我们实验室自主研制了流动注射分析仪,欢迎各位同仁共同探讨流动注射分析方法,我们可以提供实验仪器、流动注射分析系统配件、可以帮助搭建流动注射分析系统,XF-1型流动注射分析仪是一款使用标准方法,自动完成对环境水质分析的实验室测量仪器。其分析模块包括:步进驱动6通道蠕动泵(精密、长寿命),8通注射阀,测定反应单元,光度检测器,状态控制单元,数据工作站。XF-1型流动注射分析仪可用于对不同参数的平行测量,适用于日常大量样品的测试。系统控制,数据获取及管理通过数据工作站软件实现。该仪器集成了多种检测参数的测量方法,方法之间更换简单易行。有通用方法单元(可用于水质分析的基本参数测量:如NH4+, NO2-, NO3-,PO43-,Cr6+,Pb2+,Cd2+,Hg2+,挥发酚等)供用户选择。测量范围(举例): 铵氮 0.02~20 mg/L NH4+-N硝酸根 0.02~20 mg/L NO3--N亚硝酸根 0.01~10 mg/L NO2--N正磷酸根 0.02~20 mg/L PO4--PXF-1流动注射分析仪的FIA模块可任意连接各种检测器,用户可自行搭建分析系统。仪器特点:1)通过不同的仪器方法可轻松完成各种水质样品的测定,测试方法可任意组合;2) 采用标准的光度分析方法,具有光度显色体系的样品都可以进行测定,可提供相应分析药品试剂盒;3) 可检测常见的水质指标,常见的金属离子,部分有机污染物;4) 模块式和集成式的设计,可实现单通道或双通道的任意配置,可提供多通道蠕动泵,能够对复杂样品进行在线前处理;5) 可配备内置加热单元,以确保方法的灵敏度与稳定性;6) 8通注射阀,可设置双定量环;7) 单片机控制系统,系统参数设置简单、方便;8)光度检测器,稳定的信号放大、A/D转换、降噪处理,确保了信号稳定性;9) 试剂输送系统稳定,无气泡传输;10) 数据工作站功能强大,数据处理方便快捷;11)采样量20-400μL;波长范围400-900nm。应用领域:1)水质(饮用水,地表水,污水,海水)氨氮,凯氏氮,硝酸盐/亚硝酸盐,总氮,正磷酸盐/总磷,氰化物/总氰化物,挥发酚,阴离子表面活性剂(MBAS),硅酸盐,铁(II)/总铁,铝,镁,锰,铬(VI),有机酸,硫酸盐,亚硫酸盐,硼酸盐,硫化物,氯化物,甲醛等。2)土壤/植物/肥料总氮,氨氮,硝酸盐氮,硫酸盐,磷酸盐,铝,镁,锰等。 3)饮料/烟草凯氏氮,氯化物,硫化物,硝酸盐/亚硝酸盐,磷酸盐等。
“煤质在线实时检测分析与监控系统”(以下简称为煤质在线检测系统)是我们在国际上率先开发的,用于电厂入炉煤炉前煤质在线实时检测分析、入厂煤全程实时监测的绿色环保、低能高效、无辐射的高科技产品。该系统应用高精的红外检测分析技术,在国际上率先真正实现了原煤的热值及灰份、挥发份等工业分析值的在线实时检测与分析,其检测分析方法于一九九九年通过全国鉴定,结论为国际领先水平,在没有应用推广及经济效益的情况下,获辽宁省科技进步三等奖。煤质在线检测系统采用全封闭恒温保护设计,于二零零三年六月十二日在阜新发电厂通过在线实时检测分析现场验收。为我国乃至世界的原煤检测分析技术尤其是热值的直接检测,开辟了一种快速、简便、高效、实时、全程监控的新方法。一、 主要技术路线及技术关键煤质在线检测系统采用傅立叶变换红外光谱分析技术,红外光是一种电磁能量,当其照射到样品时,由于样品内有机成份在不同波数对红外光吸收能量不同,将这些不同记录下来,既得到红外光谱,当对红外光谱所包含的信息进行分析后,就会得到样品内不同有机成份的性质及含量。煤质在线检测系统是利用红外探测光对在线(输煤皮带上)原煤样品进行实时测量,通过对燃煤中各种官能团对红外光吸收各有差异的特点,应用计算机将这些差异进行识别处理,从而准确地测量出燃煤的热值及灰份、挥发份等工业分析值。 煤质在线检测系统的技术关键是根据样品光谱中的信息特征,利用设计开发的软件及建立的数学模型系统,通过计算机识别,进行定性与定量分析。定性分析是利用模式识别与聚类的一些算法,主要用于将所测到光谱进行分类。定量分析是根据比耳定律,应用化学计量学的方法,建立全谱区的光谱信息与含量及性质间的数学关系,通过严格的统计验证并选择最佳数学模型,计算出对应成分的含量或性质。 该技术是将硬件和软件相结合,特别是利用软件,解决红外光谱中谱峰重叠、高背景底强度的信息、图谱不稳定等难点,充分提取红外光谱的信息,达到分析的目的。二、达到的指标 此前,由于没有有效的在线实时检测手段,火力发电厂入炉原煤检测只是每天在炉前进行抽样,经混样、缩分、制样,化验分析等步骤,要二十四小时后才能出具一份工业分析值报表,供生产调度参考。这种方式,使得燃煤在已经燃烧后很长时间才得到其工业分析值,不能起到指导生产、节约成本的目的,使燃煤成本的结算始终处于负平衡态,因此,无法实现发电厂竟实时竟价上网的目标。 煤质在线检测系统完全改变了原始的离线检测方法与手段,实现了在线、实时、连续检测分析与监控:1. 检测与分析时间:全程连续跟踪检测一组数据(包括低位热值、弹筒热值、空干基灰份、干燥基灰份、收到基灰份、干燥无灰基挥发份、空干基挥发份等),需时间约为60s;2. 检测指标为:(1) 热值(低位、弹筒):±1000J/g;(2) 灰份(空干基、干燥基、收到基):±2%;(3) 挥发份(空干基、干燥无灰基):±1%。 由于上述指标的实现,可使燃煤结算达到分时及炉前预知燃煤成本的正平衡态,从真正意义上实现了指导生产,从而为实现竟价上网提供了重要的手段。三、 傅立叶变换红外光谱仪的原理傅立叶红外光谱仪的原理是把光源发出的光,经迈克尔逊干涉仪调制成干涉光,再让干涉光照射样品,由检测器获得干涉图,由计算机把干涉图进行傅立叶变换,得到全波段吸收光谱. 傅立叶变换红外光谱仪在整个检测过程中,只有一个可动镜在实验过程中运动;它的测量波段宽,光通量大,检测灵敏度高,具有多路通过的特点,故所有频率可同时测量;它的扫描速度最快可达60次/秒,因使用调制音频测量,故杂散光不影响检测;因样品放置于分束器后测量,大量辐射由分束器阻挡,样品接受调制波,故使热效应极小;因检测器仅对调制的声频信号有反响,其自身的红外辐射不会被检测器吸收。 四、 傅立叶变换红外光谱仪的特点 付立叶变换红外光谱仪共具备六个特点,既高光通量的特点,采用光能量损失很小的反射镜,以使入射光全部通过光孔,使光通量很大;高信噪比的特点,将入射光按不同的频率被干涉仪调制成不同的声频信息值,使所用检测器既获得强度的信息,又获得频率的信息,使各种频率光同时落在检测器上,无须分辨测量既测完全部光谱;高测量精度的特点,使动镜在无摩擦的空气轴承上移动,通过激光干涉图零点取样,用计算机自动完成数据输出及绘图,无人为因素干扰;高分辨率的特点,采用多路通过的方法,使分辨率随采样数据增加而加多;测量速度快的特点,采用多次扫描类加法消除光谱噪声,改善信噪比,提高灵敏度;测量波段宽、全波段分辨率一致的特点,用干涉法采集数据,以数字形式存储运算,使采集范围广且达到全波段分辨率一致。五、现场应用情况“阜新发电厂煤质在线实时检测”科研课题测试工作于二零零三年四月十二日在二十万机组五段输煤栈道进行。装置开机时间九点零六分,结束时间十三点五十八分;现场在线实时采集原煤样品六十四个,实际得到四十九组化验室化验数据,在线实时采集光谱十六组。对比数据见下表:测试指标化验室化验 平均值装置检测 平均值绝对 误差低位热值(g/J)19984.319924.3-60弹筒热值(g/J)22607.323106.8499.5空干基灰份(%)25.8827.791.91干燥基灰份(%)26.5027.951.45收到基灰份(%)23.5423.690.15空干基挥发份(%)29.8830.350.47干燥无灰基挥发份(%)41.6941.38-0.31 阜新发电厂参加建模原煤样品离线化验按照化验室的工作要求进行,建模用原煤样品光谱采取周累计采集方法进行;建模时温度控制在24~26℃,其中低位热值分布范围为10508J/g至29588J/g;弹筒热值分布范围为12392 J/g至29388 J/g;干燥基灰份分布范围为8.49%至55.33%;空干基灰份分布范围为8.1%至53.16%;收到基灰份分布范围为7.27%至50.86%;空干基挥发份分布范围为19.21%至35.55%;干燥无灰基挥发份分布范围为28.26%至52.8%,在建模的过程中,严格按照设备的使用要求进行测试,既设备预热时间大约为40分钟。目前阜新发电厂已正常使用煤质在线检测系统。 综上,煤质在线检测系统以高精的技术、稳定的模型、实时的测量、全程的监控等技术,完全实现了原煤的在线实时检测,它不仅可用于发电厂发电燃煤成本的实时结算,还可用于入厂煤的实时检测监控,一定会为我国的燃煤企业及电力系统的节能带来无穷的经济效益和广泛的社会效益。
[size=24px][font=仿宋][b]摘要[/b]:[/font][font=仿宋]聚合酶链反应分析仪(PCR仪)广泛用于疾控、出入境检测、药监、生物制药企业、医疗机构、专业基因检测和分子生物实验室等。应用于司法鉴定、临床诊断、基因研究、疾病控制等领域。其控温性能直接影响到检测结果的可靠性。而常用的铂电阻温度计、热电偶温度传感器因尺寸问题不适用于聚合酶链反应分析仪(PCR仪)控温性能的校准,所以在检测、校准过程中必须使用专用的检测设备,而此类设备大多依赖进口,价格昂贵,未能普遍应用,使得聚合酶链反应分析仪(PCR仪)实验的数据、结果的可靠性不能得到有效保证。本文依据聚合酶链反应分析仪(PCR仪)的检测、校准项目,结合国家相关计量校准规范,提出一种用于聚合酶链反应分析仪(PCR仪)温度性能校准的专用检测设备。[/font][font=仿宋][b]关键词:[/b][/font][font=仿宋]聚合酶链反应分析仪、温度、校准、检测设备[/font][/size][font=宋体][size=22.0000pt][b] 一、绪论[/b][/size][/font][font=仿宋][size=24px]1、聚合酶链反应分析仪(PCR仪)[/size][/font][font=仿宋][size=24px]1.1聚合酶链反应分析仪(PCR仪)的基本原理[/size][/font][img=,561,467]https://ng1.17img.cn/bbsfiles/images/2020/06/202006271433435955_7689_1638093_3.jpg!w561x467.jpg[/img][img=,550,269]https://ng1.17img.cn/bbsfiles/images/2020/06/202006271434048558_6420_1638093_3.jpg!w550x269.jpg[/img][font=宋体][size=18px] [b]图1 基因扩增原理图[/b][/size][/font][size=24px][font=宋体][font=仿宋] 聚合酶链反应分析仪(以下简称PCR仪)就是聚合酶链反应过程中的控温设备,能在变性温度、复性温度、延伸温度之间准确进行温度调整、控制。[/font][/font][font=宋体][font=仿宋]1.2 PCR仪的分类1.2.1按功能分类 a)普通定性PCR仪 仅具备温度控制功能,自动调节温度至不同温度点,完成聚合酶链反应的变性、退火及延伸过程,可自动进行聚合酶链反应,完成基因扩增。 b)荧光定量PCR仪 荧光定量PCR仪是在普通PCR仪的基础上增加一个荧光信号采集系统和计算机分析处理系统的PCR仪,称作荧光定量PCR仪。其PCR扩增原理和普通PCR仪扩增原理相同,只是PCR扩增时加入的引物是利用同位素、荧光素等进行标记,使用引物和荧光探针同时与模板特异性结合扩增。扩增的结果通过荧光信号采集系统实时采集信号连接输送到计算机分析处理系统得出量化的实时结果输出。荧光定量PCR仪有单通道、双通道和多通道。当只用一种荧光探针标记的时候,选用单通道,有多荧光标记的时候用多通道。单通道也可以检测多荧光的标记的目的基因表达产物,因为一次只能检测一种目的基因的扩增量,需多次扩增才能检测完不同目的基因片段的量。[/font][/font][/size][font=仿宋][size=24px]1.2.2按孔数分类[/size][/font][font=仿宋][font=仿宋][size=24px] 目前常见的[/size][/font][/font][font=仿宋][size=24px]PCR仪按试验孔数分主要包括:48孔、96孔、384孔。[/size][/font][font=仿宋][font=仿宋][size=24px]1.3、PCR仪的检测校准[/size][size=24px]1.3.1 PCR仪的检测校准依据和主要校准项目[/size][size=24px] 目前,PCR仪的校准可执行JJF1527-2015《聚合酶链反应分析仪校准规范》。主要检测项目包括:[/size][size=24px] a)温度示值误差;[/size][size=24px] b)温度均匀度(孔间温差);[/size][size=24px] c)平均升温速率;[/size][size=24px] d)平均降温速率;[/size][size=24px] e)样本示值误差;[/size][size=24px] f)样本线性。[/size][/font][/font][font=仿宋][font=仿宋][size=24px] 其中温度示值误差、温度均匀度、平均升温速率、平均降温速率需使用专用温度测量设备进行校准。因考虑到聚合酶链反应过程中,反映酶在温度较高的条件下会发生活性下降甚至失活,对试验结果造成影响的问题,在校准过程中还应加入温度过冲项目的校准。所以用于校准聚合酶链反应分析仪温度性能的检测设备需具备校准:温度示值误差、温度均匀度(孔间温差)、平均升温速率、平均降温速率和温度过冲的功能。[/size][/font][/font][font=仿宋][font=仿宋][size=24px]1.3.2 PCR仪检测仪的功能和技术要求 依据JJF1527-2015《聚合酶链反应分析仪校准规范》的要求,用于校准PCR仪的校准设备,其温度测量性能需满足: a)测温范围:(0~120)℃; b)温度测量结果的不确定度:[i]U[/i]≤0.1℃([i]k[/i]=2); c)可同时测量多个孔的温度。[/size][/font][/font][font=仿宋][font=仿宋][size=24px] 同时为方便平均升温速率、平均降温速率和温度过冲项目的校准,还应具备自动计时、最高温度点自动记录、检测数据定时记录等功能。[/size][/font][/font][font=仿宋][font=仿宋][size=24px]1.4、PCR仪检测仪的发展现状 PCR仪由于实验室应用的特点,其样品槽较小,温度测量中常用的铂电阻温度计、热电偶传感器因尺寸问题,一般不适用于PCR仪温度性能的检测、校准,要实现PCR仪温度性能的检测、校准必须使用专用的检测设备。目前用于PCR仪温度计量性能检测的设备主要分为有线式检测和无线式检测,其中:[/size][/font][/font][font=仿宋][font=仿宋][size=24px] a)有线检测。有线检测的准确度较高,基本满足量传溯源的要求,但因连接线影响PCR仪温度环境的密闭性,使用过程中经常出现因控温环境不密闭,造成检测、校准结果不能真实反应仪器实际控温性能的问题,并且不适用于必须在密闭条件下使用的PCR仪的校准,不具备自动检测和记录功能。 b)无线检测。无线检测设备随能实现自动检测、自动记录检测结果,一次实验可完成多个参数的检测、校准,但目前多依赖于进口,而且准确度较低,不能满足量传溯源的要求。同时此类无线检测设备多为PCR仪生产企业针对本公司仪器开发的专用检测设备,主要用于对本公司产品的质量控制,对其他品牌的PCR仪不具备广泛适用性。 我国第一台PCR仪温场检测仪由成都市计量检定测试院于2013年引进。目前,已有50余家计量检测机构配置了此类设备,开展PCR仪的温度校准工作。但大多计量检测机构配的设备均为PCR仪生产厂家开发的仅适用于本公司产品的检测设备,不能适用于多种品牌、不同型号的PCR仪的校准,而且准确度相对较低,不能满足JJF1527-2015《聚合酶链反应分析仪校准规范》对标准器的要求。由于进口设备,价格昂贵(售价数十万元),不仅一般PCR仪使用机构难以配置,而且专业计量检测机构也极少配置,检测、校准能力严重不足。即便具备PCR仪检测、校准能力的计量检测机构也因检测设备购置成本较高,在开展此项检测、校准工作中也会收取较高的检测费用,致使目前PCR仪的定期溯源率相对较低。[/size][/font][/font][font=仿宋][font=仿宋][size=24px]1.5、发展趋势 随着JJF 1527-2015 《聚合酶链反应分析仪校准规范》的发布,各实验室对PCR仪温度计量性能校准的需求日渐增强,同时对校准系统的适用性、准确性和规范性要求越来越高,市场亟需一套适用广泛,满足现行国家计量校准规范,满足计量溯源体系的,售价在大多数检测机构承受范围内的专用校准系统。[/size][/font][/font][font=仿宋][font=仿宋][size=24px][b]二、技术路线和技术方案[/b] 依据国家校准规范JJF1527-2015《聚合酶链反应分析仪校准规范》规定,PCR仪温场检测设备至少需要15个精密温度传感器,同时完成PCR仪温度计量性能的校准,测温范围:(0~120)℃,温度测量不确定度[i]U[/i]≤0.1℃([i]k[/i]=2)。因此温度采集器选用微小尺寸的高精度耐腐蚀同时具备线性的铂电阻PT1000作为传感器,探头按照PP标准反应管尺寸设计,PT1000涂导热胶后封于探头内。将温度传感器、信号放大采集、数据处理,数据存储集成到一个电路板产品上,非常有效的缩短传感器信号的距离,系统的抗干扰性和准确的提高,同时实现集成化小型化。 参照PCR仪温度控制标准程序,温度采集器将用恒温槽分段标定30℃、50℃、60℃、70℃、90℃、95℃六个温度点,其它温度通过线性换色,可以满足测温范围(0~120)℃,显示分辨率0.01℃,温度测量误差≤0.2℃,通过定期校准,进行修正后,可实现30℃、50℃、60℃、70℃、90℃、95℃六个温度点的测量结果的不确定度[i]U[/i]≤0.1℃([i]k[/i]=2)。 为了实现小型化集成化和无线连接等智能化,PCR仪温场检测设备设计包括温度采集器,无线信号接收器,电脑软件,手机软件;温度采集器功能包括温度传感器,信号放大采集,单片机数据采集和处理,蓝牙无线收发,锂电池充放电管理,USB数据通信等功能,系统复杂功能强大,物理尺寸很小方便工作人员使用;无线信号接收器通过USB插入电脑,用于无线连接温度采集器,实现动态实时数据交互,完成校准工作;电脑软件用于控制和数据接收工作,公司完成数据分析和报告;手机软件用于移动监控和数据下载。