当前位置: 仪器信息网 > 行业主题 > >

射线放大荧光透视成像系统

仪器信息网射线放大荧光透视成像系统专题为您提供2024年最新射线放大荧光透视成像系统价格报价、厂家品牌的相关信息, 包括射线放大荧光透视成像系统参数、型号等,不管是国产,还是进口品牌的射线放大荧光透视成像系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合射线放大荧光透视成像系统相关的耗材配件、试剂标物,还有射线放大荧光透视成像系统相关的最新资讯、资料,以及射线放大荧光透视成像系统相关的解决方案。

射线放大荧光透视成像系统相关的资讯

  • 岛津推出微焦点X射线透视系统 XslicerSMX-6000
    X射线与CT完美结合 XslicerSMX-6000是岛津公司采用自制的微焦点X射线发生器和高灵敏度平板接收器的一款带有CT功能的X射线透视系统。顺畅的切换将透视观察和断面观察快速连接在一起,全新的CT处理引擎能够进行全自动校准、高速拍摄以及重构。高放大倍数、高分辨率的图像不会变形,从而可以观察电子元器件等平板状样品内部的细微构造和缺陷。 Easy operation采用全新UI(用户界面)可以实现直观的简单操作。关闭拉门后即可开始检查。即使对于初次使用者,也可以轻松地进行X射线检查。Easy CT imaging从X射线透视观察到CT摄影只需点击切换图标。对于透视观察难以识别的立体构造物品,通过简单的操作就能立刻切换到断面观察。High Speed Scan & Reconstruction设备采用了可实现完全自动化校正与高速CT 扫描&重建的「Xslicer 」系统。从CT拍摄开始到显示截面图像最短可在3分钟以内完成。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • 深圳大学X射线成像新技术获突破
    日前,中国工程院院士、深圳大学光电工程学院院长牛憨笨向国家自然科学基金委员会副主任孙家广等专家汇报了该院在X射线相衬成像技术领域的最新研究进展。  目前应用的X射线成像技术均为吸收成像,不能获取像软组织、炸药、碳纤维等由轻元素构成的一大类物质的透视或CT图像。X射线相衬成像则是要获得被透视物体的相位信息,而这只能利用相干性好的X射线源获得。X射线相衬图像一般都是利用同步辐射源获得,国际上一些研究组也在设法在普通实验室获得X射线相衬图像,虽然取得一定的进展,但难以走向应用。牛憨笨课题组基于微分干涉成像原理,提出一种不要吸收光栅就能实现X射线相衬成像的方法,并只需两幅原图像就可以获得相衬图像。  X射线相衬成像与吸收成像的不同之处是,它不仅可获得高原子序数原子所组成物体的相衬和吸收图像,还可获得低原子序数的原子所组成物体的相衬图像。因此,该技术不仅能获得骨骼的清晰图像,还获得软组织的清晰图像,这是原来吸收成像做不到的。X射线相衬成像技术可以应用于早期癌症诊断、脑功能研究、危险品检查、军事应用等领域。  该课题组希望能够进一步得到国家仪器基金的资助,投入研究相干X射线源,8英寸X射线相位光栅和转换屏、透视和CT系统、CCD 和CMOS数字图像探测器等。
  • 使用微焦点X射线CT系统观察功率电感
    发布时间:2021-12-22 阅读次数:2次前言为了降低对环境的影响,抵抗能源价格的上涨,各个领域都尽量实现节能减排。由此,产品上使用的零部件需要进一步提高性能和强化功能。零部件性能的提升还可以节省空间,降低功耗。本文中,我们使用X射线CT设备观察低功耗电感(线圈)中被称为功率电感的电子部件。 图1 insprXio SMX-225CT FPD HR Plus外观图 功率电感的特点电感是一种由铜线缠绕而成,能够储存电能的电子元件,它的作用是稳定实装基板的电流,是一般电路设计所必需的器件。电感有各种各样的形状和结构,有铜线缠绕的绕线型,也有贴片电感。贴片电感有屏蔽式结构和无屏蔽式结构,屏蔽式结构是在(铁)芯上缠绕铜线,从部件的两侧就可以确认内部状态。 无屏蔽式结构贴片电感是用混合磁性材料的树脂封装铜线的,所以无法肉眼确认内部状态。对于不能从外部观察铜线状态部件,可以使用X射线透视设备和CT设备进行无损检查。 对功率电感的观察过程X射线CT设备inspeXio SMX-225CT FPD HR Plus(图1)的探测器使用大平板接收器,可以拍摄整个实装基板图像, 但是这种基板上的功率电感大多是小型器件,所以采取放大拍摄的方法观察其细节。我们从产品(图2)中取出功率电感部分(图3)进行拍摄,以了解结构细节。图3中①为屏蔽式功率电感,②为无屏蔽式功率电感。 图4是屏蔽式功率电感的透视图像,图5是无屏蔽式功率电感的透视图像。屏蔽式电感在线圈周围有空间,可以看到左右都是开放的。这是为了确保预留调节所需狭缝。无屏蔽式功率电感由于线圈周围的磁性树脂起到狭缝的作用,因此不需要预留狭缝结构。因此,无屏蔽式更易于小型化,而且磁性树脂封装不受振动和湿度的影响。然而,对无屏蔽式结构的电感,当其受到来自外部的压力超过耐受值时,树脂封装可能破裂。 对无屏蔽式功率电感进行CT成像,并进行MPR显示,如图6所示。 Multi Planer Reconstruction(MPR)是从拍摄的CT图像中显示任意截面图像的功能,可以在图像②和图像③中显示与CT图像①垂直相交的截面图像,并在图像④中显示任意角度的截面图像。在CT图像中,密度越高的部分,显示颜色越白,因此,作为铜线的线圈看起来比磁性树脂更白。此外,在②和③的中心附近可以看到磁性树脂的裂缝(裂纹)。④中可以确认连接功率电感和基板的焊料中的孔隙(气泡)。另外,使用三维软件VGSTUDIO MAX,可以实现CT图像的VR(Volume Rendering)显示,以更接近实物的形式进行观察。 这样可以更详细地观察线圈导线的形状,以及贴装时与基板的焊点状态(图7)。此外,如图8所示,通过裂纹的可视化,可以立体地观察裂纹的形状和发展情况,进而分析产品中出现异常的情况,并研究制造过程中出现的不相容性。 此外,如图9和图10所示,可以仅提取线圈部分图像并观察绕线部分的状态。还可以通过与合格产品的CT数据进行比较,来确认线圈导线的变形。 通过使用VGSTUDIO MAX的可选功能,可以可视化磁性树脂中的气泡(空隙),并量化位置和体积(图11)。除了确认气泡产生的情况外,还可以通过各种数字化信息确定缺陷产生的情况,并通过改变磁性树脂的配方和填充条件,提高制造效率,比如提高产量。 总结由于X射线CT设备可以无损地观察物体内部,因此可以在同一产品上进行振动测试和热冲击测试等循环测试,并观察每个测试周期内部件内部状态变化的过程。这样可以减少测的试数量和工时。 因此,X射线CT设备不仅有助于分析破坏的过程,而且还有助于通过减少样品数量来缩短开发时间和降低成本。 此外,还可以使用特定的软件来执行各种分析。 本文内容非商业广告,仅供专业人士参考。
  • 日本首个测试用X射线CT系统发展的背后故事
    岛津成功开发出前所未有的可以实现三维测量的测试用X射线CT系统。 为满足客户的需求,X射线CT团队踏入一个未知领域。不能测量吗?如字面意思所示,无损检测装置是一种在对“物体”不造成破坏的情况下进行检查的装置。通过使用透视物体的X射线,可以分析和检查成像内部的状况。在产品开发和质量控制领域,无损检测装置是一种不可或缺,且肩负重要作用的装置。岛津制作所率先推出了日本首台医疗用X射线装置,而应用该设备的无损检测装置长期以来一直在不断研发,并凭借高画质和可靠性取得好评。2008年左右,通过一台无损检测装置获得立体图像的X射线CT系统,取得重大的创新。采用GPU的高速运算处理技术(GPGPU)登上历史舞台。GPU是一款专门用于处理图像的运算装置,使用GPGPU还可以进行图像处理以外的运算。通过构建以GPGPU为中心的处理系统,可以惊人地缩短从扫描到显示图像的时间。项目负责人榉回顾称,“我刚入职时,制作三维数据需要1个或2个小时。而在接下来的短短三年内,仅用10~20秒就能完成这项工作。感觉就像在收集数据的同时,完成了数据制作。” 这项技术创新理所应当地受到顾客青睐,备受好评。此外,有一个新的声音传递到开发团队。“它不能测量尺寸?”客户所说的尺寸测量是指三维测量技术。典型方法是用探针这个高精度球体描绘对象样品的表面,收集无数点的数据,然后利用三维构建坐标信息。三维测量技术以微米为单位精确地测量尺寸,因此可以在开发现场确认试制品是否按照原始设计完成制作,或者将得到的坐标信息反馈给设计中使用的CAD软件等,它是开发领域不可或缺的检查装置。岛津的得意之作X射线CT,也是为了绘制立体图像而获取三维坐标信息,在这一点上两者是相同的。而且,如果通过X射线透视可以得知不可视的内部尺寸,则其用途将得到大幅度扩大。另外,目前的三维测量仪虽然可以描绘样品整体,但即使是小杯子那样的物体也需要花费几个小时,这些情况并不少见,而X射线CT创新性缩短了检查时间,只需1小时左右即可完成检查。客户满怀期待也是理所当然。Xdimensus 300的开发成员。照片左起依次为:分析测试事业部NDI业务部门 主任 原田大辅、基础技术研究所AI解决方案部门 副主任 佐藤真、分析测试事业部NDI业务部门 主任 榉泰行、同部门副主任 新坂拓真、分析测试事业部品质保证部 主任 大西修平。拥有不同背景的个性团队实现了用户的理想。从零开始本来,对岛津的开发团队而言,三维测量是一个未知的领域。因此,团队成员平时去使用三维测量仪的公司内部的制作中心听取意见等,迅速吸收知识和技术。从而掌握到三维测量仪所需的严格精度。在测量时,为了获得精确的测量数值,还需要确保测量装置本身的精度。无论测量多少次,测量样品时放置的工作台和X射线源、接收X射线的检测器的位置关系和角度都必须一致。为了在后期正确修正不可避免地存在的位置安装误差,需要进行严格的校正(校准),因此还需要使用专用夹具。在开发开始阶段担任负责人的大西回顾称,“即使是X射线CT,为了正确地输出图像,也要求各部分保证精度,并与此相对应。不过,这次要求的精度比以往高一位数或两位数。我们从一开始就重新考虑了校正的步骤、手法,硬件也要求坚固耐用。” 原田也说,与精密仪器零件经销店负责人的对话至今难忘。“诸如‘南非生产的产品很好啊’、‘还是Indian Deathlock棒’等。关于石头的话,刚开始根本不知道在讲什么”。X射线发生装置、X射线检测器、工作台等需要石定盘这一部件,而石定盘是与CT成像相关的主要组件的基石。温度升高石定盘膨胀后,则不能获得测量仪所需的精度。因此,必须慎重地选择石头。与误差作斗争学生时代,新坂在CAD模型和建模研究中也使用了岛津的X射线CT。“刚加入公司时,听说我被分配到CT开发部门有些兴奋,但当我听到石头很重要时,有点困惑。我对机械完全不了解,因此从热膨胀知识开始慢慢学习。“新坂的真正实力在开发X射线源校正技术中得到充分的发挥。“持续发出X射线时,X射线发生装置会产生热量,发射点会发生偏离。这导致放大倍率也出现偏差,尺寸也变得不准确。为了保持发射点稳定,我们创建了一个实时检测X射线焦点位置,重构数据时添加移动量的程序。”佐藤在大学时期主修数学,成功创建了“误差体系”。“这里好像会移动,这里移动,这里也会移动,我列出了所有可能发生误差的地方。无论如何敲打都会出现误差,大概有几十个部位具体我也不记得。我想到逐个消除这个误差的方法。要么把石头做的更加坚固,要么抑制温度变化。”此处位移的温度变化的容许范围是20度±0.5度。根据该结果与其他部门合作,模拟送入装置中的空调风的方向和风量,确定了保持装置内温度均匀的位置。其他的课题还有很多。特别是校正夹具,在实现产品化时逐渐明白模型中未发现的问题,每天都在设计后反复进行测试。但是,所有团队都深刻意识到自己肩负的职责,稳步解决一个个问题点。克服一系列困难,2017年12月,终于发布了日本首个测试用X射线CT系统“XDimensus 300”。 实现世界顶级测量精度和观察能力的测试用X射线CT系统“XDimensus 300”“与先行产品相比,成功实现更小尺寸。通常房间必须始终保持在恒定的温度,本产品不需要花费这个工夫。不必选择安装房间是一个很大的优势,设备的销售量也在不断增加”(大西)要成为满足客户需求的理想装置,尚且存在一些课题。但是,我们将努力攻克难题,稳步推进开发工作。装置和开发人员的进步将永不止步。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 475.6万元!蔡司中标中科院物理所微米X射线三维断层成像仪采购项目
    近日,中国科学院物理研究所微米X射线三维断层成像仪采购项目发布中标公告,卡尔蔡司以475.6万元中标。一、项目编号:TC220805G(招标文件编号:TC220805G)二、项目名称:中国科学院物理研究所微米X射线三维断层成像仪采购项目三、中标(成交)信息供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 卡尔蔡司(上海)管理有限公司 微米X射线三维断层成像仪(X射线显微镜) Zeiss Xradia 515 Versa X射线显微镜 1 4756000 四、招标技术规格1.1 设备用途:设备可对对各类锂电池材料(软包电池,电池极片)、金属材料、油气地质及半导体样品(失效分析)进行高分辨无损三维成像及组织表征。设备采用闭管透射式X射线源、独特的二级放大架构、独有的衬度技术、配合机器的三维数据采集、控制、重构及可视化软件以三维立体图像及二维虚拟切片的形式,清晰、准确、直观地展示各类样品内部的亚微米级及以上的组织形貌(包括样品内部组织结构、内部孔隙、微裂纹等均可清晰展示)。1.2 工作条件:(1)电源:单相 220V(±5%)、50Hz、15A(2)温度:10~25℃, 温度波动<2℃(3)环境湿度:≤70%,无凝结*2.1 分辨率2.1.1 最高空间分辨率:最高三维空间分辨率≤700nm,需提供标样的测试结果,否则视为不响应;2.1.2 最小可实现的体素(Voxel Size)≤300 nm,需提实际样品的测试切片照片,否则视为不响应;2.1.3 能够满足大样品高分辨得测试需求,须具备对锂电池材料中的软包电池实际样品局部进行高分辨率扫描成像,针对≥5cm 宽的软包电池样品的中心位置,可实现≤ 1μm 的体素分辨率的扫描成像能力,以满足采购人单位的科研需求。2.2 三维组织表征及重构2.2.1 无损伤地对样品进行三维组织表征,可获得样品的三维组织形貌及不同角度、不同位置的虚拟二维切片组织形貌信息。不需制样或只需简单制备,不需真空观察环境,不会引入人为缺陷;#2.2.2 能够自动对样品多个(20)不同区域进行 3 维成像扫描和重构;#2.2.3 具有吸收衬度和可调节相位传播衬度两种衬度模式,可以对包括高原子序数和低原子序数在内的各种材料都能获得高衬度图像。能够清楚区分样品内的不同组织;2.2.4 支持纵向拼接技术,通过纵向拼接扫描结果获得更高视野的数据;具有支持宽视场模式的物镜探测器,具备更宽的视野;*2.2.5 2000 张投影,重构 1k × 1k × 1k 图像的时间少于 5 分钟;2.2.6 支持 180°+Fan 扫描模式,从而实现快速扫描成像。2.3 光源与滤色片及支架*2.3.1 高功率微焦点 X 射线源:采用密封式透射 X 射线源,功率≥10W,机器可以不间断连续扫描样品时间达 1 周以上(即 7 x 24 小时)。在用户日常使用过程中无需更换光源灯丝。最大电压≥155kV,最低电压≤30kV,连续可调;2.3.2 配备滤色片转换支架,包含不低于 10 个适用于不同能量段扫描的滤片。2.4 探测器*2.4.1 探测器规格为高对比度平板探测器或更高级的探测器系统,可实现二维有效探测面积≥200mm×200mm,需提供测试方案和样品测试结果,否则视为不响应。像素数量≥2000(长)×2000(宽);2.4.2 具备大视场≤0.4X 光学放大模式,能够实现大视野宽场模式;2.4.3 探测器可移动范围不小于 290mm。2.5 样品台及样品室#2.5.1 全电脑软件控制高精度 4 轴数控可编程马达样品台,具备超高的样品移动精度;#2.5.2 样品台 X 轴运动范围 50mm;Y 轴运动范围 100mm;Z 轴运动范围 50mm;2.5.3 样品台旋转运动范围:360 度旋转;*2.5.4 样品台最大承重≥10kg(X 射线能穿透的情况下);*2.5.5 样品台可承受样品尺寸≥100 cm2;*2.5.6 为了防止 X 射线辐射泄漏、保护仪器操作人员,设备须采用全封闭式铅房设计,样品室内配备可见光相机,确保操作人员无需通过观察玻璃窗即可监控和操作样品;*2.5.7 系统具备样品自动防撞装置,系统通过快速获取样品轮廓信息,设定硬件工作极限位置,防止因为操作不当样品和探测器、源相撞,避免损坏硬件和样品。2.6 仪器控制与数据采集、重构、可视化及分析系统*2.6.1 具备三维数据采集及控制软件,可编程软件系统,支持三维重构,具备快速抓拍功能;2.6.2 全数字化仪器控制,计算机控制工作站;2.6.3 支持原始数据查看,图像标准特征显示(如亮度、对比度、放大等)、注释、测量等;2.6.4 可以进行基本图像测量,如图像计算、滤镜等;#2.6.5 具备快速三维数据重构软件,软件界面友好,采用先进的解析算法以保证重构时间快;2.6.6 具备三维数据可视化软件,展示三维重构结果,包括虚拟断层,着色、渲染、透视等,并实现基本分析功能和注释;#2.7 数据处理工作站不低于以下配置Microsoft Windows10 Pro 操作系统Dual Eight Core CPUCUDA-enabled 3D GPU12 TB(4×3 TB)硬盘容量,RAID-532GB 内存可刻录式光驱24寸液晶显示器。2.8 样品座及标样2.8.1 对中和分辨率测试标样;2.8.2 针钳式样品座;2.8.3 夹钳式样品座;2.8.4 夹持式样品座;2.8.5 高铝基座样品座;2.8.6 高精度针钳式样品座。2.9 其他硬件2.9.1 人体工学操作台;2.9.2 四门式防辐射安全屏蔽罩,配备辐射安全连锁装置和“X-ray on”指示器;2.9.3 大移动范围、高精度花岗岩工作台。2.10 可扩展功能与双束系统、场发射电镜的数据相互关联,可将 CT 所获得的数据文件格式如 CZI, RAW,TIFF,VTK,DICOM 等格式的二维图像和 TXM 3D X-ray volumes 体量数据,导入到电镜或者双束系统的软件中,实现亚微米级到纳米级的数据关联以及数据处理。
  • 美国北极星成像发布美国北极星成像X射线系统 X3000型工业CT新品
