当前位置: 仪器信息网 > 行业主题 > >

快速双单元控制电位电解仪

仪器信息网快速双单元控制电位电解仪专题为您提供2024年最新快速双单元控制电位电解仪价格报价、厂家品牌的相关信息, 包括快速双单元控制电位电解仪参数、型号等,不管是国产,还是进口品牌的快速双单元控制电位电解仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合快速双单元控制电位电解仪相关的耗材配件、试剂标物,还有快速双单元控制电位电解仪相关的最新资讯、资料,以及快速双单元控制电位电解仪相关的解决方案。

快速双单元控制电位电解仪相关的论坛

  • 【求助】请大家帮帮忙:控制电位电解库仑法

    我用的是CHI600C电化学工作站,现在想用控制电位电解库仑法,请问里面的参数各是什么意思?设定有什么要求吗?(1)电解电位,(2)终止实验时电流比值,(3)数据储存间隔,(4)预电解电位。(5)预电解时间。麻烦大家帮帮忙了,感激不尽!!!!!!!!!!!!!!

  • 西门子定位器对于控制单元改进的组件

    西门子定位器在易受到强加速作用力或振动场合的使用西门子定位器固定在如分流挡板、猛烈振荡或振动的阀门,或蒸汽喷射装置上会受到强加速力的作用,在极端情况下,会导致摩擦配合的移位。对此,请选用带加强摩擦配合的SIPART PS2。然而增加了扭矩需要更高的力来操作摩擦配合。外部位置传感器。存在上述措施不能涵盖的可能情况,如强大和持续的振动,高的或太低的环境温度,核辐射。对于这种情况,位置传感器和控制单元分开安装是非常有好处的。为此,有适用于直线和旋转型执行器的通用组件。你需要如下组件:• 位置传感器单元(订货号 C73451-A430-D78)。由带有综合摩擦配合的SIPART PS2外壳、内置电位器,和各种盲塞和密封件组成。• 控制单元,各种型号的 SIPART PS2西门子定位器。• 与电缆卡和 M-20 电缆格尽头成套的EMC过滤器板可以使用,订货号C73451-A430-D23。组装6EMC过滤器板必须要安装在 SIPART PS2[url=http://www.siemens-positioner.com/]西门子定位器[/url]上。与EMC过滤器一起提供的安装说明介绍了组件的组装。• 三芯电缆连接到组件。当用电位器(电阻值为 10KΩ)代替位置传感器单元 C73451-A430-D78 安装在执行器上时,对于控制单元必须要使用这些改进的组件。

