当前位置: 仪器信息网 > 行业主题 > >

实时超快激光脉冲测量系统

仪器信息网实时超快激光脉冲测量系统专题为您提供2024年最新实时超快激光脉冲测量系统价格报价、厂家品牌的相关信息, 包括实时超快激光脉冲测量系统参数、型号等,不管是国产,还是进口品牌的实时超快激光脉冲测量系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合实时超快激光脉冲测量系统相关的耗材配件、试剂标物,还有实时超快激光脉冲测量系统相关的最新资讯、资料,以及实时超快激光脉冲测量系统相关的解决方案。

实时超快激光脉冲测量系统相关的论坛

  • 【分享】我国超短脉冲激光测量研究达到国际领先水平

    日前,由中国计量科学研究院承担的国家“十一五”科技支撑课题 “飞秒脉冲激光参数测量新技术研究”通过了专家验收。该课题自主研制的飞秒脉冲自相关仪和飞秒脉冲光谱相位相干仪实现了飞秒脉冲激光参数的准确测量,课题组提出的飞秒脉冲光谱相位还原方法降低了传统方法的测量不确定度,将我国飞秒脉冲激光参数的准确度提高到国际领先水平。  飞秒是时间单位,1飞秒相当于10-15秒。它有多快呢?我们知道,光速是1秒钟30万公里,而在1飞秒内,光只能走0.3微米,相当于一根头发丝的百分之一!飞秒脉冲是人类目前在实验室条件下能获得的在可见光至近红外波段的最短脉冲,它以其独具的持续时间极短、峰值功率极高、光谱宽度极宽等优点,在物理学、生物学、化学、光通讯、外科医疗、精细加工制造及超小器械制造等领域得到很广泛的应用。如何准确地测量超短脉冲信息已成为飞秒脉冲研究领域迫切需要解决的难题。

  • 世界最快激光脉冲定格超速运行电子原子(图)

    2012年10月22日 07:10 新浪科技微博 http://i1.sinaimg.cn/IT/2012/1022/U7917P2DT20121022070621.jpg世界最快激光脉冲定格超速运行电子原子http://i3.sinaimg.cn/IT/2012/1022/U7917P2DT20121022070632.jpg世界最快激光脉冲定格超速运行电子原子  新浪科技讯 北京时间10月22日消息,据物理学家组织网报道,世界最快的激光脉冲能够定格正在超速运行的电子和原子,美国亚利桑那大学的物理学家利用这种脉冲已经捕捉到分子分裂、电子从原子里逃逸出来的动态画面。他们的研究有助于我们更好地了解分子过程,并最终在很多可能的应用中控制它们。  1878年,当时的一系列照片立刻解决了一个长期存在的谜题:是不是正在飞奔的马始终都有一部分身体接触到地面?结果证明不是。爱德华-穆布里奇在赛马跑道旁拍摄的这一系列图片,标志着高速摄影时代的开始。大约134年后,亚利桑那大学物理学系的研究人员解决了一个类似的谜题,这次是一个超速运行的氧分子取代了马,超快、高能激光脉冲取代了穆布里奇的感光乳剂板。阿尔文-桑德胡及其科研组利用持续时间仅为0.0000000000000002秒的极端紫外线光脉冲,设法定格氧分子在很短时间内被高能击中后产生的超速动作。由于科学家正在试着从电子级别更好地了解量子过程,甚至最终控制这一过程,设计出新的光源,组合出新分子,或者是设计出新型超速电子元件,以及无数其他可能的发明,因此观察原子和分子里发生的极短事件变得越来越重要。  虽然桑德胡的科研组在产生世界最短光脉冲方面,并不是世界纪录保持者,但他们是最先把这些当做工具,用来解决很多悬而未决的科学问题的人。该科研组的最新成果,是展示氧分子在吸收过多能量而无法保持两个原子之间的稳定性后,突然裂开的实时快照系列。该研究成果发表在《物理评论快报》上。揭开这么短时间内的分子过程,有助于科学家更好地了解地球大气层里的臭氧形成和被摧毁背后的微观动态。桑德胡把这一原理比喻成是设法给快速飞向击球手的棒球拍照。他说:“如果我们利用常规相机,拍到的照片会非常模糊,或者棒球根本显示不出来。但是我们想很详细地研究这个球,它的表面、它的缝合线,以及在任何特定时间它的确切位置。要做到这些有两种方法。你可以制造一个拥有很快快门,能够在球做任何运动前迅速开启和关闭的相机。或者利用称之为动态镜检查(Stroboscopy)的技术,你用光照射这个棒球很短时间,并在这个时间内给它拍照。”  但是用原子或者电子取代棒球时,这种类比是不成立的。因为微观物体的运行速度非常非常快,利用机械或者电子元件根本捕捉不到它们。桑德胡称,定格原子级别的动作的唯一方法,就是利用持续时间只有几毫微微秒或者阿秒(比毫微微秒短1000倍)的光脉冲。举例说明这种光脉冲的持续时间,就是1阿秒相对于1秒,相当于1秒相对于宇宙的年龄。为了产生阿秒时长的光爆,必须发出持续时间只有毫微微秒的强烈激光脉冲。桑德胡实验室采用的毫微微秒激光脉冲释放的能量是1太瓦,相当于整个美国的电力网,只是前者持续时间非常短暂。虽然毫微微秒激光脉冲足以分辨分子运动,例如我们眼睛里的视紫红质,它们能在200毫微微秒内改变结构,对进入眼睛的光子做出响应,但是毫微微秒激光脉冲在捕捉更亮、运行速度更快的电子运动时,并不用“切开”它。  桑德胡实验室的研究生尼兰加-施瓦伦说:“我能在激光脉冲产生的强电场环境下,实时研究氦的原子结构发生了什么变化。”桑德胡科研组把这项有关阿秒电子动力学的突破性研究的成果,发表在早些时候的《物理评论快报》上。在他们的最新研究中,该科研组已经解决一个长期存在的争论,即被高能光子击中后,氧原子分裂需要1100毫微微秒。以前对这一现象的测量结果存在很大不同,最大相差100倍。这项研究的另一个创新之处,是它为测量电子摆脱超受激原子需要多长时间提供了方法。迄今为止这一过程只进行了理论模拟。桑德胡的科研组发现,这种自发电子发射发生在大约90毫微微秒内。他解释说:“我们经常假设,如果你把足够多的能量输入到一个分子里,就能迫使电子挣脱它的束缚。但是我们通过研究观察到,分子把过剩能量转移给周围的其他电子和附近的原子,试图与它们分享能量,保住它的电子,直到它突然分裂的最后一刻。”  研究生、这篇论文的第一作者亨利-提莫斯应用阿秒激光研究氧分子的动态。他说:“我们对受激分子的物理性质了解的不多,这是因为它们很难用数学方法进行模拟。你促使氧分子达到这种高能状态时,它有多种途径可以用来释放过剩能量。我们能够对每条路径进行单独分析,并分析电子脱离原子时会出现什么情况。”据桑德胡说,追踪分子、原子和电子的运动,对了解天然或人造物体的物理及化学过程非常重要。他解释说:“高能紫外线持续轰击我们的大气层,刺激它里面的分子。导致这些分子分裂成过激原子,这促使臭氧形成或分解。这些现象对了解上层大气的化学性质有分歧。能够测量最短时间段内分子内的电子和原子的动态,对我们更好地了解这些分子的基本相互作用有帮助。不过更重要的是,它将为我们提供控制或改变这些原子或分子的动态性质的方法,因为现在我们已经拥有一种光脉冲,它能对实时运动产生影响。我们不再只是在这些现象发生后,才开始研究它们之间的相互作用。事实上我们正在设法了解这种互动,并力求控制它,例如控制某一方向的化学反应。”  迄今为止产生的最短激光脉冲持续67阿秒。据桑德胡说,就连持续时间更短的“仄普托秒”激光脉冲也并非不可能产生,但是现在阿秒是人们关注的焦点。他说:“我们正在研究阿秒,是因为我们想了解比分子运动更快的过程。影响我们的生活的实际方面和我们身边的技术,都受到电子和电子运动的制约。未来我们感兴趣的问题,是很多电子彼此结合在一起,结果会出现什么情况?现在这方面的试验具有很大挑战性,理论性模拟根本不可能实现。这也是我们拥有高能和短时分辨率的原因。事实上现在我们已经能够实时查看这些过程。”(秋凌)