[/size][/font][/font][font=仿宋][font=仿宋][size=24px][b]三、技术创新点[/b] 3.1、设计开发的PCR仪温场检测设备,在满足我国JJF1527-2015《聚合酶链反应分析仪校准规范》的基础上,实现集成化、小型化,并采用无线连接,适用性较强;[/size][/font][/font][font=仿宋][font=仿宋][font=仿宋][img=,520,308]https://ng1.17img.cn/bbsfiles/images/2020/06/202006271440249432_2417_1638093_3.jpg!w520x308.jpg[/img][/font][/font][/font][font=仿宋][font=仿宋][size=18px] [b] 图2 采用无线传输方式的PCR仪温度校准系统[/b][/size][/font][/font][font=仿宋][font=仿宋][size=24px] 3.2、设计选用微小尺寸的高精度铂电阻RTD传感器,并将温度传感器、信号放大采集、数据存储集成到一个电路板产品上,系统的抗干扰性和准确度提高,同时实现小型化。温度传感器分布符合JJF1527-2015《聚合酶链反应分析仪校准规范》对温度传感器的分布要求,各温度传感器间距、尺寸与市场主流PCR仪相匹配,可直接替代PCR仪专用孔板嵌入PCR仪进行测量。[/size][/font][/font][font=仿宋][font=仿宋][font=仿宋][img=,548,365]https://ng1.17img.cn/bbsfiles/images/2020/06/202006271441522860_8625_1638093_3.jpg!w548x365.jpg[/img][/font][/font][/font][font=仿宋][size=18px] [b] 图3 PCR仪温度校准系统温度传感器的分布[/b][/size][/font][font=仿宋][size=24px][img=,325,228]https://ng1.17img.cn/bbsfiles/images/2020/06/202006271442214388_1285_1638093_3.jpg!w325x228.jpg[/img][/size][/font][size=18px][b][font=仿宋]图4 [/font][font=仿宋]JJF1527-2015[/font][font=仿宋]规定的温度传感器布点要求[/font][/b][/size][font=仿宋][size=24px] 3.3、PCR仪温度校准系统包括温度采集器,无线信号接收器,电脑软件,手机软件;温度采集器集成了温度传感器,信号放大采集,单片机数据计算,蓝牙无线收发,锂电池充放电管理,USB通信等功能; 3.4、本系统可采用恒温槽和标准温度计对实际校准点,30℃、50℃、60℃、70℃、90℃、95℃六个温度点进行温度分段标定,提高测量准确度;[/size][/font][font=仿宋][size=24px][font=仿宋] 3.5[/font][font=仿宋]、[/font][font=仿宋]本[/font][font=仿宋]系统的温度采集[/font][font=仿宋]器[/font][font=仿宋]采用[/font][font=仿宋]锂电池[/font][font=仿宋]供电[/font][font=仿宋],[/font][font=仿宋]方便[/font][font=仿宋]产品的[/font][font=仿宋]无线[/font][font=仿宋]连接[/font][font=仿宋]和[/font][font=仿宋]移动工作[/font][font=仿宋];[/font][font=仿宋]通过[/font][font=仿宋]电池[/font][font=仿宋]采用直流电压[/font][font=仿宋]供电提高了温度信号采集的稳定性,[/font][font=仿宋]隔离[/font][font=仿宋]了工频电源的[/font][font=仿宋]干扰;[/font][font=仿宋]通过USB[/font][font=仿宋]接口[/font][font=仿宋]给温度采集[/font][font=仿宋]器的[/font][font=仿宋]锂电池进行充电[/font][font=仿宋];[/font][font=仿宋] 3.6[/font][font=仿宋]、本[/font][font=仿宋]系统的温度采集[/font][font=仿宋]器设计数据[/font][font=仿宋]存储芯片,[/font][font=仿宋]用[/font][font=仿宋]电池供电工作自动[/font][font=仿宋]进行[/font][font=仿宋]温度采集[/font][font=仿宋]存储,校准工作[/font][font=仿宋]完成后,[/font][font=仿宋]再[/font][font=仿宋]连接电脑读出数据[/font][font=仿宋]做[/font][font=仿宋]分析[/font][font=仿宋]和[/font][font=仿宋]报告[/font][font=仿宋],可[/font][font=仿宋]实现[/font][font=仿宋]多台[/font][font=仿宋]机器同时校准工作;[/font][font=仿宋] 3.7[/font][font=仿宋]、[/font][font=仿宋]本[/font][font=仿宋]系统的温度采集[/font][font=仿宋]器设计USB[/font][font=仿宋]数据接口[/font][font=仿宋]和[/font][font=仿宋]无线[/font][font=仿宋]蓝牙;[/font][font=仿宋]可通过USB[/font][font=仿宋]或者[/font][font=仿宋]无线蓝牙[/font][font=仿宋]对[/font][font=仿宋]温度采集器进行监控[/font][font=仿宋]和[/font][font=仿宋]数据读取[/font][font=仿宋]。[/font][/size][/font][font=仿宋][font=仿宋][size=24px][b]四、产品功能[/b] 4.1、具有无线连接功能,可以使用USB无线接收器进行工作,也可以用手机APP进行操作工作; 4.2、采用高精度铂电阻RTD传感器,测温范围(0~120)℃,分辨率0.01℃,温度测量误差≤0.2℃,通过校准,进行修正后,可实现测量结果的不确定度[i]U[/i]≤0.1℃([i]k[/i]=2); 4.3、温度采集器设计了锂电池,通过USB充电; 4.4、温度采集器设计了数据存储芯片,用电池供电工作自动进行温度采集存储,校准工作完成后,再连接电脑读取数据,自动完成数据处理,生成校准报告。并根据采集得到的数据自动生成热成像图,通过热成像图直观体现PCR仪各加温孔内温度的偏移情况,为试验人员提供参考,避免使用温度明显偏移温度设定点的加温孔进行试验。同时可实现多台仪器同时校准,集中读取校准数据;[/size][/font][/font][font=仿宋][font=仿宋][font=仿宋][img=,563,395]https://ng1.17img.cn/bbsfiles/images/2020/06/202006271444186719_9018_1638093_3.jpg!w563x395.jpg[/img][/font][/font][/font][font=仿宋][font=仿宋][size=18px] [b]图5 PCR温场检测系统依据检测数据自动生成热成像图[/b][/size][/font][/font][font=仿宋][font=仿宋][size=24px] 4.5、温度采集器设计了无线蓝牙;电脑可通过USB或者无线蓝牙对温度采集器进行监控和数据读取。[/size][/font][/font][font=仿宋][font=仿宋][size=24px][b]五、技术指标[/b][/size][/font][/font][font=仿宋][font=仿宋][size=24px] 5.1、集成化小型化。温度传感器,检测探头,信号放大采集,数据计算,数据存储,无线蓝牙连接,USB通信接口,锂电池供电及充放电控制;实现以上功能产品,并且设计可以放入PCR仪([url=https://insevent.instrument.com.cn/t/jp][color=#3333ff][url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]基因扩增仪[/color][/url][/color][/url])的物理尺寸。[/size][/font][/font][font=仿宋][font=仿宋][font=仿宋][img=,379,269]https://ng1.17img.cn/bbsfiles/images/2020/06/202006271445178540_2384_1638093_3.jpg!w379x269.jpg[/img][/font][/font][/font][font=仿宋][font=仿宋][size=18px] [b]图6 直接以PCR温场检测仪代替孔板放入PCR仪[/b][/size][/font][/font][font=仿宋][font=仿宋][size=24px] 5.2、实现无线接收器,可以无线连接温度采集器,发送控制命令,或者将温度数据通过USB转发给电脑。 5.3、实现电脑软件,用于人机控制,对PCR仪校准过程中的数据动态监控,数据分析和数据报告的输出。 5.4、实现手机软件,用于移动状态监控和数据监控。 5.5、适用于48孔、96孔PCR仪的检测、校准,温度采集共15个通道,分辨率0.01℃,测量误差≤0.2℃。 5.6、温度采集15个通道,每个通道温度数据10sps,即每秒实现采集10个温度数据。预估整个校准工作25分钟需要产生:10sps * (25 * 60)seconds * 15channel = 225000个温度数据。数据存储选择4Mbit闪存芯片。 5.7、PCR仪温度校准系统的温度采集器工作电流估算30mA,峰值电流估算50mA,电池工作有效时间设计2小时,选择输出3.7V的锂电池容量大于100mAh。 5.8、USB数据读取闪存芯片中的温度数据,不超过30秒。无线蓝牙传输温度数据,不低于每秒150(10sps*15channel)个温度数据。[/size][/font][/font][font=仿宋][font=仿宋][size=24px][b]六、市场分析[/b] 目前,我国在用PCR仪约300万台,并逐年递增。主要分布于疾控、出入境检测、药监、生物制药企业、医疗机构、专业基因检测和分子生物实验室等。应用于司法鉴定、临床诊断、基因研究、疾病控制等领域,特别是在病毒性传染病筛查过程中发挥着至关重要的作用。由于目前专用的PCR仪温场检测设备价格昂贵,全国仅50余家计量检测机构具备检测能力,无法满足每年PCR仪的检测需求。而此套检测设备的开发成功,在技术性能满足JJF1527-2015《聚合酶链反应分析仪校准规范》,达到国外同类产品技术水平的条件下,产品价格预计可降低50%,为中小型计量检测机构购置PCR仪温场检测设备开展校准工作提供了可能,同时也可用于PCR仪使用机构定期核查PCR仪温度性能,合理选用反应试剂,提高检测可靠性。[/size][/font][/font][size=24px]结束语[/size][font=仿宋][font=仿宋][size=24px] PCR仪专用检测仪是以实现PCR仪的计量校准为目的开发的专用检测设备,解决了长期以来此类设备依赖进口的问题,有助于PCR仪量值溯源体系的建立和完善,通过定期校准的方式保证PCR仪检测结果的可靠性。能够为我国基因研究、食品安全检测、医学诊断等领域提供必要的技术保障。[/size][/font][/font][size=32px][color=#cc0000][i]注:此套检测设备已于2020年实现技术成果转化,并开始小规模生产。[/i][/color][/size]
个人收集的 系统可靠性分析技术失效模式和效应分析(FMEA)的一些资料,大家看看有用不?[~158053~]
粉体在线激光粒度分析系统的设计与实验研究李文涛,任中京 (济南微纳颗粒仪器股份有限公司,济南250100,中国)liwentao0306@163.com,renzhongjing@vip.sina.com 摘要:本文介绍了一种可以对流动颗粒的粒度分布进行实时监测的在线激光粒度分析系统。详细介绍了在线取样系统、密封样品窗口、测试系统、远程通讯系统的设计,该系统能够安全连续性自动化运行,并能够将粒度分布中的关键参数提供给生产线控制系统,对于粉磨分级生产过程的工艺控制具有非常重要的意义。关键字:激光粒度仪;在线监测;系统定制1、 引言在水泥、硅胶等产品生产中,粒径作为其中的一个关键参数,直接影响产品质量。传统上粉体的粒度测试采用人工采制样或机械采制样,加人工实验室化验的方法,这种方法有很多的的缺点:1、取制样误差大,以局部代表整体过程,存在代表性问题;2、不在线,不实时,分析数据严重滞后;3、分析数据对实时生产过程指导意义不大,只能是一种补救措施。激光粒度测试仪器以其快速、准确、重复、方便等特点越来越多地被用于生产控制,随着生产控制的进一步要求,离线测试已经不能够满足要求,为了能够得到连续的粒度测试结果,在线粒度测试系统渐渐成为成为了各大厂家关注的焦点。目前,国际上英国马尔文、德国新帕泰克、中国微纳颗粒等激光粒度仪厂家都推出了粉体在线激光粒度分析仪,本文就针对微纳仪器的粉体在线激光粒度分析系统的设计与实验结果进行深入的探讨。2、 系统构成粉体在线激光粒度分析系统是可用于工业现场的粉体粒度分析系统,各项参数根据客户应用要求量身定制,本系统主要有以下几部分构成:主机系统、供气系统、取样系统、样品分散系统、密封样品窗口系统、回料系统、现场控制柜系统、远程传输与显示系统。本系统的主要功能是可以对流动的颗粒粒度分布进行实时监测,并提供准确的控制信号。系统结构如图1所示。取样器把粉体样品从生产线管道中取出,通过卸料器传给喂料器,喂料器均匀地把样品送入样品分散泵中,分散好的粉体样品通过防堵反吹阀进入仪器主机,在保护气的作用下通过样品窗口,回料泵把测试过的粉体样品送回到生产线管道中。测试过程中主机把测试到的粉体散射光谱实时地传输到现场控制柜,由安装到现场控制柜PC平板中的在线粒度分析软件通过反演运算得到粉体样品的粒度分布,现场控制柜把得到的粒度分布数据一方面通过远程通讯传给中控PC,工作人员可根据粒度分布数据对生产线及时作出调整,也可直接传输给生产线控制系统,直接调整生产线上的设备使其运转到最佳位置。现场控制柜中的PLC系统是整套系统的控制中心,能控制系统上每一个部件的开关,并对系统的运行实时监控,对异常情况及时报警。http://ng1.17img.cn/bbsfiles/images/2017/10/2015102809294799_01_3049057_3.jpg 图1 系统结构图1、 系统设计3.1 在线取样系统从管道中取出具有代表性的样品是实现粉体粒度在线测试的第一步,根据不同的粉体生产工艺,本设计提供两种取样系统:负压取样和螺旋取样,负压取样主要应用于飞灰式取样,如火力发电厂锅炉尾部烟气飞灰取样,螺旋取样主要应用于粉料的取样,如水泥在空气斜槽中传输过程中的取样。负压取样器由取样管和喷射泵组成,取样管插入工艺管道,通过特殊设计的取样孔从气固两相流中取出具有代表性的样品。喷射泵与取样管相连,可以形成0.04MPa的负压,将取样管中的样品吸出送到主机进行测试,喷射泵采用陶瓷内芯,具有良好的耐磨特性。粉体在管道中传输过程中大小颗粒会产生分层现象,因此应采取多点取样,本负压取样系统为运动式取样,取样器在运动控制箱的控制下从位置1到位置2作往复运动,在运动过程中连续取样,保证了取出的样品具有代表性。粉体运输一般采用气体输送,管道中存在一定的正压力或负压力,螺旋取样器只有在常压下才能正常工作,因此在本设计中加入了旋转卸料阀,能够实现空气密封,保证螺旋取样器的正常工作,取出的样品进入到分散泵中分散后经防堵反吹阀门进入主机进行测试。3.2 密封样品窗口保持主机镜头,探头的洁净是保证在线仪器的连续运行的关键,本设计中采用全密封式样品窗设计,一次保护气对密封玻璃起到气幕保护和吹扫的作用,二次保护气保证密封窗口内的气体压力平衡,避免样品从喷射管中喷出时出现返料现象。3.3 测试系统测试系统主要由主机和软件系统构成。主机系统包括光路部分、电路部分、机械密封部分,光路部分采用反傅立叶变换光路,全量程采用米氏散射理论。电路部分扫描速度1000次/秒, 每秒可显示2个完整粒度分布(用户可调)。仪器符合ISO13320标准,所有接口(采样管,阀门,管道)及主机各个部位均采用夹套式接头方便现场检修。软件系统专门为在线粒度监测系统研制,软件具有形象化的良好的人机界面,操作方便,运行可靠,安全性良好,为用户自行定制输出数据项目提供方便。3.4 远程通讯系统在线激光粒度分析系统的通讯系统构成如下图所示,在线控制系统用于现场测试的自动控制及报警,现场PC为在线粒度测试软件的运行平台,生产控制系统为粉体生产设备的控制系统,中控PC用于数据的显示及远程生产线控制。在线控制系统控制器采用PLC,能够稳定地控制各器件的依次启动和依次关闭,并能够接收粒度分布数据并转换为4-20mA标准信号输出,能够与生产控制系统进行接口,用于生产设备控制,提供完善的报警装置。如果在线设备出现问题则自动报警,并自动采取保护措施。现场PC采用一体式工控机进行数据的采集、处理、并实时显示在线颗粒的粒度分布,与中控室终端采用光纤通讯,能够保证在远距离和电磁干扰的情况下稳定传输数据,http://ng1.17img.cn/bbsfiles/images/2017/10/2015102809315868_01_3049057_3.jpg1、 系统应用4.1 现场安装http://ng1.17img.cn/bbsfiles/images/2017/10/2015102809324531_01_3049057_3.jpg如图3所示是微纳公司为南京某水泥生产线定制的矿渣微粉在线粒度测试系统现场。本项目目的是为了在线24小时连续监测某公司成品的粒度分布数据,为生产线提供调整依据。本项目分为以下几个系统:1、在线取样系统2、在线分散系统3、在线主机4、在线回料系统5、在线空气净化系统6、在线气体分配系统7、PLC控制系统8、工业PC测试系统(含在线粒度监测系统专用软件)9、远程传输与显示系统4.2 监测数据http://ng1.17img.cn/bbsfiles/images/2015/10/201510280933_571202_3049057_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/10/201510280933_571203_3049057_3.png5、结论针对在线粒度测试方面的技术难点,本文结合微纳仪器在线粒度分析仪器进行了详细的分析研究,初步研究结果表明在线取样技术,封闭样品窗技术,远程通讯技术均满足了粉体粒度在线测试的需求。参考文献 蔡小舒,舒明旭,沈建琪,等.颗粒粒度测量技术及应用,北京:化学工业出版社,2010:128-142 胡荣泽.粒度仪的量化指标.水泥技术,2007(02):69-71.