  • 防护热板法导热仪升级改造——计量单元电功率和护热温度的超高精度PID控制

    防护热板法导热仪升级改造——计量单元电功率和护热温度的超高精度PID控制

    [color=#990000]摘要:本文针对客户提出改进保护热板法导热仪测量精度和测试规范性的要求,给出了防护热板法导热仪升级改造技术方案。升级改造方案主要包括三方面的内容,一是采用超高精度双通道PID控制器分别用于控制计量单元和护热单元温度,二是计量单元和护热单元温度控制采用无超调PID控制,三是采用多只热电偶构成的高灵敏度温差热电堆。通过此升级改造,可大幅度提高保护热板法导热仪的测量精度和测试规范性。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000][b]一、背景介绍[/b][/color][/size]在低导热隔热材料的导热系数测试中,最常用的测试方法是稳态保护热板法。目前在市场上依据保护热板法的导热仪非常普遍,但国产导热仪普遍存在测量精度差和导热仪制作不规范的问题。最近有客户提出对已购置的国产防护热板法导热仪进行技术升级,以提高测量精度和规范化操作水平,具体技术要求如下:(1)样品热面温度要求以10的整数倍温度进行精确控制,配合相应的样品冷面温度控制,使得样品厚度方向上的温差可准确恒定控制在10、20和30℃的其中一个数值上。由此保证样品导热系数测试边界条件的一致性。(2)护热单元(侧向护热单元和底部护热单元)对计量单元的温度跟踪,要求采用标准测试方法GB/T 10294中规定的温差热电堆,温差热电堆至少由五对以上的热电偶组成,由此保证将计量单元的漏热降低到最低限度。本文将针对上述客户要求,提出防护热板法导热仪升级改造技术方案。[b][size=18px][color=#990000]二、升级改造方案[/color][/size][/b]升级改造方案主要包括以下三方面的内容。[size=18px][color=#990000]2.1 超高精度双通道PID控制器[/color][/size]为了实现既要满足计量单元电加热功率和温度高精度控制要求,又要实现PID控制、运行操作简单化和具有较低的制作成本。我们提出了的升级方案是采用超高精度的双通道PID控制器代替目前所用的普通PID控制器(调节器)。这种新型PID控制器具有以下特点:(1)PID调节器的模数转换(A/D)直接升级到24位,大幅提高采集精度。(2)PID调节器的数模转换(D/A)精度升级到16位,大幅提高控制输出精度。(3)采用双精度浮点运算提高计算精度,并将最小输出百分比降低到0.01%,充分发挥数模转换的16位精度。(4)独立的超高精度双通道控制功能,可分别用于计量单元和护热单元的温度控制。[size=18px][color=#990000]2.2 无超调PID 控制方法[/color][/size]在防护热板法导热仪中,所测材料一般为低导热系数的隔热材料,在计量单元的温度控制中一旦产生温度振荡或超调,如图1所示,则需要很长时间才能恢复到设定温度点。因此,在升级改造方案中,计量单元和护热单元的温度控制都采用了无超调的PID控制方法,由此可减少不必要的控温时间。[align=center][img=01.无超调PID控制示意图,600,475]https://ng1.17img.cn/bbsfiles/images/2022/09/202209272247501334_6415_3221506_3.png!w690x547.jpg[/img][/align][align=center]图1 无超调PID控制示意图[/align][size=18px][color=#990000]2.3 高灵敏度温差热电堆[/color][/size]按照标准测试方法GB/T 10294中的规定,如图2所示,在计量单元和护热单元之间的狭缝两侧布置直径小于0.1mm的热电偶组成的温差热电堆。[align=center][img=02.温差热电偶布局示意图,690,383]https://ng1.17img.cn/bbsfiles/images/2022/09/202209272248262325_3650_3221506_3.png!w690x383.jpg[/img][/align][align=center]图2 温差热电偶布局示意图[/align]为了提高护热单元温度对计量单元的温度一致性,温差热电堆至少要由五对热电偶组成以高分辨率的检测护热单元与计量单元之间的温差。热电堆的温差输出信号作为超高精度PID控制器第二通道的采集信号。由此,通过高灵敏温差热电堆和PID控制器的超高精度电压信号检测能力和温度控制能力,可大幅度减小计量单元的漏热,从而提高导热系数测量准确性。[size=18px][color=#990000][b]三、总结[/b][/color][/size]通过上述升级改造技术方案,可完全实现用户提出的技术改进要求,在保证计量单元温度和样品冷热面温差为任意设定值的前提下,可大幅减少护热温度不一致所引起的热损失,有效提高导热系数测量精度。同时所采用的无超调PID控制方法可有效缩短测试时间。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 气相色谱仪流量控制原理与维护 —— 流量——压力转换单元

