当前位置: 仪器信息网 > 行业主题 > >

射线放大荧光透视成像系统

仪器信息网射线放大荧光透视成像系统专题为您提供2024年最新射线放大荧光透视成像系统价格报价、厂家品牌的相关信息, 包括射线放大荧光透视成像系统参数、型号等,不管是国产,还是进口品牌的射线放大荧光透视成像系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合射线放大荧光透视成像系统相关的耗材配件、试剂标物,还有射线放大荧光透视成像系统相关的最新资讯、资料,以及射线放大荧光透视成像系统相关的解决方案。

射线放大荧光透视成像系统相关的论坛

  • 【求购】求购X射线透视仪!

    求购X射线透视仪!主要用于检测一些贴片类产品的内部结构和是否存在结构缺陷;请大家多多推荐,目前我司正在寻找厂商中!

  • 【分享】(德国)X射线实时成像检测系统检测金属铸件橡胶轮胎内部分层裂纹

    http://simg.instrument.com.cn/bbs/images/brow/em0816.gif X射线检测系统点激此处链接X射线实时成像系统:对于批量大、要求检测效率高的零件,是一种非常实用有效的检测手段,它具有动态观察、形态真实、检测效率高的特点,并可采用计算机图像处理装置对射线图像进行处理,使检测灵敏度进一步提高。 主要应用领域,金属铸件,塑料橡胶等。本系列产品对于不同形状和大小,钢、铝、陶瓷、复合材料或橡胶等不同材料的工件均可提供高质量的实时监测内部裂纹、分层等。 用于非金属、轻金属、铸造件、各种合金、压力容器等进行X射线无损检测。主要检测焊接缺陷(裂纹、气孔、夹渣、未溶合、未焊透等)以及腐蚀和装配缺陷。XRAY微焦点工作原理和发展:在伦琴先生发现X-Ray后的不久,他就认识到X-Ray可以用于材料检测。但直到上世纪70年代,X-Ray才开始被用于工业领域。由于当时电子产品的微小化以及对元部件可靠性要求的提高,人们极其关注在微米范围内的材料缺陷分析。如今微米焦点X-Ray检测已经稳定地被应用于无损害材料检测,并且通过不断的技术革新将在更广泛的工业领域中被使用.  基本原理 在微米焦点X-Ray检测的过程中,扇形的X-Ray穿过待检样品,然后在图像接收器(现在大多使用X-Ray图像增强器)上形成一个放大的X光图。该图像的质量主要由以下三点决定:放大率、分辨率及对比度。图像分辨率(清晰度)主要由X射线源的大小决定,微米焦点X-Ray放射管的射线源只有几个微米。图像的几何放大率由X光路的几何性质决定(图1),在实际应用中可达到1000至2500倍。 具体物体的微小部分在图片上的表现力主要是由该部分的本身属性在X光图上产生的对比度决定。对比度主要由物体内部的不同厚度,及不同材料(如印制线路板上的铜印制导线),对光线的不同程度吸收而引起的。举例来说,样品A和B拥有相同的厚度,如果A的原子序数较B大,则它对射线的吸收性能较B强。C与B的组成物质相同,若C比B薄,则其对射线的吸收性能比较弱。对比度除与X-ray本征特性有关外,在技术上的局限是由X射线探测器的性质决定的。对图像增强器而言,只有吸收差别达到至2%,才能在X光图中清晰地呈现出来。   X射线管当高速带电粒子突然被减速时,X-Ray就产生了。在简单的X射线管中,电子从热阴极中出来,通过一个电场,向阳极加速。在撞到阳极时停止,同时释放出X射线。碰撞区域的大小就是X射线源的大小,它以毫米为单位,在这种情况下我们只能得到很不清晰的画面。通过微焦点X射线管的使用,就能改变这种状况。电子通过阳极上的一个小孔进入磁电子透镜,该透镜中的磁场力使电子束聚焦在阴极靶上一个直径只有几微米的焦点上。通过这种方式X射线源变得很小,在高放大率的情况下能得到分辨率在微米范围内的清晰图像。新研制的纳米射线管通过多个透镜的使用分辨率将达到500nm。  X射线探测器 传统的X-Ray探测器是一个射线照相胶卷,它拥有良好的空间分辨率(在10μm内)和对比度(0.5%)和可以保存的检测结果等特点。它的缺点是曝光和冲洗都需要好几分钟的时间。针对这种情况,人们在图像增强器上装了拍摄被检测样品动感画面的影像链接,可是仍然只能得到比较粗糙的分辨率。在物体细节显微检测中,可以通过微焦点X光技术消除这个缺点。在足够大的几何放大率的情况下,图像清晰度只同X射线源的大小有关,因此最小的细节也能被清晰地拍摄下来。新研制的数码X射线探测器在理想状态下将两种图像接受方式合为一体:既能提供动态图像,又能拥有完美的对比度。   应用领域 如今微米X光技术主要应用于电子工业中的过程控制和缺陷分析。在元件组装中首先是隐藏焊点的检测,如:BGA封装中的气孔,浸润缺陷,焊桥,及其它的性质,如:焊料的多少,焊点的位移等。在半导体工业中,X光系统作为稳定的工具被应用于集成电路封装中内部连接的无损害检测。因此,在高分辨率的基础上可以检测到直径只有25微米的焊接连线上的最小坏点(图2),及芯片粘接上的气孔在温度降低时晶体的粘合反应等。在多层印制电路板的的制造中,各个板面的排列将被连续地监控。在这里X光系统能精确地测量特别是处于内层位置的结构及焊环宽度,是制造过程优化的基础。此外,如在层间电路金属连通过程中,通过该技术还可以在X光图上清晰地辨认短路及断路,确定它们的位置并作出分析.

  • 荧光宏观成像系统简介

    [url=http://www.f-lab.cn/microscopes-system/macroscopic-imaging.html][b]荧光宏观成像系统[/b][/url]macroscopic imaging专业为心脏成像 cardiac imaging而设计,[b]荧光宏观成像系统[/b]macroscopic imaging和光学映射,光学图谱技术厂用于整体荧光显微镜和荧光成像系统中。[b]荧光宏观成像系统[/b]macroscopic imaging集成了高科技高强度光源照明样品或反射照明样品,结合高数值孔径镜头,CCD相机和光电二极管探测器。宏观成像系统实验通常采用双波长,这样可测量细胞内钙离子和膜电位。宏观成像系统提供固定或可变的镜头系统,捕捉视场从4x4mm到50x50mm,并且可根据用户实验而增加放大成像器。[img=宏观成像系统]http://www.f-lab.cn/Upload/macroscopic-imaging.jpg[/img]荧光宏观成像系统:[url]http://www.f-lab.cn/microscopes-system/macroscopic-imaging.html[/url][b][/b]

  • X射线成像仪简介

    本视频简单的向大家介绍了什么是X射线成像仪,以及它的主要组成部分即X射线源、高精度样品台、光学物镜耦合的CCD探测器、计算机图形控制系统:同时介绍了X射线成像仪的工作流程、应用范围

  • 深圳先进院碳纳米X射线成像技术取得进展

    中国科学院深圳先进技术研究院承担的国家科技支撑计划“基于碳纳米X射线发射源的CT系统研发”课题团队利用自主研发的碳纳米管薄膜成功地获取首张X射线二维成像图。1月17日,科技部组织的专家组在先进院听取了团队工作汇报并现场考察了该成像装置,对该技术表示了充分肯定,这是我国在碳纳米管X射线源成像研究方面取得的突破性进展和成果。 碳纳米管X射线源是最近几年发展起来的被认为是具有革命性的新型X射线源。具有一百年历史的传统X射线源基于热电子发射阴极,而碳纳米管X射线源创新性的用碳纳米管场发射阴极取代热阴极,从而使该X射线源具有可控发射、高时间分辨、低功耗且易于集成等诸多优势。这些优势将给X射线CT带来结构上的突破。其中,最具潜力的方向之一即基于碳纳米管X射线源阵列的静态扫描CT。该CT以电子式的扫描取代传统的机械转动来获取不同角度的图像,可消除机械转动带来的成像伪影,缩短扫描时间,从而减少病人的辐射剂量,有望提高CT扫描的图像精度。 先进院医工所劳特伯医学成像中心研究团队,经近2年的技术攻关,制备出性能优异的碳纳米管薄膜并研制了基于新光源的X射线成像系统。自主研发的碳纳米管薄膜发射电流密度已达到国际先进水平,研制的X射线源成像系统获得了首张X射线二维成像图。团队目前正在进一步提高阴极稳定性、优化射线源结构,以期开展CT的三维成像。 据悉,作为该课题承担单位的深圳先进院在注重自主研发的同时,也重视与国际前沿单位的密切合作。项目团队所在研究影像中心及国家地方联合高端影像工程实验室在CT系统研制方面具有重要的经验和基础,曾成功研发了高分辨显微CT和低剂量口腔CT,显微CT已经成功应用到中国科学院动物研究所,口腔CT已经进入产业化阶段。正在研发的碳纳米管X射线CT作为一项前瞻性的科学研究,为开发新一代的CT系统储备技术,形成自主知识产权。http://www.cas.cn/ky/kyjz/201301/W020130122537020414424.png左:成像装置图              右:成像图

