当前位置: 仪器信息网 > 行业主题 > >

温室气体通量在线观测系统

仪器信息网温室气体通量在线观测系统专题为您提供2024年最新温室气体通量在线观测系统价格报价、厂家品牌的相关信息, 包括温室气体通量在线观测系统参数、型号等,不管是国产,还是进口品牌的温室气体通量在线观测系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合温室气体通量在线观测系统相关的耗材配件、试剂标物,还有温室气体通量在线观测系统相关的最新资讯、资料,以及温室气体通量在线观测系统相关的解决方案。

温室气体通量在线观测系统相关的仪器

  • 产品概述EXPEC 2000 温室气体气相色谱在线连续监测系统,可配备温室气体专用型FID或ECD检测器, 检测环境空气中CO2、CH4、CO、N2O和SF6等因子。样气先通过定量环,然后被温室气体专用色谱柱分离,CH4进入FID检测,CO和CO2先后进入甲烷转化炉,在镍催化剂作用下高4 2温加氢还原为CH4后再被送入FID检测;NO和SF6被色谱柱分离后通过ECD检测。产品特点符合标准《气相色谱法本底大气二氧化碳和甲烷浓度在线观测方法》(GB/T 31705-2015)一台分析仪可配置双检测器,实现CO2、CH4、CO、N2O和SF6等多种组分的高精度监测采用技术成熟的气相色谱法,操作维护简单,运行成本低采用温室气体专用型FID或ECD检测器,灵敏度和稳定性优异 应用效果高精度温室气体浓度监测,获取区域温室气体时空变化规律同化卫星观测数据,提升卫星遥感反演的准确性校验温室气体排放清单,得到更准确的排放清单及排放因子,评估本地碳排放量基于温室气体浓度数据,利用三维空气质量模型估算城市碳排放通量,全面评估碳排放情况
    留言咨询
  • 产品概述EXPEC 2000(规格:810) 温室气体气相色谱在线连续监测系统配备温室气体专用型FID检测器,用于检测环境空气中CO2、CH4和CO等主要温室气体浓度,可扩展对CO、SF6 等温室气体组分的在线实时监测。样气先通过定量环,然后被温室气体专用色谱柱分离,CH4进入FID检测,CO和CO2先后进入甲烷转化炉,在镍催化剂作用下高温加氢还原为CH4后再被送入FID检测。整机性能指标满足GB/T31705-2015《气相色谱法本底大气二氧化碳和甲烷浓度在线观测方法》的标准要求。产品特点1、符合标准《气相色谱法本底大气二氧化碳和甲烷浓度在线观测方法》(GB/T 31705-2015)2、采用温室气体专用型FID检测器,灵敏度和稳定性优异3、一台分析仪可配置双检测器,实现CO2、CH4和CO多种组分的高精度监测4、采用技术成熟的气相色谱法,操作维护简单,运行成本低应用领域环境大气监测、背景大气监测、园区厂界监测以及科研应用等
    留言咨询
  • 【温室气体在线气相色谱仪】仪器采用专用色谱柱组合、中心切割技术、反吹加放空技术和氢火焰离子化检测器(FID)和微池电子捕获检测器(μ-ECD)技术相结合进行甲烷、二氧化碳和N2O的检测。样品经载气带入色谱柱预分离,氧气放空后,其中CH4和CO2(经Ni转化)进FID检测器检出,切换N2O进入μ-ECD监测器检出。【仪器特点】1、转化和氢火焰离子化检测器的组合用于检测CH4和CO2检测限<0.05ppm;2、仪器具有开机自检功能,断气保护功能,断电自动重启功能和报警功能,保证系统安全和稳定性;3、FID检测器具有自动点火功能和宽量程输出,线性范围10-7;4、μ-ECD检测器加特殊装置提升灵敏度,N2O检测限<1ppb;5、使用自动电子流量控制技术(EPC)控制载气、空气和氢气,高精度(0.01psi),重复性和再现好;6、核心部件均使用国际知名品牌,可靠性高,使用寿命长。【应用领域】环境空气在线监测或科研【技术参数】检测能力温室气体(CO2、CH4、N2O)量程CO2(0.1-1000)ppm;CH4(0.05-1000)ppm;N2O(1-1000)ppb检测器氢火焰离子化检测器(FID);微池电子俘获检测器(μ-ECD)检出限≤0.05ppm(CH4),≤0.1ppm(CO2),≤1ppb(N2O)重复性RSD≤3%分析周期≤10min功率电源<300W,220V AC/50Hz气源要求载气:高纯氮气或零级空气(≥99.999%);燃烧气:高纯氢气(≥99.999%)助燃气:零级空气(烃类<50ppb)输出4-20mA、RS232/RS485、以太网尺寸19"标准机箱,5U
    留言咨询
  • 概述温室气体排放通量测量是大气环境科学的重要课题,是研究温室气体浓度变化趋势、源和汇的基础,对温室气体分布评估和应对气候变化有要意义。了解地气间的交换通量随时间的变化,理解全球温室气体的交换,对不同生态系统通量的长期观测,在揭示大气中CO2、CH4、NH3、N2O、SF6等温室气体吸收与释放过程、能量流动与物质循环、地表生物圈大气圈间的相互作用等方面发挥重要作用。比如湖泊沼泽、生态学研究、污染土壤检测、农田施肥监测、畜禽养殖、有机肥堆放、河海土壤、温室气体排放等等。DUKE公司DKG-ONE系列温室气体通量观测系统,基于公司核心的增强型悬臂量光学麦克风红外光声光谱技术,具有测量精度高、检测限低、实时性好、原位在线、高效测量等优点,已成为温室气体通量在线或移动式观测与分析的可靠解决方案。特性可测量300多种气体,比如CO2、CH4、N2O、HFCs、PFCs、SF6、H2O、TOC、NH3、SO2、H2S等,最多可同时测量10种气体ppb,sub-ppm级的检测限高准确度、高可靠性、坚固耐用即采即测、实时分析、秒级响应时间长的标定周期、低的样气量高分辨率图形显示界面,友好人机交互界面丰富的可编程测量任务可储存超过1年的数据内置趋势查看监控任务平均值、均方差、最高和最低浓度等统计功能无耗材、免维护、坚固耐用的外壳设计USB接口、Ethernet、RS232、RS485通讯等测量气体腔室恒定温度50℃管线预热、恒温测量、防止吸附可选交流供电、太阳能电池供电专用温室气体通量观测分析软件可本地观测、远程观测、云端操作、手机端APP
    留言咨询
  • 概述温室气体排放通量测量是大气环境科学的重要课题,是研究温室气体浓度变化趋势、源和汇的基础,对温室气体分布评估和应对气候变化有要意义。了解地气间的交换通量随时间的变化,理解全球温室气体的交换,对不同生态系统通量的长期观测,在揭示大气中CO2、CH4、NH3、N2O、SF6等温室气体吸收与释放过程、能量流动与物质循环、地表生物圈大气圈间的相互作用等方面发挥重要作用。比如湖泊沼泽、生态学研究、污染土壤检测、农田施肥监测、畜禽养殖、有机肥堆放、河海土壤、温室气体排放等等。DUKE公司DKG-ONE系列温室气体通量观测系统,基于公司核心的增强型悬臂量光学麦克风红外光声光谱技术,具有测量精度高、检测限低、实时性好、原位在线、高效测量等优点,已成为温室气体通量在线或移动式观测与分析的可靠解决方案。特性可测量300多种气体,比如CO2、CH4、N2O、HFCs、PFCs、SF6、H2O、TOC、NH3、SO2、H2S等,最多可同时测量10种气体ppb,sub-ppm级的检测限高准确度、高可靠性、坚固耐用即采即测、实时分析、秒级响应时间长的标定周期、低的样气量高分辨率图形显示界面,友好人机交互界面丰富的可编程测量任务可储存超过1年的数据内置趋势查看监控任务平均值、均方差、最高和最低浓度等统计功能无耗材、免维护、坚固耐用的外壳设计USB接口、Ethernet、RS232、RS485通讯等测量气体腔室恒定温度50℃管线预热、恒温测量、防止吸附可选交流供电、太阳能电池供电专用温室气体通量观测分析软件可本地观测、远程观测、云端操作、手机端APP
    留言咨询
  • GW-2032型大气/土壤温室气体通量观测分析仪能够同时测量CO2、CH4和H2O,测量精度可达ppb级,支持测量结果在线查看和分析;具有三组分连续测量、可野外部署和长期稳定工作等特点,也可通过网络进行数据传输,可以轻松实现远程 控制,最大限度满足科研需要。测量气体: 甲烷测量范围: 0-100ppm 0-2000ppm 0-60000ppm应用领域: 环保监测 -大气环境监测测量内容:CH4、CO2、H2O使用用途:空气温室气体监测、土壤温室气体监测、痕量温室气体监测、便携温室气体检查使用波段:红外波长滤波技术(GFC)和长光程气体吸收池技术(L-Cell)产品特点技术●ppb级别超高灵敏度、精确度和准确度●测量结果支持在线查看和分析设计●7寸真彩电容触摸屏交互,无物理按键●自带局域网,支持手机APP互联●内置电池,无市电接入情况下也能轻松使用●背包式设计,简单、美观、便捷技术指标检测气体种类CH4CO2H2O量程范围0-100ppm0-2000ppm0-600000ppm零点噪声20ppb10ppm/测量误差±0.5%F.S.≤±1F.S.≤±0.5F.S.最低检测限<50ppb<20ppm两次校准漂移<500ppb≤±1F.S.≤±0.5F.S.响应时间120s60s45s数据刷新时间2s流量0.8L/min±0.5L/min工作温度-25℃至45℃工作压力70-110kPa信号输出WIF和USB应用领域●空气温室气体监测●土壤温室气体监测●痕量温室气体监测●便携温室气体检查
    留言咨询
  • —同时用于涡度系统和自动土壤气体通量箱系统激光痕量气体监测仪基于中红外量子级联激光TILDAS技术监测大气中的痕量气体,可实现高时间分辨率(高达10 Hz)的实时气体分子测量。采用直接光谱吸收技术,并结合系统内的多反腔(Astigmatic Multipass Absorption Cells)所提供的长达76m的光程,检测限远远高于同类产品,检测限达ppt级。每秒可执行10次独立测量,适用于生态系统涡度(Eddy Covariance)测量。单激光痕量气体监测仪:测量NO,N2O,NO2,NH3,CO,CO2,CH4,C2H6,COS,HCHO,O3等,同时检测水汽。例如:N2O、CH4和水汽;N2O、CO 和水汽;N2O、CO2 和水汽; CO、CO2、N2O、水汽。双激光痕量气体监测仪:同时测量多种气体,如NO,N2O,NO2,NH3,HONO,HNO3,CO,CH4,C2H4,HCHO,CHOOH,SO2,COS,O3,HOOH等。根据不同的监测环境和要求,可选择增强的灵敏度或增强的时间响应。l 绝对痕量气体浓度测量,无需校准气体。l 快速响应l 不受其它气体或水汽的干扰l 无人值守操作l 可在野外测量和也可部署在移动平台上l 双激光器允许同时测量更多的种类。l 光程长度为76米或 210米l 燃烧监测和表征l 用于源/汇表征的CH4和N2O的同位素监测。l 涡度相关测量l 快速响应羽流研究l 空气质量监测l 船舶、卡车和飞机平台的移动测量 产品还包括: l 双激光CO2 13C、18O同位素监测仪l 双激光CO2 二元同位素(clumped isotope of CO2)监测仪l N2O和NO的双激光监测仪。 适用于土壤排放l HONO监测仪- HONO是污染环境中重要的大气物种,在土壤科学中可能很重要。l HCHO监测仪。 甲醛是污染环境中重要的大气物种.l CH4和N2O同位素监测。 这些都是困难的测量。 只有经验丰富的团队才能取得成功。l N2O, CO, CO2, CH4, C2H6 and H2O双激光监测仪.l N2O, CO, CO2, CH4, COS and H2O双激光监测仪.l NO和NO2或NO和臭氧的双激光监测仪.特点优势:1、响应速度快涡度协方差技术用于测量大气和生物圈之间的气体分子通量。在大多数情况下,客户需要能够每秒进行10次独立测量的仪器。对于将气体进样到光室(optical cell)中的仪器,这要求气体流速足够快以在0.1秒内更换光室内的气体,并且在该速度下进行光谱测量。 Aerodyne在提供这种能力方面几乎是独一无二的,测量速度远高于同类产品。 2、极高的测量精度N2O监测仪:10s 采用10ppt,是其它仪器的1/10 其它仪器1s采用100ppt,而Aerodyne 采用30ppt,只传输15ppt。3、极高的灵敏度优异的测量精度可以保持在0.1秒到100秒之间。 附图显示了N2O监测仪结合土壤气体通量自动箱可以实现极高的灵敏度,测到了非常小的N2O通量。 在未施肥的草地上,自动箱关闭后N2O的上升速率为3ppt / sec。即使在5分钟内,上升速率也可以精确确定。 每秒采集一个数据点。 该上升速率对应于小通量:8ugN2O-N / m 2 /小时或0.08nmoles / m 2 / s。 我们估计最小可检测的通量约为0.1ug N2O-N / m2 /h或0.001 nmoles/m2/s。 相似的结果见Savage et al.[Savage, K., R. Phillips, and E. Davidson. "High temporal frequency measurements of greenhouse gas emissions from soils." Biogeosciences 11.10 (2014): 2709.] 4、灵活的采样系统激光痕量气体监测仪的高精度非常适用于涡度协方差通量观测和土壤自动箱通量观测。可实现一个独特的功能:当风况良好时测量涡度通量,当风非常弱时测量土壤自动箱通量。 还提供其它各种自动化采样系统。 应用文献: 1、NATURE Vol 534, 30 June, 2016温带森林光合和日间呼吸的季节性Seasonality of temperate forest photosynthesis and daytime respiration[2]R. Wehr1, J. W. Munger2, J. B. McManus3, D. D. Nelson3, M. S. Zahniser3, E. A. Davidson4, S. C. Wofsy2 & S. R. Saleska1。