hospira输液系统(“ HIS”)业务。通过该笔收购,ICU Medical完善了其输液治疗产品的全线组合。由此,ICU Medical从一家无针连接器等静脉注射配件公司,变身为拥有一套完整产品组合的专营术输液公司。2018年11月,辉瑞宣布将其持有的ICU Medical股票全部售出,2019到2020年间,ICU Medical和Pfizer已实现资产的完全分离。2019年11月,ICU Medical以7500万美元及可能要在2021年前支付的额外受益收购了Pursuit Vascular,Inc.(简称“ Pursuit”)。Pursuit的主要产品为用于维护血液透析导管的ClearGuard®HD抗菌阻隔帽。目前,ICU Medical在北美、南美、欧洲、英国、南非、澳洲等多个地区都设立有直接的分支机构,并在中国、印度、俄罗斯、中亚、北欧等国家和地区设立经销商渠道。生产方面,ICU Medical共拥有4家工厂,其中3家位于美国本土,1家位于哥斯达黎加。其中,ICU Medical在哥斯达黎加工厂投资额达1320万美元。该工厂除了生产800多种静脉装置外,还生产获奖的Plum 360和LifeCare PCA输液泵。联赢医疗此次收购方联赢医疗科技有限公司,是一家以医疗器械研发、生产、销售和服务为核心业务的集团化企业,旗下拥有输注泵知名品牌浙江迈帝康医疗器械有限公司(以下简称“迈帝康”)。多年来,联赢医疗专注于急危重症治疗及微创手术两大领域,自主研发产品涉及生命体征监护、药物输注、呼吸治疗、内镜系统、急危重症临床决策支持系统等领域。目前,联赢在医疗器械领域形成了自己的核心技术,拥有多项自主独立的知识产权,累计申请专利60多项。公司分别在杭州、北京两地设立了研发中心,并在欧洲德国杜伊斯堡、美国加州尔湾、中东伊斯坦布尔、南亚印度新德里、南美巴西、东南亚地区等设立7处分支机构,全面加速全球战略布局。此外,公司与贝朗医疗(上海)国际贸易有限公司等达成战略合作,双方充分发挥各自优势,在药物自动化输注及临床信息管理领域展开积极探索。不到两年时间,双方已在全国各地近50家知名医院成功实施智慧输注临床信息化解决方案,获得业内用户普遍好评和认可。02输注泵市场输注泵是一种数字化、智能化的医疗仪器,主要用于在临床上实现高精度的注射输注定时定量的药液,具有市场使用范围广、应用科室多、安全便捷等特点,不仅可用于医院的ICU,也可用于各类临床科室。近年来,由于慢性病发病率增加以及老年人口的快速增长,对动态输液泵的需求增加以及全球外科手术数量的增加等因素推动了输液泵市场的增长。据统计,全球输液泵市场预计将从2022年的147亿美元到2027年达到205亿美元,复合年增长率为7.0%。根据应用,输液泵市场分为化疗/肿瘤学、糖尿病管理、胃肠病学、镇痛/疼痛管理、儿科/新生儿学、血液学和其他应用(包括传染病、自身免疫性疾病和心脏、肾脏、肺和肝脏疾病)。其中,胰岛素泵预计将成为该市场中增长最快的部分。糖尿病患病率的增加,加上对用于家庭护理环境中管理糖尿病的胰岛素泵的需求不断增长,预计将在预测期内推动胰岛素泵市场的增长。2020年世界输液泵市场占比目前,输液泵市场的主要参与者包括BD、百特、贝朗医疗、费森尤斯和ICU Medical。国内输注泵行业产业链较完整的生产商有威高、麦科田、深圳MedRena生物技术有限公司等。迈瑞医疗迈瑞医疗是中国医疗设备的领航者,为全球市场提供医疗器械产品。主要产品覆盖三大领域:生命信息与支持、体外诊断以及医学影像,拥有国内同行业中最全的产品线。迈瑞医疗BeneFusion VP5输液泵2021年2月,迈瑞医疗宣布推出BeneFusion e系列eSP、eVP和eDS,通过配备SmartAIR技术的平滑自动多通道继电器提供稳定无缝输液。据统计,迈瑞医疗在生命信息与支持业务的大部分子产品如监护仪、呼吸机、除颤仪、麻醉机、输注泵、灯床塔等市场份额均成为国内第一;血球业务市场份额已站稳国内第一;超声业务市场份额已站稳国内第二。威高威高作为国内医疗器械领域龙头企业,从一次性输液器起家,威高集团经三十多年发展,不仅以106种产品打破了国外的垄断,不断填补着中国医疗器械的空白,而且在临床护理、骨科、血液净化、医学工程、血液透析血液技术等多个产品线上居全国前列。威高输液泵麦科田医疗麦科田医疗成立于2011年,业务涉及输液管理、体外诊断、康复治疗等领域,2017年输液工作站新装机量全国第一。在药物输注领域,麦科田多年来专注产品创新,通过多项核心技术专利,有效解决行业面临的一系列技术难题,多款新品领跑行业。麦科田MP-60输液泵目前,其自主研发的药物输注等技术已达国际领先水平,申请专利200余项,取得医疗器械注册证及欧盟CE认证100余项。迈德瑞纳深圳迈德瑞纳生物科技有限公司成立于2016年,是一家专注于研发生产和销售医疗器械的综合型企业。主要从事输液泵,注射泵,输液工作站和输液管理系统的研发,生产和销售。迈德瑞纳UniFusion VP50 Pro 输液泵在COVID 19治疗期间,其生产的触摸屏注射泵和输液泵已与呼吸机和患者监护仪一起广泛用于普通病房、ICU、CCU和OR,以提高治愈率,因为智能系统和电阻式触摸屏设计可以戴手套操作,并使输液操作更简单,更快捷,以减轻护士负担并提高工作效率。长远来看,慢性病病例的增加、输液装置的广泛应用、全球人口老龄化基数的增加和家庭医疗的需求增加是输注市场增长的四大推动力。此外,随着新冠疫情政策放开,以及数字化的推进,输注泵的市场也许还会有令人惊喜的增长。
  • 【蠕动泵空间利用之王】CPT24叠泵
    CPT24叠泵以其创新的双泵头堆叠设计,在工业应用中脱颖而出。这种设计巧妙地利用空间,实现紧凑布局,能在有限的空间内安排更多的泵头,在提升工作效率的同时,保持了设备的整洁和组织。它的流量精度极高,无疑是制药、化工及其他精密流体搬运领域的理想选择。  CPT24采用独特的12滚轮交叉结构,大大减小了流体输送过程中的脉冲,从而确保流体输送的平滑性,降低了耗材的磨损,间接提高了设备的使用寿命。这种设计通过双Y管系统,有效地保证了泵头在灌装时的精度,其分装误差控制在1%以内,表现出极高的可靠性。  泵头垂直安装的特性,使得在维护和更换方面更加便捷。上压块与泵体之间的连杆连接设计,实现了单手操作的更换,方便快捷又安全。同时,CPT24叠泵泵头主体选材上乘,选择SUS304不锈钢为制造材料,且经过特殊的耐腐蚀处理。这种对材质的严苛要求,使得泵头不仅坚固耐用,还能承受各种消毒和清洁方法,包括使用双氧水(H2O2)、臭氧(O3)、酒精,以及环烷等。  与许多其他泵设备不同,CPT24叠泵在设计时充分考虑了液体传输过程中对液体纯净性的要求。液体在管内流动时完全不接触泵体,最大程度上避免了对液体的污染,确保了输送和灌装的高纯度要求。这个特点特别适合用于剪切敏感性的流体输送,例如生物制药行业中的活性物质,以及对纯净度有高标准要求的化工产品输送。  综上所述,CPT24叠泵的设计和制造都考虑到了实用性与高效性的完美结合,它不仅精确高效,而且操作简便,维护成本低廉,适用范围广泛,在多个行业中都能发挥出卓越的性能,可以说是流体传送和灌装领域的一大突破。
  • 精密测量院等在锂离子精密光谱研究中获进展