  • 【原创】X射线荧光光谱仪基础知识普及(一)X射线

    X射线波长小于0.01nm的称超硬X射线,在0.01~0.1nm范围内的称硬X射线,0.1~10nm范围内的称软X射线。X射线具有很强的穿透力,医学上常用作透视检查,工业中用来探伤。长期受X射线辐射对人体有伤害。X射线可激发荧光、使气体电离、使感光乳胶感光,故X射线可用电离计、闪烁计数器和感光乳胶片等检测。晶体的点阵结构对X射线可产生显著的衍射作用,X 射线衍射法已成为研究晶体结构、形貌和各种缺陷的重要手段。特点  X射线的特征是波长非常短,频率很高,其波长约为(20~0.06)×10-8厘米之间。因此X射线必定是由于原子在能量相差悬殊的两个能级之间的跃迁而产生的。所以X射线光谱是原子中最靠内层的电子跃迁时发出来的,而光学光谱则是外层的电子跃迁时发射出来的。X射线在电场磁场中不偏转。这说明X射线是不带电的粒子流,因此能产生干涉、衍射现象。  X射线谱由连续谱和标识谱两部分组成 ,标识谱重叠在连续谱背景上,连续谱是由于高速电子受靶极阻挡而产生的 轫致辐射 ,其短波极限λ 0 由加速电压V决定:λ 0 = hc /( ev )为普朗克常数, e 为电子电量, c 为真空中的光速。标识谱是由一系列线状谱组成,它们是因靶元素内层电子的跃迁而产生,每种元素各有一套特定的标识谱,反映了原子壳层结构 。同步辐射源可产生高强度的连续谱X射线,现已成为重要的X射线源。  X射线具有很高的穿透本领,能透过许多对可见光不透明的物质,如墨纸、木料等。这种肉眼看不见的射线可以使很多固体材料发生可见的荧光,使照相底片感光以及空气电离等效应,波长越短的X射线能量越大,叫做硬X射线,波长长的X射线能量较低,称为软X射线。当在真空中,高速运动的电子轰击金属靶时,靶就放出X射线,这就是X射线管的结构原理。  放出的X射线分为两类:  (1)如果被靶阻挡的电子的能量,不越过一定限度时,只发射连续光谱的辐射。这种辐射叫做轫致辐射,连续光谱的性质和靶材料无关。  (2)一种不连续的,它只有几条特殊的线状光谱,这种发射线状光谱的辐射叫做特征辐射,特征光谱和靶材料有关。X射线的危害x射线和其他辐射线,一般对人的伤害分为两种,一是通过能量传递,对人体细胞的DNA进行破坏,称为物理效应,还有一种是,由射线对人体组织内水发生电离,产生自由基,这些自由基再和生物大分子发生作用,导致不可逆损伤,称为生物效应。x射线以生物效应为主。辐射作用于生物体时能造成电离辐射,这种电离作用能造成生物体的细胞、组织、器官等损伤,引起病理反应,称为辐射生物效应。辐射对生物体的作用是一个非常复杂的过程,生物体从吸收辐射能量开始到产生辐射生物效应,要经历许多不同性质的变化,一般认为将经历四个阶段的变化: ①物理变化阶段:持续约10-16秒,细胞被电离; ②物理-化学变化阶段:持续约10-6秒,离子与水分子作用,形成新产物; ③化学变化阶段:持续约几秒,反应产物与细胞分子作用,可能破坏复杂分子;④生物变化阶段:持续时间可以是几十分钟至几十年,上述的化学变化可能破坏细胞或其功能。辐射生物效应可以表现在受照者本身,也可以出现在受照者的后代。表现在受照者本身的称为躯体效应(按照显现的时间早晚又分为近

  • 【分享】最新医学成像技术透视奇妙人体构造---科学见证美丽(图)

    [center]最新医学成像技术透视奇妙人体构造 [/center] 据美国《探索》杂志报道,医学成像技术在过去几年取得了突飞猛进的发展,如今,这些新技术可以甄别人体任何结构以及许多重要生物过程,比如不同的血流速度。以下这组图片不仅揭示了患病后的人体构造,还在视觉上给人以冲击。 1.精神分裂症患者大脑图像 [img]http://www.sciencenet.cn/upload/news/images/2009/10/20091016141239928.jpg[/img]精神分裂症患者大脑弥散张量成像(DTI) 一种描述大脑结构的新方法被称为弥散张量成像(DTI)。这张图便是医疗人员在研究精神分裂症患者时,利用弥散张量成像技术制作出来的。 [img]http://www.sciencenet.cn/upload/news/images/2009/10/20091016141213834.jpg[/img]像这样的弥散张量成像图(呈现方式与以前的图像不同)可以揭示脑瘤如何影响神经细胞连接,引导医疗人员进行大脑手术。 弥散张量成像其实是核磁共振成像(MRI)的特殊形式。举例来说,如果说核磁共振成像是追踪水分子中的氢原子,那么弥散张量成像便是依据水分子移动方向制图。神经细胞纤维长而薄,分子通常会沿着神经细胞纤维扩散。研究人员可以突出水分子和一组组神经细胞纤维以相同方向运行的部位。像这样的弥散张量成像图(呈现方式与以前的图像不同)可以揭示脑瘤如何影响神经细胞连接,引导医疗人员进行大脑手术。它还可以揭示同中风、多发性硬化症、精神分裂症、阅读障碍有关的细微反常变化。 2. 核磁共振成像 [img]http://www.sciencenet.cn/upload/news/images/2009/10/2009101614120194.jpg[/img]核磁共振成像 在核磁共振成像仪器下,患者躺在圆柱形磁体内,暴露于强大的磁场。一旦暴露在磁场中,水分子的质子会排成一行,要是遭到无线电波的攻击,它们会立即乱作一团,不成直线。在质子重新排列过程中,电脑会收集它们的信号,并加工成图像。富含水的组织会发出更强烈的信号,在生成的图像中看上去更亮,而骨骼相对较暗。这项技术用在此处是来描述大脑和颈部动脉的。在注射了用于对比的成像剂以后,放射线专家重复扫描,这时,成像剂在血管中移动,使他们可以看清楚造成中风、脑动脉瘤和各种外伤的堵塞物。 [img]http://www.sciencenet.cn/upload/news/images/2009/10/20091016141138944.jpg[/img]脊椎管和大脑处的明亮区域表示脑脊髓液。 核磁共振成像技术还经常用在神经成像方面。脊椎管和大脑处的明亮区域表示脑脊髓液;向下延伸至身体的长条状体则是脊髓。 3.X光血管成像术 [img]http://www.sciencenet.cn/upload/news/images/2009/10/20091016141124647.jpg[/img]X光血管成像术 X光血管成像术让手上如此细小的血管都呈现出来。由这种最新数码探测仪生成的图像质量可以让放射科医师不用使用高剂量辐射物,也能看清楚器官的细微之处。这张照片显示了手外伤的直接影响——没有血液流向第四根手指,而其他手指的小血管却清晰可见。 [img]http://www.sciencenet.cn/upload/news/images/2009/10/200910161410206.jpg[/img]X光血管成像术 制作有用的医学图像涉及两个主要步骤:一是搜集数据,二是将这些数据转换为可快速、准确解读的图像。这张图像由一种称为X射线断层成像(简称CT)的先进X光技术生成,突出了上述两个方面的进步。体绘制软件(Volume-rendering software)结合CT血管成像技术,可以识别心脏附近主动脉(从图像顶端延伸至身体下部、心脏周围的大片粉色血管)的异常情况。再往下,可以清楚看到肝脏(紫色)和肾脏(鲜红色)。准确测定主动脉直径至关重要,因为外科医生可以借此判断主动脉是否存在破裂的风险。 4.CT血管成像 [img]http://www.sciencenet.cn/upload/news/images/2009/10/2009101614104491.jpg[/img]CT血管成像 对于此处用以显现骨盆的CT血管成像来说,成像剂会注射到静脉,使血管同软组织形成鲜明对比。电脑软件可以进一步凸显骨骼和血管之间的差别,让医生可以做出更明确、更快速地诊断。 [img]http://www.sciencenet.cn/upload/news/images/2009/10/2009101614948897.jpg[/img]此图中的两只手是尸检扫描的结果 通常情况下,CT使用一个X光源,但研究人员可以将两个不同能量的X光源结合起来,更清晰地呈现软组织。根据特定组织(比如图中两只手的腱和韧带)吸收不同能量的事实,仪器可以突出展示它们的图像。为检验这种呈现方式的准确性,研究人员对尸体进行了扫描,将扫描结果同他们的“虚拟”发现相比较。此图中的两只手就是尸检扫描的结果。当然,CT技术的主要目标是改善健康,但也存在用于虚拟尸检的可能性。作为法医检查的一部分,像这样的CT扫描可以揭示小刀等物体的路径。 5.正电子放射层扫描术(PET) [img]http://www.sciencenet.cn/upload/news/images/2009/10/2009101614932866.jpg[/img]正电子放射层扫描术(PET) 很多医学成像技术主要集中在解剖构造方面,正电子放射层扫描术(PET)有所不同:这种技术生成的图像突出了细胞活动。医生先给患者注射放射性示踪剂,接着,吸收示踪剂最多的细胞会发出亮光。此图中的示踪剂是葡萄糖。癌细胞会快速生长并分裂,因此会消耗大量能量,吸收葡萄糖。红色表示患者肝脏和肩部有问题。大脑和心脏(C形红块是心脏肌肉壁,即心肌层)同样会大量消耗能量,所以也会呈现出来。PET扫描和CT扫描二者结合,能够突出图中的人体构造。图一是PET扫描,图二是CT扫描,图三是PET扫描和CT扫描的结合,这使得医生可以更准确地看清楚问题所在。同核磁共振成像仪一样,正电子放射层扫描仪可以采集多个平面的数据。在这三张图中,分别只有一个“切片”显示出来,只要结合所有这些切片,就能生成三维图。 [img]http://www.sciencenet.cn/upload/news/images/2009/10/2009101614916850.jpg[/img]在这张图中,PET扫描确认的癌组织是蔚蓝色圆团状物体,而CT扫描锁定了它在结肠的位置。 根据CT扫描,肾脏(红色)、骨骼和血管的结构也都清晰可见。PET技术最常用于肿瘤学检查,也应用于心脏病学和神经病学领域。生成此图的仪器制造商“GE Healthcare”日前引进了两种系统,帮助研究人员探索新的临床应用。据美国放射学学院的布鲁斯希尔曼(Bruce Hillman)介绍,由于可以监测细胞功能,PET就是一系列用以监控人体细胞和亚细胞新工具的典型代表。 更多阅读 美国《探索》杂志相关报道(英文)http://discovermagazine.com/photos/07-brain-saving-mind-blowing-hi-tech--medical-imaging