    动态和高精度X3000 是北极星成像公司的最新标准系统。无论检测小型还是大型零部件,X3000 都是客户的完美选择,因为该紧凑型系统具备通常只有较大型 X 射线或 CT 系统上才拥有的独特功能。系统功能X 射线能量源:10 kV - 240 kV几何放大率: 3000x系统整体最大分辨率:~500 nm19.5 in (50 cm) 直径 x 24 in (61 cm) 高度的最大尺寸扫描CT 软件遵循5步向导快速重建三维模型全面的采集、处理和存档程序,带有用户友好的界面高性能图像处理和尺寸测量功能符合DICONDE标准非专有多图像格式计算机断层扫描采集模块三维计算机断层扫描重建和可视化可选的四维计算机断层扫描提供 vorteX, subpiX, 和 mosaiXX射线源电压范围:10 kV - 240 kV最小焦斑大小:~500 nmX 射线管类型:纳米焦点,微米焦点,微型焦点可选的双射线管头配置X 射线探测器数字 X 射线探测器类型:平板 (DDA)平板探测器尺寸:最大 16 in x 16 in (40 cm x 40 cm)级别选项:标准、高级或 ASTM控制转台最大样品重量:75 lb (34 kg) 标准控制台行程:垂直 =24 in (61 cm)水平 (x-轴) = 13 in (33 cm)旋转 = 360° 连续标称部件封套:直径:19.5 in (50 cm) 高度:24 in (61 cm)支持自动扫描的可编程动作控制,带有自动图像处理和存档功能*同时提供 独立版本机柜外部尺寸:103.5 in (263 cm) 宽度 x 51.9 in (132 cm) 深度 x 79 in (201 cm) 高度重量: 9500 lb (4300 kg)机柜特点:带有护盖的电缆接入端口,内部照明,32 in x 59 in (81 cm x 150 cm) 电动滑动检测观察门,安全光栅钢/铅/钢结构达到或超过 21 CFR 1020.40 和 EN 61010-2-091 2012标准触摸屏操作附带一套人体工程学桌椅具体规格因射线管、探测器和其他可选配置而异。创新点:X3000 是北极星成像公司的最新标准系统。无论检测小型还是大型零部件,X3000 都是客户的最佳选择,因为该紧凑型系统具备通常只有较大型 X 射线或 CT 系统上才拥有的独特功能。美国北极星成像X射线系统 X3000型工业CT
  • 石墨烯-钙钛矿新型X射线探测器问世,灵敏度比同类最佳医学成像设备提高四倍
    近日,瑞士洛桑联邦理工学院的研究人员通过使用3D气溶胶喷射打印,开发了一种生产高效X射线探测器的新方法。这种新型探测器可以很容易地集成到标准微电子设备中,从而大大提高了医疗成像设备的性能。研究成果发表在美国化学学会科学月刊《ACS Nano》上。这种新型探测器是由洛桑联邦理工学院基础科学学院福罗带领的研究小组研发的,其由石墨烯和钙钛矿组成。利用瑞士电子学与微电子科技中心的气溶胶喷射打印设备,研究人员在石墨烯基底上3D打印钙钛矿层。其想法是,在设备中,钙钛矿充当光子探测器和电子放电器,而石墨烯则放大输出的电信号。研究中开发的气溶胶喷墨打印方法的示意图(图片来源:物理学家组织网)此外,报道称,研究人员使用了甲基碘化铅钙钛矿,由于其引人入胜的光电性能以及低廉的制造成本,最近这种钙钛矿备受关注。该研究小组的化学家恩德雷霍瓦特说:“这种钙钛矿含有重原子,这为光子提供了高散射截面,因此使其成为X射线探测的完美候选材料。”结果表明,这种方法生产的X射线探测器具有破记录的高灵敏度——比同类最佳医学成像设备提高了4倍。“通过使用带有石墨烯的光伏钙钛矿,对X射线的响应大大增加。”福罗说,“这意味着,如果我们在X射线成像中使用这两者的组合材料,成像所需的X射线剂量可以减少1000多倍,从而降低这种高能电离辐射对人体健康的危害。”福罗说,钙钛矿-石墨烯探测器的另一个优点是它不需要精密的光电倍增管或复杂的电子设备,因此它让医学成像变得很简单。报道称,该项研究中使用的气溶胶喷射打印技术是一种相当新颖的技术,可用于制造3D打印的电子元件,如电阻、电容、天线、传感器和薄膜晶体管,甚至还可在特定基材上打印电子产品,如手机外壳。除了X光照片外,X射线医疗用途还包括透视、癌症放射治疗和电子计算机断层扫描。而这种新型探测器易于合成,应用领域更加前沿,可广泛应用于太阳能电池、LED灯、激光器和光电探测器等。
  • LIGA技术制作X射线光学元件在X射线显微学中的应用
    LIGA 是德文的制版术Lithographie,电铸成形Galvanoformung 和注塑Abformung 的缩写。自20世纪80年代德国卡尔斯鲁厄原子核研究所为制造微喷嘴创立LIGA技术以来,对其感兴趣的国家日益增多,德、日、美相继投入巨资进行开发研究。该技术被认为是最有前途的三维微细加工方法,具有广阔的应用前景。与传统微细加工方法相比,用LIGA技术进行超微细加工有如下特点:1.可制造有较大深宽比的微结构。2.取材广泛,可以是金属、陶瓷、聚合物、玻璃等。3.可制作任意复杂图形结构,精度高。4.可重复复制,符合工业上大批量生产要求,成本低。LIGA的基本工艺流程如下:x射线掩模制作首先用电子束或激光对薄光刻胶进行第一次曝光,制成初级掩膜,然后经过显影、电镀等工艺步骤制成初级微结构掩膜板(此掩膜板本质上已经是一个高度较低的微结构)。对于高深宽比微结构,需要进一步制备额外的高深宽比掩膜板。X射线光刻(Lithographie)借助上述的初级微结构掩膜板,在厚光刻胶上用X射线进行曝光,然后经过显影、电镀等工艺步骤制成中级微结构掩膜板。由于同步辐射设备KARA(原ANKA)提供的平行x射线束,可确保高纵横比和光滑的侧壁。电镀(Galvanoformung)将上述步骤获得的光刻胶模具置于金属电镀液中进行电镀,即可实现高纵横比、高精度结构的金属零件。聚合物成型(Abformung)为了复制聚合物基板上的精密结构,可以使用上述工艺制作注塑和热压花用的模镶件。可实现微聚合物结构的精确复制。因此LIGA工艺制造的微结构聚合物和金属零件在x射线光学领域有着广泛的应用,包括在在科研机构和工业领域。 在之前的文章中我们介绍了LIGA工艺制造的光栅在X射线相衬成像领域的应用。今天我们准备给大家介绍它在X射线显微学中的应用。X射线显微学目前基于X射线光管的纳米成像的主要结构有两种技术路线(基于同步辐射的CDI等成像技术,今天暂不做讨论): 1.投影几何放大技术2. 基于菲涅尔波带片的扫描透视显微技术或全场透视显微技术等全场透视显微光路扫描透视显微技术上述方法中的Condenser lens通常使用复制技术、或者玻璃毛细拉伸技术来实现;用于聚焦或目镜的菲涅尔波带片(FZP)通常使用电子束光刻和干法刻蚀等复合技术来加工,今天我们着重介绍一下使用LIGA技术加工光束截止器(central stopper 或者central beam stop)和级次选取针孔Order select aperture。 X 射线波带片结构为一系列明暗相间的同心圆环,如上图所示中,每个环带的面积相等,这些明暗相间的圆环分别使用入射X射线透明与不透明的材料,从而使通过相邻透过或不透过的光程相差一个波长,从而在焦点上发生透过不同环带的相同位相光线的叠加。在扫描透视显微光路中为保证只有一阶衍射光入射到样品上,所以选用使用适当尺寸和吸收体厚度的级次选取针孔(OSA)和光束截止器(Central beam stopper)及其他们放置的位置是非常有必要且关键的。基于成熟的LIGA技术,Microworks公司制造一批多功能、性价比高且性能优越的级次选取针孔(OSA)和光束截止器(Central beam stopper)。光束截止器(Central beam stopper)基本参数吸收材料金厚度80µmBeamstop尺寸10 µm to 160 µm,间隔10 µm开口尺寸650 µm载体薄膜自支撑结构,每个圆柱体由3个宽2.5µm的薄鳍支撑。总尺寸4.5mm*4.5mm安装建议光束截止器非常稳定,可以使用简单支架夹持制作过程视频展示级次选取针孔(OSA)同时我们可以根据您的要求定制孔径和光束截止器。选项包括特定形状、大小、高度和或者特定的阵列等。北京众星联恒科技有限公司作为Microworks公司中国区授权总代理商,为中国客户提供Microworks所有产品的售前咨询,销售及售后服务。我司始终致力于为广大科研用户提供高端的x射线、极紫外产品及解决方案。参考文献:Ohigashi, T., et al. (2020) A low-pass filtering Fresnel zone plate for soft x-ray microscopic analysis down to the lithium K-edge region. Review of Scientific Instruments.李艳丽, 陈代谢, 孔祥东, 门勇, 韩立. X射线波带片的应用及制备[J]. 纳米技术, 2019, 9(2): 41-54.http://x-ray-optics.de/index.php/en/
  • 牛憨笨院士汇报X射线相衬成像研究进展 希望获国家仪器基金资助
    12月22日,深圳大学光电工程学院院长牛憨笨院士在光电工程学院会议室向国家自然科学基金委成员汇报了X射线相衬成像研究进展。国家自然科学基金委副主任孙家广、国家自然科学基金委信息学部常务副主任秦玉文等出席会议。深圳大学党委书记江潭瑜、副校长邢锋、杜宏彪会见了基金委成员一行。  X射线相衬成像技术可以应用于早期癌症诊断、脑功能研究、危险品检查、军事应用等领域。至今项目已进行了五年,已经申请美国专利1项,国家发明专利4项,发表论文30余篇。X射线相衬成像是X射线成像领域的一次革命,目前已经应用的均为吸收成像,不能获取像软组织、炸药、碳纤维等由轻元素构成的一大类物质的透视或CT图像。X射线相衬成像则是要获得被透视物体的相位信息,而这只能利用相干性好的X射线源获得。目前,X射线相衬图像一般都是利用同步辐射源获得。国际上一些研究组也在设法在普通实验室获得X射线相衬图像,虽然取得一定的进展,但难以走向应用。牛院士课题组基于微分干涉成像原理,提出一种不要吸收光栅就能实现X射线相衬成像的方法,并只需2幅原图像就可以获得相衬图像。为实现此方案,他们自行设计和研制成功了在普通实验室实现X射线相衬成像所需要的各种核心器件,包括基于特殊设计X射线管的高辐射通量相干X射线源,低成本5英寸X射线相位光栅和具有分析光栅功能的X射线探测器。在此基础上,建立了X射线相衬成像系统,并通过精心调试,首次利用自己研制的核心器件和系统获得了高质量的X射线相衬图像。X射线相衬成像与吸收成像的不同之处是,它不仅可获得高原子序数原子所组成物体的相衬和吸收图像,还可获得低原子序数的原子所组成物体的相衬图像。因此,这次拍到的图像不仅获得骨骼的清晰图像,还获得软组织的清晰图像,这是原来吸收成像做不到的。  牛院士希望能够进一步得到国家仪器基金的资助,投入研究相干X射线源,8英寸X射线相位光栅和转换屏、透视和CT系统、CCD 和CMOS数字图像探测器等。牛院士还提出了纳米成像重大项目建议书,研究纳米分辨细胞结构、功能和动态成像。
  • 17年XRF技术专家:谈x射线荧光光谱与技术发展历程
    p style="text-indent: 2em "span style="text-indent: 2em font-family: 楷体, 楷体_GB2312, SimKai "常用的元素分析方法包括原子吸收光谱、原子发射光谱、X射线荧光光谱、能谱分析、等离子体发射光谱、电感耦合等离子体质谱、有机元素分析等。其中,X射线荧光光谱技术(XRF),因其非破坏性、快速和廉价分析等特点,工程、品质管理等领域得到广泛的应用。那么XRF广泛应用性背后的原理如何?经历了哪些技术发展历程?又有哪些新技术出现?接下来,拥有17年 X射线荧光技术工作经验的日立分析仪器公司镀层分析产品的产品经理Matt Kreiner为我们做了解答。/span/pp style="text-indent: 2em "strongX射线荧光光谱仪(XRF)技术原理?/strong /pp style="text-indent: 2em "何为X射线?类似可见光线,X射线也是电磁波的一种,不同的是它的波长较之可见光为短,在100埃米到0.1埃米之间。同时,与一般的电磁波相比,X射线能够比较容易穿透物质,且物质原子序数越高,穿透能力越强。下图为X射线荧光产生的示意图。由于X射线荧光是元素所固有的能量,依据Moslay法则可对荧光X射线的能量做定性分析,同时,利用X射线荧光强度(光子数)则可做定量分析。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 400px height: 446px " src="https://img1.17img.cn/17img/images/202005/uepic/99857032-fd94-4c20-8db0-d2a04b822e98.jpg" title="1.png" alt="1.png" width="400" height="446" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "X射线荧光产生示意图/span/pp style="text-indent: 0em "span style="color: rgb(127, 127, 127) "(运作流程:主X射线对准样品;X射线与原子碰撞时,电子从其轨道中弹出;来自高能轨道的电子填充这些空隙,释放出元素和特定跃迁所特有的X射线;X射线由探测器收集和处理。)/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/noimg/6ebff279-9b2a-4b77-a8af-eccc2ab70f8f.gif" title="2.gif" alt="2.gif"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "波长分散型和能量分散型/span/pp style="text-indent: 0em text-align: center "span style="color: rgb(127, 127, 127) "(检出器收集的数据用于识别哪些元素存在,以及每个元素在测量部分中有多少)/span/pp style="text-indent: 2em "通常,X射线荧光分析装置大致分为两大类,即波散型(Wave Length-dispersive X-ray Spectroscopy WDX)和能散型(Energy-dispersive X-ray Spectroscopy EDX)。/pp style="text-indent: 2em "strong相对其他“元素分析”技术手段,XRF主要技术优势?/strong/pp style="text-indent: 2em "XRF是一种对多种材料中的一系列元素进行非破坏性、快速和廉价分析的重要技术。尤其台式和手持式XRF分析仪操作简单,通常不需要任何特殊工具或消耗品。/pp style="text-indent: 2em "这使得在生产线附近操作XRF分析仪成为可能,并提高了效率。常见应用如无机元素的元素分析,分析范围通常在Na(11)和U(92)之间;汽车零部件领域应用,经过优化的XRF,可分析常见镀层中的元素,分析范围通常在Al(13)和U(92)之间。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 292px " src="https://img1.17img.cn/17img/images/202005/uepic/aa1ef22d-46c2-4864-af44-0ec100009049.jpg" title="3.png" alt="3.png" width="450" height="292" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "XRF光谱谱图示例/span/pp style="text-indent: 2em "strongXRF能“快速”检测的原因?/strong /pp style="text-indent: 2em "XRF检测快速的一个原因是测量是用X射线进行的,而X射线是以光速进行传播的。被测试的样品被与样品相互作用的初级X射线“激发”,并产生次级X射线,由精密的探测器进行信号转换,整个流程花费的时间很短暂的。/pp style="text-indent: 2em "然而 “快速”检测与 “精准”两个方面往往是此消彼长的矛盾关系,所以保证XRF“精准”性也是很重要的。一般可以通过一些优化技术、软件控制、减少操作中时间、减少间隙停机时间等技术手段来实现。例如,日立分析仪器公司FT160的创新多毛细管体系结构技术,这是一个聚焦光学元件,由一组弯曲为锥形的细小玻璃管组成,X射线通过反射引导穿过管道,类似于光纤技术中的光引导方式。毛细聚焦管光学元件与微束X射线管匹配将比传统系统更多的信号引导到样品,收集更多的X射线管输出。其焦斑小区域上的X射线强度比传统机械准直系统高出几个数量级。从而实现“快速”与“精准”的优化。/pp style="text-align: center"img style="width: 600px height: 185px " src="https://img1.17img.cn/17img/images/202005/uepic/98196092-7da2-4885-85f7-86b63b42abef.jpg" title="4.png" width="600" height="185" border="0" vspace="0" alt="4.png"//pp style="text-align: center"img style="width: 400px height: 267px " src="https://img1.17img.cn/17img/images/202005/uepic/c2ee2177-8ad6-4258-b867-553e8bfd1d1a.jpg" title="5.png" width="400" height="267" border="0" vspace="0" alt="5.png"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "X射线荧光镀层厚度测量仪 FT160系列/span/pp style="text-indent: 2em "而传统传统XRF为测量较小尺寸样品(如镀层样品),使用机械准直装置将X射线管的光束尺寸减小到几分之一毫米,达到减小光束尺寸的目的。但这一过程通过在X射线管前方放置一块钻有小孔的金属块实现,仅允许与孔对准的X射线穿过并到达样品。