  • 树脂基复合材料低导热系数测试时稳态法和激光脉冲法的选择

    树脂基复合材料低导热系数测试时稳态法和激光脉冲法的选择

    最近有朋友对导热系数测试方法如何选择想进行一些讨论,这里就我们在导热系数测试中的经验,以及导热系数测试设备研制和测试方法研究中的体会谈一些感受,欢迎大家批评指正。 材料的导热系数一般采用两类测试方法,一类是稳态法,主要包括护热板法、护热板热流计法和护热式圆筒法等;另一是非稳态法,主要包括激光脉冲法、热线法、热探针法和平面热源法等。这些方法国内外都有相应的测试标准,是比较成熟和经典测试方法。 对于稳态护热板法和激光脉冲法来说,这两种测试方法基本上属于互补性关系,即分别覆盖不同导热系数范围的测量。通常,稳态法的导热系数测试范围为0.005~1 W/mK;非稳态激光脉冲法的导热系数测试范围为1~400 W/mK。在满足测试条件的前提下,稳态法的测量精度可以达到±3%以内,激光脉冲法的测量精度可以达到±5%以内。 材料的导热系数一般采用两类测试方法,一类是稳态法,主要包括护热板法、护热板热流计法和护热式圆筒法等;另一是非稳态法,主要包括激光脉冲法、热线法、热探针法和平面热源法等。这些方法国内外都有相应的测试标准,是比较成熟和经典测试方法。 低导热材料一般泛指导热系数在0.1~1W/mK 范围的隔热材料。这类材料由于导热系数低常被用作工程隔热材料,如各种玻璃钢类材料、树脂基类复合材料和陶瓷材料等。在这类低导热材料的导热系数测量中,测试方法的选择常常容易出现偏差,很多测量机构由于只有激光脉冲法测试设备,而就用激光脉冲法测量这类低导热材料,测量结果往往出现比稳态法准确测量值低15%~20%的现象。采用氟塑料(导热系数0.2 W/mK 左右)和纯聚酰亚氨树脂材料Vespel SP1(导热系数0.4W/mK 左右),用稳态法和瞬态激光脉冲法进行的比对试验也证明激光脉冲法的测试结果确实偏低。有些材料研制机构也利用这种现象来证明研制的材料达到了验收标准,这样很容易误导材料设计和使用部门的正常使用。 对于低导热材料的测试,造成激光脉冲法测量结果总是要低于稳态法测量结果的主要原因是由测量装置的固有因素造成,主要体现在以下两个方面:一、激光脉冲法测量装置的影响 激光脉冲法测试设备的试样支架,一般都是采用导热系数较低的陶瓷材料做成,其目的是在固定试样的同时尽可能减少传导热损失,以保证激光脉冲加热试样后,试样内的热流沿着试样厚度方向以一维形式传递。如果被测试样的导热系数小于1W/mK,基本上与陶瓷支架相近,这样必然会引起较大的侧面热失,破坏一维传热模型。如图 1 所示,侧面热损会使得试样背面的最大温升Tm 降低,从而造成较大的测量误差。而这些热损情况在稳态测量方法中不会出现。 如图 1 所示,采用激光脉冲法测量材料热扩散时,导热系数越大,背面温升达到一半最高点的时间t0.5 越短,背面温升采集时间10t0.5 也越短。一般金属材料背面温升达到一般最大值的时间t0.5 大约在50 毫秒以内,而对低热导率材料,背面温升达到一半最大值时间t0.5 就需要上百毫秒以上,同时总的采集时间10t0.5 也将相应的增大很多,如此长的传热时间,必然会引起强烈的侧面热损。http://ng1.17img.cn/bbsfiles/images/2015/03/201503202143_539038_3384_3.png图1 激光脉冲法典型背面温升曲线 激光脉冲法一般都是采用间接测量方式获得被测材料的导热系数,即激光脉冲法测量材料的热扩散率,然后与其它方法测得的密度和比热容数据相乘后得到被测材料的导热系数。这样得到的导热系数数据势必会叠加上其它方法测量误差,特别是比热容的测试误差一般较大。这样获得的导热系数测量精度就势必要比稳态法直接测量的热导率误差偏大。二、激光脉冲法试验参数的影响 如图 1 所示,激光脉冲法在测试过程中,试样在激光脉冲加热后,试样背面温升快速升高,最大温升也仅1 ~ 5℃之间。但对于低导热材料,由于材料导热系数比较低,要使背面温度达到可探测的幅度很困难。为了解决背面温升的可探测性,必须通过两种途径:一是采用很薄的试样,约为1mm 厚,否则很难探测到有效信号;二是在采用薄试样的同时增大激光脉冲的能量,也就是提高脉冲加热试样的功率,使得试样前表面达到更高的温度。这两种途径都会对低导热材料的测量结果带来影响: (1)低导热材料多为复合材料,密度一般都很小。激光脉冲法的试样直径(10mm ~ 12mm)本来就很小,如果试样厚度再很薄,对于复合材料来说很难具有代表性。并且密度分布的不均匀,会使得测量结果的离散性比较大。而稳态法测量所用的试样一般较大,代表性强。 (2)激光脉冲法认为激光脉冲加热试样前表面时,前表面热量的吸收层相比试样总体厚度越小越好。而一般低导热材料的热分解温度和熔点较低,高功率脉冲激光很容易使得试样表面产生高温加热而带来化学反应,反应层厚度相比试样总体厚度较大,破坏了激光脉冲法测试模型的要求,带来测量结果的不真实性。而在稳态法测量过程中,测试过程中的温度变化都严格控制在被测材料热分解温度点以下,就是为了避免热分解现象的产生带来测量结果的不真实性。 (3)一般导热系数测量过程都带有温度变化和一定的温度梯度。激光脉冲法测量如果在静止气氛中进行,背面温升的变化会受到辐射和对流的影响。所以,激光脉冲法在测量过程中,一般需要抽真空测试,以消除对流影响。而对一般复合材料来说,密度越低,在真空下发生真空质量损失的现象也越强烈。如果被测材料密度较低,真空质量损失会使得试样厚度和质量发生变化,如果再加上激光脉冲加热更会加剧质量损失过程,对测量结果带来影响。 (4)由于低密度材料内部容易存在着空隙和气孔,如果在真空中测量这类材料,真空环境将严重的改变试样内部的传热方式,基本上不再有对流传热。因此真空下测量的热导率会比在常压大气环境的测量值明显偏低。而稳态法测试设备绝大多数是在常压大气下进行,通过特别的护热装置使得在试样外部不存在温度梯度以消除对流,传热现象只发生在试样内部,因此稳态法测量结果代表的是常压大气环境下材料的热导率。个别变真空稳态法测量装置,也是专门用来测量评价材料在不同真空度下的热导率,以用于准确表征材料在不同真空度下的隔热性能。 因此,对于低导热材料热导率的测量,如果条件允许,尽量采用稳态测量方法,并明确试验条件,建议不采用激光脉冲法测量低导热材料热导率。 目前在国内的军工系统中都普遍采用稳态的保护热流计法导热系数测定仪来进行树脂基复合材料的导热系数测试,并已经做为工艺考核标准。多数采用的是美国TA公司的MODEL 2022导热仪,圆片状试样直径有1英寸(25.4mm)和2英寸(50.8mm)两种规格,最高测试温度为300℃。同时,美国TA公司的MODEL 2022导热仪也是该公司的主流产品,由此也可以看出这种稳态测试方法的应用十分广泛。

  • 美造出67阿秒迄今最短极紫外激光脉冲

    中国科技网讯 美国中弗罗里达大学(UCF)一个研究小组9月5日(北京时间)表示,他们造出了仅67阿秒(1阿秒=10-18秒)的极紫外激光脉冲,这是迄今为止最短的激光脉冲,之前纪录是80阿秒。该技术有望带来一种新工具,帮助科学家研究亚原子世界和迄今未知的量子力学行为。这一成果也标志着近4年来激光脉冲领域的首个重大突破。研究结果提前发表在《光学通信》网站上。 该成果的非凡意义还在于他们并没有使用特殊设备,如英里级的粒子加速器、体育场那么大的圆形同步加速器。UCF物理系教授常增虎(音译)和光学与光子学院同事们在该校弗罗里达阿秒科技(FAST)实验室,利用迄今最强激光在更小空间进行了高水平的研究。 常增虎的小组发明了一种叫做“双光栅”的技术,能将极紫外线以特殊方式切断,在尽可能最短的光脉冲内凝聚大量能量。除了生成了激光脉冲,他还制造了迄今最快的摄像机对光脉冲进行了检测。 “该研究造出了迄今最短的激光脉冲,为理解亚原子世界打开新的大门,让我们看到电子在原子、分子中的运动,跟踪化学反应过程。”UCF理学院院长、物理学家迈克尔·约翰逊说,“设想一下,现在我们可能看到量子力学过程了,这是令人震撼的。” 量子力学是研究微观物理学,尤其是微观水平的能量和物质。这一技术能帮助科学家理解构成世界的最小物质是怎样运作,还能帮助研究在特殊物理、生理过程中,如数据传输过程、治疗癌症或诊断疾病时递送标靶药物的过程中是如何利用能量的。 2001年时,科学家首次演示了阿秒级脉冲。自那时起,全世界科学家就在致力于制造这种最短脉冲激光,以往纪录是2008年德国马克斯·普朗克研究院创造的80阿秒脉冲。“自50多年前发明激光以来,人们对激光脉冲的要求越来越短。” UCF光学与光子学中心院长巴哈·萨雷说,“最新进展不仅让中弗罗里达大学跻身该领域前沿,也为人们打开了研究超快动态原子现象的新视野。”(记者毛黎 常丽君) 总编辑圈点 研究小尺度世界的运动规律,需要“超小号工具”。要干预和观察那些稍纵即逝的现象,就需要能量集中在极短时间的光脉冲。如果人们制造不出相应的光学机器,就没办法监测单个粒子,只能对粒子运动做出统计学意义上的描述;而在人们脑海中,基本粒子世界也只能是全景图,而不是精细的工笔画。美国研究小组的成果,让科学家向着观察量子尺度的运动又走近了一步。微观世界不为人知的景色,有望在极短激光的照射下现出真相。 《科技日报》(2012-09-06 一版)