  • X射线衍射仪与X射线荧光光谱仪有什么不同?

    X射线衍射仪简称XRD( X-ray diffractometer ),特征X射线及其衍射X射线是一种波长(0.06-20nm)很短的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相机乳胶感光、气体电离。用高能电子束轰击金属靶产生X射线,它具有靶中元素相对应的特定波长,称为特征X射线。如铜靶对应的X射线波长为0.154056 nm。X射线荧光光谱仪简称XRF( X Ray Fluorescence ),人们通常把X射线照射在物质上而产生的次级X射线叫X射线荧光(X—Ray Fluorescence),而把用来照射的X射线叫原级X射线。所以X射线荧光仍是X射线。一台典型的X射线荧光(XRF)仪器由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量。X射线照在物质上而产生的次级 X射线被称为X射线荧光。利用X射线荧光原理,理论上可以测量元素周期表中铍以后的每一种元素。在实际应用中,有效的元素测量范围为9号元素 (F)到92号元素(U)。

  • 【转帖】X射线荧光光谱仪原理用途

    X射线荧光衍射:利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。按激发、色散和探测方法的不同,分为X射线光谱法(波长色散)和X射线能谱法(能量色散)。 当原子受到X射线光子(原级X射线)或其他微观粒子的激发使原子内层电子电离而出现空位,原子内层电子重新配位,较外层的电子跃迁到内层电子空位,并同时放射出次级X射线光子,此即X射线荧光。较外层电子跃迁到内层电子空位所释放的能量等于两电子能级的能量差,因此,X射线荧光的波长对不同元素是特征的。 根据色散方式不同,X射线荧光分析仪相应分为X射线荧光光谱仪(波长色散)和X射线荧光能谱仪(能量色散)。 X射线荧光光谱仪主要由激发、色散、探测、记录及数据处理等单元组成。激发单元的作用是产生初级X射线。它由高压发生器和X光管组成。后者功率较大,用水和油同时冷却。色散单元的作用是分出想要波长的X射线。它由样品室、狭缝、测角仪、分析晶体等部分组成。通过测角器以1∶2速度转动分析晶体和探测器,可在不同的布拉格角位置上测得不同波长的X射线而作元素的定性分析。探测器的作用是将X射线光子能量转化为电能,常用的有盖格计数管、正比计数管、闪烁计数管、半导体探测器等。记录单元由放大器、脉冲幅度分析器、显示部分组成。通过定标器的脉冲分析信号可以直接输入计算机,进行联机处理而得到被测元素的含量。 X射线荧光能谱仪没有复杂的分光系统,结构简单。X射线激发源可用X射线发生器,也可用放射性同位素。能量色散用脉冲幅度分析器 。探测器和记录等与X射线荧光光谱仪相同。 X射线荧光光谱仪和X射线荧光能谱仪各有优缺点。前者分辨率高,对轻、重元素测定的适应性广。对高低含量的元素测定灵敏度均能满足要求。后者的X射线探测的几何效率可提高2~3数量级,灵敏度高。可以对能量范围很宽的X射线同时进行能量分辨(定性分析)和定量测定。对于能量小于2万电子伏特左右的能谱的分辨率差。 X射线荧光分析法用于物质成分分析,检出限一般可达10-5~10-6克/克(g/g),对许多元素可测到10-7~10-9g/g,用质子激发时 ,检出可达10-12g/g;强度测量的再现性好;便于进行无损分析;分析速度快;应用范围广,分析范围包括原子序数Z≥3的所有元素。除用于物质成分分析外,还可用于原子的基本性质如氧化数、离子电荷、电负性和化学键等的研究。

  • 【资料】X射线荧光光谱仪的分析基本原理及详解

    X射线荧光光谱仪主要由激发、色散、探测、记录及数据处理等单元组成。激发单元的作用是产生初级X射线。它由高压发生器和X光管组成。后者功率较大,用水和油同时冷却。色散单元的作用是分出想要波长的X射线。它由样品室、狭缝、测角仪、分析晶体等部分组成。通过测角器以1∶2速度转动分析晶体和探测器,可在不同的布拉格角位置上测得不同波长的X射线而作元素的定性分析。探测器的作用是将X射线光子能量转化为电能,常用的有盖格计数管、正比计数管、闪烁计数管、半导体探测器等。记录单元由放大器、脉冲幅度分析器、显示部分组成。通过定标器的脉冲分析信号可以直接输入计算机,进行联机处理而得到被测元素的含量。X射线荧光能谱仪没有复杂的分光系统,结构简单。X射线激发源可用X射线发生器,也可用放射性同位素。能量色散用脉冲幅度分析器 。探测器和记录等与X射线荧光光谱仪相同。X射线荧光光谱仪和X射线荧光能谱仪各有优缺点。前者分辨率高,对轻、重元素测定的适应性广。对高低含量的元素测定灵敏度均能满足要求。后者的X射线探测的几何效率可提高2~3数量级,灵敏度高。可以对能量范围很宽的X射线同时进行能量分辨(定性分析)和定量测定。对于能量小于2万电子伏特左右的能谱的分辨率差。X射线荧光分析法用于物质成分分析,检出限一般可达10-5~10-6克/克(g/g),对许多元素可测到10-7~10-9g/g,用质子激发时 ,检出可达10-12g/g;强度测量的再现性好;便于进行无损分析;分析速度快;应用范围广,分析范围包括原子序数Z≥3的所有元素。除用于物质成分分析外,还可用于原子的基本性质如氧化数、离子电荷、电负性和化学键等的研究。 [~104490~]

