当前位置: 仪器信息网 > 行业主题 > >

微观混合过程实验测定装置

仪器信息网微观混合过程实验测定装置专题为您提供2024年最新微观混合过程实验测定装置价格报价、厂家品牌的相关信息, 包括微观混合过程实验测定装置参数、型号等,不管是国产,还是进口品牌的微观混合过程实验测定装置您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微观混合过程实验测定装置相关的耗材配件、试剂标物,还有微观混合过程实验测定装置相关的最新资讯、资料,以及微观混合过程实验测定装置相关的解决方案。

微观混合过程实验测定装置相关的论坛

  • 求围观:有机相(甲醇、乙腈)与缓冲盐混合,具体多少比例时盐容易析出?

    求围观:有机相(甲醇、乙腈)与缓冲盐混合,具体多少比例时盐容易析出?

    最近做实验发现乙腈-25mM Na2HPO4+ NaH2PO4缓冲盐(磷酸调PH=2.5)=80-20,走双泵,系统压力升高,仪器报警;换台仪器,压力也不正常,具体压力线如下图所示:http://ng1.17img.cn/bbsfiles/images/2015/12/201512171322_578451_1987954_3.png当时怀疑仪器混合器可能出现问题,随后将以上流动相按比例混合于烧杯中准备采用单泵进行试验,但发现有盐瞬间析出,顿悟。。。。。http://simg.instrument.com.cn/bbs/images/default/em09507.gifhttp://simg.instrument.com.cn/bbs/images/default/em09507.gif大家在实验过程中,是否有发现类似情况?都来围观一下,说说自己的情况、流动相组成及比例。

  • 混合气体微间隙模拟放电装置中的真空压力控制解决方案

    混合气体微间隙模拟放电装置中的真空压力控制解决方案

    [size=16px][color=#990000][b]摘要:针对微间隙气体放电特性分析中需要对不同真空压力进行精密控制的要求,本文提出了相应的解决方案。解决方案采用了双路调节技术,由真空计、电控针阀和真空压力控制器组成进气和排气控制回路,可实现真空度1Pa~101kPa全量程范围内优于±1%的控制精度。同时,此解决方案适用于多种气体混合后的真空压力控制,还可进行更高真空度、更高正压压力和增加湿度等环境变量控制的拓展,更广泛适用于各种气体放电特性研究。[/b][/color][/size][align=center][size=16px][color=#990000][b]==========================[/b][/color][/size][/align][size=18px][color=#990000][b]1. 项目背景[/b][/color][/size][size=16px] 微间隙气体放电是一种电极距离在微米或纳米量级的放电形式,由于电极距离极小,微间隙放电通常表现出不同于传统规模放电的击穿特性,从而导致低电压击穿的风险。此外,微间隙放电过程中所产生的微等离子体具有高压稳定性、非热平衡、高电子密度、高激发效率等优点,在工业和生活中有着广泛的应用。总之,微间隙气体放电特性的研究引起了的极大关注。[/size][size=16px] 在微间隙气体放电特性研究中,微间隙中气体的种类和真空压力是重要的环境条件。最近有客户对这种微间隙中的气体种类,特别是对真空压力的精密控制提出了明确要求,其目的是研究不同气体和不同真空压力下微间隙的气体放电特性。为此本文提出了微间隙气体压力的精密控制解决方案,以实现微间隙气体放电特性分析过程中的全量程的真空压力高精度自动控制。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案是在原有的微间隙气体放电特性测试设备上增加高精度真空控制系统,以实现在绝对压力1Pa~101kPa范围内的精密控制,全量程真空度控制精度小于±1%。整个装置的结构如图1所示。[/size][align=center][size=16px][color=#990000][b][img=微间隙气体放电试验装置及其真空压力控制系统,650,411]https://ng1.17img.cn/bbsfiles/images/2023/09/202309221532063298_6848_3221506_3.jpg!w690x437.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 微间隙气体放电试验装置及其真空压力控制系统[/b][/color][/size][/align][size=16px] 如图1所示,真空压力控制系统主要由气源、混气罐、电控针阀、真空计、真空压力控制器和真空泵组成,其功能和性能指标如下:[/size][size=16px] (1)气源:气源主要由高压气瓶提供,可采用不同气体的气瓶实现气体混合,以实现混合气体环境下的微间隙气体放电性能研究。混合气体中的各种气体比例可以通过相应的气体质量流量控制器进行调节。当然,也可以采用单一气体,如果是气体是空气可采用气泵作为气源。[/size][size=16px] (2)混气罐:提供气体的充分混合,混气罐内的压力要高于一个大气压。[/size][size=16px] (3)电控针阀:解决方案中采用了两个NCNV系列的电控针阀,电控针阀采用步进电机高速调节并具有极好的调节精度和线性度,全开和全闭动作时间小于1秒。一个电控针阀用于调节进气流量,以进行低压高真空范围内的控制;另一个针阀用于调节排气流量,以进行高压低真空范围内的控制。在实际应用中可根据真空腔体尺寸大小选择不同孔径的电控针阀,更大的真空腔体排气时可将排气用电控针阀更换为电控球阀,以提高排气流量和真空度调节控制速度。[/size][size=16px] (4)真空计:解决方案中采用了两个电容真空计,一个真空计的最大量程为10Torr,另一个真空计的最大量程为1000Torr,由此两真空计可覆盖整个真空度范围。选择电容真空计是因为这种真空计具有较高的测量精度和信号的线性输出,在全量程任意真空度点上的测量精度都可以保证小于0.25%。当然,真空计也可以选择全量程型的皮拉尼计,但其测量精度只能达到15%,且信号输出呈现严重的非线性,会严重影响真空度控制精度。[/size][size=16px] (5)真空压力控制器:为了保证全量程范围的真空度控制精度,选择了VPC2021-2型号的双通道真空压力控制器,每个通道与对应的真空计和针阀组成独立的闭环控制回路,其中一个通道用于控制高真空,另一个通道用于控制低真空。此双通道真空压力控制器具有24位AD、16位DA和0.01%最小输出百分比,结合电容真空计和电控针阀可实现全真空度范围优于±1%的控制精度。另外,此控制器具有PID自整定功能和自带计算机软件,便于进行过程参数的设置、运行、显示和存储。[/size][size=16px] (6)真空泵:由于需要采用微机械装置进行精密位移调节,真空泵选用干泵以避免对真空腔室内部件的污染。在具体应用中需根据真空腔体的大小和真空度范围选择相应抽速的干泵。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 本文针对微间隙气体放电特性分析中所需的真空压力精密控制要求,提出了全量程真空压力高精度的解决方案,可完全满足客户在微间隙气体放电特性研究中需要。另外,此解决方案还具有很强的可拓展性和适用性,主要有:[/size][size=16px] (1)还可进行多种气体混合气氛条件下的真空度精密控制。[/size][size=16px] (2)除了上述低压真空度范围内的精密控制之外,还可进行量程的扩展,如向高真空和超高真空方向拓展,如向高压一个大气压的正压方向拓展。[/size][size=16px] (3)除了气体气氛环境的精密控制之外,还可增加湿度等环境变量的精密控制。[/size][size=16px] 总之,本解决方案可推广应用到多种环境变量的自动控制中,以满足各种形式和规格的气体放电特性的研究和分析。[/size][align=center][b][color=#990000]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 总氮测定装置及总氮总磷测定装置

    【作者】: 【题名】:总氮测定装置及总氮总磷测定装置【期刊】:【年、卷、期、起止页码】:【全文链接】:https://t.cnki.net/kcms/detail?v=kxaUMs6x7-4I2jr5WTdXti3zQ9F92xu093x413AcgcHHtMVf2jH7MavFQh-Y9kig2GYNk3M9pnH-HH_iKcKa0N4RKWi1lFcy&uniplatform=NZKPT

  • 水洗筛余物测定装置

    水洗筛余物测定装置GY-60型安装和使用指导[font=&][size=13px][color=#333333]水洗筛余物测定装置GY-60型整机安装并调试合格后出厂,用户只需接上水管和电源就可以直接使用,操作十分方便,是测定炭黑、白炭黑以及其它粉粒物质筛余物不可缺少的装置,比美国ASTMD1514-80标准推荐使用的装置体积少四分之三。[/color][/size][/font]

  • 水洗筛余物测定装置使用和安装申请精华

    [color=#ff0000]  [b]水洗筛余物测定装置安装和使用:[/b][/color]  水洗筛余物测定装置整机安装并调试合格后出厂,用户只需接上水管和电源就可以直接使用,操作十分方便,是测定炭黑、白炭黑以及其它粉粒物质筛余物不可缺少的装置,比美国ASTMD1514-80标准推荐使用的装置体积少四分之三。

  • 【求助】关于用硫酸混合加速剂法消解叶片测定氮含量的求助

    大家好!现在检测氮含量应该多数已经使用全自动定氮仪来检测了,可是我们的实验室条件有限,现在还是采用传统的消解方法,即浓硫酸加混合加速剂(硝酸钾+硫酸铜+硒粉),加热装置是电热套,但消解效果不稳定,有时可以消解到清亮的效果,有时消解到最后一直是棕色溶液。现在一直找不到问题所在,不知道大家有没有这方面的经验,还望赐教!我的具体方法如下:称样过100目叶片0.1g左右,加5ml浓硫酸,加安全漏斗静置过夜,再加2g~2.5g混合加速剂,置于电热套上部加热,起初缓慢加热,待反应稳定泡沫消失后逐步提高温度。有试过成功消解1.5h就变清亮,有时要3~4h才变清亮,而在试了很多次都没法消解完全。有考虑是加速剂混合不均的问题,为确保加速剂中各含量充足,试过就一个样品的需求量,按比例分别称硝酸钾、硫酸铜、硒粉,再将其混匀,用于消解,可结果仍不行。我想可能是加热过程有问题,但也尝试调整加热方法,结果还是不行。有试过硫酸加双氧水的消解方法,方法稳定,但相对硫酸加混合加速剂的方法,其测定值偏低,无法达到标准值(柑橘标准叶片的氮含量)。请各路高手指点~