其中同位素通量观测中采用的是Aerodyne CO2 Isotope Monitor二氧化碳同位素监测仪,2、来自NATURE () 上的科学报告忽视日变化导致陆地一氧化二氮排放的不确定性Neglecting diurnal variations leads to uncertainties in terrestrial nitrous oxide emissions[3]Narasinha J. Shurpali1, üllar Rannik2, Simo Jokinen1, Saara Lind1, Christina Biasi1,Ivan Mammarella2, Olli Peltola2, Mari Pihlatie2,3, Niina Hyv?nen1, Mari R?ty4,Sami Haapanala2, Mark Zahniser5, Perttu Virkaj?rvi4, Timo Vesala2,6,7 & Pertti J. Martikainen1 3、意大利北部泥浆扩散期间通过涡流协方差对氨挥发动力学的测量研究Dynamics of ammonia volatilisation measured by eddy covariance during slurry spreading in north Italy (Agriculture, Ecosystems and Environment 219 (2016) 1–13)Rossana Monica Ferraraa, Marco Carozzib,*, Paul Di Tommasic, David D. Nelsond, Gerardo Fratinie, Teresa Bertolinif, Vincenzo Magliuloc, Marco Acutisg, Gianfranco Rana 4、使用量子级联激光光谱仪(QCLS)对COS,CO2,CO和H2O进行连续且高精度大气浓度的测量Continuous and high-precision atmospheric concentration measurements of COS, CO2, CO and H2O using a quantum cascade laser spectrometer (QCLS) (Atmos. Meas. Tech., 9, 5293–5314, 2016)Linda M. J. Kooijmans1, Nelly A. M. Uitslag1, Mark S. Zahniser2, David D. Nelson2, Stephen A. Montzka3, and Huilin Chen1,4羰基硫(COS)是总初级生产量的有效示踪剂,因为其可以被植物吸收,类似于CO2的吸收方式。为了探索和验证这种新型示踪剂的应用,我们进行了对COS和CO2的连续且高精度的原位测量。在这项研究中,采用Aerodyne量子级联激光光谱仪(QCLS)与空腔衰荡光谱仪,我们总结了对COS、CO2和CO测量的不同贡献值。 5、集约化经营恢复后草地的温室气体(CO2,CH4和N2O)收支研究Greenhouse gas budget (CO2, CH4 and N2O) of intensively managed grassland following restoration(Global Change Biology (2014) 20, 1913–1928, doi: 10.1111/gcb.12518)LUTZ MERBOLD1, WERNER EUGSTER1 , JACQUELINE STIEGER1 , MARK ZAHNISER2 ,DAVID NELSON2 and NINA BUCHMANN1 6、生态系统-大气CO2交换的同位素组成的长期性涡度协方差测量研究Long-term eddy covariance measurements of the isotopic composition of the ecosystem–atmosphere exchange of CO2 in a temperate forest(Agricultural and Forest Meteorology 181 (2013) 69–84)R. Wehra,b,?, J.W. Mungerb, D.D. Nelsonc, J.B. McManusc, M.S. Zahniserc,S.C. Wofsyb, S.R. Saleskaa,?? 7、采用基于QCL的涡度协方差法及推理模型测量泥炭地表面 - 大气的氨交换研究Surface–atmosphere exchange of ammonia over peatland using QCL-based eddy-covariance measurements and inferential modeling(Atmos. Chem. Phys., 16, 11283–11299, 2016)Undine Z?ll1,*, Christian Brümmer1, Frederik Schrader1, Christof Ammann2, Andreas Ibrom3, Christophe R. Flechard4, David D. Nelson5, Mark Zahniser5, and Werner L. Kutsch6 8、快速响应气体分析仪在野外条件下进行一氧化二氮通量测量的比较研究Intercomparison of fast response commercial gas analysers for nitrous oxide flux measurements under field conditions(Biogeosciences, 12, 415–432, 2015)ü. Rannik1, S. Haapanala1, N. J. Shurpali2, I. Mammarella1, S. Lind2, N. Hyv?nen2, O. Peltola1, M. Zahniser3, P. J. Martikainen2, and T. Vesala1 9、北美生长旺季碳总收入高峰以中西部为最高Peak growing season gross uptake of carbon in North America is largest in the Midwest USAPUBLISHED ONLINE: 1 MAY 2017 | DOI: 10.1038/NCLIMATE3272TimothyW. Hilton1*, Mary E. Whelan1,2, Andrew Zumkehr1, Sarika Kulkarni3?, Joseph A. Berry2, Ian T. Baker4, Stephen A. Montzka5, Colm Sweeney5, Benjamin R. Miller5 and J. Elliott Campbell1 10、跟踪固碳Tracing carbon fixationNATURE CLIMATE CHANGE | VOL 7 | JUNE 2017Alexander Knohl and Matthias Cuntz地表模型在模拟陆地碳循环方面表现出很大的差异。 示踪羰基硫化物的大气观测允许选择最实际的模型。右图所示,两个NOAA监测点(WBI和CAR)的大气COS浓度分布和不同过程的COS降水。通过NOAA监测点的空中观测,对来自陆地和大气运输模式估算出的COS浓度的大气剖面进行了对比。各自流程的数据为COS缩减模型的支撑。较大的降幅出现在光合速率较高的地区,而小幅度下降则表明光合速率低的地区。11、基于闭路量子级联激光光谱仪的涡度协方差法对亚热带蔬菜田氮氧化物通量测量的适用性研究Applicability of an eddy covariance system based on a close-path quantum cascade laser spectrometer for measuring nitrous oxide fluxes from subtropical vegetable fieldsAtmospheric and Oceanic Science Letters, 2016 ?WANG Donga,b, WANG Kaia, Eugenio DIAZ-PINESc, ZHENG Xunhuaa and Klaus BUTTERBACH-BAHLc 12、用于自动箱测量系统 13、测量蒸渗系统的痕量气体 14、车载、机载、轮船等各种环境测量痕量气体 本文参考文献:[1] ü. Rannik,S. Haapanala,et al." Intercomparison of fast response commercial gas analysers for nitrous oxide flux measurements under field conditions." Biogeosciences, 12, 415–432, 2015[2] R. Wehr1, J. W. Munger2, et al. "Seasonality of temperate forest photosynthesis and daytime respiration" NATURE Vol 534, 30 June, 2016[3] Narasinha J. Shurpali1,et al." Neglecting diurnal variations leads to uncertainties in terrestrial nitrous oxide emissions" Scientific Reports 6:25739 DOI: 10.1038/srep25739
    留言咨询
  • 产品概述EXPEC 2000 温室气体气相色谱在线连续监测系统,可配备温室气体专用型FID或ECD检测器, 检测环境空气中CO2、CH4、CO、N2O和SF6等因子。样气先通过定量环,然后被温室气体专用色谱柱分离,CH4进入FID检测,CO和CO2先后进入甲烷转化炉,在镍催化剂作用下高4 2温加氢还原为CH4后再被送入FID检测;NO和SF6被色谱柱分离后通过ECD检测。产品特点符合标准《气相色谱法本底大气二氧化碳和甲烷浓度在线观测方法》(GB/T 31705-2015)一台分析仪可配置双检测器,实现CO2、CH4、CO、N2O和SF6等多种组分的高精度监测采用技术成熟的气相色谱法,操作维护简单,运行成本低采用温室气体专用型FID或ECD检测器,灵敏度和稳定性优异 应用效果高精度温室气体浓度监测,获取区域温室气体时空变化规律同化卫星观测数据,提升卫星遥感反演的准确性校验温室气体排放清单,得到更准确的排放清单及排放因子,评估本地碳排放量基于温室气体浓度数据,利用三维空气质量模型估算城市碳排放通量,全面评估碳排放情况
    留言咨询
  • 产品简介2021年,生态环境部发布《关于统筹和加强应对气候变化与生态环境保护相关工作的指导意见》中提出“加强温室气体监测,逐步纳入生态环境监测体系统筹实施”。先河环保紧跟时代步伐,提前布局,目前已有成熟的温室气体监测系统。该系统符合世界气象组织WMO)和综合碳观测系统 (ICOS) 针对CO2、CO、CH4和H2O大气监测方面的性能要求。性能特点v 易操作、稳定性高、维护量小,适合各监测站点长期在线无人值守运行;v 满足不同用户针对温室气体观测的定制需求;v 集成度高,标准19英寸机柜安装;v 可参照中国国家级大气本底站建设方案,开展WMO/GAW流程的观测,监测数据国际可比,满足国际交流需要;
    留言咨询
  • DJ-0264野外长期CO2CH4N2OH2O温室气体通量测定系统用途:随着全球变化研究的广泛开展,气体通量的监测越来越受到关注。气体通量的测定通常包括植物叶片与大气界面气体通量测定,土壤表面与大气界面气体通量测定、生态系统与大气界面气体通量测定等。便携式温室气体通量测定系统由主控模块、气体分析模块和土壤呼吸室组成。主控模块可以集成分析模块、气压、温湿度、GPS等数据,控制系统运行状态,根据客户需求进行气体通量或者呼吸速率的计算;气体分析模块,可根据客户需求可配置了NDIR分析模块或可调谐激光光谱分析技术(TDLAS)分析模块;根据测量对象的不同,还可以选择不同的前端采样模块,例如土壤呼吸室、光合呼吸室以及适用于水面测量的浮漂式呼吸室。根据前端采样模块不同,可以自由设定计算参数,控制系统能够自动根据参数设定实时进行通量(呼吸速率)计算。技术原理:气体分析模块标准配置了可调谐激光光谱分析技术(TDLAS)的CO2、CH4分析模块,可调谐激光光谱分析技术(TDLAS)利用可调谐半导体激光器窄线宽和波长可调谐特征对特征气体近红外“指纹”特征吸收谱线进行探测,具有高灵敏、高分辨率、快速响应,非接触监测等优点。将TDLAS 技术与开放式长光程技术、微弱信号检测、自动增益调节技术相结合,监测范围广、调校简单、可以实现高时间分辨率、高灵敏生态环境温室气体激光在线检测。自主开发的APP 程序通过无线与主控模块相连,根据采样模块不同,可以自由设定计算参数,控制系统能够自动根据参数设定实时进行通量(呼吸速率)计算,更方便野外实时测量观测。