粉体在线激光粒度分析系统的设计与实验研究李文涛,任中京 (济南微纳颗粒仪器股份有限公司,济南250100,中国)liwentao0306@163.com,renzhongjing@vip.sina.com 摘要:本文介绍了一种可以对流动颗粒的粒度分布进行实时监测的在线激光粒度分析系统。详细介绍了在线取样系统、密封样品窗口、测试系统、远程通讯系统的设计,该系统能够安全连续性自动化运行,并能够将粒度分布中的关键参数提供给生产线控制系统,对于粉磨分级生产过程的工艺控制具有非常重要的意义。关键字:激光粒度仪;在线监测;系统定制1、 引言在水泥、硅胶等产品生产中,粒径作为其中的一个关键参数,直接影响产品质量。传统上粉体的粒度测试采用人工采制样或机械采制样,加人工实验室化验的方法,这种方法有很多的的缺点:1、取制样误差大,以局部代表整体过程,存在代表性问题;2、不在线,不实时,分析数据严重滞后;3、分析数据对实时生产过程指导意义不大,只能是一种补救措施。激光粒度测试仪器以其快速、准确、重复、方便等特点越来越多地被用于生产控制,随着生产控制的进一步要求,离线测试已经不能够满足要求,为了能够得到连续的粒度测试结果,在线粒度测试系统渐渐成为成为了各大厂家关注的焦点。目前,国际上英国马尔文、德国新帕泰克、中国微纳颗粒等激光粒度仪厂家都推出了粉体在线激光粒度分析仪,本文就针对微纳仪器的粉体在线激光粒度分析系统的设计与实验结果进行深入的探讨。2、 系统构成粉体在线激光粒度分析系统是可用于工业现场的粉体粒度分析系统,各项参数根据客户应用要求量身定制,本系统主要有以下几部分构成:主机系统、供气系统、取样系统、样品分散系统、密封样品窗口系统、回料系统、现场控制柜系统、远程传输与显示系统。本系统的主要功能是可以对流动的颗粒粒度分布进行实时监测,并提供准确的控制信号。系统结构如图1所示。取样器把粉体样品从生产线管道中取出,通过卸料器传给喂料器,喂料器均匀地把样品送入样品分散泵中,分散好的粉体样品通过防堵反吹阀进入仪器主机,在保护气的作用下通过样品窗口,回料泵把测试过的粉体样品送回到生产线管道中。测试过程中主机把测试到的粉体散射光谱实时地传输到现场控制柜,由安装到现场控制柜PC平板中的在线粒度分析软件通过反演运算得到粉体样品的粒度分布,现场控制柜把得到的粒度分布数据一方面通过远程通讯传给中控PC,工作人员可根据粒度分布数据对生产线及时作出调整,也可直接传输给生产线控制系统,直接调整生产线上的设备使其运转到最佳位置。现场控制柜中的PLC系统是整套系统的控制中心,能控制系统上每一个部件的开关,并对系统的运行实时监控,对异常情况及时报警。 图1 系统结构图3、 系统设计3.1 在线取样系统http://ng1.17img.cn/bbsfiles/images/2015/12/201512100948_577152_3049057_3.jpg从管道中取出具有代表性的样品是实现粉体粒度在线测试的第一步,根据不同的粉体生产工艺,本设计提供两种取样系统:负压取样和螺旋取样,负压取样主要应用于飞灰式取样,如火力发电厂锅炉尾部烟气飞灰取样,螺旋取样主要应用于粉料的取样,如水泥在空气斜槽中传输过程中的取样。负压取样器由取样管和喷射泵组成,取样管插入工艺管道,通过特殊设计的取样孔从气固两相流中取出具有代表性的样品。喷射泵与取样管相连,可以形成0.04MPa的负压,将取样管中的样品吸出送到主机进行测试,喷射泵采用陶瓷内芯,具有良好的耐磨特性。粉体在管道中传输过程中大小颗粒会产生分层现象,因此应采取多点取样,本负压取样系统为运动式取样,取样器在运动控制箱的控制下从位置1到位置2作往复运动,在运动过程中连续取样,保证了取出的样品具有代表性。粉体运输一般采用气体输送,管道中存在一定的正压力或负压力,螺旋取样器只有在常压下才能正常工作,因此在本设计中加入了旋转卸料阀,能够实现空气密封,保证螺旋取样器的正常工作,取出的样品进入到分散泵中分散后经防堵反吹阀门进入主机进行测试。3.2 密封样品窗口保持主机镜头,探头的洁净是保证在线仪器的连续运行的关键,本设计中采用全密封式样品窗设计,一次保护气对密封玻璃起到气幕保护和吹扫的作用,二次保护气保证密封窗口内的气体压力平衡,避免样品从喷射管中喷出时出现返料现象。3.3 测试系统测试系统主要由主机和软件系统构成。主机系统包括光路部分、电路部分、机械密封部分,光路部分采用反傅立叶变换光路,全量程采用米氏散射理论。电路部分扫描速度1000次/秒, 每秒可显示2个完整粒度分布(用户可调)。仪器符合ISO13320标准,所有接口(采样管,阀门,管道)及主机各个部位均采用夹套式接头方便现场检修。软件系统专门为在线粒度监测系统研制,软件具有形象化的良好的人机界面,操作方便,运行可靠,安全性良好,为用户自行定制输出数据项目提供方便。3.4 远程通讯系统在线激光粒度分析系统的通讯系统构成如下图所示,在线控制系统用于现场测试的自动控制及报警,现场PC为在线粒度测试软件的运行平台,生产控制系统为粉体生产设备的控制系统,中控PC用于数据的显示及远程生产线控制。在线控制系统控制器采用PLC,能够稳定地控制各器件的依次启动和依次关闭,并能够接收粒度分布数据并转换为4-20mA标准信号输出,能够与生产控制系统进行接口,用于生产设备控制,提供完善的报警装置。如果在线设备出现问题则自动报警,并自动采取保护措施。现场PC采用一体式工控机进行数据的采集、处理、并实时显示在线颗粒的粒度分布,与中控室终端采用光纤通讯,能够保证在远距离和电磁干扰的情况下稳定传输数据,http://ng1.17img.cn/bbsfiles/images/2015/12/201512100949_577153_3049057_3.jpg 图2 通讯结构图4、 系统应用4.1 现场安装http://ng1.17img.cn/bbsfiles/images/2015/12/201512100950_577157_3049057_3.jpg图3 现场安装图如图3所示是微纳公司为南京某水泥生产线定制的矿渣微粉在线粒度测试系统现场。本项目目的是为了在线24小时连续监测某公司成品的粒度分布数据,为生产线提供调整依据。本项目分为以下几个系统:1、在线取样系统2、在线分散系统3、在线主机4、在线回料系统5、在线空气净化系统6、在线气体分配系统7、PLC控制系统8、工业PC测试系统(含在线粒度监测系统专用软件)9、远程传输与显示系统4.2 监测数据http://ng1.17img.cn/bbsfiles/images/2015/12/201512100949_577155_3049057_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/12/201512100950_577156_3049057_3.jpg图7 粒度分布图图8 粒度数据监控图5、结论针对在线粒度测试方面的技术难点,本文结合微纳仪器在线粒度分析仪器进行了详细的分析研究,初步研究结果表明在线取样技术,封闭样品窗技术,远程通讯技术均满足了粉体粒度在线测试的需求。参考文献 蔡小舒,舒明旭,沈建琪,等.颗粒粒度测量技术及应用,北京:化学工业出版社,2010:128-142 胡荣泽.粒度仪的量化指标.水泥技术,2007(02):69-71.
粉体在线激光粒度分析系统的设计与实验研究李文涛,任中京 (济南微纳颗粒仪器股份有限公司,济南250100,中国)liwentao0306@163.com,renzhongjing@vip.sina.com 摘要:本文介绍了一种可以对流动颗粒的粒度分布进行实时监测的在线激光粒度分析系统。详细介绍了在线取样系统、密封样品窗口、测试系统、远程通讯系统的设计,该系统能够安全连续性自动化运行,并能够将粒度分布中的关键参数提供给生产线控制系统,对于粉磨分级生产过程的工艺控制具有非常重要的意义。关键字:激光粒度仪;在线监测;系统定制1、 引言在水泥、硅胶等产品生产中,粒径作为其中的一个关键参数,直接影响产品质量。传统上粉体的粒度测试采用人工采制样或机械采制样,加人工实验室化验的方法,这种方法有很多的的缺点:1、取制样误差大,以局部代表整体过程,存在代表性问题;2、不在线,不实时,分析数据严重滞后;3、分析数据对实时生产过程指导意义不大,只能是一种补救措施。激光粒度测试仪器以其快速、准确、重复、方便等特点越来越多地被用于生产控制,随着生产控制的进一步要求,离线测试已经不能够满足要求,为了能够得到连续的粒度测试结果,在线粒度测试系统渐渐成为成为了各大厂家关注的焦点。目前,国际上英国马尔文、德国新帕泰克、中国微纳颗粒等激光粒度仪厂家都推出了粉体在线激光粒度分析仪,本文就针对微纳仪器的粉体在线激光粒度分析系统的设计与实验结果进行深入的探讨。2、 系统构成粉体在线激光粒度分析系统是可用于工业现场的粉体粒度分析系统,各项参数根据客户应用要求量身定制,本系统主要有以下几部分构成:主机系统、供气系统、取样系统、样品分散系统、密封样品窗口系统、回料系统、现场控制柜系统、远程传输与显示系统。本系统的主要功能是可以对流动的颗粒粒度分布进行实时监测,并提供准确的控制信号。系统结构如图1所示。取样器把粉体样品从生产线管道中取出,通过卸料器传给喂料器,喂料器均匀地把样品送入样品分散泵中,分散好的粉体样品通过防堵反吹阀进入仪器主机,在保护气的作用下通过样品窗口,回料泵把测试过的粉体样品送回到生产线管道中。测试过程中主机把测试到的粉体散射光谱实时地传输到现场控制柜,由安装到现场控制柜PC平板中的在线粒度分析软件通过反演运算得到粉体样品的粒度分布,现场控制柜把得到的粒度分布数据一方面通过远程通讯传给中控PC,工作人员可根据粒度分布数据对生产线及时作出调整,也可直接传输给生产线控制系统,直接调整生产线上的设备使其运转到最佳位置。现场控制柜中的PLC系统是整套系统的控制中心,能控制系统上每一个部件的开关,并对系统的运行实时监控,对异常情况及时报警。http://ng1.17img.cn/bbsfiles/images/2015/12/201512021531_576005_3050076_3.jpg1、 系统设计3.1 在线取样系统从管道中取出具有代表性的样品是实现粉体粒度在线测试的第一步,根据不同的粉体生产工艺,本设计提供两种取样系统:负压取样和螺旋取样,负压取样主要应用于飞灰式取样,如火力发电厂锅炉尾部烟气飞灰取样,螺旋取样主要应用于粉料的取样,如水泥在空气斜槽中传输过程中的取样。负压取样器由取样管和喷射泵组成,取样管插入工艺管道,通过特殊设计的取样孔从气固两相流中取出具有代表性的样品。喷射泵与取样管相连,可以形成0.04MPa的负压,将取样管中的样品吸出送到主机进行测试,喷射泵采用陶瓷内芯,具有良好的耐磨特性。粉体在管道中传输过程中大小颗粒会产生分层现象,因此应采取多点取样,本负压取样系统为运动式取样,取样器在运动控制箱的控制下从位置1到位置2作往复运动,在运动过程中连续取样,保证了取出的样品具有代表性。粉体运输一般采用气体输送,管道中存在一定的正压力或负压力,螺旋取样器只有在常压下才能正常工作,因此在本设计中加入了旋转卸料阀,能够实现空气密封,保证螺旋取样器的正常工作,取出的样品进入到分散泵中分散后经防堵反吹阀门进入主机进行测试。3.2 密封样品窗口保持主机镜头,探头的洁净是保证在线仪器的连续运行的关键,本设计中采用全密封式样品窗设计,一次保护气对密封玻璃起到气幕保护和吹扫的作用,二次保护气保证密封窗口内的气体压力平衡,避免样品从喷射管中喷出时出现返料现象。3.3 测试系统测试系统主要由主机和软件系统构成。主机系统包括光路部分、电路部分、机械密封部分,光路部分采用反傅立叶变换光路,全量程采用米氏散射理论。电路部分扫描速度1000次/秒, 每秒可显示2个完整粒度分布(用户可调)。仪器符合ISO13320标准,所有接口(采样管,阀门,管道)及主机各个部位均采用夹套式接头方便现场检修。软件系统专门为在线粒度监测系统研制,软件具有形象化的良好的人机界面,操作方便,运行可靠,安全性良好,为用户自行定制输出数据项目提供方便。3.4 远程通讯系统在线激光粒度分析系统的通讯系统构成如下图所示,在线控制系统用于现场测试的自动控制及报警,现场PC为在线粒度测试软件的运行平台,生产控制系统为粉体生产设备的控制系统,中控PC用于数据的显示及远程生产线控制。在线控制系统控制器采用PLC,能够稳定地控制各器件的依次启动和依次关闭,并能够接收粒度分布数据并转换为4-20mA标准信号输出,能够与生产控制系统进行接口,用于生产设备控制,提供完善的报警装置。如果在线设备出现问题则自动报警,并自动采取保护措施。现场PC采用一体式工控机进行数据的采集、处理、并实时显示在线颗粒的粒度分布,与中控室终端采用光纤通讯,能够保证在远距离和电磁干扰的情况下稳定传输数据,http://ng1.17img.cn/bbsfiles/images/2015/12/201512021533_576006_3050076_3.jpg1、 系统应用4.1 现场安装http://ng1.17img.cn/bbsfiles/images/2015/12/201512021534_576007_3050076_3.jpg如图3所示是微纳公司为南京某水泥生产线定制的矿渣微粉在线粒度测试系统现场。本项目目的是为了在线24小时连续监测某公司成品的粒度分布数据,为生产线提供调整依据。本项目分为以下几个系统:1、在线取样系统2、在线分散系统3、在线主机4、在线回料系统5、在线空气净化系统6、在线气体分配系统7、PLC控制系统8、工业PC测试系统(含在线粒度监测系统专用软件)9、远程传输与显示系统4.2 监测数据
GSX9BT5I`B.png Thermo Scientific 3100VA 系列在线分析仪专门设计用来实时监测自来水、河水、海水、污水等各种水样品中的不同离子的浓度。它是一款全自动仪器,尤其适合绝大多数重金属,如As、Hg、Pb、Cu、Bi、Ti、Cr、Fe、Mn、Se 和部分非金属离子(比如氯化物、亚氯酸盐、溴化物、磷酸盐等)的分析,量程宽,线性关系好,稳定性高。本3100VA 在线溴离子分析仪基于计时电位法原理, 3100VA采用专利的流动测量池、以无汞材料为工作电极、特殊的流动注射系统,分析速度快,反应物消耗少,测量精度高。GSX9BT5I`B.png
[b]ZF(Zone Fluidics)区带流动技术[/b],是以SFA(间隔流动分析)、FIA(流动注射分析)、SIA(顺序注射分析)等流动分析技术为基础,吸取SFA、FIA、SIA的优点,研发出来的一种新的流动注射分析技术。用于分析水质中的氰化物、挥发酚、阴离子表面活性剂、总磷总氮、氨氮、硝酸根、亚硝酸根等。[b]区带流动技术[/b]是将独立的系统操作单元,如样品的前处理单元(消解、蒸馏、萃取、加热等)、储存管、进样管、试剂管、空气管、流通池等单元,整合在多通道选择阀周围,其中多通道阀的主干管与储存管相连。利用双向泵将水样和前处理的试剂,输送到前处理单元进行在线前处理;再利用双向泵顺序抽取气泡、显色反应试剂、预处理后的水样到储存管,形成区带流体;显色反应完成后,双向泵将反应后生成的显色染料输送到流通池,进行检测,检测器得出检测数据结果。整个系统的操作完全由智能软件控制,减少了手工操作过程,操作简单方便。微升级试剂消耗,成百倍的节省了试剂,分析产生的废液很少。各位版友是否了解过流动分析技术?欢迎发言讨论。
