当前位置: 仪器信息网 > 行业主题 > >

低频段变频微波化学反应器

仪器信息网低频段变频微波化学反应器专题为您提供2024年最新低频段变频微波化学反应器价格报价、厂家品牌的相关信息, 包括低频段变频微波化学反应器参数、型号等,不管是国产,还是进口品牌的低频段变频微波化学反应器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合低频段变频微波化学反应器相关的耗材配件、试剂标物,还有低频段变频微波化学反应器相关的最新资讯、资料,以及低频段变频微波化学反应器相关的解决方案。

低频段变频微波化学反应器相关的论坛

  • 【资料】-微波有机合成及反应器研究新进展

    [u][i]精细化工中间体:2004,34(2):1-4[/i][/u][b]微波有机合成及反应器研究新进展[/b][i]刘福萍,陆明[/i]摘 要:综述了近年来微波辐射技术在有机合成应用中的新进展。针对微波有机合成反应技术及专用微波反应器作了重点介绍。关键词:微波化学;有机反应;微波反应器1  前言 微波是频率大约在 300 MHz~300 GHz,即波长在 1000~1 mm 范围内的电磁波,它位于电磁波谱的红外光波和无线电波之间。在 20 世纪 60 年代,N. H. Williams就曾经报道了用微波加速某些化学反应的研究结果,但在化学合成中应用微波技术则直到 20 世纪 80 年代初期才开始,当时人们并未预料到它对化学研究领域的重大作用。微波应用于有机合成的研究则始于 1986 年, Gedye 和 Smith等通过比较常规条件与微波辐射条件下进行酯化、水解、氧化等反应,发现在微波辐射下,反应得到了不同程度的加快,而且有的反应速度被加快了几百倍。至今,微波促进有机合成反应已经越来越被化学界人士所看好,而且形成了一门倍受关注的领域 —MORE化学(Microwave-Induced Organic Reaction Enhancement Chemistry) 。将微波用于有机合成的研究涉及酯化、Diels -Alder、重排、Knoevenagel、Perkin、 Witting、 Reformatsky、 Dveckman、羧醛缩合、开环、烷基化、水解、烯烃加成、消除、取代、自由基、立体选择性、成环、环反转、酯交换、酯胺化、催化氢化、脱羧等反应及糖类化合物、有机金属、放射性药剂等的合成反应。2  微波促进有机反应机理 微波广泛应用于雷达和电讯传输产品中,为了防止微波功率对无线电通讯、广播、电视和雷达造成干扰,国际上规定工业、科学研究、医学及家用微波炉等民用微波频率为 915 ±15 MHz 和 2450 ±50MHz。微波技术应用于有机合成反应,反应速度较常规方法相比有的能加快数倍、数十倍,有些反应能加速数百倍甚至数千倍。为什么微波有如此大的效果呢 ? 目前关于微波加速有机反应的机理,化学界存在着两种观点。一种观点认为,虽然微波是一种内加热,具有加热速度快、加热均匀无温度梯度、无滞后效应等特点,但微波应用化学反应仅仅是一种加热方式,与传统加热反应并无区别。他们认为微波应用于化学反应的频率 2450 MHz 属于非电离辐射,在与分子的化学键共振时不可能引起化学键断裂,也不能使分子激发到更高的转动或振动能级。微波对化学反应的加速主要归结为对极性有机物的选择加热,既微波的致热效应。1990 年,Edwin G. E.Jahngen 等研究了三磷酸腺甙 (ATP) 在微波作用下的水解反应,发现微波作用下反应速度是常规加热方式下的25 倍,但在两种加热方式下,反应动力学并没有明显的改变。1992 年, Kevin D. Raner 等通过研究微波对 2,4,6-三甲基苯甲酸与 2-丙醇的酯化反应速度的影响,也得出结果表明最终酯化产率仅与温度因素有关,而与加热方式无关。

  • 【求助】微波反应器和微波消解炉是不是一回事?

    我相买个微波反应器做化学反应,可以搅拌、控温、气体保护的哪种,发现很多都是微波消解的。个人感觉消解和微波反应是不同的,好像不能通用,不是很明白,请教下各位专家。另外,大家可以推荐些好的微波反应器不?

  • 【资料】-关于微波化学反应机理的探讨

    【资料】-关于微波化学反应机理的探讨

    [b]关于微波化学反应机理的探讨[/b][i]苏跃增 孙晓娟 刘萍(江苏石油化工学院化工系 常州 213016)[/i] 微波在化学过程中的功效,愈来愈引起人们的关注;并已将微波用于化学中更多的领域。微波具有比激光低得多的能级,却能在相同的温度甚至更低的温度下,产生比常规方法高几倍甚至几十倍的效率[1],对这种高效率,学术界的观点是不同的,至今尚没有一个严谨的理论能很好地解释微波反应的机理。这无疑制约着微波化学的发展。1 目前对微波影响化学反应机理的认识及局限性 目前,国内外学术界一般认为,微波对化学反应的高效性来自于它对极性物质的热效应:极性分子接受微波辐射能量后,通过分子偶极高速旋转产生内热效应[2],微波对极性分子的热效应是明显的,而传统的加热方式是靠热传导和热对流过程。因而,人们在研究微波反应时,总是将注意力集中在改变微波辐射功率、辐射时间、原料配比、反应容器的大小等方面[2-4]。更重要的一点是,这些研究大都以家用微波炉改装成反应装置,其微波频率是固定不变的(2450MHz),所以也从客观上使人们忽略了微波频率、调制方式等电磁波特性与反应功效是否存在一定的关系,也就是忽略了去研究一定频率的微波对不同极性分子的影响是否相同、不同频率微波对相同极性分子的影响是否一样,忽略了电磁波的相的加载方向不同是否对反应影响不同的研究,如果答案是否定的,那么微波对化学反应的影响就不只是简单的热效应,而还应存在着选择性加热的问题(即物质分子结构与微波频率的匹配关系)、存在着某些特定的非热效应的影响,或者是对分子的活化影响。[img]http://ng1.17img.cn/bbsfiles/images/2006/08/200608211034_24246_1613333_3.jpg[/img]目前的一些实验研究,揭示了一些问题的存在:很多反应在微波条件下副反应增加 有些反应在微波条件下并不比常规加热效果更好 微波可诱导一些选择性反应的发生,如在温和的反应条件下,微波效应能使N-烷氧羰基戊内酰胺选择性优先脱N-烷氧羰基[5],再如Giguere等人[6]对分子间的Diels-Alder反应,进行了研究,在下面反应中: 表现出明显的区域选择性.在通常情况下,简单烯和不对称亲烯体的反应生成异构体混合物,其中烯和亲烯体的b-碳反应所得产物b占优势,但上面的反应式清楚地表明在微波条件下是在亲烯体的a-碳上形成新键,得到产物a,而且未观察到异构体b的生成。 再如,胡希明[7]等人利用微波合成磷酸锌:[img]http://ng1.17img.cn/bbsfiles/images/2006/08/200608211036_24247_1613333_3.jpg[/img]在沸水浴中进行常规反应,不断有氨气放出,产率很低,要提高产率,就必需不断地补充尿素;而在沸水浴条件不变,增加微波辐射的情况下,氨气逸出很少,一次按化学反应计量配比投料,产率即可高达98%。这个现象用过热理论很难解释(如果认为此频率的微波与(NH2)2CO分子结构更为匹配,相当于进行了选择性加热,也降低了反应势能,促使反应;也有人的实验证明:微波有利于(NH2)2CO的分解,促使CO2的溢出,使反应也有利于向正方向进行。这样解释,似乎更为合理);另外,酞菁铜配合物的微波合成和浓硫酸作为璜化剂酞菁铜配合物的微波磺化反应研究,获得了常规加热条件下不能制备的水溶性磺化酞菁铜配合物[8]。这也表现出了微波辐射对化学反应的非热效应。 而银董红等用微波辐射对ZnCl2-HY分子筛催化剂进行了改性研究:用一定量的无水ZnCl2与焙烧制备的HY分子筛充分研磨后,在2450MHz的微波下,辐射下15min,然后将其用于苯甲醚与乙酰氯的酰化反应,发现这种催化剂有良好的初活性[9]。 在微波条件下,天然产物的变旋反应和放射化学反应[10];非溶剂条件下快速合成氨基酸盐[11],如果只用简单热效应解释,也是不圆满的。Alloum A.B. 等人进行干法有机反应[12],将吸附在KSF上的醇和酯混合物,在160W微波照射50min后,产生75%的醛及34%混合酯。而相似条件下,用普通加热方法一点也得不到醛。如此这些用简单的热效应解释,都不能得到满意的答案。 从以上大量的实验现象来看,我们认为,目前对微波化学反应的机理认识还存在着局限性,在微波化学反应中,应该既存在着热效应,还存在着一些有特殊作用的非热效应。