  • 【实验】无机实验之铅、铋混合液中铅、铋含量的连续测定

    铅、铋混合液中铅、铋含量的连续测定目的原理实验目的1. 掌握借控制溶液的酸度来进行多种金属离子连续测定的络合滴定方法和原理;2. 熟悉二甲酚橙指示剂的应用。实验原理Bi3+、Pb2+离子均能与EDTA形成稳定的络合物,其稳定性又有相当大的差别(它们的1gK值分别为27.94和18.04),因此可以利用控制溶液酸度来进行连续滴定。在测定中,均以二甲酚橙为指示剂。二甲酚橙属于三苯甲烷指示剂,易溶于水,它有7级酸式离解,其中H7In至H3In4-呈黄色、H2In5-至In7-呈红色。所以它在溶液中的颜色随酸度而变,在溶液pH<6.3时呈黄色,pH>6.3时呈红色。二甲酚橙与Bi3+离子及Pb2+离子的络合物呈紫红色,它们的稳定性与Bi3+、Pb2+离子和EDTA所成络合物的相比要弱一些。测定时,先调节溶液的酸度至pH≈1,进行Bi3+离子的滴定,溶液由紫红色变为亮黄色,即为终点。然后再用六次甲基四胺为缓冲剂,控制溶液pH≈5-6,进行Pb2+离子的滴定。此时溶液再次呈现紫红色,以EDTA溶液继续滴定至突变为亮黄色,即为终点。仪器药品0.02mol/dm3EDTA标准溶液,0.2%二甲酚橙指示剂,20%六次甲基四胺溶液,ZnO(基准用),0.1mol/dm33溶液,0.5mol/dm3NaOH溶液,1+1HCl溶液,精密pH(0.5—5)试纸。过程步骤一、Bi3+离子的滴定移取25ml试液3份,分别置于250ml锥形瓶中。取一份作初步试验。(由于调节溶液酸度时要以精密pH试纸检验,心中无数,检验次数必然较多,为了消除因溶液损失而产生误差,故采用初步试验的方法。) 先以pH为0.5-5范围的精密pH试纸试验试液的酸度。一般来说,不带沉淀的含Bi3+离子的试液其pH应在1以下(为什么?),为此,以0.5mol/dm3NaOH溶液(装在滴定管中)调节之,边滴加边搅拌,并时时以精密pH试纸试之,至溶液pH达到1为止。记下所加的NaOH溶液的体积。(不必准确至小数点后第二位,只需1位有效数字,为什么?)接着加入10ml 0.1mol/dm33溶液及2滴0.2%二甲酚橙指示剂,用0.02mol/dm3EDTA标准溶液滴定至溶液由紫红色变为棕红色,再加1滴,突变为亮黄色,即为终点,记下粗略读数。然后开始正式滴定。取另一份25ml试液,加入初步实验中调节溶液酸度时所需的相同体积的0.5mol/dm3NaOH溶液,接着再加10ml 0.1mol/dm3NHO3溶液及2滴0.2%二甲酚橙指示剂,用EDTA标准溶液滴定之,终点变化同上。在离终点1-2ml前可以滴得快一些,近终点时则应慢一些,每加1滴,摇动并观察是否变色。二、Pb2+离子的滴定在滴定Bi3+离子后的溶液中,加4-6滴二甲酚橙指示剂(溶液中原先已加2滴二甲酚橙指示剂,由于滴定中加入EDTA标准溶液后使体积增大等原因,指示剂的量会感到不足(由溶液颜色可以看出),所以需要再加。),并逐滴滴加1+1氨水,边滴边搅拌,至溶液由黄色变橙色(注意,不能多加,否则生成Pb(OH)2沉淀,影响测定),然后再加20%六次甲基四胺,至溶液呈紫红色(或橙红色),再加过量5ml,最后以0.02mol/dm3EDTA溶液滴定至溶液由紫红色突变为亮黄色,即为终点。分析思考1.滴定Bi3+、Pb2+离子时溶液酸度各控制在什么范围?怎样调节?为什么?2.能否在同一份试液中先滴定Pb2+离子,而后滴定Bi3+离子? [em05]