第一章 连续流动化学分析理论第一节:系统组成连续流动化学分析方法采用的是自动湿化学分析方法,多数的液体样品可用此方法分析。它采用连续流动的原理,用均匀的空气气泡将样品分开,标准样品与未知样品通过同样的处理和同样的环境,所以通过对吸光度的比较,获得结果并自动打印报表。一个简单的连续流动化学分析器示意图每一个模块完成一特定功能,如进样,测量,混合,保温等,信号输出是代表样品浓度的系列峰第二节:化学分析模块功能化学分析模块能完成混合,加热高至150摄氏度,延时到反应完全,透析膜排除杂物干扰,在线蒸馏,在线紫外消化,在线溶剂萃取,镉还原(柱或螺旋管),离子交换等几乎所有实验室经典手段。它是该技术的核心。它完成对样品的全自动预处理,样品再进入检测器连续比色。第三节:检测器比色计, 340 - 900 nm,紫外分光, 190 - 900 nm,荧光光度计或火焰光度计。应用广泛第四节:湍流1. 层流当液体在管道中慢速流动时,中间比两边流动快这种浓度的差异(扩散)会很难达到稳态,降低分析速度和引起样品相互覆盖2,片段流片段流用气泡降低了扩散 气泡必须填满管道以分开气泡两边的样品. 每一片段通过系统时在同一环境状态下反应,气泡还帮助系统去除沉集物 气泡间断造成系统很快达到稳态, 分析速率加快"BOLUS"-流上述流动模式保证每一个片段内样品,试剂的快速混合均匀.第五节:气泡的作用降低扩散和样品的重叠,清洁管道内侧表面,保证每一片段的一致均匀性,混合均匀可肉眼观察流动状态,蓄纳样品或试剂的气体释放及反应过程中的气体释放第六节:气泡片段流技术的优点低流速和低试剂消耗,可延时很长时间使反应完全,极高的重现性,极低的检测极限,反应状态的微小变化,不会影响结果。很多方法获得 EPA, AOAC, DIN,ISO论证第七节:稳态片段流的一个重要特点是测量时反应达到稳态,吸光度不随时间而变化。当一个样品被吸出2分钟后,通常输出如下图形的信号. 在 t1 和 t2间浓度是稳定的并且吸光度达到最大值。当流速,试剂浓度或流速,透析速度,或温度变化,通常会影响灵敏度和稳态吸光度高度,但标准试剂和样品在同样状态下测量,所以不会影响精度 在稳态输出信号不随时间改变,且同一样品的不同片段浓度相同. 理想的进样时间是比达到稳态所需时间长5秒钟第八节:流动的稳定性在稳态平台没有噪音对保证高精度非常重要 这就要求同一样品的不同片段的化学组成相同. 异常有很多原因, 包括不稳定的流动,样品之间的气压,样品取样针或别的地方部分堵塞蠕动泵的输出是不稳定的, 是以脉冲的方式进行的. 随着泵的运转,同时打入空气气泡,可消除由于脉冲造成的负面影响, 同时的意思是在每一片段: 同样体积的样品 同样的样品和试剂比例第九节:测量原理比色测量是建立在有色化合物浓度及其吸光度与样品浓度成正比的基础上绝大多数方法是比较标准物质与样品在同样环境下反应最后的吸光度测量是在最灵敏的波长下进行的.LAMBERT-BEER 定理是其最原始的基础:第十节:比色计B+L 采用的是双光束的比色计. 参比光补偿光源输出变化,温度,电压和别的波动光路结构精度非常高或低的吸光度可能引起错误因为噪音及检测器灵敏度限制 第十一节:结果计算方法比较标准物质与样品在同样环境下反应最后的吸光度建立校准曲线(线性):计算结果:第二章:多通道连续流动化学分析技术的历史,发展和趋势第一节:简单历史1954 连续流动化学分析技术发明1957 AutoAnalyzer 产品推向市场1966 湍流技术的发展1966 - 75 新技术急速发展1975 - 85 湍流技术新发展* 实现计算机控制 * 流动注射技术1985 - 95 多功能化学分析盒 * 试剂自动排序 * 自动稀释技术 *1996 - 机器自检 遥控 标准方法 软件技术的进步 * Bran+Luebbe / Technicon 发明第二节:湍流技术的进步1,内径 2.4 / 2.0 / 1.6 / 1.0 毫米减少试剂消耗2,高速气泡注入频率更低的扩散危险,更快的分析速度3,内径更稳定,管道部件质量更好更低的扩散危险,更好的重复性4,更规则的气泡注入, 与蠕动泵蠕动同步每一个液流片段的试剂和样品的体积是一样的-保证重复性5,流动检测池中 物理除气泡----电子除气泡-----气泡可通过流动检测池,不用电子除气泡更低的扩散危险,更高的分析速率,更好的稳定性和重复性第三节:湍流技术的进步- 优点1,进样速率 30 = 60 =120 /每小时2,每100个样品试剂消耗 500 ml = 200 ml = 100 ml = 40 ml(流动注射 = 200 ml)3,标准偏差1% = 0.4%第四节:多功能化学分析盒 同一化学分析盒分析几个参数, 更快,更简单地改变分析项目投资少样品量不大时,非常实用第五节:双量程方法两个样品线透析膜可帮助测量比较脏的样品自动量程转换比稀释快,简单第六节:自动品质控制适时检查,与CLP 一致,质控图自动生成,自动检查:- 高浓度校准,低浓度校准,重复性,准确度,样品空白自动重复校准第七节:计算机控制1,顺序进样----随机取样更长运行时间每一个标准只需一个样品杯自动重复取样适宜自动稀释2,可变泵速清洗时速度加快,节省时间分析结束降低速度以节省试剂自动启动和关闭3,比色计的基线和增益每一次分析自动设置4,结果处理和其它自动补偿由于基线,灵敏度,扩散等原因引起的误差重新计算屏幕显示校准曲线和结果峰形存储结果和原始数据5,LIMS(实验室信息管理系统)- 输入样品名称- 输出样品结果6,遥控
在线分析器样品处理系统技术的发展及应用金义忠 重庆凌卡分析仪器有限公司摘 要 以21世纪前沿技术的视野来审视在线分析器的样品处理系统技术,样品处理系统技术是过程分析器器工程应用系统(以下简称在线分析系统)的核心和关键技术,确立这一技术观念意义深远,将对在线分析系统的推广应用,产生极大的激励和促进作用。本文对样气处理系统的体系、样气处理系统技术的针对性设计,工业炉窑、化工领域在线分析系统的工程应用技术进行了重点综述,肯定了当前研发样品处理系统技术的最新努力及最新进展。 关键词 样品处理系统技术 在线分析器 在线分析系统 样品处理部件1样气处理系统在在线分析系统中的地位样品处理系统如果只限于过程气体分析系统领域,就该称为样气处理系统。在在线分析工程技术行业内,本文所述的样气处理系统,过去却一直叫取样预处理系统、预处理系统、样气预处理系统、取样及预处理单元等。由于长期带着“预”字,好像只是在线分析器的附加部分,并未受到应有的重视。GB/T 19768—2005《在线分析器试样处理系统性能表示》的国家标准,其实JB/T 6854—1993的机械部标准,早就在处理系统之前取消了“预”字,从中必然引申出;样气处理系统和样气处理部件的技术概念和专业术语。令人遗憾的是,长期以来并未得到本行业人士的关注和认可。本文着力阐述的样气处理系统技术,自身有相对独立性、严密性、系统性,PLC可编程序控制器的自控功能及其软件就是一个证明。德国H&B公司的60S型干法高温取样探头在中国市场单独销售有数十套之多,最高售价135万元,算是另一个颇具说服力的证明。为了推进在线分析系统工程应用技术的发展,我们应有一种新的技术观念:在线分析面对诸多十分艰巨复杂的技术难题,样气处理系统技术是在线分析系统的核心和关键技术,期待样气处理系统技术从此走上全面提升和发展的轨道。2在线分析器工程应用对样气处理系统技术的依赖和要求2.1 1986年以前,国内各分析器器专业厂的在线分析器器几乎全是以单机销售的形式投放市场,而德国H&B公司的在线分析器却大约有三分之二是以在线分析系统(包括分析小屋)的形式投放市场,那时样气处理系统有个“预”字并不冤。以川分的红外等三项技术引进为契机,同时从H&B公司引进了在线分析系统技术,并两次培训系统设计和工程应用人才,使川仪无意中充当了一次在线分析器工程应用先驱的角色,设计水平、应用水平、生产规模都有长足进步。 在线分析器工程应用的症结和最佳途径在线分析器的长期连续、适时的检测分析,必然要求连续取样和严格的样气处理技术,要求样气真实和传输快速,样气进入分析器时,要求达到近于标准气的品质。在线分析系统长期连续运行的可靠性和安全性,以及近于免维护的易维护性,都完全依赖样气处理系统技术的针对性设计。根据每项在线分析系统的现场应用条件和取样条件,要采用专业化、规范化,针对性设计的专用型在线分析系统,由具有长期工程实践经验的专业制造商生产这些高品质在线分析系统,并承担全过程技术服务。对于完善的过程气体分析,起决定作用的是使样气处理系统与千差万别的生产工艺条件和环境应用条件匹配得当、组合完善。在线分析器对样气处理系统的这种绝对依赖,使在线分析器以在线分析系统形式供货既是在线分析工程技术发展的必然,也在业界各方人士的情理之中。3复杂的样气条件和干法样气处理技术3.1 复杂的样气条件是过程气体分析面对的最大困难:高温或低温、高粉尘、高水分或液雾、高压负压、腐蚀性和爆炸性危险;较高的自动化程度,少维护甚至近于免维护的应用要求;防尘及防水、防腐蚀、防爆炸等方面苛刻的防护及安全要求;较快的反应速度,滞后时间一般要求<60s ;保证必要的检测准确度等。3.2 干法样气处理技术的必要性 干法样气处理技术有利于有效保持样气的真实性,进而保证必要的检测准确度。干法样气处理技术能使样气干燥、洁净,达到近于标准气的品质,可能发生的腐蚀性也大为降低。所有这些都有利于保证在线分析器连续、稳定、可靠、准确地运行,延长其使用寿命,我见过某石化企业使用超过20年的红外分析器。干法样气处理技术已成为绝对的主流技术。当然湿法样气处理技术也并未完全淘汰,如焦炉煤气O2分析系统,湿法对付焦油更为有效。4样气处理系统技术的体系性特征在线分析系统如果去掉在线分析器和某些应用保障条件部分,就是样气处理系统,体系性地简述样气处理系统如下:4.1 采样探头 通常称为取样探头,是样气处理系统最重要的样气处理部件,根据不同的取样条件,就一定有不同的针对性极强的探头,最常用的是低于650℃的中温通用型探头。取样探头还应包括压缩空气加热(180℃)反吹单元及其程控反吹技术。4.2 样气输送管线 通常多采用Φ6×1不锈钢管,为避免发生冷凝,常采用伴热保温技术(120℃),伴热方式以自控温电伴热带较为经济实用。4.3 过滤器 过滤器就其用途来说,以下三类较有代表性:一是探头过滤器,在取样点就地过滤粉尘,避免在其后产生粉尘沉淀和堵塞的危险,目前的先进水平是0.3μm 99%。二是后级高精度膜式过滤器,以保护分析器为主要目的,目前的先进水平是0.05μm 99%。三是分析器内部的微型过滤器,以在线分析器的自保护为目的,并不属于样气处理系统。4.4 样气冷凝器 使样气冷凝至低露点、以干燥样气为目的。压缩机式样气冷凝器能使样气由140℃冷至2℃露点,效果最好,成本最高;半导体制冷样气冷凝器,入口样气温度一般只能是45℃;涡流致冷样气冷凝器,能使样气温度降低20℃以上,最大的优势是使用压缩空气,本安防爆;使用水源的样气冷却器(即交换器)也有很多应用。4.5 采样泵 通常称为抽气泵,样气压力为负压或微正压时,也能为分析器提供规定的样气流量,隔膜式抽气泵用得较多。另外,常用蠕动泵来排放冷凝液。4.6 气液分离器 气液分离常是十分棘手的技术难题 旋风自洁式分离器 对分离>5μm粉尘和液雾较为有效,相当于70μm粒度以上的重力分离;凝结式分离器能对付更小粒度的微小液雾;特定项目专用型(如乙烯裂解)的气液分离是技术含量很高的综合技术;最简单的气液分离器仅是圆筒中加上一根管子;现在已有采用聚合膜方式过滤液雾的研究。4.7 样气流量测量及控制 样气流量一般用球形转子流量计,流量控制用针形阀调节。切换和关断气路要采用各种阀件,以“五通切换阀”最被看重。4.8 样气压力测量与调节 高压的减压、稳压与调节是项困难任务,各种阀的原理及规格的选择也很有专业性。高压力样气在取样点根部阀处就地减压很有必要,以避免降低反应速度。4.9 部件材料的正确选用 以O型密封圈选材为例:连续使用温度的高低依次为,氟橡胶包覆聚四氟乙烯、氟橡胶、硅橡胶、丁晴橡胶。4.10 设备外壳及防护 一般采用的机柜称为仪表盘,组装后称为分析(仪器)柜; 人可以进入的机柜称为分析小屋; 机柜对粉尘、水的防护等级以IPXX表示; 机柜对可燃性气体和蒸气的防爆等级。如 dⅡCT6。4.11 机柜的气候调节 机柜的气候调节可分为降温、加热、换气等三个大的方面。4.12 自控单元 样气处理系统的连续、稳定、近于免维护的运行,以及各种报警,都离不开PLC可编程序控制器为核心的自控单元。4.13 标准物质 即标准气,是在线分析器的计量标准,现在已采用99.999%的高纯氮作为零点气。4.14 快速回路设计,提高分析系统的反应速度。4.15 尾气和冷凝液的安全排放。4.16 数据处理及远程传输。4.17 工程现场安装的施工设计。
反应的在线NMR分析可以提供许多有用的信息,甚至可以揭示反应的途径与机理。目前可以进行在线NMR分析吗?如何实现?
在线分析技术在先进过程控制实时优化中居不可或缺的地位 回想在1963年时,由于工作关系使我有较多机会学习并接触到许多有关成分分析仪器的发展和可能应用课题。那时我曾提出“分析技术仪表化与分析仪器自动化乃是解决科学技术与生产现代化的重要手段”,并且,还提出“仅仅掌握了热工参数并不可能探知随着生产过程而出现的原料成分变化、触媒性能衰减和杂质积聚等现象。”我当时的这些话,既有推理成分,也有鼓气因素,不过今天看来似乎也还有些道理。 40年过去了,我们今天的流程控制技术总体规模越来越大,效率和效益指标越来越高,并且随着市场的激烈竞争,从原材料到品牌都要求能具有一定的柔性生产适应性,节约能源和保护环境也引起社会极大的关注。所以,应运而生的先进控制技术(APC)、实时优化(RT-OPT)用于提高装置操作、控制、管理水平,来追求更大的经济效益,已成为当今(特别是石化企业)迫切需要解决的热门手段。可是在这样大的热潮下,在线分析仪器却成了一个难题。我想应该再次呼吁从事分析仪器和自动化技术工作的同志们携起手来,重视并积极参与在线分析仪器的开发和生产。 回顾半个世纪以来我国自动控制技术的发展,我们曾经忙忙碌碌地从研制简单的机械式指示仪表到气动和电动单元组合仪表,从单机自动化到成套控制系统,取得了很大成功。但是在检测参量上则比较偏重于温度、压力、液位、流量等热工参数,直到20世纪50年代后期也只有很少的几种工业用的热导式CO和CO2气体分析仪器可作为锅炉燃烧效率的参考。1959年,北京分析仪器厂开始筹建(算是苏联援助的156项国家重点建设项目中最后的补充项目),它的主导产品是用于原子能核材料分析用的同位素质谱计和化学分析用的色谱仪以及核磁共振波谱仪等实验室用分析仪器。值得一提的是在它的产品大纲中除上述产品外还有工业用红外线气体分析仪(即苏联型号OA,但并未投产)、磁氧分析器以及标准气体配气站的概念设计等新内容,而这些项目为我们进入连续在线成分量检测奠定了基础。与此同时,通过质谱仪和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的研制,我们开始领悟到在成分量检测技术中最令人烦心的事,即样品的预处理以及如何排除共生物质的干扰的定性定量的校正和数据处理。而恰在这时,通过对色谱和质谱技术的探索,我们已意识到想要解决成分分析技术中的难点,可以将“分离与分析”解析为两个技术系统来考虑。同样,对自动化过程中有关成分量的分析,应将“全谱”分析和计算技术相结合。于是我们又提出“为了满足大型化工、石油工厂高度自动化的控制要求,把样品进行全面分离和分析,然后进行综合运算加工处理”的设想。 这些都是40年前通过工作实践和理论结合想到的一些思路和可能走的途径。可惜,由于历史的原因,使我们浪费了许多年的时间。同样可惜的是,改革开放后引进大型成套工程所带的流程分析仪器与国产仪器之间的差距越来越大;出现了工厂规模化整为零、投资不足、技术骨干流失等现象。若再谈振兴,真得从长计议。 这几年由于参与分析仪器学会的学术活动以及学习现场总线技术,不断地与自动化学术界与工程设计的专家们交往,使我眼界大开。如在诺大的一个石化工程中,除了中央控制室里和现场若干成分量分析仪的专用柜外,还大量出现“分析系统集成小屋”。据我以前搜集到的信息,仅仅以广东茂名的30万吨乙烯工厂为例,便有10多个分析系统集成小屋,分布在各生产装置现场,总设备投资约500万美元。他们所用的在线分析仪器已有150台之多。 二 案例分析 1. 美好的设想 目前,由于经济全球化的影响,国内外石化企业正在大规模地进行生产装置的提升改造和/或控制系统的更新,特别是通信网络和计算机软件技术发展神速,于是便产生了三大热点问题: (1)以多变量预估控制为代表的先进控制技术; (2)以在线实时优化为核心的过程优化技术; (3)以信息管理和工业控制集成为中心的CIMS技术。 我个人思想上比较保守,总认为硬件(指工艺和装备检测与控制)和软件(科技与管理)在不同时期不同条件下都有一定的比例协调关系,弄不好就会失调以至失控。特别是目前社会上有部分人把推理计算和建模摆在唯一和必然的途径,这往往就掩盖了物化过程中产生的本质问题。所以,我对APC在这次改造工程中的作用非常感兴趣,因为它的确能取得良好的经济效益,但同时也表明如果我们能使用高性能的在线分析仪器,那么整个控制系统的效果便会好很多。 2. 14万吨/年聚丙烯装置实例 14万吨/年聚丙烯装置由A、B两条生产线组成,它使用高效催化剂,是液、气两相结合的本体法聚合工艺,可以生产均聚物、无规共聚物和嵌段共聚物等10多种牌号的产品。自1987年投产以来,装置运行基本正常。由于聚合反应机理复杂,对关系到产品质量的熔融指数(Melt Flow Rate-MFR)、浆液浓度、反应器产导等重要工艺参数(实质上就是成分量参数)不能进行在线测量,在一定程度上影响了生产的稳定性和产品质量的提高。具体说就是: (1)因浆液浓度不好测控,影响聚合反应器的稳定性; (2)因最直接的质量指标熔融指数难以严格测控,带来一系列的质量问题; (3)由于市场需求不同,不可避免地在不同产品生产切换过程中会带来损失(包括过渡时间长,单体和催化剂等用料多,优级品率低,甚至产生因堵塞而造成的非计划停车等)。 针对上述因素,该装置的APC软件系统分为3个部分,即: (1)APC推理计算(APC Inferential Calculation) 从表面上看,推理计算过程也是建立反应器数学模型的过程,它的机理是要正确反应过程的质量平衡和能量平衡。