    近日,中国科学院精密测量科学与技术创新研究院研究员高克林、管桦实验团队与研究员史庭云理论团队,联合加拿大新不伦瑞克大学教授严宗朝、加拿大温莎大学教授G. W. F. Drake、海南大学教授钟振祥、浙江理工大学讲师戚晓秋等实验团队,在少电子原子体系——锂离子精密谱研究中取得重要进展。该研究将6Li+离子23S和23P态超精细结构劈裂的测量精度提高至10kHz水平,并精确确定了6Li原子核的电磁分布半径(Zemach半径)。这一基于原子精密光谱的工作独立于原子核模型,为揭示锂原子核结构、特别是6Li核的奇特性质以及检验相关的核结构模型提供了重要依据。该工作将进一步促进Li+离子精密光谱的实验和理论研究,推动少核子体系核结构理论与实验的开展。   少电子原子体系(如氢、氦原子以及类氢、类氦离子等)精密谱的实验与理论研究在检验束缚态QED理论、确定精细结构常数、获取原子核结构信息以及探索超越标准模型的新物理中颇具应用价值,是当前精密测量物理的重点方向。   高克林、管桦实验团队与史庭云理论团队等合作,开展类氦锂离子精密谱研究已逾十年。该团队基于电子碰撞电离方案研制了一台亚稳态Li+离子束源装置,各项性能指标(束流强度、发散角、稳定度等)均达到同类装置较高水平。该研究利用该装置产生的离子束,采用饱和荧光光谱测量方法精确确定了7Li+离子23S1和23PJ能级的精细结构和超精细结构劈裂,不确定度小于100kHz。该团队将实验与理论相结合,精确确定了7Li原子核的Zemach半径。   在饱和荧光光谱方法中,该研究受制于谱线的渡越时间展宽,得到的兰姆凹陷线宽达50MHz,大于谱线的自然线宽(3.7MHz),由此得到的测量结果具有较大的统计不确定度。为了进一步提高测量精度,该工作利用三驻波场光学Ramsey技术消除谱线的渡越时间展宽,获得线宽约5MHz的Ramsey干涉条纹,统计不确定度减小至kHz量级;通过抑制量子干涉效应、一阶多普勒效应、二阶多普勒效应、Zeeman效应以及激光功率等各项系统误差,实现了10kHz精度的6Li+离子23S1和23PJ能级的超精细结构劈裂。该超精细结构劈裂的测量精度较先前结果提高5~50倍。在理论方面,该团队计算了包括高阶量子电动力学(QED)效应在内的6,7Li+离子23S和23P态超精细劈裂。该研究包含完整的mα6阶相对论和辐射修正,理论精度较先前结果有所提升,且理论与实验符合程度较好。科研人员通过比较6,7Li+离子的理论计算和实验测量值,得到6Li和7Li原子核的Zemach半径分别为2.44(2)fm和3.38(3)fm,确认了7Li的核Zemach半径比6Li的大40%这一反常现象,并发现了由6Li+的23S态超精细劈裂确定的Zemach半径与核物理方法得到的值3.71(16)fm存在显著差异,表明6Li核可能具有反常的核结构。该成果将进一步推动更多相关理论和实验的发展。   相关研究成果发表在《物理评论快报》(Physical Review Letters)上。研究工作得到国家自然科学基金、中国科学院战略性先导科技专项、中国科学院青年创新促进会和中国科学院稳定支持基础研究领域青年团队计划等的支持。锂离子Ramsey光谱测量
  • 摩方精密复合精度光固化3D打印技术正式发布,全球首创Dual Series强势来袭
    重庆摩方精密科技股份有限公司(以下简称:摩方精密)在TCT Asia 2024正式发布复合精度光固化3D打印技术,面向全球市场推出首创Dual Series(以下简称D系列)设备:microArch D0210和microArch D1025,在速度、质量和便捷性上进行大幅提升,将有效解决增材制造中高精度和大幅面的固有矛盾,再次实现工业级3D打印技术新突破。D系列设备依旧保持了摩方精密超高精密、超高公差控制能力,全新搭载复合精度光固化3D打印技术,新增自动化操作平台,使工业级3D打印更智能、更稳定、更高效。在打印尺寸上,首次实现2μm到100mm*100mm*50mm的跨尺度加工突破。在快速原型制作上,为精密电子、生物医疗、高端通讯、半导体等高精密行业的创新应用带来高速灵活、降本增效的全新解决方案。大而非凡的打印尺寸、纤微毕现的打印精度、智能便捷地打印操作,共同造就了摩方精密新技术和新设备的超高品质。01|硬核创新,驾驭复合式跨尺度技术难题在光固化领域,存在几组固有矛盾。一是打印精度越高,支持打印的幅面尺寸越小;二是模型结构越复杂,切片及后续成型的难度就越大。不管哪种矛盾,都会直接影响打印的整体质量和效率。此次发布的复合精度光固化3D打印技术,核心是组合并自由切换多精度的3D打印光学系统,其中,低精度镜头适用于快速打印大幅面样件,高精度镜头专注于打印极其微小的特征,有效解决精度固定对打印效率的限制。其超高精度复合式跨尺度的加工能力,使同层(XY轴方向)和不同层(Z轴方向)均能实现不同精度的切换打印,平衡了打印精度与幅面大小的矛盾问题,为各行业用户提供更加灵活且高效的打印方式。02|全球首创,灵稳兼顾的研发搭档作为全球首款搭载了复合精度光固化3D打印技术D系列设备,共推出两款新型号设备:microArch D0210和microArch D1025,可智能识别捕捉复杂模型的精细结构特征,实现同层与跨层平面的双精度自动切换打印,完成更高效、更自由的精准打印作业,重新定义工业级微纳3D打印设备。两款设备,均配置新一代双精度面投影光固化3D打印系统,D0210能够在2μm/10μm两种精度中自由切换,而D1025能够在10μm/25μm两种精度中自由切换。两种精度的自由切换能力,不仅支持应对各种复杂的生产任务,还能在多种材质和复杂结构的产品制造上发挥出色,赋予用户更多的研发和设计空间。D系列采用先进的图像识别算法,能够智能定位并切换图像的精确区域,无论是层内还是层间,都能实现不同精度的自由调节。其中,D0210配置的双精度倍率横跨5倍,在2μm超高精度模式下,可打印100mm*100mm*50mm超大尺寸,实现5万倍的跨尺度加工技术飞跃。这意味着D0210在处理大尺寸、复杂结构的极小特征细节时,既能确保超高精度打印,又能轻松跨越尺度局限,从技术源头打消工程师对幅面和精度的平衡顾虑,满足更多复杂应用场景,为工业制造革新赋能。03|自动化加持,效率质量全面提升工业级的3D打印设备,特别是高精密仪器,在操作前需要经过严格的培训。D系列设备为简化用户操作,全新升级为自动化操作系统,集成平台自动调平,绷膜自动调平和滚刀自动调节三大功能,使工艺参数设置、液面调平、流平时间等步骤实现全自动作业模式。三大自动调节功能相辅相成协同工作,针对新手,能在5-8分钟完成全系统的精准调平,告别工业级3D打印设备传统手动操作下的复杂流程,极大简化打印前期准备工作并进一步保障了打印成功率,从而节省人力、物力成本。经数千次打样验证,较单精度打印,综合平台调平、切片、打印、后处理等全过程,或将效率综合提升50倍,同时满足高精度和高效率的双重需求。让用户能够更加专注于打印创意,释放研发新活力。平台自动调平快速实现高精度自动调平,追求零误差绷膜自动调平颠覆传统模式,加快打印前处理滚刀自动调节瞬间清除,气泡无处躲藏04|耗材多元化创新制造不受限为进一步赋能研发进程,提高用户体验,D系列设备搭配了液槽加热系统,兼容硬性树脂、韧性树脂、Tough树脂等工程应用类材料,耐高温树脂、耐候性工程树脂等功能类材料,适用于POM注塑、PDMS翻模的BIO生物兼容性树脂,氧化铝、氧化锆等陶瓷材料等多种自研和新型材料打印,更多元的耗材适配性,满足不同应用场景的需求。05|深耕增材制造革新,迈向技术赋能性在当前的工业制造领域,复杂结构件的精细加工是一项核心挑战。D系列独特的设计理念,成功打破了大尺寸与高精度之间的传统束缚,通过灵活组合不同的打印精度技术,实现了大幅面与极小特征尺寸的完美结合,为传统制造技术中难以克服的难题提供了创新的解决方案。在精密电子产业,D系列支持高效打印出芯片接插件、连接器、传感器等精密结构件,适用于小批量、规模化的精密仪器生产,相较于单精度打印,可以更加高效地生产出符合高精度的复杂连接器等关键零部件,极大地提升了生产效率。以AI芯片为例,在其封装的背板或连接器上,虽仅有固定的背板面积,却密布着上千个小孔,对精度的要求极高,须以2μm的精度进行打印。而对于其他部分,精度要求相对较低,10μm或25μm的精度便能满足。此外,在精密医疗领域的应用中,D系列展现了其制造复杂结构、个性化定制、材料多样化、快速原型与迭代等显著优势。这些优势为高端医疗器械与生物制造技术领域的发展提供了坚实的技术支撑和广阔的新可能性,推动了整个行业的进步。最后,在科研领域如力学、仿生学、微机械、微流控、超材料、新材料、生物医疗以及太赫兹等,能够制造复杂微观结构,对材料科学研究和新型器件开发具有重要意义,助力高校及科研机构加紧科技成果转化,进一步赋能行业、产学联动,为社会经济发展提供更强大的科技支撑,促进我国制造业迈向全球价值链中高端。