  • 【原创大赛】近红外光谱分析技术用于美洛西林钠舒巴坦钠药物混合过程在线混合均匀度终点监测

    【原创大赛】近红外光谱分析技术用于美洛西林钠舒巴坦钠药物混合过程在线混合均匀度终点监测

    [align=center][b][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术用于美洛西林钠舒巴坦钠药物混合过程在线混合均匀度终点监测[/b][/align][align=left][b]摘要: [/b]利用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术,对美洛西林钠、舒巴坦钠混合过程进行了在线监测。在研究中,分别建立了基于MBSD法的定性分析模型和基于舒巴坦钠百分含量的定量分析模型,通过3个平行实验的在线混合过程,结果显示MBSD法和舒巴坦钠百分含量测定法均能有效的监测其混合过程,有效的证明了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱分析技术用于舒巴坦钠、美洛西林钠混合在线监测的可行性。[/align][b]关键词[/b]:[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url];分析模型;混合均匀度;在线监测自从2004年美国食品与药品监督管理局提出“过程分析技术”以来,全球的药品生产企业正在向着更高技术含量的生产方式和质量控制方式进军。近红外(Near infrared,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url])光谱分析技术因其快速,无损的特点成为“过程分析技术”的重要组成部分,是制药企业进行产品中间体质量控制的重要方法之一。传统的检测方法为高效液相色谱法,紫外可见分光光度法等需要停止混合操作时才能取样检测,并且等待检测结果所需的时间也比较长,工作效率比较低,而[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱可以进行在线检测,连续记录不同混合时间内混合物的光谱图,建立数学模型对采集数据进行分析,从而判断各组分之间是否已经达到质量均一,工作效率大幅度的提高。本研究利用 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url] 光谱分析技术在线监测美洛西林钠舒巴坦钠的药物混合过程,从而实现混合终点的准确判断。[b]1 材料1.1试剂[/b]美洛西林钠(13102041,山东瑞阳制药有限公司)舒巴坦钠(SS201310-26,江西东风制药有限公司)[b]1.2仪器和软件[/b]AntarisII型傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url](美国ThermoFisher公司),附有积分球采样模块;RESULT采样软件;电子分析天平(Sartorius BT224S,德国);TQ数据处理软件;表面皿;药匙;自制搅拌器。[b]2 方法2.1样品的准备[/b]精密称取舒巴坦钠固体原料药10.00g,美洛西林钠固体原料药40.00g,以备进行在线混合光谱的采集。平行制备3批样品,进行混合光谱的采集。[b]2.2模型的建立[/b]目前,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱分析技术用于混合过程在线监测的方法可分为活性药物成分(API)定量分析模型监测和基于移动块标准偏差(MBSD)的定性分析模型监测。前者为基于API药物含量的定量监测模型,当达到混合终点时,API的含量趋于一定值,可以依据模型监测的含量是否达到理论值并趋于稳定进行混合终点的监测;后者为基于光谱的标准偏差的定性监测模型。MBSD法的基本原理为:连续采集的若干张光谱间的标准偏差变化率趋于稳定并小于限定的一阈值时可认为达到了混合终点。其具体的计算步骤为:首先确定用于计算光谱标准偏差的光谱的条数n(即移动块的宽度),当[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱分析仪器采集到n张光谱后计算n张光谱的峰面积(或最大峰高、平均峰高等)的标准差,当采集到n+1张光谱时将第一张光谱移除,计算最近n张光谱的标准差,如此类推,最终得到随时间变化的光谱的标准偏差,根据标准差的变化进行混合终点的监测。本研究中建立了舒巴坦钠含量的定量分析模型和基于MBSD法的定性分析模型同时对用于混合终点的判断。[b]2.3在线混合光谱的采集[/b]将称取的美洛西林钠、舒巴坦钠原料药样品放入表面皿中,然后将表面皿放在Antaris II型傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]积分球采样模块的上面,采用积分球漫反射采样方式进行光谱的采集。在运行在线混合工作流的同时采用自制的搅拌器进行样品的混合,采集得到混合过程的原始光谱,同时监测混合过程。波长范围10000-4000cm[sup]-1[/sup],每张光谱扫描次数4,混合过程中每间隔5s进行一张光谱的采集,光谱分辨率为8.0cm[sup]-1[/sup],每4个小时进行背景光谱的采集。每张[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱由1557个变量点组成。[b]2.4定量定性分析模型用于终点判断数据分析[/b]将在线混合过程进行监测,得到在线混合过程数据进行分析,以便了解混合全过程信息以及混合过程的监测。[b]2.5混合终点分析[/b]当得到混合终点时分别采集混合后的样品6处的原始[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱,利用舒巴坦钠的定量分析模型预测混合终点时不同样品点处的舒巴坦钠的含量,判别是否混合均匀。[b]3 实验结果3.1分析模型的建立[/b]本研究中分别建立了在线混合过程的舒巴坦钠定量监测模型和基于移动块标准偏差的定性监测模型。[b]3.1.1 定性分析模型的建立[/b]目前混合均匀度在线监测常用的方法为MBSD法,本研究中MBSD法定性建模的参数为:选择的3个光谱区间包括全光谱、5275.6-4806.3cm[sup]-1[/sup](称为Region1)及7096.76-6344.66cm[sup]-1[/sup](称为Region2);用于计算光谱偏差的光谱的条数为5(即移动块的宽度为5)。[b]3.1.2 定量分析模型的建立[/b]本研究中所建立的定量分析模型用于监测混合过程中舒巴坦钠的百分含量的变化,因为本实验中舒巴坦钠和美洛西林钠两者间的混合比为4:1,当达到混合终点时,舒巴坦钠的百分含量应该在20%左右。其模型的具体参数见上一章中得到的舒巴坦钠百分含量的定量分析模型。[b]3.2混合在线过程数据分析[/b]本研究中平行进行了3次混合过程的在线监测,分别对3次实验结果进行分析,以充分了解混合监测过程。[b]3.2.1 第一批实验结果分析3.2.1.1 原始光谱图[/b]图1给出了混合过程中采集得到的208张原始光谱,由图中可知,处于下面的光谱较稀疏,可能属于混合刚开始的阶段,光谱会有较大的差异;处于上面的光谱较密集,其原因为随着混合的不断进行,光谱间差异越来越小,所以光谱较集中。[align=center][img=,498,274]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141912_01_1626619_3.png[/img][/align][align=center]图1 第一批混合过程原始光谱[/align][align=center] [/align][b]3.2.1.2 在线混合过程结果分析[/b]图2为定性分析模型中得到的3个光谱区间的峰面图,其中M1为全光谱建模的峰面积变化,M2为Region 1(5275.6-4806.3cm-1)的峰面积变化,M2为Region 2(7096.76-6344.66cm-1)的峰面积变化,由峰面积的变化图可知,混合过程的前100s其变化较为明显,M1不断升高,M2和M3(7096.76-6344.66cm-1)不断下降,之后峰面积值趋于稳定。[align=center][img=,525,234]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141913_01_1626619_3.png[/img][/align][align=center]图2 光谱区间峰面积图[/align]图3为舒巴坦钠含量及标准偏差变化图,由图中显示在混合的初期阶段,尤其是前100s左右,四个表征混合均匀度的参数均有着较大的变化趋势,在200-300s间四个参数有稍微较小的波动,此后随着混合过程的不断进行,表征混合均匀度的四个参数变化范围均变小,模型给出的舒巴坦钠的百分含量在20%左右,舒巴坦钠和美洛西林钠混合较为均匀,达到了混合终点。由图可知前100s是混合的主要阶段,此阶段舒巴坦钠的百分含量和标准偏差均有着明显的变化。[align=center][img=,538,292]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141914_01_1626619_3.png[/img][/align][align=center]图 3 含量和标准偏差变化图[/align][align=center](a舒巴坦钠百分含量变化 b全光谱峰面积标准差 c Region1峰面积标准差 d Region2峰面积标准差)[/align][align=left] 当达到混合终点时分别采集表面皿下6个点的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱,根据建立的模型测定其舒巴坦钠的百分含量,看混合是否均匀。表2给出了用所建模型得到的6个点的舒巴坦钠的百分含量值,6个点舒巴坦钠的百分含量值在20%左右,说明混合较为均一,但是最大的值达到了22.41%,可能是由于混合装置过于简陋,加上是人为搅拌进行混合,不能达到很好的混合,部分地方没有进行很好的混合。从实验的可行性方面,初步证实了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]技术用于美洛西林钠舒巴坦钠混合的可行性。[/align][align=center]表1混合后不同点舒巴坦钠百分含量值[/align][align=center] [img=,570,70]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141915_01_1626619_3.png[/img][/align][b]3.2.2 第二批实验结果分析3.2.2.1 原始光谱图[/b]图4给出了第二批混合过程中采集得到的203张原始光谱,其混合过程原始光谱的特征和第一批混合过程较为相似,混合初期光谱变化较为明显,随着混合的进行,光谱差异变小,光谱较为密集。[align=center][img=,488,280]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141915_02_1626619_3.png[/img][/align][align=center]图4 第二批混合过程原始光谱[/align][align=left] [b]3.2.2.2 在线混合过程结果分析[/b][/align]图5为各个光谱波段峰面积的变化图,由图中显示开始的100s内峰面积有着较大的变化幅度,随着混合的不断进行,峰面积的变化趋势不断减小并逐渐趋于稳定。[align=center][img=,516,307]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141916_01_1626619_3.png[/img][/align][align=center]图5 光谱区间峰面积图[/align][align=center](a 全光谱峰面积 bRegion 1峰面积 cRegion 2峰面积)[/align]图6为舒巴坦钠含量及标准偏差变化图,由图可知在混合的初期阶段大约0-100 s时,舒巴坦钠百分含量值及峰面积的标准偏差值有着明显的变化,全光谱峰面积的标准偏差(Full Range STD)在200-400 s间有较为明显的波段,此后随着混合过程的不断进行,四个参数变化范围均变小,模型给出的舒巴坦钠的百分含量在20%左右。由此可知前100 s是混合的主要阶段,此阶段舒巴坦钠的百分含量和标准偏差均有着明显的变化。[align=center][img=,551,327]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141917_01_1626619_3.png[/img][/align][align=center]图6 含量和标准偏差变化图[/align][align=center](a 舒巴坦钠百分含量 b 全光谱峰面积标准偏差 c Region 1峰面积标准偏差 d Region 2峰面积标准偏差)[/align]当达到混合终点时,采集表面皿底部6处的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱,检测混合过程是否达到均一,表2列出来了6处的舒巴坦钠的百分含量值,由表2可知达到混合结束后得到的6处的舒巴坦钠的百分含量均在20%左右,说明混合较为均匀。同时,由于实验条件的限制加上搅拌时人为因素的影响等,各点之间含量也着较大的差异。[align=center]表2 舒巴坦钠百分含量[/align][align=center] [img=,566,84]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141918_01_1626619_3.png[/img][/align][b]3.2.3 第三批实验结果分析3.2.3.1 原始光谱图[/b]图7给出了混合过程中采集得到的207张原始光谱,由图中可知,得到的原始光谱图与第一批和第二批有着相似的结果,即混合的初期光谱差异大,因此光谱较为稀疏(偏下方的光谱),随着混合的进行,光谱间差异变小,光谱变得密集(偏上方的光谱)。[align=center][img=,505,262]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141919_01_1626619_3.png[/img][/align][align=center]图7 第三批混合过程原始光谱[/align][b]3.2.3.2 在线混合过程结果分析[/b]图8给出了混合过程中3个光谱区间峰面积的变化趋势值,由图中可知0-100s间三个光谱区间的峰面积有着明显的变化,100-200s间峰面积有着明显的变化,但是变化幅度没有前100s大,200s以后峰面积变化趋势变小。说明前200s是混合的主要阶段,峰面积变化较为明显。[align=center][img=,519,343]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141919_02_1626619_3.png[/img][/align][align=center]图 8 光谱区间峰面积图[/align][align=center](a 全光谱峰面积 bRegion 1峰面积 cRegion 2峰面积)[/align]图9为舒巴坦钠百分含量及光谱峰面积的标准偏差随时间变化的趋势图,其变化趋势和峰面积的变化趋势相似,前100s变化幅度较大,100-200s间也有较为明显的变化,但是变化幅度不是很明显,200s后舒巴坦钠的百分含量和峰面积的标准偏差均趋于稳定,说明此时光谱差异变小,混合趋于均匀。[align=center][img=,529,352]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141920_01_1626619_3.png[/img][/align][align=center]图9 含量和标准偏差变化图[/align][align=center](a舒巴坦钠百分含量变化 b全光谱峰面积标准差 c Region1峰面积标准差 d Region2峰面积标准差)[/align]表3为达到混合终点时采集表面皿底部的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱得到的不同点的舒巴坦钠的百分含量值,由表中显示6个点的舒巴坦钠的百分含量值在20%左右,但是6个点之间舒巴坦钠百分含量间存在较大的差异,测得的最小值为17.80%,其原因可能是一方面由于实验条件的限制混合不够均匀,一方面用于舒巴坦钠含量测定的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]定量分析模型也有一定的偏差,可能引起含量检测的差异存在。[align=center]表3 混合后不同点舒巴坦钠百分含量值[/align][align=center] [img=,564,66]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141921_01_1626619_3.png[/img][/align][b]3.3小结[/b]通过3个混合平行实验的进行可知所建立的基于MBSD法的定性分析模型和基于舒巴坦钠百分含量的定量分析模型能够有效的监测舒巴坦钠、美洛西林钠的混合过程。由舒巴坦钠百分含量和标准偏差变化图可知两者的变化有着相关性,当舒巴坦钠的百分含量变化幅度大时,其标准偏差的变化幅度也较大,因此两者均可以用于混合过程的在线监测,证实了实验的可行性。[b]4 结论和讨论[/b]本研究采用AntarisII傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]对美洛西林钠、舒巴坦钠混合过程进行了在线监测。在研究中,分别建立了基于MBSD法的定性分析模型和基于舒巴坦钠百分含量的定量分析模型,然后Antaris II傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]漫反射采样方式采集混合过程中的光谱,实时监测混合过程的进行。通过3个平行实验的在线混合过程,结果显示MBSD法和舒巴坦钠百分含量测定法均能有效的监测其混合过程,有效的证明了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱分析技术用于舒巴坦钠、美洛西林钠混合在线监测的可行性。此外,MBSD法因为无需进行一级数据的采集,方法较为简单且容易理解,目前常用于混合过程的在线监测。本研究中有效证实了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱分析技术在舒巴坦钠美洛西林钠样品在线混合过程中应用的可行性,在样品的在线混合监测中有着重要的应用价值和应用前景。该技术能够克服传统方法费时、繁琐等缺点,而且可以实现过程的实时在线监测,让生产者充分了解整个生产过程中的参数变化。 [b]参考文献[/b]陆婉珍, 褚小立. [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]([url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url])和过程分析技术(PAT). 现代科学仪器, 2007(004):13-17.SieslerH, Ozaki Y, Kawata S, et al. Near-infrared spectroscopy: principles .Instruments, Applications, 2002:35-181.Bhushan,K.R.,et al.Detection of breastcancer microcalcifications using a dual-modality SPECT/[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url] fluorescent probe. J Am Chem Soc, 2008. 130(52):17648-17649.贾燕花. [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在化学药品生产过程控制应用初探. 北京协和医学院, 2011.Fevotte.G,et al.Applications of [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]spectroscopy to monitoring and analyzing the solid state during industrialcrystallization processes . Int J Pharm, 2004, 273(1):159-169.张敏.盐酸林可霉素多晶型分子构象对其红外光谱行为的影响.中国抗生素杂志, 2005, 30(009):529-532.Blanco M,R Goz"01ez Ba,E.Bertran,Monitoring powder blending in pharmaceutical processes by use of nearinfrared spectroscopy . Talanta, 2002, 56(1):203-212,田科雄.不同装载系数和混合时间对添加剂预混料混合均匀度的影响.河北畜牧兽医, 2004, 20(9):52-53.孙栋. 基于[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术的几种固体粉末混合均匀度快速检测研究. 山东大学硕士学位论文, 2012年.

  • 干燥器法测甲醛含量时,温度测定装置是摆放在哪个位置

    国标17657-2013 4.59甲醛释放含量-干燥器法,温度测定装置描述是:温度测定装置,例如热电偶,温度测量误差0.1℃,放入干燥器中,并把干燥器紧邻其他放有试件的干燥器。请问这温度测定装置只用于测空白干燥器的温度吗?有哪位大神对这方法了解的,可否讲解一二呢,非常感谢了

  • 【转帖】论pH(酸度)计计量检定装置的期间核查

    一、标准器的状况  宁夏计量测试院pH(酸度)计计量检定装置有两套标准。一套标准是由0.01级的UJ21型直流电位差计和0.05级的标准电池构成的检定装置;另一套标准是0.0006级的PC-2微机型pH/离子计检定仪。电位差计放在院内实验室,用于检定送检的酸度计,微机型pH/离子计检定仪为可携带的便携式标准仪器,一般用于现场酸度计检定。   二、核查对象的选定  根据pH(酸度)计检定标准器的具体情况,电位差计和标准电池在实验室环境中比较稳定;而经常用于现厂检定的PC-2微机型pH/离子计检定仪,由于使用频繁,现场环境条件不尽相同,携带过程经常处于车载颠簸状态等,因此,核查的重点应放在经常用于现厂检定的PC-2微机型pH/离子计检定仪上。