特点: 中红外腔增强技术实现高时间分辨率、高灵敏测量 免标定,无需标准气体定时标定 不受背景气体交叉干扰 功耗低,锂电池供电可达8小时 扩展性高,可以附加多种传感器(例如:GPS,光辐射传感器等) 操作性强,强大的数据处理功能,能够在线实时进行数据处理 用户定制化程度高部分应用单位:&bull 烟台海岸带地质调查中心&bull 上海师范大学&bull 西安农科院&bull 北京师范大学&bull 华中农业大学技术参数:气体分析模块图片CO2测量范围0~5000ppm(可定制)CO2检测精度≤0.35ppm(可定制)CO2检出限0.1ppmCO2零点噪声0.1ppmCH4测量范围0~100ppm(可定制)CH4检测精度≤10ppb(1HZ)CH4检出限0.01ppmCH4零点噪声0.01ppmN2O测量范围0~100ppm(可定制)N2O检测精度≤0.2ppb(可定制)H2O测量范围0~6%(可定制)H2O检测精度≤读数±1.5%H2O检出限0.1ppm标定出厂标定无需重复标定环境温度-30-60℃环境湿度99% R.H,无冷凝供电电池锂电池充电电源12VDC尺寸/重量主机:55 x 26 x 26 cm;重量(含太阳能板):8 kg方形呼吸室图片呼吸室类型透明/非透明 腔室尺寸50cm(L)*50cm(W)*40cm(H)重量约15kg工作方式可控自动旋转开合(上窗90°,侧窗45°)驱动方式电动推杆材质铝合金、进口透明PC板控制方式主控机控制供电12V测量体积90.5L测量面积0.1936m2温度监测-40℃~85℃密封方式密封条密封 自动开合呼吸室图片呼吸室类型透明/非透明(可定制) 腔室尺寸200mm(D)*130mm(H)整体外形尺寸400mm(L)×260mm(W)×260mm(H)测量体积4000cm3 测量面积315cm2测量方式动压平衡流通式测量工作方式可控自动开合控制方式主控机控制供电12V整体重量5.0Kg 地下取气装置图片技术原理半透膜取气技术控制方式主控机控制传感器温度传感器尺寸500 mm (L) x 6(可定制)材质半透膜,铝合金支架 智能多路控制器图片通道数1~36通道可选操作方式触摸屏定位模块北斗GPS双模(选配)数据计算有(通量,呼吸速率)操作温度-20 ~ 50 °C湿度99% R.H,无冷凝取样流速标准1L/min,可调电源12VDC重量12kg可选配模块可增加其他气体测量模块,土壤温湿度传感器、4G传输模块、GPS模块等扩展性主控板预留多个数据传输通道,可根据客户需求追加配件、传感器等,软件自主开发,可同步对应追加的相关传感器进行数据集成。可同时配套土壤界面观测研究的土壤呼吸室、群落光合箱,实现界面排放的多种立体式痕量气体监测系统。扫描点将科技官方微信和联系人,获取更多服务:
    留言咨询
  • 产品介绍:UoW FTIR 多要素温室气体分析仪由澳大利亚Wollongong 大学研发,由Ecotech合作生产,并提供全球范围内的分销及符合ISO9001 标准的售后服务。UoW FTIR 多要素温室气体分析仪应用多光程—傅里叶红外变换(FTIR)光谱测量解析技术和高性能红外检测元器件,结合了完善的控制软件系统,能够全自动地运行,在线连续测量环境大气(或其他种类的混合气体)中多种温室气体成分的浓度及其稳定同位素比率,运行成本低,适于长期连续观测。也可以根据用户需求,改变地相应的配置,测量其他种类的痕量气体。自Uow FTIR 多要素温室气体气体分析仪投入现场观测应用以来,10 余年间,在全球已有多个用户将本仪器用于环境大气和本底地区大气的温室气体观测,并开发了温室气体以外的测量功能。这些用户包括:中国气象局(CMA)、大连市环境监测中心站、澳大利亚核科学技术组织(ANSTO)、澳大利亚的卧龙岗大学(University of Wollongong)、墨尔本大学( University of Melbourne)、公共财富科学与工业研究组织(CSIRO)、科学与技术组织(ANSTO),新西兰的国家水和大气研究所(NIWA),德国的海德堡大学(University of Heidelberg )、不来梅大学(University of Bremen)、马克斯普朗克学会(MPG),韩国国家标准研究所(Korean Standards Institute )等。仪器特点:? 同时在线测量多种温室气体的浓度和同位素丰度,应用方式广泛、多样 l 同时测定CO2、CO、CH4、N2O 的大气浓度,以及CO2 中δ13Cl 可以一路或多路连续进样,测量多种温室气体浓度及同位素丰度l 可在测量塔不同高度采集样品,进行温室气体(包括CO2 中δ13C)的垂直廓线测量l 可车载连续监测l 连接静态箱进行土壤中温室气体的通量测量l 在实验室中批量测量采样瓶或采样袋中的空气样品l 标准传递测量:在实验室中,通过测量将高等级标准气的量值关系传递给较低等级的标准气体l 根据气体物种不同,检测限为1-20ppbv? 红外光谱定量测量,具有良好的测量稳定性和测量准确度l 利用多种温室气体在中红外波段的较强吸收,通过光谱数据的拟合计算其大气含量,在不使用任何校准气体校准的情况下,测量准确度即可达到1-5%。l 当使用高等级校准气体(NIST、CMDL、GASLAB 等)校准后,对CO2、CO、CH4、N2O 的测量精度和准确度,可完全达到甚至超过世界气象组织全球大气观测计划(WMO-GAW)公布的数据质量要求。l 由于仪器运行性能稳定,并且可对光谱数据进行再解析计算,因此,在长期连续观测中,不需要使用昂贵的标准气进行频繁的校准,每天只用参照气(洁净空气)进行检查测试即可。l 已有比对观测数据显示,使用同等级校准气体的情况下,UoW FTIR 温室气体在线分析仪测量结果与其他方法的线性拟合度高,测量结果的可比性好。? 全自动运行,可遥控,维护成本低、消耗量少l 一台仪器同时测量多种温室气体浓度及其稳定同位素比,综合运行成本低l 无需液氮或深冷除湿l 随机携带采样气体干燥器和多进样口l 全自动运行,并可通过网络遥控运行详细产品介绍请查看PDF版样本
    留言咨询
  • DJ-0254便携式CO2CH4N2OH20温室气体通量测定系统用途:随着全球变化研究的广泛开展,气体通量的监测越来越受到关注。气体通量的测定通常包括植物叶片与大气界面气体通量测定,土壤表面与大气界面气体通量测定、生态系统与大气界面气体通量测定等。便携式温室气体通量测定系统由主控模块、气体分析模块和土壤呼吸室组成。主控模块可以集成分析模块、气压、温湿度、GPS等数据,控制系统运行状态,根据客户需求进行气体通量或者呼吸速率的计算;气体分析模块,可根据客户需求可配置了NDIR分析模块或可调谐激光光谱分析技术(TDLAS)分析模块;根据测量对象的不同,还可以选择不同的前端采样模块,例如土壤呼吸室、光合呼吸室以及适用于水面测量的浮漂式呼吸室。根据前端采样模块不同,可以自由设定计算参数,控制系统能够自动根据参数设定实时进行通量(呼吸速率)计算。技术原理:气体分析模块标准配置了可调谐激光光谱分析技术(TDLAS)的CO2/CH4/N2O/H2O分析模块,可调谐激光光谱分析技术(TDLAS)利用可调谐半导体激光器窄线宽和波长可调谐特征对特征气体近红外“指纹”特征吸收谱线进行探测,具有高灵敏、高分辨率、快速响应,非接触监测等优点。将TDLAS 技术与开放式长光程技术、微弱信号检测、自动增益调节技术相结合,监测范围广、调校简单、可以实现高时间分辨率、高灵敏生态环境温室气体激光在线检测。自主开发的APP 程序通过无线与主控模块相连,根据采样模块不同,可以自由设定计算参数,控制系统能够自动根据参数设定实时进行通量(呼吸速率)计算,更方便野外实时测量观测。特点: 中红外腔增强技术实现高时间分辨率、高灵敏测量 免标定,无需标准气体定时标定 不受背景气体交叉干扰 功耗低,锂电池供电可达8小时 扩展性高,可以附加多种传感器(例如:GPS,光辐射传感器等) 操作性强,强大的数据处理功能,能够在线实时进行数据处理 用户定制化程度高部分应用单位:&bull 烟台海岸带地质调查中心&bull 上海师范大学&bull 西安农科院&bull 北京师范大学&bull 华中农业大学技术参数:气体分析模块图片CO2测量范围0~5000ppm(可定制)CO2检测精度≤0.35ppm(可定制)CO2检出限0.1ppmCO2零点噪声0.1ppmCH4测量范围0~100ppm(可定制)CH4检测精度≤10ppb(1HZ)CH4检出限0.01ppmCH4零点噪声0.01ppmN2O测量范围0~100ppm(可定制)N2O检测精度≤0.2ppb(可定制)H2O测量范围0~6%(可定制)H2O检测精度≤读数±1.5%H2O检出限0.1ppm标定出厂标定无需重复标定环境温度-30-60℃环境湿度99% R.H,无冷凝供电电池锂电池充电电源12VDC尺寸/重量主机:55 x 26 x 26 cm;重量(含太阳能板):8 kg 圆形呼吸室图片呼吸室类型透明(铝合金)/非透明(亚克力) 测量方式动压平衡流通式测量充电电源12VDC控制方式主控机控制腔室尺寸220mm(D)*120mm(H)(可选)测量体积3140cm3测量面积314cm2标定出厂标定无需重复标定取样流速标准1L/min,可调整体外形尺寸440mm(L)×260mm(W)×260mm(H)整体重量5.0Kg 智能升降呼吸室图片呼吸室类型透明/非透明(可定制) 腔室尺寸250mm(D)*100mm(H)整体外形尺寸400mm(L)×330mm(W)×330mm(H)测量体积4188.67cm3 +土壤环内体积测量面积295.58cm2测量方式动压平衡流通式测量工作方式可控自动开合控制方式WIFI控制接口SDI-12接口2个供电内置锂电池锂电池容量10000mAH充电电压12V包装航空箱整体重量3.5Kg
    留言咨询
  • SoilGAS 地上多组分气体通量监测系统一、箱式法技术生态系统碳氮水交换研究不仅可用于精确测定生态系统的碳氮水收支,而且有助于改善区域和全球的碳循环、氮循环、水平衡模型以及预测生态系统对全球变化的响应和适应,监测碳氮源、汇的变化,为评估生态系统的固碳能力及物质通量变化提供基础数据。生态系统碳交换测量方法有三种:涡度相关((eddy covariance))、测树学(biometry)和箱式法(chamber methods)。涡度相关法可连续、直接地测定生态系统尺度的净碳交换,但不能直接区分总初级生产(GPP)和生态系统呼吸(Re),且场地要求严格,在某些气象条件和时间段不可用。箱式法作为一种简单、快捷的观测手段,通过遮光、排除植物或其地上部分等实验手段,能够对低矮植被的净生态系统碳交换(NEE)、生态系统呼吸、土壤呼吸(Rs)和微生物呼吸(Rm)进行直接观测。大量的研究发现涡度相关法、测树学法和箱式法在测量生态系统碳收支时结果差异很大。例如东北林大王兴昌团队通过分析文献数据,发现EC法测定的NEP平均比测树学法高25%,而EC法测定的的Re比箱式法低10%。增大箱式法的箱体尺寸,集涡度相关法和箱式法于一体,在同样的尺度上对比研究,成为探究三种测量技术结果差异的途径之一。二、箱式法尺度王迎红等通过长期野外观测土壤温室气体的实验得出,农田生态系统宜使用65 cm × 65 cm × 90 cm的中大型采样箱,草地生态系统宜采用40 cm × 40 cm × 25 cm的中型采样箱[1],生态系统的交换需要比观测土壤气体更大的箱体。早期箱式法采用静态箱,因间歇式低频人工观测结果随机误差大、时间代表性差的问题,后来出现了自动开闭的自动箱。自动箱有2种,一种测量时覆盖地表,测量完成后自动移动到侧面,对测点无遮挡,但这种自动箱面积小、高度低,一般只能用于测量裸地的土壤呼吸,测量覆地的草本生态系统时因面积小代表性差。另外一种是带框架的自动箱,不测量时无法完全打开,会影响测量点的气体扩散,影响测量精度。iChamber 群落自动箱是澳作公司拥有自主知识产权、自主研发、国内生产的产品,集六项设计专利于一体,独一无二的无框架、无立柱设计,高度随植物生长可调、面积可达1平米、高度2米,可用于生态系统碳交换在线测量。 S120型iChamber面积1M² (直径1.2M),高度2.0米,可测量灌木、苗木,用于森林、湿地、荒漠植被等生态系统交换测量。S62型iChamber面积0.3M² (直径0.62M),高度1.1米,用于农田生态系统,带植被的湿地、荒漠生态系统,带藤曼、灌木的草地、城市生态系统。S35型iChamber面积0.08M² (直径0.35M),高度0.5米,用于草地生态系统。三、iChamber自动箱特点 箱式法测量交换量有稳态和非稳态2种测量模式[2],稳态法因气体调节复杂,只用于面积小、高度低的箱体,一般用于测量土壤呼吸;非稳态测量技术通过单位时间内透明箱内气体浓度变化计算净交换量。因箱效应对测量精度的影响随着箱体高度增大可明显降低,所以在线测量净交换量要采用面积大的高箱体。iChamber生态系统碳氮水交换在线测量系统在传统的自动箱技术上,进行了如下改进:1、 箱体高度超过冠层测量时,箱体自动升高,可达2米,可超过植被冠层,测量结束后,箱体高度自动下降。未测量时,测点和大田微气候条件一致,箱体不改变测点的环境因子,无需象静态箱法定期更换测量地点。2、 箱体高透光,直接测量净交换量透明箱体采用高透光率材料,测量时不影响植被的光合过程。也可选用非透明箱体只测量呼吸过程。因iChamber生态系统碳氮水交换在线测量系统可全时、自动测量,透明箱体可在夜间自动测量呼吸过程,确保观测数据的连续性。四、多组分气体分析仪特点SoilGAS多组分气体通量监测系统,气体分析仪采用激光光谱技术,通过激光波长扫描气体分子的吸收线,获取分子的高分辨率吸收光谱,来测量气体组分和浓度。 测量速度快,且精度高。五、系统设计 SoilGAS 地上多组分气体通量监测系统由气体分析仪、iChamber自动箱、多路控制器等组成,可在线、连续测量多个小区的土壤CO2、CH4、N2O、H2O排放通量。系统布设图如下:六、技术参数1、自动箱尺寸:面积1M² (直径1.2M)高度2.0米;面积0.3M² (直径0.62M)高度1.1米;面积0.08M² (直径0.35M)高度0.5米2、升降高度:随植物长高自动调节3、呼吸罩类型:透光/不透光可选4、气体测量原理:激光吸收光谱5、气体浓度范围及精度CO2:0-10000ppm,CH4:0-100ppm N2O:0-100ppm H2O:0-5%检测精度:CO2≤0.15ppm,CH4≤10ppb N2O≤10ppb H2O≤1ppm产地: 中国 澳作公司