截至2024年4月,摩方精密已与全球35个国家,2000多家科研机构及工业企业建立了合作。目前,包括强生、GE医疗等在内的全球排名前10的医疗器械企业,全部与摩方精密合作;全球排名前10的精密连接器企业,有9家与摩方精密建立了合作。当下,工业4.0时代,全球制造业的发展趋势呈现自动化、智能化、个性化的特点,需要更精准、更稳定、更高效的解决方案。摩方精密也将坚持自主研发,协同“产、学、研”力量,进一步强化创新科技突破和多元应用研究,以技术赋能产业转型升级,促进我国产业迈向中高端制造业。06|携手并进,智造未来摩方精密是我最敬佩的具有独特魅力和世界前沿技术的公司,是精密三维打印的引领者,相信摩方精密前景非常辉煌!—— 杨守峰教授哈尔滨工程大学烟台研究(生)院摩方最新的D系列打印设备是一个里程碑式的技术突破,它解决了复合精度打印这一概念中的核心工程问题,让这个概念真正走向了一个商业化的产品,为解决增材制造中加工精度和加工速率之间的矛盾提供了一个新的方案。—— 何寅峰教授宁波诺丁汉大学作为摩方忠实用户和3D打印行业科研工作者,非常看好摩方推出的全球首发的复合精度光固化3D打印技术和设备,这项技术突破了高精密微纳尺度和大幅面加工以及加工速度三者难以兼顾的固有矛盾,同时引入智能化技术进行赋能,大大降低了设备操作使用的门槛和提升加工稳定性,将助力科研和工业领域广泛使用微纳3D打印带来可能。—— 葛锜教授南方科技大学摩方精密自成立之初,每一台新设备的推出,都是在诠释什么是微纳制造的先行者:对标全球制造业隐形冠军,在微纳3D打印领域,做工业进步的赋能者。microArch Dual Series的一键式智能化设计理念,将3D打印引领进了高效率设备的赛道。—— 王大伟深圳微纳制造产业促进会会长复合精度光固化技术和D系列设备,填补了光固化技术的空白,满足了市场对超高精度和高效率生产的需求。摩方精密后续也将继续推进装备销售,加紧创新技术研发,进一步拓展终端应用,致力于建立一个更加完善的全球市场网络,在终端、产品端去和上下游客户相互合作,把摩方的材料和设备更好地推向终端产品,成为一个技术赋能性的平台公司。—— 周建林摩方精密副总裁
  • 高精密3D打印助推精密零部件低成本快速交付
    导语: 制造业是国家生命的命脉,精密制造是未来制造业发展的一种趋势。2018年,全球精密机加工市场规模达到2160亿美元,同比增长1.9%。精密制造业覆盖航空、医疗、汽车、消费电子、通信等各个领域。现阶段,中国精密制造业总体呈现区域发展不均衡、企业规模较小、实力较弱、产值增长较快等特点,且难以协调厂商需求的批量生产、成本可控与客户需求的产品质量稳定性、一致性之间的矛盾。高精密3D打印作为先进制造业的重要组成部分,解决了传统加工工艺过程复杂、成本高、难度大的痛点,成为现代精密制造业不可缺少的“产业新力量”精密制造业现状:需求大,难度高,投入大 精密制造业主要包括精密和超精密加工技术、制造自动化两大领域,前者追求加工上的精度和表面质量极限,后者包括了产品设计、制造和管理的自动化,两者是密切合作、相辅相成的关系,皆具有全局的、决定性的作用,是先进制造技术的支柱。精密和超精密机加工行业一直是劳动密集、资金密集和技术密集型行业,行业门槛较高,企业需达到一定规模才能产生利润。自动化精密模具包括结构工艺复杂的成型模具和高精度成型模具。结构工艺复杂的模具是在较小的模具体积上需要做出很多功能的实现;高精度模具主要是指成型的产品尺寸变化微小,一致性非常高,模具往往体积不大,但造价高昂。 根据罗兰贝格数据统计,2011-2018年,全球精密机加工市场规模复合年增长率为0.2%;到2018年,全球精密机加工市场规模达到2160亿美元,同比增长1.9%。其中,全球精密机加工外包市场规模达1480亿美元,占全球总规模的69%。资料来源:罗兰贝格 前瞻产业研究院整理 精密制造业提供的是制造业的关键零部件,是制造业的最顶端,利润最丰厚的核心部分。从规模上来看,精密制造业可以覆盖整个制造业的大约三分之一。精密制造主要用于生产复杂的零件及制成品的完整组建,具体领域包括航空、医疗、汽车、消费电子、通信等等。得益于这些下游领域的需求支撑,全球精密制造业市场保持稳定。 精密制造业技术永恒的主题就是高效率与高精度。目前,中国的制造业与世界制造业强国相比仍有较大差距,其中最突出的表现之一是精密零部件的加工能力滞后,主要因其在质量、一致性、耐用性等方面的要求非常高。虽然中国精密零部件加工厂商数量众多,但技术水平和加工能力参差不齐。即使部分的国内配套加工厂商通过购进先进的生产设备等方式可以达到精密零部件的加工质量要求,但却常常难以在批量生产、成本可控的条件下保持产品质量的稳定性和一致性。摩方批量打印齿轮 一般来说,高质量精密零部件加工制造不仅需要先进的生产设备等硬件配备,更需要根据部件的产品特点和客户需求,设计和实施科学合理的生产工艺,平衡加工质量、产品交期和成本控制等多个相互影响的制约因素,同时,还要实现设备、工具和人员等生产资源的优化组合。总体而言,这是一个需要多项投入、多方考量、环环把控的行业。 那么,面对精密制造业市场的巨大刚性需求,以及国家振兴精密制造业的发展趋势,是否可以实现既满足较高的精密产品质量与技术需求、又能实现可控的时间和成本投入?高精密3D打印——现代精密制造的“产业新力量” 在传统加工工艺无法满足高质量精密零部件快速交付需求的现状下,市场需求将目光逐步引导至近些年高速发展的增材制造工艺。增材制造是先进制造业的重要组成部分,随着全球范围内新一轮科技与产业革命的蓬勃兴起,世界各国纷纷将其作为未来产业发展的新增长点。中国《“十三五”国家战略性新兴产业发展规划》,《中国制造2025》等均把增材制造列入重点领域。 增材制造又称3D打印技术,它完全解决了传统加工工艺过程复杂、成本高、难度大等痛点,能够准确、快速、灵活设计各种复杂结构。而高精密3D打印更是成为现代精密制造业不可缺少的“产业新力量”,虽目前仍处于发展早期,但其突破复杂三维微纳结构器件的精密快速成型与直接生产制造,在微小精密部件的开发与小批量阶段,以“成型效率高、加工成本低”的突出优势受到高质量精密零部件加工市场的倍加青睐,而这种高效率的“时间差”带来的收益已经成为一些公司的利润来源。 目前在全球范围内,PμSL面投影立体光刻技术(Projection Micro Stereolithography) 是已经成熟商业化的能够实现高精密 3D 打印的的微纳光固化3D打印技术之一。PμSL在实验室阶段可实现几百纳米精度,已经商业化的产品可达几微米的打印精度,多见于深圳摩方科技的nanoArch系列微纳3D打印设备——全球首款商业化的 PμSL面投影微立体光刻技术微尺度3D打印设备产品,涵盖多款型号机型,可以提供2μm超高精度3D打印系统。PμSL 加工速度快、打印幅面大、加工成本低以及宽松的环境要求等特点,使其在工业应用领域已实现了内窥镜、导流钉、连接器、封装测试材料等部件的批量加工和应用,为国内外多个大型公司提供高精密加工方案。 在此列举2个高精密3D打印应用较为广泛的案例:连接器与内窥镜。连接器尺寸5.65mm*2mm*2.8mm,最小pin间距0.14mm,最小壁厚0.1mm;内窥镜端部座中的圆管壁厚为70μm,管径1mm,高度4mm。精度要求皆为±10-25μm。CNC和开模注塑很难加工这种逼近极限的结构,深圳摩方公司可以在约1-2小时内就加工出来,最快一天内交付。同时,也极大的降低了制造成本。深圳摩方——助力振兴中国精密制造业 振兴精密制造业是中国经济跨越发展的重要一环。着眼未来,借助高精密3D打印设备和技术来提升零部件制造的精度,将成为精密零部件制造的一大趋势。 从工业市场出发,效率和成本是决定盈利与否的关键因素。深圳摩方的高精密3D打印设备与技术,在缩短制造周期、降低制造成本、提升产品性能等方面,很好的契合了精密制造业创新发展的技术精度需求与市场盈利需求。中国精密制造实现振兴将如虎添翼,未来可期。
  • 高精密3D打印助推精密零部件低成本快速交付