  • 【资料】-微波加快化学反应中非热效应研究的新进展

    [i]自然科学进展;2006,16(3):273-279[/i][b]微波加快化学反应中非热效应研究的新进展[/b][b]黄卡玛,杨晓庆[/b]摘 要:微波已经被广泛应用于加快化学反应。然而,微波加快化学反应所产生的特殊效应,特别是非热效应仍是人们争论的焦点。文中介绍了近年来微波加快化学反应中产生的非热效应、机理分析及实验方法等方面的研究进展。关键词:微波化学反应非热效应特殊效应由于微波独特的选择性加热方式和化学反应速率对温度的敏感性,人们自然联想到降微波应用于加快化学反应以提高反应速率。近年采大量的实验已证实微波可以极大地提高一些化学反应的反应速率,使一些通常条件下不易发主的反应迅速进行,微波现已被广泛应用于从无机反应到有机反应,从医药化工到食品化工,从简单分子反应到复杂生命过程的各个化学领域。近年来,当人们用微波加快化学反应时,发现了许多有别于传统加热的特殊效应,例如:1990年Rose将反应物放在装有冰水混合物的烧杯中以确保恒温,在这样的条件下,他们获得了与相同温度下传统加热方法不一样的结果 Bogdal等在1998年研究不同的有机合成实验中观察到微波加热与传统加热有不同的反应速率 Agrawal等2004年报道了材料烧结过程中发现在腔体中电场最大处和磁场最大处产生了不同的结果 2004年Barnhardt等发现很多在低温条件下不能进行的化学反应,在同样温度条件的微波辐射下可以进进行。这些与传统加热不同的效应引起了人们的关注。2004年在武汉召开的第五届全国微波化学会议,2004年在日本高松举行的微波化学会议、2005年在美国奥兰多举行的第三届世界微波化学大会上微波对化学反应的特殊效应都有专门报道。2004年在奥地利的格拉茨还专门举行了针对微波加热化学反应特殊效应的圆桌会议。 在这些特殊效应中,有一些特殊效应可以用微波的快速加热和选择性加热来解释,如过热现象。很多实验表明在微波加热下各种溶剂的沸点都有不同程度的提高。这是因为微波加热方式造成的。传统加热中,外部靠近热源的容器壁最先热起来,而那里是最容易形成气化核,当其饱和蒸气压等于液体上方气体压强时,溶剂就沸腾了,而微波加热因为是一种选择性的内加热,在内部温度较高的地方缺乏汽化核,致使液体内部因缺乏汽化核而加热到传统沸点时仍不能沸腾。再如热点现象,也是因为微波加热方式造成的。一般说来,热点形成可能由于下面3个原因:(1)具有不同介电损耗的材料的非均匀分布 (2)非均匀分布的微波场 (3)反应物内存在不同的热传导速率。美国宾州大学的Agrawal小组已经成功的观测到了在铁氧体去结晶过程中的热点,其热梯度为2000-4000℃ /mm,该热点持续了31s。还有热失控现象,在微波加热过程中随着温度上升有些物质的介电损耗也随温度增加,这便形成了一个正反馈,导致温度迅速上升将反应物烧毁。在微波加热食品、橡胶和陶瓷中已经报道有热失控现象发生。反之,有些特殊效应不能用温度的变化解释,例如前面所提到的微波低温反应等。而这些难以用温度变化和特殊温度分布来解释的现象就是人们所说的“非热效应”。很多文献中把特殊效应与非热效应等同起来,其实非热效应和特殊效应有本质差别。特殊效应是微波所特有的效应,两者区别在于特殊效应并不排除与温度的相关性。非热效应应该属于特殊效应的一种,它是无法用温度变化来解释的特殊现象。而可以用温度变化解释的特殊效应是热效应。 是否存在非热效应?这个问题一直没有定论,并且微波加快化学反应中的非热效应起源于微波对经典的Arrhenius公式中指前因子和活化能影响的争论,而这两项也正好与化学反应系统中的墒和焙相联系,那么,问题本身就在于对微波不以热的方式对化学反应系统的嫡和烙的影响上。其中Stuerga等反对存在非热效应,而Loupy等则认为存在非热效应。[color=red]最后有全文的下载[/color]

  • 微波炉反应器防锈维护

    现在反应改用微波炉反应器,反应时间减短了,但是反应完了之后,炉内生锈了,我用的是氢溴酸,挥发性很强,而且刺鼻,每次反应完,就看见炉内一点点的锈掉了,真担心,还没做完实验,这仪器腐蚀坏了,做不了,现在就想向大家讨教一下这个微波炉炉内防锈的维护技巧,谢谢

  • 【资料】—微波促进有机化学反应应用研究

    [b]微波促进有机化学反应应用研究[/b]柴兰琴 王喜存摘 要: 综述了近年来微波辐射技术在有机合成中的应用. 探讨了微波辐射有机反应的作用原理和特点,着重介绍了微波促进液相有机合成和非溶剂有机合成方面的研究及其应用进展,并展望了微波促进有机化学的发展前景. [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=53022]微波促进有机化学反应应用研究[/url]

  • 微波炉如何改造微波反应器

    想把家用微波炉改造为专用的微波反应器,应该怎么样改造呢?哪位大神能够具体说明一下万分感谢,还有就是改造后使用的话在做实验的过程中会有危险么?