  • 美制造迄今最大激光脉冲:500万亿瓦特功率

    2012年07月18日 08:08 新浪科技微博http://i1.sinaimg.cn/IT/2012/0718/U2727P2DT20120718075512.jpg  未来能源?美国国家点火装置负责人摩西表示:“它正全面运作。科学家在清洁聚变能源的探索上迈出重要一步。”http://i0.sinaimg.cn/IT/2012/0718/U2727P2DT20120718075533.jpg  这个脉冲只持续230亿分之一秒。这个激光阵列不是朝着一个目标发射的。但2年内,科学家将朝着一个1毫米氢球发射这192束激光。http://i2.sinaimg.cn/IT/2012/0718/U2727P2DT20120718075553.jpg  一位艺术家的构想图展示了美国国家点火装置“点燃”192束激光阵列时产生的反应。本月制造的这个脉冲并非针对一个目标,但科学家最后会在一个1毫米氢球中用这些激光引发一个聚变反应。http://i0.sinaimg.cn/IT/2012/0718/U2727P2DT20120718080555.jpg  一名工作人员正在检查加利福尼亚州的美国国家点火装置的设备。美国国家点火装置的目标是成为首个用聚变反应实现“得失相当”目标的设施,从而产生比这些激光所消耗的还要多的能量。http://i0.sinaimg.cn/IT/2012/0718/U2727P2DT20120718080614.jpg这个巨大高能设施将在接下来2年内尝试激光聚变。这项技术被看作清洁能源的“圣杯”。http://i1.sinaimg.cn/IT/2012/0718/U2727P2DT20120718080633.jpg美国国家点火装置的设备:3月15日的结果表明,科学家距“聚变点火”的目标又近了一步。http://i0.sinaimg.cn/IT/2012/0718/U2727P2DT20120718080654.jpg这些激光只持续230亿分之一秒,产生的能量却比整个美国在任何特定时间所用的电量多1000多倍。  新浪科技讯 北京时间7月18日消息,据国外媒体报道,位于加利福尼亚州、体育场大小的美国国家点火装置本月制造出人类历史上能量最大的激光脉冲。7月5日,192束激光融合成一个紫外线激光脉冲,产生500万亿瓦特峰值功率,这比美国在任何特定时刻内使用的总电量还要高1000多倍。  对旨在用类似于发生在氢弹中的核聚变反应产生巨大能量的“聚变”设备来说,这个脉冲的产生具有重大历史意义。美国国家点火装置负责人爱德华-摩西表示:“它正全面运作。科学家在清洁聚变能源的探索上迈出了重要一步。”  麻省理工学院高级研究科学家理查德-帕特拉索表示:“这个500万亿瓦功率的激光脉冲是美国国家点火装置研究小组的非凡成就----在实验中创造出迄今为止只出现于恒星内部深处的史无前例的聚变反应。对美国和世界各地像我们一样在极端条件下不懈追求基础科学和实验室聚变点火目标的科学家来说,这是一个非同寻常、令人兴奋的成就。”  加利福尼亚大学伯克利分校天文学、地球与行星学教授雷蒙德-简罗茨表示:“美国国家点火装置成功制造出500万亿瓦功率、具有里程碑意义的激光脉冲,这是世界上经过最严格的控制产生的能量最大的激光。”  这个脉冲只持续了230亿分之一秒。这个激光阵列并未朝着目标物发射,但2年内,科学家将朝着一个1毫米氢球发射这192束激光。美国国家点火装置的科学家希望它将来点燃聚变反应堆的聚变,从而释放出比这些激光所输入的能量还要多的能量。  受控的核聚变可以生成一种从50年代以来科学家一种试图制造出来的清洁能源,但在氢弹中核聚变是不受控制的。由于激光脉冲的持续时间极其短暂,所以所需总能量并不像听起来的那么多,它们被储存在美国国家点火装置电池一样的巨大容器中。 美国国家点火装置负责人摩西表示:“该事件在国家点火计划对聚变点火的探索中是个重要里程碑。国家点火装置用单个激光束进行过许多次类似的能量生成示范,但用192束激光在这个音障上进行操作还是头一次。”点火将成为一种释放出远超过“得失相当点”的巨大能量的自持反应。  美国国家点火装置试用了超重氢和在“重水”中发现的氢同位素重氢的小球,通过激光器把这些小球压缩到起初尺寸的数百分之一大。这个反应把这些原子融合成氮原子,释放出移动迅速、名为中子的亚原子粒子,这可能用于给水加热和为蒸汽轮机提供动力。  但聚变并非没有争议。美国国家点火装置还参与了美国的武器研发计划。这个聚变过程还被用于氢弹中。美国国家点火装置在这个国家的“库存维护与管理计划”中扮演着重要角色,以确保核军火库发挥它应有的作用。绿色和平组织等环境机构认为应把聚变研究的经费转移到研发风力和波浪发电等技术上来。(孝文)

  • 关于激光脉冲法测试热扩散的几点疑问

    关于激光脉冲法测试热扩散的几点疑问

    众所周知,激光脉冲法测试原理是试样在绝热条件下前表面受瞬时脉冲热流加热根据试样背表面温度随时间的变化情况,确定试样的热扩散率。问题: 1 每种材料吸收激光的速度对测试结果有影响吗? 2 材料有没有反光的问题,如果是镜面,存在部分反光,那吸收的激光能量就没有那么多了,这样对最终测试结果有没有影响? 3 再添加一问题,采用激光脉冲法测试透明半透明材料时,在脉冲照射后样品起始升温的区域存在基线的“跃迁”,这个“跃迁”是什么导致的?耐驰说明书上写这种情况需要选择辐射模型+脉冲修正,难道说这个跃迁是材料本身辐射导致的?怎么产生辐射的?http://ng1.17img.cn/bbsfiles/images/2013/03/201303272042_432667_1698940_3.jpg

  • 超声脉冲功率放大及接收模块

    超声脉冲功率放大及接收模块

    该模块是一个由脉冲功率发射电路和信号接收滤波放大电路高度集成的超声收发共用应用模块,它能够为高精度超声波检测系统的优化应用提供解决方案。本模块的脉冲功率发射电路主要集成了超声传感器的前置放大及功率驱动电路,它与匹配变压器相连后可直接驱动超声换能器产生超声波。通过改变MCU输出脉冲的频率,该驱动模块可以产生从20KHz~2MHz的频率,这个频段基本涵盖了目前常见的超声波应用频段。模块的供电范围为12V~24V,工作温度为工业级-40~+85oC,输出脉冲功率可调,最高可达300w,输出阻抗为25mΩ。本模块中的超声脉冲驱动电路基本可以满足目前国内所有超声脉冲功率发射的常规应用要求。接收部分电路主要提供的对接收到的信号进行滤波放大,可根据不同的应用需要调整接收部分的滤波频带和放大倍数,它的输入噪声在输入信号频率为500kHz的时候可低至50uV,对于接收信号特别微弱的应用场合,如超声波气体流量计中有良好的表现。本模块可满足超声波常见的工业上的应用,如超声测距、超声测流量计量、超声探伤、超声测厚等。可应用于双探头的单发单收方案中,也可以应用于收发共同的单探头系统中。模块的设计采用规范的设计方法和封装方式,并且该模块经过多种应用环境的可靠性测试,具有良好的稳定性,能够应用于复杂(如电磁干扰严重)的环境。选用该模块,研发人员可以在不需要对超声波产生和驱动电路有深刻的理解的条件下开发出超声波应用系统,开发的系统技术指标能够达到同类产品的先进水平。http://ng1.17img.cn/bbsfiles/images/2011/07/201107051107_303156_2333795_3.jpg

  • 【求助】怎样针对脉冲信号测量发光光谱??

    [size=4]我的实验过程中,样品需要用一个连续激光和一个脉冲激光同时辐照,测量其发光光谱,因为脉冲激光的强度相对较弱,因此为了得到比较好的光谱信号,我想测量样品的发光光谱时,只对脉冲激光的那个时间段测量。我用的脉冲激光的长度大概几个纳秒,如果能在这个范围,或者几百纳秒的范围内记录光谱就会得到比较好的信号,也就是说和光谱的测量和脉冲激光的脉冲同时进行。我现在有一个oceanoptics的HR4000光纤光谱仪,有什么办法可以实现我想要的测量要求哪??[/size]

  • 有激光脉冲法设备的朋友可以试着做做不同厚度金属材料的热扩散率,看看会是什么结果。

    激光脉冲法(热脉冲法)热扩散率测试是一种经典方法,目前市面上成熟设备也比较多,多数都标称可以测量到2000W/mK超高热导率,也就是说可以测量很高热扩散率材料。另外,目前激光脉冲法数据处理技术也非常成熟,可以进行各种修正,包括热脉冲宽度修正。基于以上提到的两点,那么就可以准确测量任何厚度金属材料厚度方向热扩散率。哪我们可以不妨做个试验,就是采用相同材质的金属材料(不透光)制成一系列厚度试样进行测量,如从1mm~6mm厚,相差1mm做6个试样分别在常温下进行测试,测试结果都应该一致。有条件的朋友可以具体做做,看看到底是什么结果,整个测试和分析也可以发表论文。

  • 【求助】请问:可不可以用激光脉冲做光源,获取拉曼图谱?