    气相色谱仪流量控制原理与维护 —— 流量——压力转换单元

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][/font][font=宋体][font=宋体]流量[/font][font=宋体]——压力转换单元[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统在较多情况下用控制压力的方式实现气体流量的控制,例如供给检测器的辅助气体流量,供给色谱阀系统的气源控制单元流量,毛细管色谱柱的柱流量等。实现此功能的色谱仪部件,可以称之为压力[/font][font=宋体]——流量控制单元。[/font][/font][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]工作于压力控制模式下,通常具有较低的硬件成本和较快的响应速度。压力控制方式的场合下,阀动作对色谱基线产生的干扰比较小,不易干扰检测器火焰状态或者造成检测器火焰的熄灭,色谱柱系统恢复切换之前流量的时间间隔也较短。压力[/font][font=宋体]——流量控制单元在机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]和电子流量式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]中压力控制模式时得到了较为广泛的应用。[/font][/font][align=center][font=宋体]一、[/font][font=宋体][font=宋体]机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的压力[/font][font=宋体]——流量转换单元[/font][/font][/align][font=宋体][font=宋体]传统的机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]中的压力[/font][font=宋体]——流量转换单元按照其硬件结构主要分为两种,如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][font='Times New Roman'] [/font][align=center][img=,388,178]https://ng1.17img.cn/bbsfiles/images/2022/09/202209062143598722_3198_1604036_3.jpg!w690x316.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]场合下压力[/font][font=Times New Roman]-[/font][font=宋体]流量转换单元[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][font=宋体][font=宋体]方式[/font][font=Times New Roman]a[/font][font=宋体],气体流路顺序安装稳压阀和针型阀,稳压阀提供恒定压力,通过调节针型阀的阀针,改变针型阀单元的阻尼,实现对气路流量的调节。[/font][/font][font=宋体]实际情况下,由于针型阀本身阻尼范围有限,针型阀并不单独使用,一般需要在针型阀之后再串联阻尼器,使流量调节更加容易。[/font][font=宋体]此种方式仪器硬件结构较为简单,针型阀惯性小,流量调节速度快。[/font][font=宋体][font=宋体]方式[/font][font=Times New Roman]b[/font][font=宋体],气体通道中安装稳压阀和阻尼器,通过调节稳压阀的不同输出压力实现流量的调节。[/font][/font][font=宋体]此种方式结构更加简单,硬件成本低,调节速度快,对稳压阀要求较高。[/font][font=宋体][font=宋体]两种方式下阻尼的前端均安装有压力计,当阻尼器确定、通过阻尼器的气体类型确定、温度确定的情况下,阻尼两端的压力[/font][font=宋体]——流量响应关系也是确定的。一般情况下,机械方式的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的说明书中会配备有该阻尼的压力——流量响应关系曲线,如图[/font][font=Times New Roman]2[/font][font=宋体]所示。[/font][/font][align=center][img=,243,142]https://ng1.17img.cn/bbsfiles/images/2022/09/202209062144132310_5286_1604036_3.jpg!w413x242.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]2 [/font][font=宋体]阻尼器的压力——流量响应关系曲线[/font][/font][/align][font=宋体][font=宋体]严格意义上讲,阻尼器的压力[/font][font=宋体]——流量关系会受到阻尼器所处环境温度的影响。但阻尼器的安装环境一般处于室温,而室温的变化范围较为有限,室温对阻尼器的压力——流量响应关系影响不大。[/font][/font][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的常见检测器[/font][font=宋体]——例如[/font][font=Times New Roman]FID[/font][font=宋体]、[/font][font=Times New Roman]ECD[/font][font=宋体]、[/font][font=Times New Roman]FPD[/font][font=宋体]、[/font][font=Times New Roman]NPD[/font][font=宋体]——的氢气、空气、尾吹气的流量控制经常会采用此两种方式。