  • 航天测控S波段下变频器

    引自:航天测控网站:http://www.casic-amc.com  航天测控AMC3202和AMC3203 VXI总线下变频器模块主要是完成射频信号至中频信号的频率转换。即将频率范围为2200.5MHz~2300.5MHz或2020MHz~2120MHz的射频信号,变频为160MHz的中频信号输出。总线特性 VXI总线信号规范,即插即用 尺寸 单插宽,C尺寸 设备类型 寄存器基模块 驱动程序 符合VXI Plug&Play规范 支持95/98/2000/NT框架 主要技术指标 输入频段 AMC3202 2200.5MHz~2300.5MHz AMC3203 2020MHz~2120MHz 晶振频率准确度 2×10-5/日 点频控制 程控步进,步长0.5 MHz 点频控制方式 8位二进制编码控制,TTL电平 噪声系数 <1.1dB 驻波比 <1.3 射频输入功率 -60~0dBm 输出频率 160 MHz 输出压缩点 ≥5dBm

  • 【讨论】微波反应器控温问题

    大家谈谈看热电偶控温仪,怎么给改装后的微波反应器自动控温也看了文献,现在有点疑问想请教下大家怎么把微波炉连接到控温仪上?使得到达设定温度后微波炉自动断电低于设定直时有自动开启?望指点谢谢

  • 变频是微波炉以后的发展方向么

    今天在商场了解到目前市场上的微波炉以美的和松下的二个品牌推出变频微波炉。大家认为变频是微波炉以后的发展方向么?欢迎讨论!谢谢!

  • 【资料】-微波等离子体及其应用

    【资料】-微波等离子体及其应用

    关键词: 化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积 微波等离子体CVD法 微波等离子体热处理仪 金刚石薄膜 微波烧结 新材料 纳米催化剂 一、微波等离子体简介等离子体的研究是探索并揭示物质“第四态” ——等离子体状态下的性质特点和运行规律的一门学科。它是包含足够多的正负电荷数目近于相等的带电粒子的非凝聚系统。等离子体的研究主要分为高温等离子体和低温等离子体。高温等离子体中的粒子温度高达上千万以至上亿度,是为了使粒子有足够的能量相碰撞,达到核聚变反应。低温等离子体中的粒子温度也达上千乃至数万度,可使分子 (原子)离解、电离、化合等。可见低温等离子体温度并不低,所谓低温,仅是相对高温等离子体的高温而言。高温等离子体主要应用于能源领域的可控核聚变,低温等离子体则是应用于科学技术和工业的许多领域。高温等离子体的研究已有半个世纪的历程,现正接近聚变点火的目标;而低温等离子体的研究与应用,只是在近年来才显示出强大的生命力,并正处于蓬勃的发展时期。微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积技术原理是利用低温等离子体(非平衡等离子体)作能量源,工件置于低气压下辉光放电的阴极上,利用辉光放电(或另加发热体)使工件升温到预定的温度,然后通入适量的反应气体,气体经一系列化学反应和等离子体反应,在工件表面形成固态薄膜。它包括了化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积的一般技术,又有辉光放电的强化作用。 金刚石膜具有极其优异的物理和化学性质,如高硬度、低磨擦系数、高弹性模量、高热导、高绝缘、宽能隙和载流子的高迁移率以及这些优异性质的组合和良好的化学稳定性等,因此金刚石薄膜在各个工业领域有极其广泛的应用前景。 1. 在药瓶内镀上金刚石薄膜,可以避免药品在瓶内起反应,延长药品的保 全寿命; 2. 可作为计算机硬盘的保护层。目前的计算机硬盘,磁头在不用时要移到硬盘旁边的位置上,如果硬盘包有金刚石薄膜,则磁头可以始终放在硬盘上,这样就提高了效率; 3. 在切割工具上镀上金刚石薄膜,可以使工具在很长时间内保持锋利; 4. 用于制造带有极薄金刚石谐振器的扬声器; 5. 涂于计算机集成电路块,能抗辐射损坏,而一般硅集成块却易受辐射损坏。它能将工作时产生的热迅速散发掉,使集成块能排列得更紧凑些; 6. 用于分析X射线光谱的仪器,透过X射线的性能较别的材料好。 金刚石膜沉积必须要有两个条件: 1. 含碳气源的活化; 2. 在沉积气氛中存在足够数量的原子氢。 由于粒子间的碰撞,产生剧烈的气体电离,使反应气体受到活化。同时发生阴极溅射效应,为沉积薄膜提供了清洁的活性高的表面。因而整个沉积过程与仅有热激活的过程有显著不同。这两方面的作用,在提高涂层结合力,降低沉积温度,加快反应速度诸方面都创造了有利条件。 微波等离子体金刚石膜系统应由微波功率源,大功率波导元件、微波应用器及传感与控制四部分组成。应用器是针对应用试验的类型而设计,其微波功率密度按需要而设定,并按试验需要兼容各种功能,具有较强的专用性质。微波功率源、大功率波导元件及传感和控制三种类型的部件,是通用的部件,可按需要而选定。反应器必须可以抽成真空;且可置于高压。因此微波传输必须和反应器隔离开来。反应器中可以通入其他气体。下面是一个反应器图。[img]http://ng1.17img.cn/bbsfiles/images/2006/05/200605221201_18795_1613333_3.jpg[/img]半导体生产工艺中已经采用微波等离子体技术,进行刻蚀、溅射、[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积、氧化硅片;还可用于金属、合金、非金属的表面处理;用于等离子体光谱分析,可检测十几种元素。 二、微波等离子体源 目前国内微波离子体源的研究工作,大部分在2450MHZ这个频段上进行,部分还可能采用915MHZ频段。这两个频段均采用连续波磁控管,并做成连续波功率微波源。但实际情况均具有较大的波纹因素,说得确切一些是三相全波整流或单相全波整流的波形被磁控管锐化了波纹状态。家用微波炉的电路结构实际上是可控的单相半波倍压整流电路,其波纹因素更大。 这种工作状态受电网波动的影响,平均功率不断变化,具有很大的不稳定性,造成功率密度的不确定。在微波等离子体金刚石膜制作系统要求很严格的情况下,会造成实验结果重复性不满意。因此需要稳定且纹波系数小的微波源是系统成功关键。 另外,近来微波等离子体的研究首先发现这些问题,电源的不稳定性会造成等离子体参数的变化。但用毫秒级的脉冲调制连续波磁控管,在许多实验中取得了良好的实验效果。理论分析调制通断时间的选定可以获得改善效果。 1. 物料介电损耗的正温度系数锐化了不均匀的加热效果,造成局部点的热失控现象。必要的周期停顿,利用热平衡的过程,可以缓解这些不均匀因素,抑制热失控现象的建立。 2. 避免了微波辅助催化反应过程中若干不需要副反应的累积。周期性的停顿可以避免这些副反应累积增强,停顿就是副反应的衰落,再从新开始,这样就避免了副反应的过度增长。 三、微波等离子体的应用 微波等离子体的应用技术主要用来制造特种性能优良的新材料、研制新的化学物质,加工、改造和精制材料及其表面,具有极其广泛的工业应用——从薄膜沉积、等离子体聚合、微电路制造到焊接、工具硬化、超微粉的合成、等离子体喷涂、等离子体冶金、等离子体化工、微波源等。等离子体技术已开辟的和潜在的应用领域包括:半导体集成电路及其他微电子设备的制造;工具、模具及工程金属的硬化;药品的生物相溶性,包装材料的制备;表面上防蚀及其他薄层的沉积;特殊陶瓷(包括超导材料);新的化学物质及材料的制造;金属的提炼;聚合物薄膜的印刷和制备;有害废物的处理;焊接;磁记录材料和光学波导材料;精细加工;照明及显示;电子电路及等离子体二极管开关;等离子体化工(氢等离子体裂解煤制乙炔、等离子体煤气化、等离子体裂解重烃、等离子体制炭黑、等离子体制电石等)。 微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积制备纳米催化剂的研究等。 微波等离子体的应用前景广阔。来源于汇研微波