    留言咨询
  • 北京唯思德科技有限公司多年从事温室气体监测解决方案,根据《碳监测评估试点工作方案》的相关试点单位与企业的监测任务,本公司定制多尺度,多维度,多碳源监测体系,服务于国家“双碳”战略目标,支撑碳达峰、碳中和的新战略新任务,构建本市大气环境排放温室气体综合监测体系;北京唯思德科技有限公司开创性推出WSD-FLY无人机温室气体观测系统解决方案,该系统依靠自上而下质量平衡算法进行TERRA模型构建,采用移动监测数据匹配算法模型,两者结合,计算出源排放量。可测量源的大小从10x10 m2 到1000 x 1000m2 (在特定的气象条件下,更大的源)排放量。WSD-FLY无人机温室气体观测系统有助于探索自上而下的碳排放量反演方法,选择监测点位,并初步形成大气温室气体监测技术指南,支撑城市碳排放量、排放源及源强核算校验;摸清本底、跟踪评估变化趋势。建立完善支撑城市碳排放量核算校验,可评估城市与区域气候变化和节能减排的社会、经济与环境效益,发展绿色低碳经济等提供科技支撑稳步推进碳监测评估体系建设。特点优势 l 方法学已被验证,可准确测量CO2/CH4/N2O/CO多种温室气体和多种VOC的排放量l 针对各类点源和面源均适用l 升级质量平衡算法,使之适配于无人机测量数据l 可应用于各类工业园区、厂区、矿区、场站的总和排放量l 快速部署,当天获取排放量结果l 数据平台,实时展示结果,成功建立三维气象参数校正算法l 快速捕获街道至城市区域尺度的温室气体空间分布,获取热点,标识关键排放源l 方法学已被验证,可针对中小型点源排放量进行测量应用领域重点行业监测:排放量测量l 煤炭行业:井口CH4逸散排放,矿后活动包括洗煤厂、选煤厂、堆场、装车场站等CH4逸散排放监测;露天煤矿CH4排放监测;关停煤矿CH4排放监测 l 油气行业:各类油气生产设施的CH4逸散排放量测量,管线泄漏排放量监测,存储场站逸散源排放,运输过程排放,天然气处理厂站排放,炼油、石油化工,城市燃气配送环节排放l 电力行业:烟囪CO2排放量测量,厂区CO2逸散排放量测量,煤炭堆场CH4逸散排放量测量l 钢铁行业:高炉CO2排放量测量,厂区CO2排放量测量,煤炭堆场CH4逸散排放量测量l 水泥行业:高炉CO2排放量测量,厂区CO2排放量测量,煤炭堆场CH4逸散排放量测量l 废弃物行业:污水处理厂CH4逸散排放量测量;垃圾填埋场CH4逸散排放量测量l 各类工业园区:厂区CO2,CH4,N2O各类VOC总和排放量测量典型城市与区域碳浓度反演排放量方法l 高精度监测站点选择,确认站点区域代表性l 通过监测,建立站点与区域内主要排放源在不同气象条件下的联系l 获取整个区域的碳排放量,以及随时间的变化趋势典型生态系统:排放量测量l 山水林田湖草沙冰生态系统温室气体排放量测量模型算法及原理展示图1:航行CO2测量值采用质量平衡算法模型确定排放率,可分别量化地表排放和升高排放。 技术参数 高度:3500米;响应时间:3~6s;测量参数:采用光谱原理分析技术,能实时监测CO、CO2、CH4、N2O、H2O气体浓度。测量精度(5min,1σ):CO2ppb CO20.2ppm;CH42ppb;N2O0.5ppb。(测定参数可以根据用户要求选择)测量池温度及压力控制精度:±0.001℃;±0.015Torr排放量准确度:2~10%排放量面积:10*10m2~1000*1000m2样品温度:-15~45℃取样流速:500ml/min软件系统界面:中文操作软件界面,win7及以上操作系统接口:进气口1/8,出气口1/4英寸接头输出:RS-232,USB应用案例生产厂家:中国 唯思德
    留言咨询
  • LI-8250内嵌通量计算和存储模块,灵活连接LI-7810 高精度CH4、CO2、H2O气体分析仪或LI-870 CO2、H2O气体分析仪,执行土壤温室气体通量自动长期测量。LI-8250多通道土壤温室气体通量自动测量系统 ,同时连接8个测量室,实现了对多点土壤CH4 、 CO2 、H2O通量的长期、连续监测。同时,该系统还可用于大气CO2 、CH4、H2O廓线研究。另外,通过连接其它环境传感器,如太阳辐射、土壤温度和土壤水分传感器等,可研究环境条件与土壤温室气体通量的相关性。 主要特点l 灵活连接各种气体分析仪l 精确、自动、重复式测量,野外无需值守l 内置Wi-Fi,移动终端连接操控;或远程访问l 内含土壤温室气体通量计算模块l 8GB数据存储 比LI-8150功能更强大l 灵活连接/更换第三方气体分析仪l 内含通量计算模块l 内嵌Wi-Fil 内含系统控制模块l 连接SDI-12长期测量室l 内置GPS 技术参数仪器概况尺寸:38.5 cm L × 52 cm W × 18.5 cm H重量:7.7 kg防水性能:符合IEC IP55 标准工作环境:温度–20 ~ 45℃,湿度0 ~ 95% RH,无冷凝用户数据存储:8 GBGPS:准确度2.5 m CEP覆盖范围:气室距离LI-8250最大半径:15.0 m,每个气室1条延长管线气室距离LI-8250最大直径:30.0 m,每个气室1条延长管线泵:与气室之间流速:~2 到 3 lpm,类型为隔膜泵(分析仪中的泵会对LI-8250中的气流进行亚采样)气压传感器:测量范围:20 ~ 110 kPa传感器准确度:±0.4 kPa @ 50 ~ 110 kPa分辨率:0.006 kPa 通讯LED显示:供电,状态,网络,USB状态连接:3个以太网接口,Wi-Fi(部分国家可用)Wi-Fi兼容性:2.4 GHz, 802.11 a/b/g/n/ac接口:USB-A:1个,密封,用于连接LI-870 CO2/H2O分析仪USB-A:2个标准,用于内部数据存储(文件导出)或Wi-Fi适配器RJ-45以太网:3个密封,用于连接LI-COR痕量气体分析仪,本地以太网络,或蜂窝网络模块。接口亦可接入标准的非密封式RJ-45以太网线。输出接口:RS-422 通讯及24 VDC供电,全双工,115200波特,+24 VDC输出(限于每个输出端口~1.8 A ±15%)供电供电需求:10 ~ 30 VDC典型耗电量 (W) 仪器 待机 取样/移动 最大/启动 LI-8250 4.8 15.6 18.2a 8200-104 (每个) 0.36 4.8b N/A LI-870 5.0 5.0 14 注:a为LI-8250典型的最大功率,没有额外的启动耗电;b 为其实打开或关闭过程中功率,不是采样期间功率 8250-770交流-直流电转换器尺寸:15 cm L × 12.5 cm W × 8.5 cm H重量:1.3 kg防护性能:符合IEC IP55标准工作环境:防尘防水性能符合IP55标准,温度–20 ~ 50℃供电:100 ~ 240 VAC, 50/60 Hz, 120 VA输出电压:12 VDC, 6.67 A 长期测量室8200-104(不透明)尺寸(L×W×H):48.3 cm×38.1 cm× 33.0 cm重量:7.3 kg气室体积:3955 cm3测量土壤面积: 317.8 cm2防护等级:IEC IP55空气温度传感器:工作温度: -20 ~ 50℃;准确度:±0.3℃@ -20~50℃光照传感器电流输入:量程:0-100 μA;分辨率:1.5 nA;准确度:±(读值的0.37%+8 nA)@-20~50℃SDI-12通讯:最大设备数:10;电压输出:12 VDC,200 mA 长期测量室8200-104C(透明)尺寸(L×W×H):48.3 cm×38.1 cm× 33.0 cm重量:7.3 kg气室体积:3955 cm3测量土壤面积:317.8 cm2防护等级:IEC IP55空气温度传感器:工作温度: -20 ~ 50℃;准确度:±0.3℃@ -20~50℃光照传感器电流输入:量程:0-100 μA;分辨率:1.5 nA;准确度:±(读值的0.37%+8 nA)@-20~50℃SDI-12通讯:最大设备数:10;电压输出:12 VDC,200 mA
    留言咨询
  • 概述温室气体排放通量测量是大气环境科学的重要课题,是研究温室气体浓度变化趋势、源和汇的基础,对温室气体分布评估和应对气候变化有要意义。了解地气间的交换通量随时间的变化,理解全球温室气体的交换,对不同生态系统通量的长期观测,在揭示大气中CO2、CO、CH4、NH3、N2O、SF6等温室气体吸收与释放过程、能量流动与物质循环、地表生物圈大气圈间的相互作用等方面发挥重要作用。比如湖泊沼泽、生态学研究、污染土壤检测、农田施肥监测、畜禽养殖、有机肥堆放、河海土壤、温室气体排放等等。杜克泰克公司DKG-M500腔衰荡光谱温室气体分析仪,基于腔衰荡吸收光谱(CRDS)技术,具有测量精度高、检测限低、实时性好、原位在线、高效测量等优点,已成为温室气体通量在线观测与分析的可靠解决方案。特点ppt级灵敏度光程10kM可配置12~60点多点采样器快速响应时间,每个通道8秒增强灵敏度、极简使用、便捷操作低成本、简便维护保养、少备品备件系统即插即用,系统可在几分钟内简单操作完成工作条件温度范围:-10℃~ +45℃湿度范围:低于90% RH, 无凝露防护等级: IP54 (IEC 529)储存温度:-20℃~ +60 ℃采样条件温度范围:0 ~ +49℃ 无凝露采样压力:露点+8℃ 或更高湿度范围:露点+8℃ 或更高气体流量:250mL/min颗粒物: 0.2 μm 腔室压力控制精度:±0.0002atm采样抽气泵:内置气体接口:带有快速插头的6/4mm管,可定制;重量:约23 kg尺寸:48.4cm Wx33.9cm Hx40.5cm D电气接口输入功率:250W工作电源:100 - 240VAC@50 - 60 Hz通讯接口:Ethernet、RS232、RS485管线预热恒温测量、防止吸附可选交流供电、太阳能电池供电
    留言咨询
  • GC4700环境空气温室气体在线监测系统1 产品概述GC4700环境空气温室气体在线监测系统采用GC-FID/ECD检测技术,可实现对环境空气中痕量温室气体CO2、CH4和N2O的在线实时监测,满足GB/T31705-2015《气相色谱法本底大气二氧化碳和甲烷浓度在线观测方法》的标准要求。样品通过载气进入色谱柱预分离,氧气放空后,经色谱柱分离后的CH4和CO2进入甲烷转化炉,经催化剂催化还原成CH4后进入FID检测器进行检测,经色谱柱分离后的N2O进入ECD检测器进行检测。2 应用领域l 气象局、生态环境监测部门l 畜牧业、农业l 科研机构3 产品特点1) 采用GC-FID/ECD检测技术,可同时分析环境空气中的CO2、CH4和N2O2) 可扩展对CO、SF6等温室气体组分的在线实时监测 3) 独特的自动标定及重组分反吹系统,实现仪器的高稳定性、高精确度4) 采用EPC技术控制载气、空气和氢气,精度高,重复性好5) 智能化设计,具有断电自动重启、报警功能、自诊断等功能,维护方便6) 自主开发定量分析软件,可对接各类数据平台。4 技术参数监测因子:温室气体(CO2、CH4、N2O)监测原理:GC-FID/ECD分析周期:≤8min测量范围:0-800 ppm(CO2)、0-500 ppm(CH4)、1-1000ppb(N2O)检出限:<0.3 ppm(CO2、CH4)、≤0.1ppm(N2O)重复性:≤0.1%(CO2)、≤0.5%(CH4)、≤0.3%(N2O)24h漂移:<0.4ppm(CO2)、<10ppb(CH4)、<1ppb(N2O)
    留言咨询
  • GT5000MX 多通道长期土壤温室气体通量测量系统GT5000MX 多通道长期土壤温室气体通量测量系统是芬兰Gasmet公司生产的一款基于傅里叶变换红外光谱(FTIR)技术的多通道长期土壤温室气体排放监测系统。该仪器可长期在野外连续测定多种主要的温室气体通量,如:N2O,CH4,CO2,H2O,CO和NH3,且测量精度可达ppb级。GT5000 MX配合Eosense公司的eosAC自动气室可用于短期或长期测量土壤温室气体的通量。通过eosMX多路器,GT5000可接入至多12个eosAC自动气室,配套的eosAnalyze分析软件可用于实时计算温室气体通量数据。主要特点采用傅里叶变换红外光谱技术;同时测量N2O,CH4,CO2,H2O,CO和NH3等6种温室气体,最多可同时测量50种气体;增加检测气体种类过程简易且经济,无需改变硬件内容;多种无线连接方式,如WI-FI或蓝牙。无需专业知识,用户可通过导航进行操作;一键测量和即时的在线处理结果;用户自定义视觉和音频浓度警报;五种不同的视图展示相关的测量信息;自动气室有机械臂,可缓慢升降;通气口的设计可确保稳定的大气压力,且不会通过反向扩散影响测量;气室的内部进出回路可有效的促进气体混合。主要参数 GT5000高精度多参数温室气体分析仪1.测量原理:FTIR傅里叶变换红外光谱;2.气体测定种类:可同时测定50种气体;3.相应时间:通常120s,基于所测定的气体和测量时间;4.电池:锂离子电池,单节电池可维持3小时;5.充电电源:115/230V AC;6.分析软件:Calcmet(需Win7或10操作系统);7.数据连接:USB,以太网,蓝牙,WI-FI;8.采样泵流速:2 L/min;9.气体采样过滤:带有2μm孔径聚四氟乙烯过滤器的采样探头;10. 采样气体进/出口配件:6mm快速接头;11.外壳:大小:450×287×166 mm(H×W×D);材料:ABS PC;防护等级:IP54(适用于野外便携式设备);12.重量:9.4kg(含电池)/8.0kg(不含电池)13.光谱仪:分辨率:200px-1;扫描频率:10次/s;检测器:碲镉汞(MCT)光电探测器(珀尔帖致冷);分束器材料:硒化锌(ZnSe);波数范围:900-105000px-1;14.