  • X射线荧光光谱仪

    波长色散X射线荧光光谱仪分析对象主要有各种磁性材料(NdFeB、SmCo合金、FeTbDy)、钛镍记忆合金、混合稀土分量、贵金属饰品和合金等,以及各种形态样品的无标半定量分析,对于均匀的颗粒度较小的粉末或合金,结果接近于定量分析的准确度。X荧光分析快速,某些样品当天就可以得到分析结果。适合课题研究和生产监控。 波长色散X射线荧光光谱仪采用晶体或人工拟晶体根据Bragg定律将不同能量的谱线分开,然后进行测量。波长色散X射线荧光光谱一般采用X射线管作激发源,可分为顺序式(或称单道式或扫描式)、同时式(或称多道式)谱仪、和顺序式与同时式相结合的谱仪三种类型。顺序式通过扫描方法逐个测量元素,因此测量速度通常比同时式慢,适用于科研及多用途的工作。同时式则适用于相对固定组成,对测量速度要求高和批量试样分析, 顺序式与同时式相结合的谱仪结合了两者的优点。 美国Cianflone公司扫描型X射线荧光光谱仪(波长色散型)2501XBT型号是ASTM金属基层处理涂层测厚检验标准(D5723-95)、ASTM1306-07和D6906-03中唯一推荐检测仪器。X射线荧光光谱仪是表面金属元素成分分析的理想工具。 Portaspec2501XRF可以试验如下金属和矿物的全定量分析: 铬、钴、铜、金、铁、铅、锂、锰、汞、钼、镍、、铂、银、钍、钛、钨、铀、钒、锌、锆? Portaspec以安全的辐射标准(CRF标准)耐用的光学系统,简便的元素选择操作,强大灵活的测量功能、成为金属元素定量定性的最好分析工具。 PortaspecX系列色散型X射线荧光光谱仪用于质量控制和研究,高效、功能强大,包括触摸屏笔记本电脑。X射线管冷却水浴、真空泵,高压电源于一体,完全实现低成本运行。 PortaspecX系列色散型X射线荧光光谱仪主要特点: XSEBT单一元素; XBT分析从钛到银、从钡到铀的单一或多金属顺序测量; XLT分析AI、Si 、P、S、Cl、K、Ca、Zr 系统设置与样品分析耗时短 移动式测量探头,可实现无损在线检测 符合CRF辐射安全 包括触摸屏笔记本电脑 快速调角开关电源 密封、高效耐用的光学系统实验高精度高可靠性的测量请不要注明出处。否则广告论处。

  • X射线荧光光谱分析

    X射线荧光光谱分析

    X射线荧光光谱分析用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。下图是这两类仪器的原理图。http://ng1.17img.cn/bbsfiles/images/2011/12/201112280433_341844_1601823_3.jpg现将两种类型X射线光谱仪的主要部件及工作原理叙述如下: http://ng1.17img.cn/bbsfiles/images/2011/12/201112280434_341845_1601823_3.jpg两种类型的X射线荧光光谱仪都需要用X射线管作为激发光源。上图是X射线管的结构示意图。灯丝和靶极密封在抽成真空的金属罩内,灯丝和靶极之间加高压(一般为40KV),灯丝发射的电子经高压电场加速撞击在靶极上,产生X射线。X射线管产生的一次X射线,作为激发X射线荧光的辐射源。只有当一次X射线的波长稍短于受激元素吸收限lmin时,才能有效的激发出X射线荧光。大于lmin的一次X射线其能量不足以使受激元素激发。          X射线管的靶材和管工作电压决定了能有效激发受激元素的那部分一次X射线的强度。管工作电压升高,短波长一次X射线比例增加,故产生的荧光X射线的强度也增强。但并不是说管工作电压越高越好,因为入射X射线的荧光激发效率与其波长有关,越靠近被测元素吸收限波长,激发效率越高。   X射线管产生的X射线透过铍窗入射到样品上,激发出样品元素的特征X射线,正常工作时,X射线管所消耗功率的0.2%左右转变为X射线辐射,其余均变为热能使X射线管升温,因此必须不断的通冷却水冷却靶电极。