    现在用的是连续激光,做为光源,激发样品。可以观测到,拉曼谱线中,两个比较强的拉曼峰。但是,其余几个较弱的拉曼峰,则完全被荧光湮灭。我考虑用大功率脉冲激光器做光源,进行外触发收集拉曼光。这样,积分时间设置得很短,同时激光脉冲的峰值功率很高,应该可以消灭荧光。不知道这样做,对不对?如果这样可以,请大家告诉我具体做法,需要注意事项。请大家指教。谢谢。

  • 脉冲驱动模块

    脉冲驱动模块针对激光测距市场的电子元器件我们目前针对主要专注于脉冲和相位测距领域,以下予以分别介绍:对于我们所提供的大多数产品,均保证价格最低,低于华强北市场不信你可以咨询,同时我们的质量要好于华强北的B货,使您可以不必购买后心存忐忑。同时我们提供最迟3天内的交货期,详见下方:一、其中脉冲测距主要提供如下元器件:发射:1 SPL PL90-3 905nm 75W(预测距离:600-1600米)德国Osram,9万原装库存一周内交货,2 905D1S3J09UA 905nm 75W(预测距离:450-1200米)德国Laser Components,常备原装库存2万,3天交货3 VPL 90-3 905nm 75W(预测距离:450-900米),常备库存5000,7天交货除上述应用领域之外,还可用于安防,CS,全站仪,汽车防撞,工业测距传感器等领域。另外,我们还可以提供4W,10W,25W,50W等其他功率的激光管。自己封装,7天交货5000pcs接收:1 PIN管:SFH203PFA 德国OSRAM,1万原装库存一周内交货2 雪崩管:AD500-9TO52S3 德国Silicon sensor,5000原装库存一周内交货3 带滤光片的雪崩管:AD500-9TO52S1F2 德国Silicon sensor,500原装库存,3天内交货 本公司另外还提供相应的发射驱动模块,接收模块。

  • 【分享】激光雷达/激光探测及测距系统

    【分享】激光雷达/激光探测及测距系统

    激光雷达可以按照所用激光器、探测技术及雷达功能等来分类。目前激光雷达中使用的激光器有二氧化碳激光器,Er:YAG激光器,Nd:YAG激光器,喇曼频移Nd:YAG激光器、GaAiAs半导体激光器、氦-氖激光器和倍频Nd:YAG激光器等。其中掺铒YAG激光波长为2微米左右,而GaAiAs激光波长则在0.8-0.904微米之间。根据探测技术的不同,激光雷达可以分为直接探测型和相干探测型两种。其中直接探测型激光雷达采用脉冲振幅调制技术(AM),且不需要干涉仪。相干探测型激光雷达可用外差干涉,零拍干涉或失调零拍干涉,相应的调谐技术分别为脉冲振幅调制,脉冲频率调制(FM)或混合调制。按照不同功能,激光雷达可分为跟踪雷达,运动目标指示雷达,流速测量雷达,风剪切探测雷达,目标识别雷达,成像雷达及振动传感雷达。激光雷达最基本的工作原理与无线电雷达没有区别,即由雷达发射系统发送一个信号,经目标反射后被接收系统收集,通过测量反射光的运行时间而确定目标的距离。至于目标的径向速度,可以由反射光的多普勒频移来确定,也可以测量两个或多个距离,并计算其变化率而求得速度,这是、也是直接探测型雷达的基本工作原理。由此可以看出,直接探测型激光雷达的基本结构与激光测距机颇为相近。相干探测型激光雷达又有单稳与双稳之分,在所谓单稳系统中,发送与接收信号共同在所谓单稳态系统中,发送与接收信号共用一个光学孔径。并由发射/接收(T/R)开头隔离。T/R开关将发射信号送往输出望远镜和发射扫描系统进行发射,信号经目标反射后进入光学扫描系统和望远镜,这时,它们起光学接收的作用。T/R开关将接收到的辐射送入光学混频器,所得拍频信号由成像系统聚焦到光敏探测器,后者将光信号变成电信号,并由高通滤波器将来自背景源的低频成分及本机振荡器所诱导的直流信号统统滤除。最后高频成分中所包含的测量信息由信号和数据处理系统检出。双稳系统的区别在于包含两套望远镜和光学扫描部件,T/R开关自然不再需要,其余部分与单稳系统的相同。美国国防部最初对激光雷达的兴趣与对微波雷达的相似,即侧重于对目标的监视、捕获、跟踪、毁伤评(SATKA)和导航。然而,由于微波雷达足以完成大部分毁伤评估和导航任务,因而导致军用激光雷达计划集中于前者不能很好完成的少量任务上,例如高精度毁伤评估,极精确的导航修正及高分辨率成像。较早出现的一种激光雷达称为“火池”,它是由美国麻省理工学院的林肯实验室投资,于60年代末研制的。70年代初,林肯实验室演示了火池雷达精确跟踪卫星,获得多普勒影像的能力。80年代进行的实验证明,这种CO2激光雷达可以穿透某些烟雾,识破伪装,远距离捕获空中目标和探测化学战剂。发展到80年代末的火池激光雷达,采用一台高稳定CO2激光振荡器作为信号源,经一台窄带CO2激光放大器放大,其频率则由单边带调制器调制。另有工作于蓝-绿波段的中功率氩离子激光与上述雷达波束复合,用于对目标进行角度跟踪,而雷达波束的功能则是收集距离――多普勒影像,实时处理并加以显示。两束波均由一个孔径为1.2M的望远镜发射并接收。据报道,美国战略防御局和麻省理工学院的研究人员于1990年3月用上述装置对一枚从弗吉尼亚大西洋海岸发射的探空火箭进行了跟踪实验。在二级点火后6分钟,火箭进入亚轨道,即爬升阶段,并抛出其有效负载,即一个形状和大小均类似于弹道导弹再入飞行器的可充气气球。该气球有气体推进器以提供与再入飞行器和诱饵的物理结构相一致的动力学特性。目标最初由L波段跟踪雷达和X波段成像雷达进行跟踪。并将这些雷达传感器取得的数据交给火池激光雷达,后者成功地获得了距离约800千米处目标的像。[~116966~][~116967~][~116968~][img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191651_624049_1602049_3.jpg[/img]

  • 德科学家让光脉冲拥有“负质量”

    该方法可用于研制速度更快的电子通讯设备科技日报 2013年10月17日 星期四 科技日报讯 (记者刘霞)据英国《新科学家》网站10月16日(北京时间)报道,德国科学家使用一些光纤环,表象上使光脉冲拥有“负质量”,让激光脉冲在其周围自我加速。科学家指出,最新研究表面似乎与牛顿第三定律不符,但只是一种假象。其重要意义在于,科研人员可藉此研制运行速度更快的电子设备和更可靠的通讯设备等。 牛顿第三定律指出,两个物体间的作用力和反作用力总是同时在同一条直线上,大小相等,方向相反。当两球相撞时,它们会相互弹回。但如果一个球的质量为负数,当它们相遇时,会朝同一个方向加速前进。这种效应在“反向驱动器”内非常有用。“反向驱动器”是科学家们假想出来的一种设备,在其内部,正负质量相互作用,然后永远加速向前。上世纪90年代,美国航空航天局(NASA)就试图制造出这种驱动器以便为火箭发射提供更好的助推力。不过量子力学声称,物质不可能拥有负质量,即使反物质的质量也为正数。 现在,德国爱尔兰根-纽伦堡大学的乌尔夫·佩斯彻尔和同事使用“等效质量”,制造出一种“反向驱动器”。他们解释道,当光子以光速行进时,它们没有静止质量,但如果将一束光脉冲照射在晶体这样的层叠物体内,有些光子会被晶体的一层反射回来接着再被另一层反射回去,这就会让部分脉冲发生延迟,导致它同其余脉冲相互干扰,通过材料的速度因此变得更慢。 这样一来,光脉冲似乎就拥有了质量——“等效质量”。取决于光波的形状和晶体的结构,光脉冲能拥有负的等效质量。为了得到这样一种脉冲同具有正质量的脉冲相互作用,需要非常长的晶体,以便在两束脉冲展示反向推动效应之前将光吸收。 为此,佩斯彻尔在两条光纤环内制造出一系列激光脉冲。这些脉冲会在两条环之间的某个连接点“分道扬镳”,而且,光会以同样的方向在每个光纤环周围移动。关键在于一个环比另一个环稍长一点,因此,在更长环周围运动的光相对来说有点延迟。当这个脉冲被反射回并且在连接点分开时,它会同另一个环内的脉冲分享部分光子。这样几趟旅程之后,脉冲会发展出一种干涉模式,赋予脉冲负质量。 佩斯彻尔表示,半导体内的电子也可以拥有“等效质量”,因此,这些环可被用来给电子加速并提升计算机的处理能力。而且,在某些光纤内,光脉冲的速度与其波长相当,这就意味着,这种环能被用来控制光纤输出光的颜色。这种方法也有望用来增加光子通讯的带宽,帮助制造出诸如激光显示屏那样的显示设备。不过,将这种环用于实际生活中也并非易事。 总编辑圈点 在宏观世界,质量恒定不变且能对物体运动产生作用,是反映物质运动状态变化难易程度的物理量。但到了微观量子世界,运动却成了质量产生的决定因素,运动的粒子与希格斯粒子发生碰撞才产生质量。本项研究更加深刻地揭示了在微观领域运动和质量的关系,尽管“负质量”只是一种假象,但我们却可以利用这种假象来发明新的应用。将“负质量”用于实际生活确非易事,但并不是完全不可能,反向驱动器就是一种好的尝试。