样品室结构:多通道,固定光程长度5m;反射镜:固定式,镀金;体积:0.5L;操作条件15.采样气体压力:环境压力;16.采样气体温度:环境温度(-5~40℃),无冷凝;17.操作温度:-5~40℃(短期),5~30℃(长期);性能指标18.零点漂移:在环境背景下每24小时内漂移小于测量范围的2%;19.灵敏度漂移:无;20.线性偏差:小于测量范围的2%;21.温度漂移:每10K温度变化,小于测量范围的1%。22.压力影响:对于1%的测量压力变化,测量值将会出现1%的变化。(带压力补偿)23.周围环境测量间隔:建议24h。24.几种主要温室气体的检测限 H2O:单位:Vol-%;最小检测限:0.010 Vol-%; CO2:单位:ppm; 最小检测限:5ppm; CH4:单位:ppm; 最小检测限:40ppb; N2O:单位:ppm; 最小检测限:7ppb; NH3:单位:ppm; 最小检测限:70ppb; CO:单位:ppm; 最小检测限:70ppb;eosAC自动开合气室eosAC自动开合气室是一款用于测量多种土壤气体通量的自动气室。eosAC可与GT5000配合使用,用于土壤温室气体浓度的测量分析。用户可以通过软件eosAnalyze-AC进行数据的后期处理与可视化。主要参数1.气室体积:1969cm3;2.气室覆盖面积:182cm2;3.工作电压:12V DC;4.测定功率:8W;5.待机功耗:1W;6.重量:约5kg;7.管路长度(分析仪与气室间):10m或30m;8.辅助分析仪接口:3个;9.后期处理与可视化软件:eosAnalyze-AC。多路气体控制转换模块eosMX/MX-P多路器是一种气体测量过程中采样气体气路转换工具。GT5000通过eosMX/MX-P可与12个自动气室进行连接。eosMX/MX-P配备12个采样口,用户可以通过eosLink-MX管理软件对多达12条气路的采样进行设置。 主要参数1.尺寸:eosMX:46 × 43 × 14 cm,eosMX-P:50 × 29 × 44 cm;2.重量:eosMX:12 kg,eosMX-P:17 kg;3.工作电压:eosMX:100 V AC to 240 V AC, eosMX-P:12 V DC (± 0.5 V DC);4.测定功率:12 W + 8 W;5.待机功耗: 12 W。用于生态系统净交换量(NEE)测量的透明自动气室(可选)eosAC-LT/LO气室因其更大体积和可堆叠的基座设计,可用于测量地表生态系统净交换量测量的NEE研究。eosAC-LT/LO的所有组件都可在野外环境进行更换,以最大限度地减少因仪器停机造成的数据丢失。气室具有两个辅助接口,可接入额外的传感器(例如PAR,土壤温度,土壤湿度等)和测量位置的其他环境数据;内置的风扇则可以有效地促进气体的混合。用户还可根据需要选择侧壁透明或不透明的气室。主要参数1.气室体积:0.072m3;2.气室覆盖面积:0.21m2;3.工作电压:12V DC;4.重量:约18kg;5.管路长度(分析仪与气室间):最大15-30m;6.辅助传感器接口:2个7.气室侧壁:透明或不透明;8.套筒高度:10 cm或20 cm;9.基座:用于增加高度的可堆叠基座。
    留言咨询
  • 产品概述EXPEC 2000(规格:810) 温室气体气相色谱在线连续监测系统配备温室气体专用型FID检测器,用于检测环境空气中CO2、CH4和CO等主要温室气体浓度,可扩展对CO、SF6 等温室气体组分的在线实时监测。样气先通过定量环,然后被温室气体专用色谱柱分离,CH4进入FID检测,CO和CO2先后进入甲烷转化炉,在镍催化剂作用下高温加氢还原为CH4后再被送入FID检测。整机性能指标满足GB/T31705-2015《气相色谱法本底大气二氧化碳和甲烷浓度在线观测方法》的标准要求。产品特点1、符合标准《气相色谱法本底大气二氧化碳和甲烷浓度在线观测方法》(GB/T 31705-2015)2、采用温室气体专用型FID检测器,灵敏度和稳定性优异3、一台分析仪可配置双检测器,实现CO2、CH4和CO多种组分的高精度监测4、采用技术成熟的气相色谱法,操作维护简单,运行成本低应用领域环境大气监测、背景大气监测、园区厂界监测以及科研应用等
    留言咨询
  • DJ-0252便携式CO2 H2O温室气体通量测定系统用途:随着全球变化研究的广泛开展,气体通量的监测越来越受到关注。气体通量的测定通常包括植物叶片与大气界面气体通量测定,土壤表面与大气界面气体通量测定、生态系统与大气界面气体通量测定等。便携式温室气体通量测定系统由主控模块、气体分析模块和土壤呼吸室组成。主控模块可以集成分析模块、气压、温湿度、GPS等数据,控制系统运行状态,根据客户需求进行气体通量或者呼吸速率的计算;气体分析模块,可根据客户需求可配置了NDIR分析模块或可调谐激光光谱分析技术(TDLAS)分析模块;根据测量对象的不同,还可以选择不同的前端采样模块,例如土壤呼吸室、光合呼吸室以及适用于水面测量的浮漂式呼吸室。根据前端采样模块不同,可以自由设定计算参数,控制系统能够自动根据参数设定实时进行通量(呼吸速率)计算。技术原理:气体分析模块标准配置了可调谐激光光谱分析技术(TDLAS)的CO2/H2O分析模块,可调谐激光光谱分析技术(TDLAS)利用可调谐半导体激光器窄线宽和波长可调谐特征对特征气体近红外“指纹”特征吸收谱线进行探测,具有高灵敏、高分辨率、快速响应,非接触监测等优点。将TDLAS 技术与开放式长光程技术、微弱信号检测、自动增益调节技术相结合,监测范围广、调校简单、可以实现高时间分辨率、高灵敏生态环境温室气体激光在线检测。自主开发的APP 程序通过无线与主控模块相连,根据采样模块不同,可以自由设定计算参数,控制系统能够自动根据参数设定实时进行通量(呼吸速率)计算,更方便野外实时测量观测。特点:中红外腔增强技术实现高时间分辨率、高灵敏测量 免标定,无需标准气体定时标定 不受背景气体交叉干扰 功耗低,锂电池供电可达8小时 扩展性高,可以附加多种传感器(例如:GPS,光辐射传感器等) 操作性强,强大的数据处理功能,能够在线实时进行数据处理 用户定制化程度高部分应用单位: &bull 烟台海岸带地质调查中心&bull 上海师范大学&bull 西安农科院&bull 北京师范大学&bull 华中农业大学技术参数气体分析模块图片CO2测量范围0~5000ppm(可定制)CO2检测精度≤0.35ppm(可定制)CO2检出限0.1ppmCO2零点噪声0.1ppmH2O测量范围0~6%(可定制)H2O检测精度≤读数±1.5% H2O检出限0.1ppm标定出厂标定无需重复标定环境温度-30-60℃环境湿度 99% R.H,无冷凝供电电池锂电池充电电源12VDC尺寸主机:55 x 26 x 26 cm重量8kg(含太阳能板)圆形呼吸室图片呼吸室类型透明(铝合金)/非透明(亚克力) 测量方式动压平衡流通式测量充电电源12VDC控制方式主控机控制腔室尺寸220mm(D)*120mm(H)(可选)测量体积3140cm3测量面积314cm2 标定出厂标定无需重复标定取样流速标准1L/min,可调整体外形尺寸440mm(L)×260mm(W)×260mm(H)整体重量5.0Kg 智能升降呼吸室 图片呼吸室类型透明/非透明(可定制) 腔室尺寸250mm(D)*100mm(H)整体外形尺寸400mm(L)×330mm(W)×330mm(H)测量体积4188.67cm3 +土壤环内体积测量面积295.58cm2测量方式动压平衡流通式测量工作方式可控自动开合控制方式WIFI控制接口SDI-12接口2个供电内置锂电池 锂电池容量10000mAH充电电压12V包装航空箱整体重量3.5Kg
    留言咨询
  • 观测应用大气中CO2、CH4、N2O等温室气体迅速增加,是造成全球气候变化的最重要因素之一。 痕量温室气体的测定对准确评估大气温室气体源汇至关重要,目前在定量估计温室气体吸收汇方面还存在很大的不确定性,比较而言,甲烷吸收汇和氧化亚氮吸收汇的不确定性比CO2吸收汇大得多。新一代的Aerodyne稳定碳氮气体同位素光谱仪可以对气体和同位素同步进行高频(10Hz)连续的原位监测,同时可以实现痕量温室气体含量和碳氧同位素的同步观测,为痕量温室气体的监测和溯源提供了新的工具。生态系统碳氮循环过程中的多种温室气体排放速率(CO2、CH4、N2O等)的实时测定需要提高时间分辨率、空间分辨率,需要原位无损、长时间、全参数、高精度、一体化、自动化和远程操控等技术协助捕获参数的微量变化,并通过同位素13C-CO2 、18O-CO2溯源,了解碳、氮、水循环耦合过程。系统组成该系统主机Aerodyne闭路气体分析仪采用可调谐红外激光直接吸收光谱(TILDAS)技术, 用中红外激光探测气体分子,独有的像散型多光程吸收池技术有效测量光程高达210m,有效提高气体分子的测量精度,达ppt级。可以同时测量痕量气体及碳氧同位素N2O、 CH4、H2O、CO2、 δ13C-CO2、δ18O-CO2 。技术特点1、 用中红外激光直接吸收技术,测量频率可达10Hz,检测限达ppt级。2、独有的双激光测量技术,一个分析仪同时测量多个痕量气体和同位素,减少多台系统测量时的系统误差。3、TDLWINTEL软件提供光谱回放模式,可选择HITRAN光谱标库里的标准光谱曲线,对测量的光谱重新拟合,对测量结果重新判定, 其它品牌无法做到。如,若标气不纯、含杂质,可从光谱回放中判定。4、多气体测量时,可用高纯度氮(99.9992%)冲洗测量室,定期测定零气光谱,去除背景干扰。5、每次测量时关闭激光,从“Zero”测量光谱绝对值(非差分法、光腔衰荡),测量过程无需标定。6、专利技术-活性钝化装置可显著提高粘性气体分子如NH3的响应时间,实现粘性气体和非粘性气体的同步观测,如NH3, CO2, O3,N2O, CH4同步观测。7、专利技术-惯性颗粒物去除接口,专门用于粘性气体测量时,去除进气口颗粒物残余,去除对二次采样的污染。8、具有激光频点校准腔室,可以在测量过程中实时校准激光吸收光谱频点,防止频点飘移。技术参数参数N2OCH4CO2H2O精度 1S0.03ppb0.1ppb100ppb10ppm精度 100S0.01ppb0.25ppb25ppb5ppm测量范围0-10000ppb0-10000ppb0-5000ppm0-5000ppm响应时间1-10HZ可选1-10HZ可选1-10HZ可选1-10HZ可选参数CO2δ13Cδ18O精度 1S25ppb0.1‰0.03‰精度 100S10ppb0.03‰0.03‰测量范围25ppb0.1‰0.1‰响应时间1-10HZ可选1-10HZ可选1-10HZ可选技术应用文献信息:Long-term eddy covariance measurements of the isotopic composition of the ecosystem–atmosphere exchange of CO2 in a temperate forest温带森林生态系统同位素组成的长期涡动协方差测量——大气CO2交换CO2净生态系统-大气交换(NEE)的稳定同位素组成携带了有关生态系统碳循环机制的信息。二氧化碳在水中的羧化、扩散和溶解等过程分馏了二氧化碳的同位素。因此,净CO2交换的同位素组成可用于探测这些过程,并为评估生物物理生态系统模型提供独立的约束条件。它还可以阐明生态系统对大气同位素收支的影响,这对陆地/海洋、源/汇分配有影响。此外,它还可用于将NEE划分为初级生产力总量和生态系统呼吸总量。NEE通常最直接的测量方法是涡流协方差(EC)法,在缺乏直接同位素通量测量的情况下,一些旨在划分NEE的研究中使用了所谓的EC/烧瓶法(Bowling et al.,1999)间接确定了NEE的碳同位素组成。 13C在1秒到30分钟的时间范围内发生,典型的标准偏差仅为0.02‰(Saleska等人,2006年),在2008年开发出专门的量子级联激光光谱仪(TILDAS)之前,还没有能够直接监测二氧化碳同位素的仪器。与标准EC系统一样,在平静的夜晚观察到“lostflux”,在其他时段也发挥一定作用。上图.QCLS噪声(σm),单位为C(黑色,ppm)δ13C(绿色,‰),和δ18O(蓝色,‰)与积分时间(τ),对于40 min的校准间隔以及几乎相等的样品和参考池CO2摩尔混合比。细对角线是白噪声的相应期望值。垂直的橙色虚线标志着哈佛森林涡旋输送的主要时间尺度。作为比较,Allan偏差为δ13C,无校准(实线灰线)和校准(虚线灰线)。 涡动协方差要求较高的采样率,粗略地说,在涡动输送的主要时间尺度上整合数据。我们的共谱(见第4.3节)表明,在哈佛森林,涡动输送在1到1000秒的时间尺度上非常重要,峰值约为50秒或30秒(取决于您是考虑傅立叶还是多分辨率共谱)。因此,上图表明,EC系统的TILDAS仪器噪声约为C=18 ppb,δ13C=0.02‰,δ18O=0.04‰(在40秒时用橙色垂直虚线标记)。上图.QCLS噪声(σm),单位为C(黑色,ppm)δ13C(绿色,‰),和δ18O(蓝色,‰)与校准间隔(△tcal),积分时间为100 s,样品和参考池CO2摩尔混合比几乎相等。上图展示了光谱仪的特殊稳定性,如使用△tcal等于4分钟(短校准时间间隔)可将噪声降低到2倍左右。1END1
    留言咨询