  • 【转帖】顺序式X射线荧光光谱仪常见故障的诊断方法

    摘 要介绍顺序式X射线荧光光谱仪5种常见故障的诊断及处理方法.故障部位包括X射线发生装置,样品室和光谱室的真空,探测器,晶体和测角仪.关键词 X射线荧光光谱仪,维修中图分类号:TH744.15 文献标识码:B顺序式X射线荧光光谱仪是扫描型的仪器,当仪器运行时,许多部件在动作,如测角仪,晶体转换器,准直器等,经常动作的部件容易出现问题,另外控制和探测各个部件动作的电子线路板也可能出现问题.新型的X射线荧光光谱仪都装有故障诊断软件,分布于仪器各个部位的传感器将仪器的状态信号传输到计算机,供仪器操作者和维修工程师判断仪器是否正常,找到产生故障的部位.但是有些在测量过程中出现的问题靠诊断软件是发现不了的,而且诊断软件仅仅提示产生了故障,要找到产生故障的原因,要求维修人员对仪器的结构比较熟悉,且具有一定的维修经验.本文介绍5种常见故障的产生原因及处理方法.1 故障现象一X射线发生器的高压开不起来.故障分析:这是X射线荧光光谱仪较常见的故障,一般发生在开机时,偶尔也发生在仪器运行中.故障的产生原因可以从三个方面去分析:1,X射线防护系统 2,内部水循环冷却系统 3,高压发生器及X射线光管.1.1 X射线防护系统为了防止X射线泄漏,高压发生器只有在射线防护系统正常的情况下才能启动.射线防护系统正常与否,主要检查以下二部分:1,面板的位置是否正常.X射线荧光光谱仪是一个封闭系统,面板是最外层的射线防护装置,如果有一块面板不到位,仪器就有射线泄漏的可能.因此,每块面板上都有位置接触传感器,面板没有完全合上,高压开不起来.2,X射线的警示标志是否正常.国家标准[1]规定X射线荧光光谱仪必须安装红色警告信号灯并与相应的开关联动,因此如果信号灯失灵,高压也开不起来.有一种简单的方法可以判断高压不能启动是否是由射线防护系统引起,即将仪器的状态设定为维修状态,屏蔽射线防护系统,如果这时高压可以开起来,就可以确定故障是由射线防护系统的问题引起的.1.2 内部水循环冷却系统高压发生器的输出功率一般为3kW或4kW,将高压加至X射线光管后,除小部分用于产生X射线外,大部分转化为热能,由内部水循环冷却系统带走.内循环水用于冷却阳极靶附近的光管头部分,因此要求内循环水为电导率很低的去离子水,以防高压击穿.内循环水通过仪器内部的去离子树脂柱降低电导率,去离子树脂柱中的树脂会年久失效,因此高压无法启动时,可检查一下内循环水的电导率,如果电导率降不下去,考虑更换树脂.另外,内循环水的水位过低,也会导致高压开不起来.还有一种故障现象是高压开起来几分钟后跳掉,产生这种故障的原因可能为内循环水的流量过小.内循环水的流量通过流量计测量,水流过流量计时,带动流量计内的叶轮,叶轮切割磁力线,产生电信号.叶轮在水中长期转动,可能会锈蚀,从而使叶轮的转速减慢,流量计的电信号减弱,使仪器误认为水流量过小而导致高压跳掉.另外内循环水的过滤网堵塞导致水流量减小,也会引起高压跳掉.1.3 高压发生器及X射线光管本身高压发生器和X射线光管是仪器内最贵重的部件,一般不会出问题.检查高压发生器,可将高压发生器打开,根据电路图,检查各个开关是否在正常位置,看一下保险丝有没有熔断,再进一步的检查最好由专业维修工程师来做.X射线光管是个封闭的部件,一旦损坏,只能更换,不能修理.检查X射线光管,可检查X射线光管与高压电缆的连接是否正常,高压电缆有无损坏.2 故障现象二光谱室和样品室的真空抽不到规定值.故障分析:X射线荧光光谱分析通常在真空光路条件下工作,但光谱室和样品室有很多部位与外部相连,可能漏气的部位很多.检查真空故障时,将可能出问题的地方人为分隔为三部分:真空泵,样品室,光谱室,对这三部分逐一检查以缩小范围.2.1 真空泵将真空泵与光谱室和样品室的接口拆下并用橡皮塞堵住,然后抽真空,如果能在几秒钟内抽到规定值,可以排除真空泵出现故障的可能性.如果能抽到规定值但时间较长,可能是真空泵的效率降低,这种情况一般发生在经常分析压片样品和油品的仪器上,粉末或油被吸到真空泵油中,改变了油的粘度,这时需更换真空泵油.2.2 样品室样品室最常见的漏气部位是样品自转装置上的密封圈,样品测量时通常以0.5转/秒的速度自转,仪器几年运行下来,样品自转处的密封圈磨损,密封效果变差.2.3 光谱室光谱室最常见的漏气部位是流气计数器,流气计数器安装在光谱室内,有一根入气管和一根出气管与外界相通,流气计数器的窗膜很薄,窗膜漏气,就会影响光谱室真空.检查方法:将入气管和出气管用一根软管连接,使流气计数器与外界隔绝,然后抽真空.检查真空故障,在拆卸和安装时,要小心操作,不要让灰或头发掉到密封圈上,以避免产生新的漏气点,安装时可以在密封部位涂一点真空油脂.3 故障现象三计数率不稳定.故障分析:X射线荧光光谱仪的常用探测器有二个:流气计数器和闪烁计数器.闪烁计数器很稳定,问题常出现在流气计数器上.流气计数器窗膜由一块聚酯薄膜,hostaphan膜或聚丙烯薄膜镀上一层很薄(约30nm)的铝膜所构成,由于窗膜承受大气压力,一段时间后随着基体材料的延展,铝膜可能产生裂纹,从而减弱导电性能,这种情况对脉冲高度分布影响不大,但会使计数率不稳定.新型号的X射线荧光光谱仪一般都安装1μm甚至0.6μm的窗膜,而不再使用6μm的窗膜,因此流气计数器的窗膜导电性能下降的可能性增大.检查方法[2]:在低X射线光管功率情况下,选一个K Kα计数率约2000CPS的样品,测定计数率,然后用一个钾含量高的样品取代原样品,将光管调到满功率,保持2分钟,再将X射线光管功率减至原值,测量第一个样品,如窗膜导电正常,将得到原计数率,如窗膜导电性能变差,会发现计数率减小,然后慢慢回升至初始值,这时就应调换窗膜.4 故障现象四2θ扫描时,发现峰形不光滑,有小锯齿状.故障分析:晶体是仪器内最脆弱的部件,尽量不要用手接触衍射面,如果手或其他东西碰到了晶体的衍射面,就会污染晶体,手上的汗或其他物质渗到晶体的表面,使晶体表面的晶格间距发生变化,而X射线荧光的衍射主要发生在晶体的表面,因此造成2θ扫描的峰形不光滑.这种故障一时很难消除,文献[3]介绍了晶体的表面处理方法,但一般清洗不干净.5 故障现象五2θ扫描时只出现噪声信号,没有峰位信号.故障分析:可能的原因有二个:5.1 探测器的前置放大电路出现故障,出现的噪声信号为电路噪声,不是X射线信号.5.2 测角仪的θ和2θ耦合关系发生混乱,通常是控制θ和2θ耦合关系的CMOS中的数据由于电池漏电等原因丢失,这时需要重新对光.参 考 文 献中华人民共和国国家标准,X射线衍射仪和荧光分析仪放射卫生防护标准[S].GB16355-1996.北京:中国标准出版社,1996.1-5.应晓浒,张卫星,陈晓东. 波长色散X射线荧光光谱仪的性能测试方法介绍[J].光谱实验室,2000,17(3):281-285.李国会等,TAP,PET等分析晶体的表面处理,岩矿测试,1989,8(2):147-148.

  • 测量释放α射线粒子尺寸的超高位置分辨率 “α射线成像检测器”。

    日本原子能研究开发机构福岛研究开发部门福岛研究开发基地废堆环境国际共同研究中心远程技术部的森下祐树研究员8月3日宣布,与东北大学未来科学技术共同研究中心的黑泽俊介副教授和山路晃广助教以及三菱电机公司合作,共同开发出了可在现场实时测量释放α射线粒子尺寸的超高位置分辨率 “α射线成像检测器”。该检测器的原型是医疗领域推进开发的α射线成像检测器。通过将其应用于钚样本,证实能以16微米的位置分辨率逐一检测出α射线。该仪器将为提高福岛第一核电站和核燃料设施等的安全性做出贡献

  • 波长色散型X射线荧光光谱仪与能量色散型X射线荧光光谱仪的比较

    虽然波长色散型(ED-XRF)X射线荧光光谱仪与能量色散型(WD-XRF)X射线荧光光谱仪同属X射线荧光分析仪,它们产生信号的方法相同,最后得到的波谱或者能谱也极为相似,但由于采集数据的方式不同,ED-XRF(波谱)与ED-XRF(能谱)在原理和仪器结构上有所不同,功能也有区别。  (一)原理区别  X-射线荧光光谱法,是用X-射线管发出的初级线束辐照样品,激发各化学元素发出二次谱线(X-荧光)。波长色散型荧光光仪(WD-XRF)是分光晶体将荧光光束色散后,测定各种元素的含量。而能量色散型X射线荧光光仪(WD-XRF)是借助高分辨率敏感半导体检测器与多道分析器将未色散的X-射线按光子能量分离X-射线光谱线,根据各元素能量的高低来测定各元素的量。由于原理不同,故仪器结构也不同。  (二)结构区别  波长色散型荧光光谱仪(WD-XRF),一般由光源(X-射线管)、样品室、分光晶体和检测系统等组成。为了准确测量衍射光束与入射光束的夹角,分光晶体系安装在一个精密的测角仪上,还需要一庞大而精密并复杂的机械运动装置。由于晶体的衍射,造成强度的损失,要求作为光源的X-射线管的功率要大,一般为2~3千瓦。但X-射线管的效率极低,只有1%的电功率转化为X-射线辐射功率,大部分电能均转化为热能产生高温,所以X-射线管需要专门的冷却装置(水冷或油冷),因此波谱仪的价格往往比能谱仪高。能量色散型荧光光谱仪(WD-XRF),一般由光源(X-射线管)、样品室和检测系统等组成,与波长色散型荧光光谱仪的区别在于它用不分光晶体。由于这一特点,使能量色散型荧光光仪具有如下优点:  ①仪器结构简单,省略了晶体的精密运动装置,也无需精度调整。还避免了晶体衍射所造成的强度损失。光源使用的X-射线管功率低,一般在100W以下,不需要昂贵的高压发生器和冷却系统,空气冷却即可,节省电力。  ②能量色散型荧光光仪的光源、样品、检测器彼此靠得很近,X-射线的利用率很高,不需要光学聚集,在累积整个光谱时,对样品位置变化不象波长色散型荧光光谱仪那样敏感,对样品形状也无特殊要求。  ③在能量色散谱仪中,样品发出的全部特征X-射线光子同时进入检测器,这就奠定了使用多道分析器和荧光屏同时累积和显示全部能谱(包括背景)的基础,也能清楚地表明背景和干扰线。因此,半导体检测器X-射线光谱仪能比晶体X-射线光谱仪快而方便地完成定性分析工作。  ④能量色散法的一个附带优点是测量整个分析线脉冲高度分布的积分程度,而不是峰顶强度。因此,减小了化学状态引起的分析线波长的漂移影响。由于同时累积还减小了仪器的漂移影响,提高净计数的统计精度,可迅速而方便地用各种方法处理光谱。同时累积观察和测量所有元素,而不是按特定谱线分析特定元素。因此,见笑了偶然错误判断某元素的可能性。(选自网络,侵删)