绝大多数X射线输出因被准直器块阻挡而不能用于分析,削弱了检测效率。/pp style="text-indent: 2em "strongXRF主要应用领域有哪些?/strong/pp style="text-indent: 2em "以镀层厚度测量为例,当涉及到镀层及相关测试需求时,一般都会用到XRF,而汽车行业就是应用最密集的行业之一。由于XRF允许快速和现场测试,因此它适合制造生产线。原始的设备制造商都需要依赖XRF,因为每辆汽车平均有约15000个部件,上面涂有各种金属和其他镀层,以确保导电性或绝缘性。然而,汽车组装是需要快速流水线进行的,这些部件需要在现场进行测试,XRF便发挥了重要作用。总之,XRF允许在不干扰生产制造过程的情况下进行质量控制,这成为其广泛被应用的重要原因之一。/pp style="text-indent: 2em "strongXRF产品技术发展历程?/strong/pp style="text-indent: 2em "以日立分析仪器公司产品为例。镀层分析方面,日立分析仪器公司提供一系列用于镀层分析的台式XRF测试解决方案,是该领域的先驱。日立在1978年便推出了SFT155/156,这是第一台使用X射线管的台式XRF镀层分析仪。2011年推出FT110,随后2012年推出X-Strata920,2015年推出FT150。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/4a486c78-ef23-45f9-9912-e85db756f0c4.jpg" title="6.png" alt="6.png"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "X射线荧光镀层厚度测量仪系列/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 277px " src="https://img1.17img.cn/17img/images/202005/uepic/fb177589-3235-4725-ba51-a62ada2b7608.jpg" title="7.png" alt="7.png" width="600" height="277" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "X射线荧光分析仪系列/span/pp style="text-indent: 2em "目前日立分析仪器公司的产品范围包括具有半导体检测器的X-Strata920、具有用于大容量测试的高级功能的FT110A和新推出的FT160等。如上所述,FT160将SSD检测器与多毛细管光学器件结合使用,以精确测量纳米级镀层的更小特征。多毛细管光学器件与微点X射线管匹配,以收集更多的管输出。这将其聚焦在通量比机械准直系统大几个数量级的较小区域上。这意味着可以更快,更高精度地测量更小和更薄的特征,从而更容易符合规格。/pp style="text-indent: 2em "strong集透视CT、显微成像、XRF技术于一身的EA8000/strong/pp style="text-indent: 2em "除了常规XRF产品,日立分析仪器公司还有一款比较特殊的产品EA8000,其集合透视CT、显微成像、XRF技术于一身。EA8000A的推出是为了满足电动汽车用电池日益增长的质量控制需求。它能快速检测锂离子电池内的金属颗粒污染物,有助于防止这些颗粒存在时发生的灾难性故障。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 280px height: 300px " src="https://img1.17img.cn/17img/images/202005/uepic/db78fcfc-5183-420d-89e3-05de37cc7fa8.jpg" title="8.png" alt="8.png" width="280" height="300" border="0" vspace="0"//pp style="text-align: center "span style="text-indent: 0em color: rgb(0, 176, 240) "锂离子电池· 燃料电池用X射线异物分析仪 EA8000/span/pp style="text-indent: 2em "EA8000是一体式设计,从而实现更高的效率。将X射线成像单元、荧光X射线分析仪和光学显微镜被集成到一个系统中并链接以自动提供结果。与传统仪器相比,检测速度和金属污染物识别的时间要短得多。操作员可以简单地放置样品并进行测量,从而实现高效的工作和生产力。/pp style="text-indent: 2em "三项技术的结合,使EA8000可以定位和识别电池内的破坏性金属颗粒,提供对大小、分布和颗粒类型的全面分析,这在控制电池质量时是非常关键的,快速分析、易用性和自动化支持大批量生产等性能帮助电池企业顺利实现交付目标。/pp style="text-indent: 2em "这些技术的结合不仅提供了锂离子电池关键区域内金属颗粒的大小、分布和类型的独特综合图像,而且极大地缩短了成像时间。检测时间可缩短至3至10分钟,比常规时间缩短100多倍。这一点非常重要,电极材料、燃料电池隔板和锂离子充电电池中的金属颗粒污染会产生热量,降低电池容量和寿命;一些情况下,杂质还会导致火灾。因此,电池制造商需要对直径约20µ m的金属颗粒进行快速检测和元素识别。而EA8000A设置测量参数后,可自动捕获X射线图像,检测和识别金属颗粒,提高故障分析和测试的效率。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "strongMatt Kreiner简介/strong/span/pp style="text-align: left text-indent: 2em "img style="max-width: 100% max-height: 100% width: 113px height: 150px " src="https://img1.17img.cn/17img/images/202005/uepic/47231b47-e116-4abb-9d58-e749c0f16363.jpg" title="9.jpg" alt="9.jpg" width="113" height="150" border="0" vspace="0"//pp style="text-indent: 2em "马特· 克林纳 (Matt Kreiner)是日立分析仪器公司镀层分析产品的产品经理。他有17年的X射线荧光技术工作经验,职业生涯始于应用工程师。Matt居住在芝加哥,拥有美国西北大学(Northwestern University)化学工程学士学位。/p
  • X射线检查的新标杆!多功能X射线检查设备
    前言当前产品的功能愈加丰富,对精度要求也逐步提高,所以出货检查和故障失效分析的要求也越来越多样化。从外观到内部,这些检查对于保证产品的安全性和可靠性十分重要。 对从外观无法检测到的内部结构检测,X射线检查设备十分有效。使用X射线辐照检查对象,并将结果进行可视化处理,形成图像,能够非破坏地进行检测。 与传统设备相比,岛津最新的Xslicer SMX-1010 系列微焦点X射线检查设备的图像质量和可操作性实现了显著提升。 图1Xslicer SMX-1010外观图 优势• 新的HDR过滤器特性使观察不同厚度和材料的对象更容易• 利用新的图像处理和高分辨率探测器在宽视野内清晰的透视图像• 快速和简单的三维分析与新的改进的CT操作 Xslicer SMX-1010特点 Xslicer SMX-1010主要规格 表1. 主要规格 1、能够获取高画质图像的设备• 搭载150万像素新型X射线检出器,可获得高分辨率图像。• 标配HDR功能。即使工件的厚度与材质不同,一次拍摄即可获得对比度清晰的图像,从而提高气泡等缺陷的可视性。 2、大幅缩短检查时间• 操作性能大幅度提升,简化从工件更换到观察的流程。• 可通过提升检出器的读取速度与载物台的移动速度,大幅削减生产节拍中的检查时间。 3、集3D分析的多样化功能为一体• 使用选配的CT功能,不仅可进行透视检查,还可进行三维分析。较准作业实现自动化,任何人都可轻松完成CT拍摄。• 全景拍摄功能,最大可获取3200万像素X射线透视图像,一张图片即可完成基板等整件大工件的检查。 Xslicer SMX-1010系列机拍摄的透视图 1、HDR高对比度透视片式电阻的透视图像如图2所示。经过HDR功能处理后,图像中焊料内部的空洞很明显。通过HDR功能处理,可以在同一张图片中以高对比度同时观察到透明度好和差的部分。 图2 实装板上片式电阻透视图左图:无HDR效果 右图:HDR效果 此外,使用铝线的功率IC的透视图如图3所示。周围的密封树脂和铝线由于比重接近,对比度低,原本使用X射线不易观察,但通过HDR处理,清晰可见。 图3 功率IC透视图像——铝线左图:整体图 右图:局部放大图 2、探测器倾斜的透视观察将探测器倾斜,进行透视观察。图4为BGA的斜透视图像,图5为通孔的斜透视图像。在BGA的斜透视图像中,可以看到一个结构异常的焊球。 图4 BGA的倾斜透视图像 图5 通孔倾斜透视图像 3、高分辨率探测器在高配机型中使用300万像素的高分辨率探测器,可以晰度地观察产品的内部结构。 图6为铝压铸件透视图,图7为GFRP透视图。压铸件可以清晰地观察到内部砂眼。此外,GFRP可以精细地观察纤维的趋向。 图6 小型铝压铸件透视图像 图7 GFRP透视图像 自动运行功能自动连续透视拍摄功能(教学功能和步进功能)减轻了作业员的负担,缩短了检查时间。下图是教学功能示意。图8为教学功能检查结果画面和透视图像。教学功能是自动拍摄预先登记的检查点的功能。作业员可以通过选择每个检查位置的OK(●),NG(●)和保留(●),将有缺陷的点位反馈到制造部门。 图8-A 教学功能检查结果画面8-B 2号检查点 8-C 3号检查点8-D 5号检查点 8-E 7号检查点 选购项:CT3维分析功能CT功能可用于观察复杂的内部结构并解析内部缺陷,而透视图像无法满足3维分析的要求。 XslicerSMX-1010可通过加装CT单元,进行三维分析。 图9为QFP封装IC的三维显示图像(左图)和放大的断面图像(右)*1。图9 QFP封装IC左图:无HDR效果 右图:HDR效果 图10为USB插头的三维效果图像(左图)和端子的角度测量结果(右图)*1。测量端子弯曲角度,可以将其与设计值进行比较。 图10 USB插头左图:无HDR效果 右图:HDR效果 图11为树脂插头的断面图像(左图)和缺陷分析结果(右图)*1。如果空洞作为缺陷,红色代表大尺寸,蓝色代表小尺寸。 图11 树脂插头左图:无HDR效果 右图:HDR效果 总结岛津最新的Xslicer SMX-1010系列微焦点X射线检查设备,使用高分辨率探测器和HDR处理可获取高品质图像。简单易用的UI和人性化设计使每位操作员都在轻松操作的同时,降低了检查作业量。 利用CT的三维观察,可以无损地分析被检查物体内部的复杂结构。 现在的产品,功能逐渐加强,结构精度要求越来越高,X射线检查成为安全性和可靠性必不可少的检测手段。 岛津Xslicer SMX-1010可以用于与产品质量相关的生产环节! 本文内容非商业广告,仅供专业人士参考。
  • 工物系李亮课题组在X射线荧光成像领域取得新进展
    癌症是全球范围内严重危害人类健康的疾病,对其发病、发展原因、病理机制的研究已经成为人类生命科学和临床医学研究中的重大科学难题。近年来,基于靶向纳米颗粒药物的肿瘤精准诊疗研究越来越受到人们的关注。X射线荧光成像技术被认为是获取目标物体中纳米颗粒药物分布的一种有前途的方法,它通过获取特定元素的特征X射线荧光光子进行高灵敏度成像。与传统的CT技术相比,X射线荧光成像可以获得目标物体的分子和功能信息,并且X射线荧光成像使用的示踪剂不具有放射性,制造、使用成本更低,更安全。图1.建设的X射线荧光康普顿成像实验平台图2.包含钆元素溶液的X射线荧光康普顿成像结果显示近日,清华大学工物系李亮课题组在知名期刊《电气与电子工程师学会医学成像会刊》(IEEE Transactions on Medical Imaging)在线发表了题为“首例X射线荧光康普顿成像示范”(First demonstration of Compton camera used for X-ray fluorescence imaging)的研究论文。该论文展示了首例使用康普顿相机成像系统对X射线荧光进行三维成像的案例,与其他传统的X射线荧光成像的模式相比,该康普顿成像模式下可进行无旋转扫描的单视角成像,这将为X射线荧光成像带来更多潜在的应用场景和成像可能性。在这项工作中,展示了主要由传统X射线管和Timepix3光子计数探测器组成的X射线荧光康普顿成像系统,开发了一套完整的名为CCFIRM的成像重建算法,来解决X射线荧光康普顿成像中存在的关键算法问题。创新性成果包括有多普勒展宽校正的低能量列表模式最大似然期望最大化算法和基于光子偏振统计分布信息的散射校正算法。该研究给出了钆元素的X射线荧光康普顿成像实验结果,成像结果表明,该课题组所提出的X射线荧光康普顿成像系统可以对35.14mg/ml以上浓度的钆元素实现有效测量。清华大学工物系李亮副教授为该文章的通讯作者和项目负责人,清华大学2018级博士生武传鹏为该文章的第一作者。该研究得到国家自然科学基金、科技部重点研发计划、清华大学自主科学研究计划的大力支持。
  • 697万元!蔡司中标中科院新疆生地所三维X射线扫描成像系统采购项目
    近日,中国科学院新疆生态与地理研究所三维X射线扫描成像系统采购项目发布中标公告,卡尔蔡司以US$1,031,000.00(折合人民币约697万元)中标。一、项目编号:OITC-G220300354(招标文件编号:OITC-G220300354)二、项目名称:中国科学院新疆生态与地理研究所三维X射线扫描成像系统采购项目三、中标(成交)信息供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 新疆汇意达进出口有限公司 三维X射线扫描成像系统 卡尔蔡司Xradia515 Versa 1台 US$1,031,000.00 四、招标技术规格1. 工作条件1.1 电源:380V和230V±10%,AC(交流),50/60Hz1.2 环境温度:15-27℃(最优:18~21℃)1.3 相对湿度:20-80%2. 技术要求:*整机要求:提供的设备为成熟的型号和配置,不接受后期改造或定制开发。2.1 分辨率及成像架构#2.1.1 最高空间分辨率:最佳三维空间分辨率≤0.5μm;2.1.2 当X射线源距样品旋转轴50mm时的最佳空间分辨率≤1.0μm;2.1.3 最小可实现的体素(最大放大倍率下样品的体素大小)≤40nm;#2.1.4 系统必须采用几何+光学两级放大的架构,以满足我单位对大样品进行局部高分辨率的成像需求;#2.1.5 具备当X射线源距样本旋转轴50mm中心位置时的最佳空间分辨率≤1.0μm;(应以厂家官方发布或者第三方发布的国际文献中数据或结论为有效证明文件);2.1.6 在不破坏样品的情况下直接对直径≥20mm样品(如植物秆茎、试管边缘或高分子材料等)的侧边缘位置(即样品的旋转半径和工作距离不小于20mm)实现体素分辨率(voxel size)≤1μm的清晰扫描三维成像。2.2 三维组织表征、重构及成像2.2.1 无损伤地对样品进行三维组织表征,可获得样品的三维组织形貌及不同角度、不同位置的虚拟二维切片组织形貌信息。不需制样或只需简单制备,不需真空观察环境,不会引入人为缺陷;2.2.2 利用吸收衬度原理和相位传播衬度原理,可以对包括高原子序数和低原子序数在内的各种材料都能获得高衬度图像;2.2.3 基于CUDA的GPU加速重构,由1600张投影重构1K×1K×1K图像时间≤2.1分钟;#2.2.4 支持纵向拼接技术,通过纵向拼接扫描结果获得更高视野的数据,数据重构及纵向拼接需集成在数据采集软件,数据采集-三维重构-纵向拼接自动化,不依赖第三方软件或者离线软件;2.2.5 具有支持宽视场模式的物镜探测器,具备更宽的视野。2.3 光源与滤波片*2.3.1 高能量微聚焦闭管透射式X射线源;2.3.2 最高电压≥160kV,最低电压≤30kV,电压在最低和最高之间连续可调;2.3.3 最大功率≥10W;2.3.4 Z轴可移动范围≥190 mm;2.3.5 X射线泄露≤1μSv/hr(距离设备外壳25mm以上处);2.3.6 带有单过滤波片支架,12个适用于不同能量段扫描的滤波片。2.4 探测器2.4.1 能够实现二级放大的16bit噪声抑制闪烁体耦合探测器, 探测器能够实现≥2048×2048像素成像和三维重构;#2.4.2 具备1个大视场0.4X 物镜探测器,实现≥2048×2048像素成像和三维重构,支持宽视场模式;2.4.3 包含高对比度,低分辨率的4X物镜探测器;2.4.4 包含高对比度,高分辨率的20X 物镜探测器;2.4.5 包含高对比度,高分辨率的40X 物镜探测器;2.4.6 探测器可移动范围≥290mm。2.5 样品台及样品室2.5.1 全电脑控制高精度≥4轴马达样品台,具备超高的样品移动精度;2.5.2 样品台X轴运动范围≥45mm;Y轴运动范围≥95mm;Z轴运动范围≥45mm;2.5.3 样品台旋转运动范围:360度旋转;#2.5.4 样品台最大承重范围:≥25kg;2.5.5 样品台可承受样品尺寸范围:≥300mm;*2.5.6 样品室内配备可见光成像设备,通过电脑操作即可实现样品的扫描位置对中,并可实时监控舱室内样品情况。并且要确保系统整体运行安全和封闭性,不可为开窗设计,防止X射线辐射泄漏;#2.5.7 系统应具备智能防撞系统,可根据样品尺寸设定源和样品的范围,保障在实际成像过程中不会发生样品和源、探测器的碰撞损坏设备或样品。2.6 仪器控制与数据采集、重构、可视化及分析系统2.6.1 全数字化仪器控制,专业计算机控制工作站,应满足或优于以下配置:Microsoft Windows10 Pro 及以上操作系统、双8核 CPU、CUDA-enabled 3D GPU,硬盘容量≥12 TB、内存≥32GB、液晶显示器≥24寸,带可刻录式光驱;2.6.2 具备三维数据采集及控制软件,可实现三维断层扫描图像重构及3D视图;2.6.3 支持多种格式的CT数据和CT图像输入/输出,预览,裁剪以及格式转换;2.6.4 具有图像处理方法,实现数据图像、CT图像的降噪、锐化、增强等;2.6.5 具备自动拼接功能,具备可变曝光功能,具备导航式扫描功能;2.6.6 具备图像伪影校正等功能,确保采集图像的真实性;2.6.7 具有ROI选择功能,用户可根据需要选择区域进行局部重建;2.6.8 支持对ROI进行量化分析,可得到选定结构的体积占比、每个单元的体积、表面积、形状比、等效直径等信息;2.6.9 支持对三维数据体进行旋转、平移、缩放、斜切视图、亮度/对比度、伪彩色等操作;2.6.10 可实现标记点、标尺、角度、路径、箭头、区域(矩形/椭圆/多边形/自由绘制)、三点拟合圆等测量和标注操作;2.6.11 支持二维、三维图像不同分辨率图像的输出,且能导出二维图像序列、逐层动态视频和制作三维视频动画;2.6.12 使用阈值分割、2D笔刷进行图像分割,实现3D感兴趣区的提取或修改;2.6.13 可转化3D感兴趣区为mesh模型,支持显示效果调整和导出STL、PLY、OBJ、VTK、IVW格式文件,方便客户后续分析或逆向;2.6.14 可对量化结果进行筛选、编辑,导出文件。3. 安全防护3.1 辐射防护箱体(用于屏蔽X射线,防止泄露,保证人身安全);#3.2 安全屏蔽室需采用铅钢全封闭,不能留有可视透明窗口,设备内部样品和工作情况通过机台内部可见光相机清晰观察;3.3 双联锁X射线安全门,紧急停止开关,设备运行过程中,任何可开启之处被外力开启时,X射线立即停止;3.4 经用户授权可开通远程预警性技术服务,系统可以通过网络传输将运行数据传递给生产厂商的售后部门,实现线上的设备状态监控。4. 附件及零配件4.1离线工作站:应满足或优于以下配置:Microsoft Windows10专业版操作系统、至强4210R处理器CPU、GeForce RTX2080Ti 11G显存 GPU,硬盘容量≥6 TB、内存≥128GB、液晶显示器≥23.8寸,带可刻录式光驱;4.2 标定球样品,1个;4.3 分辨率测试卡,1个;4.4 标准样品夹持器,1套;4.5 设备维护专用工具,1套;4.6 文档资料(设备操作手册、培训资料等)。