  • 观测应用大气中CO2、CH4、N2O等温室气体迅速增加,是造成全球气候变化的最重要因素之一。 痕量温室气体的测定对准确评估大气温室气体源汇至关重要,目前在定量估计温室气体吸收汇方面还存在很大的不确定性,比较而言,甲烷吸收汇和氧化亚氮吸收汇的不确定性比CO2吸收汇大得多。新一代的Aerodyne稳定碳氮气体同位素光谱仪可以对气体和同位素同步进行高频(10Hz)连续的原位监测,同时可以实现痕量温室气体含量和碳氧同位素的同步观测,为痕量温室气体的监测和溯源提供了新的工具。生态系统碳氮循环过程中的多种温室气体排放速率(CO2、CH4、N2O等)的实时测定需要提高时间分辨率、空间分辨率,需要原位无损、长时间、全参数、高精度、一体化、自动化和远程操控等技术协助捕获参数的微量变化,并通过同位素13C-CO2 、18O-CO2溯源,了解碳、氮、水循环耦合过程。系统组成该系统主机Aerodyne闭路气体分析仪采用可调谐红外激光直接吸收光谱(TILDAS)技术, 用中红外激光探测气体分子,独有的像散型多光程吸收池技术有效测量光程高达210m,有效提高气体分子的测量精度,达ppt级。可以同时测量痕量气体及碳氧同位素N2O、CH4、H2O、CO2、δ13C-CO2、δ18O-CO2 。技术特点1、用中红外激光直接吸收技术,测量频率可达10Hz,检测限达ppt级。2、独有的双激光测量技术,一个分析仪同时测量多个痕量气体和同位素,减少多台系统测量时的系统误差。3、TDLWINTEL软件提供光谱回放模式,可选择HITRAN光谱标库里的标准光谱曲线,对测量的光谱重新拟合,对测量结果重新判定, 其它品牌无法做到。如,若标气不纯、含杂质,可从光谱回放中判定。4、多气体测量时,可用高纯度氮(99.9992%)冲洗测量室,定期测定零气光谱,去除背景干扰。5、每次测量时关闭激光,从“Zero”测量光谱绝对值(非差分法、光腔衰荡),测量过程无需标定。6、专利技术-活性钝化装置可显著提高粘性气体分子如NH3的响应时间,实现粘性气体和非粘性气体的同步观测,如NH3, CO2, O3,N2O, CH4同步观测。7、专利技术-惯性颗粒物去除接口,专门用于粘性气体测量时,去除进气口颗粒物残余,去除对二次采样的污染。8、具有激光频点校准腔室,可以在测量过程中实时校准激光吸收光谱频点,防止频点飘移。四、技术参数参数N2OCH4CO2H2O精度 1s0.03ppb0.1ppb100ppb10ppm精度 100s0.01ppb0.25ppb25ppb5ppm测量范围0-10000ppb0-10000ppb0-5000ppm0-5000ppm响应时间1-10HZ可选1-10HZ可选1-10HZ可选1-10HZ可选参数CO2δ13Cδ18O精度 1s25ppb0.1‰0.1‰精度 10s-0.03‰0.035‰精度 120s10ppb0.02‰0.03‰响应时间1-10HZ可选1-10HZ可选1-10HZ可选 技术应用文献信息:Long-term eddy covariance measurements of the isotopic composition of the ecosystem–atmosphere exchange of CO2 in a temperate forest温带森林生态系统同位素组成的长期涡动协方差测量——大气CO2交换CO2净生态系统-大气交换(NEE)的稳定同位素组成携带了有关生态系统碳循环机制的信息。二氧化碳在水中的羧化、扩散和溶解等过程分馏了二氧化碳的同位素。因此,净CO2交换的同位素组成可用于探测这些过程,并为评估生物物理生态系统模型提供独立的约束条件。它还可以阐明生态系统对大气同位素收支的影响,这对陆地/海洋、源/汇分配有影响。此外,它还可用于将NEE划分为初级生产力总量和生态系统呼吸总量。NEE通常最直接的测量方法是涡流协方差(EC)法,在缺乏直接同位素通量测量的情况下,一些旨在划分NEE的研究中使用了所谓的EC/烧瓶法(Bowling et al.,1999)间接确定了NEE的碳同位素组成。 13C在1秒到30分钟的时间范围内发生,典型的标准偏差仅为0.02‰(Saleska等人,2006年),在2008年开发出专门的量子级联激光光谱仪(TILDAS)之前,还没有能够直接监测二氧化碳同位素的仪器。与标准EC系统一样,在平静的夜晚观察到“lostflux”,在其他时段也发挥一定作用。上图.QCLS噪声(σm),单位为C(黑色,ppm)δ13C(绿色,‰),和δ18O(蓝色,‰)与积分时间(τ),对于40 min的校准间隔以及几乎相等的样品和参考池CO2摩尔混合比。细对角线是白噪声的相应期望值。垂直的橙色虚线标志着哈佛森林涡旋输送的主要时间尺度。作为比较,Allan偏差为δ13C,无校准(实线灰线)和校准(虚线灰线)。涡动协方差要求较高的采样率,粗略地说,在涡动输送的主要时间尺度上整合数据。我们的共谱(见第4.3节)表明,在哈佛森林,涡动输送在1到1000秒的时间尺度上非常重要,峰值约为50秒或30秒(取决于您是考虑傅立叶还是多分辨率共谱)。因此,上图表明,EC系统的TILDAS仪器噪声约为C=18 ppb,δ13C=0.02‰,δ18O=0.04‰(在40秒时用橙色垂直虚线标记)。上图.QCLS噪声(σm),单位为C(黑色,ppm)δ13C(绿色,‰),和δ18O(蓝色,‰)与校准间隔(△tcal),积分时间为100 s,样品和参考池CO2摩尔混合比几乎相等。 上图展示了光谱仪的特殊稳定性,如使用△tcal等于4分钟(短校准时间间隔)可将噪声降低到2倍左右。1END1
    留言咨询
  • CPEC310是由美国Campbell Scientific Inc.(CSI)研制的一款高性能、高可靠性的科研级闭路涡动相关通量观测系统,可用于大气与生态系统之间的二氧化碳、水汽、热量和动量交换的长期监测。 一套完整的CPEC310闭路涡动相关通量观测系统系统由一套EC155闭路气体分析仪、CSAT3A三维超声风传感器、CR6数据采集器以及其他配件和配套操作软件组成,系统高度集成,包含了使用中所必须的各种仪器及配件,能够为用户提供“交钥匙”系统,极大得方便了用户的使用。 EC155是专为涡动相关通量观测设计的闭路气体分析仪,可同时测量二氧化碳和水汽的密度,采样气室内的温度和压力,其采用5.8ml的小采样气室设计,大大减少了采样停留时间(50ms,7LPM时)。这使系统的功耗大幅降低到12W,并拥有优异的频率响应性能(5.8Hz,半功率带宽)。结合CSAT3A三维超声风传感器即可同步测量三维风速、空气温度和超声虚温。  作为系统控制核心的CR6数据采集器保障了整套系统的高速、稳定运行,其可将采集到的测量数据存储到CF存储卡中(支持16GB),亦可以有线或无线方式,通过局域网、Internet、卫星等多种途径实现数据的远距离传输,支持3G、GPRS、WiFi、微波电台等多种无线通讯方式。涡动协方差系统,亦称涡度相关系统,是一种微气象学的测量方法,采用涡度相关原理,利用快速响应的传感器来测量大气下垫面的物质交换和能量交换,它是一种直接测定通量的标准方法,已成为近年来测定生态系统碳、水交换通量的关键技术,得到了越来越广泛的应用,并逐渐成为国际通量观测网络的主要技术。涡动协方差系统可以测量显热通量、潜热通量、动量通量、摩擦风速,以及其它物质通量(如CO2等),主要应用在边界层理论研究、大气扩散、能量收支研究、水分及其它物质收支研究等众多领域。系统特点系统集成度高,包含所需各种仪器及配件频率响应性能优异低功耗,支持多种供电方式可选配零点与阈值标定输出原始参数■ Ux(m/s)■ Uy(m/s)■ Uz(m/s)■ 超声虚温(℃)■ 超声风速仪诊断值■ CO2混合比(μmol/mol)■ H2O混合比(mmol/mol)■ 气体分析仪诊断值■ 采样室温度(℃)■ 采样室压力(kPa)■ CO2信号强度■ H2O信号强度■ 采样室内外压差(kPa)
    留言咨询
  • 监测背景气体浓度和同位素特征可以揭示土壤中微生物的代谢及其对环境变化的响应。土壤微量气体,限制微生物的生化过程,如硝化作用、产甲烷作用、呼吸作用和微生物通讯。将土壤探针与灵敏的微量气体分析仪集成在一起的地下痕量气体同位素在线观测系统可以通过测量来填补这一空白,解决现场土壤气体浓度和同位素特征的空间(厘米尺度)和时间(分钟)变化的测量问题。土壤气体测量包括一氧化二氮(δ18O,δ15N,以及N2O的15N位置偏好)、甲烷、二氧化碳(δ13C)的同位素比值。惰性二氧化硅基质的探针来实现可控气体条件下的采样,我们优化了恢复代表性的土壤气体样品采样,同时减少了取样对地表下气体浓度的影响。中红外激光光谱仪来测量δ14N14N16O、δ14N15N16O、δ15N14N16O和δ14N14N18O的同位素比值,具有高精度和低浓度依赖性。系统设计该系统由土壤采气矛、多通道采集器、野外恒温箱、Aerodyne中红外吸收光谱闭路气体分析仪组成。主机Aerodyne闭路气体分析仪采用可调谐红外激光直接吸收光谱(TILDAS)技术, 用中红外激光探测气体分子,独有的像散型多光程吸收池技术有效测量光程高达210m,有效提高气体分子的测量精度,达ppt级。有两种气体组合选项: 1、CH4、δ13C(CH4)、N2O、δ15N 14N16O、δ14N15N16O、δ18O(N2O) 2、CO2、δ13C(CO2)、δ18O(CO2)、H2O、δ18O(H2O)、δHDO 地下痕量气体采气矛用于土壤剖面气体采集,埋入土壤剖面的不同深度,实现厘米尺度的气体采集。采气矛管壁的小孔与土壤气体交换平衡后将气体泵出,与气体分析仪通过管路连接,可以测量土壤剖面不同深度处土壤气体成分的实时浓度。技术特点01用中红外激光直接吸收技术,测量频率可达10Hz,检测限达ppt级。02独有的双激光测量技术,一个分析仪同时测量多个痕量气体和同位素,减少多台系统测量时的系统误差。03TDLWINTEL软件提供光谱回放模式,可选择HITRAN光谱标库里的标准光谱曲线,对测量的光谱重新拟合,对测量结果重新判定, 其它品牌无法做到。如,若标气不纯、含杂质,可从光谱回放中判定。04多气体测量时,可用高纯度氮(99.9992%)冲洗测量室,定期测定零气光谱,去除背景干扰。05每次测量时关闭激光,从“Zero”测量光谱绝对值(非差分法、光腔衰荡),测量过程无需标定。06专利技术-活性钝化装置可显著提高粘性气体分子如NH3的响应时间,实现粘性气体和非粘性气体的同步观测,如 NH3, CO2, O3, N2O, CH4同步观测。07专利技术-惯性颗粒物去除接口,专门用于粘性气体测量时,去除进气口颗粒物残余,去除对二次采样的污染。08具有激光频点校准腔室,可以在测量过程中实时校准激光吸收光谱频点,防止频点飘移。技术指标1 、测量精度: 1s/100s:CH4:0.2ppb/0.05ppb;δ13C(CH4):1‰/0.2‰;N2O :0.03ppb/0.01ppb;δ14N15N16O:6‰/1.5‰;δ15N14N16O:9‰/2.3‰;δ14N14N18O:12‰/3‰;CO2:0.1ppm/0.03ppm;δ13C(CO2):0.1‰/0.03‰;δ18O(CO2):0.1‰/0.03‰;H2O:10ppm/5ppm;δ18O(H2O):0.1‰/0.03‰;δHDO:0.3‰/0.1‰;2 、测量量程:CH4 : 2 to 20ppm;N2O : 0.3 to 100ppm;CO2 :300–1000ppm或 0.1–0.3μmole;H2O :4%。3 、响应时间:10Hz(1-10Hz可调)4 、采样速率:0-20slpm5 、数据输出:RS232、USB和以太网6 、采气矛: 有2种,一种不可浸水,一种可用于湿地,采气矛参数:A、透气孔直径:10μm 气体交换面积:500cm2 采气腔体容积:140ml 直径:32mm,长度500mm(不可浸水) B、透气孔直径:0.1μm 气体交换面积:50cm2 采气腔体容积:10ml 直径:12mm,长度150mm(可用于湿地)技术应用文献信息:Versatile soil gas concentration and isotope monitoring: optimization and integration of novel soil gas probes with online trace gas detection多功能土壤气体浓度和同位素监测:新型土壤气体探针与在线痕量气体检测的优化和集成在线连续土壤气体取样和痕量气体浓度连续测量的地下痕量气体同位素观测系统可同步测量两种痕量气体浓度和同位素。TILDAS可使用一台仪器以高灵敏度/光谱分辨率测量多种物种,并可在现场部署并随时操作此系统的阀门和流量控制设备。多功能性可以扩展到允许使用现有TILDAS技术分析一套土壤气体,例如研究土壤微生物N循环(例如N2O、NO、NO2、NH3、HNO3、HONO、NH2OH)、微生物微量气体清除(例如CO、OCS、CH4、O2)和其他大气相关物种(例如H2O2、HONO、N2H4、HCHO、HCOOH、CH3OH)。这些化合物是微生物群落的代谢物,是碳氮循环代谢途径的中间产物。因此,将这些仪器与土壤探针相结合,将有助于获得以前未探测到的反映土壤地下代谢和信号传递过程的生物信息。扩散式土壤探针可以在cm级空间分辨率下测量土壤气体动力学过程。在试验现场可以按不同深度埋设采气矛,进行土壤廓线痕量气体浓度观测。土壤探针和高分辨率痕量气体分析仪,利用土壤痕量气体浓度和同位素特征的现场空间(厘米尺度)和时间(分钟)测量,观测到由于环境驱动因素(如土壤湿度和氧化还原条件)变化而产生的气体排放变化,以及显示微生物代谢和群落动态的热时刻。这些试验表明,这种方法有可能揭示土壤微生物组与其当地环境在与现实世界变异性相关的时间尺度上的相互联系。a) 土壤湿润引起土壤氮素的脉冲响应2O(绿色阴影)及其同位素信号,包括δ448(蓝色),δ546(绿色)、δ456(红色)和位置偏好(紫色)。b) δ15N(x轴)、δ18O的N2O同位素特征估算图(y轴)和位置偏好(z轴),圆圈代表同位素特征变化的探针测量值,时间为499(小时),表明转移到不同微生物活性区域(彩矩形)。在x轴上,AOA(绿色500矩形)和AOB(紫色矩形)分别表示氨氧化古细菌和氨氧化细菌的硝化作用501。灰色矩形表示真菌脱氮。氧化还原条件 由UZA冲洗引起的从厌氧到好氧土壤条件的突然变化,推动了动态变化。 使用集成TILDAS和基于扩散的土壤探针捕获N2O、CO2的浓度。1END1