其基本算式为: Mass IN=Mass OUT (1) 各组分的总质量平衡算式为 dM/dt=Mi-Mo+生成的M 式中 M——反应器中反应物的质量 Mi——注入质量 Mo——流动质量 以丙烯组分为例,其质量平衡算式可表示为: D[C3]/dt=Fi*[C3]-Fo*[C3]转化率 能量平衡的算式与质量平衡相似,基本算式为: Energy IN=Energy OUT (2) 由(2)式可细化为下式: Δ(系统能量)=ΔU+ΔEk+ΔEp±Q±W 式中 ΔU——内部能量(Internal Energy) ΔEk——动能(Kinetic Energy) ΔEp——潜能(Potential Energy) Q——注入(或撤出)系统的热能 W——注入(或撤出)系统的功 上述算式并不复杂,但是质量(Mass)流量并不等于体积流量,同样,化学反应的能量又和不同物质的成分和状态(气、液、固)以及介质分子结构的函数有关。我们都知道质量能用定律中化学反应速度、浓度、均匀度、温度和压力等的复杂函数关系。假如我们能掌握不同节点的成分变化,就可能在系统控制设计上开创新的局面。 (2)鲁棒调节控制 由于聚丙烯装置的非线性及频繁的产品牌号切换,尽管其主要控制回路仍为PID,但是控制品质还是有变差。这里出现一个很有意思的分析仪预估器(Analyzer Predicator)。因为,APC的计算及控制要用到大量的过程变量数据(如温度、压力、原料量等),计算程序计算出的数据(气体浓度)以及大量工业色谱的分析数据必须作可靠性对照认定有效后才能确认执行。 (3)MFR关联计算 MFR的波动是长期干扰聚丙烯装置生产操作的主要问题,也是进一步提高产品质量、开发新牌号产品的关键参数,可惜目前还只能通过在线的实时计算与预报技术来解决。 3. 40万吨/年乙烯装置实例 在世界范围内,乙烯生产装置是石油化工生产的龙头装置,该生产装置将原料石脑油、加氢尾油、轻柴油,经裂解、急冷、压缩、分离等过程,加工成乙烯、丙烯、丁烯及辅助产品,再进行后加工变成合成纤维、合成塑料、合成橡胶三大合成材料。 在乙烯生产装置中采用如下在线分析仪表:工业色谱分析仪(24台套)、氧气分析仪(12台套)、工业电导仪(10台套)、工业pH计(11台套)、红外分析仪(5台套)、微量水分析仪(7台套)、密度计(3台套)、粘度计(1台套)、可燃气体报警仪(80台套)。 在乙烯装置上实施APC和实时优化,实现乙烯装置优化操作、运行平稳、增加产量、安全运行、降低能量消耗,给企业带来了可观的经济效益。 实施APC和实时优化,均需要从在线分析仪获得实时、准确、重复性好的分析数据。例如:裂解炉过量空气燃烧控制、裂解炉裂解深度控制、裂解炉模型控制、烯塔产品乙烯质量控制和内烯塔产品乙烯质量控制。
摘 要 样品前处理是目前分析化学的瓶颈,它制约着相关学科如环境科学和生命科学的发展,是分析化学研究的难点和热点问题之一。由于样品数量极多,且分析物含量越来越低、基体越来越复杂,迫切要求发展高通量、高选择性、高效率的在线样品前处理技术。因此,开展这方面的研究具有极为重要的意义。近年来,自动化的样品前处理技术,尤其是在线样品前处理技术,正越来越受到分析界的关注。膜分离技术和流动注射(FI)技术的应用是在线样品前处理技术的两个重要发展方向。 论文简要地概述了膜分离技术和FI样品前处理技术的发展和应用现状,对膜萃取、FI液液萃取和FI高温反应等做了较为详细的综述。论文提出了一种新的样品前处理技术——连续流动液膜萃取(Continuous flow liquid membrane extraction, CFLME),用于痕量极性有机污染物的分离富集。在此基础上,建立了CFLME与高效液相色谱的在线联用系统,用于磺酰脲类除草剂的高效灵敏测定。论文还发展了液液萃取、高温反应和样品背景吸收干扰的消除等几种FI在线样品前处理技术,为FI应用于日常分析提供了新的思路和途径。本论文主要包括以下研究内容:(一)提出了连续流动液膜萃取技术 支载液体膜(Supported liquid membrane,SLM)萃取为三相系统,即在两水相(给体和受体)之间夹一有机相,有机相固着于多孔的憎水性膜上。SLM可以看作是萃取和反萃取两过程的结合,目标化合物先被萃入有机相,再经反萃取而富集于受体中。选择使用合适的条件如给体和受体的pH等,可使目标化合物获得很高的富集倍数。SLM具有有机溶剂用量少、富集倍数高、选择性高、操作简单并且可以方便地与分析仪器联用等优点,已用于环境及生物样品的在线预处理。SLM的缺点是液膜寿命有限,有机溶剂的选择范围比较窄,而且萃取速率较低。为了克服这些缺点,我们将SLM与连续流动液液萃取结合,发展了一种新的膜萃取技术,并将其命名为“连续流动液膜萃取(CFLME)”。CFLME包含以下三个步骤:(1)将样品以一定的流速(2~3 mL/min)而有机相以极小的流速(一般0.05 mL/min)泵入萃取系统的给体通道中,进行连续流动液液萃取使分析物萃入有机相;(2)给体流入SLM萃取装置后,有机相在聚四氟乙烯膜表面形成有机溶剂液膜;(3)分析物透过液膜被反萃取并捕集于另一侧的受体溶液中。以甲磺隆等5种磺酰脲类除草剂及双酚-A等内分泌干扰物为模型化合物的研究表明,在各自优化条件下,CFLME在单位时间内的富集效率是SLM的3.5-200倍。甲磺隆经120分钟的萃取后可达到1000倍的富集倍数,而双酚-A经40分钟的萃取后则可达到200倍的富集倍数。研究表明,CFLME除拥有SLM的优点外,还有以下优点:由于有机溶剂在系统中连续流动,液膜长期稳定;理论上,只要与水不互溶的有机溶剂都可使用,从而拓宽了有机溶剂的选择使用范围;由于可使用极性有机溶剂,显著提高了极性化合物的萃取效率。CFLME是一种比较有前途的样品预处理平台,具有重要的学术意义和实用价值。(二) 建立了连续流动液膜萃取与高效液相色谱在线联用系统 研究了将CFLME与高效液相色谱在线联用,测定水中甲磺隆和胺苯磺隆等磺酰脲类除草剂的方法。样品中的目标分析物经在线萃取后富集于50 mL 缓冲溶液(受体)中,然后被自动转移至高效液相色谱进样阀的定量环,再经C18 分析柱分离测定。以二氯甲烷作为液膜时,甲磺隆和胺苯磺隆经过10分钟富集后即可达到100倍的富集倍数,检测限分别达到0.05和0.1 mg/L,消耗的实际样品的体积仅20 mL。而文献报道的SLM萃取法则要富集5小时才能达到相同的富集倍数。用本方法分析测定了海水、自来水和瓶装矿泉水,0.2 mg/L甲磺隆和0.4 mg/L 胺苯磺隆的加标回收率分别在83.0-94.7%和87.8-99.7%之间。本方法自动化程度高,样品预处理时间短,样品消耗量少。为测定地表水中ng/L级的5种磺酰脲类除草剂,我们还建立了CFLME—C18预柱—高效液相色谱在线联用系统。磺酰脲类除草剂先经CFLME后被萃入960 µ L缓冲溶液(受体)中,再经在线中和后转移至C18预柱进行第二次富集,最后经C18分析柱分离测定。样品经过60 分钟的富集后,可达到5-50 ng/L的检测限。在50-100 ng/L 加标水平下,5种磺酰脲类除草剂在地表水中的回收率在86.6-117%之间。与柱切换及固相萃取的对比研究表明,经CFLME富集后,样品的基体峰明显减小,即样品比较“干净”,不需进一步处理就可以获得较低的检测限。本方法的检测限比用C18固相萃取柱富集—高效液相色谱测定时低200倍,为这类污染物的监测和环境毒理研究提供了高选择性、灵敏和廉价的测定方法。(三) 发展了流动注射在线样品前处理技术 论文较系统地研究了液液萃取、高温反应和样品背景吸收干扰的消除等FI在线样品预处理技术,成功地解决了FI分析实用化的某些技术难题,为FI应用于日常分析提供了新的思路和途径。论文研究了用FI微孔膜液液萃取技术,进行洗涤剂中阴离子表面活性剂的日常测定的可行性。样品中的阴离子表面活性剂在给体中与次甲基蓝试剂形成离子缔合物,再透过聚四氟乙烯膜被萃入三氯甲烷受体中进行自动比色测定。实验优化了流路系统的一些参数,如微孔膜液液萃取单元的沟槽长度及微孔膜的孔径等。研究表明,当使用蠕动泵和置换瓶输送三氯甲烷时,系统的长期稳定性有限。但若每隔20 min校正一次系统,仍然可用于日常分析。方法的线性范围为0.2-2.0 mmol/L十二烷基苯磺酸钠,进样频率和检测限分别为50 样次/小时和0.1 mmol/L 十二烷基苯磺酸钠(S/N=3),相对标准偏差为1.8% (n=11)。用所建立的方法和标准Epton法分别测定了11种洗衣粉中的阴离子表面活性剂含量,所得结果一致,对偶-t检验表明两种方法无显著差异。建立了FI高温反应系统,用于合成洗涤剂中的总无机磷酸盐和正磷酸盐的自动分析。聚磷酸盐在2.5 mol/L硫酸和145℃高温条件下,经50秒自动在线水解即完全转化为正磷酸盐,再用FI—钼蓝显色法测定总无机磷酸盐;正磷酸盐则利用FI的动力学分辨技术,在其它磷酸盐共存下以钼蓝显色法直接测定。加入十二烷基硫酸钠,成功地消除了非离子表面活性剂对比色测定的干扰。总无机磷酸盐和正磷酸盐进样频率分别为40和80样次/小时,远远高于现有的自动分析方法(20样次/小时),方法的灵敏度能够满足实际样品分析的要求。用本法和国家标准方法测定了合成洗涤剂中的总无机磷酸盐和正磷酸盐,所得结果一致。我们还将建立的高温反应系统应用于测定烟草中总还原糖。在110℃高温下,样品中的非还原糖如蔗糖等先在0.5 mol/L HCl中在线完全水解为还原糖,再在碱性条件下与铁氰化钾反应生成亚铁氰化钾,最后在室温下与三价铁离子反应生成普鲁士蓝并在690 nm处分光光度测定总还原糖的含量。选择适当的铁氰化钾及氢氧化钠浓度,可使葡萄糖和果糖与铁氰化钾的反应速率一致,从而保证总还原糖的准确测定。采用以碱性柠檬酸钠为载液的并合并带法,成功地避免了普鲁士蓝沉淀于流路系统管壁上造成的基线漂移。方法进样频率为40样次/小时,用于测定烟草浸提液中的总还原糖,结果满意。论文以硫氰酸汞光度法测定烟草中水溶性氯化物的为例,探索了用试剂注入FI技术消除样品背景吸收干扰。方法的线性范围为0-7.5 mg/L Cl,检测限为0.02 mg/L Cl,相对标准偏差为0.1%,进样频率达到60样次/小时。用本法和膜渗析—FI法测定了烟草样品中的氯化物含量,结果表明二者的相对偏差小于4.3%,对偶-t检验表明两方法之间无显著性差异。由于不需要膜渗析装置,本方法的流路系统较现有的连续流动分析和FI方法简单,长期稳定性更好。
请教大家,在线分析和实时分析在字面上理解有什么区别,实时是在线的时间维度?
三、现在的在线分析仪(90年代的初期…现在)进入九十年代,新建装置自动化水平也越来越高,对在线分析仪的要求也越来越高,主要变化在三个方面:第一个是数据处理方面:过去的分析仪,只是将分析结果以4…20MA的信号远程传输,在中央控制仪实时显示,操作人员根据显示结果,进行流程调整。而现在,信号传输过去后,输入的是中央数据处理系统。此系统收集所有的温度、压力、流量、物位、阀门定位及分析数据,组成一个物料平衡系统。每一项数据的改变,也就意味着其它数据跟着要改变,以促成一个新的平衡产生。这也就意味着,靠过去的实验室分析的分析结果,在数据上已不能保证它的时效性,没有时效性,分析结果的准确性也就无从谈起。实验室分析结果证明的是过去,在线分析仪分析数据说明的是现在。当然这个现在也是有一定的滞后性的,一般有几分钟。我们缩短的就是滞后时间。第二个方面:分析数据的储存。上一节我说到,中期的分析数据是靠记录仪走纸书面保存的。随着CPU的出现,一些数据显示已经从走纸信号显示发展到数字显示且能储存一周左右的数据啦,可通过软盘,随时下载保存,数据显示开始由书面走进了电子文件显示。分析数据不光能显示,而且可能通过设定高低报警值,来监视数据运行,一旦超限,即可发出声和光报警。发展到如今,分析数据的保存,只要你的硬盘足够大,可无限保存,读取更是不成问题。分析结果的趋势少则查一周,多则查一月,再长,只好调硬盘啦。这对仪器运行判断和流程变化判断都提供了无可比拟的方便。第三方面 仪器更新:仪器信号线也从无屏蔽线变成有屏蔽线,大大降低了信号衰减,分析仪测量数值与中央控制系统上的显示数值基本一致。同时,分析仪器的检测器也在突飞猛进。检测器结构更加紧凑,仪器布局更加合理,小型化趋势也越来越明显。检测器核心材质也发生了很大变化,检测数据更加灵敏,仪器适应性和适应领域也逐步普及。过去一台仪器所占有的空间,现在可以放2台,甚至4台仪器。仪器无论从重量还是体积,都在大幅缩水,而检测性能却呈现数量级式的上升。仪器常规维护量也在大幅下降。例如:过去的电解式微量氧,一个银电极有近30克重,拉直啦,有近十米长,蒸馏水和电解液消耗量大,两到三天就要加液一次,中期的这类仪器,其检测器核心部件…银电极,只有3克左右,网状布局,接触面大,外形只有过去的三分之一,维护保养量不及前者的五分之一;后期的同类仪器,则采用多对电极平衡,仪器测量反应速度快速,偏差小。后期的在线分析仪重在发展仪器的准确、快速、稳定上下了不少功夫。各类仪器都有显著进步,后面咱们分门别类再稍加叙述吧。现在的在线分析仪,广泛应用于石化、化工、炼油、天然气、热电、冶金、化纤、轻工、城市公用工程、环境监测、分析仪器制造、电子、医药生产等多种领域。四、在线分析仪分类
我司计划购置1套连续流动化学反应系统,适用于初试、中试的化学反应。目前只了解到Chemtrix BV品牌,各位大侠,有其它品牌推荐吗?
有谁会通过化学反应分解电路板中的银?
在线红外是一种实时监测反应体系中红外吸收光谱的仪器,可以真实直观地反映化学反应的起点和终点、反应速率、反应中间体等重要信息,而且可以弥补离线分析前处理复杂、检测结果不连续、分析效率低等不足,因此在反应
手头刚开始接受一台6890,现在我想在线分析反应尾气,比如我每隔1小时分析一次,并且在晚上没人得时候也正常分析,请问该怎么办?是编辑sequence方法还是用chemstation schedule?菜鸟一个,非常感谢!!
红外光是一种电磁能量,当其照射到样品时,由于样品内有机成份在不同波数对红外光吸收能量不同,将这些不同记录下来,既得到红外光谱,当对红外光谱所包含的信息进行分析后,就会得到样品内不同有机成份的性质及含量。煤质在线检测系统是利用红外探测光对在线(输煤皮带上)原煤样品进行实时测量,通过对燃煤中各种官能团对红外光吸收各有差异的特点,应用计算机将这些差异进行识别处理,从而准确地测量出燃煤的热值及灰份、挥发份等工业分析值。 煤质在线检测系统的技术关键是根据样品光谱中的信息特征,利用设计开发的软件及建立的数学模型系统,通过计算机识别,进行定性与定量分析。定性分析是利用模式识别与聚类的一些算法,主要用于将所测到光谱进行分类。定量分析是根据比耳定律,应用化学计量学的方法,建立全谱区的光谱信息与含量及性质间的数学关系,通过严格的统计验证并选择最佳数学模型,计算出对应成分的含量或性质。 该技术是将硬件和软件相结合,特别是利用软件,解决红外光谱中谱峰重叠、高背景底强度的信息、图谱不稳定等难点,充分提取红外光谱的信息,达到分析的目的。
流动注射分析仪是一种自动化的分析技术,广泛应用于化学、生物、环境等领域。采用连续流动的方式,将样品、试剂和载体液以一定比例混合,通过化学反应或物理过程,实现对待测成分的快速、准确分析。工作原理基于连续流动的方式,通过精确控制各种液体的流速和混合比例,实现样品的自动进样、试剂的自动加入、混合和反应,最终产生测定结果。其主要工作方式包括进样、混合、反应和检测等步骤。整个分析过程由自动控制系统完成,具有高度的自动化和高通量的特点。 流动注射分析仪的特点和优势: 1.高效快速:具有快速分析的特点,适用于大批量样品的快速检测,提高了分析效率。 2.灵敏度高:由于采用连续流动的方式,使得样品与试剂充分混合,反应均匀,从而提高了分析的灵敏度和准确性。 3.自动化程度高:采用自动控制系统,实现了全自动化的分析过程,减少了人为操作的误差。 4.节省试剂:由于采用了连续流动和微量试剂的方式,使得试剂的消耗大大减少,节省了成本。 5.多功能性:可以适用于多种分析方法,包括光度法、荧光法、电化学法等,具有较强的通用性和灵活性。 流动注射分析仪的应用领域: 1.化学分析:用于水质分析、土壤分析、食品分析等领域,可以对各种化学成分进行快速准确的分析。 2.生物医药:在生物样品的分析和药物检测方面具有重要应用,如血清中各种生化指标的检测等。 3.环境监测:用于大气、水体、土壤等环境样品的快速监测,可以对环境中的有害物质进行分析。 4.工业应用:在工业生产中,可以用于对原料、中间产物和成品进行在线分析,实现生产过程的自动化控制。
在这里看了不少大家共享的资源自己也是从事在线分析系统设计的不到之处望各位不吝赐教,深表感谢!目前整套系统正在集成Ing整体集成完毕的照片后续上传先传部分已经集成好的图片,与大家共勉!