  • 国防科大研成电磁波穿透成像探测仪

    科技日报讯 (葛林楠 李治)近日,国防科技大学研制成功新型电磁波穿透成像探测仪。该探测仪能穿透非金属介质,探测内部微小隐蔽物体并对物体成像,分辨率达到2mm,可广泛应用于建筑、生物医学、反恐、安检等领域。 该探测仪体积小,与一个普通的电饭煲相当,单人即可手持操作。与同类设备如X光机和CT机相比,其体积、重量都大大缩小。由于该设备采用电磁波完成探测工作,没有高能射线辐射危险,完全没有放射性,操作人员无需像操作X光机那样进行专门防护。该探测仪电磁波辐射功率极低,不到手机辐射十分之一,对人体非常安全。 该款探测仪采用电磁波完成对物体内部的探测成像。其内部集成了超宽带电磁波收发组件,可以对非金属物体内部进行快速的电磁波扫描。通过借助强大的数字信号处理能力,将扫描对象内部的结构和异物的形状清晰地显示出来。使用该探测仪,就犹如为操作者安装上一双“透视眼”。该探测仪具有广泛的用途,可用于检查建筑物墙体内钢筋、线缆的分布,可检测生物组织的早期癌变,可用于检测建筑物内预埋的爆炸物,可对藏在身上的武器和危险品进行检测。 据研发人员陆珉副教授介绍:“早期癌变组织的密度变化不大,使用CT检查效果不明显,但是电磁特性变化较大,使用电磁波探测就能取得很好的效果。” 该款设备是目前国内唯一利用主动电磁波实现高精度二维穿透成像的设备,其成像分辨率居于世界先进水平。该设备将为我国多个行业提供重要的技术支撑,可在某些领域代替X光机、CT机等放射性探测仪器。来源:中国科技网-科技日报 作者:葛林楠 李治 2014年06月09日

  • 国产化学荧光成像系统与进口(UVP,伯乐)同类产品的参数PK

    美国UVP BioSpectrum 600美国伯乐 ChemiDoc™ XRS+ 系统上海领成 Tocan820相机OptiChemi HR Camera (600) Computar 变焦镜头,6倍光学变焦,8—48mmCCD采用高分辨率CCD(570线)超冷 CCDSONY ICX285Ak制冷数字专业CCD冷却温度绝对温度-35°C 且温度可调–30°C(受控)绝对温度 –45°C分辨率2184 x 1472 Pixel(320万像素)1392×1040(140万像数)1392×1040(140万像数)色阶16Bits(65536级)65535 调焦自动调焦,软件控制进行焦距、光圈、滤光片和放大缩小等功能调节自动对焦可通过机箱面板进行变焦、焦距、光圈、透射紫外灯及反射灯的全自动控制观察窗凝胶视窗,装有保护玻璃,无需开门便可快速观察样品——防紫外辐射,弹出式观察窗数据传输FireWire(IEEE-1394)PC接口,使数据快捷而简便传输——USB2.0传输数据;另配独立USB转COM端口滤光片位置根据不同发射波长要求,采取了五位滤片轮设计,由软件控制滤光片的变换3 个位置(2 个用于滤光片,1 个无滤光片,用于化学发光)5位滤光片轮光源可选配外接卤素光源,配置不同的激发光滤光片用于不同荧光成像分析标准透射紫外(302 nm 标配;254 nm和 365 nm 选配)和反射白光,透射白光选配,自带电源;XcitaBlue™ 紫外光/蓝光转换屏选配透射波长:302nm(254nm、365nm为选配件),反射光源:高亮LED冷

  • 波长色散型X射线荧光光谱仪与能量色散型X射线荧光光谱仪的区别

    一.X射线荧光分析仪简介 X射线荧光分析仪是一种比较新型的可以对多元素进行快速同事测定的仪器。在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(X-荧光)。波长和能量是从不同的角度来观察描述X射线所采用的两个物理量。波长色散型X射线荧光光谱仪(WD-XRF)。是用晶体分光而后由探测器接受经过衍射的特征X射线信号。如果分光晶体和控测器做同步运动,不断地改变衍射角,便可获得样品内各种元素所产生的特征X射线的波长及各个波长X射线的强度,可以据此进行特定分析和定量分析。该种仪器产生于50年代,由于可以对复杂体进行多组同事测定,受到关注,特别在地质部门,先后配置了这种仪器,分析速度显著提高,起了重要作用。随着科学技术的进步在60年代初发明了半导体探测仪器后,对X荧光进行能谱分析成为可能。能谱色散型X射线荧光光谱仪(ED-XRF),用X射线管产生原级X射线照射到样品上,所产生的特征X射线(荧光)这节进入SI(LI)探测器,便可以据此进行定性分析和定量分析,第一胎ED-XRF是1969年问世的。近几年来,由于商品ED-XRF仪器及仪表计算机软件的发展,功能完善,应用领域拓宽,其特点,优越性日益搜到认识,发展迅猛。 二.波长色散型X射线荧光光谱仪与能量色散型X射线荧光光谱仪的区别 虽然光波色散型(ED-XRF)X射线荧光光谱仪与能量色散型(ED-XRF)X射线荧光光谱仪同属于X射线荧光分析仪,它产生信号的方法相同,最后得到的波谱也极为相似,单由于采集数据的方式不同,WD-XRF(波谱)与WD-XRF(能谱)在原理和仪器结构上有所不同,功能也有区别。(一)原理区别 X射线荧光光谱法,是用X射线管发出的初级线束辐照样品,激发各化学元素发出二次谱线(X-荧光)。波长色散型荧光光仪(WD-XRF)是用分光近体将荧光光束色散后,测定各种元素的特征X射线波长和强度,从而测定各种元素的含量。而能量色散型荧光光仪(ED-XRF)是借组高分辨率敏感半导体检查仪器与多道分析器将未色散的X射线荧光按光子能量分离X色线光谱线,根据各元素能量的高低来测定各元素的量,由于原理的不同,故仪器结构也不同。(二)结构区别 波长色散型荧光光谱仪(WD-XRF),一般由光源(X-射线管),样品室,分光晶体和检测系统等组成。为了准且测量衍射光束与入射光束的夹角,分光晶体系安装在一个精密的测角仪上,还需要一庞大而精密并复杂的机械运动装置。由于晶体的衍射,造成强度的损失,要求作为光源的X射线管的功率要打,一般为2-3千瓦,单X射线管的效率极低,只有1%的功率转化为X射线辐射功率,大部分电能均转化为而能产生高温,所以X射线管需要专门的冷却装置(水冷或油冷),因此波谱仪的价格往往比能谱仪高。 能量色散型荧光光谱仪(DE-XRF)

  • 高速荧光成像系统特点

    这款[url=http://www.f-lab.cn/vivo-imaging/micam05.html][b]高速荧光成像系统[/b]micam05[/url]是专业为神经成像,钙成像应用而设计的[b]高速神经成像系统[/b],能够长时间高速成像和记录存储高速图像.高速荧光成像系统micam05具有超低噪音,非常适合[b]染料成像[/b]和[b]钙成像[/b]应用,也可用于[b]荧光蛋白质电压[/b]/钙指示剂,如FRET成像和[b]GCaMP成像,血红蛋白成像[/b]或[b]黄素蛋白成像[/b]。[b]高速荧光成像系统micam05特点[/b]采用USB3.0接口高速数据传输技术,外部设备的兼容性好,适合实时像素输出和额外的模拟输入。用于多种类型科研CCD相机具有多种CMOS相机提供不同的空间/时间分辨率,这些机头可以很容易地切换或更换。(不可能同时使用不同类型的摄像机头)。直接数据存储和USB3.0高速数据传输的长期数据采集新的USB3.0接口允许更快的数据传输处理器的PC可以直接硬盘或SSD数据采集并行,无论内存容量,几分钟到几小时的长期记录都可以。(注意采样率、像素数量、使用的相机数量和PC规格将影响总记录时间)。多达四个摄像头可以很容易地连接和使用在一个完全同步多摄像机的系统中。最多两相机接口板可以连接到micam05处理器。每个接口板配备两个摄像头端口,因此,多达四个的同类型的摄像头可以随时连接。这允许从不同的角度多个荧光波长及三维同时成像。实时光强度监视器/输出可用作标准功能。高速荧光成像系统:[url]http://www.f-lab.cn/vivo-imaging/micam05.html[/url]