    留言咨询
  • LK-2200多通道地下-地表温室气体自动分析系统随着全球变化研究的广泛开展,气体通量的测定越来越受到关注。气体通量的测定通常包括植物叶片与大气界面气体通量测定,土壤表面与大气界面气体通量测定、生态系统与大气界面气体通量测定等。因为土壤空间异质性的存在,即便是同一区块相同土壤类型的土壤呼吸的差异性也非常大,科学家在进行土壤呼吸研究时,通过需要在空间、时间和气体种类上进行多维度研究,才能更好地解释土壤呼吸的内在机制。LK-2200多通道地下-地表温室气体自动分析系统能够配置单一或多组分的气体浓度分析仪,也能够配置各种气体同位素分析仪,优秀的扩展能力能够连接8路、16路或24路的呼吸暗室或透明箱以及土壤剖面气体取样探头。多通道土壤呼吸测量系统提供了一种高频率监测土壤孔隙中痕量气体浓度的新技术,以研究温度,土壤湿度和肥料投入量对痕量气体通量、产量和消耗量的影响。通过对地下-地表不同位置多种温室气体的连续同步监测,可以更好的理解土壤对气候的响应变化,也可以获得土壤内部和土壤-大气界面的联动机制及对气候变化的不同响应。技术原理可调谐激光光谱分析技术(TDLAS)、动态密闭气室法主要特点&bull 可调谐激光光谱分析技术(TDLAS)实现高时间分辨率、高灵敏测量&bull 免标定,无需标准气体定时标定&bull 不受背景气体交叉干扰&bull 可同时控制不同类型的土壤呼吸室&bull 可配套多品牌分析仪(可定制)&bull 扩展性高,可以附加多种传感器(例如:GPS,光辐射传感器等)&bull 操作性强,强大的数据处理功能,能够在线实时进行数据处理&bull 用户定制化程度高性能指标CO2 / H2O / CH4(可选) 分析模块CO2测量范围0 ~2000 ppmCH4测量范围0 ~100 ppmCO2最低检出限1 ppmCH4最低检出限0.1 ppmCO2零点噪声0.5 ppmCH4零点噪声0.15 ppmCO2 80%量程噪声2 ppmCH4 80%量程噪声0.3 ppmCO2 量程精密度(20%、80%)2 ppmCH4量程精密度(20%、80%)0.3 ppmH2O测量范围0 ~ 6% 标定出厂标定无需重复标定H2O准确度优于±1.5%读数取样流速标准1L/min,可调典型温度精度±0.1@20-60 °C复路控制系统通道数1~36通道可选操作温度-20 ~ 50 °C操作方式触摸屏湿度99% R.H,无冷凝定位模块北斗GPS双模(选配)取样流速标准1L/min,可调数据计算有(通量,呼吸速率)电源12VDC重量12 kg标气模块可选可选配模块可增加其他气体测量模块,土壤温湿度传感器、4G传输模块、GPS模块等扩展性主控板预留多个数据传输通道,可根据客户需求追加配件、传感器等,软件自主开发,可同步对应追加的相关传感器进行数据集成。可同时配套土壤界面观测研究的土壤呼吸室、群落光合箱,实现界面排放的多种立体式痕量气体监测系统。 圆形土壤呼吸室土壤呼吸室类型透明(铝合金)/非透明(亚克力)供电12V整体外形尺寸440mm(L)×260mm(W)×260mm(H)控制方式主控机控制整体重量5.0Kg腔室尺寸200mm(D)*130mm(H)测量方式动压平衡流通式测量测量体积4000cm3工作方式可控自动开合测量面积315cm2 方形土壤呼吸室叶室样式透明/非透明控制方式主控机控制叶室尺寸50cm(L)*50cm(W)*40cm(H)供电12V叶室重量约15kg叶室测量体积90.5L叶室工作方式可控自动旋转开合(上窗90°,侧窗45°)叶室测量面积0.1936m2驱动方式电动推杆温度监测-40℃—85℃材质铝合金、进口透明PC板密封方式密封条密封 地下剖面取气装置技术原理半透膜取气技术控制方式主控机控制尺寸500 mm (L) x 6(可定制)传感器温度传感器材质半透膜,铝合金支架产地与厂家:中国Eco-mind
    留言咨询
  • 在线土壤气体通量测量系统是一种用于测量土壤CO2通量的自动化系统。标准通道为4 通道,可扩展至8通道。可以将其他气体的传感器添加到系统中。应用-量化城市地区在全球碳预算中的作用,主要集中对CO2浓度的短期研究,记录跨城市或单个地点的空间模式。 -记录CO2的实际通量及其在城市环境中的扩散特性。 -评估对气候和生物圈的所有尺度的潜在影响。 -垃圾填埋场排放油碳动力学 -土地 -煤炭行业 -火山 -森林 -沼泽检测原理 土壤中的二氧化碳是通过植物根部和根部周围微生物的呼吸作用产生的,以及代谢植物凋落物和土壤有机质的异养微生物。土壤CCO2S(在土壤里的CO2浓度)中产生的二氧化碳从生产地点移动到CCO2S(在腔室里的CO2浓度)。这取决于土壤的湿度和温度。 土壤的湿度和温度需要通过附加的传感器测量。泵将一定体积的气体样品从腔室送到测量系统进行检测。在线土壤气体通量系统自动测量系统可准确测量土壤中的CO2交换,对于调查或长期测量非常有用。CO2演化的每日和季节性变化模式是土壤水分、温度、碳资源和其他因素变化的结果。可以在一个位置进行数周或数月的长期测量。 测量土壤呼吸的方法 一个已知体积的腔室由机器人手臂放置在土壤上,并监测腔室内CO2的增加率。使用该系统,空气在闭合回路中连续采样,土壤呼吸速率由仪器计算,显示和记录。腔室内的空气经过仔细混合,以确保采样具有代表性,不会产生影响土壤表面二氧化碳演变的压力差。 由于土壤的固有可变性,通常需要在多个位置进行测量才能获得可靠的平均土壤CO2通量值。为了评估空间可变性以及时间测量,可以多路复用并可以测量多达4个腔室(选配可至8个腔室)。模块化系统使研究人员能够根据他们的要求构建他们的定制系统。 传感器位置土壤湿度,温度,压力和其他辅助传感器都内置在每个腔室中。 传感器防护等级CO2,温度和压力红外传感器(IP55)/ 土壤湿度传感器(IP67)/ 辅助传感器接口:O2,H2S,CH4 ,NH3,VOC等(IP55)。机载数据收集气动回路将样气从腔室输送到控制单元。数据分析由用户友好的软件应用程序提供。用户可以快速绘制有意义的分析图来评估和管理测量。锂电池供电系统每个腔室系统都有内部可充电电池供电。配备外部电池用于长期测量。机械腔臂系统专业设计的机械腔臂系统可将恶劣环境条件的干扰降至最低,例如风、雪、降水、自然阳光土壤等。技术数据 工作范围 温度:-10°C至45°C; 相对湿度:0至95%Rh; 非冷凝气体流量:最大1l L/min; 传感器CO?:量程:0-5.000ppm,精度:2% 防风雨等级:IP55记忆:18M 板载闪存用于数据采集(共32MB)电池延续时间:多达4天 电极量程和精度CO2:0–5000 ppm 精度:± 100 ppmO2:0–25 % 精度:± 0.2 %流速:0–1000 sml/min 精度:± 10 sml/min湿度:0–100 % 精度:± 3 %温度:-40 °C至125 °C 精度:± 0.3 °C绝对压力:150–1150 mbar 精度:± 15 mbar 周期 一个地方的一次测量由两个周期组成。 第一个是等待周期,另一个是测量周期。 在测量过程中,只要测量发生在一个位置,就会连续重复这两个周期。 控制箱含处理器,传感器,泵和备用电池等。
    留言咨询
  • CPEC-AZ升级开路涡度及土壤通量同步观测系统 一、 升级现有开路涡度系统常规的开路涡度通量系统无法测量N2O、NH3等含氮、粘性气体,现有的开路CH4传感器因其精度低,无法用于一些生态观测样地。在现有的开路涡度系统旁边并联闭路痕量气体分析仪即可同步测量N2O、NH3,COS、O3、CH4、CO2、H2O等涡度通量。系统组成:开路(CO2+H2O)/(CH4)浓度测量,三维风速测量系统 +Aerodyne-(N2O+CO2+CO+H2O)/(N2O+CH4+H2O)闭路浓度测量设备。OR 开路(CO2+H2O)/(CH4)浓度测量,三维风速测量系统 + Aerodyne-6种气体同步(N2O+NH3+CO2+O3+CO+H2O)/(N2O+CH4+COS+CO2+CO+H2O)闭路浓度测量设备。 技术参数如下:u 测量频率:10Hz (1-10Hz可选)u 独有的活性钝化装置减少粘性气体响应时滞u 惯性进气口设计消除样品颗粒物的二次污染u 检测限低至ppt级分辨率u 恒温箱:温度控制精度+/-0.07c,工作温度-20~40℃u 采样速率:0.5-20 slpm(标准升每分钟)u 数据输出:RS232、USB和以太网u 重量:35 kg/75 kg 供电:250 W, 120/240 V, 50/60 HzTILDAS分析仪气体分子测量指标:参数N2OCH4CO2NH3H2OCOSNONO2HONO精度 1S0.03ppb0.25ppb100ppb40ppt10ppm0.005ppb0.15ppb0.03ppb0.21ppb精度 100S0.01ppb0.1ppb25ppb10ppt5ppm0.002ppb0.15ppb0.01ppb75ppt测量范围0-10000ppb0-10000ppb0-5000ppm0-10000ppb0-5000ppm0-5000ppm0-5000ppm0-5000ppm0-5000ppm响应时间1-10HZ1-10HZ1-10HZ1-10HZ1-10HZ1-10HZ1-10HZ1-10HZ1-10Hz 二、 同步测量土壤通量如上用于升级现有开路涡度通量的分析仪,增加控制部分及土壤多功能自动箱后,还可同步、自动切换测量土壤温室气体通量。不仅实现一机两用,重要的是消除EC和土壤通量测量的系统误差,提高垂直梯度测量的精度。系统组成:开路(CO2+H2O)/(CH4)浓度测量,三维风速测量系统 +ichamber土壤自动箱 +Aerodyne-(N2O+CO2+CO+H2O)/(N2O+CH4+H2O)闭路浓度测量设备。OR开路(CO2+H2O)/(CH4)浓度测量,三维风速测量系统 + Aerodyne-6种气体同步(N2O+NH3+CO2+O3+CO+H2O)/(N2O+CH4+COS+CO2+CO+H2O)闭路浓度测量设备。 三、 新建涡度通量系统新建涡度通量系统建议采用Aerodyne闭路痕量气体分析仪同步测量6种气体:例如N2O、NH3、CO2、O3、CO、H2O / N2O、CH4 COS、CO2、CO、H2O(有几百种气体组合可选),和iChamber 多功能自动箱、采样控制、同步控制器等并联使用,同步、自动切换测量土壤温室气体通量。因采用一套主机系统,减少了系统误差,可提高测点垂直梯度的通量测量精度。系统组成:三维风速测量系统 +ichamber土壤自动箱 +Aerodyne-(N2O+CO2+CO+H2O)/(N2O+CH4+H2O)闭路浓度测量设备。OR三维风速测量系统 +ichamber土壤自动箱 +Aerodyne-6种气体同步(N2O+NH3+CO2+O3+CO+H2O)/(N2O+CH4+COS+CO2+CO+H2O)闭路浓度测量设备。 ETH Zurich(Switzerland)的环境系统科学部在ICOS项目中应用此技术于森林生态系统,实现了全温室气体收支监测。 土壤自动箱大多以国外厂家的产品为标杆,但大尺寸的自动箱支架对测点的降雨、风速等小气候有影响;小尺寸的自动箱测量面积小,高度低,只能用于裸地、草地。澳作自主研发的iChamber多功能自动箱升降可控、对测点小气候无影响。还可于群落光合研究。 iChamber多功能自动箱技术指标:l 尺寸:面积1m2,高度1.5米;面积0.3m2,高度0.8米;面积0.08m2,高度0.5米l 供电:蓄电池+220V交流电;控制方式:RS-485远程控制l 升降高度:随植物长高自动调节;升降速度:50mm/sl 呼吸罩类型:透光/不透光可选;密封性能:负压5kpa,1分钟泄露降低小于2kpal 罩内外压力差:柱状缓冲罐自动平衡l 抗风能力:12级;运动部件的防护等级:IP65;l 工作温度:-20~55℃
    留言咨询