  • "光学之眼,精准透视" —海菲尔格携手芬兰Pixact公司PCM结晶监测系统开启新视界
    "光学之眼,精准透视" —海菲尔格携手芬兰Pixact公司PCM结晶监测系统开启新视界芬兰Pixact公司成立于2006年,总部位于芬兰坦佩雷,核心技术和团队成员均来自芬兰TUT坦佩雷理工大学。Pixact为过程分析提供在线原位监测技术,开发新颖的基于光学成像的过程监测探头,是全球在线颗粒成像技术及算法的领导者。其使命是为实验室研发和工业过程提供创新型工具,用于提高过程控制的自动化水平和产品质量的稳定性。芬兰Pixact公司开发的测试系统有:PCM结晶监测系统、PBS气泡尺寸监测系统、PPM颗粒监测系统、PBM气泡监测系统、PDM乳液监测系统、PSM浆料监测系统、PMFCM微纤化纤维素监测系统。 PCM结晶监测系统原理: PCM结晶监测系统采用透射光原理设计,由仪器探头末端发出的激光透过测试样品,通过探头另一端的高放大倍数CCD相机获取晶体高质量图像,通过功能强大的图像算法,分析颗粒轮廓,从而得到高分辨率的晶体图像、晶体径长比、晶体生长速率、微晶和粗晶趋势图、晶体尺寸分布的平均值和标准偏差、晶体数量累积分布、晶体尺寸分布相关统计D10、D50、D90等。 PCM结晶监测系统测试结果: 晶体径长比 体系流动性 晶体生长速率 高分辨率晶体图像 微晶和粗晶趋势图 索特直径及累积分布 测试区域的晶体数量和成核速率 晶体尺寸分布平均值和标准偏差 晶体体积分布(Dv10、Dv50、Dv90等) 晶体数量分布(Dn10、Dn50、Dn90等) PCM结晶监测系统应用领域: PCM结晶监测系统广泛应用于制药、农药、锂电池电解液(六氟磷酸锂、双氟磺酰亚胺锂、碳酸乙烯酯等)、精细化工、石油化工、生物化工、磷石膏、含能材料、航空航天、功能性糖醇(木糖、木糖醇、赤藓糖醇、甘露醇、甜菜糖等)等领域。 PCM结晶监测系统广泛应用于实验室研发、中试反应釜、工业现场反应釜、工业管道等场景。根据应用场景的不同可以选择Pixscope浸入式探头、Pixscope FL非接触式探头、Pixcell流通管等。Pixscope浸入式探头的直径有14mm、19mm、24mm、32mm等,可自选规格。 北京海菲尔格科技有限公司携手芬兰Pixact公司共同致力于提升中国的研究机构和企业的研发效率和自动化水平,为客户提供量身定制系统的解决方案,通过专业、细致和全面的技术支持服务,实现“为客户创造更多价值”的承诺。
  • 石墨烯-钙钛矿新型X射线探测器问世
    据物理学家组织网17日消息,瑞士洛桑联邦理工学院的研究人员通过使用3D气溶胶喷射打印,开发了一种生产高效X射线探测器的新方法。这种新型探测器可以很容易地集成到标准微电子设备中,从而大大提高了医疗成像设备的性能。研究成果发表在美国化学学会科学月刊《ACS Nano》上。  这种新型探测器是由洛桑联邦理工学院基础科学学院福罗带领的研究小组研发的,其由石墨烯和钙钛矿组成。利用瑞士电子学与微电子科技中心的气溶胶喷射打印设备,研究人员在石墨烯基底上3D打印钙钛矿层。其想法是,在设备中,钙钛矿充当光子探测器和电子放电器,而石墨烯则放大输出的电信号。  此外,报道称,研究人员使用了甲基碘化铅钙钛矿,由于其引人入胜的光电性能以及低廉的制造成本,最近这种钙钛矿备受关注。  该研究小组的化学家恩德雷霍瓦特说:“这种钙钛矿含有重原子,这为光子提供了高散射截面,因此使其成为X射线探测的完美候选材料。”  结果表明,这种方法生产的X射线探测器具有破纪录的高灵敏度——比同类最佳医学成像设备提高了4倍。  “通过使用带有石墨烯的光伏钙钛矿,对X射线的响应大大增加。”福罗说,“这意味着,如果我们在X射线成像中使用这两者的组合材料,成像所需的X射线剂量可以减少1000多倍,从而降低这种高能电离辐射对人体健康的危害。”  福罗说,钙钛矿-石墨烯探测器的另一个优点是它不需要精密的光电倍增管或复杂的电子设备,因此它让医学成像变得很简单。  报道称,该项研究中使用的气溶胶喷射打印技术是一种相当新颖的技术,可用于制造3D打印的电子元件,如电阻、电容、天线、传感器和薄膜晶体管,甚至还可在特定基材上打印电子产品,如手机外壳。  除了X光照片外,X射线医疗用途还包括透视、癌症放射治疗和电子计算机断层扫描。而这种新型探测器易于合成,应用领域更加前沿,可广泛应用于太阳能电池、LED灯、激光器和光电探测器等。  总编辑圈点  钙钛矿为人们熟知的应用是制造超高效光伏电池,有时也在晶体管和LED照明等方面发挥优势。不过,其还拥有一项非凡潜力——作为X射线探测器的材料。这是其优异的载流子输运特性和重原子组成架构决定的,相比现有的X射线成像仪,基于钙钛矿化合物的探测器更灵敏且功耗更低,它出色的电荷输运特性以及结构特性,已经被证明是实现直接X射线转换的理想选择。可以预料,在进一步优化后,未来X射线探测器的灵敏度更将轻松上升一个量级。
  • 大连化物所预算869万元采购1台高分辨三维重构X射线显微镜
    近日,中国科学院大连化学物理研究所公开招标,预算869万元采购1台高分辨三维重构X射线显微镜。招标项目详情如下:项目编号:OITC-G240270123项目名称:中国科学院大连化学物理研究所高分辨三维重构X射线显微镜采购项目预算金额:869万元(人民币)最高限价(如有):869万元(人民币)采购需求:高分辨三维重构X射线显微镜 1 台/套 (允许进口产品)技术要求:1 分辨率及成像架构 ★1.1 最高空间分辨率:最佳三维空间分辨率≤0.5μm1.2 当 X 射线源距样品旋转轴 50mm 时的最佳空间分辨率≤1.0μm 1.3 最小可实现的体素(最大放大倍率下样品的体素大小)≤ 40 nm ★1.4 系统必须采用几何+光学两级放大的架构,以满足我单位对大样品进行局部高分辨率的成像需求。2 三维组织表征、重构及成像2.1 无损伤地对样品进行三维组织表征,可获得样品的三维组织形貌及不同角度、不同位置的虚拟二维切片组织形貌信息。不需制样或只需简单制备,不需真空观察环境,不会引入人为缺陷。 ★2.2 利用吸收衬度原理和相位传播衬度原理,可以对包括高原子序数和低原子序数在内的各种材料都能获得高衬度图像。 2.3 2000 张2k×2k投影重构图像数据(重构972 张Slice 图像)时间≤2.2分钟。2.4 支持纵向拼接技术,通过纵向拼接扫描结果获得更高视野的数据2.5 具备定位放大扫描功能2.6 具备样品移动自适应矫正、温度移动矫正、图像比对位移参照矫正等功能2.7 具备吸收衬度成像和基于边缘折射传播的相位衬度成像功能2.8 应具备硬件+软件的自动防撞机制, 可通过可见光扫描快速获取样品形状和实际轮廓,根据样品形状和轮廓,自动对源、探测器位置进行限位,以保证硬件和样品安全 。3 光源与滤波片★3.1 高能量微聚焦闭管透射式X射线源3.2 最高电压≥160kV,最低电压≤30kV,电压在最低和最高之间连续可调3.3 最大功率不小于25W3.4 Z轴可移动范围不小于190 mm 3.5 X射线泄露≤1μSv/hr(距离设备外壳25mm以上处)★3.6 带有单过滤波片支架,12个适用于不同能量段扫描的滤波片4 探测器4.1 能够实现二级放大的16 bit噪声抑制闪烁体耦合探测器, 探测器能够实现2048×2048以上的像素成像和三维重构★4.2 包含0.4X物镜探测器,实现2048×2048像素成像和三维重构4.3 包含高对比度,低分辨率的4X物镜探测器4.4 包含高对比度、高分辨率的20X物镜探测器4.5 探测器可移动范围不小于280mm★4.6 包含高分辨率40X物镜探测器5 样品台及样品室★5.1 全电脑控制高精度4轴马达样品台,具备超高的样品移动精度★5.2样品台X轴运动范围50mm;Y轴运动范围100mm;Z轴运动范围50mm 5.3 样品台旋转运动范围:360度旋转5.4 样品台最大承重范围:25kg5.5 样品台可承受样品尺寸范围:300mm★5.6 为了防止X 射线辐射泄漏、保护仪器操作人员,设备须采用全封闭式铅房设计,不能留有观察玻璃窗。样品室内配备可见光相机,确保操作人员无需通过观察玻璃窗即可监控和操作样品。5.7 配置原位台接口,可后期升级原位台。5.8 系统应具备智能防撞系统,可根据样品尺寸设定源和样品的范围,保障在实际成像过程中不会发生样品和源、探测器的碰撞损坏设备或样品。6 仪器控制与数据采集、重构、可视化及分析系统6.1 全数字化仪器控制,计算机控制工作站★6.2 具备三维数据采集及控制软件, 并提供1次免费升级服务。6.3 支持原始数据查看,图像标准特征显示(如亮度、对比度、放大等)、注释、测量6.4 可以进行基本图像测量,如图像计算、滤波等6.5具备快速三维数据重构软件6.6 具备三维数据可视化软件,展示三维重构结果,包括虚拟断层,着色、渲染、透视等,并实现基本分析功能和注释(3D Viewer)★6.7 专业的三维数据分析软件(一套):可进行高级三维重构后视图展示与三维高级数据处理与分析包括定量分析与统计分布、切片配准与图像滤波、三维图像数据分割与特征提取、多模态融合与分析、三维模型生成与导出,几何特征计算等(如可以实现三维数据处理,对样品三维数据结果进行相分割,孔隙率计算,裂纹及孔的尺寸统计与空间分布)并且可与其它三维软件兼容, 厂家自带软件全部功能开放7 三维X射线显微镜控制主机(须内附三维X射线显微镜控制单元)Microsoft Windows10操作系统、符合或优于Dual Eight Core CPU 、 CUDA-enabled 3D GPU,12TB(3×4 TB)硬盘容量、32GB内存、RAID-5可刻录式光驱、24寸液晶显示器;额外再配置一台数据处理工作站,要求不低于以下配置:Microsoft Windows 10及以上正版操作系统、双10核CPU、Nvidia RTX A6000GPU、6TB硬盘容量、512GB内存、RAID-5可刻录式光驱、24寸显示屏。8 样品座及标样8.1 配备对中和分辨率测试标样1套,配备针钳式样品座、夹钳式样品座、夹持式样品座、高铝基座样品座、高精度针钳式样品座。9 可拓展功能★9.1 可与双束系统、场发射电镜的数据相关关联,可将CT所获得的数据文件格式如CZI, ZVI, TIFF, MRC等格式的二维图像和TXM 3D X-ray volumes体量数据,导入到电镜或者双束系统的软件中,实现亚微米级到纳米级的数据关联以及数据处理。10 其他硬件10.1 人体工学操作台,大移动范围、高精度花岗岩工作台,四门式防辐射安全屏蔽罩,配备辐射安全连锁装置和“X-ray on”指示器 潜在投标人需于2024年06月11日至2024年06月18日,上午9:00至11:00,下午13:00至17:00(北京时间,法定节假日除外),登录东方招标平台www.oitccas.com注册并购买招标文件,并于2024年07月02日09点30分(北京时间)提交投标文件。联系方式:1. 采购人信息名称:中国科学院大连化学物理研究所地址:辽宁省大连市中山路457号联系方式:王老师,0411-843797072. 采购代理机构信息名称:东方国际招标有限责任公司地址:北京市海淀区丹棱街1号互联网金融中心20层联系方式:窦志超、王琪 010-682905233. 项目联系方式项目联系人:窦志超、王琪电话:010-68290523附件:采购需求.pdf
  • 布鲁克发布超轻元素微区X射线荧光成像光谱仪 M4 TORNADO PLUS新品
    微区X射线荧光光谱仪,M4 TORNADO PLUS,X射线荧光成像光谱仪,微区XRFM4 TORNADOPLUS - 微区X射线荧光成像的新纪元M4 TORNADOPLUS是世界上第yi台能够检测出C(6)-Am(95)间全部元素的微区X射线荧光成像光谱仪。作为微区X射线荧光成像光谱仪M4TORNADO系列的zui新产品,M4 TORNADOPLUS又增添了独特的功能,例如创新性的孔径管理系统,高通量脉冲处理器以及快速灵活更换的样品台。更轻、更快、更深M4 TORNADOPLUS采用超轻元素窗口的大面积硅漂移探测器(SDD)实现对轻元素碳的检测,超高通量脉冲可以zui大程度提升采样速度,BRUKER专利孔径管理系统(AMS)可以获取超大景深,对表面不平整样品分析具有独特的优势。超轻元素检测M4 TORNADOPLUS是史上第yi台能够检测分析轻质元素碳的微区X射线荧光成像光谱仪,具备两个具有超轻元素窗口的大面积硅漂移探测器和一个特别优化的Rh靶X射线光管。与普通微区X射线荧光成像光谱仪不同,M4 TORNADOPLUS在不影响较高能量范围内元素灵敏度的前提下,还可以检测原子数小于11的元素(Z<11),例如氟(F)、氧(O)、氮(N)和碳(C)。随着功能性的增强,M4 TORNADOPLUS应用也正在开发和拓展中,例如地质学、矿物学、生物学、聚合物研究或半导体行业等方向。应用实例-萤石和方解石的区分萤石(CaF2)和方解石(CaCO3)都是以钙为主要成分的矿物。它们的区别在于分别存在轻质元素氟(F),氧(O),碳(C);由于普通微区X射线荧光成像光谱仪检测不到Z<11(Na)的元素,无法区分这两种矿物,所以萤石和方解石的光谱图上都只会显示Ca元素谱线。利用超轻元素探测器,M4 TORNADOPLUS可以检测氟(F)、氧(O)和碳(C),从而可靠地鉴别这两种矿物。图:鉴别萤石与方解石?左:方解石(红)和萤石(蓝)的元素分布图;图像尺寸:20×12mm2;扫描分辨率:800×460pixels 右:萤石(蓝)和方解石(红)的轻质元素光谱图。应用实例-电路板由于AMS的场深度极深,如图所示电路板的X射线图像获得更多的细节。此外,由于激发X射线光子的入口和出口角度减小,光束能量依赖性变得不那么明显。图:具备AMS与不具备AMS的电路板元素分布图左图: 标准多导毛细管聚焦在电路板上,元件的zui高点失焦,显得模糊。右图: AMS系统加载下图像显示高景深,所有组件聚焦在更大的景深范围内。创新点:M4 TORNADOPLUS是世界上第yi台能够检测出C(6)-Am(95)间全部元素的微区X射线荧光成像光谱仪。作为微区X射线荧光成像光谱仪M4TORNADO系列的zui新产品,M4 TORNADOPLUS又增添了独特的功能,例如创新性的孔径管理系统,高通量脉冲处理器以及快速灵活更换的样品台。超轻元素微区X射线荧光成像光谱仪 M4 TORNADO PLUS
  • 布鲁克发布超轻元素微区X射线荧光成像光谱仪 M4 TORNADO PLUS新品
    M4 TORNADOPLUS - 微区X射线荧光成像的新纪元M4 TORNADOPLUS能够检测出C(6)-Am(95)间元素的微区X射线荧光成像光谱仪。作为微区X射线荧光成像光谱仪M4TORNADO系列的新产品,M4 TORNADOPLUS又增添了功能,例如创新性的孔径管理系统,高通量脉冲处理器以及快速灵活更换的样品台。更轻、更快、更深M4 TORNADOPLUS采用超轻元素窗口的大面积硅漂移探测器(SDD)实现对轻元素碳的检测,高通量脉冲可以大程度提升采样速度,BRUKER孔径管理系统(AMS)可以获取大景深,对表面不平整样品分析具有优势。超轻元素检测M4 TORNADOPLUS能够检测分析轻质元素碳的微区X射线荧光成像光谱仪,具备两个具有超轻元素窗口的大面积硅漂移探测器和一个优化的Rh靶X射线光管。与普通微区X射线荧光成像光谱仪不同,M4 TORNADOPLUS在不影响较高能量范围内元素灵敏度的前提下,还可以检测原子数小于11的元素(Z<11),例如氟(F)、氧(O)、氮(N)和碳(C)。随着功能性的增强,M4 TORNADOPLUS应用也正在开发和拓展中,例如地质学、矿物学、生物学、聚合物研究或半导体行业等方向。应用实例-萤石和方解石的区分萤石(CaF2)和方解石(CaCO3)都是以钙为主要成分的矿物。它们的区别在于分别存在轻质元素氟(F),氧(O),碳(C);由于普通微区X射线荧光成像光谱仪检测不到Z<11(Na)的元素,无法区分这两种矿物,所以萤石和方解石的光谱图上都只会显示Ca元素谱线。利用超轻元素探测器,M4 TORNADOPLUS可以检测氟(F)、氧(O)和碳(C),从而鉴别这两种矿物。图:鉴别萤石与方解石 左:方解石(红)和萤石(蓝)的元素分布图;图像尺寸:20×12mm2;扫描分辨率:800×460pixels 右:萤石(蓝)和方解石(红)的轻质元素光谱图。应用实例-电路板由于AMS的场深度深,如图所示电路板的X射线图像获得更多的细节。此外,由于激发X射线光子的入口和出口角度减小,光束能量依赖性变得不那么明显。图:具备AMS与不具备AMS的电路板元素分布图左图: 标准多导毛细管聚焦在电路板上,元件的高点失焦,显得模糊。右图: AMS系统加载下图像显示高景深,组件聚焦在更大的景深范围内。创新点:M4 TORNADOPLUS是世界上第yi台能够检测出C(6)-Am(95)间全部元素的微区X射线荧光成像光谱仪。作为微区X射线荧光成像光谱仪M4TORNADO系列的zui新产品,M4 TORNADOPLUS又增添了独特的功能,例如创新性的孔径管理系统,高通量脉冲处理器以及快速灵活更换的样品台。超轻元素微区X射线荧光成像光谱仪 M4 TORNADO PLUS