    导语: 制造业是国家生命的命脉,精密制造是未来制造业发展的一种趋势。2018年,全球精密机加工市场规模达到2160亿美元,同比增长1.9%。精密制造业覆盖航空、医疗、汽车、消费电子、通信等各个领域。现阶段,中国精密制造业总体呈现区域发展不均衡、企业规模较小、实力较弱、产值增长较快等特点,且难以协调厂商需求的批量生产、成本可控与客户需求的产品质量稳定性、一致性之间的矛盾。高精密3D打印作为先进制造业的重要组成部分,解决了传统加工工艺过程复杂、成本高、难度大的痛点,成为现代精密制造业不可缺少的“产业新力量”精密制造业现状:需求大,难度高,投入大 精密制造业主要包括精密和超精密加工技术、制造自动化两大领域,前者追求加工上的精度和表面质量极限,后者包括了产品设计、制造和管理的自动化,两者是密切合作、相辅相成的关系,皆具有全局的、决定性的作用,是先进制造技术的支柱。精密和超精密机加工行业一直是劳动密集、资金密集和技术密集型行业,行业门槛较高,企业需达到一定规模才能产生利润。自动化精密模具包括结构工艺复杂的成型模具和高精度成型模具。结构工艺复杂的模具是在较小的模具体积上需要做出很多功能的实现;高精度模具主要是指成型的产品尺寸变化微小,一致性非常高,模具往往体积不大,但造价高昂。 根据罗兰贝格数据统计,2011-2018年,全球精密机加工市场规模复合年增长率为0.2%;到2018年,全球精密机加工市场规模达到2160亿美元,同比增长1.9%。其中,全球精密机加工外包市场规模达1480亿美元,占全球总规模的69%。资料来源:罗兰贝格 前瞻产业研究院整理 精密制造业提供的是制造业的关键零部件,是制造业的最顶端,利润最丰厚的核心部分。从规模上来看,精密制造业可以覆盖整个制造业的大约三分之一。精密制造主要用于生产复杂的零件及制成品的完整组建,具体领域包括航空、医疗、汽车、消费电子、通信等等。得益于这些下游领域的需求支撑,全球精密制造业市场保持稳定。 精密制造业技术永恒的主题就是高效率与高精度。目前,中国的制造业与世界制造业强国相比仍有较大差距,其中最突出的表现之一是精密零部件的加工能力滞后,主要因其在质量、一致性、耐用性等方面的要求非常高。虽然中国精密零部件加工厂商数量众多,但技术水平和加工能力参差不齐。即使部分的国内配套加工厂商通过购进先进的生产设备等方式可以达到精密零部件的加工质量要求,但却常常难以在批量生产、成本可控的条件下保持产品质量的稳定性和一致性。摩方批量打印齿轮 一般来说,高质量精密零部件加工制造不仅需要先进的生产设备等硬件配备,更需要根据部件的产品特点和客户需求,设计和实施科学合理的生产工艺,平衡加工质量、产品交期和成本控制等多个相互影响的制约因素,同时,还要实现设备、工具和人员等生产资源的优化组合。总体而言,这是一个需要多项投入、多方考量、环环把控的行业。 那么,面对精密制造业市场的巨大刚性需求,以及国家振兴精密制造业的发展趋势,是否可以实现既满足较高的精密产品质量与技术需求、又能实现可控的时间和成本投入?高精密3D打印——现代精密制造的“产业新力量” 在传统加工工艺无法满足高质量精密零部件快速交付需求的现状下,市场需求将目光逐步引导至近些年高速发展的增材制造工艺。增材制造是先进制造业的重要组成部分,随着全球范围内新一轮科技与产业革命的蓬勃兴起,世界各国纷纷将其作为未来产业发展的新增长点。中国《“十三五”国家战略性新兴产业发展规划》,《中国制造2025》等均把增材制造列入重点领域。 增材制造又称3D打印技术,它完全解决了传统加工工艺过程复杂、成本高、难度大等痛点,能够准确、快速、灵活设计各种复杂结构。而高精密3D打印更是成为现代精密制造业不可缺少的“产业新力量”,虽目前仍处于发展早期,但其突破复杂三维微纳结构器件的精密快速成型与直接生产制造,在微小精密部件的开发与小批量阶段,以“成型效率高、加工成本低”的突出优势受到高质量精密零部件加工市场的倍加青睐,而这种高效率的“时间差”带来的收益已经成为一些公司的利润来源。 目前在全球范围内,PμSL面投影立体光刻技术(Projection Micro Stereolithography) 是已经成熟商业化的能够实现高精密 3D 打印的的微纳光固化3D打印技术之一。PμSL在实验室阶段可实现几百纳米精度,已经商业化的产品可达几微米的打印精度,多见于深圳摩方科技的nanoArch系列微纳3D打印设备——全球首款商业化的 PμSL面投影微立体光刻技术微尺度3D打印设备产品,涵盖多款型号机型,可以提供2μm超高精度3D打印系统。PμSL 加工速度快、打印幅面大、加工成本低以及宽松的环境要求等特点,使其在工业应用领域已实现了内窥镜、导流钉、连接器、封装测试材料等部件的批量加工和应用,为国内外多个大型公司提供高精密加工方案。 在此列举2个高精密3D打印应用较为广泛的案例:连接器与内窥镜。连接器尺寸5.65mm*2mm*2.8mm,最小pin间距0.14mm,最小壁厚0.1mm;内窥镜端部座中的圆管壁厚为70μm,管径1mm,高度4mm。精度要求皆为±10-25μm。CNC和开模注塑很难加工这种逼近极限的结构,深圳摩方公司可以在约1-2小时内就加工出来,最快一天内交付。同时,也极大的降低了制造成本。深圳摩方——助力振兴中国精密制造业 振兴精密制造业是中国经济跨越发展的重要一环。着眼未来,借助高精密3D打印设备和技术来提升零部件制造的精度,将成为精密零部件制造的一大趋势。 从工业市场出发,效率和成本是决定盈利与否的关键因素。深圳摩方的高精密3D打印设备与技术,在缩短制造周期、降低制造成本、提升产品性能等方面,很好的契合了精密制造业创新发展的技术精度需求与市场盈利需求。中国精密制造实现振兴将如虎添翼,未来可期。
  • “精密超精密制造技术联合实验室”揭牌
    南京航空航天大学机电学院与上海航天控制技术研究所共建“精密超精密制造技术联合实验室”签约暨揭牌仪式近日举行。   南航机械制造及其自动化学科是国家重点学科。上海航天控制技术研究所的业务涉及弹、箭、星、船、器各领域,军民融合已形成良性发展。  双方相关负责人表示,成立联合实验室可充分发挥双方技术与人才优势,实现在先进制造领域的全面战略合作 希望双方加强产学研合作,使联合实验室成为人才培养的平台、先进制造技术交流的平台。希望联合实验室不断提高自主创新能力,为我国航天事业的发展提供强有力的技术支持。
  • 半导体设备精密零部件供应商——富创精密成功上市
    2022年10月10日,沈阳富创精密设备股份有限公司(证券代码:688409)在上交所举行线上上市仪式。  沈阳富创精密设备股份有限公司本次公开发行股票5,226.34万股,发行价格69.99元/股,新股募集资金总额365,791.07万元,发行后总股本20,905.34万股。沈阳富创精密设备股份有限公司主营业务为半导体设备精密零部件的工艺研发和制造。2021年度,公司实现营业收入84,312.82万元,净利润12,144.72万元。公司位于辽宁省沈阳市。
  • 国家重大科研装备研制项目“高功率纳秒激光器及精密探测仪器研制”通过验收