  • 酶标仪用于流化床混合过程API含量测定

    [font='times new roman'][size=16px]酶标[/size][/font][font='times new roman'][size=16px]仪用于[/size][/font][font='times new roman'][size=16px]流化床混合过程[/size][/font][font='times new roman'][size=16px]API[/size][/font][font='times new roman'][size=16px]含量测定[/size][/font][font='times new roman'][size=16px]每个混合批次按经验预混合[/size][/font][font='times new roman'][size=16px]5[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]min[/size][/font][font='times new roman'][size=16px]至基本均匀后再混合约[/size][/font][font='times new roman'][size=16px]10[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]min[/size][/font][font='times new roman'][size=16px],此时进行取样,每次[/size][/font][font='times new roman'][size=16px]取样约[/size][/font][font='times new roman'][size=16px]为[/size][/font][font='times new roman'][size=16px]3[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]g[/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]API[/size][/font][font='times new roman'][size=16px]含量[/size][/font][font='times new roman'][size=16px]采用紫外分光光度计测得。具体方法为:首先配置浓度为[/size][/font][font='times new roman'][size=16px]5-15 [/size][/font][font='times new roman'][size=16px]μg[/size][/font][font='times new roman'][size=16px]/mL[/size][/font][font='times new roman'][size=16px]的一系列[/size][/font][font='times new roman'][size=16px]API[/size][/font][font='times new roman'][size=16px]的标准溶液,在特定波长[/size][/font][font='times new roman'][size=16px]([/size][/font][font='times new roman'][size=16px]450[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]nm[/size][/font][font='times new roman'][size=16px])[/size][/font][font='times new roman'][size=16px]下测定吸光度,生成[/size][/font][font='times new roman'][size=16px]API[/size][/font][font='times new roman'][size=16px]溶液吸光度与浓度之间的标准曲线。浓度[/size][/font][font='times new roman'][size=16px]8.448[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]μg[/size][/font][font='times new roman'][size=16px]/mL[/size][/font][font='times new roman'][size=16px]下的标准溶液,平行制备[/size][/font][font='times new roman'][size=16px]6[/size][/font][font='times new roman'][size=16px]份用于考察该方法的重复性;其中一份供试液重复测定[/size][/font][font='times new roman'][size=16px]6[/size][/font][font='times new roman'][size=16px]次吸光度,用于考察仪器的精密度;两天内不同人员对[/size][/font][font='times new roman'][size=16px]6[/size][/font][font='times new roman'][size=16px]份[/size][/font][font='times new roman'][size=16px]8.448[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]μg[/size][/font][font='times new roman'][size=16px]/mL[/size][/font][font='times new roman'][size=16px]浓度下的溶液进行紫外吸光度的测量,对方法的精密度进行了评估。标准曲线的线性用[/size][/font][font='times new roman'][size=16px]R[/size][/font][font='times new roman'][sup][size=16px]2[/size][/sup][/font][font='times new roman'][size=16px]来判定。同样的方法配置取样所得样品的溶液并测定其吸光度并带入标准曲线中计算相应的[/size][/font][font='times new roman'][size=16px]API[/size][/font][font='times new roman'][size=16px]绝对含量,再减去样品的含水量,从而计算出[/size][/font][font='times new roman'][size=16px]API[/size][/font][font='times new roman'][size=16px]的实际相对含量。[/size][/font]

  • 【原创】[第二届原创大赛]-----厂家总工程师/高级工程师处理焦炭反应性及反应强度测定装置故障

    【原创】[第二届原创大赛]-----厂家总工程师/高级工程师处理焦炭反应性及反应强度测定装置故障

    [img]http://bbs.instrument.com.cn/images/affix.gif[/img][url=http://bbs.instrument.com.cn/download.asp?ID=194675]厂家总工程师高级工程师处理焦炭反应性及反应强度测定装置故障.doc[/url]厂家总工程师/高级工程师处理焦炭反应性及反应强度测定装置故障一、用途焦炭反应炉用于高炉炼铁用焦的焦炭反应性及反应强度的测定。二、原理整套仪器由特制高温反应电炉、计算机控制系统。N2、CO2气体供给箱,Ⅱ型转鼓自动升降装置等组成。计算机控制系统控制高温反应电炉按规定速率升温并按给定温度控温。 [img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001062220_194731_1630106_3.jpg[/img]控制系统流程图 [img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001062220_194732_1630106_3.jpg[/img]三、故障及处理通过实验室内部比对测试及实验室间的比对分析测试发现其焦炭反应性CRI及反应后强度CSR的重复性均超过下列数值: CRI: r≤2.4% CSR: r≤3.2%到现场处理故障时发现,计算机不能启动,随即认为是控制仪表有问题,于是将其发往供货厂家进行维修,但过几日控制仪表修复返回后经厂家技术人员安装、调试、数据测试后仪器运行正常。运行一个月后,再次出现数据超差的现象,于是申请采购部门进行退货处理,将该控制仪表和计算机再次退回原厂家,经过厂家一周的鉴定,厂家决定技术总工程师进行处理,到达现场后,首先,对返修的控制仪表和电脑进行安装、调试,直接给控制仪表一个毫伏信号,对控制仪表的准确度、精度和稳定性进行测试,结果发现控制仪表一切正常,后将热电偶和补偿导线接好,在测温端用温度计进行测量后发现,测量温度和计算机显示温度不一致,于是对热电偶和补偿导线进行检查和测试,结果发现,补偿导线无信号,热电偶插入的深度不够,热电偶的热电极和保护套管位置相差太远,之后,将热电偶和补偿导线移交质检部门进行质量检定,随即更换厂家指定的热电偶和补偿导线,并由厂家指导插入深度的操作,经最后的检查发现一切就位后,开始送电取样测试,到第二天,返回测试结果后发现,反应性偏低,于是,厂家对气路系统进行检查,发现,连接胶管由于化学药品的腐蚀均已老化变硬,难以起到连接作用,导致密封不严而产生漏气,据此,厂家认为这样故障点和现象就对应起来了,由于漏气而产生的反应性偏低这是相一致的。之后,更换新胶管对仪器进行测试,做平行试验分析,做实验室内部和实验室间的平行试验,通过数据对比,均满足误差要求。四、总结与体会关于此次由厂家总工来厂维修的整个过程,确实暴露出了一些问题,一开始总是认为控制仪表的问题,其实应该将维修思路拓展一下,不能局限于一个圈子,另外,应该确定故障的大体方向,即从总的方面确定故障到底出现在那一部分,是控制部分、测量部分、气路部分还是操作部分,所以,应锁定范围,这是第一,其次,才是具体的检测和诊断,针对本次维修,和操作有关、和测温部件的质量也有关系,另外,由于气路部分的胶管受到化学药品的腐蚀会发生老化变硬,因此,应该经常对其进行检查和更换。特别是测温部件应有严格的入库产品的质量检定手段和程序,对于操作也严格按照试验方法或培训来进行,只有以上几点都达到要求和标准,仪器才能正常工作,数据才准确、精度才能上去。 综上,操作、日常维护、维修、入库部件质量的把关、仪器的定期检定都是影响试验数据超差的原因。建立一套完整的管理体系对于避免该类事件的发生具有重要意义,另外,提高个人的维修水平也是很重要的一环。