[/font][/font][font=宋体][font=宋体]某些型号的机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],控制毛细管柱流量时,也采用了压力控制的模式,此意义上也可以视为一种压力[/font][font=宋体]——流量转换单元。[/font][/font][font='Times New Roman'] [/font][align=center][font=宋体]二、[/font][font=宋体][font=宋体]电子流量式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的压力[/font][font=宋体]——流量转换单元[/font][/font][/align][font=宋体][font=宋体]配备有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],压力[/font][font=宋体]——流量控制单元一般由比例电磁阀、阻尼器和压力计构成。[/font][/font][font=宋体] [/font][align=center][img=,338,72]https://ng1.17img.cn/bbsfiles/images/2022/09/202209062144227918_2898_1604036_3.jpg!w690x145.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font][/font][font=宋体][font=Times New Roman]2[/font][/font][font='Times New Roman'] [/font][font=宋体]比例电磁阀控制系统原理[/font][font='Times New Roman'][font=宋体]图[/font][/font][/align][font=宋体][font=宋体]该系统的输入端一般直接连接气源(氢气、空气或者尾吹气),色谱系统调节比例电磁阀的开度,以调整比例电磁阀的整体阻尼,使得阻尼器分配到正确的压力。与机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]原理上相同,根据阻尼器确定的压力[/font][font=宋体]——流量关系,色谱图系统通过调节的压力,实现通过阻尼流量的调节。[/font][/font][font=宋体]当毛细管色谱柱的尺寸规格确定、载气气体类型确定、色谱柱工作温度确定的情况下,色谱柱的阻尼也是确定的。电子流量式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]控制毛细管色谱柱的柱流量时,本质上通过控制色谱柱的柱前压力来控制毛细管柱流量。[/font][font='Times New Roman'] [/font][align=center][font=宋体]三、[/font][font=宋体][font=宋体]压力[/font][font=宋体]——流量转换单元的特点[/font][/font][/align][font=宋体][font=宋体]压力[/font][font=宋体]——流量控制单元一般具有较为简单的硬件结构,成本较低、可靠性较高、使用方便、调节速度快。[/font][/font][font=宋体][font=宋体]但是压力[/font][font=宋体]——流量转换单元本质上属于开环控制系统,色谱系统并不能感知真实输出的气体流量,如果阻尼器发生堵塞、断裂等问题,阻尼器的压力——流量关系会发生变化,系统的输出流量会发生错误。[/font][/font][font=宋体][font=宋体]压力[/font][font=宋体]——流量转换单元的输出端一般只适合连接无阻尼的检测器或者固定阻尼的部件——例如确定的其他阻尼器或者色谱柱。阻尼器前端的压力传感器建议定期进行校准,否则也可能导致系统输出流量不准确。[/font][/font][font='Times New Roman'] [/font][align=center][font=宋体]四、[/font][font=宋体]与差压式流量计的区别[/font][/align][font=宋体][font=宋体]压力[/font][font=宋体]——流量转换单元与差压式流量控制器结构较为近似,核心均为阻尼器。差压式流量计通过测定阻尼两端的压力差确定系统输出流量,系统输出端可以连接不同的阻尼,例如色谱柱等。通过色谱系统的控制,实现恒流量或者程序流量。[/font][/font][font=宋体][font=宋体]压力[/font][font=宋体]——流量转换单元的输出一般情况下为常压,不可以连接阻尼,否则会造成流量显示错误。[/font][/font][font='Times New Roman'] [/font][align=center][img=,248,62]https://ng1.17img.cn/bbsfiles/images/2022/09/202209062144354098_6251_1604036_3.jpg!w690x174.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]4 [/font][font=宋体]差压式流量计[/font][/font][/align][font='Times New Roman'] [/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]小结[/font][/font][/align][font='Times New Roman'][font=宋体]本文简单[/font][/font][font=宋体][font=宋体]压力[/font][font=宋体]——流量转换单元的基本原理和使用注意事项。[/font][/font]