  • 程琳教授团队:毛细管聚焦的微束X射线荧光谱仪及其应用研究
    毛细管聚焦的微束X射线荧光谱仪及其应用研究邵金发,侯禹存,程琳*(北京师范大学核科学与技术学院,射线束技术教育部重点实验室 100875)摘要随着科技的发展,人们对物质的分析慢慢深入到微区领域。而微束能量色散X射线荧光作为一种高灵敏、高精度的元素分析技术,已然成为物质微区分析的有利工具。本实验室将毛细管X射线聚焦技术与能量色散X射线荧光分析技术相结合,自行设计研发了一种新型毛细管聚焦的微束X射线荧光谱仪。该谱仪在利用毛细管X光透镜的特点将X射线源发出的X射线束会聚到微米量级的同时,基于激光位移传感器开发了自动调整样品测量点到透镜出口端距离的闭环控制系统,有效的减少由于样品表面不平整或弧度带来的测量误差,弥补了现有微束X射线荧光谱仪在此方面的不足。因此,该微束X射线荧光谱仪为表面不平整文物样品的无损微区元素分析提供了解决方案。1. 引言微束能量色散X射线荧光光谱(Micro-energy dispersive X-ray fluorescence, µ-EDXRF)分析技术因其快速、准确、无损分析等优点,被广泛应用在考古、地质、环境、材料、生物等科学领域[1-8]。目前,基于实验室光源以获得微束入射X射线的方法主要有准直器限束和X射线光学器件聚焦两种。通过准直器限束获得微束入射X射线是最早在微束X射线荧光谱仪中使用的方法,具体为采用准直狭缝或小孔作为光阑放置在入射光路上,用以减小入射X射线的发散度。但与此同时,入射光束的强度会因为物理阻挡而降低,从而导致获得的特征X射线信息减弱。而多毛细管X光透镜利用X射线全反射原理,可将在空心毛细管内表面上的多次全反射的X射线会聚于焦点。因此可以实现以较大的角度收集从X射线源产生的X射线,且会聚后X射线的束斑大小可低至几十微米。同时,毛细管X光透镜对Cu-Kα的能量有高达2-3个数量级的放大倍数[9],且具有低的发散度。同时,可以将基于毛细管聚焦的微束能量色散X射线荧光分析技术与大面积扫描相结合,实现微米级表面结构和元素分布的分析测定。目前国内外存在部分商业化的微束X射线荧光谱仪,其中美国EDAX公司生产的Orbis系列微束X射线荧光谱仪,适用于部分地质和考古样品测试的[10];德国Bruker公司生产的M4 Tornado可移动式微束X射线荧光谱仪,适用于实验室或博物馆内各类样品的研究[11]。但由于部分文物样品表面并不平整或存在较大的弧度,若不对相对位置进行修正,这将使得样品测量点与毛细管X光透镜出口端的距离在测量过程中发生改变,从而影响测量结果的准确性和元素区域扫描的分辨率[12]。为解决上述问题,本实验室自行设计和开发一种新型的微束X射线荧光谱仪以及相应的计算机控制程序,并且开展了相关分析方法学的研究。2. 仪器组成本实验室设计的毛细管聚焦的微束X射线荧光谱仪结构示意图如图1所示,其主要由微焦斑X射线管(Mo靶,焦斑大小50μm×50μm,德国Röntgen公司)、毛细管X光透镜(Mo-Kα能量处束斑大小为31µm)、SDD X射线探测器(5.9keV时能量分辨率为145eV,铍窗有效面积25mm2)和PX5多道分析器、精度为20µm的激光位移传感器、激光笔、具有20倍放大功能的1400万像素固定焦距CCD摄像头、高精度XYZ三维样品台,以及在LabVIEW语言环境下开发的仪器控制程序等部分组成。仪器控制软件主要包括探测系统控制界面、X射线源高压控制界面、机械运动系统控制界面、CCD图像采集控制界面和氦气控制界面构成。其中主界面包含了各个控制功能系统的一些主要控制命令及输出,如图2所示。谱图显示区域在探测过程中实时显示X射线探测器探测到的谱图。此外,该仪器使用的高精度自动化三维运动平台可以满足微区的二维μ-EDXRFF分析的需求,以便实现对感兴趣区域内元素分布的分析。图1 微束X射线荧光谱仪的结构示意图图2 微束X射线荧光谱仪控制程序主界面3. 实验分析3.1 清代红绿彩瓷的分析为了评估本仪器对样品微区进行元素二维扫描分析的能力,选取一片清代红绿彩瓷的残片作为研究对象(图3)。选取图3中A(白釉)、B(红彩)、C(绿彩)进行微区的元素组成分析。实验测量时,X射线管电压40 kV,电流0.6 mA,探测活时间300 s。样品A(白釉)、B(红彩)、C(绿彩)三点的微束X射线荧光分析的能谱如图4所示,彩料中各元素化学成分采用基本参数法进行定量分析,所得的数据如表1所示。图3 清代红绿彩瓷残片与感兴趣区域图片图4 红绿彩中白釉、红彩和绿彩的μ-EDXRF光谱表1 白釉、红彩和绿彩的化学成分(质量分数,%)此外,选择如图3中2mm×2mm的感兴趣区域,使用微束X射线荧光谱仪进行µ-EDXRF二维扫描分析。进行µ-EDXRF二维扫描分析时,X射线管电压为40 kV,电流为0.6 mA,扫描步距为30 µm,每个点探测时间为1.5 s,扫描数据经软件处理得到如图5所示的元素分布图。图5 扫描区域内Pb、K、Fe、Ca、Cu、Al、Mn、Si元素的分布3.2 吉州窑古陶瓷的分析为评估本仪器对表面存在大弧度的样品进行微区元素二维扫描分析的能力,选取一片吉州窑古陶瓷的残片作为研究对象(图6)。实验开始前调节平移台使样品表面感兴趣区域清晰呈现在CCD图像中,并通过鼠标在控制界面的CCD视野中选择具体的目标扫描区域。选取图6中大小为10mm×10mm的区域进行元素二维扫描分析。µ-EDXRF二维扫描分析的测量条件与上文相同。同时,为验证本仪器“源-样”距离自动控制系统对测量结果的影响,分别在开启和关闭“源-样”距离自动控制系统的条件下进行元素二维扫描分析,扫描数据经软件处理得到如图7所示的元素分布图。图6 吉州窑古陶瓷样品与扫描区域图片图7 扫描区域内K、Ca、Zn、Fe元素分布图。a)关闭“源-样”距离自动控制系统,b)开启“源-样”距离自动控制系统通过图7与图6的比较可知,在关闭“源-样”距离自动控制系统的情况下进行µ-EDXRF二维扫描时,由于样品表面的弯曲,样品测量点与毛细管X光透镜出口端之间的距离发生变化,使得X射线光束的焦点无法与样品测量点重合。这导致测得元素分布图空间分辨率变差,同时生成的图像发生了扭曲。相反,当打开“源-样”距离自动控制系统进行测量时,由于该系统可实时调整平移台使X射线束准确照射在样品测量点上,显著降低由于样品表面弯曲带来的偏差。极大的改善了测量结果,表明该仪器在不平整样品的µ-EDXRF二维扫描中具有重要的应用价值。4. 结论本实验室将毛细管X射线聚焦技术与能量色散X射线荧光分析技术相结合,设计和研发了一种新型毛细管聚焦的微束X射线荧光谱仪。该微束X射线荧光谱仪在具备无损分析微小样品和样品微区的元素分布能力的同时,其基于激光位移传感器开发的“源-样”距离自动控制系统可实时调整样品测量点到透镜出口端距离,显著降低了由样品表面不平整或弧度带来的测量偏差,弥补了现有微束X射线荧光谱仪在此方面的不足。因此,其在材料科学、地球科学和文物保护等领域有着广泛的应用前景。参考文献[1] 戴珏,吴奕阳,张元璋,等.能量色散X射线荧光光谱法在检测仿真饰品中有害元素的应用[J].上海计量测试,2018,45(04):34-35.[2] 陈吉文,倪子月,程大伟,等.基于EDXRF的土壤中痕量镉的快速检测方法研究[J].光谱学与光谱分析,2018,38(08):2600-2605.[3] 陈曦,周明慧,伍燕湘,等.能量色散X射线荧光光谱仪在稻米中镉含量测定的应用研究[J].食品安全质量检测学报,2018,9(10):2331-2338.[4] 蒯丽君. 化学前处理—能量色散X射线荧光光谱法应用于矿石及水体现场分析[D].中国地质科学院,2013.[5] Rathod T, Tiwari M, Maity S , et al. Multi-element detection in sea water using preconcentration procedure and EDXRF technique [J]. Applied Radiation & Isotopes, 2018, 135.[6] Figueiredo E, M F, Araújo, Silva R J C, et al. Characterisation of Late Bronze Age large size shield nails by EDXRF, micro-EDXRF and X-ray digital radiography [J]. Applied Radiation & Isotopes Including Data Instrumentation & Methods for Use in Agriculture Industry & Medicine, 2011, 69(9):1205-1211.[7] Natarajan V, Porwal N K, Babu Y, et al. Direct determination of metallic impurities in graphite by EDXRF. [J]. Appl Radiat Isot, 2010, 68(6):1128-1131.[8] Li L, Huang Y, Sun H Y, et al. Study on the property of the production for Fengdongyan kiln in Early Ming dynasty by INAA and EDXRF [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 381:52-57.[9] Bonfigli, Francesca, Hampai, et al. Characterization of X-ray polycapillary optics by LiF crystal radiation detectors through confocal fluorescence microscopy[J]. Optical Materials, 2016, 58: 398-405.[10] Moradllo M K, Sudbrink B, Hu Q, et al. Using micro X-ray fluorescence to image chloride profiles in concrete[J]. Cement & Concrete Research, 2016:S0008884615300636.[11] Ramos I. Pataco I M, Mourinho M P, et al. Elemental mapping of biofortified wheat grains using micro X-ray fluorescence[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2016.[12] Ricciardi P,Legrand S,Bertolotti G, et al. Macro X-ray fluorescence (MA-XRF) scanning of illuminated manuscript fragments: potentialities and challenges[J]. Microchemical Journal, 2016, 124:785-791.*通讯作者程琳,工学博士,美国加州大学尔湾分校访问学者。现任职于北京师范大学核科学与技术学院,教授,博导。长期从事毛细管聚焦的微束X射线分析技术的研究及相关设备的研发;目前已经成功研发出国内首台毛细管聚焦的微束X射线荧光谱仪和毛细管聚焦的X射线衍射仪等设备并开展相关的分析技术及应用研究;作为项目负责人已经承担多项国家自然科学基金、北京市自然科学基金和北京市科技计划项目等,国家自然科学基金评审专家、北京市高新技术企业评审专家和X-ray spectrometry等国际刊物审稿人。e-mail: chenglin@bnu.edu.cn
  • X射线计算机层析成像技术解析
    X射线三维成像可以实现物体内部的无损检测。但是对于大尺寸的板状样品的三维成像一直是业界的难题,层析成像技术是目前解决这一难题的最佳方法。一、 什么是层析成像?目前比较被大众熟知的Computed Tomography(CT)通常被翻译为计算机断层成像。最早的实验室CT扫描机由英国Godfrey Hounsfield于1967年建成,第一台可供临床应用的CT设备于1971年安装在医院。CT自发明以来,经历了多代发展,这里就不再赘述。简单理解,CT就是求解一个线性方程组,最终得到的结果就是CT图像。CT扫描就是构造方程组的过程,每一条被探测器接收的射线就代表了一个方程。对二维断层成像而言,要想得到好的求解结果,需要平面内任意方向的射线。这也是要求射线源-探测器组合相对于成像目标旋转360度的原因(出于严谨考虑,这里声明不考虑短扫描等情形)。层析成像技术,早在1921年就已经出现。这个时期的层析成像可以称之为传统层析成像。由于信息交流的不便,多个国家的研究者分别独立提出了层析成像的方法,并且给予了不同的命名。目前流传下来比较被大家接受的是Tomosynthesis和Laminography。现在用于乳腺癌筛查的钼靶成像(只是用了钼靶射线源而已),严格讲应该叫作数字乳腺层析成像(Digital Breast Tomosynthesis,简称为DBT)。而工业上比较习惯于用Laminography,我们延续了这种用法。在进行中文翻译的时候为了跟计算机断层成像区分,我们将Tomosynthesis和Laminography都翻译为层析成像。CL全称即Computed Laminography。二、 传统层析成像 CL与CT到底有什么区别?在前面我们已经提到CT成像一般需要射线绕物体一周。而在有些时候这是无法实现的。比如,现场条件受限或者物体在某些角度太长,射线无法穿透。比如大尺寸的板状物体。对于下图接近一米长的PCB,如果采用显微CT扫描,只能采用先切割的破坏性方法。如果非得用一个简单粗暴的标准区分CT和CL:画一个过物体的平面,如果射线源和探测器的运动轨迹不跨越这个平面,就可以认为这是CL。可以通过下图了解传统层析成像的原理。通过采集不同角度的投影数据(那时还只有胶片),将胶片简单叠加在一起,其中一层的数据会被增强(这一层称为焦平面)。下图中Plane 2的数据(以圆形代表其细节)就被增强了。传统层析成像,每次只能增强一个焦平面内的结构,而其它层的图像仍然是模糊的。三、 现代层析成像我们所说的层析成像一般都是指现代层析成像。这里的现代是相对于上面的传统而言的。现代层析成像是指采用了数字探测器和图像重建算法的层析成像。其成像结果中每一层都得到增强。虽然与CT相比,由于其数据缺失,会造成层间混叠(后面我们会着重介绍)。但在很多应用场景,这是能得到的最好的结果。下图是几种常见的层析成像结构。如果将有限角CT也称作CL的话,可以认为是第5种结构。这里我们对各种成像结构的成像能力进行简单的分析。(I)结构简单,但数据缺失过于严重(扫描的角度等于射线的张角);(II)仅能扫描中心区域;(III)(IV)相似,可以扫描任意区域,但在探测器的运动细节上有差异。其机械实现和数据处理上的差异过于专业,我们在这里就不再展开讨论。四、 层间混叠这是CL避免不了的问题。首先通过下图来了解一下层间混叠是什么样子。其表现就是横向的边缘被弱化了。为什么会出现这个问题呢?这得从傅里叶中心切片定理讲起,还是算了吧,简单点理解就是缺少了横向穿过物体的射线。为什么会缺少?因为这个方向射线穿不透啊,回忆一下前面一米长的PCB。如果你对上面的图像不满意,不如换个方向看看。是不是感觉好了很多。有没有办法彻底解决这个问题?针对特定的扫描对象,使用复杂的模型,效果会有所提高,但离实用还有很长的距离。 五、 CL的优点 谈完缺点再来聊聊优点。首先,就像前面提到的,这是现有条件下能得到的最好的结果。CL可以对大尺寸的板状物体得到非常高的分辨率。目前,射线源的焦点尺寸可以小到几百纳米。要想实现高分辨成像,需要射线源尽可能靠近物体,而CL这种扫描方式可以很容易的实现这一点。采用光学放大透镜的探测器的显微CT,样品可以不靠近射线源,但是由于射线的利用率底,扫描的时间会很长,难以满足快速检测的需求,且同样无法解决射线在有些角度下无法穿透的问题。下面再来聊聊CL另外一个优点。CT和CL图像最终表示的是物质对射线的线衰减系数(与射线能量、物质原子序数、物质密度等有关系)。一般趋势,线衰减系数随射线能量的增加而减小,简单点理解就是能量越高的射线越不容易被物质吸收。不同材料衰减系数的差异也随射线能量的增加而减小。由于CL始终沿着容易穿透的方向照射物体,可以使用较低能量的射线,因此能够获得较高的密度分辨能力。六、 国内CL研究进展与国外相比,国内对于CL技术的研究起步较晚。北京航空航天大学、中国科学院高能物理研究所等单位是国内最早开展CL成像研究的机构。在科技部重大科学仪器设备开发项目支持下,2015年,由中国科学院高能物理研究所和古脊椎动物与古人类研究所共同成功研发专用于“板状化石”的显微CL仪器,并在2016年中安装到中科院脊椎动物演化与人类起源重点实验室高精度CT中心,该仪器同时服务其他科研院所,中国科学院南京地质古生物研究所、中国地质科学院地质研究所、北京自然博物馆、安徽博物院、广西自然博物馆、北京大学,云南大学、西北大学、首都师范大学等,累计检测化石750余件。为板状化石的三维无损检测提供了全新工具,起到了不可替代的作用。该仪器的实验结果,助力研究人员在《Nature》、《Science》等期刊上发表论文20余篇,其中五项成果分别入选并领衔2018年、2019年、2020年和2021年中国古生物学十大进展。专用于“板状化石”的显微CL设备及其应用集成电路和电力电子领域也存在大量的板状产品。随着封装集成度和密度不断提高,对其内部结构缺陷检测要求空间分辨率达到微米甚至亚微米级。2019年,在科技部重大科学仪器设备开发项目支持下,中国科学院高能物理研究所针对电子器件封装检测需求,研制了具有亚微米级缺陷检测能力的X射线三维分层成像仪,关键指标达到国际先进水平。为了更好的进行X射线精密检测设备的推广,中国科学院高能物理研究所在2021年成立了锐影检测科技(济南)有限公司。X射线三维分层成像仪及其应用2021年,锐影检测科技(济南)有限公司成功研发了用于绝缘栅双极型晶体管(IGBT)焊接缺陷检测的专用CL设备。彻底解决了超声法和X射线DR成像无法检测带散热柱的IGBT模块的问题。设备实现了大视野快速成像,可以自动定位DBC焊接区域,自动进行气孔缺陷的识别,计算气孔率、最大气孔率、最大气孔尺寸,适用于在线检测。技术指标达到国际领先水平。IGBT焊接缺陷检测专用CLCL与DR方法对于IGBT基板焊料层气孔检测效果的比较总结随着科研及制造业的升级,对CL检测设备的精度、检测速度和智能化水平提出了更高的要求。新型CL设备的研发将是科研机构及X射线无损检测公司面临的挑战和历史机遇。 参考文献:【1】 Jiang Hsieh, Computed Tomography Principles, Design, Artifacts, and Recent Advances 3rd edition, SPIE PRESS.【2】 Buzug, Thorsten M. Computed tomography: from photon statistics to modern cone-beam CT. Springer, 2008.【3】 Zenghui Wei, Lulu Yuan, Baodong Liu, Cunfeng Wei, Cuili Sun, Pengfei Yin, and Long Wei, A micro-CL system and its applications. Review of Scientific Instruments, 88, 115107, 2017.【4】 Zuber M, Laaß M, Hamann E, Kretschmer S, Hauschke N, van de Kamp T, Baumbach T, Koenig T. Augmented laminography, a correlative 3D imaging method for revealing the inner structure of compressed fossils. Sci Rep. 2017 Jan 27 7:41413. doi: 10.1038/srep41413. PMID: 28128302 PMCID: PMC5269749.【5】 https://mp.weixin.qq.com/s/_SyUUlHpJNXrLxHFKYwydw本文作者:锐影检测科技(济南)有限公司