  • 【分享】轻型混合动力电动汽车 污染物排放 测量方法

    【分享】轻型混合动力电动汽车 污染物排放 测量方法

    前 言  本标准参照联合国欧洲经济委员会(ECE)2002年11月13日提出的"ECE R83法规05系列的修正草案的建议"("PROPOSAL FOR DRAFT AMENDMENTS TO THE 05 SERIES OF AMEND-MENTS TO REGULATION NO.83")中关于混合动力车辆的排放的部分技术内容;本测量方法是对GBl8352.2-2001《轻型汽车污染物排放限值及测量方法(Ⅱ)》的补充。  本标准附录A、附录B为规范性附录。  本标准附录C为资料性附录。  本标准为第一次制定。  本标准由全国汽车标准化技术委员会提出。  本标准由全国汽车标准化技术委员会归口。  本标准起草单位:中国汽车技术研究中心、天津清源电动车辆有限公司。  本标准主要起草人:陆红雨、高海洋、钱国刚、赵春明。轻型混合动力电动汽车 污染物排放 测量方法Measurement methods for emissions from light-duty hybird electric veicles GB/T 19755-2005 1 范围  本标准规定了装用点燃式发动机轻型混合动力电动汽车冷起动后排气污染物排放、曲轴箱气体排放、蒸发排放的测量方法,以及装用压燃式发动机的轻型混合动力电动汽车冷起动后排气污染物排放的测量方法。  本标准适用于装用点燃式发动机或压燃式发动机最大设计车速大于或等于50 km/h的轻型混合动力电动汽车。2 规范性引用文件  下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。  GBl8352.2-2001 轻型汽车污染物排放限值及测量方法(Ⅱ)  GBl9753-2005 轻型混合动力电动汽车 能量消耗量 试验方法  GB/T19596-2004 电动汽车术语3 术语和定义  GB 18352.2-2001、GB/T 19596-2004的确立的术语和定义适用于本标准。4 混合动力电动汽车分类  本标准中按照储能装置是否需要外接充电、车辆是否具有行驶模式手动选择功能,如表1所示将混合动力电动汽车分为4类。[img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191652_628688_1615922_3.jpg[/img]5 要求和试验  5.1 一般要求  5.1.1 对于容易影响车辆排气管排放和蒸发排放性能的部件的设计、制造和安装,必须保证车辆在正常使用过程中,在部件受到振动的情况下,仍能达到GBl8352.2-2001的要求。如果车辆的催化转化器系统中使用了氧传感器,必须采取相应措施以保证车辆在一定速度和加速度时,理论空燃比(λ)仍能有效控制。  5.1.2 以汽油发动机为动力的车辆,必须设计为适合使用GB 17930-1999所规定的市售无铅汽油。  5.2 型式认证试验项目  型式认证申报材料格式见附录A,试验结果报告格式见附录B。不同类型汽车在型式认证时要求进行的试验项目见表2。[img]http://ng1.17img.cn/bbsfiles/images/2017/10/2010110114448_01_1615922_3.jpg[/img]5.3 试验描述  5.3.1 I型试验(冷起动后排气污染物排放试验)  5.3.1.1 可外接充电、无行驶模式手动选择功能的混合动力电动车辆  5.3.1.1.1 试验应分别在以下条件下进行:  5.3.1.1.1.1 条件A:储能装置处于最高荷电状态;  5.3.1.1.1.2 条件B:储能装置处于最低荷电状态。  I型试验中储能装置的荷电状态的示意图参见附录C。  5.3.1.1.2 条件A  5.3.1.1.2.1 储能装置通过车辆行驶进行放电。车辆按下述要求在试验跑道或底盘测功机上行驶,直到满足放电终止条件:  ___________________车速稳定在50km/h,直到混合动力汽车的发动机起动;  ___________________如果不起动发动机车辆不能达到50 km/h稳定车速,车速应降低到车辆能够稳定行驶,而发动机在技术服务机构和制造商之间确定的时间/距离不起动;  ___________________按制造厂建议的行驶工况或方法运行。  发动机应该在自动起动10 s内停机。  5.3.1.1.2.2 车辆预处理  5.3.1.1.2.2.1 对于装用压燃式发动机的混合动力电动汽车应采用GB 18352.2-2001中附录C的附件CA规定的2部(市郊)循环,按照下面5.3.1.1.2.5.3条的要求连续运转3个循环进行预处理。  5.3.1.1.2.2.2 装用点燃式发动机的混合动力电动汽车应按照下面5.3.1.1.2.5.3的要求,按照GB 18352.2-2001中附录C的附件CA的规定运行1个1部(市区)和2个2部(市郊)循环进行预处理。  5.3.1.1.2.3 预处理结束后,在试验前,车辆置于温度保持为20℃~30℃的室内进行处理。此处理期间至少为6 h,直到发动机的润滑油和冷却液温度达到室温的±2℃范围内,并且储能装置按照下面5.3.1.1.2.4的规定达到最高荷电状态。  5.3.1.1.2.4 浸车期间,储能装置应该按下述要求进行充电:  5.3.1.1.2.4.1 充电要求   a) 如果安装了车载充电器,使用车载充电器充电;  b) 否则按制造厂的建议使用外部充电器,采用常规的持续充电程序。  ___________________充电过程不包括所有自动或人工起动的特殊充电程序,例如均衡充电或维修充电。  ___________________制造厂应确定试验期间,没有进行特殊充电。  5.3.1.1.2.4.2 充电结束条件  满足车辆制造厂规定的充满截止条件时,则结束储能装置的外接充电。  若仪器一直提示储能装置尚未充满,则最长充电时间为:  tmax(h)=3×储能装置标称储能量(Wh)/电网供电功率(W)  5.3.1.1.2.5 试验程序  5.3.1.1.2.5.1 车辆正常启动,按照GB 18352.2-2001附录C的规定开始试验。  5.3.1.1.2.5.2 取样按照GB 18352.2-2001附录C的规定进行。  5.3.1.1.2.5.3 车辆按照GB 18352.2-2001附录C的规定运行,如果制造厂对挡位变换有特殊的文件规定,GB 18352.2-2001附录C中附件CA对这些车的换挡点的要求不适用。可按照GB 18352.2-2001附录C中C2.3的规定,并结合制造厂的产品使用手册和变速箱操作说明进行操作。  5.3.1.1.2.5.4 排气污染物按照GB 18352.2-2001附录C规定进行分析。  5.3.1.1.2.6 计算条件A时各污染物的排放量(M1。  5.3.1.1.3 条件B  5.3.1.1.3.1 车辆预处理  5.3.1.1.3.1.1 对于装用压燃式发动机的混合动力电动汽车应采用GB 18352.2-2001中附录C的附件CA规定的2部循环,按照下面5.3.1.1.3.4.3的要求连续运转3个循环进行预处理。  5.3.1.1.3.1.2 装点燃式发动机的混合动力电动汽车应按照下面5.3.1.1.3.4.3的要求,按照  GB 18352.2-2001中附录C的附件CA的规定运行1个1部和2个2部循环进行预处理。  5.3.1.1.3.2 按照5.3.1.1.2.1的规定对车辆储能装置进行放电。  5.3.1.1.3.3 预处理结束后,在试验前,车辆置于温度保持为20℃-30℃的室内进行处理。此处理期间至少为6 h,直到发动机的润滑油和冷却液温度达到室温的±2℃范围内。  5.3.1.1.3.4 试验程序  5.3.1.1.3.4.1 车辆正常启动,按照GB 18352.2-2001附录C的规定开始试验。  5.3.1.1.3.4.2 取样按照GB 18352.2-2001附录C的规定进行。  5.3.1.1.3.4.3 车辆按照GB 18352.2-2001附录C的规定运行,如果制造厂对挡位变换有特殊的文件规定,按照5.3.1.1.2.5.3的规定进行。  5.3.1.1.3.4.4 排气污染物按照GB 18352.2-2001附录C规定进行分析。  5.3.1.1.3.5 计算条件B时各污染物的排放量(M2i)。5.3.1.1.4 试验结果[img]http://ng1.17img.cn/bbsfiles/images/2017/10/2010110114727_01_1615922_3.jpg[/img]5.3.1.2 可外接充电、有行驶模式手动选择功能的混合动力电动汽车  5.3.1.2.1 试验应分别在以下条件进行:  5.3.1.2.1.1 条件A:储能装置处于最高荷电状态;  5.3.1.2.1.2 条件B:储能装置处于最低荷电状态。  5.3.1.2.1.3 按表3确定行驶模式[img]http://ng1.17img.cn/bbsfiles/images/2017/10/2010110114859_01_1615922_3.jpg[/img]5.3.1.2.2 条件A  5.3.1.2.2.1 如果车辆的纯电动续驶里程比一个完整试验循环长,在制造厂要求下,I型试验可以采用纯电动模式进行。在此情况下,按照5. 3.1.2.2.3.1或5.3.1.2.2.3.2规定进行的车辆预处理可以省略。  5.3.1.2.2.2 如果车辆有纯电动模式选择功能,行驶模式开关置于纯电动位置,车辆以纯电动30分钟最高车速的70%±5%的稳定车速在试验跑道上行驶或在底盘测功机上运行,对储能装置放电。满足下列条件之一;放电过程停止:  ___________________车辆示能以30分钟最高车速的65%行驶时;  ___________________由标准车载仪器指示驾驶员停车;  ___________________行驶100 km后。  如果车辆没有纯电动模式选择功能,车辆按下述要求在试验跑道或底盘测功机上行驶,直到满足放电终止条件:  ___________________车速稳定在50km/h,直到混合动力电动汽车的发动机起动;  ___________________如果不起动发动机车辆不能达到50km/h稳定车速,应降低到保证车辆能够稳定行驶的合适车速,并且在规定的时间/距离(检测机构和制造厂之间确定)内发动机不起动;  ___________________按照制造厂建议。  发动机应在自动起动10 s内停机。  5.3.1.2.2.3 车辆预处理  5.3.1.2.2.3.1 对于装用压燃式发动机的混合动力电动汽车应采用GB 18352.2二2001中附录C的附件CA规定的2部循环,按照下面5.3.1.2.2.6.3的要求连续运转3个循环进行预处理。  5.3.1.2.2.3.2 装点燃式发动机的混合动力电动汽车应按照下面5.3.1.2.2.6.3的要求,按照GB 18352.2-2001中附录C的附件CA的规定运行1个1部和2个2部循环进行预处理。  5.3.1.2.2.4 预处理结束后,在试验前,车辆置于温度保持为20℃-30℃的室内进行处理。此处理期间至少为6 h,直到发动机的润滑油和冷却液温度达到室温的±2℃范围内。  5.3.1.2.2.5 按照5.3.1.1.2.4的规定对储能装置进行充电。  5.3.1.2.2.6 试验程序  5.3.1.2.2.6.1 车辆正常启动。按照GBl8352.2-2001附录C的规定开始试验。  5.3.1.2.2.6.2 取样按照GBl8352.2-2001附录C的规定进行。  5.3.1.2.2.6.3 车辆按照GBl8352.2-2001附录C的规定运行,如果制造厂对档位变换有特殊的文件规定,按照5.3.1.1. 2.5.3的规定进行。  5.3.1.2.2.6.4 排气污染物按照GBl8352.2-2001附录C规定进行分析。  5.3.1.2.2.7 计算条件A时各污染物的排放量(Mli)。  5.3.1.2.3 条件B  5.3.1.2.3.1 车辆预处理  5.3.1.2.3.1.1 对于装用压燃式发动机的混合动力电动汽车应采用GBl8352.2中附录C的附件CA规定的2部循环,按照下面5.3.1.2.3.4. 3的要求连续运转3个循环进行预处理。  5.3.1.2.3.1.2 装点燃式发动机的混合动力电动汽车应按照下面5.3.1.2.3.4.3的要求,按照GBl8352.2中附录C的附件CA的规定运行1个1部和2个2部循环进行预处理。  5.3. 1.2.3.2 车辆的储能装置应该按照5.3.1.2. 2.2的规定进行放电。  5.3.1.2.3.3 预处理结束后,在试验前,车辆置于温度保持为20℃~30℃的室内进行处理。此处理期间至少为6 h,直到发动机的润滑油和冷却液温度达到室温的±2℃范围内。  5.3.1.2.3.4 试验程序  5.3.1.2.3.4.1 车辆正常启动。按照GBl8352.2-2001附录C的规定开始试验。  5.3.1.2.3. 4.2 取样按照GBl8352.2-2001附录C的规定进行。  5.3.1.2.3.4.3 车辆按照GBl8352.2-200l附录C的规定运行,如果制造厂对挡位变换有特殊的文件规定,按照5.3.1. 1.2.5.3的规定进行。  5.3.1.2.3.4.4 排气污染物按照GBl8352.2-200l附录C规定进行分析。  5.3.1.2.3.5 计算条件B时各污染物的排放量(M2i)。5.3.1.2.4 试验结果[img]http://ng1.17img.cn/bbsfiles/images/2017/10/2010110115047_01_1615922_3.jpg[/img]5.3.1. 3 不可外接充电、无行驶模式手动选择的混合动力电动汽车  5.3.1.3.1 按照GBl8352.2-2001附录C进行试验。  5. 3.1.3.2 车辆预处理时,应至少连续完成2个完整的GBl8352.2中附录C的附件CA规定的运行循环(1个1部和1个2部)。  5.3.1.3.3 车辆按照GB 18352.2-2001附录C的规定运行,如果制造厂对挡位变换有特殊的文件规定,按照5.3.1.1.2.5.3的规定进行。  5.3.1.4 不可外接充电、有行驶模式手动选择的混合动力电动汽车  5.3.1.4.1 按照GB 18352.2-2001附录C在混合动力模式下进行预处理和试验。如果具有几种可用混合动力模式,试验应该在打开点火开关后自动设定的模式(正常模式)下进行。以制造厂提供的资料为基础,技术服务机构应确认所有混合动力模式的测试结果均满足标准限值要求。  5.3.1.4.2 车辆预处理时,应至少连续运行2个完整的GB 18352.2中附录C的附件CA规定的运转循环(1个1部和1个2部)。  5.3.1.4.3 车辆按照GBl8352.2-2001附录C的规定运行,如果制造厂对挡位变换有特殊的文件规定,按照5。3.1.1.2.5.3的规定进行。  5.3.2 Ⅲ型试验(曲轴箱污染物排放试验)  能够按照下述方法进行试验的混合动力电动车辆需进行此项试验,试验方法如下:  5.3.2.1 按照GBl8352.2-2001附录D规定,使用发动机模式进行试验。制造厂应提供可以进行此项试验的工作模式。  5.3.2.2 试验应仅对GBl8352.2-2001附录D中D3.2规定的工况1和2进行试验。如果不能按工况2进行试验,应选择另一稳定车速(发动机驱动)进行试验。  5.3.3 Ⅳ型试验(蒸发污染物排放试验)  5.3.3.1 试验应按照GB 18352.2-2001附录E进行。  5.3.3.2 开始试验准备(GBl8352.2-2001附录E的E5.1)前,车辆应按照下述规定进行预处理:  5.3.3.2.1 可外接充电的混合动力电动汽车  5.3.3.2.1.1 可外接充电、无行驶模式手动选择模式的混合动力电动汽车的放电按照5.3.1.1.2.1进行。  5.3.3.2.1.2 可外接充电、有行驶模式手动选择模式混合动力电动汽车的放电按照5.3.1.2.2.2进行。  5.3.3.2.2 不可外接充电的混合动力电动汽车  5.3.3.2.2.1 不可外接充电、无行驶模式手动选择模式的混合动力电动汽车:应至少进行两个连续的完整的GBl8352.2-2001中附录C的附件CA规定的运行循环(1个1部和1个2部)进行预处理。  5.3.3.2.2.2 不可外接充电、有行驶模式手动选择模式混合动力电动汽车:车辆在混合动力模式下应至少进行两个连续的完整的GB 18352.2中附录C的附件CA规定的运行循环(1个l部和1个2部)进行预处理。如果具有几种可用混合模式,试验应该在打开点火开关后自动设定的模式(正常模式)下进行。

  • 【求助】混合气检测

    求Ar+CO2,Ar+H2,N2+H2三种混合气测定所需购买设备色谱仪,检测器,色谱柱,载气,载气预处理装置,及各个混合气的色谱条件(焊接气用混合气,常量分析,Ar:CO2=80%:20%)