  • 【资料】-微波有机合成反应的新进展

    [b]微波有机合成反应的新进展[/b][i]王静,姜凤超[/i]摘 要:综述了近年来微波辐射技术在有机合成应用中的新进展。 着重介绍了微波有机合成反应技术及其在重要有机合成反应中的应用。关键词:微波化学,有机反应,微波辐射  微波最早被人们认识并应用在军事通讯领域,本世纪 40 年代后期逐渐应用于工业、农业、医疗、科学研究等各种领域。 在有机合成应用中的研究始于1986 年,当年加拿大化学家 Gedye 等发现微波辐射下的 4-氰基苯氧离子与氯苄的 SN2 亲核取代反应可以使反应速率提高 1 240 倍,并且产率也有不同程度的提高。 这一发现得到人们的高度重视并引起化学界的极大兴趣。 自此,在短短的十几年里,微波辐射促进有机化学反应的研究已成为有机化学领域中的一个热点,并逐步形成了一门引人注目的全新领域——MORE 化 学 (Microwave Induced Organic Reaction Enhancement Chemistry) 。 我国近年来关于MORE化学的研究也越来越多,发表的综述文章已有多篇,现仅就最近的进展作一综述。  1. 基本原理 微波(microwave, MW)即指波长从 1 mm~1 m,频率从 300 MHz~300 GHz 的超高频电磁波,广泛应用于雷达和电子通讯中。 为避免相互干扰,国际上规定工业、科学研究、医学及家用等民用微波频率一般为 900( ±15) MHz 和 2450( ±50) MHz。 微波加速有机反应的原理,传统的观点认为是对极性有机物的选择性加热,是微波的致热效应。 极性分子由于分子内电荷分布不平衡,在微波场中能迅速吸收电磁波的能量,通过分子偶极作用以每秒 4. 9 ×109 次的超高速振动,提高了分子的平均能量,使反应温度与速度急剧提高。 但其在非极性溶剂(如甲苯、正己烷、乙醚、四氯化碳等) 中吸收 MWI 能量后,通过分子碰撞而转移到非极性分子上,使加热速率大为降低,所以微波不能使这类反应的温度得以显著提高。实际上微波对化学反应的作用是复杂的,除了具有热效应以外,还具有因对反应分子间行为的作用而引起的所谓“非热效应”,已有文献报道此观点。2. 微波有机合成反应技术 与一般的有机反应不同,微波反应需要特定的反应技术并在微波炉中进行。 微波有机合成反应技术一般分为密闭合成反应技术和常压合成反应技术等。随着对微波反应的不断深入研究,微波连续合成反应新技术逐渐形成并得到发展。[color=red]最后有全文下载[/color]

  • 讨论光化学反应仪

    光化学反应仪,又称为光化学反应釜,多功能光化学反应器,光催化反应装置,OCRS-K型多功能光化学反应仪等OCRS多系列光催化装置是开封市宏兴科教仪器厂参考国外进口光化学反应仪的基础上和国内著名实验室实践合作共同开发的新一代光化学反应装置,主要用于研究气相、液相固相、流动体系在模拟紫外光、模拟可见光、特种模拟光照射下,是否负载TiO2光催化剂等条件下的光化学反应。同时我公司为客户提供纤维状、排列状物质特殊反应容器,解决不通物质在常规反应容器内的放置问题。OCRS-K型多功能光化学反应仪适合应用于化学合成、环境保护及生命科学等研究领域,该系统具有技术合理、结构简单、操作便捷、运行稳定、保护人体、自由组合、灵活定做等独特优势!  产品特点:  1、产品电气控制部分与保护反应暗箱分开,装配、维护、升级方便合理,整机大气美观!  2、该型号主控电源控制器光照时间数显灵活控制,适合记时作业和数据对比实验使用!  3、专业稳定的模拟光源和稳定、节省空间的体积设计,特别适合空间有限的实验室配备!  4、配套有多试管磁力搅拌器反应器功能,弥补了多试管围绕光源旋转不合理性和多试管自转机械性能差的弊端,可实现同时、部分试管充气功能,多试管磁力搅拌器反应器实际实用价值性能卓越!  5、配套有多口磁力搅拌反应容器功能,可以使反应过程具有强磁力搅拌、充气、放气、密封、测温等功能!  6、配套有固体反应装置,可以对固体物质进行光催化反应,高效聚光装置提升催化速度!  7、本型号光化学反应仪增添了非实验阶段自动遮光装置,将开启光源初灯光闪烁不稳定及阶段取样的光源遮住,使实验精度提高。  8、配套有缺水报警装置,当冷却水供给出现水压不足或者漏水严重影响到实验安全性时,发出报警声,提醒操作人及时检查水源供给状况。  9、配置有冷却水供给装置,进口压缩机无氟作业,确保光源长时间稳定运行,适合连续作业实验。该低温冷却水供给装置自身配备有静音外循环泵,提供冷却水循环增压,同时节约水源的浪费。  10、冷却水供给装置采用触摸按键控制,界面大方,无传统面板仪表外观呆板之感,防水防高温,可根据客户要求增添USB电脑接口和操作软件驱动,数字化作业感优越!  11、灵活多样的产品设计,可以根据客户的要求制定产品设计方案,弘扬科技以人为本理念!