  • 布鲁克发布Bruker 高通/能量三维X射线显微成像系统(3D XRM)新品
    Skyscan 1273是Bruker最新的基于微型计算机断层扫描(Micro-CT)技术的台式3D X射线显微成像系统。最大可容纳长度不超过500 mm、直径不超过300 mm、最大重量为20 kg的样品,这是台式显微成像设备进行无损检测(NDT)的新标准。一流的硬件让Skyscan 1273成为强有力的工具。高能量的X射线源和具有最高灵敏度和速度的大幅面平板探测器的结合,在短短几秒钟内就能提供出色的高质量图像。 全面的软件,直接进行数据收集,先进的图像分析,强大的可视化使Skyscan 1273成为一个简单易用的3D X射线显微成像系统。 Skyscan 1273台式3D X射线显微成像系统占地面积小,简单易操作,几乎无需维护。因此,Skyscan 1273运行稳定,性价比极高。 特点 40-130kV低成本免维护X射线源 8位滤光片转换器自动进行能量选择 GPU加速性能可提高3D重构速度 大尺寸图像的自动拼接偏移扫描 利用螺旋扫描和精准重构可获得最佳的平面结构图像质量 借助HART Plus,对大宽高比物体在保持图像质量的情况下,扫描速度可提高4倍参数• X射线源:40-130kV,39W,• X射线探测器:600万像素平板探测器(3072×1944像素)• 标称分辨率(最大放大率下样品的像素):图像分辨率<3um;空间分辨率<5um,• 重建容积图(单次扫描):最高4800×4800像素 • 样品尺寸:最大值:直径250mm,长500mm,重量20kg• 扫描空间:最大值:直径250mm,长300mm• 辐射安全:在仪器表面的任何一点上<1 uSv/h• 外形尺寸:1250(宽)×815(深)×820(高)毫米• 重量:400千克,不含包装• 电源:100-240V / 50-60Hz / 3A创新点:Skyscan 1273是Bruker最新的基于微型计算机断层扫描(Micro-CT)技术的台式3D X射线显微成像系统。最大可容纳长度不超过500 mm、直径不超过300 mm、最大重量为20 kg的样品,这是台式显微成像设备进行无损检测(NDT)的新标准。一流的硬件让Skyscan 1273成为强有力的工具。高能量的X射线源和具有最高灵敏度和速度的大幅面平板探测器的结合,在短短几秒钟内就能提供出色的高质量图像。 全面的软件,直接进行数据收集,先进的图像分析,强大的可视化使Skyscan 1273成为一个简单易用的3D X射线显微成像系统。 Skyscan 1273台式3D X射线显微成像系统占地面积小,简单易操作,几乎无需维护。因此,Skyscan 1273运行稳定,性价比极高。Bruker 高通/能量三维X射线显微成像系统(3D XRM)
  • 布鲁克发布Bruker 高通/能量三维X射线显微成像系统(Micro-CT)新品
    Skyscan 1273是Bruker最新的基于微型计算机断层扫描(Micro-CT)技术的台式3D X射线显微成像系统。最大可容纳长度不超过500 mm、直径不超过300 mm、最大重量为20 kg的样品,这是台式显微成像设备进行无损检测(NDT)的新标准。一流的硬件让Skyscan 1273成为强有力的工具。高能量的X射线源和具有最高灵敏度和速度的大幅面平板探测器的结合,在短短几秒钟内就能提供出色的高质量图像。 全面的软件,直接进行数据收集,先进的图像分析,强大的可视化使Skyscan 1273成为一个简单易用的3D X射线显微成像系统。 Skyscan 1273台式3D X射线显微成像系统占地面积小,简单易操作,几乎无需维护。因此,Skyscan 1273运行稳定,性价比极高。 特点 40-130kV低成本免维护X射线源 8位滤光片转换器自动进行能量选择 GPU加速性能可提高3D重构速度 大尺寸图像的自动拼接偏移扫描 利用螺旋扫描和精准重构可获得最佳的平面结构图像质量 借助HART Plus,对大宽高比物体在保持图像质量的情况下,扫描速度可提高4倍参数• X射线源:40-130kV,39W,• X射线探测器:600万像素平板探测器(3072×1944像素)• 标称分辨率(最大放大率下样品的像素):图像分辨率<3um;空间分辨率<5um,• 重建容积图(单次扫描):最高4800×4800像素 • 样品尺寸:最大值:直径250mm,长500mm,重量20kg• 扫描空间:最大值:直径250mm,长300mm• 辐射安全:在仪器表面的任何一点上<1 uSv/h• 外形尺寸:1250(宽)×815(深)×820(高)毫米• 重量:400千克,不含包装• 电源:100-240V / 50-60Hz / 3A创新点:Skyscan 1273是Bruker最新的基于微型计算机断层扫描(Micro-CT)技术的台式3D X射线显微成像系统。最大可容纳长度不超过500 mm、直径不超过300 mm、最大重量为20 kg的样品,这是台式显微成像设备进行无损检测(NDT)的新标准。一流的硬件让Skyscan 1273成为强有力的工具。高能量的X射线源和具有最高灵敏度和速度的大幅面平板探测器的结合,在短短几秒钟内就能提供出色的高质量图像。 全面的软件,直接进行数据收集,先进的图像分析,强大的可视化使Skyscan 1273成为一个简单易用的3D X射线显微成像系统。 Skyscan 1273台式3D X射线显微成像系统占地面积小,简单易操作,几乎无需维护。因此,Skyscan 1273运行稳定,性价比极高。 Bruker 高通/能量三维X射线显微成像系统(Micro-CT)
  • 布鲁克发布Bruker高分辨率X射线三维显微成像系统(3D XRM)新品
    X射线显微CT:先进的无损三维显微镜显微CT即Micro-CT,为三维X射线成像,与医用CT(或“CAT”)原理相同,可进行小尺寸、高精度扫描。通过对样品内部非常细微的结构进行无损成像,真正实现三维显微成像。无需样本品制备、嵌入、镀层或切薄片。单次扫描将能实现对样品对象的完整内部三维结构的完整成像,并且最后可以完好取回样本品! 特点:先进的扫描引擎—可变扫描几何:可以提高成像质量,或将扫描时间缩短1/2到1/5支持重建、分析和逼真成像的软件套件 自动样品切换器技术规范:X射线源:20-100kV,10W,焦点尺寸<5μm@4WX射线探测器:1600万像素(4904×3280像素)或1100万像素(4032×2688像素)14位冷却式CCD光纤连接至闪烁体标称分辨率(最大放大率下样品的像素):1600万像素探测器<0.35um;1100万像素探测器<0.45um,重建容积图(单次扫描):1600万像素探测器,最高14456×14456×2630像素 1100万像素探测器,最高11840×11840×2150像素扫描空间:最大值:直径75mm,长70mm辐射安全:在仪器表面的任何一点上<1 uSv/h外形尺寸:1160(宽)×520(深)×330(高)毫米(带样品切换器高440毫米)重量:150千克,不含包装电源:100-240V / 50-60Hz,典型值:在最大X射线功率下为90W创新点:SKYSCAN 1275 专为快速扫描多种样品而设计。该系统采用一个功能强大的广角X 射线源(100 kV)和高效的大型平板探测器,可以轻松实现大尺寸样品扫描。由于X射线源到探测器的距离较短以及快速的探测器读出能力,SKYSCAN 1275 可以显著提高工作效率——从几小时缩短至几分钟,并保证不降低图像质量。SKYSCAN 1275 如此迅速,甚至可以实现四维动态成像。 Push-Button-CT™ 让操作变得极为简单 您只需选择手动或自动插入一个样品,就可以自动获得完整的三维容积,无需其他操作。Push-Button-CT 包含了所有工作流程:自动样品尺寸检测、样品扫描、三维重建以及三维可视化。选配自动进样器,SKYSCAN 1275可以全天候工作。 灵活易用、功能全面 除了 Push-Button-CT 模式,SKYSCAN 1275 还可以提供有经验用户所期待的 μ CT 系统功能。所有测量都支持手动设置,从而确保为难度较大的样本设置佳参数。即使在分辨率低于 5 μ m 的情况下,典型扫描时间也在15 分钟以内。 无隐性成本:一款免维护的桌面 μ CT 封闭式 X 射线管支持全天候工作,不存在因更换破损的灯丝而停机的情况,为您节约大量时间和成本。Bruker高分辨率X射线三维显微成像系统(3D XRM)
  • 一文了解X射线成像技术及市场主流仪器品牌
    X射线是一种波长比较短的电磁波,它的波长在0.01~100埃之间,介于γ射线与紫外线之间。因为X射线的穿透能力很强,能透射很多可见光不能透射的物质,因此人们用来对物品内部缺陷进行检测。自从X射线被发现以来,由于其优异的物理化学特性,X射线检测技术取得了飞速的发展,在科学研究、医学检测及工业检测等领域已经有了广泛的应用。通过X射线检测技术的不断发展,现阶段在工业检测中主要有X射线胶片拍片检测技术和X射线实时成像检测技术。 X射线胶片拍片检测技术X射线胶片拍片法是无损检测早期使用的方法。它的工作原理是由X射线管发出X射线;射线透射被检工件后与照相胶片发生胶片感光,胶片感光是一种光化学作用;处理完已感光的照相胶片后,得到工件内部质量密度的射线胶片;最后,观察获得的X射线拍片底片来分析评价并得出评判结论。由于被检工件存在缺陷的部分与正常部分的厚度或者密度存在很大差异,被检测工件有缺陷部分和无缺陷部分使得X射线衰减的程度不同,穿过工件的X射线处于不同程度的吸收,在胶片上显影后出现有差异的影像。X射线胶片拍片检测技术以此为检测基础,X射线照相无损检测技术应用得最为广泛。通过观察胶片上记录的射线信息来判定被检材料和工件的内部是否存在缺陷,在不损坏被检材料和工件的情况下,评估其质量和使用价值。目前工业检测中普遍使用X射线胶片拍片的方法,此技术有较高空间分辨率,可以将实际大小的微小缺陷通过图像清晰地显示出来,且是永久性的。X射线胶片拍片检测技术的缺点在于无法现场直接观察被检测物体的图像。需具有丰富检测经验的人,通过实验对照相参数及胶片冲洗参数进行选择才能使检测效果达到最佳,同时X射线照相检测技术存在着效率低下,不能数字化,难于存储等缺点,尽管可以利用光胶片数字化扫描仪进行数字化,但是效率低的问题仍无法解决,在工业生产过程中检测效率低,严重制约着生产效率。 X射线实时成像检测技术X射线实时成像是一种X射线无损检测方法,是通过屏幕实时显示检测结果图像的方法,利用该图像对检测对象材料进行判断和评估对材料内部缺陷进行定性、定量的分析,从而达到无损检测的目的。X射线实时成像技术按成像原理的不同可以分为X射线图像增强器实时成像技术和X射线数字实时成像检测技术。两种技术对应着两种不同的检测系统,而成像器件的不同是两者的主要差别:X射线图像增强器实时成像检测系统的图像增强器为X射线的接收装置,在CCD上成像后,通过图像采集卡将图像采集并存储到计算机中。X射线图像增强器实时成像系统X射线数字实时成像系统的工作原理是被检测工件的X射线图像由平板探测器直接接收并转化为数字信号,平板探测器与计算机相连,将数字信号传输到计算机中存储和处理。由于采用非晶硅的闪烁检测器以及成像板采集信号,而且成像板由光电倍增器制成,所以X射线数字实时成像检测系统具有很大的动态范围和很高的分辨力,这是胶片拍片法所不能比拟的。X射线数字实时成像系统 工业X射线检测技术的发展经过了X射线胶片拍片检测、X射线荧光检测、图像增强器成像检测和平板探测器成像检测等阶段。X射线胶片拍片检测技术是使用最早,也是最成熟的检测技术,是目前工业检测中普遍使用的方法。随着计算机技术、增强技术、光电材料及接收器件技术的不断发展,现在的研究热点是直接数字化X射线成像技术。其中,X射线数字平板技术的出现使得X射线向数字图像信号的转化成为可能,标志着X射线实时成像时代的到来。 市场主流仪器品牌X射线实时成像技术在国外研究起步较早,而国内对于该技术的研究较晚,如我国适用于特定检测岗位的高精度、高分辨力的多功能X射线成像系统等还有待研究。然而,随着近年来地快速发展,国内与西方国家的差距正在日益减小。当前,我国市场上工业用X射线实时成像设备的主要有YXLON、蔡司、GE、布鲁克、岛津等进口品牌,以及三英精密、日联科技、丹东奥龙、固鸿科技、华日理学等国产品牌。三英精密成立于2013年,是一家专业从事X射线CT检测装备研发和制造的国家高新技术企业,拥有自主核心技术,现已发展为国内X射线CT产品种类齐全的解决方案提供商。公司产品涵盖X射线三维显微镜、显微CT、工业CT、计量CT、平面CT、卧式CT、X射线在线检测设备和移动车载CT检测中心等。日联科技成立于2002年,是一家专业从事X射线技术研究和X射线智能检测装备研发、制造的高新技术企业。在无锡新区自建4万多平米的现代化工厂和研发中心,并在深圳和重庆建立大型制造工厂,在西安设立软件公司,并于北京、沈阳、天津、西安、青岛、武汉、成都、宁波、厦门、乌鲁木齐等地设有销售及服务处。奥龙集团传承50年中国射线仪器研制历史,是X射线仪器和材料试验仪器的开发商和产品制造商,也是X射线检测解决方案的服务商,旗下拥有上海奥龙星迪、丹东奥龙电子、奥龙检测服务、丹东奥龙中科传感技术四个子公司。此外,奥龙集团也是无损检测行业的全球领导厂商——美国GE的合作伙伴。 固鸿科技是一家源于清华大学,集设计开发、生产制造、销售和服务与一体的高新技术企业。主要产品类型为低能工业CT(160Kv-600Kv),高能工业CT(1MeV-15MeV),电子直线加速器(0.95MeV-15MeV),车载式CT及射线照相无损检测系统等。自2005年成立以来,公司已经为全球客户提供了近100套的定制化射线类无损检测设备。华日理学,1995年创立,2018年加入中国广核集团,是生产X射线无损检测设备的专业公司。公司集科研、生产、销售和服务于一体,年产值超过亿元,生产规模、研发技术、市场占有率位居国内前列。公司拥有专业的实体研发、生产、检测基地,建有四个高等级防护的X射线试验室、一个三维成像检测技术公共服务中心、一个EMC试验室和一个高频X射线国际合作实验室,产品已形成六大系列60多个品种,年生产能力可达1000(台)套以上。 YXLON(依科视朗)于1998年成立,总部位于德国汉堡,由飞利浦工业X射线有限公司和丹麦安德烈斯公司合并而成,并迅速成长。2007年成立依科视朗(北京)射线设备贸易有限公司,主要从事X射线为基础的测试设备和系统的批发、进出口,售后和技术服务及转让,X射线为基础的测试设备和系统技术的研究和开发。ZEISS(蔡司)总部位于德国,历史可追溯到1846年,是一家在光学及光电子行业全球领先的集团公司。在全球拥有30多个生产基地、50多个销售和服务中心。ZEISS在四个战略发展领域,即工业解决方案、科研解决方案、医疗技术、消费光学,提供产品和服务,旗下产品X射线成像设备在业内享有盛名。GE(美国通用电气)创立于1892年,总部位于美国波士顿,是一家创造由软件定义的机器,集互联、响应和预测之智,致力变革传统工业的全球数字工业公司。 作为无损检测行业的全球领导厂商,GE在中国设有多家公司,可提供胶片系统、超声、涡流,X射线、计算机射线成像(CR)、数字化射线成像(DR)和工业内窥镜等多个领域的各种便携式检测仪器和大型检测设备。BRUKER(布鲁克)于1960年在德国创立,业务领域包括生命科学分子研究、应用和药物应用、显微镜和纳米分析、工业应用、细胞生物学、临床前成像、临床表型组学、蛋白质组学研究以及临床微生物学等。1997年,布鲁克X射线部门便开始在中国拓展业务。当前,布鲁克在全球拥有6000多名员以及90多个工作地。岛津是测试仪器、医疗器械及工业设备的制造厂商,自1875年创业以来,以光技术、X射线技术、图像处理技术这三大核心为基础,不断钻研领先时代、满足社会需求的科学技术,开发生产具有高附加值的产品。岛津企业管理(中国)有限公司成立于1999年日,目前已在中国设有13个分公司,7个分析中心,60多个技术维修点,开拓了岛津在中国的业务。本文X射线成像技术部分引自:王连之.多功能X射线实时成像系统的研制与应用[D].湖南大学,2020.