  • TJ-2011高通量混合研磨仪适用于水质中叶绿素a的测定

    根据《中华人民共和做国家环境保护标准》对水质中叶绿色a的测定,采用高通量研磨机进行研磨,可达到最精细的研磨。研磨特点:[b][color=red]直接用离心管研磨,少一次样品转移,少一次损失。[/color][color=red][b][color=red]实验步骤:[/color][/b]1. 将滤膜放置在连有真空泵的玻璃抽滤器上,根据水体营养状态,准确量取定量体积的混匀水样进行抽滤,在水样刚刚完全通过过滤模时进行抽滤,用镊子将滤膜取出,将有样品的一面对折,用滤纸吸干滤膜水分。2. 将抽滤后的样品滤膜放置于高通量适配器中的离心管内,加入0.01g~0.02g碳酸镁及丙酮溶液,充分研磨至糊状,补加3~4ml丙酮溶液继续研磨,并重复1~2次,保证研磨时间5-10min。[/color][color=red]3. 将离心管中的研磨提取液充分振荡混匀后,放置于4[color=#333333]℃[/color]暗处浸泡提取2h以上,不超过24h。在浸泡过程中要颠倒摇匀2~3次。4. 将离心管放入离心机中,以相对离心力1000*g离心10min(转速3000-4000r/min)。取上清液用0.45um有机相针式滤器过滤,收集滤液待测。[/color][color=red][b]设备介绍 分体式仪器优点:[/b]机械部分与电子控制部分分开,航空插头设计,延长电子元器件寿命,减少损坏;简单,实用。[b]——[/b]这也是一体机致命缺点。[b]一体式仪器优点:[/b]结构紧凑,美观简洁,占地小,噪音低[b]原理:[/b]高通量混合研磨仪具有对称的一对高速大振幅的摇臂,通过玛瑙小球或不锈钢小珠等在样品管内来回不规则撞击及摩擦,在几秒到几分钟内轻松实现样品的研磨、粉碎、混合及细胞破壁。精细的研磨,可以达到5微米。[b]5. 配置:[/b]材质:PTFE、1010尼龙规格:6孔10ml、12孔5ml用途:将4.1中滤膜吸干水的样品粉碎。[b]总结:[/b]高通量混合研磨仪用于***标准实验时,研磨2min和3min,均可成功将物料打成浆糊状,达到测定水中叶绿素的研磨标准。其粉碎粒径测定如下(所用仪器为丹东百特公司(BT-9300S,BT-800):[/color][color=red][color=#B10D14]TJ-2011[/color][color=#B10D14]高通量混合研磨仪技术指标[/color][/color][color=red][color=#B10D14]应用:粉碎、混合、均相化以及细胞破碎、冷冻研磨[/color][/color][color=red][color=#B10D14]应用领域:农业、生物、化学、塑料、建筑材料、电子、环境、食物、玻璃、陶瓷、医药、矿物冶金[/color][/color][color=red][color=#B10D14]样品特征:硬的、中硬性、软性的、脆性的、弹性的、含纤维的[/color][/color][color=red][color=#B10D14]粉碎原理:撞击力、摩擦力[/color][/color][color=red][color=#B10D14]最大进样尺寸:≤8mm[/color][/color][color=red][color=#B10D14]最终出料粒度:~3μm(不同材料研磨细度有差异)[/color][/color][color=red][color=#B10D14]振动频率设置:10-1500次/分钟[/color][/color][color=red][color=#B10D14]典型粉碎时间:2min[/color][/color][color=red][color=#B10D14]干磨:是[/color][/color][color=red][color=#B10D14]湿磨:是[/color][/color][color=red][color=#B10D14]低温研磨:是[/color][/color][color=red][color=#B10D14]带自动中心定位的紧固装置:是[/color][/color][color=red][color=#B10D14]研磨平台数:2[/color][/color][color=red][color=#B10D14]研磨罐种类:旋盖型研磨罐[/color][/color][color=red][color=#B10D14]研磨套件材料:硬质钢、特氟龙尼龙 0.5/1.5mL/2mL/5ml/10ml(离心管/PCR管)[/color][/color][color=red][color=#B10D14]研磨适配器:24孔板×2 96孔板×2[/color][/color][color=red][color=#B10D14]研磨套件尺寸:25mL/50mL(研磨罐)[/color][/color][color=red][color=#B10D14]研磨球材质:玛瑙、不锈钢、氧化锆、碳化钨、陶瓷[/color][/color][color=red][color=#B10D14]粉碎时间设定:数字显示 1秒-99分59秒[/color][/color][color=red][color=#B10D14]驱动:无刷电机[/color][/color][color=red][color=#B10D14]功率:150W[/color][/color][color=red][color=#B10D14]机体尺寸(宽*高*纵深):300*180*420[/color][/color][/b]

  • 棉与纤维素纤维混合物含量测定中d值的确定

    98%)和68 g无水甲酸加水至100 g制得(此试剂有害,使用时宜采取妥善的防护措施)。稀氨水溶液:取20 mL浓氨水(密度为0.880)g/mL,用水稀释至1L。2.2 仪器具塞三角烧瓶:容量不小于200mL,具玻璃塞;恒温水浴锅:保持三角烧瓶温度为(70±2)℃。3取样和样品预处理3.1取样 按GB/T10629规定取实验室样品,每个试样至少1 g。样品若为散纤维就裁成约5 cm长的小段备用;若为织物,则取1 g左右的小方块,将其拆成纱线备用。3.2预处理将样品放在索氏萃取器内,用石油醚萃取1 h,每小时至少循环6次。待样品中的石油醚挥发后,把样品浸入冷水中浸泡1 h,再在(65±5)℃的水中浸泡1 h.两种情况下浴比均为1:100,不时地搅拌溶液,挤干、抽滤或离心脱水,以除去样品中的多余水分,然后自然干燥样品。如果用石油醚和水不能萃取掉非纤维物质,则需用适当方法去除,而且要求纤维组分无实质性改变。4试验步骤以粘胶为例,将准备好的棉和粘胶混纺样品迅速放入盛有已预热至(70±2)℃的甲酸/氯化锌溶液的具塞三角烧瓶中,每克试样加100 mL甲酸/氯化锌溶液,盖紧瓶塞,每隔5 min摇动烧瓶一次,在(70±2)℃下保温。同时放入与织物所用纱线相似但颜色不同的纯粘胶纱线一小缕,开始计时。仔细观察带入的纯粘胶的变化情况,直到看不见为止,此时粘胶已经溶解彻底。然后将剩余样品洗涤,再用稀氨水中和,烘干,称取剩余部分纤维的重量,并用显微镜观察粘胶是否溶净,若溶净了,就按GB/T2910.1规定的方法计算剩余物占全部的重量百分比。 带入相似的粘胶样品是为了测定粘胶的溶解时间。经多次试验,只要带入的粘胶溶解彻底,试验样品的粘胶就溶解彻底了。因为不同的粘胶纤维在(70±2)℃的甲酸/氯化锌溶液中的溶解性能不同,表1列出了测得的不同形态粘胶和棉纤维的溶解时间和相应的棉的修正系数。表1不同形态粘胶和棉的溶解时间和相应的棉纤维d值编号棉与粘胶混合物类型溶解时间/min棉的修正系数d1#经过染色和漂白的粘胶和棉以散纤维状态混合做成织物150.9812#粘胶散纤(即不加捻度)与棉混纺织物,如窗帘、台布、口布、装饰布类。150.9813#毛巾类200.9814#衬衣类、针织衣类和床单类201.035#做填充物用的散原棉和粘胶散纤的混合物201.006#裤子类301.05这从表1中可以看出,6种不同类织物中的粘胶和棉纤维的状态各不相同,导致粘胶的溶解时间和棉纤维在甲酸/氯化锌中所受的损伤也不相同,对应的棉纤维的修正系数也不同。所以,试验时一定要区别对待。5 棉纤维修正系数的测定将同形态的棉纤维分别称取10份,每份约1克,放入已预热好的100 mL甲酸/氯化锌溶液中,同时带入类似形态的粘胶一小缕,记录溶解时间(即带入的粘胶彻底溶解后)。将剩余物洗净、烘干、称重,按照公式 计算d值。其中,m0—预处理前棉纤维干重,g;m1—溶解后的棉纤维干重,g。由于1#、2#粘胶都是散纤维状态,在甲酸/氯化锌溶液中溶解速度特别快,15 min即全部溶解。棉纤维在甲酸/氯化锌溶液中不但没损伤,事实上有些膨胀,试验数据见表2。表2 1#和2#试样棉纤维的d值项目12345678910溶解前棉纤维质量0.98130.97150.98120.98360.97280.97400.97500.99561.00210.9924[t

  • 混合物质的DSC报告解读

    混合物质的DSC报告解读

    热分析是在程序控制温度下,测量物质的物理性质与温度之间关系的一类技术,主要用于研究物理变化(晶型转变、熔融、升华和吸附等)和化学变化(脱水、分解、氧化和还原等)。当物质的物理性质发生变化(例如结晶、熔融或晶型转变等),或者起化学变化时,往往伴随着热力学性质如热焓、比热、导热系数的变化。DSC就是通过测定其热力学性质的变化来表征物理或化学变化过程的。它是在程序控制温度条件下,测量输入给样品与参比物的功率差与温度关系的一种热分析方法。实验过程中记录的信息是保持样品和参比样的温度相同时,两者的热量之差,因此DSC得到的曲线横轴为温度(时间),纵轴为热量差。最近公司的产品因为一直受到热变形的影响,为了了解原因,所以想了解下材料的热性能。产品的材料主要是由2种已知的物质(A+B)合成,但是不知道这两物质是使用化学还是物理原理合成。刚好最近测试过这两种物质的DSC ,想通过解读这两种物质的DSC结果是否可以得出一些结论。[img=,690,571]https://ng1.17img.cn/bbsfiles/images/2023/10/202310311704446568_157_2942222_3.jpg!w690x571.jpg[/img][img=,690,323]https://ng1.17img.cn/bbsfiles/images/2023/10/202310311704587988_8595_2942222_3.jpg!w690x323.jpg[/img][align=left]通过3种物质的DSC结果对比,发现混合物除了出现2种物质的结晶峰和熔化峰之外,还有其他的峰。这说明了这个混合物是使用物理混合的,比如某种胶的黏结等。后续需继续使用其他方法去确认。[/align]

  • 混合物的测定

    请教大家用UV分光光度法 -----混合物的测定具体是这样的:分别先测高锰酸钾的最大吸收波长,再测重铬酸钾的最大吸收波长,混合物是二者的等体积混合样品,要求根据未知液的吸收曲线测混合物中重铬酸根和高锰酸根的浓度.请指教,谢谢!