  • 高通量微波消解仪的功能特点和技能要求

    高通量微波消解仪是具备化学反应过程控制的微波加速反应系统,控制, 显示和操作系统一体化集成, 具有可靠的整机防腐设计, 节省空间, 同时仪器一机多能, 可用于分析化学的样品消解, 萃取, 蛋白水解, 浓缩, 干燥,实验化学的有机/无机合成, 以及化学工艺模拟数据条件中试等各种微波化学应用。高通量微波消解仪功能特点:仪器采用微波非脉冲连续自动变频控制,延长了仪器的使用寿命和电磁波的均匀性,腔体采用66L大容积316L不锈钢腔体材料特制而成,自锁式缓冲防爆炉门,当反应异常时,缓冲结构确保操作人员人身安全和炉门结构完整无损,炉门和腔体结合紧密,微波泄漏符合国家标准。仪器采用温、压双控系统对消解实验的压力和温度进行控制,实时显示。360°往返连续旋转,微波均匀,保证各个样品微波环境相同,提高实验结果的一致性。当罐内的压力超过设定的保护值时,微波会自动停止加热。安全防爆膜具有双保险功能,当罐内的压力超过防爆膜所能承受的压力时,防爆膜先行破裂,气体泻出,防止罐体受损和对人体的伤害。技能要求质检员熟悉仪器的各部件功能及检测原理质检员了解仪器的环境要求并实时维护要求环境技术负责人熟练掌握易损部件的维护和维修工作

  • 【分享】微波频谱仪的工作原理及常见故障的检修

    频谱分析仪是微波测量中必不可少的测量仪器之一,它能对信号的谐波分量、寄生、交调、噪声边带等进行很直观的测量和分析,因此,广泛应用于微波通信网络、雷达、电子对抗、空间技术、卫星地面站、EMC测试等领域。2 微波频谱仪的基本工作原理和各主要组件的功能 2.1 微波频谱仪的基本工作原理 为了能动态地观察被测信号的频谱,现代频谱仪大多采用扫频超外差式接收方案,利用扫频第一本振的方法,被测信号经混频后得到固定的中频信号,经不同带宽滤波器后,就能观察到频差较小的两个信号。在宽带外差式频谱仪设计中,为消除镜像和多重响应等干扰,常采用两种方案:第一种是采用预选器;第二种是采用上变频。由于预选器频率受下限限制,宽带频谱仪总是被划分成高、低两个波段。低波段采用高中频的方案,它只要一个固定的低通滤波器而不是可调的低通或带通就可以对镜像进行抑制。高波段采用预选器对输入信号进行预选,有效地抑制镜像。图1是HP859X系列频谱仪的简化原理框图。微波信号经输入衰减器后被分成两路,分别输入到高、低两个波段。 在低波段,频率为9kHz~2.95GHz的信号被切换到第一变频器中的基波混频器部分(MXR1),得到第一中频F1IF(3.9214MHz),F1IF经过第二变频器得到第二中频F2IF(321.4MHz)。高波段,频率为2.75GHz~22GHz的信号被切换到预选器(YTF),预选后的信号输入到第一变频器中的谐波混频器部分(MXR2),得到第二中频F2IF。F2IF经第三变频器变换得到第三中频F3IF(21.4MHz)。在该中频上,对信号进行处理,使信号经不同带宽滤波器的选择,再经过线性及对数放大、检波、数字量化和显示。调谐方程如下:式中:N为谐波混频次数,F1LO为第一本振频率,F2LO为第二本振频率,FRF为输入信号频率。

  • 微型反应器的特点

    (1)由于反应器中微通道宽度和深度比较小,一般为几十到几百微米,使反应物间的扩散距离大大缩短,传质速度快,反应物在流动的过程中短时间内即可充分混合(2)微通道的比表面积一般为5000—50000m2m-3,而在常规反应容器内,比表面积约为100m2m-3,少数为1000m2m-3。微通道的比表面积大,具有很大的热交换效率,即使是激烈的放热反应,瞬间释放出大量反应热也能及时移出,维持反应温度在安全范围内。由于反应物总量少,传热快,特别适用于研究异常激烈的合成反应而避免爆炸的危险。(3)在微通道反应器中进行合成反应时,需要反应物用量甚微,不但能减少昂贵、有毒、有害反应物的用量,反应过程中产生的环境污染物也极少,实验室基本无污染,是一种环境友好、合成研究新物质的技术平台。(4)在微通道反应器中得到产物的量与近代分析仪器,如GC、GC2MS、HPLC及NMR的进样量相匹配,使近代分析仪器可用于直接在线监测反应进行的程度,大大提高了研究合成路线的速度。(5)可以将各种催化剂固定在芯片微通道中得到高比表面积的微催化床,提高催化效率。(6)在微通道反应器中进行合成反应时,反应物配比、温度、压力、反应时间和流速等反应条件容易控制。反应物在流动过程中发生反应,浓度不断降低,生成物浓度不断提高,副反应较少。(7)在微通道反应器中采用连续流动的方式进行反应,对于反应速度很快的化学反应,可以通过调节反应物流速和微通道的长度,精确控制它们在微通道反应器中的反应时间。(8)随着微加工技术的发展,由微传感器、微热交换器、微混合器、微分离器、微反应单元、微流动装置等组成的集成系统,在合成反应研究中受到越来越多的关注。(9)微流控芯片高通量、大规模、平行性等特点使多个或大量微反应器的集成化与平行操作成为可能,从而提高了合成新物质、筛选新药物的效率,大幅度地降低了研究成本。文章来源:http://www.micromeritics.com.cn/news_view.aspx?id=819