[b][b][font=宋体]一、在线分析系统的管理[/font][/b][/b][font=宋体]由于在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术是一套复杂的系统,[/font][font=宋体]所以[/font][font=宋体],[/font][font=宋体]在管理模式和人员素质要求上[/font][font=宋体]更偏向于工程管理而非化验室常规仪表的管理[/font][font=宋体]。[/font][font=宋体]对于[/font][font=宋体]在线分析仪表[/font][font=宋体],判断其[/font][font=宋体]运行好坏[/font][font=宋体]的最重要指标[/font][font=宋体]主要是[/font][font=宋体]看[/font][font=宋体]该仪表是否能提供稳定准确的分析数据,这项工作单靠仪表专业是难以完成的,需要分析专业强有力的支持与帮助。所以,在管理模式上应采用在线分析仪表与分析化验室同处于一个部门(或者是两个部门同处于一个上级领导部门)的管理模式,使这两个专业相互支持、相互配合、共同发展,化验室定期对在线分析仪表进行对比分析,以便仪表专业人员对在线分析仪表的运行状态进行评估,保证分析结果的准确性,同时也为在线分析仪表的维护和校调提供了依据[/font][font=宋体];[/font][font=宋体]而在线分析仪表的采用大大减轻了分析化验室的工作压力,从而使得在线分析仪表得到不断的发展,充分发挥其最大作用。[/font][font=宋体]因此,相比于在线近红外分析仪表性能,严格的工程管理才是在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]系统发挥作用的基础[/font][font=宋体]。[/font][font=宋体]由于在线近红外分析仪表牵涉分析化学、光谱学、仪表自动化和化学计量学等[/font][font=宋体]诸多技术,所以要求管理和使用人员具有各相关专业的基础知识和基本技能,而且责任心也应较其他部门更强。在线分析仪表班组必须综合仪表、分析、电气、工艺、设备、计算机等专业人员的技术力量,形成一个良好的相互补充、相互协调、责任明晰、共同发展的工作氛围,才能为在线分析仪表长期、稳定、准确地运行提供保障。此外,需要提及的一种发展趋势是,用户不再组建自己的在线分析仪表管理和维护队伍,而是将在线分析技术这一繁杂、专业技术性很强的维护和服务任[/font][font=宋体]务承包[/font][font=宋体]给社会专业公司完整负责,以系统形式提供全方位服务,这样一方面可以保证在线分析仪的正常运行,另外还可节省和优化人力资源。应该说,这是使在线分析仪正常运行、发挥出其应有效用的一种较完善的方式,这一观念也正逐渐在国际大型工厂(如石化等)得到认可和实践。[/font][b][b][font=宋体]二、在线分析系统的验证及其维护[/font][/b][/b][font=宋体]在分析系统安装完毕后[/font][font=宋体],应按照设计说明和生产商提供的技术指标,严格对在线分析系统的软硬件进行验收,逐项验证各项指标是否满足要求,如光谱仪和样品预处理的性能、软件功能是否齐全等。对初始分析模型的验证,可参[/font][font='Times New Roman'][font=宋体]考[/font]ASTM D6122[font=宋体]标准方法进行。收集至少[/font][font=Times New Roman]20[/font][font=宋体]个非模型界外过程分析样品作为验证样本,且待测性质和组成的分布范围应足够宽,其标准偏差至少为所用基础测试方法再现性的[/font][font=Times New Roman]70%[/font][font=宋体],然后对近红外分析模型的预测值和基础测试方法得到的结果进行统计学检验分析,如相关(斜率)检验和偏差检验,只有完全通过这些检验的模型才能用于过程分析。[/font][font=Times New Roman]ASTM D6122[/font][font=宋体]同时给出了在线分析过程中,对光谱仪(包括光纤探头和流通池)性能(如基线、光程、波长、分辨率和吸光度精度和线性)进行定期(最好是每天一次)检验的方法。检验使用[/font][/font][font=宋体][font=Times New Roman]3[/font][/font][font='Times New Roman'][font=宋体]类样品[/font][/font][font=宋体]—[/font][font='Times New Roman'][font=宋体]检验样品[/font][/font][font=宋体] [font=Times New Roman]([/font][/font][font='Times New Roman']check samples[/font][font=宋体][font=Times New Roman])[/font][/font][font='Times New Roman'][font=宋体]、测试样品[/font][/font][font=宋体] [font=Times New Roman]([/font][/font][font='Times New Roman']test samples[/font][font=宋体][font=Times New Roman])[/font][/font][font='Times New Roman'][font=宋体]和光学滤光片[/font][/font][font=宋体][font=Times New Roman]([/font][/font][font='Times New Roman']optical filters[/font][font=宋体][font=Times New Roman])[/font][font=宋体]。[/font][/font][font='Times New Roman'][font=宋体]其中[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]测试样品为模型能覆盖的在线实际分析样品,通过一定方式保存,保证其组分[/font][/font][font=宋体]不随时间发生变化;检验样品则[/font][font='Times New Roman'][font=宋体]可以是纯化合物或几种化合物的混合物,但应尽可能包含在线分析样品的主要基团[/font][/font][font=宋体];[/font][font='Times New Roman'][font=宋体]光学滤光片主要用于插[/font][/font][font=宋体]入[/font][font=宋体]式探头的检测,其在材料上应不同于光谱仪内置的用来校正波长的滤光片。检验涉及[/font][font=宋体]3[/font][font=宋体][font=宋体]种方法:水平[/font]0检测,对光谱仪的变动进行测试,包括波长稳定性、光度噪声、基线稳定性、光谱分辨率和吸光度线性;水平A检测,用数学方法比较检验样品、测试样品或光学滤光片的光谱与其历史记录光谱之间的差异;水平B检测,用所建模[/font][font=宋体]型预测检验样品、测试样品或光学滤光片光[/font][font=宋体]谱,[/font][font='Times New Roman'][font=宋体]其预测值、马氏距离和光谱残差与历史值进行比较[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]以检测分析仪性能的变化。[/font][/font][font=宋体]在实际应用分析中[/font][font='Times New Roman'][font=宋体],若连续[/font]6[font=宋体]次测量光谱都为模型界外点,则必须用上述方法对仪器的性能进行检验,以确定模型界外光谱是否是由于光谱仪的变动引起的。为保证近红外在线分析数据的准确性,需要定期对其结果标定([/font][font=Times New Roman]ASTM D6122[/font][font=宋体]建议每周一次),可以采用两种方法来保证分析数据的准确性:一是采用标准样品[/font][/font][font=宋体]。[/font][font='Times New Roman'][font=宋体]对于有些测试对象很难获得标准样品,这时可采用第二种方法,即与化验室进行数据对比,其差值应在基础测试方法要求的再现性范围内。如果差值超过范围,则需要再次采样分析,如果结果又满足了要求,说明采样或者化验室分析数据有问题[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]否则需要对硬件和模型进行系统检验,找出引起偏差的主要原因。而且,每隔一段时间(如[/font]1~2[font=宋体]个月),要对这段的对比数据进行统计分析,可使用[/font][font=Times New Roman]ASTM D6122[/font][font=宋体]推荐的[/font][/font][font=宋体][font=Times New Roman]3[/font][/font][font='Times New Roman'][font=宋体]种质量控制图(单值控制图、指数权重移动平均控制图和两图移动范围控制图),即使两种方法之间的偏差满足要求,也可以根据统计结果来判断分析仪的运行状态,如是否存在系统误差等。在与实验室分析结果进行对比时,有几点问题值得注意:[/font][/font][font=宋体]一是[/font][font=宋体][font=宋体]在线分析样品与实验室分析样品在时间和组成上的一致性,即两者为[/font][font=宋体]“同一个”样品;[/font][/font][font=宋体]二是[/font][font=宋体]实验室所用的分析方法是建立[/font][font=宋体]近红外分析模型所采用的方法[/font][font=宋体];[/font][font=宋体]三是[/font][font=宋体]在实验室进行分析时,应尽可能用同一台设备和同一人员进行分析[/font][font=宋体]。[/font][font=宋体]如有可[/font][font='Times New Roman'][font=宋体]能应平行测定[/font]3[font=宋体]次,取平均值。对在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析系统的日常维护一般主要集中在光谱仪、样品预处理系统和分析模型[/font][/font][font=宋体][font=Times New Roman]3[/font][/font][font='Times New Roman'][font=宋体]部分上。光谱仪的光源能量会随着时间的变化逐渐下降,可通过光谱信噪比测试来判断何时更换光源,更换光源后应对分析模型的有效性进行验证[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]确保其变动对模型没有显著影响。此外,取样[/font]-[font=宋体]测样装置也应定期检查和清洗,防止光学窗片污染、刮伤、磨损等对分析结果的影响。样品预处理系统的维护包括各控制阀件和仪[/font][/font][font=宋体]表工作是否正常[/font][font='Times New Roman'][font=宋体],以及一些耗用品如干燥剂、过滤网[/font]/[font=宋体]膜等的更换。[/font][/font][font=宋体]对分析模[/font][font=宋体]型的修改与扩充是在线近红外分析系统维护的主要内容[/font][font='Times New Roman'][font=宋体],也是最为复杂的一个环节。一般当出现模型界外样品时,就需考虑模型维护问题。[/font]ASTM[font=宋体]为近红外分析模型的建立、检验和维护制定了具体的标准化操作规范。建立分析模型可参照[/font][font=Times New Roman]ASTM E 1655[/font][/font][font=宋体]、[/font][font='Times New Roman']GB/T29858-2013[/font][font=宋体]和[/font][font='Times New Roman']GB/T37969-2019[/font][font=宋体]等[/font][font='Times New Roman'][font=宋体]标准,[/font]ASTM D 2885/3764[font=宋体]则提供了模型自动检验标准,[/font][font=Times New Roman]ASTM D6122[/font][font=宋体]为自动检验特异样品和判定测[/font][/font][font=宋体]量[/font][font='Times New Roman'][font=宋体]值漂移标准。[/font][/font][font=宋体]模型预测性能受到两大基本因素影响:一是样品化学组分发生变化;二是仪器的系统漂移。[/font][font='Times New Roman'][font=宋体]当发生[/font][/font][font=宋体]样品化学组分发生变化[/font][font='Times New Roman'][font=宋体]时,需要及时将这些样品补充到样品集中,对近红外在线分析模型进行更新,扩充模型的覆盖范围。[/font][/font][font=宋体]但[/font][font='Times New Roman'][font=宋体]在线模型用[/font][/font][font=宋体]于[/font][font='Times New Roman'][font=宋体]控制[/font][/font][font=宋体]循环中以后[/font][font='Times New Roman'][font=宋体],[/font][/font][font=宋体]不宜进行[/font][font='Times New Roman'][font=宋体]频繁的模型重建工作[/font][/font][font=宋体],如果实在需要才能对模型进行更新。[/font][font='Times New Roman'][font=宋体]因此,在线测量模型必须在确定建立完善后才能投[/font][/font][font=宋体]入[/font][font='Times New Roman'][font=宋体]使用[/font][/font][font=宋体]。[/font][font='Times New Roman'][font=宋体]若界外样品由[/font][/font][font=宋体]仪器的系统漂移[/font][font='Times New Roman'][font=宋体]引起,则需要找出问题的具体原因,加以解决,如排除硬件故障,保证分析条件的一致性。对于样品粒度、温度、压力或流速等因素引起的界外样品,也可通过将这些变动因素引入模型的办法来解决,但这样做会降低模型的精度。为确保仪器的可靠性,常规的仪器诊断数据如波长准确度、噪声水平、带宽以及参考标准样品的光谱响应等应该做自动记录。[/font][/font][font=宋体]此外,[/font][font='Times New Roman'][font=宋体]还需要经常性地抽取一些控制样本进行[/font][/font][font=宋体]近红外[/font][font='Times New Roman'][font=宋体]测量和参考方法测量的对比以检验[/font][/font][font=宋体]近红外[/font][font='Times New Roman'][font=宋体]方法的性能,一般每隔[/font]4~8[font=宋体]小时需要做一次验证工作,并记录检验结果。把这些记录结果绘制成一个控制图表可以有效地监控仪器和测量模型的性能。[/font][/font]
[b][b][font=宋体]一、在线分析系统的管理[/font][/b][/b][font=宋体]由于在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术是一套复杂的系统,[/font][font=宋体]所以[/font][font=宋体],[/font][font=宋体]在管理模式和人员素质要求上[/font][font=宋体]更偏向于工程管理而非化验室常规仪表的管理[/font][font=宋体]。[/font][font=宋体]对于[/font][font=宋体]在线分析仪表[/font][font=宋体],判断其[/font][font=宋体]运行好坏[/font][font=宋体]的最重要指标[/font][font=宋体]主要是[/font][font=宋体]看[/font][font=宋体]该仪表是否能提供稳定准确的分析数据,这项工作单靠仪表专业是难以完成的,需要分析专业强有力的支持与帮助。所以,在管理模式上应采用在线分析仪表与分析化验室同处于一个部门(或者是两个部门同处于一个上级领导部门)的管理模式,使这两个专业相互支持、相互配合、共同发展,化验室定期对在线分析仪表进行对比分析,以便仪表专业人员对在线分析仪表的运行状态进行评估,保证分析结果的准确性,同时也为在线分析仪表的维护和校调提供了依据[/font][font=宋体];[/font][font=宋体]而在线分析仪表的采用大大减轻了分析化验室的工作压力,从而使得在线分析仪表得到不断的发展,充分发挥其最大作用。[/font][font=宋体]因此,相比于在线近红外分析仪表性能,严格的工程管理才是在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]系统发挥作用的基础[/font][font=宋体]。[/font][font=宋体]由于在线近红外分析仪表牵涉分析化学、光谱学、仪表自动化和化学计量学等[/font][font=宋体]诸多技术,所以要求管理和使用人员具有各相关专业的基础知识和基本技能,而且责任心也应较其他部门更强。在线分析仪表班组必须综合仪表、分析、电气、工艺、设备、计算机等专业人员的技术力量,形成一个良好的相互补充、相互协调、责任明晰、共同发展的工作氛围,才能为在线分析仪表长期、稳定、准确地运行提供保障。此外,需要提及的一种发展趋势是,用户不再组建自己的在线分析仪表管理和维护队伍,而是将在线分析技术这一繁杂、专业技术性很强的维护和服务任[/font][font=宋体]务承包[/font][font=宋体]给社会专业公司完整负责,以系统形式提供全方位服务,这样一方面可以保证在线分析仪的正常运行,另外还可节省和优化人力资源。应该说,这是使在线分析仪正常运行、发挥出其应有效用的一种较完善的方式,这一观念也正逐渐在国际大型工厂(如石化等)得到认可和实践。[/font][b][b][font=宋体]二、在线分析系统的验证及其维护[/font][/b][/b][font=宋体]在分析系统安装完毕后[/font][font=宋体],应按照设计说明和生产商提供的技术指标,严格对在线分析系统的软硬件进行验收,逐项验证各项指标是否满足要求,如光谱仪和样品预处理的性能、软件功能是否齐全等。对初始分析模型的验证,可参[/font][font='Times New Roman'][font=宋体]考[/font]ASTM D6122[font=宋体]标准方法进行。收集至少[/font][font=Times New Roman]20[/font][font=宋体]个非模型界外过程分析样品作为验证样本,且待测性质和组成的分布范围应足够宽,其标准偏差至少为所用基础测试方法再现性的[/font][font=Times New Roman]70%[/font][font=宋体],然后对近红外分析模型的预测值和基础测试方法得到的结果进行统计学检验分析,如相关(斜率)检验和偏差检验,只有完全通过这些检验的模型才能用于过程分析。[/font][font=Times New Roman]ASTM D6122[/font][font=宋体]同时给出了在线分析过程中,对光谱仪(包括光纤探头和流通池)性能(如基线、光程、波长、分辨率和吸光度精度和线性)进行定期(最好是每天一次)检验的方法。检验使用[/font][/font][font=宋体][font=Times New Roman]3[/font][/font][font='Times New Roman'][font=宋体]类样品[/font][/font][font=宋体]—[/font][font='Times New Roman'][font=宋体]检验样品[/font][/font][font=宋体] [font=Times New Roman]([/font][/font][font='Times New Roman']check samples[/font][font=宋体][font=Times New Roman])[/font][/font][font='Times New Roman'][font=宋体]、测试样品[/font][/font][font=宋体] [font=Times New Roman]([/font][/font][font='Times New Roman']test samples[/font][font=宋体][font=Times New Roman])[/font][/font][font='Times New Roman'][font=宋体]和光学滤光片[/font][/font][font=宋体][font=Times New Roman]([/font][/font][font='Times New Roman']optical filters[/font][font=宋体][font=Times New Roman])[/font][font=宋体]。