  • 基于ATmega128的16路遥控单元设计及应用

    摘 要:介绍一款基于8位单片机ATmega128为主控芯片,具有16路输出的ARTU-J16型遥控单元的设计原理,以及该产品主要技术指标与应用案例。关键字:ATmega128芯片;遥控单元;ARTU-J16型0  引言  在电力及工业自动化控制系统中,断路器的分合、电机的启停,电磁阀的开闭等,有众多的执行机构需要进行远程控制,在以往的系统设计中常使用多个PLC或带有通讯和开关量输出功能的现场仪表组成一个远程自动控制系统,但高昂的成本和繁琐的系统结构给自动化设计、应用带来困扰。  本文介绍一款具有16路遥控接点输出的ARTU-J16,该装置通过RS485总线与上位机相连,作为远程继电器输出模块,用于接收计算机指令,执行系统的遥控操作或自动控制,继电器输出共16路,装置拥有1600组操作事件记录,带GPS校时功能,在外部电源掉电后可以保证SOE事件记录一个月内不丢失,相对以往控制方式,本设计在简化控制网络结构的同时,提供了一种低成本,高可靠性的替代方案。1  电路设计原理  ARTU-J16遥控单元硬件主要包括主CPU芯片、拨码开关设定输入、实时时钟、双路RS485通讯、SOE事件记录存储、看门狗控制、继电器控制及输出、供电电源模块等8部分组成(见图1)。1.1 主控CPU   ARTU-J16型16路遥控执行单元设计采用ATMEL公司的ATmega128,单芯片实现双路RS485通讯、数据处理、事件记录存取,显示和16路继电器常开接点的输出状态控制。ATmega128是ATMEL公司推出的一款8位RISC结构高速低功耗单片机,在16M时钟频率时系统性能可达16MIPS,内带128k的FlashROM、4k的EEPROM、4k系统SRAM;可扩展64k外部存储器;两路UART通讯口。同时该芯片拥有JTAG在线编程口,方便用户调试,降低了开发成本,53个可编程I/O口可以挂接足够多的外围设备。1.2 拨码开关设定输入  拨码开关提供用户一个简化的人机接口,用于设定RS485通讯中的地址、波特率、数据格式等设定功能,拨码开关(SW1)的10位数据口都接10k电阻上拉到Vcc,电路使用一个74HC244(IC5)数据缓冲器,把拨码开关的状态传送到8位数据总线,剩余两根数据线则直接接到CPU的I/O端口(见图2)。1.3 实时时钟  实时时钟芯片RX-8025A(IC4)提供给系统SOE事件的时间记录点,该芯片拥有400kHz 串行I2C总线接口,内置频率为32.768 kHz 的石英振荡器,提供宽温、高稳定性的实时时间数据。1.4 通讯方式  通讯方式采用双路RS485方式,调试及设定和上位机通讯部分在物理上分成两路,互不干扰,有效防止可能存在的误操作(见图3)。1.5 SOE事件记录存储  SOE事件记录存储器使用32k低功耗SRAM(IC3)IC61C256AH和后备电源形成一个断电不丢失的数据存储单元,使用数据锁存器74HC373(IC2)和CPU的PC端口组成15位数据地址对IC3进行数据存储操作(见图4)。1.6 看门狗控制  掉电自动保存部分使用MAX691CWE(IC8)作为电源管理,在系统有辅助供电的情况下保证IC3由主电源Vcc供电,当主电源掉电时则自动切换到后备电池供电方式。同时此芯片还兼有看门狗功能,在系统死机的极端情况下及时复位CPU使系统快速恢复至受控状态(见图5)。1.7 继电器控制及输出  继电器控制输出使用一个74HC273(IC14)锁存需要输出的8路继电器输出状态,再经由ULN2803(IC15)驱动对应的继电器(K1只是16路中的一路),二极管D1可以旁路继电器K1在断开的瞬间所产生的反向电流,而并接在K1输出接点上的压敏电阻VZ1则可以吸收关断后级感性负载所产生的反向电动势,有效延长输出继电器触点的寿命(见图6)。1.8 电源部分  电源模块采用PI公司的开关电源芯片,输入范围为AC/DC 80-270V,电源共有3路输出,分别给CPU,继电器驱动、通讯等部分电路提供电源。2  软件设计  软件设计流程见图7。3  产品结构特点及技术指标  ARTU-J16采用DIN35mm导轨安装。前端带通信指示和信号运行通道指示2组指示灯,通信有两路RS485接口,一路用于通用参数的设置及调试,另一路用于和上位机通讯。产品顶端设有拨码开关窗口,可通过拨码开关设置产品通讯地址和波特率。产品符合JB/T10388-2002《带总线通信功能的智能测控节点产品通用技术条件》、GB/T7261-2000《继电器及装置基本试验方法》和GB/T13729-2002《远动终端设备》标准。产品主要技术指标见表1 表1 性能指 标输出回路16路继电器输出(脉冲或保持方式)输出容量AC 5A/220V或DC 5A/30V总线方式二线制半双工RS485(ModBus—RTU)建议采用三芯屏蔽线总线容量≤32操控准确率100%事件顺序记录(SOE)容量1600组外壳防护等级IP20电源DC24V或AC/DC200V电源功耗<5W4  应用案例  以某配电系统为例,1台ARTU-J16控制8路低压馈线,CM1断路器配电动机操作机构,一次方案见图8(a),控制方式见图8(b)。启停按钮现场手动控制各回路断路器的合、分闸,遥控单元通过通讯接口集中控制8路断路器的工作状态,实现断路器就地与远程两地控制的工作模式。5  结束语  ARTU-J16遥控单元于2007年12月在国家继电保护及自动化设备质量监督检验中心测试,符合相关标准要求。该产品已在某油田供水供电公司、苏州某税务大厦、内蒙某煤矿等工程配电监控系统中得到应用,降低了投资成本,产生了较好的社会和经济效益。  文章来源于:《电气开关》2009年第5期。参考文献: 上海安科瑞电气有限公司.ARTU四遥单元安装使用说明书,2008.07版. 任致远,周中.电力电测数字仪表原理与应用指南,中国电力出版社,2007.