  • CPEC-AZ闭路涡度相关法通量观测系统一、 应用目前,开路涡动相关法通量观测系统无法同步测量多种气体,其精度也无法满足痕量温室气体的测量要求,在雨雪天气数据不连续问题给科研带来很多困扰。CPEC-AZ 闭路涡度相关法通量系统采用中红外技术,测量频率可达10Hz,检测限达ppt级,可用于野外实时测量痕量气体。此外,还能同步测量多种含碳、含氮痕量气体及气体同位素,如:CO/CO2/CH4/C2H4/HCHO/CHOOH/COS/SO2NO/N2O/NO2/NH3/ HONO/ HNO313C-CO2, 18O-CO2, 17O-CO2,HOD, 15N14N16O(δ15Nα), 14N15N16O(δ15Nβ)二、系统组成该系统主机Aerodyne闭路气体分析仪采用可调谐红外激光直接吸收光谱(TILDAS)技术, 用中红外激光探测气体分子,独有的像散型多光程吸收池技术有效测量光程高达210m,有效提高气体分子的测量精度,达ppt级。该系统由Aerodyne闭路式气体分析仪、超声风速采集模块、数据整合软件、恒温机箱、采气管路等组成。超声风速采集模块可与已有的开路涡度相关法通量观测系统共用,在超声风速仪中心设置采样管,即可完成原有的开路涡度相关法系统升级,同步观测多种气体。农田生态系统闭路涡度相关法含氮气体通量观测三、系统优势1、该系统采用的Aerodyne闭路气体分析仪对痕量气体测量频率可达10Hz,能完全满足涡度相关法通量观测条件,测量精度高,检测限可达ppt级。各种气体测量精度见技术指标。 2、该系统可同步观测多种气体,部分气体分子组合如下(可根据科研需要,提供近百种气体组合):1)N2O、CO2、NH3、O3、CO、H2O2) N2O、CO2、CH4、COS、CO、H2O3)NO、NO2、H2O4) N2O、CO2、CH4、CO、C2H6、H2O 5) HONO、HNO3、H2O6) HCN、HCl7)CH4、C2H6、C3H8采用活性钝化系统后,NH3测量的时间常数和高频通量变化(时间常数更快)3、该系统还可同步观测多种气体同位素,部分气体同位素组合如下:1)N2O、15N14N16O、 14N15N16O、 14N14N18O 2)CH4 13CH4、CH3D 3)CO2、13C-CO2、17O-CO2、18O-CO2 4、专利技术活性钝化装置可显著提高粘性气体分子如NH3、HONO等的响应时间,实现粘性气体和非粘性气体的同步观测,如 N2O、CO2、NH3、O3、CO、H2O同步观测。5、惯性颗粒物分离装置,能有效减少颗粒物附着,确保两次采样不会交叉污染。 6、该系统能够实现自动全量程校准和零点校准。四、技术指标该系统可测量气体分子、1s及100s测量精度、相应时间如下:常见痕量温室气体:参数N2OCH4CO2NH3H2OCOSNONO2HONO精度 1S0.03ppb0.1ppb100ppb40ppt10ppm0.005ppb0.15ppb0.03ppb0.21ppb精度 100S0.01ppb0.25ppb25ppb10ppt5ppm0.002ppb0.15ppb0.01ppb75ppt测量范围0-10000ppb0-10000ppb0-5000ppm0-10000ppb0-5000ppm0-5000ppm0-5000ppm0-5000ppm0-5000ppm响应时间1-10HZ可选1-10HZ可选1-10HZ可选1-10HZ可选1-10HZ可选1-10HZ可选1-10HZ可选1-10HZ可选1-10Hz可选 含碳气体同位素:参数δ13CH4δCH3Dδ13CH4CO2δ13Cδ18O精度 1S3‰30‰1‰25ppb0.1‰0.03‰精度 100S1‰30‰1‰10ppb0.03‰0.03‰测量范围3‰30‰1‰25ppb0.1‰0.1‰响应时间1-10HZ可选1-10HZ可选1-10HZ可选1-10HZ可选1-10HZ可选1-10HZ可选 含氮气体同位素:参数NH3δ15N14N16O(δ15Nα)δ14N15N16O(δ15Nβ)δ14N14N18O(δ18O)精度 1S40ppt0.1‰0.03‰8‰精度 100S10ppt1‰1‰2‰测量范围0-10000ppb300~30000ppb300~30000300~30000响应时间1-10HZ可选1-10HZ可选1-10HZ可选1-10HZ可选 四、应用案列1、意大利北部土壤农田氮施加控制试验,通过CPEC方法探究氨态氮(NH4+-N\NH3)内部转化过程及氨气(NH3)恢复性流失【1】。兰德里亚诺Landriano 2009(SI-09)和2011(SI-11)试验期间,通过涡流协方差系统(EC)和反向拉格朗日随机模型(bLS)估算NH3累积排放和归一化损失结果表明:氮施加实验后24和30 h。的最高NH3排放水平为138.3 mg/m-2s-1和243.5mg/m-2s-1,NH4-N的总损失比例在两次扩散实验后7天分别为19.4% 和28.5%。2、中国亚热带典型的蔬菜田利用CPEC方法同时测量一氧化二氮(N2O),甲烷(CH4)和二氧化碳(CO2)通量【2】。N2O,CH4和CO2(实心圆)和气温(空心圆)的频率加权归一化共谱)以及相应的高频共谱传递函数结果表明: 通过Aerodyne双激光分析仪的检测结果计算出N2O的中值精度(1σ)为0.14 nmol/mol-1 ,在野外条件下,采样频率为10 Hz时,CH4的摩尔浓度为3.3 nmol/mol,CO2的摩尔浓度为0.36μmol/mol。 3、美国马萨诸塞州温带森林中生态系统-大气二氧化碳净交换(NEE)的同位素组份(即12C16O2、13C16O2和18O12C16O的净交换量)CPEC方法测量【3】。 通过EC(实线)和EC/Flask(虚线)估算的6月(橙色)7月(绿色)、8月(蓝色)和9月(紫色)的δ13C日变化。EC循环已平滑至2 h,并且仅展示了CO2通量小于-2 mol m-2 s-1的时间。NEE中δ18O6月(橙色)7月(绿色)、8月(蓝色)和9月(紫色)的δ13C日变化,EC结果已平滑至2 h结果表明: NEE中的13C组份表现出日变化的趋势,可能反映了光合作用的扩散和生化限制之间的平衡转移。白天,18O同位素通量表现出与蒸发的18O叶片水富集有关的特征。同位素通量和NEE中的13C组份都有明显的季节性变化,NEE中的18O组份逐月更一致。4、瑞士中部集约化经营草地采用量子级联激光吸收光谱法(QCLAS)对N2O首次同位素表征。标气(红色)和表层(黑色)N2O摩尔分数(顶部)和同位素值(三个底部面板)在原为实验期间的大气表层测量结果表明:同步涡度协方差N2O通量测量确定了土壤中N2O的通量平均同位素特征,集约经营草地N2O的通量平均同位素组成SP、δ15Nbuk和δ18O分别为6.9±4.3、-17.4±6.2和27.4±3.6‰。5、美国哈佛森林温带落叶林通过羰基硫的吸收确立了林冠层气孔导度,蒸腾和蒸发的动态变化。冠层OCS吸收和初级生产总值(GPP)随着叶相关吸收(LRU)和光和有效辐射(PAR)的综冠层OCS吸收和初级生产总值(GPP)随着叶相关吸收(LRU)和光和有效辐射(PAR)结果表明:在这个温带的落叶森林林地中,基于土壤中OSC含量预测土壤始终是羰基硫的汇。OCS通量测量可以作为探测其他生态系统中的气孔导度的通用工具,并且可在叶片尺度和实验室研究中用作探测气孔导度的通用工具。参考文献: 【1】Site selective real-time measurements of atmospheric N2O isotopomers by laser spectroscopy,J. Mohn , B. Tuzson , A. Manninen , N. Yoshida , S. Toyoda , W. A. Brand , L. Emmenegger.,Atmospheric Measurement Techniques , 5, 1601–1609, 2012 【2】Applicability of a gas analyzer with dual quantum cascade lasers for simultaneous measurements of N2O, CH4 and CO2 fluxes from cropland using the eddy covariance technique, Dong Wang, Kai Wang a, , Xunhua Zheng , Klaus Butterbach-Bahl , Eugenio Díaz-Pinés , Han Chen., Science of the Total Environment 729 (2020) 138784 【3】Long-term eddy covariance measurements of the isotopic composition of the ecosystem–atmosphere exchange of CO2 in a temperate forest R. Wehr, J.W. Munger b, D.D. Nelsonc, J.B. McManus, M.S. Zahniser, S.C. Wofsy, S.R. Saleska., Agricultural and Forest Meteorology181(2013)69-84.【4】ACRP Report 7: Aircraft and Airport-Related Hazardous Air Pollutants: Research Needs and Analysis, E. Wood, S. Herndon, R. C. Miake-Lye, D. Nelson, M. Seeley, 65p. (2008). Airport Cooperative Research Program, Transportation Research Board, Washington, DC【5】Real-time measurements of SO2 H2CO, and CH4 emissions from in-use curbside passenger buses in New York City using a chase vehicle, S.C. Herndon, J.H. Shorter, M.S. Zahniser, J. Wormhoudt, D.D. Nelson, K.L. Demerjian, C.E. Kolb, Environ. Sci. Technol. 39, 7984-7990, 2005.【6】Real-time measurements of nitrogen oxide emissions from in-use New York City transit buses using a chase vehicle, J.H. Shorter, S. Herndon, M.S. Zahniser, D.D. Nelson, J. Wormhoudt, K.L. Demerjian, C.E. Kolb, Environ. Sci. Technol. 39, 7991-8000, 2005.【7】NO and NO2 Emission Ratios Measured from In-Use Commercial Aircraft during Taxi and Takeoff, S.C. Herndon, J.H. Shorter, M.S. Zahniser, D.D. Nelson, C.E. Kolb, Environ. Sci. Technol., 38, 6078-6084, 2004.【8】Cross road and mobile tunable infrared laser measurements of nitrous oxide emissions from motor vehicles, J.L. Jimenez, J.B. McManus, J.H. Shorter, D.D. Nelson, M.S. Zahniser, M. Koplow, G.J. McRae, and C.E. Kolb, Chemosphere - Global Change Science, 2, 397-412 (1999).
    留言咨询
  • GHK-580型高精度在线环境空气温室气体分析仪采用光腔衰荡光谱技术(CRDS),结合小型化光腔及精确的温度和压力控制,可实现CO2,CH4、CO、N2O和H2O等温室气体同步在线测量,具有高精度、高准确度、低漂移和易操作等优点,可对观测区域的温室气体进行24小时自动连续监测,能实时连续的反映该区域内的温室气体浓度变化情况。 产品优势 1、多组分同步监测(CO2,CH4、CO、N2O和H2O); 2、高精度、高准确度、低漂移; 3、等效光程可达60km,响应速度快、预热时间短 4、光源,传感器、气室等采用模块化设计,可靠性高、可扩展性好,维护方便 5、坚固耐用,便于维护 应用范围 1、温室气体监测 2、医疗呼气诊断 3、科学计量 4、痕量气体监测
    留言咨询
  • DJ-0253/4便携式气体通量监测系统用途:随着全球变化研究的广泛开展,气体通量的监测越来越受到关注。气体通量的监测通常包括植物叶片与大气界面气体通量监测,土壤表面与大气界面气体通量监测、生态系统与大气界面气体通量监测等。 便携式气体通量监测系统主要由主控模块、气体分析模块和前端采样模块组成。主控模块可以集成分析模块、气压、温湿度、GPS等数据,控制系统运行状态,根据客户需求进行气体通量或者呼吸速率的计算;气体分析模块,可根据客户需求可配置了NDIR分析模块或可调谐激光光谱分析技术(TDLAS)分析模块;根据测量对象的不同,还可以选择不同的前端采样模块,例如土壤呼吸室、光合呼吸室以及适用于水面测量的浮漂式呼吸室。根据前端采样模块不同,可以自由设定计算参数,控制系统能够自动根据参数设定实时进行通量(呼吸速率)计算。 主要特点:&bull 调谐激光光谱分析技术(TDLAS)实现高时间分辨率、高灵敏测量&bull 免标定,无需标准气体定时标定&bull 不受背景气体交叉干扰&bull 功耗低,锂电池供电可达8小时&bull 扩展性高,可以附加多种传感器(例如:GPS,光辐射传感器等)&bull 操作性强,强大的数据处理功能,能够在线实时进行数据处理&bull 用户定制化程度高部分应用单位:&bull 烟台海岸带地质调查中心&bull 上海师范大学&bull 西安农科院&bull 北京师范大学&bull 华中农业大学技术规格:CO2测量范围0 ~10000 ppmCO2最低检出限1ppmCO2零点噪声0.5ppmCO2 80%量程噪声2ppmCO2量程精密度(20%、80%)2ppmH₂ O测量范围0~6%H₂ O准确度优于±1.5%读数典型温度精度±0.1@20-60℃CH₄ 测量范围0 ~100 ppmCH₄ 最低检出限0.1ppmCH₄ 零点噪声0.15ppmCH₄ 80%量程噪声0.3ppmCH₄ 量程精密度(20%、80%)0.3ppm标定出厂标定无需重复标定环境温度-30-60℃环境湿度99% R.H,无冷凝可选配模块光辐射传感器、土壤温湿度传感器、4G传输模块、风速风向传感器等定位模块北斗GPS双模(选配)可选型号:型号产品名称标配可测参数传感器工作原理呼吸室工作方式DJ-0253便携式气体通量监测系统CO2、CH₄ 、H₂ O水汽可调谐激光光谱分析技术(TDLAS) 技术动态密闭气室法DJ-0254便携式气体通量监测系统CO2、CH₄ 、H₂ O水汽可调谐激光光谱分析技术(TDLAS) 技术自动上下开合产地:中国
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制