  • 实验室涡旋混合器在使用过程中的一点感想

    实验室涡旋混合器在使用过程中的一点感想

    [align=center][font='宋体'][size=16px]实验室涡旋混合器在使用过程中的一点感想[/size][/font][/align][font=&][size=16px] 旋涡混合器具有结构简单可靠,仪器[/size][/font][font=&][size=16px]的[/size][/font][font=&][size=16px]体积小,耗电[/size][/font][font=&][size=16px]小[/size][/font][font=&][size=16px],噪音低等特点,广泛应用于生物化学,基因工程,医学[/size][/font][font=&][size=16px]和食品[/size][/font][font=&][size=16px]等实验[/size][/font][font=&][size=16px]室[/size][/font][font=&][size=16px]。对液体、液固、固固[/size][/font][font=&][size=16px]([/size][/font][font=&][size=16px]粉末[/size][/font][font=&][size=16px])[/size][/font][font=&][size=16px]混合,它[/size][/font][font=&][size=16px]能够将实验员[/size][/font][font=&][size=16px]所需混合的任何液体、[/size][/font][font=&][size=16px]固体[/size][/font][font=&][size=16px]粉末以高速漩涡形式快速混合,混合速度快、均匀、彻底。[/size][/font][font=&][size=16px]使实验室前处理不可或缺的仪器设备。[/size][/font][font=&][size=16px]所有[/size][/font][font=&][size=16px]的[/size][/font][font=&][size=16px]涡旋[/size][/font][font=&][size=16px]混合器机体均采用增强型工程塑料成型技术,机体无油漆喷涂,耐酸碱,耐碰撞[/size][/font][font=&][size=16px]。[/size][/font][font=&][size=16px]工作台面全部为耐磨天然橡胶,改变原海绵台面易破损的缺点,[/size][/font][font=&][size=16px]旋涡混合器[/size][/font][font=&][size=16px]也[/size][/font][font=&][size=16px]集成了连续、调速、点振、平板型、碗型等所有功能。[/size][/font][font=&][size=16px] 旋涡混合器[/size][/font][font=&][size=16px]的一般使用步骤:[/size][/font][font=&][size=16px]1.[/size][/font][font=&][size=16px]旋涡混合器[/size][/font][font=&][size=16px]应放在较平滑的地方,最好在玻璃台面上。轻轻按下[/size][/font][font=&][size=16px]旋涡混合器[/size][/font][font=&][size=16px],使[/size][/font][font=&][size=16px]旋涡混合器[/size][/font][font=&][size=16px]底部的橡胶脚与台面相吸。[/size][/font][font=&][size=16px]2.[/size][/font][font=&][size=16px]电源插头插入[/size][/font][font=&][size=16px]220V[/size][/font][font=&][size=16px]交流电源,开启电源开关,则电机就转动。用手拿住试管或三角烧瓶放在海绵振动面上并略施加压力,在试管内的溶液就会产生旋涡,而三角烧瓶中则起高低不等的水泡,达到混合的目的。[/size][/font][font=&][size=16px]注意:[/size][/font][font=&][size=16px]容器中被混[/size][/font][font=&][size=16px]合[/size][/font][font=&][size=16px]的[/size][/font][font=&][size=16px]物质的[/size][/font][font=&][size=16px]体积,一般以不超过容器容积的[/size][/font][font=&][size=16px]1/3[/size][/font][font=&][size=16px]为佳[/size][/font][font=&][size=16px];如果被混合的物质是液体,而且[/size][/font][font=&][size=16px]超过容器容积的[/size][/font][font=&][size=16px]1/3[/size][/font][font=&][size=16px]了,它就会旋转起来从容器口部的缝隙渗漏出来[/size][/font][font=&][size=16px]。[/size][/font][font=&][size=16px]3.[/size][/font][font=&][size=16px]如果开启[/size][/font][font=&][size=16px]旋涡混合器[/size][/font][font=&][size=16px]电源开关后,[/size][/font][font=&][size=16px]其[/size][/font][font=&][size=16px]电机不转动,应检查插头接触是否良好,保险丝是否烧断[/size][/font][font=&][size=16px],注意这些操作应该在[/size][/font][font=&][size=16px]断电[/size][/font][font=&][size=16px]后[/size][/font][font=&][size=16px]进行。[/size][/font][font=&][size=16px]4.[/size][/font][font=&][size=16px]旋涡混合器[/size][/font][font=&]要注意妥善保管,应放在干燥、通风、无腐蚀性气体的地方。使用中切勿使液体流入机芯,以免损坏器件。[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2022/10/202210081131250661_493_2911392_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2022/10/202210081131253268_121_2911392_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2022/10/202210081131263246_5187_2911392_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2022/10/202210081131264059_2505_2911392_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2022/10/202210081131252221_328_2911392_3.jpg!w690x920.jpg[/img][font='arial'][size=16px] 我在[/size][/font][font='arial'][size=16px]使用过程中[/size][/font][font='arial'][size=16px],发现[/size][/font][font=&][size=16px]旋涡混合器[/size][/font][font='arial'][size=16px]存在[/size][/font][font='arial'][size=16px]如下几个[/size][/font][font='arial'][size=16px]问题[/size][/font][font='arial'][size=16px]:[/size][/font][font='arial'][size=16px] 1.[/size][/font][font='arial'][size=16px]以前[/size][/font][font=&][size=16px]旋涡混合器[/size][/font][font='arial'][size=16px]的[/size][/font][font=&][size=16px]海绵台面[/size][/font][font=&][size=16px]容易磨破,掉渣;现在的[/size][/font][font=&][size=16px]旋涡混合器[/size][/font][font=&][size=16px]的耐磨天然橡胶台面不容易破损,不掉渣,但是这个台面太硬了,以后[/size][/font][font=&][size=16px]升级换代时台面换成软点天然橡胶会更好。[img=,690,516]https://ng1.17img.cn/bbsfiles/images/2022/10/202210081133329662_3995_2911392_3.jpg!w690x516.jpg[/img][/size][/font][/font][align=left][font='宋体'][size=16px][color=#333333] 2.[/color][/size][/font][font='宋体'][size=16px]旋涡混合器[/size][/font][font='宋体'][size=16px]使用久了以后,[/size][/font][font='宋体'][size=16px]旋涡混合器底部的橡胶脚与台面[/size][/font][font='宋体'][size=16px]不能[/size][/font][font='宋体'][size=16px]相吸[/size][/font][font='宋体'][size=16px],在使用过程中就会自动移动,这时就需要一只手去摁着它,不让其到处移动。这无形之中就增加了工作时间,降低了工作效率。[/size][/font][font='宋体'][size=16px]旋涡混合器[/size][/font][font='宋体'][size=16px]在使用过程中[/size][/font][font='宋体'][size=16px]不能固定住,到处移动,其噪音也很大。[/size][/font][font='arial'][size=16px][color=#333333] 以上就是我在使用实验室[/color][/size][/font][size=16px]旋涡混合器[/size][font='arial'][size=16px][color=#333333]过程中的一点感想,生产厂家在以后的[/color][/size][/font][font='arial'][size=16px][color=#333333]产品更新换代[/color][/size][/font][font='arial'][size=16px][color=#333333]过程中可以考虑下[/color][/size][/font][font='arial'][size=16px][color=#333333]我提及到的以上几个[/color][/size][/font][font='arial'][size=16px][color=#333333]问题,[/color][/size][/font][font='arial'][size=16px][color=#333333]真正做到使[/color][/size][/font][size=16px]旋涡混合器[/size][size=16px]能够提高我们的工作效率[/size][font='arial'][size=16px][color=#333333],[/color][/size][/font][size=16px]旋涡混合器[/size][size=16px]也赢得自己的市场份额。[/size][/align][size=16px][/size]

  • 【仪器心得】实验室涡旋混合器使用过程中的一点感想

    【仪器心得】实验室涡旋混合器使用过程中的一点感想

    [align=left][font='宋体'][size=16px][color=#000000] 【仪器心得】实验室涡旋混合器使用过程中的一点感想[/color][/size][/font][/align][size=16px] 旋涡混合器具有结构简单可靠,仪器[/size][size=16px]的[/size][size=16px]体积小,耗电[/size][size=16px]小[/size][size=16px],噪音低等特点,广泛应用于生物化学,基因工程,医学[/size][size=16px]和食品[/size][size=16px]等实验[/size][size=16px]室[/size][size=16px]。对液体、液固、固固[/size][size=16px]([/size][size=16px]粉末[/size][size=16px])[/size][size=16px]混合,它[/size][size=16px]能够将实验员[/size][size=16px]所需混合的任何液体、[/size][size=16px]固体[/size][size=16px]粉末以高速漩涡形式快速混合,混合速度快、均匀、彻底。[/size][size=16px]使实验室前处理不可或缺的仪器设备。[/size][size=16px]所有[/size][size=16px]的[/size][size=16px]涡旋[/size][size=16px]混合器机体均采用增强型工程塑料成型技术,机体无油漆喷涂,耐酸碱,耐碰撞[/size][size=16px]。[/size][size=16px]工作台面全部为耐磨天然橡胶,改变原海绵台面易破损的缺点,[/size][size=16px]旋涡混合器[/size][size=16px]也[/size][size=16px]集成了连续、调速、点振、平板型、碗型等所有功能。[/size][size=16px] 旋涡混合器[/size][size=16px]的一般使用步骤:[/size][size=16px]1.[/size][size=16px]旋涡混合器[/size][size=16px]应放在较平滑的地方,最好在玻璃台面上。轻轻按下[/size][size=16px]旋涡混合器[/size][size=16px],使[/size][size=16px]旋涡混合器[/size][size=16px]底部的橡胶脚与台面相吸。[/size][size=16px]2.[/size][size=16px]电源插头插入[/size][size=16px]220V[/size][size=16px]交流电源,开启电源开关,则电机就转动。用手拿住试管或三角烧瓶放在海绵振动面上并略施加压力,在试管内的溶液就会产生旋涡,而三角烧瓶中则起高低不等的水泡,达到混合的目的。[/size][size=16px]注意:[/size][size=16px]容器中被混[/size][size=16px]合[/size][size=16px]的[/size][size=16px]物质的[/size][size=16px]体积,一般以不超过容器容积的[/size][size=16px]1/3[/size][size=16px]为佳[/size][size=16px];如果被混合的物质是液体,而且[/size][size=16px]超过容器容积的[/size][size=16px]1/3[/size][size=16px]了,它就会旋转起来从容器口部的缝隙渗漏出来[/size][size=16px]。[/size][size=16px]3.[/size][size=16px]如果开启[/size][size=16px]旋涡混合器[/size][size=16px]电源开关后,[/size][size=16px]其[/size][size=16px]电机不转动,应检查插头接触是否良好,保险丝是否烧断[/size][size=16px],注意这些操作应该在[/size][size=16px]断电[/size][size=16px]后[/size][size=16px]进行。[/size][size=16px]4.[/size][size=16px]旋涡混合器[/size][size=16px]要注意妥善保管,应放在干燥、通风、无腐蚀性气体的地方。使用中切勿使液体流入机芯,以免损坏器件。[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2022/03/202203311716303127_3501_2911392_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2022/03/202203311716308459_9218_2911392_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2022/03/202203311716311528_9920_2911392_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2022/03/202203311716310239_5858_2911392_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2022/03/202203311716302836_3244_2911392_3.jpg!w690x920.jpg[/img][/size][font='arial'][size=16px][color=#333333]我在[/color][/size][/font][font='arial'][size=16px][color=#333333]使用过程中[/color][/size][/font][font='arial'][size=16px][color=#333333],发现[/color][/size][/font][size=16px]旋涡混合器[/size][font='arial'][size=16px][color=#333333]存在[/color][/size][/font][font='arial'][size=16px][color=#333333]如下几个[/color][/size][/font][font='arial'][size=16px][color=#333333]问题[/color][/size][/font][font='arial'][size=16px][color=#333333]:[/color][/size][/font][font='arial'][size=16px][color=#333333]1.[/color][/size][/font][font='arial'][size=16px][color=#333333]以前[/color][/size][/font][size=16px]旋涡混合器[/size][font='arial'][size=16px][color=#333333]的[/color][/size][/font][size=16px]海绵台面[/size][size=16px]容易磨破,掉渣;现在的[/size][size=16px]旋涡混合器[/size][size=16px]的耐磨天然橡胶台面不容易破损,不掉渣,但是这个台面太硬了,以后[/size][size=16px]升级换代时台面换成软点天然橡胶会更好。[img=,690,516]https://ng1.17img.cn/bbsfiles/images/2022/03/202203311716303383_910_2911392_3.jpg!w690x516.jpg[/img][/size][align=left][font='宋体'][size=16px][color=#333333]2.[/color][/size][/font][font='宋体'][size=16px] [/size][/font][font='宋体'][size=16px]旋涡混合器[/size][/font][font='宋体'][size=16px]使用久了以后,[/size][/font][font='宋体'][size=16px]旋涡混合器底部的橡胶脚与台面[/size][/font][font='宋体'][size=16px]不能[/size][/font][font='宋体'][size=16px]相吸[/size][/font][font='宋体'][size=16px],在使用过程中就会自动移动,这时就需要一只手去摁着它,不让其到处移动。这无形之中就增加了工作时间,降低了工作效率。[/size][/font][font='宋体'][size=16px]旋涡混合器[/size][/font][font='宋体'][size=16px]在使用过程中[/size][/font][font='宋体'][size=16px]不能固定住,到处移动,其噪音也很大。[/size][/font][/align][font='arial'][size=16px][color=#333333]以上就是我在使用实验室[/color][/size][/font][size=16px]旋涡混合器[/size][font='arial'][size=16px][color=#333333]过程中的一点感想,生产厂家在以后的[/color][/size][/font][font='arial'][size=16px][color=#333333]产品更新换代[/color][/size][/font][font='arial'][size=16px][color=#333333]过程中可以考虑下[/color][/size][/font][font='arial'][size=16px][color=#333333]我提及到的以上几个[/color][/size][/font][font='arial'][size=16px][color=#333333]问题,[/color][/size][/font][font='arial'][size=16px][color=#333333]真正做到使[/color][/size][/font][size=16px]旋涡混合器[/size][size=16px]能够提高我们的工作效率[/size][font='arial'][size=16px][color=#333333],[/color][/size][/font][size=16px]旋涡混合器[/size][size=16px]也赢得自己的市场份额。[/size]