  • 【转帖】透射电镜的基本知识

    透射电子显微镜 TRANSMISSION ELECTRON MICROSCOPE 利用电子,一般是利用电子透镜聚焦的电子束,形成放大倍数很高的物体图像的设备。   电子显微镜(以下简称电镜)属电子光学仪器。由于电子的德布罗意波波长比光波短几个量级,所以电镜具有高分辨成像的能力。首先发明的是透射电镜,由M.诺尔和E.鲁斯卡于1932年发明并突破了光学显微镜分辨极限。透射电子显微镜是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像。通常,透射电子显微镜的分辨率为0.1~0.2nm,放大倍数为几万~百万倍,用于观察超微结构,即小于0.2?m、光学显微镜下无法看清的结构,又称"亚显微结构"。透射电镜 (TEM) 样品必须制成电子能穿透的,厚度为100~2000埃的薄膜。成像方式与光学生物显微镜相似,只是以电子透镜代替玻璃透镜。放大后的电子像在荧光屏上显示出来. 透射电子显微镜的成像原理可分为三种情况: 吸收像:当电子射到质量、密度大的样品时,主要的成相作用是散射作用。样品上质量厚度大的地方对电子的散射角大,通过的电子较少,像的亮度较暗。早期的透射电子显微镜都是基于这种原理。 衍射像:电子束被样品衍射后,样品不同位置的衍射波振幅分布对应于样品中晶体各部分不同的衍射能力,当出现晶体缺陷时,缺陷部分的衍射能力与完整区域不同,从而使衍射钵的振幅分布不均匀,反映出晶体缺陷的分布。 相位像:当样品薄至100?以下时,电子可以传过样品,波的振幅变化可以忽略,成像来自于相位的变化。 组件 电子枪:发射电子,由阴极、栅极、阳极组成。阴极管发射的电子通过栅极上的小孔形成射线束,经阳极电压加速后射向聚光镜,起到对电子束加速、加压的作用。 聚光镜:将电子束聚集,可用已控制照明强度和孔径角。 样品室:放置待观察的样品,并装有倾转台,用以改变试样的角度,还有装配加热﹑冷却等设备。 物镜:为放大率很高的短距透镜,作用是放大电子像。物镜是决定透射电子显微镜分辨能力和成像质量的关键。 中间镜:为可变倍的弱透镜,作用是对电子像进行二次放大。通过调节中间镜的电流﹐可选择物体的像或电子衍射图来进行放大。 透射镜:为高倍的强透镜,用来放大中间像后在荧光屏上成像。 此外还有二级真空泵来对样品室抽真空、照相装置用以记录影像。 透射电镜衬度(反差)的来源    TEM衬度的形成,物镜后焦面是起重要作用的部位。电子经样品散射后,相对光轴以同一角度进入物镜的电子在物镜后焦面上聚焦在一个点上。散射角越大,聚焦点离轴越远,如果样品是一个晶体,在后焦面上出现的是一幅衍射图样。与短晶面间距(或者说"高空间频率")对应的衍射束被聚焦在离轴远处。在后焦面上设有一个光阑。它截取那一部分电子不但对衬度,而且对分辨本领有直接的影响。如果光阑太小,把需要的高空间频率部分截去,那么和细微结构对应的高分辨信息就丢失了(见阿贝成像原理)。  样品上厚的部分或重元素多的部分对电子散射的几率大。透过这些部分的电子在后焦面上分布在轴外的多。用光阑截去部分散射电子会使"质量厚度"大的部位在像中显得暗。这种衬度可以人为地造成,如生物样品中用重元素染色,在材料表面的复形膜上从一个方向喷镀一层金属,造成阴阳面等。散射吸收(指被光阑挡住)衬度是最早被人们所认识和利用的衬度机制。就表面复型技术而言,它的分辨本领可达几十埃。至于晶体样品的衍衬像和高分辨的点阵像的衬度来源,见点阵像和电子衍衬像。 应用 透射电子显微镜在材料科学、生物学上应用较多。由于电子易散射或被物体吸收,故穿透力低,样品的密度、厚度等都会影响到最后的成像质量,必须制备更薄的超薄切片,通常为50~100nm。所以用透射电子显微镜观察时的样品需要处理得很薄。常用的方法有:超薄切片法、冷冻超薄切片法、冷冻蚀刻法、冷冻断裂法等。对于液体样品,通常是挂预处理过的铜网上进行观察。

  • 【分享】透射电镜TEM的基本知识

    利用电子,一般是利用电子透镜聚焦的电子束,形成放大倍数很高的物体图像的设备。 电子显微镜(以下简称电镜)属电子光学仪器。由于电子的德布罗意波波长比光波短几个量级,所以电镜具有高分辨成像的能力。首先发明的是透射电镜,由M.诺尔和E.鲁斯卡于1932年发明并突破了光学显微镜分辨极限。透射电子显微镜是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像。通常,透射电子显微镜的分辨率为0.1~0.2nm,放大倍数为几万~百万倍,用于观察超微结构,即小于0.2?m、光学显微镜下无法看清的结构,又称"亚显微结构"。透射电镜(TEM) 样品必须制成电子能穿透的,厚度为100~2000埃的薄膜。成像方式与光学生物显微镜相似,只是以电子透镜代替玻璃透镜。放大后的电子像在荧光屏上显示出来. 透射电子显微镜的成像原理可分为三种情况: 吸收像:当电子射到质量、密度大的样品时,主要的成相作用是散射作用。样品上质量厚度大的地方对电子的散射角大,通过的电子较少,像的亮度较暗。早期的透射电子显微镜都是基于这种原理。 衍射像:电子束被样品衍射后,样品不同位置的衍射波振幅分布对应于样品中晶体各部分不同的衍射能力,当出现晶体缺陷时,缺陷部分的衍射能力与完整区域不同,从而使衍射钵的振幅分布不均匀,反映出晶体缺陷的分布。 相位像:当样品薄至100?以下时,电子可以传过样品,波的振幅变化可以忽略,成像来自于相位的变化。 组件 电子枪:发射电子,由阴极、栅极、阳极组成。阴极管发射的电子通过栅极上的小孔形成射线束,经阳极电压加速后射向聚光镜,起到对电子束加速、加压的作用。 聚光镜:将电子束聚集,可用已控制照明强度和孔径角。 样品室:放置待观察的样品,并装有倾转台,用以改变试样的角度,还有装配加热﹑冷却等设备。 物镜:为放大率很高的短距透镜,作用是放大电子像。物镜是决定透射电子显微镜分辨能力和成像质量的关键。 中间镜:为可变倍的弱透镜,作用是对电子像进行二次放大。通过调节中间镜的电流﹐可选择物体的像或电子衍射图来进行放大。 透射镜:为高倍的强透镜,用来放大中间像后在荧光屏上成像。 此外还有二级真空泵来对样品室抽真空、照相装置用以记录影像。 透射电镜衬度(反差)的来源    TEM衬度的形成,物镜后焦面是起重要作用的部位。电子经样品散射后,相对光轴以同一角度进入物镜的电子在物镜后焦面上聚焦在一个点上。散射角越大,聚焦点离轴越远,如果样品是一个晶体,在后焦面上出现的是一幅衍射图样。与短晶面间距(或者说"高空间频率")对应的衍射束被聚焦在离轴远处。在后焦面上设有一个光阑。它截取那一部分电子不但对衬度,而且对分辨本领有直接的影响。如果光阑太小,把需要的高空间频率部分截去,那么和细微结构对应的高分辨信息就丢失了(见阿贝成像原理)。  样品上厚的部分或重元素多的部分对电子散射的几率大。透过这些部分的电子在后焦面上分布在轴外的多。用光阑截去部分散射电子会使"质量厚度"大的部位在像中显得暗。这种衬度可以人为地造成,如生物样品中用重元素染色,在材料表面的复形膜上从一个方向喷镀一层金属,造成阴阳面等。散射吸收(指被光阑挡住)衬度是最早被人们所认识和利用的衬度机制。就表面复型技术而言,它的分辨本领可达几十埃。至于晶体样品的衍衬像和高分辨的点阵像的衬度来源,见点阵像和电子衍衬像。 应用 透射电子显微镜在材料科学、生物学上应用较多。由于电子易散射或被物体吸收,故穿透力低,样品的密度、厚度等都会影响到最后的成像质量,必须制备更薄的超薄切片,通常为50~100nm。所以用透射电子显微镜观察时的样品需要处理得很薄。常用的方法有:超薄切片法、冷冻超薄切片法、冷冻蚀刻法、冷冻断裂法等。对于液体样品,通常是挂预处理过的铜网上进行观察。