  • 激光闪光法标准测试规范:不同脉冲加热能量下热扩散系数测试的外推法

    激光闪光法标准测试规范:不同脉冲加热能量下热扩散系数测试的外推法

    [color=#cc0000]摘要:本文介绍了一种闪光法热扩散系数测试规范——闪光能量外推法,即在样品恒温阶段采用一系列不同大小的闪光脉冲加热能量进行测试,然后将相应的热扩散系数测试结果外推至零加热能量,由此准确得到与试验参数(样品厚度和加热能量)无关的热扩散系数准确值。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#cc0000]1.问题的提出[/color] 在采用闪光法测量材料热扩散系数过程中,诸如样品厚度和闪光脉冲加热能量这些试验参数的选择,使得测试人员最常面临的困惑就是试验参数选择合理性和测试结果的准确性,这种现象在实际测试中主要表现在以下几个方面: (1)对于相同材料和厚度的样品,设置不同闪光脉冲加热能量,往往会得到不同测试结果,无法判断加热能量参数选择的合理性和测试结果的准确性。 (2)对于未知材料,无法确定合理的样品厚度,往往造成不同样品厚度测试的热扩散系数有明显偏差。 (3)对于相同材料和厚度的样品,不同实验室采用不同型号闪光法仪器,经常会得出不同的测试结果,有时相互之间的偏差还很大。 (4)对于相同材料和厚度的样品,不同实验室采用相同型号闪光法仪器,也常会得出不同的测试结果。 总之,由于存在以上困惑,这就需要开发出一种闪光法测试规范来准确测量热扩散系数,而最终得到的热扩散系数与闪光法仪器的试验参数无关。也就是说,希望采用任何正常的闪光法设备和任意试验参数,都可以测量得到准确的热扩散系数。 本文将介绍一种闪光法热扩散系数测试规范——闪光能量外推法,即在样品恒温阶段采用一系列不同大小的闪光脉冲加热能量进行测试,然后将相应的热扩散系数测试结果外推至零加热能量,由此准确得到与试验参数(样品厚度和加热能量)无关的热扩散系数准确值。[color=#cc0000]2.外推法的基本原理[/color] 众所周知,闪光法测试中,根据温升曲线计算得到的热扩散系数取决于测试条件,如脉冲加热能量和样品厚度。图 2-1显示了温升曲线和热扩散系数随温度的变化曲线。[align=center][img=,690,341]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201616538529_4916_3384_3.png!w690x341.jpg[/img][/align][align=center][color=#cc0000]图 2-1 (a)温升曲线和(b)在Tbase附近温度对热扩散系数的依赖关系[/color][/align] 当在规定温度Tbase(脉冲加热前保持恒定)下进行激光测量时,样品温度会升高Tmax。热扩散系数是一种依赖于温度的物理性能,因此,样品背面温升曲线反映了测量过程中起始温度Tbase和最高温度Tmax之间热扩散系数的温度相关性,即闪光法热扩散系数测量结果是样品温度升高后的等效热扩散系数,而不是起始温度Tbase时样品的固有热扩散系数,由此所带来的误差就是等效热扩散系数与固有热扩散系数之间的差值,此差值就是常见闪光法热扩散系数测量误差的主要来源。 从图 2-1可以看出,当样品背面温升ΔT较大时,如果材料样品的热扩散系数对温度非常敏感,则等效热扩散系数与固有热扩散系数之间的差值将会较大。另外,较大ΔT可能会样品背温红外辐射器信号带来非线性影响,也会增大测量值偏差。 由此可见,由于背面温升ΔT的存在,对于某一样品厚度和加热能量下测试得到是等效热扩散系数,此等效热扩散系数取决于样品厚度、脉冲加热能量、脉冲光吸收率和样品体积热容。从理论上讲,背面温升ΔT越小,所测试的等效热扩散系数就越接近于固有热扩散系数。但在实际测试过程中,往往会选择较大的脉冲加热能量来获得漂亮的背面温升曲线,以提高背温信号的信噪比。由此可见,脉冲加热能量的大小与热扩散系数准确测量是一对矛盾。 为了解决上述试验参数对测量结果带来的影响,日本国家计量研究所(NMIJ)的Akoshima等人开发了一种外推法热扩散系数测试规范[1]。外推法的基本原理是在恒定温度Tbase下,假设样品厚度、脉冲光吸收率和样品体积热容不随温度发生改变,通过改变脉冲加热能量(即改变背面温升ΔT大小)测试得到一系列相应的等效热扩散系数。如图 2-2所示,以背面温升ΔT为横坐标、等效热扩散系数测量值为纵坐标,建立起等效热扩散系数与背面温升的线性函数关系,最终用此线性函数外推得到脉冲加热能量为零时的等效热扩散系数,由此认为此外推得到的热扩散系数即为样品材料在温度Tbase时的固有热扩散系数。[align=center][img=,690,402]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201617142109_5211_3384_3.png!w690x402.jpg[/img][/align][align=center][color=#cc0000]图 2-2 不同加热能量时的等效热扩散系数测量结果和外推法示意图[/color][/align] 由此可见,通过外推法可以得到样品材料固有的热扩散系数,而且所得到的热扩散系数与样品厚度和脉冲加热能量无关,这样就可以在实际测试中消除了测试参数对热扩散系数测量结果的影响。[color=#cc0000]3.外推法的验证[/color] 为了全面验证外推法在闪光法热扩散系数测试中的有效性,日本国家计量研究所(NMIJ)和法国国家计量和测试实验室(LNE)开展了专门的比对测试研究[2],并计划将外推法补充到闪光法热扩散系数标准测试方法中。 对比测试选择了四种材料,分别是IG-110各项同性石墨、Armco铁、YSZ陶瓷和氮化硅,如图 3-1所示。这四种材料基本覆盖了10E-4~10E-6㎡/s范围的热扩散系数,并在脉冲光和探测光的透过性上非常有代表性,从而也代表了不同样品表面吸热涂层和遮光涂层的处理方式。[align=center][img=,690,161]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201617320094_8341_3384_3.png!w690x161.jpg[/img][/align][align=center][color=#cc0000]图 3-1 外推法对比测试样品:从左到右的IG-110石墨、Armco铁、3YSZ和氮化硅 [/color][/align] 两个实验室分别在室温下分别对不同样品厚度的上述四种材料进行了测试,每种厚度样品采用不同脉冲加热能量测试表观热扩散系数,结果如图 3-2~图 3-5所示。然后针对每种厚度样品的表观热扩散系数测试结果计算获得零脉冲能量外推值。每个样品的外推值以及每个实验室的平均值和标准偏差如表 3-1所示。[align=center][color=#cc0000][img=,690,255]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201617457894_7515_3384_3.png!w690x255.jpg[/img][/color][/align][align=center][color=#cc0000]图 3-2 两实验室分别在室温下对不同厚度IG-110石墨样品采用不同脉冲加热能量测试得到的测试值和外推值,符号表示测试值,线条表示线性回归函数[/color][/align][align=center][color=#cc0000][img=,690,256]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201618077493_2590_3384_3.png!w690x256.jpg[/img][/color][/align][align=center][color=#cc0000]图 3-3 两实验室分别在室温下对不同厚度Armco铁样品采用不同脉冲加热能量测试得到的测试值和外推值,符号表示测试值,线条表示线性回归函数[/color][/align][align=center][color=#cc0000][img=,690,253]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201618183304_8193_3384_3.png!w690x253.jpg[/img][/color][/align][align=center][color=#cc0000]图 3-4 两实验室分别在室温下对不同厚度3YSZ样品采用不同脉冲加热能量测试得到的测试值和外推值,样品表面带金和/或石墨涂层[/color][/align][align=center][color=#cc0000][img=,690,260]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201618287874_3031_3384_3.png!w690x260.jpg[/img][/color][/align][align=center][color=#cc0000]图 3-5 两实验室分别在室温下对不同厚度Si3N4样品采用不同脉冲加热能量测试得到的测试值和外推值,样品表面带金和/或石墨涂层 [/color][/align][align=center][color=#cc0000]表 3-1 两实验室对比测试四种材料的固有热扩散系数,根据室温下不同厚度样品测量的表观热扩散系数值的平均值进行估算(LNE 296K,NMIJ 298K)[/color][/align][align=center][img=,690,793]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201618432974_4190_3384_3.png!w690x793.jpg[/img][/align] 在各向同性石墨的情况下(其显示出室温附近热扩散系数的强温度依赖性),从具有最大温升的温升曲线计算的表观热扩散系数比使用外推法估计的固有值小3%。由于NMIJ和LNE估计热扩散系数测量的典型不确定度约为2~3%,因此这种误差就非常明显。结果表明,外推法有助于获得固有热扩散系数,同时避免测量过程中由于样品温度变化造成的偏差。通过对两种半透明性材料(3YSZ和Si3N4)的测试对比,也证明了外推法有助于检测热扩散系数的估计值是否正确,并具有识别材料任何潜在半透明效应的功能。 通过上述NMIJ和LNE这两个国家计量机构对四种固体材料进行的热扩散系数测量,验证了外推法测试技术的有效性和准确性。尽管两实验室使用了不同的测试设备和不同的温升曲线分析方法,但两实验室测量的热扩散系数依然显示出很好的一致性。由此可以确认,结合了外推法的闪光法热扩散系数测量,在10E-4~10E-6㎡/s范围内的热扩散系数测试可以不受测量条件、仪器、分析方法和实验室的影响。[color=#cc0000]4.总结[/color] 热扩散系数是材料固有的特性,据此,热扩散率不取决于测量条件、形状和尺寸。然而众所周知,闪光法热扩散系数测试经常受到这些因素的影响,因此外推法的出现为解决上述问题提出了一个很好的解决方案。 自2005年外推法提出以来,在国际度量衡委员会(CIPM)温度测量咨询委员会第9工作组(CCT-WG9)组织的实验室间热扩散系数对比框架内,一直采用外推法这一试验规程进行所有的对比测试[3]。经过多年的验证试验和实际测试,证明了外推法主要有以下特点和优势: (1)外推法是一种通用性方法。在采用外推法测试材料热扩散系数过程中,尽管不同实验室和不同测试设备采用不同脉冲加热能量和不同数据处理方法会得到不同的外推斜率,反映了与测量仪器和所用评估方法相关的测量条件,但对应于固有热扩散系数的截距值与斜率无关。 (2)外推法对热扩散系数随温度变化敏感的材料更有效。从上述石墨与金属材料的对比测试可以看出,Armco铁的外推斜率要小于IG-110石墨外推斜率,石墨材料热扩散系数在对温度变化敏感的范围内,外推法对于更能显著提高测量的准确性。 (3)有助于识别潜在的材料半透明效应。采用外推法测量时,如果材料完全不透明则会得到与样品厚度无关的相同的外推值,反之则会看出明显的厚度变化所带来的半透明效应。这种功能在识别未知材料的潜在半透明性中非常有用。 (4)由于使用外推法只需在不同脉冲加热能量下进行测量,与样品厚度和数据处理方法无关,加上目前闪光法测试设备自动化程度很高,可以自动按照设定程序改变脉冲加热能量进行连续测量,因此只需选定一种厚度样品就可以快速准确的测定热扩散系数,既能保证测量准确性又能提高测试效率。另外,通过外推法还可以在大的信噪比下进行测量,解决了信噪比与测量精度的矛盾。[color=#cc0000]5.参考文献[/color][align=left](1) M. Akoshima, T. Baba, in Proceedings of Thermal Conductivity 28/Thermal Expansion 16, ed. by R.B. Dinwiddie, M.A. White, L. McElroy (DEStech Publications, Lancaster, 2006), p. 497–506[/align][align=left](2)Akoshima M, Hay B, Neda M, et al. Experimental verification to obtain intrinsic thermal diffusivity by laser-flash method[J]. International Journal of Thermophysics, 2013, 34(5): 778-791.[/align][align=left](3)Akoshima M, Hay B, Zhang J, et al. International comparison on thermal-diffusivity measurements for iron and isotropic graphite using the laser flash method in CCT-WG9[J]. International Journal of Thermophysics, 2013, 34(5): 763-777.[/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【分享】激光测距仪测量原理