  • 混合动力汽车电池测试保养说明

    混合动力汽车电池测试是目前混合动力汽车中电池测试的必备的设备之一,所以其性能是能够影响混合动力汽车的运行,所以无锡冠亚混合动力汽车电池测试的保养工作也是很重要的。  混合动力汽车电池测试检查电压是否正常、缺相(缺项主要是针对380V电压的机器),检查和记录运转电流,丈量并记录高低压压力和温控温度是否正常,正常工作时高压为 1.5MPa/ 低压为 0.45MPa4 检查连锁控制电路装置是否松动、老化,检查油位及油温是否正常,检查压缩机有无异常声音及不正常之震动,冷媒系统测试,整体试车及测试,定期检查冷冻水、冷却水水质是否正常,当水源水质变污浊、蜕变时请及时更换水源,这是每月要定期检查和保养的。  混合动力汽车电池测试的年度保养需要清洗冷凝器(累积运行六个月清洗一次),清洗冷却塔(混合动力汽车电池测试累积运行三个月清洗一次),检查冷冻油及润滑油系统,必要时进行更换和补充,检查颐养主机电路系统,冷却循环水机的压缩机马达线圈绝缘测试,检查干燥过滤器是否正常,有无堵塞,必要时予以更换,检查冷媒量,及时补充冷媒,检查及校正高低压力开关,检查及校正温控器,试车运行及总校正,测试过热度是否正常,各部件有无异常声。  不论是无锡冠亚的混合动力汽车电池测试还是冠亚的其他高低温一体机、制冷加热循环器、工业冰箱等设备都需要进行保养的。

  • 《基于摄像技术的燃油加油机自动检定装置的研究》项目通过验收

    日前,由福建省计量院承担的国家质检总局科技计划项目《基于摄像技术的燃油加油机自动检定装置的研究》通过验收,来自北京、上海、辽宁等计量院的专家一致认为该项目研究成果的综合水平达到国内领先水平。  燃油加油机的计量检定工作是关系民生的重要工作,但由于加油机计量检定过程复杂、数据处理繁琐,急需实现检定过程和数据处理的自动化。该项目研制的HX443型燃油加油机自动检定装置实现了加油机枪口温度、标准器内温度、体积和流量等参数的自动采集、计算和报表等数据库管理功能。装置通过国家级仪器仪表防爆安全监督检验站防爆认证(防爆合格证证号:GYB14.1560X,防爆标志:Ex db ia II B T4),且外接传感器均达到本质安全要求。  该项目申请发明专利3项,已获得实用新型授权专利1项。该研究成果的推广与应用,将可产生良好的经济效益和社会效益。

  • 【转帖】关于电子式电能表检定装置几个问题的说明

    关于电子式电能表检定装置几个问题的说明彭平  由于电子式电能表构造不同,用来检定电子式电能表的检定装置也有所不同,电能表检定装置的定型鉴定、样机试验、计量监督和验收试验以及首次和周期检定也有所不同。作为两个规程的主要起草人,现将经常遇到的问题加以简要说明,以便在实际工作中实现电能量值的统一。   1电子式电能表检定装置的定型鉴定、样机试验、计量监督和验收试验应按照国家计量技术规范JJF10361993《交流电能表检定装置试验规范》的规定进行;电子式电能表检定装置的首次检定、周期检定和仲裁检定应按照国家计量检定规程JJG5971989《交流电能表检定装置》的规定进行。   2电子式电能表与感应式电能表在构造上的最大区别,是电流回路与电压回路不能分开,而我国大量应用的是虚负荷法电能表检定装置,它的特征是电流回路与电压回路分开,感应式电能表有一个挂钩,检定时将挂钩分离,这时电能表的电流回路与电压回路分开,检定完毕,将挂钩重新挂好,电流回路与电压回路不再分开,这样检定要求和使用要求都得到了满足。电子式电能表不能实现电流回路与电压回路的分开,不能在虚负荷法电能检定装置上检定。   3电子式电能表应在实负荷法电能表检定装置上检定。实负荷法电能表检定装置的特征是电流回路与电压回路不能分开,国外使用实负荷法检定装置,这种装置制造困难,造价很高,我们可以将虚负荷法的检定装置加以改造,使两种电能表都能检定,从而节约资金。   4电子式电能表检定装置的电压互感器应使用专用的隔离电压互感器,普通的电压互感器初级接被检电能表,次级接标准电能表,互感器的误差来源于负载,次级标准表的负载是稳定的,互感器的合成误差是稳定的,装置的整体误差也是稳定的。电子式电能表检定装置的电压回路需要隔离,被检电能表就不能接在电压互感器的初级,只能接在电压互感器的次级,有些装置将标准电能表接在电压互感器的初级,这是错误的。如前所述,电压互感器的误差来源于负载,当电压互感器的次级接1只表、2只表……12只表……24只表……N只表时,电压互感器的负载发生了很大的变化,误差也随之变化。电子式电能表检定装置有时也检定感应式电能表,两者相比负载相差是很大的;这时互感器的合成误差是一个变化的值,装置的整体误差也是一个变化的值,由于情况复杂,保证检定装置的整体误差非常困难。   最好的办法是使用专用的隔离电压互感器,这种互感器初级是供电绕组,次级为比例绕组。我们把标准电能表接在次级比例绕组的1号W21(W表示绕组,2表示次级或二次,1表示第一个比例绕组)上,被检电能表接在次级比例绕组的任意位置上,只要包括W21,这时无论是接了1只表、2只表……12只表……24只表……N只表,也无论是哪种电能表,无论负载怎样变化,U21、U22、U23、U24、U25……U2N(U表示电压,2表示次级或二次,1表示第1个比例绕组、2表示第2个比例绕组、N表示第N个比例绕组)就能保证装置整体误差的要求。   5专用隔离电压互感器的检定应按三绕组互感器的检定方法进行,由初级(供电绕组)供电,次级(比例绕组)的各个比例绕组互相比较U21/U22;U21/U23,U21/U24……U21/U2N;这种检定可以与标准电压互感器比较,也可以用自校法进行,负载一般应在额定负载8VA,COSφ=0.8;下限负载2VA,COSφ=0.8的负载下进行。   6有些电子式电能表检定装置使用隔离变压器代替电压互感器,这是不允许的。因为许多互感器的性能是变压器所不具备的,比如稳定性等,而且也违背了国家标准和国家计量技术规范的规定,应按照JJF1036-1993表7和JJG597-1989表4的规定配置互感器。   7电子式电能表检定装置的测量误差和标准偏差估计值的检定应按JJF1036-1993第29条、30条、31条和JJG597-1989第31条、32条的规定进行。但是,应该在每个测量回路分别进行,只要有一个回路不合格即判断为不合格。 作者单位:河南省计量测试研究所

  • 【求助】请问如何配制苯系物的混合标液?

    公司刚买了PE 的全套ATD-GC-MS,要做室内空气的苯系物的测定,没有买苯系物的混合标液,只是买了苯,甲苯,二甲苯等的色谱纯试剂,请问如何将这些配制成混合标液呢?我看了色谱纯的甲苯的参数,纯度=99.8%,我用GC-MS做了一下,纯度不错,没发现其他苯系物的杂峰.请问是不是就把这个试剂看成是纯的甲苯,用他来直接配制混标?如果是的话,是不是用微量取样器量取一定体积,然后乘以甲苯密度,得到甲苯的质量,再除以体积得到浓度(xx ug/mL)呢?另外大家用什么来稀释苯系物呢?是用二硫化碳吗?配的混合标液中各组分的浓度是多大?最后做标准曲线的时候,是不是直接用微量进样器量取一定体积后直接注入采样管呢(sample tube)?然后再用氮气吹一会采样管?我的是ATD进样(冷阱捕集后再二级脱附).老板催的紧,下了死命令,要下周一前出报告,不然可能就要被炒了,好担心啊,请大家帮帮忙吧`~~~~谢谢谢谢~~~~~~~~[em63] [em49]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制