  • 双电层电容器有什么特点?智能电容器与普通电容器有何区别?

    一、双电层电容器 (一)双电层电容器的工作基本原理 双电层电容是在德国物理学家亥姆霍兹提出的界面双电层理论基础上发展起来的一种新型电容。数字电位器 众所周知,插入电解质溶液中的金属电极将在金属电极的表面和液体表面的两侧上具有过量电荷的相反符号,从而导致相之间的电势差。 如果同时将两个电极插入电解质溶液中,且在其间施加小于电解质溶液分解电压的电压,则电解质溶液中的正离子和负离子将通过电场快速地向两极移动,且在两个电极的表面上分别形成致密的电荷层,即双电层, 由双电层形成的双电层类似于传统电容器中电介质在电场作用下产生的极化电荷,从而产生电容效应,致密的双电层类似于平板电容器, 但是具有比普通电容器更大的容量,因为致密电荷层间隔比普通电容器的电荷层之间的距离小得多。 双电层电容器与铝电解电容器技术相比内阻较大,因此,可在无负载电阻一般情况下可以直接影响充电,如果没有出现系统过电压充电的情况,双电层电容器发展将会开路而不致损坏电子器件,这一重要特点与铝电解电容器的过电压击穿不同。同时,双电层电容器与可充电电池企业相比,可进行不限流充电,且充电使用次数可达10^6次以上,因此双电层电容不但需要具有一个电容的特性,数模转换器(DAC)同时也具有中国电池工作特性,是一种方法介于电池和电容数据之间的新型国家特殊元器件。 其基本原理是,当电极充电时,电极在理想极化状态下的表面电荷将吸引周围电解质溶液中的杂离子,使这些离子附着在电极表面形成一个双电荷层,构成一个双电荷层电容器。由于两个电荷层之间的距离很小(通常小于0.5 nm) ,并且由于特殊的电极结构,电极的表面积增加了10,000倍,从而产生了巨大的电容。 (2)双电层电容器的特性 (1)功率密度高 其功率密度可达102 ~ 104W/kg,远远高于蓄电池的功率密度水平。 (2)循环寿命长 经过几秒钟50万至100万次的高速深度充放电循环后,双电层电容器的特性变化不大,容量和内阻仅下降10% ~ 20%。 (3)工作温限宽 由于在低温环境状态下进行双层电容器中离子的吸附和脱附速度发展变化影响不大,模数转换器(ADC)因此其容量不断变化远小于蓄电池。商业化双层电容器的工作过程中温度控制范围一般可达-40℃~+80℃。 智能电容器与普通电容器的区别 智能电容器相比中国传统电容器,有以下我们几个主要优点: 1.模块化结构智能电容器是一种体积小、现场接线简单、维护方便的模块化结构。无功补偿系统的扩展只能通过增加模块的数量来实现。 2.高品质电容器可以采用自愈式低压补偿电容器,电容器内置温度控制传感器,反映一个电容器系统内部出现发热严重程度,实现过温保护。 3.嵌入投切开关模块智能电容器内置投切开关模块。投切开关模块由晶闸管、磁保持继电器、过零触发导通电路和晶闸管保护电路构成,实现电容器“零投切”,保障投切过程无涌流冲击,无操作过电压。开关模块动作响应速度快,可频繁操作。 四个。完善的保护设计智能电容器具有断电保护、短路保护、电压相损保护、电容器过温保护等功能,有效保证了电容器的安全,延长了设备的使用寿命。 5.先进的控制技术控制的物理量为无功功率,采用无功潮流预测和延时多点采样技术,保证投切无振荡。在重负载下,无功功率得到充分补偿。 6.防投切振荡培养技术可以采用自己独特的设计工作原理,防止系统控制器死机而产生的不补偿或过补偿进行现场,防止电容器投切振荡。 7. 自动补偿无功功率智能电容器根据负载的无功功率自动开关,动态补偿无功功率,提高电能质量。 智能电容器可以作为一个单元使用,也可以作为多个单元使用。 8.人机界面友好,显示电流、电压、无功等设备运行参数。显示开关状态,复合开关模块故障状态,通信状态。实现调试/工作状态切换和手动/自动操作功能方便。 [b]创芯为电子[/b]为不同规模的企业提供电子元器件采购的平台。主要产品包括[url=https://www.szcxwdz.com][b]电源管理芯片[/b][/url]、处理器及微控制器、接口芯片、放大器、存储器 、逻辑器件、[url=https://www.szcxwdz.com][b]数据转换芯片[/b][/url]、电容、二极管、三极管 、电阻、电感、晶振等,并提供相关的技术咨询。在售商品超60万种,原?或代理货源直供,绝对保证原装正品,并满?客??站式采购要求,当天订单,当天发货,还可免费供样!

  • 热磨具钢与TiC的复合材料,双喷电解条件求助

    H13钢(4Cr5MoSiV1)上熔覆TiC,要观察该熔覆层的结构。1、用电解双喷还是离子减薄好?2、电解双喷的条件好控制吗?H13钢和TiC的条件会不会相差很远?用7%的高氯酸试了几次,都失败了。3、有老师说双喷后的样品要用酒精洗一洗,但是发现我的样品用酒精洗了后洞马上变得很大,薄区都没了。但是如果不洗又说:取出来侯还是在电解。。。?

  • 定电位电解仪求助

    各位大神好,我想请教一个问题:固定污染源大气采样器自带的烟气成分测试(如氧气、二氧化硫、一氧化氮等),是属于定电位电解法吗?还是说定电位电解仪是一个单独仪器?感谢~