    【分享】激光测距仪测量原理

    激光测距是光波测距中的一种测距方式,如果光以速度c在空气中传播在A、B两点间往返一次所需时间为t,则A、B两点间距离D可用下列表示。 D=ct/2 式中:D——测站点A、B两点间距离; c——光在大气中传播的速度; t——光往返A、B一次所需的时间。 由上式可知,要测量A、B距离实际上是要测量光传播的时间t,根据测量时间方法的不同,激光测距仪通常可分为脉冲式和相位式两种测量形式。 相位式激光测距仪相位式激光测距仪是用无线电波段的频率,对激光束进行幅度调制并测定调制光往返测线一次所产生的相位延迟,再根据调制光的波长,换算此相位延迟所代表的距离。即用间接方法测定出光经往返测线所需的时间,如图所示。相位式激光测距仪一般应用在精密测距中。由于其精度高,一般为毫米级,为了有效的反射信号,并使测定的目标限制在与仪器精度相称的某一特定点上,对这种测距仪都配置了被称为合作目标的反射镜。若调制光角频率为ω,在待测量距离D上往返一次产生的相位延迟为φ,则对应时间t 可表示为:t=φ/ω将此关系代入(3-6)式距离D可表示为 D=1/2 ct=1/2 c·φ/ω=c/(4πf) (Nπ+Δφ) =c/4f (N+ΔN)=U(N+) 式中:φ——信号往返测线一次产生的总的相位延迟。 ω——调制信号的角频率,ω=2πf。 U——单位长度,数值等于1/4调制波长 N——测线所包含调制半波长个数。 Δφ——信号往返测线一次产生相位延迟不足π部分。 ΔN——测线所包含调制波不足半波长的小数部分。 ΔN=φ/ω 在给定调制和标准大气条件下,频率c/(4πf)是一个常数,此时距离的测量变成了测线所包含半波长个数的测量和不足半波长的小数部分的测量即测N或φ,由于近代精密机械加工技术和无线电测相技术的发展,已使φ的测量达到很高的精度。 为了测得不足π的相角φ,可以通过不同的方法来进行测量,通常应用最多的是延迟测相和数字测相,目前短程激光测距仪均采用数字测相原理来求得φ。 由上所述一般情况下相位式激光测距仪使用连续发射带调制信号的激光束,为了获得测距高精度还需配置合作目标,而目前推出的手持式激光测距仪是脉冲式激光测距仪中又一新型测距仪,它不仅体积小、重量轻,还采用数字测相脉冲展宽细分技术,无需合作目标即可达到毫米级精度,测程已经超过100m,且能快速准确地直接显示距离。是短程精度精密工程测量、房屋建筑面积测量中最新型的长度计量标准器具,宏诚科技的CEM手持式激光测距仪LDM-100就是测量的最佳助手。 手持式激光测距仪使用注意事项 [font=Times New Rom

  • 【资料】激光测距的测量原理

    1.利用红外线测距或激光测距的原理是什么? 测距原理基本可以归结为测量光往返目标所需要时间,然后通过光速c = 299792458m/s 和大气折射系数 n 计算出距离D。由于直接测量时间比较困难,通常是测定连续波的相位,称为测相式测距仪。当然,也有脉冲式测距仪,典型的是WILD的DI-3000需要注意,测相并不是测量红外或者激光的相位,而是测量调制在红外或者激光上面的信号相位。建筑行业有一种手持式的测距仪,用于房屋测量,其工作原理与此相同。2.被测物体平面必须与光线垂直么? 通常精密测距需要全反射棱镜配合,而房屋量测用的测距仪,直接以光滑的墙面反射测量,主要是因为距离比较近,光反射回来的信号强度够大。与此可以知道,一定要垂直,否则返回信号过于微弱将无法得到精确距离。3.若被测物体平面为漫反射是否可以? 通常也是可以的,实际工程中会采用薄塑料板作为反射面以解决漫反射严重的问题。4.超声波测距精度比较低,现在很少使用。

  • 发烧级光纤光谱设备:Insight激光诱导击穿光谱检测系统

    大家能想到哪些应用领域?欢迎畅所欲言。 InsightTM激光诱导击穿光谱检测系统 ——高灵敏微量分析从此变得简单! Insight激光诱导击穿光谱检测系统(LIBS)专门用于固体材料的微量分析: * 系统内部的标准分级光栅光谱仪可提供宽光谱读取范围(190-800+nm)以及高于0.1nm的全波段分辨率; * 系统能够分析主成分元素和微量元素,图谱内的30000多个像素点可在紫外范围达到小于0.02nm谱线分辨率; http://www.oceanopticschina.cn/images/insight_LIBS.jpg * 系统内的增强型CCD摄像头在低光照度下具有很强的敏感度,增强了微量元素的光谱。 http://www.oceanopticschina.cn/images/insightspectra.jpg Insight系统内置的addLIBSTM软件使等离子发射光谱分析变得简单: * 通过addLIBS软件您能够使用部分美国国家标准技术研究院(NIST)图谱库或者国内图谱库来开发光谱、对光谱进行标注、使用已知样品制定标定方法、手动标定或对未知光谱自动选择标定方法; * 一旦标定方法制定完成,可以重复使用,也可以进行修改。 用于高保真测量:◆经久耐用的钇铝石榴石晶体激光(ND:YAG laser)、高灵敏的分级光栅光谱仪; ◆内置计时控制电路同步激光和光谱仪; ◆共焦可视面和激光平面,确保了测量的可重复性; ◆气体净化的样品舱; ◆一级安全外壳。 功能强大,操作简单: ◆样品查询和分析软件工具; ◆用户可选重复率; ◆用户可通过软件选择激光光斑尺寸; ◆单点发射、脉冲和持续轰击模式; ◆彩色视频显微镜可实时显示样品图像; ◆可选电脑控制x/y平台,用于夹持样品。 可选配置:◆可调整、样品共轴照明装置; ◆可调激光能量; ◆可调光谱仪延迟; ◆软件可选光斑尺寸(小于5μm至2mm,FWHW);

  • 激光测振仪在钢轨无损检测中的应用

    激光测振仪在钢轨无损检测中的应用

    钢轨在生产、铺设及行车过程中会产生各种损伤,这些损伤不但影响行车的平稳和舒适,而且会危及行车安全。钢轨的损伤包括疲劳、磨耗、锈蚀、弯曲变形和裂纹等。通常,我们可以利用机器视觉方法检测钢轨表面的损伤。但对于钢轨内部损伤,常规的图像法无法检测。钢轨内部早期损伤难以发现,随着工作时间推移会突然出现裂纹,容易造成严重的行车事故。钢轨内部缺陷已成为铁路运输安全的主要损伤类型。目前,铁路系统检测钢轨内部缺陷采用的是超声波法,该方法中利用高频的超声波作为信号源,基于此方法的钢轨探伤车无法实时在线监测钢轨内部缺陷。但在钢轨中激励低频、高能的超声波时,超声波会在钢轨边界不断发生反射、折射以及纵横波的转换,从而会产生一种新的超声波信号---超声导波。超声导波适合检测横截面一致、长距离的波导介质材料,如管道、钢轨等。钢轨具有声导管性质,超声导波在其内部传播距离很远。一般利用超声导波换能器接受导波,但换能器的黏贴位置、粘贴胶质和轨道温度等因素会影响这种非接触式测量方法的效果,降低测量准确率。然而利用激光测振仪这种非接触测量工具,既可以实现实时在线监测钢轨,发现钢轨早期的内部缺陷,同时也能提高检测精度。这种方法利用激光测振仪测量钢轨振动速度曲线,经信号处理后利用脉冲回波法,检测超声导波在钢轨内部缺陷处产生的回波信号来实现在线监测钢轨。[img=,599,333]https://ng1.17img.cn/bbsfiles/images/2019/04/201904101153380291_7519_3859729_3.jpg!w599x333.jpg[/img]OptoMET数字型激光多普勒测振仪是一套高精度的振动测量仪器。该仪器可非接触且精确地测量振动和声学信号,包括振动位移、速度和加速度。它具有超高的光学灵敏度,并利用自行研发的超速数字信号处理技术(UltraDSP),不仅能快速测量简单系统的振动,还能测量极具挑战的系统,包括高频振动,远距离测试,微小振幅,高线性和高振动加速度或速度。超速数字信号处理技术(UltraDSP)确保了测量的高分辨率和高精度。OptoMET激光测振仪具有超高的光学灵敏度和信号强度,这对于在生锈和灰暗又无法进行表面处理的结构上获得无噪声和无信号丢失的测试数据至关重要。应用参考:邢博,余祖俊,许西宁,朱力强.基于激光多普勒频移的钢轨缺陷监测.中国光学,2018,11(06):991-1000.文章来源:嘉兆科技http://www.tnm-corad.com.cn/news/Show-5639.html