    7月20日,由中国科学院空天信息创新研究院(以下简称“空天院”)牵头承担的国家重大装备研制项目“高功率纳秒激光器及精密探测仪器研制”通过验收。验收会由中国科学院条件保障与财务局组织,成立了由姜会林院士、罗毅院士、江碧涛院士等13位技术、财务、档案专家组成的验收专家组,罗毅院士任组长。会上,验收专家组听取了项目总体报告、空间碎片探测应用示范汇报、汤姆逊散射诊断应用示范汇报、技术测试情况报告、财务验收情况报告、档案验收情况报告,审查了相关文档资料,通过视频了解仪器设备运行情况。经质询和讨论,验收专家组认为,该项目完成了项目实施方案规定的全部任务,实现了仪器的全部技术指标,达到了预期目标;研制工作取得了丰硕的成果,攻克了高功率纳秒激光器、远距离空间碎片激光探测和高精度等离子体汤姆逊散射诊断等关键技术;项目研制的两类激光器、空间碎片探测仪器和汤姆逊散射诊断仪器指标先进、为国家急需,意义重大。专家组同意项目通过验收。该项目由空天院牵头,参研单位包括中国科学院光电技术研究所、中国科学院国家天文台、中国科学技术大学、北京工业大学、同济大学和北京国科世纪激光技术有限公司。研制过程中项目团队突破了高稳定单频种子源、大口径侧泵模块、大尺寸板条模块、相位共轭镜、高损伤阈值膜层和自适应光学等核心技术与器件工艺,基于大口径棒状放大器和大尺寸板条放大器分别研制了100Hz/3.3J/9.1ns/1.83DL和200Hz/5.2J/11.8ns/2.3DL两类高功率纳秒激光器。已经申请89项国家发明专利,其中获得授权46项,相关技术完全自主可控,国产化率达95%以上。中国科学院国家天文台利用空天院提供的100Hz/3.3J激光器,成功研制了空间碎片探测仪器,在云南天文台开展了1000km空间碎片探测技术研究,在轨道高度1075km*1050km上(斜距1274.3-2080.8km)首次实现了直径36 cm的小目标激光探测。中国科学技术大学利用空天院提供的200Hz/5.2J激光器,成功研制了汤姆逊散射诊断仪器,在中国科学技术大学反场箍缩磁约束聚变试验装置上开展了等离子体温度诊断技术研究,实现了空间分辨率5mm、时间分辨率5ms、等离子体密度下限10^13/cm^3的等离子体温度诊断。验收会前期,中国科学院条件保障与财务局分别组织专家完成了100Hz激光器及空间碎片探测仪器技术验收、200Hz激光器及汤姆逊散射诊断仪器技术验收以及项目整体技术验收、财务验收和档案验收。
  • 精密测量:无尽的追求
    十几年前,当数位战略科学家聚首探讨精密测量物理学科发展走向时,他们预判中国会一步步缩小和国际先进水平的差距,有一天会走在国际前沿,甚至引领发展。他们没料到的是,这一天来得如此之快,当然也没料到“卡脖子”同样来得很快。当下,世界正经历百年未有之大变局,科研环境也发生了巨大变化。所幸十几年前,在国家自然科学基金等的资助下,我国布局了一批前瞻性、引领性的基础研究。在国家自然科学基金重大研究计划——“精密测量物理”项目稳定资助下,我国不仅在精密测量领域取得了多项“世界最好”“精度最高”的成就,凝聚、培养了一支队伍,大大增强了在该领域的国际话语权和竞争力,还辐射带动了相关学科发展。“算是对我们10年‘打工’的鼓励吧。”谈及“精密测量物理”重大研究计划的研究成果对相关学科的引领带动作用,中国科学院院士,华中科技大学、中山大学教授罗俊的语调中透着实现“小目标”的轻松。实际上,这项超前布局的研究计划仅酝酿谋划就用了5年时间。此后在研10年,“聚队伍、聚智慧、聚重点、聚资源、聚突破”,项目成果全面超越预期目标。“十几年前,国家自然科学基金支持一批科研人员开展精密测量物理研究确实很有开拓性。”罗俊告诉《中国科学报》,“这项研究计划虽然圆满结题了,但精密测量永无止境,精益求精是无尽的追求。”破局,始于“香山科学会议”2008年7月,第327次香山科学会议(创立地点及会址在北京香山)破例在位于湖北省武汉市的华中科技大学召开。7位院士、50余位物理学家相聚喻家山,参加为期3天的“精密测量物理和方法”主题研讨会。“在香山科学会议之前,叶老师(中国科学院院士叶朝辉)和几位专家动念提出开展‘精密测量物理’研究,是因为我们遇到了一些问题。”罗俊回忆说,“当时我国很多学科面临怎样向前沿延伸的困境。一个严峻的现实是,我们的科研仪器基本全靠进口。别人生产的仪器卖给我们之前,实验室里该做的研究都做完了,我们一直跟在后面做,这样很难触及科学最前沿。”没有自己的仪器,跻身前沿都很难,更别说超越引领。科研仪器如此重要,但问题是,这种尖端的科研仪器谁来研制?在此背景下,叶朝辉等人提出了“精密测量物理”的概念。“我们现在对‘精密测量物理’有很多期待,赋予它很多内涵。但当时的出发点和最基本的想法就是做出一套最先进的仪器给科学家用。”罗俊说,“要挺进学科最前沿,验证物理学家的想法,进行实验研究,必须有自己的仪器设备。”香山科学会议后,叶朝辉、罗俊等人在国家自然科学基金支持下,开始推动重大研究计划立项,在数理科学部的主持下,组织双清论坛进行论证。2013年,“精密测量物理”重大研究计划获准立项。引领,辐射学科带动人才按照该重大研究计划最初的设计,研究目标分为三部分。一是精密测量工具仪器研制,以时间频率测量为代表,将光频这些和国际水平差距较大且非常基础的测量仪器“做上去”;二是在更高精度上测量物理基本常数并检验物理基本规律,这是精密测量物理的难点和重点;三是研究精密测量新体系,发展新方法和新技术,不断突破测量极限,包括突破标准量子极限等。实际上,在该重大研究计划执行的10年中,他们不仅圆满完成了三大目标,还屡屡取得突破性进展,获得多项“世界最好”“精度最高”的成就。“这项重大研究计划的特点之一是带动了整个中国精密测量物理学科的发展。”中国科学院精密测量科学与技术创新研究院研究员詹明生说,“也带动了其他一些项目,辐射和延伸到了相关领域,比如影响了中国科学院的先导科技专项,带动基于原子分子的物理研究向精密测量物理延伸。”中国科学院国家授时中心研究员张首刚认为,该重大研究计划的意义在于10年前就有了明确目标,把精密测量这项前沿基础研究和国家战略需求相结合,从而做出一系列方向性、引领性的研究工作。“通过国家自然科学基金项目牵引,这些年我国精密测量物理研究队伍不断壮大,并从基础研究向前沿基础研究推进。”张首刚说,“我们不但超额完成了该重大研究计划的各项指标,还产生了原创性的想法,取得一批‘国际首次’级的成果,并在部分领域领先国际。”“量子精密测量是精密测量物理的一个前沿方向,很多微弱信号测量,比如引力波探测、量子操控、原子分子和光物理等研究都离不开精密测量。”上海交通大学教授张卫平补充道,“这个项目将我们的学术生涯和国家战略需求完美对接起来,我觉得最大成果之一是凝聚并培养了一支队伍。”清华大学教授尤力同样认为,这是个高瞻远瞩的研究计划。“过去四五年,国际科研环境发生了巨变,出现了更多的不确定性。我们必须科学上自主、技术上独立。好在我们进行了预研,建立了这么一支队伍。”求精,追求永无止境精密测量物理对实验条件要求极高,数千米外的振动、电流波动、地球磁场,甚至空气温湿度都会影响测量精度。为避免外界扰动,30多年前,罗俊等人就将实验室建在位于喻家山的一个山洞里。在罗俊团队的引力常数测量进行到关键时期时,地方政府按规划准备在喻家山下修一条路。“修路会引发两个问题:一是山体稳定性发生变化,这些微小变化会导致实验环境不稳定;二是修路过程中及修好后,车辆经过产生的震动会影响测量精度。”了解到罗俊的担忧,华中科技大学和武汉市都非常支持实验研究。最后,武汉市调整道路规划,终止了道路修建。得益于安静的实验环境,罗俊团队测出了世界上测量精度最高的G值(引力常数)。至今,该数值仍保持着世界第一的纪录。“精密测量物理要测的通常是非常小的数值,它无限趋近于‘0’,但永远不会达到‘0’。例如,我们进行粒子、量子、多粒子纠缠等前沿研究,背景补偿(抵消环境磁场的影响)做得越好,测量结果就越准。”尤力感慨地说,“我们测一个量,总希望向小数点后再多推一位,但最终要推到什么地方、推到什么程度,没有人知道。所以精密测量物理没有止境,需要长期坚持,也需要长期支持。”“精密测量的本质是永无尽头。”罗俊说,“精密永无止境。这种无限精密、精益求精的特点造就了精密测量物理研究者不断提高精度、不断开发新技术,挑战新极限的信念。”传承,精密测量精神“我们常说十年磨一剑,从事精密测量物理研究真的需要长期积累。”华中科技大学教授胡忠坤说,“它需要10年、20年,甚至更长时间才有可能见到成效,因此研究者要耐得住寂寞,但也需要得到长期稳定的支持。”“精密测量物理有两个特点:一是高精尖,二是研究周期特别长。”山西大学教授张靖补充说。20世纪90年代初,张靖还在华中科技大学读本科,有时会到位于喻家山山洞的实验室上课。他记得当时山洞两边都是实验室,里面很安静,感觉很神秘。“精密测量物理研究不是三两个人花两三年时间就能取得成果的。罗老师选择在山洞里做实验,还带出一支队伍,一步步把精度提高再提高,确实很有魄力。”张靖说。“我们国家的科学研究已经形成了崭新的局面,上了一个历史性的新台阶。