  • 【原创大赛】岛津LC 10(配置控制器、自动进样器、紫外检测器、输液单元、柱温箱)维修

    [align=center]岛津LC 10(配置控制器、自动进样器、紫外检测器、输液单元、柱温箱)维修[/align][align=left]朋友从仓库里找到了LC 10的几个分析单元(包括控制器SCL-10Avp/输液单元LC-10ATvp/自动进样器SIL-10A/紫外检测器SPD-10AV/柱温箱CTO-10AC),存货还不少。我本着友爱互助、相互学习的精神,给他维修装机了一次,这是一套岛津经典款的液相分析仪器,表面洁净,而且没什么灰尘,足以说明仪器本身的质量,也看得出使用人员操作时的爱护。 [/align][align=left]自动进样器SIL-10A进样针松动,无法从进样小瓶抽取样液,检查发现进样针无法固定在底座上,需更换新的进样针。这个只能等新的进样针回来后才能修好咯。[/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2020/09/202009031709568306_9908_5031963_3.jpeg[/img][/align][align=left] 柱温箱CTO-10AC温度控制范围为5-80℃,作为可控低温的老牌柱温箱,还是很受客户的欢迎,检查发现没什么大问题,只是箱门开关不畅,稍微拧松箱门咬合,并将磁铁调下位置,箱门开关不畅的问题瞬间解决。[/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2020/09/202009031709568882_9077_5031963_3.jpeg[/img][/align][align=left]紫外检测器SPD-10AV输液单元LC-10ATvp自检均能通过,这两个单元没什么问题,下一步就是连接各单元,并通电。[/align][align=left]确认分析装置的各单元(输液单元、自动进样器、检测器、柱温箱)与控制器的正确连接,注意自动进样器应与控制器的SIL接口连接,输液单元、检测器、柱温箱等可与控制器的3、4、5连接(此时注意分别在输液单元、检测器、柱温箱的控制面板上按func键,找到LOCAL均输入0,再找到ADES,其他各单元输入与控制器连接的对应数字,此时可看到各单元的remote灯亮,表明各单元连接成功)。[/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2020/09/202009031709570415_5326_5031963_3.jpeg[/img][/align][align=center][/align][align=left]然而此时新的状况发生了,控制器和各单元连接好后,检测器报警了,控制器上竟无法找到检测器,换另一台控制器安装后,顺利连接,怀疑控制器问题,拆卸控制器后,万能表检测主板纽扣电池电压2.1V左右,检测新的纽扣电池电压为2.9V左右,遂换上新的纽扣电池,重新连接后顺利通过检测(如下图所示,即为各交换单元和控制器连接成功)。控制器通过RS-232C与客户端电脑连接。[/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2020/09/202009031709571431_3168_5031963_3.jpeg[/img][img]https://ng1.17img.cn/bbsfiles/images/2020/09/202009031709572183_1806_5031963_3.jpeg[/img][/align][align=center][/align][align=left]下一步就是开启软件,进入工作站后,在仪器项下找到系统配置,双击仪器(通讯设置),出现下图右界面,选择正确型号和通讯方式。然后按照下图左界面正确配置各分析单元,正确设置后仪器会显示就绪,表明配置成功。[/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2020/09/202009031709573745_2090_5031963_3.jpeg[/img][img]https://ng1.17img.cn/bbsfiles/images/2020/09/202009031709574605_4947_5031963_3.jpeg[/img][/align][align=left][/align][align=left]我们通过照片也能看到仪器的外壳和内面都是比较干净整洁的。整个维修过程还是比较顺利,各个交换单元的问题也是能很快就能解决,等朋友订购的进样针到货后,再去帮忙安装。[/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align]