  • LIBS元素分析测量系统介绍

    LIBS元素分析测量系统介绍

    LIBS元素分析测量系统http://www.gzbiaoqi.com/UploadFiles/877265200815566_1.gif概要LIBS2000+宽带光谱仪是一套探测系统,用于实时分析固态、液态和气态物质中的元素组成,这个高分辨率的系统提供从200-980nm的全光谱分析,分辨率为~0.1 nm(FWHM),特别适用于元素鉴定、材料分析、环境监测和军事。http://www.gzbiaoqi.com/UploadFiles/877265200815566_2.gifLIBS2000+光谱仪LIBS2000+光谱仪是一套定性和定量测量固体及液体、气体中的元素的实时探测系统。这套宽带、高分辨率系统可提供波长200-980nm的光谱分析,分辨率为0.1nm(FWHM),灵敏度可为十亿分之几和皮克等级。LIBS2000+系统基本配置低于3万美元。LIBS2000+采用7个HR2000高分辨率光谱仪,每个光谱仪都配有2048象素的CCD探测器阵列,这个多通道光谱仪系统通过一个USB口和PC相连。所有7个光谱仪同时进行数据采集,软件同时显示结果。标配的激光器是一台Big Sky公司提供的50mJ的激光器,配有一个电源适配器。信号通过600 μm芯径的UV-VIS光纤束收集,每根光纤的末端都安装了准直透镜。样品室配有一个远程激光安全锁。工作原理一束高亮度脉冲Nd:YAG激光聚焦在测试样品上,并距样品几个厘米至一米远。一个10纳秒脉宽的激光脉冲即可激活测试样品。激光发射后,激光束的高温会产生等离子体。在等离子体冷却湮灭的过程中,等离子体束中被激活的原子会发射出与元素有关的特性光谱。所有元素的发射光谱都在200-980nm的波长范围内。LIBS2000+的优点传统的激光诱导分解光谱仪(LIBS)的测量光谱范围都很小,LIBS2000+是世界上第一个可提供宽带光谱分析(200-980nm)的系统。您可在恶劣的环境中进行实时测量--几乎不用或完全不需要样品准备--LIBS2000+可广泛应用于材料分析、环境检测、刑事侦破和医学研究、艺术品修补后的分析、军事及安全应用等。应用LIBS技术可广泛应用于多种不同领域 • 环境检测 (土壤污染、粉尘等) • 材料分析 (金属材料、塑料等) • 医学与生物研究 (牙齿、骨骼等成分分析) • 军事及安全应用 (炸药成分、生化武器成分分析 等) • 艺术保存品成分分析 (色料、远古金属等)其它特点LIBS2000+外壳为标准3U机柜,使用方便。LIBS2000+通过USB接口直接与计算机相连,使用非常方便。其它配件LIBS2000+由七通道光谱仪系统和所有必要的线缆组成。您可用任何一个能量大于等于30mJ的Q开关脉冲激光器来激光测试样品。厂家推荐产品为Big Sky Laser公司的超短脉冲Nd:YAG激光器。另外,我们可提供样品腔和OOILIBS运行软件(用于运行LIBS2000+及开启激光)。测量OOILIBS软件允许用户进行一些参数设置,例如激光Q开关延时(介于激光发射和开始数据采集之间的时间)和对激光脉冲信号的平均。配置1. LIBS2000+ 激光诱导击穿光谱仪2. LIBS-FIBER-BUN 3. LIBS-LASER Nd:YAG 50 mJ激光器(由Big Sky激光公司提供)4. LIBS-SC 样品室5. OOILIBS 软件LIBS2000+[font=

  • 北京正通远恒科技有限公司刚刚发布了脉冲激光沉积系统销售工程师职位,坐标北京,敢不敢来试试?

    [b]职位名称:[/b]脉冲激光沉积系统销售工程师[b]职位描述/要求:[/b]职位要求:1、 本科及硕士以上学历;2、 物理/应用物理、材料/材料物理/材料化学、表面、薄膜等专业背景;具有很强的学习动力与能力,通过学习应能掌握仪器所涉及理论与应用知识。3、 热爱销售工作、积极主动、善于自我激励;4、 为人踏实肯干、诚实守信、有责任感和进取心,善于沟通与交流;5、 英语听、说、读、写能力良好;6、 能适应经常出差;7、具有相关仪器销售经验者优先,欢迎优秀应届毕业生加入。工作职责:1、主要负责所属部门的进口类仪器在所辖区域的销售与技术交流工作,包含材料表征(三维形貌、纳米力学、Zeta电位、混凝土流变、薄膜厚度折射率吸收系数)、分子相互作用等类型仪器,完成公司布置的销售任务;2、熟练掌握进口仪器的相关专业知识,包括:技术原理、应用、产品特点等;3、联系并拜访客户,独立向客户进行Presentation展示,开展技术交流,推进项目进展,完成销售;4、开拓新市场,发展新客户,推广公司的产品和服务;5、维护及增进已有用户关系,及时了解用户的问题及需求,挖掘新的销售机会;6、配合市场部门做好学术会议、展会等的布展工作,提供销售及技术支持;7、制作标书、投标现场谈判、签订技术文件等;8、根据公司计划安排的其他相关工作。[b]公司介绍:[/b] 北京正通远恒科技有限公司成立于2001年,是一家经营欧美和日本等国先进科学测试仪器和设备,并将国外先进技术引入国内的科技服务型企业.经过十年的发展,公司在北京、上海、广州、武汉均设有办事处。 公司用受人尊敬的、专业的方式来经营公司的业务(HONOPROF comes from our philosophy---- doing business in an HONOurable an...[url=https://www.instrument.com.cn/job/user/job/position/58021]查看全部[/url]

  • 超快普克尔斯盒介绍以及用途

    1111型[b]超快普克尔斯盒[/b]和1112型[b]超快电光调制器[/b]是目前全球转换最快的美国lasermetrics公司[b]超快电光Q开关[/b],上升沿时间可达40皮秒,非常适合[b]超快激光脉冲斩波和超快激光脉冲拾取[/b],锁模激光器脉冲中[b]拾取皮秒脉冲[/b]或[b]拾取飞秒激光脉冲[/b].[url=http://www.felles.cn/keerhe/chaokuai.html][img=超快普克尔盒]http://www.felles.cn/Upload/chaokuai.jpg[/img][/url]其中1111KD*P普克尔斯盒使用一块晶体, 上升时间为40皮秒,光程15mm,而1112KD*P型具有两块晶体,上升时间为85皮秒[i].[/i],光程是22mm, 这样就最大程度地减小时间色散.这两款超快普克尔盒,超快电光Q开关同样使用最优质的KD*P晶体制造而成, 晶体安装在配备熔炉石英窗口的密闭铝制外壳里, 也可使用折射率匹配的液体以减少内部光学界面的反射.[b]超快普克尔斯盒超快电光Q开关[/b]产品参数:型号:FP-1111-KD*P材料:KD*P晶体晶体个数:1光程:15mm净孔径:2.5mm半波电压: 约6.5KV@1064nm反射系数 tr=140ps: 5%上升时间:50ps终端阻抗: 50欧姆阻抗 使用1米长50欧姆阻抗的线连接到调制器上尺寸:光束方向 83W x 48H x 50.8 L mm重量:312g型号:FP-1112-KD*P材料:KD*P晶体晶体个数:2光程:22mm净孔径:2.5mm半波电压: 约3.3KV@1064nm反射系数 tr=140ps: 5%上升时间:100ps终端阻抗: 50欧姆阻抗 使用1米长50欧姆阻抗的线连接到调制器上尺寸:光束方向 83W x 48H x 50.8 L mm重量:312g[b]超快普克尔盒,[/b]超快电光调制器,超快电光Q开关由[url=http://www.felles.cn/][b]孚光精仪[/b][/url]进口销售,[url=http://www.felles.cn/][b]孚光精仪[/b][/url]是中国领先的进口(光学)精密仪器旗舰型服务商!精通光学,服务科学,先后为北京大学,中科院上海光机所,哈尔滨工业大学,中国工程物理研究院,山东大学等单位提供这种优质进口的[b]:[/b]超快普克尔盒,超快电光调制器,超快电光Q开关[b]。更多型号:http://www.felles.cn/keerhe.html[/b]