  • 【资料】—微波化学污水处理技术原理

    [color=blue]微波化学污水处理技术原理[/color]微波对流体中物质进行选择性加热,对吸波物质有低温催化作用;加速流体中固、液分离作用;低温杀菌作用;均匀加热功能;迅速升温作用;不产生二次污染等。微波化学污水处理技术是水处理领域中一场崭新的革命,是一代具有突破性、创新性、广谱性的水处理技术。微波化学污水处理技术不同于传统的污水处理方法,它通过微波场对吸波物质的选择性加热、低温催化、快速穿透等功能,达到去污除浊杀菌的效果。经微波化学污水处理技术处理后的水,可全部再利用,从而实现污水处理工程的实用、高效、节能、环保、低运行费用。 微波化学污水处理技术的基础是“极性分子理论”。外加微波场可使这些极性分子因趋向作用而发生频率极高的振荡运动,消耗能量而发热。在微波场中物质的吸波与否和吸波强弱,与该物质的电性质有关。实验证明,在单位体积的物质内被吸收的(转化为热能损耗)微波功率Pa,与电场(磁场)强度E、物质的损耗角正切tgδ和频率f成正比关系。物质在微波场中吸收的微波能全部转化为热能,所以Pa即为单位时间内在单位体积物质中产生的能量。tgδ值与该物质的介电常数、介电损耗相关的量,而物质的介电常数、介电损耗又与该物质当时的其它多种因素相关。 根据此“极性分子理论”,微波不仅可以加快化学反应,在一定条件下也能抑制反应的进行。除此之外,微波还可以改变反应的途径。微波对化学反应的作用除了对反应加热引起反应速率改变以外,还具有电磁场对反应分子间行为的直接作用而引起的所谓“非热效应”。微波对反应的作用程度除了与反应类型有关外,还与微波的强度、频率、调制方式及环境条件有关。此外,由于化学反应是一个非平衡系统,旧的物质在不断消耗,新的物质在不断生成,各相界面可能发生随机的变化;与此同时系统的宏观电磁特性也在发生变化,而且在微波辐射下这种变化还与所用的微波紧密相关。 然而,许多有机化合物都不直接明显地吸收微波,但可以利用某种强烈吸收微波的“敏化剂”把微波能传给这些物质而诱发化学反应。利用这些“敏化剂”就可以在微波辐射下实现某些催化反应,这就是所谓微波诱导催化反应。高强度连续波微波辐射聚焦到某种“敏化剂”的表面,由于“敏化剂”表面点位与微波能的强烈相互作用,微波能将被转变成热能,从而使某些表面点位选择性的被很快加热至很高温度(例如很容易超过1400℃)。尽管反应其中的水没有明显升温,但当水中的有机污染物与受激发的表面点位接触时却可发生反应。“敏化剂”的作用不仅仅在于把热能聚焦,而且还可以借它与反应物和产物相互作用的选择性而影响反应的进程。微波化学污水处理技术就是利用微波对化学反应的这些作用,对水中的污染物通过物理及化学作用进行降解、转化,从而实现污水净化的目的。此反应机理包括以下反应过程: P: 水分子、污染物种分子 M: 添加剂 SS: 悬浮物 R: 有机物种等 大家都知道OH是一种非常活跃的物质,具有很高的活性,而在水分子的周围存在着很多的灰体,这些物质如同一座无形的屏障,束缚了OH的自由活动,从而导致水体自净功能大大下降,水体污染加剧。微波能够冲破这座无形的屏障,重新释放出OH,从而能够加速水体的净化。 微波在处理水中污染物的同时,也能杀灭水中的细菌、藻类等微生物。其作用原理是由于微波辐射的热效应,即微波辐射场照射生物体,引起生物体组织器官的加热作用而产生的生理影响和抑制、伤害作用。组成细胞的极性分子在外加微波场的作用下升温发热,从而导致生物体细胞组织温度升高。当微波功率密度较大,生物体产热过多,超过了体温调节能力,生物体的温度平衡功能失调,体温上升,于是生物体发生生理功能紊乱并发生病理变化,进而死亡。[b]来源: 环球水网[/b]

  • 【资料】-家用微波炉用作微波化学试验的局限性

    家用微波炉集微波源和加热器(腔体)于一身,其结构紧凑价格低廉,作为初级的化学试验仪器还是有一定的作用,并且取得了许多成果。但家用微波炉用于化学试验有许多局限性:A.功率无法连续可调;B.非满功率输出的情况下是间歇工作。例如800W的微波炉要输出50℅的功率(400W),微波炉是工作(输出800W)20秒,停止(输出0W)20秒。其平均功率是400W,这种间歇工作方式对于加热水或食品是可行的,但是对于化学反应有时很难得到正确的试验结果;C.加热均匀性欠佳;D.无法知道具体的工作状态,缺少入射功率和反射功率指示。为此,须研制适合微波化学试验的专用微波炉。

  • 【资料】环境检测仪器系列信息之五------反应器

    反应器 (reactor)实现反应过程的设备,广泛应用于化工、炼油、冶金、轻工等工业部门。化学反应工程以工业反应器中进行的反应过程为研究对象,运用数学模型方法建立反应器数学模型,研究反应器传递过程对化学反应的影响以及反应器动态特性和反应器参数敏感性,以实现工业反应器的可靠设计和操作控制。

  • 【资料】-微波化学与技术

    [b]微波化学与技术[/b]——[i]节选自《环境微波化学技术》[/i]1.3微波化学与技术微波化学与技术是一门新兴的交叉性学科。它是在人们对微波场中物质的特性及其相互作用的深入研究基础上,利用现代微波技术来研究物质在微波场作用下的物理和化学行为的一门科学。微彼场可以被用来直接作用于化学体系从而促进或改变各类化学反应 微波场也可先被用来诱导产生等离子体,进而在各种化学反应中加以利用。 1.3.1 微波化学与技术的发展历程从历史上看,微波化学学科的产生源于徽波等离子体化学的研究。最早在化学中利用微波等离子体的报道始于1952年,当时Broida等人采用形成微波等离子体的办法以发射光谱法测定了氢一氘混合气休中氘同位素的含量,后来他们又将这一技术用于氮的稳定同位素的分析,从而开创了微波等离子体原子发射光谱分析的新领域。微波等离子体用于合成化学与材料科学则是1960年以后的事,其中最成功的实例包括金刚石、多晶硅、氮化硼等超硬材料,有机导电膜,蓝色激光材料c-GaN,单重激发态氧O2的合成 高分子材料的表面修饰和微电子材料的加工等,其中不少现已形成了产业。1970年。Harwell使用微波装置成功地处理了核废料。1974年Hesek等利用微波炉进行了样品烘干 次年,有人用它作生物样品的微波消解并取得了很大成功,现在这一技术己经商品化并作为标准方法被广泛用于分析样品的预处理。微彼技术用于有机合成化学始于1986年,Gedye等首先发表了用微波炉来进行化学合成的“烹饪实验”文章,以4-氯代苯基氧钠和苄基氯反应来制备4-氯代苯基苄基醚。传统的方法是将反应物在甲醇中回流12h,产率为65% 而用微波炉加热方法,置反应物和溶剂于密闭的聚四氟乙烯容器中,在560W时,仅35s使能得到相同产率的化合物,其反应速率可以快1 000倍以上。这一在微波沪中进行的有机反应的成功,导致在其后的短短四五年内,辐射化学领域中又增添了一门引人注日的全新课题——MORE化学( Micro-wave-Induced Organic Reaction Enhancement Chemistry)。此后微波技术在有机化合物的几十类合成反应中也都取得了很大成功。微波技术在无机固相反应中的应用是近年来迅速发展的一个新领域,为制备新型的功能材料与催化剂提供厂方便而快速的途径和方法 微波技术已广泛应用于陶瓷材料(包括超导材科)的烧结、同体快离子导体、超细纳米粉体材料、沸石分子筛的合成等。在催化领域,由于Al2O3,SiO2等无机载体不吸收微波.微波可直接传送到负载于载体表面的催化剂上并使吸附其上的羧基、水、有机物分子激话,从而加速化学反应的进行。已研究过的催化反应有甲烷合成高级烃类、光合作用的模拟和酸气污染物的去除等。在分析化学、提取化学方面,用微波进行了样品溶解。在蛋白质水解方面,采用微波技术建立了一种快速、高效的新方法。在大环、超分子、高分子化学方面,开展了采用微波法制备一些聚合物的研究工作。此外。微波技术在采油、炼油、冶金、环境污染物治理等方面也都取得了很多进展。可以看出,微波技术在化学中的应用己几乎遍及化学学科的每一个分支领域,微波化学实际上已成为化学学科中一个十分活跃而富有创新成果的新兴分支学科。微波化学是指利用微波辐射来对小分子极性物质产生有效作用,从而加速反应、改变反应机理或启通新的反应通道的交叉学科。一般来说,微波技术目前只用于热反应,而对于光化学反应等的催化作用鲜见报道。