  • 蓝菲光学的成套医疗成像测试设备改善了基于闪烁晶体的荧光成像
    日前,英国豪迈旗下美国蓝菲光学(labsphere.com.cn)为某医疗设备制造商定制了一整套医疗成像测试设备,得到用户的盛赞。这是继在医疗内窥镜、激光医疗之后蓝菲光学又一次在医疗成像设备领域的成功探索。 测试对象一:闪烁晶体当前,高端医学影像技术,计算机断层扫描(CT)、X摄片和计算机断层显像(PET)等已广泛应用于生物医疗产业,这些医疗设备的光学成像都有一个共同特点即都是利用闪烁晶体成像。${Figure 1}荧光成像示例闪烁晶体是指在高能射线(如X射线,γ射线)或者其他放射性粒子激发下会发出荧光脉冲(闪烁光)的物质。广泛用于天体物理、高能物理、石油测井、医学成像、安检设备和国防安全等领域。随着应用的更高要求,对闪烁晶体的综合性能要求越来越高,进一步设计、发现、开发和生长具有高密度、优良光学均匀性、高光产额、快衰减、高稳定性、低成本等综合性能优良的闪烁晶体是闪烁材料研究的重点,同时如何准确地测量闪烁晶体的性能也是研究的重点之一。通常,在评价闪烁晶体的性能时需要测试其透光率、激发发射谱、光输出、发光强度及发光不均匀性等。蓝菲光学作为拥有近40年的光谱分析测试经验,是业内为数不多的可以提供绝对光谱辐射通量溯源的企业,也是除美国NIST外少数拥有可以在1%不确定度范围内测试30-3000流明的4π/2π标准卤钨灯实验室的单位。蓝菲光学的光谱分析测试系统可以测试紫外-可见-近红外波段的光谱及辐射通量以及待测物的反射和透射率,公司拥有全球知名的漫反射材料具有较好的漫反射特性和朗伯特性,可以保证所有测试数据溯源到NIST。搭配蓝菲光学高端光谱仪CDS 3020/3030可以瞬时捕捉光谱数据,轻松实现快速、准确测量,帮助晶体研发人员准确、高效地判断闪烁晶体的光学性能。${Figure 2} illumia plus 光谱测试设备 测试对象二:成像传感器校准我们知道高能射线发出的光人们是看不见的,当它照射到闪烁晶体上会发出荧光(可见光波段),利用传感器去捕捉发出的荧光从而成像,这样医生就可以透视生物体的情况。因此传感器的成像质量对医生观测生物体情况来说也至关重要。蓝菲光学为成像设备的测试和校准提供了数以千计的均匀光源系统,所有均匀光源系统采用蓝菲光学的高漫反射涂层,可达近似100%的漫反射,出光口的均匀性均可达99%,提供可溯源至NIST的辐射度、亮度、照度及出口均匀度校准报告。针对闪烁晶体发出荧光特性,蓝菲光学定制了与闪烁晶体同波段的单色均匀光源用以校准传感器。${Figure 3} CMOS检测同国外相比,国内闪烁晶体方面的生长和性能研究结合得还不够紧密,高性能的闪烁晶体的研制方面还十分薄弱。蓝菲光学拥有近40年的光谱分析检测技术以及超过15年的临床诊断分析仪OEM制造经验,拥有专利技术的漫反射材料为医疗领域提供了多种OEM解决方案,可以为国内闪烁晶体以及医学成像技术的发展提供准确的性能检测。利用蓝菲光学的在光学检测和校准方面的先进技术可以帮助改善光源以及成像质量,促进国内闪烁晶体及光医学成像研究的进步。
  • 布鲁克发布Bruker全自动高速X射线三维显微成像系统(Micro-CT新品
    仅需按下启动按钮即可启动 μCT 快速桌面解决方案!超高速度、优质图像SKYSCAN 1275 专为快速扫描多种样品而设计。该系统采用一个功能强大的广角X 射线源(100 kV)和高效的大型平板探测器,可以轻松实现大尺寸样品扫描。由于X射线源到探测器的距离较短以及快速的探测器读出能力,SKYSCAN 1275 可以显著提高工作效率——从几小时缩短至几分钟,并保证不降低图像质量。SKYSCAN 1275 如此迅速,甚至可以实现四维动态成像。Push-Button-CT™ 让操作变得极为简单您只需选择手动或自动插入一个样品,就可以自动获得完整的三维容积,无需其他操作。Push-Button-CT 包含了所有工作流程:自动样品尺寸检测、样品扫描、三维重建以及三维可视化。选配自动进样器,SKYSCAN 1275可以全天候工作。灵活易用、功能全面除了 Push-Button-CT 模式,SKYSCAN 1275 还可以提供有经验用户所期待的 μCT 系统功能。所有测量都支持手动设置,从而确保为难度较大的样本设置最佳参数。即使在分辨率低于 5 μm 的情况下,典型扫描时间也在15 分钟以内。无隐性成本:一款免维护的桌面 μCT 封闭式 X 射线管支持全天候工作,不存在因更换破损的灯丝而停机的情况,为您节约大量时间和成本。特点:X射线源:涵盖各领域应用,从有机物到金属样品标称分辨率(最大放大倍数下的像素尺寸):检测样品极小的细节X射线探测器:3 MP (1,944 x 1,536)有效像素的CMOS平板探测器,高读取速度,高信噪比样品尺寸:适用于小-中等尺寸样品辐射安全:满足国际安全要求供电要求:标准插座,即插即用创新点:SKYSCAN 1275 专为快速扫描多种样品而设计。该系统采用一个功能强大的广角X 射线源(100 kV)和高效的大型平板探测器,可以轻松实现大尺寸样品扫描。由于X射线源到探测器的距离较短以及快速的探测器读出能力,SKYSCAN 1275 可以显著提高工作效率——从几小时缩短至几分钟,并保证不降低图像质量。SKYSCAN 1275 如此迅速,甚至可以实现四维动态成像。Push-Button-CT™ 让操作变得极为简单您只需选择手动或自动插入一个样品,就可以自动获得完整的三维容积,无需其他操作。Push-Button-CT 包含了所有工作流程:自动样品尺寸检测、样品扫描、三维重建以及三维可视化。选配自动进样器,SKYSCAN 1275可以全天候工作。灵活易用、功能全面除了 Push-Button-CT 模式,SKYSCAN 1275 还可以提供有经验用户所期待的 μ CT 系统功能。所有测量都支持手动设置,从而确保为难度较大的样本设置佳参数。即使在分辨率低于 5 μ m 的情况下,典型扫描时间也在15 分钟以内。无隐性成本:一款免维护的桌面 μ CT 封闭式 X 射线管支持全天候工作,不存在因更换破损的灯丝而停机的情况,为您节约大量时间和成本。Bruker全自动高速X射线三维显微成像系统(Micro-CT
  • 手持式X射线荧光光谱仪在高压隔离开关触头镀银层腐蚀故障分析中的应用
    摘要:针对一起110kV隔离开关触头的腐蚀故障,采用手持式X射线荧光光谱仪分析故障隔离开关触头镀层的化学成分,发现厂家使用银氧化锡(Ag-SnO2)镀层代替镀银层。分析认为在工业含硫大气环境中,Ag-SnO2镀层中的银被SO2、H2S等硫化物腐蚀,铜基体在潮湿环境下腐蚀生成Cu2(OH)2CO3,从而导致隔离开关触头导电回路的接触电阻升高,引发过热故障。针对此次故障,提出了解决措施和建议。关键词:手持式X射线荧光光谱仪;隔离开关触头;电刷镀银;银氧化锡;腐蚀中图分类号:TQ153.16 文献标志码:A 文章编号:1004 – 227X (2019) 23 – 1 – 04高压隔离开关是电力系统中使用最多、应用最广的一次设备。由于高压隔离开关多在户外运行,长期受风吹、雨淋、雷电、潮气、盐雾、凝露、冰雪、沙尘、污秽,以及SO2、H2S、NO2、氯化物等大气污染物的影响,因此各部件会发生不同程度的腐蚀[1-2]。高压隔离开关触头是关键部件,承担着转接、隔离、接通、分断等任务,其工作状态的好坏直接影响整个电力系统的运行[3]。高压隔离开关触头的基体为纯铜,但纯铜易被腐蚀,会造成表面接触电阻升高,引发过热故障,影响开关设备和电网的安全稳定运行[4-6]。为了减小接触电阻,DL/T 486–2010《高压交流隔离开关和接地开关》、DL/T 1424–2015《电网金属技术监督规程》和《国家电网有限公司十八项电网重大反事故措施(2018年修订版)及编制说明》[7]中明确规定:隔离开关触头表面必须镀银,且镀银层厚度不小于20 μm,以获得较低的接触电阻,从而保证良好的导电性。然而,在实际运行中,很多厂家生产的高压隔离开关产品会出现触头腐蚀、变色发黑、发热等故障,一般是由触头镀锡代替银或镀银层厚度不足造成,这些缺陷都可以通过国家电网公司开展的金属专项技术监督检测隔离开关触头镀银层厚度而发现[8]。近期,四川电网在金属技术监督中发现一起高压隔离开关触头腐蚀案例,镀银层厚度检测结果合格,但在采用手持式X射线荧光光谱仪分析镀层化学成分时发现,厂家竟然使用银氧化锡(Ag-SnO2)镀层代替镀银层,该造假手段通过颜色判断和镀层测厚无法发现,非常隐蔽,很容易因未进行镀层成分分析而误判合格,严重威胁电网的安全运行,希望引起各运维单位注意。 1 高压隔离开关触头的腐蚀故障某110 kV变电站于1991年投运,当地大气污秽等级为E级,大气类型为工业污染。周边潮湿多雨,化工、煤炭、玻璃等重工业污染企业密集,空气中SO2、H2S等硫化物浓度较高,大气的腐蚀性较强。2013年更换隔离开关触头,防腐措施为铜镀银。2017年站内巡检发现某110 kV隔离开关触头腐蚀严重,动、静触头接触面大部分呈绿色,少部分呈黑色(见图1)。红外测温发现该隔离开关触头存在过热故障,若继续运行,可能会造成隔离开关烧毁,甚至大面积停电等恶性事故,运维单位国网泸州供电公司紧急安排停运该隔离开关,并与国网四川电科院联合开展故障分析。图1 某110 kV隔离开关触头的腐蚀情况2 手持式X射线荧光光谱仪的检测原理X射线荧光光谱分析是用于高压隔离开关触头表面金属成分检测的一种非常有效的分析方法,具有快速、分析元素多、分析浓度范围宽、精度高、可同时进行多元素分析、无损检测等优点,被广泛应用于元素分析和化学分析领域[9]。其原理[9-12]为:由激发源产生高能量X射线照射被测样品,样品表面元素内层电子被击出后,轨道形成空穴,外层高能电子自发向内层空穴跃迁,同时辐射出特征二次X射线。每种元素都有各自固定的能量或波长特征谱线,具体与元素的原子序数有关。检测器测量这些二次X射线的能量及数量或波长,仪器软件将收集到的信号转换成样品中各种元素的种类和含量。X射线荧光光谱仪通常可分为波长色散型和能量色散型两大类,各自原理如图2 [11]所示。波长色散型光谱仪一般采用X射线管作为激发源,由检测器转动的2θ角可以求出X射线的波长λ,从而确定元素成分,属于台式仪器。能量色散型光谱仪是利用荧光X射线具有不同能量的特点,将其分开并进行检测,从而确定元素成分和含量,可以同时测定样品中几乎所有的元素,激发源使用的X射线管功率较低,且使用半导体探测器,避开了复杂的分光晶体结构,因此仪器工作稳定,体积小,便携性高,价格也较低,能够在数秒内准确、无损地获得检测结果,被广泛应用于金属材料中元素的精确定量分析[12-13]。 图2 波长色散型(a)和能量色散型(b)X射线荧光光谱仪的检测原理目前市售手持式X射线荧光光谱分析仪基本都是能量色散型X射线光谱仪。图3是目前四川电网基层供电公司使用的美国Thermo Fisher Scientific Niton XL2 800手持式X射线荧光光谱仪,它不受分析样品的大小、形状、位置限制,无需拆卸隔离开关,可以携带至变电站现场,能够分析Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Zr, Nb, Mo, Pd, Ag, Cd, Sn, Sb, Hf, Ta, W, Re, Au, Pb, Bi等25种元素。图3 手持式X射线荧光光谱仪3 现场检测结果3. 1 镀层化学成分分析使用XL2 800手持式X射线荧光光谱仪对110 kV隔离开关触头不同颜色区域的镀层和铜基体进行分析,结果见表1。银白色区域中Ag、Cu和Sn的质量分数分别为91.48%、1.83%和5.71%。Cu是隔离开关触头的基体成分,查阅文献[14]可知,该银锡比例是第二相SnO2颗粒弥散分布于银基质层中的Ag–SnO2金属基复合材料,不符合DL/T 486-2010、DL/T 1424–2015和《国家电网有限公司十八项电网重大反事故措施(2018年修订版)及编制说明》中隔离开关触头应镀银的要求。黑色区域的Ag含量低至75.33%,Cu含量和Sn含量则较高,这是因为Ag-SnO2镀层中的Ag与空气中的SO2、H2S等含硫化合物反应生成黑色的腐蚀产物β-Ag2S和Ag2SO3。随着腐蚀反应的进行,Ag-SnO2镀层表面逐渐由银白色转变为深灰色及黑色。绿色区域的Cu质量分数已升至82.31%,Sn的质量分数则与灰色区域相近,而Ag已检测不到,表明Ag-SnO2镀层中银的腐蚀产物发黑并脱落后,镀层中分散的SnO2无法保护铜基体,使得铜在潮湿环境下与空气中的O2、CO2和H2O反应生成绿色的碱式碳酸铜Cu2(OH)2CO3(俗称铜绿)。将绿色区域打磨后分析铜基体发现其中含99.72% Cu和0.15% Sn,说明该隔离开关触头的基体材质为纯铜,检出的少量锡来源于残余的镀层。表1 110 kV隔离开关触头镀层上不同颜色区域及铜基体的元素成分分析结果3. 2 镀层厚度检测使用XL2 800手持式X射线荧光光谱仪检测110 kV隔离开关触头的镀银层厚度,结果显示银白色、黑色和绿色区域的镀银层厚度分别为23.953、16.885和0.000 μm。这说明随腐蚀反应的进行,镀层逐渐被消耗,直至完全损失。DL/T 486–2010、DL/T 1424–2015和《国家电网有限公司十八项电网重大反事故措施(2018年修订版)及编制说明》中明确规定隔离开关触头的镀银层厚度不应小于20 μm。为节约成本,厂家最常用的造假手段就是用镀锡代替或减少镀银量,这两种手段都可直接通过镀层测厚发现。但本次的造假是采用Ag-SnO2层代替Ag层,也是呈银白色,并且镀层厚度大于20 μm,仅通过颜色判断和测厚均无法发现,隐蔽性较强。Ag-SnO2镀层触头因为电导率较纯银低,主要用于继电器、低压开关等低压电器。若用于高压隔离开关,在大电流下很容易发热,存在严重安全隐患。4 结语和建议针对一起110 kV隔离开关触头腐蚀故障,使用手持式X射线荧光光谱仪分析触头的镀层成分,发现厂家使用Ag-SnO2镀层代替Ag镀层,Ag-SnO2镀层中的银被空气中的硫化物腐蚀后,铜基体被腐蚀,导致导电回路接触电阻升高,引发过热故障,是造成该故障的主要原因。为保证此类故障不再发生,应采取以下措施:(1)高度重视在役高压隔离开关触头表面镀银层的腐蚀发黑、发绿现象,发黑说明镀银层已被腐蚀,发绿说明镀银层已被腐蚀完,腐蚀延伸到铜基体,会导致隔离开关触头的接触电阻升高,易引发隔离开关过热、烧毁、全站失压等安全事故,应尽快安排停电,及时更换失效的高压隔离开关触头。(2)联系生产厂家,将同批次产品全部更换为合格产品,以消除安全隐患。(3)加强对新建输变电工程高压隔离开关触头镀银层的检测,镀层成分和厚度均合格后方可入网。参考文献:[1] 曹胜利, 苑金海, 赵昌. 户外高压隔离开关腐蚀与防护分析[J]. 电气制造, 2007 (6): 46-48.[2] 钟振蛟. 户外隔离开关导电回路过热的原因及对策[J]. 高压电器, 2005, 41 (4): 307-312.[3] 闫斌, 邓大勇, 何喜梅, 等. 高压导电触头电镀工艺与失效分析[J]. 青海电力, 2008, 27 (3): 6-9.[4] 梁方建, 张道乾. GW5-110型隔离开关触头发热缺陷分析及检修处理[J]. 高压电器, 2008, 44 (1): 88-90.[5] 刘海龙, 龚杰, 万亦农, 等. 某110 kV变电站隔离开关普遍发热原因分析及防范措施[J]. 电工技术, 2016 (8): 99-101.[6] 赵庆, 茅大钧. 户外高压隔离开关触头发热机理分析及预防过热故障措施探讨[J]. 电气应用, 2016, 35 (3): 72-76.[7] 国家电网有限公司. 国家电网有限公司十八项电网重大反事故措施(2018年修订版)及编制说明[M]. 北京: 中国电力出版社, 2018.[8] 刘纯, 谢亿, 胡加瑞, 等. 电网金属技术监督现状与发展趋势[J]. 湖南电力, 2016, 36 (3): 39-42.[9] 徐雪霞, 冯砚厅, 柯浩, 等. 高压隔离开关触头镀银层质量检测分析[J]. 河北电力技术, 2013, 32 (3): 3-5, 11.[10] 胡波, 武晓梅, 余韬, 等. X射线荧光光谱仪的发展及应用[J]. 核电子学与探测技术, 2015, 35 (7): 695-702, 706.[11] 赵晨. X射线荧光光谱仪原理与应用探讨[J]. 电子质量, 2007 (2): 4-7.[12] 金鑫, 金涌川, 李学斌, 等. 电气设备金属元素检测分析[J]. 电气应用, 2018, 37 (18): 80-85.[13] 何翠强. 手持式X射线荧光光谱仪在金属材料分析中的应用研究[J]. 冶金与材料, 2018, 38 (4): 134-135.[13] 谢明, 王松, 付作鑫, 等. AgSnO2电接触材料研究概述[J]. 电工材料, 2013 (2): 36-39.