[/font][/font][font='Times New Roman'][font=宋体]其中[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]测试样品为模型能覆盖的在线实际分析样品,通过一定方式保存,保证其组分[/font][/font][font=宋体]不随时间发生变化;检验样品则[/font][font='Times New Roman'][font=宋体]可以是纯化合物或几种化合物的混合物,但应尽可能包含在线分析样品的主要基团[/font][/font][font=宋体];[/font][font='Times New Roman'][font=宋体]光学滤光片主要用于插[/font][/font][font=宋体]入[/font][font=宋体]式探头的检测,其在材料上应不同于光谱仪内置的用来校正波长的滤光片。检验涉及[/font][font=宋体]3[/font][font=宋体][font=宋体]种方法:水平[/font]0检测,对光谱仪的变动进行测试,包括波长稳定性、光度噪声、基线稳定性、光谱分辨率和吸光度线性;水平A检测,用数学方法比较检验样品、测试样品或光学滤光片的光谱与其历史记录光谱之间的差异;水平B检测,用所建模[/font][font=宋体]型预测检验样品、测试样品或光学滤光片光[/font][font=宋体]谱,[/font][font='Times New Roman'][font=宋体]其预测值、马氏距离和光谱残差与历史值进行比较[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]以检测分析仪性能的变化。[/font][/font][font=宋体]在实际应用分析中[/font][font='Times New Roman'][font=宋体],若连续[/font]6[font=宋体]次测量光谱都为模型界外点,则必须用上述方法对仪器的性能进行检验,以确定模型界外光谱是否是由于光谱仪的变动引起的。为保证近红外在线分析数据的准确性,需要定期对其结果标定([/font][font=Times New Roman]ASTM D6122[/font][font=宋体]建议每周一次),可以采用两种方法来保证分析数据的准确性:一是采用标准样品[/font][/font][font=宋体]。[/font][font='Times New Roman'][font=宋体]对于有些测试对象很难获得标准样品,这时可采用第二种方法,即与化验室进行数据对比,其差值应在基础测试方法要求的再现性范围内。如果差值超过范围,则需要再次采样分析,如果结果又满足了要求,说明采样或者化验室分析数据有问题[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]否则需要对硬件和模型进行系统检验,找出引起偏差的主要原因。而且,每隔一段时间(如[/font]1~2[font=宋体]个月),要对这段的对比数据进行统计分析,可使用[/font][font=Times New Roman]ASTM D6122[/font][font=宋体]推荐的[/font][/font][font=宋体][font=Times New Roman]3[/font][/font][font='Times New Roman'][font=宋体]种质量控制图(单值控制图、指数权重移动平均控制图和两图移动范围控制图),即使两种方法之间的偏差满足要求,也可以根据统计结果来判断分析仪的运行状态,如是否存在系统误差等。在与实验室分析结果进行对比时,有几点问题值得注意:[/font][/font][font=宋体]一是[/font][font=宋体][font=宋体]在线分析样品与实验室分析样品在时间和组成上的一致性,即两者为[/font][font=宋体]“同一个”样品;[/font][/font][font=宋体]二是[/font][font=宋体]实验室所用的分析方法是建立[/font][font=宋体]近红外分析模型所采用的方法[/font][font=宋体];[/font][font=宋体]三是[/font][font=宋体]在实验室进行分析时,应尽可能用同一台设备和同一人员进行分析[/font][font=宋体]。[/font][font=宋体]如有可[/font][font='Times New Roman'][font=宋体]能应平行测定[/font]3[font=宋体]次,取平均值。对在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析系统的日常维护一般主要集中在光谱仪、样品预处理系统和分析模型[/font][/font][font=宋体][font=Times New Roman]3[/font][/font][font='Times New Roman'][font=宋体]部分上。光谱仪的光源能量会随着时间的变化逐渐下降,可通过光谱信噪比测试来判断何时更换光源,更换光源后应对分析模型的有效性进行验证[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]确保其变动对模型没有显著影响。此外,取样[/font]-[font=宋体]测样装置也应定期检查和清洗,防止光学窗片污染、刮伤、磨损等对分析结果的影响。样品预处理系统的维护包括各控制阀件和仪[/font][/font][font=宋体]表工作是否正常[/font][font='Times New Roman'][font=宋体],以及一些耗用品如干燥剂、过滤网[/font]/[font=宋体]膜等的更换。[/font][/font][font=宋体]对分析模[/font][font=宋体]型的修改与扩充是在线近红外分析系统维护的主要内容[/font][font='Times New Roman'][font=宋体],也是最为复杂的一个环节。一般当出现模型界外样品时,就需考虑模型维护问题。[/font]ASTM[font=宋体]为近红外分析模型的建立、检验和维护制定了具体的标准化操作规范。建立分析模型可参照[/font][font=Times New Roman]ASTM E 1655[/font][/font][font=宋体]、[/font][font='Times New Roman']GB/T29858-2013[/font][font=宋体]和[/font][font='Times New Roman']GB/T37969-2019[/font][font=宋体]等[/font][font='Times New Roman'][font=宋体]标准,[/font]ASTM D 2885/3764[font=宋体]则提供了模型自动检验标准,[/font][font=Times New Roman]ASTM D6122[/font][font=宋体]为自动检验特异样品和判定测[/font][/font][font=宋体]量[/font][font='Times New Roman'][font=宋体]值漂移标准。[/font][/font][font=宋体]模型预测性能受到两大基本因素影响:一是样品化学组分发生变化;二是仪器的系统漂移。[/font][font='Times New Roman'][font=宋体]当发生[/font][/font][font=宋体]样品化学组分发生变化[/font][font='Times New Roman'][font=宋体]时,需要及时将这些样品补充到样品集中,对近红外在线分析模型进行更新,扩充模型的覆盖范围。[/font][/font][font=宋体]但[/font][font='Times New Roman'][font=宋体]在线模型用[/font][/font][font=宋体]于[/font][font='Times New Roman'][font=宋体]控制[/font][/font][font=宋体]循环中以后[/font][font='Times New Roman'][font=宋体],[/font][/font][font=宋体]不宜进行[/font][font='Times New Roman'][font=宋体]频繁的模型重建工作[/font][/font][font=宋体],如果实在需要才能对模型进行更新。[/font][font='Times New Roman'][font=宋体]因此,在线测量模型必须在确定建立完善后才能投[/font][/font][font=宋体]入[/font][font='Times New Roman'][font=宋体]使用[/font][/font][font=宋体]。[/font][font='Times New Roman'][font=宋体]若界外样品由[/font][/font][font=宋体]仪器的系统漂移[/font][font='Times New Roman'][font=宋体]引起,则需要找出问题的具体原因,加以解决,如排除硬件故障,保证分析条件的一致性。对于样品粒度、温度、压力或流速等因素引起的界外样品,也可通过将这些变动因素引入模型的办法来解决,但这样做会降低模型的精度。为确保仪器的可靠性,常规的仪器诊断数据如波长准确度、噪声水平、带宽以及参考标准样品的光谱响应等应该做自动记录。[/font][/font][font=宋体]此外,[/font][font='Times New Roman'][font=宋体]还需要经常性地抽取一些控制样本进行[/font][/font][font=宋体]近红外[/font][font='Times New Roman'][font=宋体]测量和参考方法测量的对比以检验[/font][/font][font=宋体]近红外[/font][font='Times New Roman'][font=宋体]方法的性能,一般每隔[/font]4~8[font=宋体]小时需要做一次验证工作,并记录检验结果。把这些记录结果绘制成一个控制图表可以有效地监控仪器和测量模型的性能。[/font][/font]
水质在线自动监测系统是一套以在线自动分析仪器为核心,运用现代传感器技术、自动测量技术,自动控制技术、计算机应用技术以及相关的专用分析软件和通讯网络所组成的一个综合性的在线自动监测体系。 一套完整的水质自动监测系统能连续、及时、准确地监测目标水域的水质及其变化状况;中心控制室可随时取得各子站的实时监测数据,统计、处理监测数据,可打印输出日、周、月、季、年平均数据以及日、周、月、季、年最大值、最小值等各种监测、统计报告及图表(棒状图、曲线图、多轨迹图、对比图等),并可输入中心数据库或上网。收集并可长期存储指定的监测数据及各种运行资料、环境资料备检索。系统具有监测项目超标及子站状态信号显示、报警功能;自动运行,停电保护、来电自动恢复功能;维护检修状态测试,便于例行维修和应急故障处理等功能。 实施水质自动监测,可以实现水质的实时连续监测和远程监控,达到及时掌握主要流域重点断面水体的水质状况、预警预报重大或流域性水质污染事故、解决跨行政区域的水污染事故纠纷、监督总量控制制度落实情况、排放达标情况等目的。 1 水质自动监测技术 1.1 水质自动监测系统的构成 在水质自动监测系统网络中,中心站通过卫星和电话拨号两种通讯方式实现对各子站的实时监视、远程控制及数据传输功能,托管站也可以通过电话拨号方式实现对所托管子站的实时监视、远程控制及数据传输功能,其他经授权的相关部门可通过电话拨号方式实现对相关子站的实时监视和数据传输功能。 每个子站是一个独立完整的水质自动监测系统,一般由6个子系统构成,包括:采样系统、预处理系统、监测仪器系统、PLC控制系统、数据采集、处理与传输子系统及远程数据管理中心、监测站房或监测小屋。目前,水质自动监测系统中的子站的构成方式大致有三种: (1)由一台或多台小型的多参数水质自动分析仪(如:YSI公司和HYDROLAB公司的常规五参数分析仪)组成的子站(多台组合可用于测量不同水深的水质)。其特点是仪器可直接放于水中测量,系统构成灵活方便。 (2)固定式子站:为较传统的系统组成方式。其特点是监测项目的选择范围宽。 (3)流动式子站:一种为固定式子站仪器设备全部装于一辆拖车(监测小屋)上,可根据需要迁移场所,也可认为是半固定式子站。其特点是组成成本较高。 各单元通过水样输送管路系统、信号传输系统、压缩空气输送管路系统、纯水输送管路系统实现相互联系。 一个可靠性很高的水质自动监测系统,必须同时具备4个要素,即:(1)高质量的系统设备;(2)完备的系统设计;(3)严格的施工管理;(4)负责的运行管理。 1.2 水质自动监测的技术关键 (1)采水单元:包括水泵、管路、供电及安装结构部分。在设计上必须对各种气候、地形、水位变化及水中泥沙等提出相应解决措施,能够自动连续地与整个系统同步工作,向系统提供可靠、有效水样。 (2)配水单元:包括水样预处理装置、自动清洗装置及辅助部分。配水单元直接向自动监测仪器供水,具有在线除泥沙和在线过滤,手动和自动管道反冲洗和除藻装置;其水质、水压和水量应满足自动监测仪器的需要。 (3)分析单元:由一系列水质自动分析和测量仪器组成,包括:水温、pH、溶解氧(DO)、电导率、浊度、氨氮、化学需氧量、高锰酸盐指数、总有机碳(TOC)、总氮、总磷、硝酸盐、磷酸盐、氰化物、氟化物、氯化物、酚类、油类、金属离子、水位计、流量/流速/流向计及自动采样器等组成。 (4)控制单元:包括系统控制柜和系统控制软件;数据采集、处理与存储及其应用软件;有线通讯和卫星通讯设备。 (5)子站站房及配套设施:包括站房主体和配套设施。
梅特勒-托利多自动化化学部诚邀您参加2015大连医药化工工艺优化及PAT过程分析技术应用交流会。本次交流会将邀请医药化工工艺优化领域的资深专家—天津大学化工学院国家工业结晶工程技术研究中心的龚俊波教授,为我们剖析医药化工工艺优化过程中的难点并为我们分享一些经典的案例。梅特勒-托利多的技术应用工程师也将为我们介绍PAT过程分析技术以并分享国内外工艺优化的应用实例。此次交流会旨在通过面对面的专家交流和案例分析,为您今后的研发及工艺优化工作带来新观念、新思路和新方法。http://simg.instrument.com.cn/bbs/images/default/em09503.gifhttp://ng1.17img.cn/bbsfiles/images/2015/04/201504301117_544175_271_3.png会议内容1. 应用于医药化工工艺优化的PAT工具2. 医药化工工艺优化难点剖析3. 实时在线颗粒分析技术在结晶过程理解和工艺优化中的应用4. 全自动实验室反应器技术在工艺优化和安全放大中的应用5. 全自动取样系统介绍6. 医药化工工艺优化案例分享7. 实时在线反应分析技术在反应机理研究和工艺优化中的应用会议时间2015年5月7日 8:30 - 17:00会议地点大连理工大学国际会议中心地址:大连市甘井子区凌工路2号大连理工大学科技园大厦A座会议费用http://simg.instrument.com.cn/bbs/images/default/em09507.gif免费参加会议免费提供午餐和茶歇住宿差旅费请自理报名地址:http://cn.mt.com/cn/zh/home/events/seminars/product-organization/labtec/CN_AC_Dalian_Chem_Process_Optimization_PAT_process_2015.html
[color=#990000]摘要:差示扫描量热(DSC)和调制式扫描量热(MDSC)技术在复合材料固化工艺研究中应用十分广泛,但无法应用于固化过程的在线实时监测。为解决固化过程在线监测难题、提高固化工艺优化效率和实现仿真计算的准确考核,需要在差示扫描量热技术基础上开发低价、简便、高效和实时的新型热分析技术。本文介绍了近些年来在此领域内最具代表性的几篇研究报道,分析这些研究的特点和不足,并提出了后续工作的技术方案。[/color][color=#990000]关键词:固化工艺、固化过程、固化度、差示扫描量热、DSC、调制式差示扫描量热、MDSC、MTDSC、比热容、热扩散系数、导热系数[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#cc0000]1.问题的提出[/color][/b] 在复合材料研究过程中,需要对固化工艺进行研究和优化。而在复合材料生产过程中,为保证复合材料成品质量及生产的可重复性,理想方式是对复合材料固化过程进行实时在线监测,确保固化过程中各部分充分固化、累积残余应力和温度非均匀性引起的应变尽可能小、控制复合材料固化温度避免热降解以及降低完全固化的总时间。为了实现固化工艺研究和优化以及固化过程的实时在线监测,需要针对材料固化过程中可监测的物理量,并结合固化过程中出现的物理化学反应特性,采用相应准确有效的测试技术。在固化工艺中,当前常用来判断固化是否完成的直接准则是最能表现固化反应的固化度,但在固化工艺研究和固化度监测方面面临着以下三方面的技术难题需要解决:(1)现有扫描量热技术测试样品小,测试结果与实际生产现场有差异 目前用于研究固化工艺最有效的手段是差示扫描量热(DSC)技术以及灵敏度和精度更高的调制式扫描量热(MDSC)技术,树脂供应商大多采用这两种技术提供树脂固化度信息。这两种技术的局限性是测试样品量很小,与实际固化过程中的产品尺寸和形状有巨大差异,扫描量热技术测试得到的固化工艺过程和参数很难在实际固化工艺中直接使用,还需要进行大量固化工艺优化研究工作。(2)现有扫描量热技术无法应用于在线实时监测 由于基于热动力学原理,并且可以与固化工艺具有完全相同的温度、压力和气氛变化过程,目前的各种扫描量热技术作为最成功的热分析技术,可以说是完美解决了微量样品层面的热分析问题,为固化工艺研究和优化、为固化工艺仿真计算研究提供了准确的基础数据。但目前热分析技术的最大局限性是无法推广应用到产品生产现场,无法采用扫描量热技术对固化过程进行在线实时监测,无法对固化工艺研究和仿真模拟结果进行快速的在线实时验证。(3)现有在线监测技术无法达到扫描量热技术的准确性,未达到实用水平 尽管扫描量热技术无法推广应用到生产现场,但为了满足复合材料研制和生产需要,近些年来开发了许多新技术来进行固化过程的实时在线监测。这些技术大多采用间接方法,而且种类繁多,主要分为光纤法、超声法、电学法和热学法。尽管这些方法都证明了其在监测固化过程中的有效性,但也存在局限性,还都无法替代扫描量热技术的有效性,每一种方法只能监测部分参数,在使用时需要根据具体条件进行选择评估,而且这些测试方法目前大多还都停留在实验室研究阶段,还未看出具有多大的市场使用前景。[b][color=#cc0000]2.解决方案[/color][/b] 综上所述,为了准确了解固化中的吸放热过程、实现固化工艺设计、快速准确寻找最佳固化工艺过程,并能对整个固化过程进行实时在线监测,就需要在扫描量热技术的基础上,开发新的测试技术并应用到实际固化工艺中,所开发的新技术方案主要包括以下几方面内容: (1)首先要解决大尺寸规则形状样品或材料的热分析测试问题,即在各种大尺寸的板状、柱状和球型模具/样品和构件上实现扫描量热测试功能,这相当于把DSC测试功能拓展到大尺寸规则模具/样品和构件上。 (2)解决材料热物理性能测试问题,即在DSC比热容测试能力基础上,增加了在整个固化过程中的热扩散系数和导热系数的连续测量能力,在得到固化特性的同时得到复合材料传热特性,这相当于把MDSC测试功能拓展到大尺寸规则模具/样品和构件上。 (3)最终要解决单样品热分析测试技术问题,一方面要避免像DSC和MDSC那样需要同时进行参考样品测试,另一方面还要避免使用传统热物性测试中那样长时间稳态一维热流测试形式,而是需要仅采用温度传感器测量模具/样品和构件内外的温度和热流变化,并在与固化工艺相同的升温、恒温和降温的动态过程中,同时测量得到多个热物理性能参数,如热扩散系数、热焓、比热容和导热系数,最终得到固化度等相应的固化工艺参数。[b][color=#cc0000]3.本文目的[/color][/b] 上述解决方案是当前复合材料固化度监测及固化反应动力学研究的发展方向,对复合材料研制和生产有着重大意义,特别是热分析技术在固化工艺和固化过程中的应用研究方面,很多研究机构和学校都开展了研究工作,但并没有取得实质性进展,基本还停留在实验室探索阶段。本文将介绍近些年来在此领域内最具代表性的几篇研究报道,分析各种研究的特点和不足,为后续的技术攻关提供参考。[b][color=#cc0000]4.温度调制型DSC:MDSC技术[/color][/b] 经典的DSC技术可以测量微小样品比热容随温度的变化特性,由此常用于固化反应动力学的研究和分析,但无法测量样品的热扩散系数和导热系数,因此采用DSC技术无法对固化过程中的热传递进行研究,无法了解材料内部的温度分布,进而使得无法进行固化工艺的优化。另外,传统的DSC对于微量样品的微弱吸热和放热还是不能提供足够高的灵敏度和精度。 为此,结合传统的Angstrom技术,在DSC技术基础上开发了温度调制型DSC(MDSC)技术,即在以往DSC测试的温度变化曲线上叠加了温度调制波,由此大幅度提高了测量灵敏度和测量精度,同时还实现了热扩散系数的测量。 目前,MDSC技术已经非常成熟,并有相应的商品化测试仪器,如图4-1所示。很多研究机构采用MDSC仪器对固化过程中的热传递进行研究,如侯进森等人对碳纤维/环氧树脂预浸料固化过程中不同纤维方向上的导热系数进行了测量。[align=center][color=#cc0000][img=,690,230]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141816583388_7031_3384_3.png!w690x230.jpg[/img] [/color][/align][color=#cc0000][/color][align=center]图4-1 MDSC测量原理和测试仪器[/align] 尽管MDSC已经具有很高的测量精度和灵敏度,但这种技术复合材料固化工艺研究和在线监测中的应用十分有限,主要因为以下原因: (1)样品量太小,很难保证样品对复合材料的代表性; (2)测试模型假设被测样品始终处于温度均匀状态,这就造成MDSC测试模型无法放大应用到大尺寸样品和固化部件的热分析测试; (3)与DSC一样,MDSC同样需要结合参考材料同时进行测量,这也限制了这种技术的实际应用; (4)为了保证MDSC技术中规定的边界条件,在被测样品周围需要配备复杂的配套装置,这在固化工艺现场根本无法实现。[b][color=#cc0000]5.