  • 电子万能试验机中变频器日常维护技巧

    实验室操作人员必须熟悉电子万能试验机中变频器的基本工作原理、功能特点,具有电工操作常识。在对变频器日常维护之前,必须保证设备总电源全部切断;并且在变频器显示完全消失的3-30分钟(根据变频器的功率)后再进行。应注意检查电网电压,改善变频器、电机及线路的周边环境,定期清除变频器内部灰尘,通过加强设备管理最大限度地降低变频器的故障率。    因一些公司的生产特性,各电气mcc室的腐蚀气体浓度过大,致使很多电气设备因腐蚀损坏(包括变频器)。    电子万能试验机中变频器为了解决以上问题可安装一套空调系统,用正压新鲜风来改善环境条件。为减少腐蚀性气体对电路板上元器件的腐蚀,还可要求变频器生产厂家对线路板进行防腐加工,维修后也要喷涂防腐剂,有效地降低了的故障率,提高了使用效率。    在保养的同时要仔细检查变频器,定期送电,带电机工作在2hz的低频约10分钟,以确保变频器工作正常。

  • 【资料】-2004年中国期刊网“微波化学”关键词检索到的文章

    纳米Ba_(1-x)Ca_xTi_(1-y)Zr_yO_3的制备、结构与介电性能 无机盐工业01微波有机合成及反应器的新进展 辽宁化工02哒嗪并吡喃类化合物钾通道开放剂的设计与合成 中国药物化学杂志01A位非化学计量对BiNbO_4陶瓷性能的影响 电子元件与材料04高钴硬质合金基底上化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积金刚石膜的研究 金刚石与磨料01FDTD结合蛙跳技术计算微波辐射下化学溶液温度 电波科学学报02微波化学实验Ⅰ.氯化钡中结晶水的测定 甘肃高师学报02印楝种仁中印楝素微波萃取方法研究 农药05微波辅助法制备木材综纤维素 东北林业大学学报03微波频率下乙酸乙酯皂化反应等效介电系数的实验研究 电子学报05镀Ni-P和Ni-N合金碳纳米管的磁性能及其复合材料的微波吸收性能 复合材料学报05接枝淀粉浆料的研究现状与进展 纺织导报03微波技术在化学中的应用新进 广西科学02微波在酯化和水解反应中的应用 化工进展06微波有机合成及反应器研究新进展 精细化工中间体02 微波消解光度法快速测定水质中化学需氧量 化学工程师04水溶液中4-氯酚的微波辅助光化学降解 环境科学04微波化学的应用研究进展 化学研究与应用04两种木材中综纤维素的快速分离 林业科技04微波合成技术及在有机合成中的应用 广州化工微波技术在电厂化学中的应用 华北电力技术02XC-72碳和碳纳米管负载PtRu纳米粒子的微波快速合成及其对甲醇的电化学氧化 化学学报10腔体压力对纳米碳管结构的影响 武汉化工学院学报17

  • 【资料】-微波功率控制方式,脉冲微波和非脉冲微波的概念

    化学反应过程一旦超越某一临界点,可能会迅速释放出大量气体以致超过消解各罐的压力上限(110bar)而难以驾御。因此需随时谨慎监视反应过程,并及时改变微波功率输出加以调控。一般根据控制能力可分低、中、高三档,控制能力不同,程序输入也不一样。1)开关式脉冲控制:传统的办法是采用固定功率输出,但间歇关闭微波以改变输出功率总量的方式,其特征是开关式脉冲微波。如:在10秒钟内关闭微波5次间隔1秒,功率为50%。开关式控制是第一代控制技术。研究人员发现这种控制方式不仅不易控制,还可能会直接影响到反应结果,且意外都是发生在开关方式下。根据功率发射方式把微波定义为脉冲和非脉冲,即间断发射为脉冲微波,而不间断发射为非脉冲微波。 研究表明,脉冲微波在开关瞬间会产生高阈值电磁脉冲,对消解含有机脂类和醇类的样品,其与硝酸的反应产物可能会刺激发生临界爆炸,其反应机理与炸药引爆相似。在萃取反应中也宜采用非脉冲技术,因为高阈值脉冲微波也极易破坏所萃取的有机分子形态,不能保证分子有机形态的完整,从而影响结果的一致性和可靠性。2)自动功率变频控制和非脉冲技术:这是第二代控制技术,特征是功率自动变化,输出均为非脉冲微波。特点是无须关闭微波发射,在连续微波发射条件下,根据温压反馈信号,自动线性改变微波功率输出,调整反应状态。不仅提高了反应速率,而且非常安全。由于闭环响应是基于精确可靠的在线罐内温压传感装置,从而提高了整机技术,当然成本也相应提高。非脉冲微波是在连续微波发射的条件下,自动线性调整微波的功率输出,其特征是无论功率如何变化,微波仍能持续输出,无脉冲刺激。实验结果表明,这种方式更易于控制微波辅助反应,提高消解反应的稳定性和安全性。且有机萃取反应回收率和稳定性也得到改善。大功率微波仪器最好采用非脉冲,因为其阈值太高,有潜在的危险。因此,非脉冲微波化学仪器的发展对反应动力学的研究十分有利,它实际上代表了微波技术发展的一个新方向。