  • X 射线探伤技术在文物保及考古绘图中的应用
    一、X 射线探伤技术在文物考古中应用的原理X 射线探伤技术,是利用射线透过物体时,发生吸收和散射这一特性,通过测量材料中因缺陷存在影响射线的吸收来探测缺陷的一种技术。根据底片上有缺陷部位与无缺陷部位的黑度图像不一样,就可判断出缺陷的种类、数量、大小等,这就是射线照相探伤的原理,也称 X 射线照相技术。在考古学中运用 X 射线照相技术,就是利用 X 射线照相方法所具有不损坏器物的特性,而且,具有高穿透能力的电磁辐射 X 射线。在文物保护工作中单一的利用数码照片,只能对器物表面及形的一些信息进行了解,锈层底部及器物的内部的信息无法知晓,X 射线照相技术就能很好地解决这一问题。从另一个角度上讲,X 射线照相技术实际是一种“转换”技术,是把用肉眼直接观察不到的信息,变成“可识信息”,以反应物体内部的形貌特征,或者是物体内部结构特征。通过记录在 X 射线照片物体透视影像的丰富信息及其特征,来判断文物内部结构特征,或者相关的其他特征,如文物保存状况、前修复痕迹、相关其历史艺术信息,相关器物制作工艺特点等。现在,X 射线探伤技术已经成熟地应用于文物保护修复及古代技术研究中。运用此种设备进行文物相关研究比较广泛。X 射线是借助荧光屏显像的一种成像技术,具有穿透和荧光两个作用。X 射线照相是借助各种摄影装置,利用 X 射线的吸收、穿透和感光等作用。将被检客体的影像记录在与 X 射线仪连接的电脑相应的程序中。传统光学成像方式与 X 射线平面成像有些差异,传统的光学成像,不管模拟成像或数字成像,均使用光学透镜,波长范围为紫外线、可见光和近红外线。X 射线平面成像不用光学透镜成像。而是利用射线的直线传播,穿透物体,在物体背后放置 X 射线感光片将影像记录下来。X 射线平面成像与光学成像相比,除了不用镜头外,最主要的是记录的信息并不相同。二、X 射线照相技术在文物考古和绘图方面的应用实例文物具有不可再生性,在修复文物前,用 X 光照相方法能反应文物保存现状,通过这种无损分析结合文物的保存状况更利于文物保护与研究1. 在文物考古方面的应用X 射线照片作为光源的一种照相方法,利用具有高穿透能力的电磁辐射 X 光,在不破坏“研究对象”的情况下,对其内部形态进行探测来反应物体内部结构特征的一种无损检测方法。不同材质的文物,由于非均质特征,各个部位对 X 射线能量的吸收明显不同。能够显示铁器表层的锈蚀深度,能够了解器物的内部形貌特征。 现代文物保护修复,不仅是把破碎的文物复原,把受自然力侵蚀的文物寿命延长,而是对其历史价值、艺术价值的一个重新“发掘”、认识和评价的过程。文物在锈蚀或损坏得比较严重的情况下,对其修复保护操作前,没有详细的了解器物的现状,直接进行操作很可能对文物造成损伤甚至破坏,相关的历史和艺术信息将永远的消失,并且对文物研究也会有极大的影响,造成无法弥补的遗憾。下面结合铁牌饰、铁饰件、铁称砣数码相片与X 射线照片的对比图片,可以细致地了解器物纹样与图案。 图2 为铁牌饰的 X 射线照片,从片中看到的是一件非常生动的艺术品,没有任何损伤拼接痕迹,轮廓立体感强,人、马的轮廓线及人体五官和头部也非常清楚,马的线条也很清晰,马身上的饰物、缰绳、马鞍、弓弦、缨、鞦带等细微之处都清晰地呈现出来。马的五官、尾部、四蹄的外轮廓与真实马的形态相像,从马的尾巴及身体上的饰物上看去,动感很强。整体上看去好似一人悠闲地在马背上吹着音乐,而马听着美妙的乐声慢步行走,很陶醉的样子。铁饰件的数码片中,只能看到表面厚厚的锈层,锈层下的任何信息都显示不出来。这次在文物保护的过程中,我们利用 X 射线照技术,详细的对器物进行了解,发现锈层下的有粗细不均线条组合成生动的图案,而且固定在铁饰件边缘的两个片状铁片及与铆钉相接的结构也能清晰地看到。这个信息的解读对于保护研究方面与保护工作的操作方面以及考古研究工作的开展有着非常重要的价值,也同时要求文物保护人员在进行保护工作时要特别小心,如果不小心就会伤及器物的花纹。所以在保护操作工作中,一边对照 X 射线图片,一边小心谨慎进行保护操作,结果器物花纹没有受到一丝的伤害,同时也说明器物得到了成功的保护。秤砣虽锈迹斑斑,却保存尚好。器表 1 面刻有凹槽(图 5),另一面无任何纹饰。经 X 射线照相,想进一步对其进行了解。结果很遗憾,在 X 射线片上除有一些白点外(图 6),只能看到一块加工规整的铁块,没有显现出任何套接及修复痕迹,说明这件器物是一次成形的实心器物。在器物中心部位有若干大小不等的小圆点,我们认为此物应是在制作器物时产生的气泡而形成。器物表面刻的凹槽在 X 射线片中没有任何体现,我们也无法辨别记录的是什么文字,这种结果的出现主要是由于器物太厚,器物上所刻文字的凹槽太浅所致。反而在数码片中,这种实心器物用数码片的效果反而要比 X 射线片好一些,表面信息虽然不是很清晰,还可以看到大致的轮廓。2. 在考古绘图中的应用出土文物是研究者对遗址的文化进行判定的重要依据。器物图是对器物进行平面展示的平台,绘图是编写考古报告中的一项不可缺少的基本工作,也是进一步研究器物相关工艺的基础。目前的考古绘图,是完全使用手工测量,可直接测量的部分,在图中可以准确绘出其结构与大小,而一些无法测量的部位,尤其在绘器物的剖面图、内部结构及加工工艺和器物厚度是无法准确测量的,也只能估测,这样会影响考古报告的读者对器物内部结构的认知程度。X 射线平面成像是 X 射线穿透物体的影像信息的记录。由于 X 射线穿透能力强,光学成像射线无法穿透的物体,X 射线却可能穿透,获得其内部信息。通过 X 射线照片专业绘图员可以对文物的内部形貌及器物的原貌有更加细致的了解。在绘图时,用绘图工具测量、数码片、X 射线片三者相结合,能够完整地把器物的内、外部信息更全面地表现出来。如铁锁为圆柱形,锈蚀严重,有些锈层已经剥落(图 7),内部结构不详。从(图 8)X 射线照片中,能够清晰地了解铁锁的内部形貌。除铁锁两端外侧可看到的铁条贯通铁锁内部外,再无任何部件。铁条一侧弯曲,呈“U”形,且残断。则另一侧端部似花瓣形扁片。数码片对器物表面信息是一个很好的展示,在铁锁两侧各有一孔,一侧为圆形,另一侧则为月牙形,且二孔在一条直线上。通过铁锁使用两种照相技术相结合的方法。能够清晰地了解铁锁内、外部结构与构成,有助于绘图者对器物有更深一层、更细致的了解,提高了绘制器物线图的准确性,尤其是对器物的内部结构能够绘得更准确。再如,帽顶,表面可以看到它的内部构成。先制成直径不等的空心半圆形范,并在范上刻好花纹,三个直径基本相同,另一个较前者稍大,其中两个小的半圆对扣成球体,而另一个小半圆与大者叠扣在一起,再用一根方形铁条通过顶点将其串在一起(图 9、图 10)。三、利用 X 射线照相技术进行文物保护应注意的问题利用 X 射线技术对文物进行保护,能收到较好的效果,但不能取代所有的方法,还要注意与其他方法的结合。1. 要对 X 光片进行整体判读从利于文物保护与研究的角度,在提取器物时,最好用整取的方法将器物内部任何遗物信息留存。在对器物进行清洗保护时,根据 X 射线片对器物的锈蚀物进行清理,这样就不会将器物本身破坏,也不会丢失任何信息,可以更准确地识别器物的内部构成与结构形貌。2. 要与传统的数码技术相结合如前所述,进行文物保护,利用 X 射线技术并不能解决所有的问题。从(图 5、图 6)的秤砣来看,器物大致为柱状,受 X 射线穿透力的影响,在识别时纹样图案的效果极差。(图 8)的铁锁 X 射线照片也如此,除铁锁的内部存有一根铁条以外,无其他任何信息,也无法得知铁锁内部的具体结构。而数码相机照的照片,可以把器物表面的一些特征及信息反应出来。而两者相结合,第一有利于文物保护与制造工艺的研究;第二有利于文物保护操作工作的进行。所以个人认为,用 X 射线技术对文物进行研究时,应运用多种科学技术方法相结合进行测试,具有互补的作用。获取更多、更大量的信息,减少丢失任何有价值信息的可能性,对文物考古的相关研究可提供更全面的内在信息。通过对以上三件器物 X 射线相片,可以看出,它们的效果完全不同。由于骑士牌饰为薄片状,相关的历史和艺术信息一览无余。而多年保护工作的实践,本人总结出一些经验。对器物进行保护工作前,一定要进行一些科学技术的测试,能够尽量多的留下一些信息。文物具有不可再生性,所以对文物进行的保护都应在详细了解文物之后再进行操作。X射线探伤技术,具有无损的特征,这种特性非常适合在文物研究和文物保护中应用,可以更全面地揭示与文物有关的历史信息,更生动地提供文物的制作工艺及技术,更详细地绘制器物的原图。
  • 新加坡国立大学刘小钢团队:制备用于提高射线成像性能的像素化双锥形光纤阵列
    当前,在全球范围内科技与产业革新的浪潮中,信息光电子、激光加工、激光全息、光电传感等技术正在快速发展。光电产业与能源、信息、医疗等领域的结合和渗透也在加速,推动着新技术、新产品和新商业模式的不断涌现,全球光电产业的竞争格局经历重大重塑。据Market Research Future预测,到2032年,光电市场的规模将从2024年的381.9亿美元增长至845亿美元。预计在2024至2032年期间,该市场的年复合增长率为10.44%,其中光电子在多个不同领域的应用增加以及红外元件利用率的提高是促进市场增长的关键市场驱动力。随着光电子技术的进步和规模化生产,社会生产对光电子相关器件的需求日益增加,互联网与光电产业深度融合。作为高新技术产业基础的光电元件,正快速朝着微型化、精密化、轻薄化以及集成化的方向发展。然而,由于其发展历程相对较短,仍面临诸多挑战和问题需要逐步解决。其中,高能射线成像是一种利用高能射线(如X射线、伽马射线等)进行成像的技术,主要用于医学、工业检测、安全检查和科学研究等领域。但该技术受到的主要限制因素在于厚层闪烁体材料内部存在的自吸收和散射现象。近年来,钙钛矿纳米闪烁体已直接集成到电荷耦合器件中以实现X射线成像。然而,为了有效吸收高能射线,钙钛矿闪烁体层必须达到毫米至厘米的厚度。但由于横向光子散射和固有的自吸收,毫米厚度的钙钛矿闪烁体的光穿透和空间分辨率仍将受到限制。基于此,新加坡国立大学(NUS)化学系的刘小钢教授研究团队开发了一种用于提高射线成像性能的像素化双锥形光纤阵列。该阵列通过双锥面设计可以有效地吸收传递闪烁体层激发的光子,降低闪烁体材料内部的散射和自吸收,从而有效提高射线成像的空间分辨率和成像性能。相关成果以“A double-tapered fibre array for pixel-dense gamma-ray imaging”为题,发表在《Nature Photonics》期刊上。光纤可以增强光耦合,执行光信号传输,并实现具有低损耗接口的光子集成电路。此外,理论研究表明,锥形或双锥形光纤可以通过促进倏逝波在锥形区域的基模上的传播来充当高功率放大器。在这里,研究人员扩展了理论分析,并通过实验验证了使用柔性双锥形光纤阵列和钙钛矿纳米晶闪烁体实现高灵敏度伽马射线成像的可能性。图1. 用于定向光收集的透明双锥形光纤阵列的结构特性研究人员对光收集特性进行了表征,并优化了锥形光纤的几何形状,以最大限度地提高光收集效率和传输效率。研究团队通过成型和层压聚氨酯和有机硅弹性体制造双锥形纤维阵列,首先采用摩方精密面投影微立体光刻(PμSL)3D打印技术制作出光纤阵列模具(nanoArch S130,精度:2μm),并结合PDMS翻模技术得到双锥形纤维阵列。钙钛矿纳米晶充当闪烁体,通过测量其激发光谱对钙钛矿纳米晶进行表征,其表示作为波长的函数的相对发光强度。钙钛矿闪烁体表现出相对较小的斯托克斯位移和较高的量子产率,导致发射光子的大量重吸收。图2. 用于光子回收和高分辨率X射线成像的双锥形光纤阵列的光学特性双锥形光纤阵列系统的一个关键特征是它适用于发光穿透深度不足的所有情况,例如,具有上转换材料的近红外探测器、具有钙钛矿闪烁体的X射线或伽马射线探测器以及电激发发光二极管。通过将光纤阵列和钙钛矿纳米晶相结合,在实验中实现了输出信号增加了三倍,并通过4 mm厚的闪烁体层实现了6 MeV和10 MeV的伽马射线成像。伽马射线成像对于测量放射治疗、医学诊断和工业三维伽马射线断层扫描期间的皮肤剂量非常重要,因为这需要深度穿透。鉴于双锥形光纤阵列与硅技术的兼容性以及材料的可延展性,有望被大规模生产用于制造超灵敏光子探测器和用于高能辐射的大面积柔性成像设备,在仿复眼学、光场成像、生物分子传感、光学放大器以及发光二极管等领域也有着潜在应用。
  • 850万!西安建筑科技大学计划采购高分辨无损X射线显微成像系统
    一、项目基本情况项目编号:SZT2022-SN-SC-ZC-HW-0548.项目名称:高分辨无损X射线显微成像系统设备采购项目(二次)采购方式:公开招标预算金额:8,500,000.00元采购需求:合同包1(高分辨无损X射线显微成像系统采购项目):合同包预算金额:8,500,000.00元合同包最高限价:8,000,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1光学式分析仪器高分辨无损X射线显微成像系统1(台)详见采购文件8,500,000.008,000,000.00本合同包不接受联合体投标合同履行期限:合同生效后6个月内二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定 2.落实政府采购政策需满足的资格要求:合同包1(高分辨无损X射线显微成像系统采购项目)落实政府采购政策需满足的资格要求如下:(1)财政部、国家发展和改革委员会关于印发《节能产品政府采购实施意见》的通知(财库[2004]185号);(2)财政部、国家环保总局联合印发《关于环境标志产品政府采购实施的意见》(财库[2006]90号);(3)国务院办公厅关于建立政府强制采购节能产品制度的通知国办发〔2007〕51号,以财库〔2019〕9号为准;(4)财政部、工业和信息化部关于印发《政府采购促进中小企业发展管理办法》的通知(财库〔2020〕46号);(5)财政部?司法部关于政府采购支持监狱企业发展有关问题的通知(财库〔2014〕68号);(6)财政部、民政部、中国残疾人联合会关于促进残疾人就业政府采购政策的通知(财库〔2017〕141号)。(7)《陕西省中小企业政府采购信用融资办法》(陕财办采(2018)23号);(8)《关于运用政府采购政策支持乡村产业振兴的通知》(财库〔2021〕19号);(9)如有最新颁布的政府采购政策,按最新的文件执行。3.本项目的特定资格要求:合同包1(高分辨无损X射线显微成像系统采购项目)特定资格要求如下:1)供应商为合法注册的法人、其他组织或自然人,具有独立承担民事责任的能力,提供具有统一社会信用代码证的营业执照(或事业法人证),供应商为自然人的提供身份证;2)供应商应授权合法的人员参加投标全过程,其中法定代表人直接参加投标的,须出具法定代表人身份证,并与营业执照上信息一致。法定代表人授权代表参加投标的,须出具法定代表人授权书及授权代表身份证;3)进口产品代理商需提供产品制造厂家授权书,或具有授权权限的代理商对所投进口产品的授权书(同时提供完整的授权链证明文件),产品制造厂家直投无需提供;4)本项目不接受联合体投标,单位负责人为同一人或者存在直接控股、管理关系的不同单位,不得参加同一项下的政府采购活动。对列入失信被执行人、政府采购严重违法失信行为记录名单的供应商,拒绝参与本项目政府采购活动。三、获取招标文件时间: 2022年09月16日 至 2022年09月23日 ,每天上午 08:00:00 至 12:00:00 ,下午 13:30:00 至 17:30:00 (北京时间,法定节假日除外)地点:西安市高新区高新四路1号高科广场A座10楼1001方式:现场获取售价: 500元四、提交投标文件截止时间、开标时间和地点时间: 2022年10月09日 14时30分00秒 (北京时间)提交投标文件地点:西安市高新区高新四路1号高科广场A座5楼0503第三会议室开标地点:西安市高新区高新四路1号高科广场A座5楼0503第三会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1、报名时需携带单位介绍信及经办人身份证。2、请供应商按照陕西省财政厅关于政府采购供应商注册登记有关事项的通知中的要求,通过陕西省政府采购网(http://www.ccgp-shaanxi.gov.cn/)注册登记加入陕西省政府采购供应商库。3、本项目为非专门面向中小企业采购项目。4、本项目已进行进口论证,接受进口产品参与。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:西安建筑科技大学地址:西安市雁塔路中段13号联系方式:029-822022212.采购代理机构信息名称:陕西中技招标有限公司地址:西安市高新区高新四路1号高科广场A座10楼1001联系方式:029-88364979-8063.项目联系方式项目联系人:肖懿电话:029-88364979-806陕西中技招标有限公司2022年09月16日
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制