  • 【分享】对于天然装饰石材的放射线辐射危害问题

    一、地球上的一切自然物质中都含有不同数量的天然放射性元素   众所周知,整个地球、乃至整个宇宙的一切自然物质,实际上都是由103种天然元素(不包括人造元素)组成的。在103种天然元素中,有一族元素具有放射性特点,被称为“放射性元素族”,所谓“”放射性元素,是指这些元素的原子核不稳定,在自然界的自然状态下不断地进行核衰变,在衰变过程中放射出αβγ三种射线和有放射性特点的隋性气体氡气。其中的α射线(粒子)实际上是氦(He)元素的原子核,由于它质量大、电离能力强和高速的旋转运行,所以是造成对人体内照射危害的主要射线;β射线是负电荷的电子流;γ射线是类似于医疗透视用的X射线一样和波长很短的电磁波,由于它的穿透力很强,所以是造成人体外照射伤害的主要射线;由衰变而产生的氡(Rn)气是自然界中仍具有放射性特点的惰性气体,由于它还要继续衰变,因此被吸入肺部后,容易造成对人体内照射(特别是对肺)的伤害。在天然“放射性元素”中,人们常听说的放射能量最大的是铀(U)、钍(Th)和镭(Ra),其次有钾-40(40K),铷(Rb)和铯(Cs)。这6种天然放射性元素是构成地球和宇宙自然界一切物质的组成部分(当然很微量),无论是在各类岩石和土壤中,还是在一切江河湖海的水中和大气中,都有不同数量的放射元素存在。其中铀在地壳中占“克拉克值”平均含量的千分之一。这就是说,我们人类和一切生命所赖以地球的成份中本来就始终存在着天然的放射性物质。但是它不但没有阻挡住万物的生存发展和人类的繁衍生息,反而使放射性元素越来越被广泛利用在许多方面(原子核电站、空间技术、医疗技术、同位素技术等)为人类服务。   如此说来,自然界天然存在的低浓度的放射性辐射不但不会危害人类健康,而且已经是自然界平衡系统的组成部分,人类和一切生命已经完全适应了这个平衡系统的生存环境,如果破坏了这个平衡系统,可能反而对人类带来不利的影响。了解这些概念,就知道自然界本来就存在的放射性辐射并不可怕,只要我们能够正确地认识它的基础上科学的应用它,就绝不会造成对人民身心健康的伤害。   二、天然装饰石材中放射性辐射危害究竟有多大   为了了解天然装饰石材的放射性辐射强度,可以对各类天然石材中的放射性元素含量与地壳中的放射性元素的平均进行对比),从各自含量的多寡就可以判定出各类天然装饰石材辐射强度的大小了。只要不超过地壳中的平均含量就不会对人类健康造成影响。

  • 【资料】顺序式X射线荧光光谱仪常见故障的诊断方法

    顺序式X射线荧光光谱仪常见故障的诊断方法应晓浒 陈晓东(宁波出入境检验检疫局,浙江省宁波市,315012)张卫星(德国布鲁克AXS公司北京代表处,北京,100081)摘 要介绍顺序式X射线荧光光谱仪5种常见故障的诊断及处理方法。故障部位包括X射线发生装置、样品室和光谱室的真空、探测器、晶体和测角仪。关键词 X射线荧光光谱仪,维修中图分类号:TH744.15 文献标识码:B顺序式X射线荧光光谱仪是扫描型的仪器,当仪器运行时,许多部件在动作,如测角仪、晶体转换器、准直器等,经常动作的部件容易出现问题,另外控制和探测各个部件动作的电子线路板也可能出现问题。新型的X射线荧光光谱仪都装有故障诊断软件,分布于仪器各个部位的传感器将仪器的状态信号传输到计算机,供仪器操作者和维修工程师判断仪器是否正常,找到产生故障的部位。但是有些在测量过程中出现的问题靠诊断软件是发现不了的,而且诊断软件仅仅提示产生了故障,要找到产生故障的原因,要求维修人员对仪器的结构比较熟悉,且具有一定的维修经验。本文介绍5种常见故障的产生原因及处理方法。1 故障现象一X射线发生器的高压开不起来。故障分析:这是X射线荧光光谱仪较常见的故障,一般发生在开机时,偶尔也发生在仪器运行中。故障的产生原因可以从三个方面去分析:1、X射线防护系统;2、内部水循环冷却系统;3、高压发生器及X射线光管。1.1 X射线防护系统为了防止X射线泄漏,高压发生器只有在射线防护系统正常的情况下才能启动。射线防护系统正常与否,主要检查以下二部分:1、面板的位置是否正常。X射线荧光光谱仪是一个封闭系统,面板是最外层的射线防护装置,如果有一块面板不到位,仪器就有射线泄漏的可能。因此,每块面板上都有位置接触传感器,面板没有完全合上,高压开不起来。2、X射线的警示标志是否正常。国家标准[1]规定X射线荧光光谱仪必须安装红色警告信号灯并与相应的开关联动,因此如果信号灯失灵,高压也开不起来。有一种简单的方法可以判断高压不能启动是否是由射线防护系统引起,即将仪器的状态设定为维修状态,屏蔽射线防护系统,如果这时高压可以开起来,就可以确定故障是由射线防护系统的问题引起的。1.2 内部水循环冷却系统高压发生器的输出功率一般为3kW或4kW,将高压加至X射线光管后,除小部分用于产生X射线外,大部分转化为热能,由内部水循环冷却系统带走。内循环水用于冷却阳极靶附近的光管头部分,因此要求内循环水为电导率很低的去离子水,以防高压击穿。内循环水通过仪器内部的去离子树脂柱降低电导率,去离子树脂柱中的树脂会年久失效,因此高压无法启动时,可检查一下内循环水的电导率,如果电导率降不下去,考虑更换树脂。另外,内循环水的水位过低,也会导致高压开不起来。还有一种故障现象是高压开起来几分钟后跳掉,产生这种故障的原因可能为内循环水的流量过小。内循环水的流量通过流量计测量,水流过流量计时,带动流量计内的叶轮,叶轮切割磁力线,产生电信号。叶轮在水中长期转动,可能会锈蚀,从而使叶轮的转速减慢,流量计的电信号减弱,使仪器误认为水流量过小而导致高压跳掉。另外内循环水的过滤网堵塞导致水流量减小,也会引起高压跳掉。1.3 高压发生器及X射线光管本身高压发生器和X射线光管是仪器内最贵重的部件,一般不会出问题。检查高压发生器,可将高压发生器打开,根据电路图,检查各个开关是否在正常位置,看一下保险丝有没有熔断,再进一步的检查最好由专业维修工程师来做。X射线光管是个封闭的部件,一旦损坏,只能更换,不能修理。检查X射线光管,可检查X射线光管与高压电缆的连接是否正常,高压电缆有无损坏。2 故障现象二光谱室和样品室的真空抽不到规定值。故障分析:X射线荧光光谱分析通常在真空光路条件下工作,但光谱室和样品室有很多部位与外部相连,可能漏气的部位很多。检查真空故障时,将可能出问题的地方人为分隔为三部分:真空泵、样品室、光谱室,对这三部分逐一检查以缩小范围。2.1 真空泵将真空泵与光谱室和样品室的接口拆下并用橡皮塞堵住,然后抽真空,如果能在几秒钟内抽到规定值,可以排除真空泵出现故障的可能性。如果能抽到规定值但时间较长,可能是真空泵的效率降低,这种情况一般发生在经常分析压片样品和油品的仪器上,粉末或油被吸到真空泵油中,改变了油的粘度,这时需更换真空泵油。2.2 样品室样品室最常见的漏气部位是样品自转装置上的密封圈,样品测量时通常以0.5转/秒的速度自转,仪器几年运行下来,样品自转处的密封圈磨损,密封效果变差。2.3 光谱室光谱室最常见的漏气部位是流气计数器,流气计数器安装在光谱室内,有一根入气管和一根出气管与外界相通,流气计数器的窗膜很薄,窗膜漏气,就会影响光谱室真空。检查方法:将入气管和出气管用一根软管连接,使流气计数器与外界隔绝,然后抽真空。检查真空故障,在拆卸和安装时,要小心操作,不要让灰或头发掉到密封圈上,以避免产生新的漏气点,安装时可以在密封部位涂一点真空油脂。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制