固化过程的其他热分析技术研究[/color][/b] 到目前为止,固化过程中其他热分析技术的研究,主要侧重于对恒温固化过程中热物理性能变化过程的测量,重点是测量热扩散系数的变化规律,然后用不同阶段的热扩散系数来表征固化度C,即:[align=center][img=,690,57]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141817455522_5587_3384_3.png!w690x57.jpg[/img][/align] 式中,B、A和D分别是液态、随时间推移和完全固化状态下的热扩散系数值。[color=#cc0000]5.1. Friis-Pedersen等人的研究工作(2006年)[/color] 较早尝试将DSC热分析技术推广应用到复合材料固化过程在线监测的是德国的Friis-Pedersen等人,他们模仿MDSC技术进行了初步的研究工作。在他们的研究中,模仿MDSC同样采用了Angstrom测量原理进行定点温度交变调制,模仿MDSC仪器结构搭建了一套经典的Angstrom法薄板热扩散系数测量装置,如图5-1所示,可以测量薄板材料(面积为100mm×100mm,厚度约为3mm)在不同恒定温度固化过程中热扩散系数的变化过程,并由此热扩散系数变化过程来表征复合材料固化度特性。[align=center][color=#cc0000][img=,690,226]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141817271162_7843_3384_3.png!w690x226.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-1 试验装置示意图[/color][/align] 尽管采用了已知热扩散系数的硼硅酸盐玻璃对此测量装置进行了测量误差考核,并标称测量误差小于3%,但从文献报道来看,整个装置简陋,重复性测量结果偏差很大。特别是对于低粘度未固化树脂以及厚度的变化情况测试会有很多问题。 Friis-Pedersen等人还分别采用两种DSC仪器分别对微量样品的比热容进行了测量,并结合上述装置测量得到热扩散系数和密度计算得到了导热系数,通过对比证明了固化度与热扩散系数和导热系数的变化密切相关,采用热扩散系数来表征固化度甚至在灵敏度上更优于比热容。 尽管Friis-Pedersen等人的研究工作比较简易,测量误差也较大,但在采用热物理性能参数来表征固化度方面进行了积极的探索,并获得了初步的结果,证明了采用热扩散系数来表征固化度是一种切实可行的技术途径,并具有显著特点。[color=#cc0000]5.2. Rudolph 等人的研究工作(2016年)[/color] 为了实现固化过程的在线监测,基于经典的Angstrom法薄板热扩散系数测试技术,德国的Rudolph 等人搭建了一套更简易的试验装置来测量环氧树脂固化过程中的热扩散系数变化,并基于上述固化度的定义来对固化过程进行表征。 装置的测量原理基于经典的Angstrom法,如图5-2所示,不同之处在于温度的调制不是传统的正弦波,而是采用了三角波,相应的热扩散系数测量公式则采用了参数估计算法获得。[align=center][color=#cc0000][img=,690,136]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818091906_4688_3384_3.png!w690x136.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-2 基本思想是假设一维热流,评估两个温度信号之间的差异。a)样品描绘,b)顶部和底部温度信号[/color][/align] 为模拟在线固化过程,Rudolph 等人搭建的试验装置模仿了真空袋成型工艺,如图5-3所示,被测环氧树脂样品尺寸为直径29mm、厚度不超过3mm,样品装在外径为30mm、高度为4mm的铝制料盒内。试验参数中设置了温度振荡周期长度为4分钟,振荡幅度被设置为2K。[align=center][color=#cc0000][img=,690,136]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818230117_8499_3384_3.png!w690x136.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-3 实验装置:1)隔离试验箱;2)温度控制器;3)用于温度测量和控制的PC机;4)测量放大器;5)室温显示;6)带有温度传感器的样品;7)铝块;8)珀尔帖元件;9)散热器[/color][/align] 采用这套试验装置,分别在不同温度下进行了固化过程中的热扩散系数测试,热扩散系数转换为固化度后的结果如图5-4所示。[align=center][color=#cc0000][img=,400,300]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818383568_7396_3384_3.png!w690x519.jpg[/img] [/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-4 在不同温度下测量热扩散系数推断出环氧树脂的固化度[/color][/align] 通过上述Rudolph 等人的工作,至少可以看出以下几方面的优缺点: (1)再一次证明了热扩散系数作为固化度评价参数的有效性; (2)对于板材结构的复合材料固化过程,可以用很简易的装置就可以实现固化度的在线监测,特别是仅采用单面加热和厚度方向双点测温的方式,就可以在线实时对整个固化过程的固化度变化进行测试表征,这已经非常接近实用化水平。 (3)出于测试方法需要,样品加热采用的是单面加热三角波温度调制方式,这种加热方式显然不符合常规固化工艺线性加热模式,增加了在线监测设备的复杂程度。同样,这种测试结构并不适合低粘度液体以及厚度变化的固化过程。 (4)Rudolph 等人的工作实际上为今后的实用化研究奠定了一个基础,这种单面加热方式完全可以拓展到常规固化工艺中的线性加热模式,即只需采用一个温度传感器测量板材中心位置在固化过程中的温度变化,就可以实现板材固化过程的在线实时监测。 沈阳航空航天大学的卢少微等人出于对巴基纸(Buckypaper)作为温度传感器在固化工艺在线监测中的应用研究,借鉴了上述Rudolph 等人的工作,直接在真空袋固化工艺中研究固化度与巴基纸的电阻温度系数关系。尽管直接采用温度传感器在线监测固化过程的有效性十分有限,但他们对巴基纸的研究不失为给今后固化工艺中使用的温度传感器增加了一种可选性。[color=#cc0000]5.3. Struzziero等人的研究工作(2019年)[/color] 上述研究工作基本都是基于板材固化工艺的在线热扩散系数测试测试方法,但这些水平结构的固化过程并不适合流动性较强的低粘度液体树脂的固化过程监测,而且监测过程中样品厚度会发生变化而带来测量误差。为了提高材料的适用性,Struzziero等人采用了柱状结构的传热模型报道了在线固化监测的研究工作。 Struzziero等人研究的测试方法还是基于经典的Angstrom技术,在定点温度下交变调制加热温度来测量得到热扩散系数。设计的测量装置包括一个带冷却管的铜块,其中心有一个圆柱孔用于容纳直径为7mm、壁厚为1mm、高度40mm的空心铜管。该装置如图5-5所示。[align=center][color=#cc0000][img=,690,223]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818568815_9052_3384_3.png!w690x223.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-5(a)实验装置;(b)截面图;(c)俯视图[/color][/align] 液体树脂倒入铜管,然后用软木塞封闭。软木塞在其中心有一个开口,以允许放置在中心的热电偶接触树脂。然后将铜管插入铜块的圆柱形孔中,两块隔热板放置在铜块的上下两侧,一根柔性电热丝缠绕在冷却管周围。铜块温度由温度控制器调节加热软线上的功率进行控制而产生周期性的变化。由于树脂的热惯性,在树脂区域中心测量的温度是相位滞后的周期性曲线,树脂和铜温度的周期性变化信号如图5-6所示,通过相位差的测量可以得到相应的热扩散系数。[align=center][color=#cc0000][img=,600,352]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141819092006_7113_3384_3.png!w690x405.jpg[/img] [/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-6 树脂区域边界和中心的温度变化[/color][/align] 每次测试前,树脂在铜管中的填充量为四分之三左右,用软木密封封闭,并放置在铜块中。随后,外径0.5mm的测量热电偶探针穿过软木塞密封件的中心开口,使热电偶敏感区位于树脂的几何中心位置。在测试过程中,铜块温度调制所采用的幅度为1℃、一个调制周期为4分钟。Struzziero等人采用搭建的测量装置对三类材料进行了测试,第一类是非固化材料甘油作为该方法的考核;第二类包括一种脱气、预混合、单组分树脂,专门设计用于树脂传递模塑工艺的环氧树脂RTM6和另一种为灌注应用设计的低反应性单组分液态环氧树脂890RTM;第三类是采用液体增韧环氧树脂的双组分系统,用于缠绕和拉挤成型的XU3508/XB3473。 Struzziero等人用上述装置测量了上述材料不同温度下的热扩散系数,并采用MDSC进行了比热容测量和固化表征,同时还建立了相应的固化动力学模型,由此来进行相应的对比和验证。 通过甘油的导热系数测量验证了与文献值相差约为8%,需要注意的是这个偏差是包含了测量装置热扩散系数测量误差和MDSC比热容测量误差的合成误差。 Struzziero等人在此测量装置上开展了大量研究,在此就不再详细介绍。总之,Struzziero等人的工作再一次有效证明的热扩散系数表征固化过程的有效性,同时还证明了测量液体热固性塑料固化过程中的热扩散系数方面是可靠的,测量精度由树脂区域中心热电偶放置的精度控制,要求位置精度为0.5mm以将测量误差限制在3%以下。固化环氧树脂的导热系数测试结果显示出对固化度的线性依赖增加和对温度的反向线性依赖,所得结果可以根据声子输运解释为固化材料中的主要热载体。实验装置测量结果可用于生成材料表征数据,这些数据是建立固化模拟所需的精确导热本构模型所必需的。 Struzziero等人的工作最重要的是验证了固化过程中热扩散系数和导热系数变化的准确测量,热扩散系数和导热系数的获得可以更可靠地预测热梯度、放热现象和缺陷,如残余应力,有助于提高固化工艺预测的整体精度。另外,Struzziero等人的圆柱体测试结构,从测试模型上已经完全接近于实际固化工艺,而且还可以进行各种形式的推广应用。[b][color=#cc0000]6.分析[/color][/b] 上述研究工作基本上都是模仿MDSC而采用了Angstrom技术,同时也证明了测量得到的热扩散系数和导热系数完全可以用于固化评价。由于加热方式的复杂性,使得这种Angstrom技术还是无法应用到实际复合材料固化工艺中的在线监测,还只能停留在样品级别的应用。为了真正在复合材料固化工艺中采用热分析技术实现在线监测,依阳公司通过前期的大量研究,做出如下分析: (1)基于MDSC发展历史做出的分析:在DSC测试过程中,由于样品量小,样品的吸热和放热量以及热流信号都十分微弱,而Angstrom温度交变测试是一种灵敏度和精度很高的技术,因此MDSC采用了Angstrom技术实现了灵敏度和精度的大幅度提高,并同时实现了热扩散系数测量,结合已经具有的比热容测试能力,MDSC可用来测量导热系数。 (2)从实际固化工艺做出的分析:在产品生产固化工艺中,产品尺寸普遍较大,吸热和放热量以及热流信号普遍都较大,从信噪比分析来看根本无需高灵敏度的Angstrom技术。另外,在实际固化工艺设备上也很难实现Angstrom技术要求的温度交变调制。 (3)从热扩散系数测试技术做出的分析:尽管上述研究文献报道都是基于交变的Angstrom技术,但不采用这种交变技术,只通过加热变化过程也能准确测量出热扩散系数,而这种加热变化过程与固化工艺中的加热过程完全相同。这也就是说在现有固化工艺设备和固化加热过程中,通过工件中单点温度的测量,可以准确得到整个固化过程中的热扩散系数变化。 (4)从比热容测试技术做出的分析:DSC和MDSC的强大之处在于可以对热流进行测量,从而量化得到吸热和放热变化过程,其技术关键是采用了参考材料的对比测试,这也是限制DSC技术推广应用于在线热分析的主要障碍。这个主要障碍目前也有解决途径,就是设法将参考材料等效到现场固化工艺加热装置上,从而可以具备DSC的所有测试能力。[b][color=#cc0000]7.总结[/color][/b] 通过上述研究文献综述和分析,针对固化工艺研究和固化过程在线监测,可以描绘出这样一个技术愿景: (1)因为都是基于升温和降温过程,可以将差示扫描量热(DSC)技术等效到固化工艺设备上,只通过简单增加相应的温度传感器等,就基本可以实现MDSC的大部分功能,至少能具备热焓、比热容、热扩散系数和导热系数的测试能力,实现高效的固化过程在线监测。 (2)这是一种单点测温和基于一维传热的测试技术,可以应用在各种尺寸和形状的复合材料固化工艺中,造价极低使用便捷,单点植入式温度传感器对复合材料整体性能影响小。 (3)随着分布光纤技术和巴基纸(Buckypaper)技术的发展,温度传感器可以采用分布式植入结构,将会更高效的进行固化工艺现场监测。[b][color=#cc0000]8.参考文献[/color][/b](1)王奕首, 李煜坤, 吴迪, et al. 复合材料液体成型固化监测技术研究进展. 航空制造技术, 2017, 538(19):50-59.(2)侯进森, 叶金蕊, 王长春, et al. 碳纤维/环氧树脂预浸料固化过程中的热导率测定. 复合材料学报, 2012(4):23-28.(3)Friis-Pedersen H H, Pedersen J H, Haussler L, et al. Online measurement of thermal diffusivity during cure of an epoxy composite. Polymer testing, 2006, 25(8): 1059-1068.(4)Rudolph M, Naumann C, Stockmann M. Degree of cure definition for an epoxy resin based on thermal diffusivity measurements. Materials Today: Proceedings, 2016, 3(4): 1144-1149.(5)Lu S, Zhao C, Zhang L, et al. Real time monitoring of the curing degree and the manufacturing process of fiber reinforced composites with a carbon nanotube buckypaper sensor. RSC Advances, 2018, 8(39): 22078-22085.(6)Struzziero G, Remy B, Skordos A A. Measurement of thermal conductivity of epoxy resins during cure. Journal of Applied Polymer Science, 2019, 136(5): 47015.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]
请问各位大侠,有谁做过无水乙醇脱水制乙烯在线分析,为什么我们的在线分析极不稳定,无法重复性,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]需要注意哪些条件控制?反应系统压力与分析系统压力如何进行匹配?
【亚洲流体网讯】 水质在线分析仪表及系统 由于环保的要求,水质在线分析仪表及系统已经成了环保部门对辖区水质状况进行实时监测的主要手段,已能够实时、连续、稳定、可靠地提供准确、快速的监测数据。作为水质自动监测,还要实行远程监控,达到掌握主要流域重点断面水体的水质状况,预警预报重大或流域性水质污染事故、解决跨行政区域的水污染事故纠纷、监督总量控制、排放达标情况等目的。在水质自动监控系统网络中,中心站通过卫星和电话拨号两种通讯方式实现对子站的实时监视,托管站也可以通过电话拨号方式实现对所托管子站的实时监控。其他经授权每个子站是一个独立的水质自动监测系统,一般子站有一台或多台的多参数水质自动化分析仪组成,另有固定式子站和流动式子站(拖车—监测小屋)共三种。子站分采水单元,配水单元,分析单元,控制单元,子站站房及配套设置。 国内在水质氨氮监测等复杂仪表的深入研究方面也取得很多成果。如北京市化学工业研究院研制出自动化程度很高的智能分析系统,为环境管理提供了有力的监管工具,目前我国已有30多家企业有了认证合格的相关产品,国内在2003年也颁布了“氨氮水质自动分析仪技术要求”(HJ/T101-2003)标准,规定了地表水、工业污水和市政污水的基于电极法和分光光度法的氨氮水质自动分析仪的技术性能要求和性能试验方法。 气体在线分析仪表及系统 从环保的角度看,气体在线分析仪表及系统比水质在线分析仪表及系统更为重要,大气污染物排放标准等,从法规上要求安装连续排放监测系统CEMS。近十余年间,我国固定污染源安装了1.8万套CEMS,具体标准有HJ/T75固定污染源烟气排放连续监测技术规范、HJ/T76固定污染源烟气排放连续监测系统技术要求及检测方法以及HJ/T212污染源在线自动监控(监测)系统传输标准。 目前还试点燃煤电厂排放烟气中汞的连续自动监测、超声波流速测定仪解决低流速(=3m/s)烟气测定、适应宽范围气体浓度的测定专项技术。此外,美国博纯公司提供的一种创新的冷干直抽法CEMS样气预处理技术是样气除湿的好技术。实现由“点末端监控”向“全过程监控”的转变,协调实验室检测项目、便携式仪器检测项目等控制工程网版权所有,适应新形势下对生态文明的要求。 为了环保的需要,环保部已修改了《环境空气质量标准》,将PM2.5列入环境空气基本监测项目,有条件的城市均开展了大气颗粒物PM2.5的监测。目前所用监测仪大部分是引进国外产品。为此,国内如青岛佳明测控公司也进行了开发。目前国际上的监测方法有微量振荡天平法和β射线法,β射线法按照输出方式不同,分为实时方法和时均值方式。青岛佳明测控公司就采用β射线法的实时显示方式。该公司解决了计数器选择和数据处理、等在炼油、石化、化工行业的应用 在炼油、石化行业、在线分析仪表的选用越来越普遍,投资越来越上升。据中石化咨询公司谢怀仁、石彦秋提供的数据显示:某大型乙烯装置,进口自控仪表设备费为2亿元,进口在线分析仪表设备费为5000万元,即4:1;某大型聚乙烯装置,进口自控仪表设备费8000万元,进口在线分析仪表设备费1700万元,其中远红外总碳氢分析仪500万元,在线气相色谱仪500万元,氧分析仪400万元,水分析仪300万元,即4:0.85;某大型硫磺回收装置,进口自控仪表设备费500万元,进口在线分析仪设备费250万元,即2:1;某油品长输管线分输站,进口自控仪表设备费200万元,进口在线分析仪设备费100万元,即2:1。而在线分析仪主要集中在如下几方面:在线质量分析仪(工业色谱、全镏程分析仪、质谱仪等)、在线近红外分析仪、工业核磁共振仪、放射性仪表(料位密度测量)以及环境监测和水质分析仪等。 通力分析自控技术公司罗海涛的“炼油过程应用在线分析技术提高油品品质和轻质油收率”的报告中,对油品质量在线分析工作进行了总结,主要产品有汽油镏程在线分析仪、倾点在线分析仪、饱和蒸汽压在线分析、粘度在线分析仪以及闪点在线分析仪等油品质量分析仪表,以及各类油品预处理系统、分析小屋及分析仪表成套系统、远程工作站,先后在兰州石化、新疆克拉玛依、天津大港石化、大连石化、华北石化、湖南长岭石化、广州石化、上海高桥炼油厂、陕西榆林石化、洛阳石化、河北沧州石化、山东济南石化、西安石化、新疆独山子石化、武汉石化、江苏清江石化、延安炼油厂等30个炼油企业得到了很好的应用。如武汉石化焦化柴油项目进行卡边操作,柴油95%点由投用前平均357℃提前到了投用后363℃,平均提高了6℃,按每提高1℃即产生680万元计算,柴油95%点提高了6℃,每年增加3500万元以上的经济效益。独山子石化公司炼油厂加氢裂化车间罗祥生在“全镏程在线分析仪在加氢裂化装置中的应用探讨”一文中指出,该厂60万加氢裂化装置采用了IDA系列全镏程在线分析仪(通力产品),2011年10月底开始调试,2012年1月15日正式投用。至今运行平稳,实现生产过程在线质量监测、全塔优化控制,年经济效益为1519.3万元。 在医药、食品行业的应用 医药等行业对于在线分析仪表及系统的需求,从PAT过程分析技术来说,与石化等行业是相似的,特别是塔、釜、罐等工艺设备的测控,燃烧、冷却等控制,节能环保的要求等,并无特别之处,但制药流程后处理部分,如颗粒和药丸干燥过程的测量控制,在线分析仪表及系统仍有用武之地。济南金宏利实业公司董海平等人在“AOTF-NIR光谱技术在线测量G/att流化床湿度”一文中,介绍了颗粒和药丸干燥过程的含水量和湿度的控制。作为现代制药领域对湿度控制主要手段,流化床喷雾制粒是一种复杂的生产过程,物料含水量变动较大,药物颗粒表的湿度和内部湿度准确的检测是个难题。将近红外(NIR)反射光谱法用于流化床干燥制粒,监测喷雾阶段并可以测定干燥终点。通过在线红外技术收集干燥不同阶段产品的近红外光谱图,结合其它过程测量技术组合建立线性校正模型,可以实时监测干燥过程。具体采用luminar3075小型AOTF-NIR光谱仪(美国Brimrose公司),AOTF为声光可调滤光器(Acousto-optictunablefilter),结构简单,光学系统无移动性部件,体积小,集光能力强,波长切换快、重现性好,程序化的波长控制使得灵活性强,在现场使用广泛。本文转载:亚洲流体网