现在我们山洞的实验条件是30年前根本无法想象的,每个实验室都‘鸟枪换炮’,不知道好到哪儿去了。”罗俊说,“但当初也没觉得条件多艰苦,因为有兴趣、有追求,希望能精益求精,所以并未在意‘苦’还是‘不苦’。”“进行精密测量物理研究,总是想精益求精,把精度提高点,再提高点。”清华大学教授尤力对《中国科学报》说,“进实验室打开仪器,我们就知道北京地铁4号线列车什么时间进站、什么时间出站,地铁运转产生的磁场会严重影响原子能级……”尽管北京地铁4号线从清华大学、北京大学两所高校旁通过时采取了一系列减震措施,但轻轨列车进站减速、出站加速时电流变化产生的磁场,还是会影响1.5公里外清华大学的原子分子与光物理实验。磁场变化会引起原子能级移动,给光学测量带来不确定性,使科学家无法判断是否出现了误差。虽然研究人员已经习惯在夜深人静时做实验,但很多扰动仍无法避免。“我们做原子分子与光物理研究时,原子的磁矩就像一块小磁石,它周围的磁场扰动会让原子磁矩抖动,导致测量信号不确定。”尤力说,“环境中各种扰动、噪声、磁场等都会影响测量结果。”尤力团队曾对实验室环境进行检测,不只地铁4号线列车进出站,包括地球磁场、实验室照明电路,甚至光学实验平台上的金属器件(螺丝钉、钻头等)所带磁性都会影响测量精度。“这些磁场是‘躲不掉’的,那就想办法把它‘干掉’。”尤力说。在多次测量、分析、计算的基础上,尤力团队创造性地应用了“背景补偿”这样一个解决方案。简单地说,就是针对一些无法改变的干扰因素,比如地球磁场、实验室电流磁场等,研究人员先测出环境磁场强度,计算出平均值,然后绕制一个通电线圈,使其产生相反的磁场,用“前置反馈”的手段,将环境磁场的磁力抵消。“用‘前置反馈’补偿(抵消)背景磁场是个亮点。”中国科学院院士,华中科技大学、中山大学教授罗俊说,“虽然‘前置反馈’不是新概念,但要把它做成,需要很好地掌握背景磁场,用它解决问题简单、高效。”“我们用的物理概念并不新鲜,但它能解决实际问题。”尤力说,“我们用一块电路板就解决了问题,同很多兄弟单位分享了这项技术,能为大家做点事我很高兴。”在反馈补偿技术的“加持”下,尤力团队取得了一系列重要突破。他们突破了标准量子极限测量非经典双数态新体系,解决了双数态确定性制备难题,该体系在原子数、原子数涨落、压缩系数以及相干性等多项重要指标上远超国际同类实验。团队通过调控量子相变过程,解决了传统动力学制备方法所存在的问题,在国际上首次确定性地制备了大粒子数双数态87Rb原子玻色爱因斯坦凝聚体。目前,该实验平台能在40秒内确定性地制备约1万个粒子组成的多体纠缠态,从非纠缠的初态到双数态凝聚体的转换效率高达(96±2)%。该双数态的量子噪声的压缩度为(13.3±0.6)dB,是国际同类实验中最好的指标。双数态的相干性更是达到了接近理想值的0.99,远优于此前国际上最好的0.9。由此,实验可以表征的纠缠粒子数也是目前能确定性制备量子纠缠数目的世界纪录。这项工作大大提高了双数态在精密测量中的实用性,首次验证了量子相变可以作为制备多体量子纠缠态的有效手段,为纠缠态的制备提供了新思路。追求极限, 刷新“钙帮”世界纪录近年来,中国科学院精密测量科学与技术创新研究院研究员高克林团队研制出不确定度为 3×10-18(相当于105亿年不差1秒)、稳定度为6.3×10-18@524000s的钙离子光频标,成为第五种不确定度指标达10-18水平的光频标、第二种稳定度达10-18量级的离子光频标,并研制出目前搬运距离最远的光钟,实现精度达到10-16的钙离子光频的溯源测量。该成果被国际时间频率咨询委员会推荐为次级秒定义。“钙离子有很多优点,比如其光频跃迁是搭建高精度光频标的理想参考,可有效抑制离子特有的微运动频移。其离子的量子态制备、激光冷却及钟跃迁探测所用的激光均可用商品化的半导体激光器发射,因此极有可能实现广泛应用。”高克林说,“但是钙离子光频标也面临两个世界级难题:一是钙离子对磁场非常敏感;二是钙离子在室温下对黑体辐射效应(环境温度)敏感。”频率标准研究对外场控制(环境中各种效应,如振动、噪声、磁场和温度等)的要求非常高,国际上许多光频标研究机构已经放弃参考钙离子搭建高精度光频标。目前,国际上仅有锶原子光频标、镱原子光频标、铝离子光频标,以及镱离子光频标的不确定度达到10-18量级。“能否直面这些国际难题,将钙离子光频标推进至更高精度是我们面临的艰巨挑战。”高克林说,“在叶朝辉、罗俊院士领导的精密测量项目专家组与频标科学家王义遒、王育竹、李天初等人的关心和支持下,我们一步步解决了这些难题,将钙离子光频标推至国际第一方阵。”为进一步提高钙离子光频标的性能,研究人员通过改进钟跃迁激光性能,建立了第二台钙离子光频标并进行比对,大幅降低了电四极频移、光频移和微运动频移,实现了不确定度达5.5×10-17、稳定度达7×10-17的钙离子光频标。2018年,团队通过“魔幻射频囚禁场”抑制了微运动频移,又通过降低黑体辐射频移、改进光频标伺服软件等措施,进一步将钙离子光频标不确定度提升至2.2×10-17。2019年,通过对两台钙离子光频标长达31天的频率比对,研究人员测得稳定度达到6.3×10-18@524000s。为降低钙离子光频标黑体辐射频移的影响,团队将离子阱置于液氮低温环境中,使黑体辐射频移对温度的敏感度降低了约两个数量级。与国际上采用的液氦系统相比,液氮系统造价低廉、操作简单。但缺点是使用中液氮会蒸发,系统运行时液氮容积变化易造成离子位置移动,从而导致荧光信号损失。为解决低温系统问题,研究人员反复迭代和纠错,并采用清华大学教授尤力团队的“前置反馈”技术,大幅降低了背景磁场噪声。最终,该团队在国际上首次实现了液氮低温钙离子光频标,不确定度达到3×10-18。2020年,该团队实现钙离子光频标系统集成、可靠和高精度运行等关键技术突破,研制出一台精度24亿年偏差不到1秒的可搬运钙离子光钟,首次将钙离子光频测量精度推进到国际最高水平,并实现从武汉到北京千公里级车载搬运。“研究钙离子的人称自己为‘钙帮’。”高克林说,“在实验关键时期,大家加班轮岗的故事很多,但没人觉得辛苦,因为热爱,所以乐在其中。”在精密测量领域实现量子优势前不久,中国科学院院士、中国科学技术大学教授潘建伟,中国科学技术大学教授陆朝阳等基于“九章二号”中自主设计的受激双模量子压缩光源,结合非线性干涉仪,提出并演示了一种新方案来实现可扩展的、无条件的、鲁棒的量子精密测量优势。相关成果发表于《物理评论快报》。“实际上,该成果是在‘精密测量物理’重大研究计划前期工作的基础上衍生出的一项新成果。”陆朝阳告诉《中国科学报》。“精密测量物理”重大研究计划有几个子研究方向,其中中国科学技术大学团队的目标更具探索性质,主要是基于单光子和纠缠光子探索精密测量的新原理、新方法。在研期间,团队基于高品质单光子和多光子纠缠突破超越标准量子极限,在国际上首次同时解决了单光子源的三个关键问题,实现国际上综合性能最优秀的单光子源。“制备单光子源是这个重大研究计划中的一项代表性工作。”陆朝阳解释说,“进行量子精密测量或量子计算时,有用的是单光子源。这就像幼儿园小朋友‘排排坐’,如果有100个小朋友,每个小朋友坐一条板凳是理想状态。但自然界的光源(灯光或阳光)是热光源,它们衰减之后只有约8%是单光子(相当于一个小朋友坐一条板凳),约90%是‘空板凳’,另有2%是两个或多个光子(一条板凳上坐多个人)。在量子技术中,‘空板凳’无法用于测量,而一条板凳坐多个人会引起测量误差。因此,科学家要在实验室通过主动量子调控制造一种非经典的量子光源。”精密物理测量往往会受一些在原理上都无法避免的“散粒噪声”的影响。因此,任何测量都存在精度极限。不过,量子光源可以打破这种物理极限。中国科学技术大学团队用制备出的新光源进行测量,发现它比之前用激光光源测量的精度提高了0.6dB,而且首次实现了强度压缩。此后,该团队又研发出“九章”系列光量子计算原型机。在“九章二号”的相关研究中,团队受到激光的启发,发明了一种受激辐射放大量子光源的新方法。在调节这种新光源的位相时,他们意外发现数据对相位特别敏感。“我们当时灵机一动,想利用这个现象做量子精密测量。”陆朝阳说。抱着试试看的想法,研究人员基于“九章二号”中自主设计的受激双模量子压缩光源,结合非线性干涉仪,提出了一种新方案来达到海森堡极限。该方案同时具有可扩展性、无条件优势、对外部光子损失鲁棒等优点。在未扣除任何实验噪声的情形下,在相位测量实验中直接观察到的单光子信息量(用于衡量测量的精度),达到了目前国际最高水平。精密物理测量领域有一个共识:如果把精度向前推进一个数量级(10倍),就有可能发现新物理、新规律。这一次,中国科学技术大学团队基于量子受激光源发展出新的量子精密测量技术,将测量精度极限提高了5.8倍。“学术界将量子计算在特定问题上的能力超越经典的超级计算机的里程碑称为‘量子计算优越性’。现在,类似的,我们又首次实现了‘量子精密测量优越性’。”陆朝阳说,“这有点像立体农业中塘中养鱼、塘泥肥田,在国家的整体布局下,量子信息的基础研究不仅开花结果,还可催生肥鱼。”