  • 【讨论】-微波化学的兴起和发展前景

    直接利用微波辐射加速化学反应的发现还是近十年的事。近十年来,科学家们通过大量实验研究发现,微波能大大加快许多高分子化合物的合成反应;大大加速某些化合物的分解反应;微波辅助的溶液萃取较之传统的分子蒸馏和Co 超临界萃取等可大大缩短时间并获得更多有用成分等等。当前,针对这些现象所开展的大量机理性和实验研究已形成了一门新的交叉科学--微波化学。它是目前国内外发展最快的一个交叉学科领域之一,具有十分广阔的发展前景。适应这一发展,美国的CEM微波仪器公司、意大利的MILESTONE公司、澳大利亚的CSIRO公司等等都致力于各种商用微波化学系统的研制和开发,不仅先后推出了各种自动微波消解、溶液萃取、化学反应以至高温微波马弗炉,而且还推出了可连续流动式的微波化学反应系统,使合成产品的规模达数公斤的量级,大大促进了微波化学的发展进程。 微波化学这一新兴交叉领域,按照目前理论和实践的发展趋势,今后一定会有十分诱人的发展前景。

  • 自制微型管道反应器

    自制微型管道反应器

    炎热的秋过去了,终于可以静下心来写些东西了,细细想来也许标题应该用:“我的DIY之路”或者是:“乐趣中的财富”,总之就是一点心得,虽然已经过了轻狂的年纪,依旧少许些不那么淡定(哈。。。见谅了)在这个论坛我发表的第一个贴子已经是很多年前的事了,也是第一个动手用家用微波炉制作的“微波反应器”,虽然技术含量不是很高,获得了很多回帖与支持,使我倍感欣慰,后来陆续制作了“旋风分离器”,“半导体制冷反应器”以及没有在论坛上发出的一些制作,多年的实验室DIY知识积累为我打下了扎实的动手能力基础,在加工配件的同时跟着老师傅学会了电焊板金等技能,在此对这些工作在一线的老师傅表示深深的敬意。他们传授的经验是我们无法从书本上获知的。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647634_1866229_3.jpg这是年前做的一个实验室用的微型反应器,虽然有些简陋,但效果非同一般,规模化的设备已经投入了生产,这台也就结束了它的使命被放弃到了仓库里。还是回归正题吧,年前和朋友品茶聊天工程中,说起他们厂的酯化反应收率问题,这个是在15度,滴加放热反应,收率一直在60-70之间徘徊,就开玩笑的说,你这么喜欢折腾和不考虑改善这个工艺提高收率,也许能挣大钱,在钱的诱惑下(哈。。。。),我决定试试。尝试了各种方法,最后发现问题,就是要解决温度梯度和浓度梯度问题。发现问题就能找到解决问题的办法,发现微型管道反应器是最好的,他的主要功能就是解决:温度梯度,浓度梯度,压力梯度,密度梯度问题明天继续写。。。。。

  • 空压机的变频改造有什么好处呢?

    空压机的变频改造有什么好处呢?

    近些年来,空压机行业的发展往变频改造的方向越走越远,那么空压机变频改造有什么好处和要求呢?  空压机变频改造的优点:  1、运行成本降低。传统压缩机的运行成本由三项组成:初始采购成本、维护成本和能源成本。其中能源成本大约占压缩机运行成本的77%。通过能源成本降低44、3%,再加上变频起动后对设备的冲击减少,维护和维修量也跟随降低,所以运行成本将大大降低。  2、节能变频器控制压缩机对比于传统控制的压缩机,能源节约是最有实际意义的。根据空气量需求来供给的压缩机工控是经济的运行状况。节省电费约20%以上,约半年即可回收投入的资金。  3、延长压缩机的使用寿命。变频器从0Hz起动压缩机,它的起动加速时间可以调整,从而减少起动时对压缩机的电器部件和机械部件所造成的冲击,增强系统的可靠性,使压缩机的使用寿命延长。  4、提高压力控制精度,变频控制系统具有精确的压力控制能力,使压缩机的空气压力输出与用户空气系统所需的气量相匹配。变频控制压缩机的输出气量随着电机转速的改变而改变。由于变频控制电机速度的精度提高,所以它可以使管网的系统压力变化保持在±0、2bar范围内,有效地提高了工况的质量。  5、降低了空压机的噪音。根据压缩机的工况要求,变频调速改造后,电机运转速度明显减慢,因此有效地降了空压机运行时的噪音。现场测定表明,噪音与原系统比较下降约3至7分贝。  6、此外,变频控制能够减少机组起动时电流波动,这一波动电流会影响电网和其它设备的用电,变频器能够有效的将起动电流的峰值减少到最低程度。[align=center][img=变频电机,189,125]http://ng1.17img.cn/bbsfiles/images/2018/04/201804201622531456_3774_3386238_3.jpg!w189x125.jpg[/img][/align]  那么空压机变频改造后系统应满足什么要求呢?  1、电机变频运行状态保持储气罐出口压力稳定,压力波动范围不能超过±0、2bar。  2、根据空压机的工控要求,系统应保障电动机具有恒转矩运行特性。  3、系统应具有变频和工频两套控制回路。  4、在用电气量小的情况下,变频器处在低频运行时,保障电机绕组温度和电机的噪音不超过允许的范围。  5、为了防止非正弦波干扰空压机控制器,变频器输出端应有抑制电磁干扰的有效措施。  6、在该变频器上端加装输入电抗器,有效的抑制了变频器对电网的干扰。  7、考虑到系统以后扩展问题,变频器满足将来工控扩展的要求。  空压机变频改造通过加装节能辅控柜,可以实现对空压机的频率调节,稳定空压机出口压力,可实现工变频的自动切换,并且设有电源切换和保护的功能。文章转自:深圳博莱特空压机有限公司

  • 电子万能试验机中变频器日常维护技巧

    实验室操作人员必须熟悉电子万能试验机中变频器的基本工作原理、功能特点,具有电工操作常识。在对变频器日常维护之前,必须保证设备总电源全部切断;并且在变频器显示完全消失的3-30分钟(根据变频器的功率)后再进行。应注意检查电网电压,改善变频器、电机及线路的周边环境,定期清除变频器内部灰尘,通过加强设备管理最大限度地降低变频器的故障率。 因一些公司的生产特性,各电气mcc室的腐蚀气体浓度过大,致使很多电气设备因腐蚀损坏(包括变频器)。 电子万能试验机中变频器为了解决以上问题可安装一套空调系统,用正压新鲜风来改善环境条件。为减少腐蚀性气体对电路板上元器件的腐蚀,还可要求变频器生产厂家对线路板进行防腐加工,维修后也要喷涂防腐剂,有效地降低了的故障率,提高了使用效率。 在保养的同时要仔细检查变频器,定期送电,带电机工作在2hz的低频约10分钟,以确保变频器工作正常。 一、电子万能试验机指标: 1、执行标准:HG2369-92GB/T17200-1997 2、分辨精度:0.1~2N 3、系统精度:小于0.5% 4、显示范围:0~99999.9N 5、拉伸速度范围:0~500mm/min(特殊要求另定) 6、活动夹持器最大行程:930mm 7、功耗:小于15W(数显表)整机功率≤800W 8、电源电压:~220V±10%

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制