  • 如何选择传感器——激光功率计和能量计

    激光功率和能量计主要用来测量光源的输出。无论光发射是来源于弱光源(如荧光),还是来源于高能量的脉冲激光器,功率和能量计都是实验室、生产部门或是工作现场等多种应用环境中必不可少的工具。 虽然功率计和能量计是分别提供的,但随着能够适用大量不同类型的光学传感器的通用型仪表盘或显示装置的发展,它们也被合起来称作单独的一类仪器——功率和能量计,或PEM。仪器所采用的光学传感器的类型,决定了其能测量光功率还是光能量,通常单位分别瓦特(W)或焦耳(J)。具体来讲,功率计能够测量连续波(CW)或者重复脉冲光源,其所使用的传感器通常是热电堆或光电二极管。能量计则通常用于测量脉冲激光,即单脉冲或者重复脉冲光源,其所使用的传感器包括热释电、热电堆,或者带有专门为测量脉冲光源而设计的电路的光电二极管。

  • 激光测距仪应用介绍

    激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间。光速和往返时间的乘积的一半,就是测距仪和被测量物体之间的距离。脉冲法测量距离的精度是一般是在+/- 1米左右。另外,此类测距仪的测量盲区一般是15米左右。 激光测距仪是用激光做为主要工作物质来进行工作的。目前,市场上的手持式激光测距仪的工作物质主要有以下几种:工作波长为905纳米和1540纳米的半导体激光,工作波长为1064纳米的YAG激光。1064纳米的波长对人体皮肤和眼睛是害的,特别是如果眼睛不小心接触到了1064纳米波长的激光,对眼睛的伤害可能将是永久性的。所以,在国外,手持激光测距仪中,完全取缔了1064纳米的激光。在国内,某些厂家还有生产1064纳米的激光测距仪。 对于905纳米和1540纳米的激光测距仪,我们就称之为“安全”的。对于1064纳米的激光测距仪,由于它对人体具有潜在的危害性,所以我们就称之为“不安全”的。 激光测距仪已经被广泛应用于以下领域:电力,水利,通讯,环境,建筑,地质,警务,消防,爆破,航海,铁路,反恐/军事,农业,林业,房地产,休闲/户外运动等。

  • 如何测量纯水的90度脉冲

    在实验中,碰到一个问题:测量纯水中氢原子的自旋晶格弛豫时间时,需要知道氢的90度脉冲。但是由于水有很强的阻尼效应,实践中按照标准办法难以判断是否是90度脉冲。大家有什么建议吗?谢谢

  • 【分享】闪光法测量比热原理及有关讨论

    闪光法测量比热原理及有关讨论 当已知比热的参考样品接受了脉冲能量Q会有下面的关系式Q=CR.MR.△TR     (1)式中  CR为参考样品的比热MR为参考样品的质量△TR参考样品接受脉冲能量以后,产生的温度升高如果未知比热 的样品到相同的脉冲能量Q同样会有下面的关系式Q=C.M. △T    (2)C:为未知比热样品的比热M:为未知比热样品的质量      ΔT:未知样品接受到脉冲能量以后,产生的温度升高根据(1)和(2),可以得到C=CR.MR.△TR /M.△T (3)当参考样品与待测样品都是相同直径的圆形样品,厚度分别为lR和L时,(3)式,可以转化为:C=CR.ρRLR.△TR (4)P.L.△T式中ρR 、ρ  分别是参考样品与待测样品时的密度。从上面的关系式(4)中可清楚看到闪光法测量比热是相同比较方法,影响到测量结果准确性的因素主要是:1、参考样品与待测样品的所接受的脉冲能量是否相近,不一致性是否在可接受的范围。2、参考样品与待测样品的温升测量的准确性。关于第1点,就是脉冲能量的重复性。照射在参考样品与待测样品的脉冲能量的任何不同都会直接对比热的测量结果带来误差,其大小是成正比的脉冲激光输出能量在相隔一段时间后,有显著的差别。这对于热扩散率的测量,没有意义的影响,但对比热的测量有很大的影响。脉冲激光能量由大量的独立的及互相依存的因素决定。①激光器电容存储能量存储在电容器组上,释放在闪光灯的能量大小主要取决于电容器充电时的电势。一旦充电完毕在触发之前会有一定的能量泄露。这个泄露的速率随一些非控制的条件,如空气的相对湿度等变化而变化因此在某一天内,释放到闪光灯的能量会与第二天的不同,尽管保持充电的水平不变。②闪光灯的效率 一旦触发,氙灯管把一部分的能量转化为光,其它的部分变为热、声、振动等的能量:在这些不同能量之间的比例随不同的触发而不同,特别是当快速重复的氙灯的温度、湿度、剩余电离等都是影响这个过程中的因素。除了占全部能量的百分之比发生变化,触发时的速度也会随这些环境因素而变化,这些变化使得在同一实验中的不同脉冲发射逐渐变化,从某一天到另一天有更大的变化。③激光能量闪光灯管的释放能量导致轴向放置的激光棒首先吸收光能,然后以同时的单色脉冲形式再次发射。确实会有一个部分的转化为热这个过程很大程度上与温度相关。当重复发射脉冲能量时,激光棒温度升高,脉宽及总能量都会发生变化。④介质的反射当需要非室温条件的测量时,通常需要把样品与其他环境隔离开来。置于样品与激光器之间的窗口会吸收一定的激光能量,也会有一定能量的反射。即使对于涂层玻璃(用来减少反射)在高温下有严重的问题。对于某一个表面,除了自身对能量的衰减外,损失10%_15%能量是寻常的。如果使用反射镜及光学部件,会进一步使能量损失的问题复杂化。这些性质也是对温度与时间敏感的。从上所述,只有当在很短的时间内,即几分钟内,而几分钟内激光器的使用环境因素完全相同的条件下,对在同一温度下的参考样品和待测样品施加激光脉冲作用,其能量才能保持高的重复性。如果参考样品与待测样品中所接受的激光脉冲间隔经过几个小时,或者几天甚至1个月,也即为单样品激光测量系统的情况,其参考样品与待测样品所接受的脉冲能量的差别直接对比热的测量产生极大的误差的。二、关于样品的温升测量    对于量热测量,必须要确切了解温升的绝对量,任何在这点上的误差将直接按比例带入到比热的计算中,对于热扩散率测量的温升探测器,由于响应速度快而被选用,通常是以准差分的方式工作。对于热扩散率的测量,知道样品后表面的温升的绝对量值并不重要,只需要知道随时间的变化关系即可。有研究人员曾努力对温升传感器进行定标,但在一段时间里保持定标的有效性是非常困难的。激光导热后所用的温升红外探测器、比较典型的是ZnSb、锑化铟。它的测出信号是电压,与样品的辐射能量成正比,即 V∝L(λ,t)式中 V为探测器的电压信号L(λ,t)为在给定温度T及波长λ的辐射能量,可由普朗克公式给出L(λ,t)=C1 1 λ5   exp (C2/λT)-1 式中C1 =2πhc2=3.74412×108W.μm4.m-2 C2=hc/k=1.439×104×μm.k h=普朗克常数             k=玻耳兹曼常数             c=真空中的光速从上式中可看到探测器信号输出与样品的温度不是完全的线性关系,只有当温升信号为2―3℃以内,探测器信号与温升的量值近似成线性关系,这是热扩散率、比热测量所要求的。因为当光学温度计最好的分辩率为0.1℃,所有在2―3℃的范围内确定绝对的温升量值是只有很大误差的。以上的内容是说明闪光法比热测量在使用红外探测器的条件可行途径是进行参考样品与待测样品温升的比较,而不是各自的绝对温升的测量。当参考样品与待测样品在同样的热环境下,也即具有同样的稳态温度的辐射背景下,受到脉冲能量照射引起的样品后表面辐射强度变化,经过处于相同的条件下的光学窗口、光学镜头、滤光系统(如需要)为探测器接受,再经过相同条件下的电子信号处理系统(相同的放大信数条件、相同的电源条件等)得到最后的用于计算比热的数值。而对于单样品的测量系统,以上各种环境因素因参考样品的定标与待测样品的测量间隔几天甚至更长的时间,都会发生变化,而对比热的测量带来较大的误差。三、脉冲能量作用后的样品热损的影响量热测量应该满足绝热的过程。虚假的热量增加或损失必须减少或消除。在闪光法的测量过程中,样品的温度高于环境的温度,因此在平衡过程 中通过辐射/传导丢失所存储的热量。尽管热扩散率测量是一个很快的过程,有人会认为在这样短的过程中很少,因而可以忽略,事实并非如此。如果真的如此,在热扩散的测量过程中,横向热流和样品的热损就没必要进行修正了,而对于测量的数据的修正,已广为接受并被要求的。另外当后表面的温升达到最大值时,前表面的温度会因辐射热损而也有可能低于后表面的温度。当设想两个不同的样品在两个不同的炉子(单样品的情况下)只有相同的热损情况时,必须要认真对热损与温度的依赖关系进行考察。显然,这种情形在多样品的系统中即参考样品与待测样品中并靠在一起处于同样的热环境得到巨大的改进。本文讨论的仅是在闪光法比热测量中必须克服几个显而易见的几个困难。结论:从前的讨论中,可以看出使用单样品激光导热仪测量比热充满着问题,会得到严重错误的比热结果。多样品系统即参考样品与待测样品并靠在一起即时切换显著地减少了这些问题的严重性,其所得到的比热测量精度与其它量热广泛(如DSC,下落量热计等)处于同样的范围,适用于高温下的操作。这是在热物性测量领域的巨大的进展,FL5000系统是在国际上为第一个予以实现。鉴于以上进行的讨论,美国安特公司仅为FLASHLINE系列产品激光导热仪多样品测量系统提供比热测量功能,因为单样品系统同其他厂商的样品系统一样存在不可接受的比热测量误差。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制