  • 激光精密测量技术及应用——第二届精密测量与先进制造网络会议报告推荐
    德国“工业4.0”与”中国制造2025“发展战略,对高端装备中的超精密测量精度要求越来越高。激光因其高方向性、高单色性、高相干性等特点,具有高准确度、非接触、稳定性好等独特优点,在超精密加工和测量领域应用广泛。激光干涉仪以光波为载体,利用激光作为长度基准,是迄今公认的高精度、高灵敏度的测量仪器。激光束通过分光镜后,分成两束激光(参考光束和测量),分别经两个角锥反射镜反射后平行于出射光返回,通过分光镜后进行叠加(两束激光频率相同、振动方向相同且相位差恒定,即满足干涉条件),产生相长或相消。反射镜每移动半个激光波长,将产生一次完整的明暗干涉现象,通过接收到的明暗条纹变化及电子细分,即可求得距离变化(距离=干涉条纹数*激光半波长)。激光干涉仪可配合各种折射镜、反射镜等来作线性位置、速度、角度、真平度、真直度、平行度和垂直度等测量工作。激光干涉仪原理构造激光测距仪是利用激光对目标的距离进行准确测定的仪器,根据测量原理分为脉冲法和相位法。脉冲激光测距法由于激光发散角小,激光脉冲持续时间极短,瞬时功率极大可达兆瓦以上,可以达到极远的测程,广泛应用在地形地貌测量、地质勘探、工程施工测量、飞行器高度测量、人造地球卫星相关测距、天体之间距离测量等方面。第二届精密测量技术与先进制造网络会议期间,清华大学与哈尔滨工业大学两位专家将分享激光精密测量技术、仪器及应用。部分报告预告如下,点击报名  》》》清华大学精密仪器系系副主任/副教授 谈宜东《激光干涉精密测量技术、仪器及应用》(点击报名)谈宜东,清华大学精密仪器系长聘副教授,博士生导师,副系主任;基金委优秀青年科学基金获得者,英国皇家学会牛顿高级学者,教育部创新团队负责人。中国电子信息行业联合会光电产业委员会副会长、中国仪器仪表学会机械量测试仪器分会常务理事。主要从事激光技术和精密测量应用等方面的研究工作。作为负责人承担国家自然科学基金,装发和科工局测试仪器领域关键技术攻关项目,科技部重点研发计划课题,军科委基础加强,重大科学仪器专项等多个项目。在Nature Communications, PhotoniX, Optica, Bioelectronics and Biosensors, IEEE Transactions on Industrial Electronics等期刊发表SCI论文100余篇,授权发明专利37项,在国际会议Keynote/Plenary/Invited报告60余次。先后获日内瓦国际发明展金奖,中国激光杂志社主编推荐奖,中国光学工程学会技术发明一等奖,中国电子学会技术发明一、二等奖多项。【报告摘要】 以传统激光干涉为引,介绍清华大学激光精密测量及应用团队在双频激光器、干涉仪及在光刻机中的精密测量应用,并拓展到空间引力波测量。针对传统干涉测量需要配合靶镜的局限性,提出激光回馈测量原理,实现了无靶镜纳米测量,攻克了航空航天、先进制造和国防安全领域的无靶镜测量难题,并开展了多种应用研究,包括:位移测量、激光侦听、高精度激光测距及雷达技术等。哈尔滨工业大学副研究员 杨睿韬《短脉冲光频梳激光测距技术》(点击报名)杨睿韬,哈尔滨工业大学副研究员,博士生导师。研究方向为超精密激光干涉测量,重点攻关短脉冲/光频梳生成与稳频、光梳激光测距等关键技术,承担国家重点研发计划课题/子课题、国自然面上等项目,参与国家科技重大专项、欧盟计量联合研究计划等项目。获中国计量测试学会科技进步一等奖(序4/6)、全国优秀博士学位论文提名等奖项。担任国际SCI期刊Photonics客座编辑。发表学术论文20余篇,申请发明专利10余项,出版专著1部。指导哈工大优秀本科/硕士毕业论文共5人,指导大学生光电设计竞赛国赛一等奖等2项。【报告摘要】 激光测距技术是大范围、高精度空间几何量测量的核心技术基础。短脉冲光频梳的诞生极大的推动了该技术领域的发展,其独特的时域短脉冲序列、频域等间隔梳状多光谱特征,不仅大幅提高了经典的飞行时间、调制波测相、多波长干涉等测距方法的性能,更引领了一系列新型激光测距方法的发展。本报告分析了短脉冲光频梳激光测距方法及趋势,介绍了项目组在短脉冲光频梳激光测距领域的最新进展。更多详细日程如下:第二届精密测量与先进制造主题网络研讨会报告时间报告题目报告嘉宾单位职称12月14日上午09:00-09:30纳米级微区形态性能参数激光差动共焦多谱联用测量技术及仪器赵维谦北京理工大学 光电学院院长09:30-10:00扫描白光干涉表面形貌测量技术:原理及应用苏榕中国科学院上海光学精密机械研究所研究员10:00-10:30先进封装工艺中三维几何尺寸监控的挑战与布鲁克白光干涉技术的计量解决方案黄鹤布鲁克(北京)科技有限公司应用经理10:30-11:00激光干涉精密测量技术、仪器及应用谈宜东清华大学 精密仪器系系副主任/副教授11:00-11:30关节类坐标测量技术于连栋中国石油大学(华东)教授12月14日下午14:00-14:30基于相位辅助的复杂属性表面全场三维测量技术张宗华河北工业大学教授14:30-15:00短脉冲光频梳激光测距技术杨睿韬哈尔滨工业大学副研究员15:00-15:30机器人精密减速器及关节测试技术程慧明北京工业大学 博士研究生15:30-16:00纳米尺度精密计量技术与国家量值体系施玉书中国计量科学研究院纳米计量研究室主任/副研究员16:00-16:30尺寸测量,从检验走向控制与孪生李明上海大学教授为促进精密测量技术发展和应用,助力制造业高质量发展,仪器信息网联合哈尔滨工业大学精密仪器工程研究院,将于2023年12月14日举办第二届精密测量技术与先进制造网络会议,邀请业内资深专家及仪器企业技术专家分享主题报告,就制造中的精密测量技术等进行深入的交流探讨。报名页面:https://www.instrument.com.cn/webinar/meetings/precisionmes2023/
  • 蠕动泵软管:揭秘细节,掌握蠕动泵的重要组成部分
    蠕动泵是一种以软管为核心的泵商品,具有显著的流体输送效果。软管做为蠕动泵的重要组成部分,其质量和性能直接影响全部泵的运行效果。本文将从软管的材料、构造与应用细节等方面进行深入探讨,给您表述蠕动泵软管的奥秘。  软管材料是软管特征的基本,也是决定软管使用寿命的关键因素。市场上常见的软管材料有:塑胶、塑胶、PVC、氯丁胶等。其中,橡胶管具有强度高、耐磨等特点,主要适用于腐蚀性介质的运输 聚乙烯软管具备抗压、抗氧化等优点,适用一般物质运送。挑选软管材料时,应根据实际需要进行系统合理的选择。  软管结构是软管特征的重要,也是保证软管正常运行的重要因素。常见的软管构造包含:里胆、提高层和外皮。里胆是软管的内衬,与物质接触,其耐腐蚀性和耐磨性直接关系软管的使用期 提高层是软管的支撑层,其材料和结构在于软管的抗压性和抗拉性 外皮是软管的保护层,能保护软管免遭外力和环境腐蚀的伤害。  除开软管的材料和结构外,还应特别注意软管的使用细节。最先,软管应保持直线运行,不要过分弯折,以免导致泵的正常运行。同时,务必维护保养软管连接部分是否牢固或泄露,以确保系统的密闭性。此外,软管还应注意介质温度、浓度等因素,避免高温、高浓度或其他原因造成软管衰老、腐蚀等难题。  一般来说,软管做为蠕动泵的重要组成部分,其质量和性能对整个泵的运行效果是至关重要的。选择合适的软管材料,把握软管构造,留意软管运用细节是保证蠕动泵正常运行的重要因素。我希望本文能为您解决蠕动泵软管细节的疑团,使您更聪明地选择与使用软管。
  • 突破精密制造的瓶颈——Pμ SL超高精密3D打印机
    用于精密原型件、功能部件制造的摩方PμSL技术3D打印机,是一种无需模具的精密自由成型增材制造方法。可以替代传统精密注塑成型进行小批量生产,快速实现原型、功能件验证。摩方PμSL超高精密3D打印机拥有全球领先的超高打印精度(2μm/10μm/25μm),高精密的加工公差控制能力(±10μm/±25μm/±50μm),配置韧性树脂、硬性树脂、耐高温树脂、生物树脂等打印材料,使得摩方3D打印系统可直接成型精密塑料结构件和功能器件,无需再经过抛光、打磨、喷涂等后处理工艺。以下为部分工业案例分享:01大型连接器 打印设备 S240 打印材料 HTL 特 点 整体大小:模型整体尺寸为80*75*5 mm³,其上含有2864个异形pin孔结构,孔最小特征为0.15 mm模型采用20μm层厚打印,细节尺寸的公差在±25μm内;其精度可媲美精密注塑02内窥镜端座 打印设备 P140 打印材料 HTL 特 点 整体结构一次成型,无需组装包含多处薄壁结构,包括长度4mm,壁厚70μm的3条管道结构快速成型,可实现短时间内小批量定制样件细节公差保持在±0.025mm03CPU插座 打印设备 S140 打印材料 HTL 特 点 总共2170个梯形截面的小孔,小孔边长为0.3-0.65mm每个小孔中均含有微小的突变台阶结构样件细节公差保持在±0.025mm04微流控芯片模具 打印设备 S240 打印材料 HTL 特 点 整体尺寸:88 × 35 × 1.6 mm³含有外凸的管道结构,凸出高度为0.06mm,管道宽度为0.2mm能达到很好的表面质量和很低的表面粗糙度官网:https://www.bmftec.cn/links/4
  • 日本研制出超精密尺子 可应用于超精密仪器
    日本关西学院大学一个研究团队20日宣布,他们研发出一种超精密尺子,可用于测量纳米级别的尺寸。  这个团队来自关西学院大学理工学系。他们研制的这种尺子以硬度仅次于钻石的碳化硅为主要材料。碳化硅质地坚硬,很难加工,研究人员为此专门开发出一种新的加工技术。他们把碳化硅放入超真空环境中加热到约2000摄氏度,再对其表面进行切削。  采用这一加工技术,研究人员成功使碳化硅材料表面形成了阶梯状构造,阶梯的每级“台阶”为0.5纳米,相当于尺子的一格刻度。据介绍,研究人员还能把“台阶”的高度做成0.76纳米和1纳米。  研究人员表示,这种超精密尺子可广泛应用于超精密仪器、计算机中央处理器、大规模集成电路等诸多涉及纳米技术的领域。新型尺子的耐腐蚀性也比传统的硅制精密尺子更胜一筹。
  • 让量子精密测量成为普惠技术!《量子精密测量行业赋能白皮书》免费开放
    测量是科学技术的基础,以量子精密测量为代表的先进测量技术成果不断涌现,必将进一步提高人类科技发展水平,变革生产制造模式,促进社会经济发展转型升级。但前沿技术的落地应用首先要弥合技术的信息鸿沟。国仪量子联合权威专家团队,与新能源、半导体、生命科学、医疗健康、能源勘探、航空航天、 基础科研、计量学等领域的一线行业伙伴,联合编撰了《量子精密测量行业赋能白皮书》。白皮书从用户维度出发,分为技术简介与产业应用两大版块,通过大量的案例切入行业痛点,并针对性提出赋能解决方案。完整白皮书欢迎扫码/点此下载作为国内量子信息产业化的引领者,国仪量子团队长期从事量子精密测量这一前沿技术的探索,并率先开启了量子信息产业化实践。通过白皮书,国仪量子希望让广大行业伙伴了解量子科技的最新成果和创新思维,共同将量子精密测量这一先进测量技术打造为服务产学研用的普惠技术。
  • Sanotac高精度平流泵,助力微通道高通量反应器,打造美丽化工
    Sanotac高精度平流泵,助力微通道高通量反应器,打造美丽化工 SANOTAC系列平流泵(柱塞泵,中压恒流泵)产品广泛应用于石油开发评价实验、石油化工的催化反应、聚合反应、食品、制药、液相色谱分析、超临界萃取、分离、原子能科学、环境科学、工艺设备、实验设备中各种液体的精确微量输送。最近,在微通道高通量反应器中应用最为广泛。关键词: 流体输送,耐腐蚀,耐压力,精确度高,脉冲小 SANOTAC系列平流泵能为您解决泵液不连续不稳定问题!提供稳定、连续的输送液体!能为您解决泵液流量不准问题!提供精确流量的输送液体!能为您解决泵的压力脉动高造成基线不稳的问题! 提供低脉动输送系统。当您需要自己搭建微反应器系统,或者给微反应器系统配套平流泵的时候,请记得找我们三为科学,三生万物,为您而来。我们专门配套模块化微反应系统,微通道反应器,管式反应器,釜式反应器,催化评价装置,催化加氢装置,煤化工装置。 微反应器,即微通道反应器是一种借助于特殊微加工技术以固体基质制造的可用于进行化学反应的三维结构元件。微反应器通常含有小的通道尺寸(当量直径小于500 μ m)和通道多样性,流体在这些通道中流动,并要求在这些通道中发生所要求的反应。这样就导致了在微构造的化学设备中具有非常大的表面积/体积比率。 微通道反应器,利用精密加工技术制造的特征尺寸在10到300微米(或者1000微米)之间的微型反应器,微反应器的“微”表示工艺流体的通道在微米级别,而不是指微反应设备的外形尺寸小或产品的产量小。微反应器中可以包含有成百万上千万的微型通道,因此也实现很高的产量。 目前,最新的高通量研发加速技术(HTR&D),高通量研发实验系统,集成了组合化学、机器人技术、自控技术、先进精密仪器、反应器、现代计算机信息处理技术和分析工具以及人工智能等众多前沿科技。 进入21世纪, 化工过程向着更为绿色、安全、高效的方向发展, 而新工艺、新设备, 新技术的开发对于化工过程的进步显得十分重要。在这样的背景下, 微反应器系统的出现吸引了研究者和生产者的极大关注。微反应器系统并非简单的微小型化工系统,而是指带有微反应或微分离单元的新型化工系统。     SANOTAC系列高压恒流平流泵用于微反应器中微流体的输送,使得微通道反应器性能更出色,如虎添翼,更能发挥微通道反应器的魔力,发挥微通道反应器高效,本质安全、智能制造的新技术优势,打造美丽化工的未来。 Sanotac系列平流泵,按流量范围区分有:0.001-10ml/min、0.01-50ml/min、0.1-200ml/min以及0.1-300,0.1-1000ml/min,1-10000ml/min等不同型号。 按压力范围区分有:0-2Mpa、0-10Mpa、0-15Mpa、0-30MPA,0-42Mpa。 按泵头的材质区分有:316L不锈钢、PEEK材料、PTFE聚四氟乙烯,钛金属材料等供您选择。 三为科学,三生万物,为您而来!
  • 蠕动泵应用领域分析
    蠕动泵由驱动器、泵头和软管三部分组成。液体与泵管隔离,泵管可快速更换,液体可逆行,运行干燥,维护成本低,形成了蠕动泵的主要竞争优势。  目前,蠕动泵已广泛应用于各个领域PreFluid让我们普及一下:  制药行业:固体制剂工艺采用蠕动泵作为喷雾干燥机、沸腾造粒机、滴丸机、包装机等设施输送液体 生物制品、疫苗采用高精度蠕动泵包装GMP要求  食品工业:蠕动泵用于灌装饮料  医疗行业:血液透析仪循环泵、吸脂注水、骨刀机等牙科仪器、内窥镜等  化学实验室:液体精密滴入化学实验室  环保水处理:环保在线检查COD仪器取样,耐腐蚀,自吸能力强 在水处理中,蠕动泵应添加次氯酸钠、氯化铁等化学物质,以调节水PH值  工业印刷:洗涤剂自动添加到洗衣机行业,用蠕动泵输送油墨和光油  新能源产业:燃料电池、电池试剂添加 太阳能应用于坩埚喷漆氮化硅  建材行业:蠕动泵应用于建筑材料、混凝土外加剂等
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制