  • 更安全、精密和快速的一次性生物反应器袋充气压力控制的解决方案

    更安全、精密和快速的一次性生物反应器袋充气压力控制的解决方案

    [color=#000099][b]摘要:目前的一次性生物反应器袋充气压力控制普遍只使用了电气比例阀或双阀压力控制器,此种充气控制方式中,压力安全监控无法自动反馈和响应、所控压力并不是真正的反应器袋压力,且充气速度较慢。本文针对现有技术存在的问题进行了改进,提出采用串级控制法,通过外置压力控制器和传感器,以比例阀作为执行机构组成双闭环控制回路,可大幅提高控制精度和充气速度,更重要的是可实现充气压力安全监控和报警自动处理。[/b][/color][align=center][/align][align=center]~~~~~~~~~~~~~~~~~[/align][b][size=18px][color=#000099]一、问题的提出[/color][/size][/b]一次性生物反应器(Single Use Bioreactor)或用后可弃生物反应器(Disposable bioreactor)是使用一次性袋的生物反应器,代替由不锈钢或玻璃制成的培养容器,简称SUBs。与可重复使用的生物反应器相比,一次性生物反应器(SUBs)具有的重要优势是减少了工艺认证难度,无需清洁认证,缩短了停机时间和周转时间。在所有的一次性生物反应器使用过程中,都存在一个充气步骤,需要将反应器充气到指定压力。但一次性生物反应器生物反应器袋并不属于压力容器,过度加压会造成反应器袋的破裂、泄漏或其他故障。因此,一次性反应器袋的准确充气加压必须考虑到在生长期间引入、消耗和产生的气体,以及培养基、消泡剂和其它引入流体的影响。目前常用的SUB充气控制装置是采用电气比例阀,也有采用类似电气比例阀的双阀压力控制器,整个充气压力控制装置如图1所示。[align=center][img=一次性生物反应器典型充气压力控制系统结构示意图,690,246]https://ng1.17img.cn/bbsfiles/images/2022/11/202211011730388558_6420_3221506_3.jpg!w690x246.jpg[/img][/align][align=center][color=#000099]图1 一次性生物反应器袋典型充气压力控制系统结构示意图[/color][/align]在实际应用中,图1所示的充气压力控制系统存在以下两方面问题:(1)安全性问题:在图1充气压力控制系统中,双阀压力控制器或电气比例阀都内置有压力传感器,此传感器测量的是出压口处的压力,并不代表一次性生物反应器袋的内部压力。因为,出于安全性考虑,还需增加一个压力表来监控反应器袋的真实压力。因此,很多SUB制造商希望更准确的直接控制一次性生物反应器袋的内部压力,并同时具有报警功能。(2)准确性和滞后问题:由于压力控制器和电气比例阀远离反应器袋,所控压力与反应器袋希望的压力值有一定偏差,而且这种充气控压方式存在明显滞后现象,充气速度较慢。[b][size=18px][color=#000099]二、串级回路充气压力控制[/color][/size][/b]为了解决上述一次性生物反应器袋充气压力控制中存在的问题,本文提出一种更精确可靠且快速的充气压力控制方法,其核心技术是采用串级控制方法,即对图1所示的压力控制系统进行了改良,增加一个独立的压力控制器。新型充气压力控制系统如图2所示。[align=center][img=生物反应器袋新型串级双回路充气压力控制系统结构示意图,690,346]https://ng1.17img.cn/bbsfiles/images/2022/11/202211011731023461_8401_3221506_3.jpg!w690x346.jpg[/img][/align][align=center]图2 生物反应器袋新型串级双回路充气压力控制系统结构示意图[/align]图2所示的升级改良后的新型充气压力控制系统,主要有以下几方面的特点:(1)所采用经典的串级控制法,以电气比例阀作为独立的内部执行回路,再外接独立的压力控制器和压力传感器,结合电气比例阀组成外部控制回路,由此构成的串级控制结构形式,可充分发挥串级控制法能提高控制精度和加快充气速度的优势,有效提高压力控制精度和缩短充气时间,此特性对大容积一次性反应器袋的充气过程尤为具有优势。(2)外接的压力传感器直接安装在反应器袋上,更能准确监测反应器袋的内部压力。(3)外接的压力控制器具有超压报警功能和相应的开关控制信号输出。如果反应器袋内部压力超过设定警戒线后,可立刻报警并输出开关信号驱动安全阀放气。(4)压力控制器采用的是24位ADC和16位DAC,具有超高的压力测量和控制信号模拟量输出精度,另外通过双精度浮点运算,可实现最小0.01%的超高精度压力控制调节。(5)压力控制器可存储多个充气压力控制参数,便于不同容积大小的一次性生物反应器袋的充气压力控制而无需再进行设置和调整。(6)控制器可具有两通道形式,即一个压力控制器可同时控制两个电气比例阀实现两个一次性生物反应器袋的充气压力控制。(7)压力控制器带RS 485通讯,标准MODBUS协议,即可独立运行,也可与上位机通讯。(8)随机配的软件可方便采用计算机对压力控制器进行遥控,避免繁复的仪器按钮操作。[b][size=18px][color=#000099]三、总结[/color][/size][/b]综上所述,通过上述新型串级控制系统,可有效提高一次性生物反应器袋充气过程中压力控制的安全性、精度和速度,并具有操作便捷和可扩展的特点。同时此种串级双回路结构适用于各种形式和规格的电气转换器、电气比例阀和双阀压力控制器。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~[/align]

  • 分体式LCD显示马达控制与保护单元

    摘 要:文中通过对LCD、LED实际使用中各自的特点进行分析比较,说明LCD显示马达控制与保护单元在实际应用中的优势。并介绍ARD3新一代LCD显示马达控制与保护单元的设计思路、实际应用、产品性能指标、安装方式。关键词:马达保护与控制装置;ARD30  引言  伴随着电子式电动机保护器的大力推广及应用,客户对这种新式的电子式保护装置的应用更加熟悉,同时也对产品的使用提出了更高要求,尤其是参数设定、故障查询等人机交互方面。1  分体LCD显示方案的提出   前一代ARD3电动机保护器分为一体式、分体72F、分体90F,都采用LED(数码管,以下都以LED代表数码管)显示方式。在现场应用中LED显示方式亮度高,即使在光线不好的地方也可以达到一目了然的效果,使用寿命长,产品价格便宜。  与之相比LCD(液晶,以下都以LCD代表液晶)显示亮度不够,在产品附近才有比较好的显示效果,观看角度不同效果不同,和我们使用笔记本电脑时,显示屏旋转角度不同亮度不同一样。LCD产品价格较LED要高出较多。  但LCD一次性可显示数据量较LED多,尤其采用中文显示时,在国内使用中优势更加明显。客户在对前一代LED显示ARD3进行参数设计、故障查询上时,多要借助说明书(LED显示ARD3菜单项共有53项,故障代码21项),这样给客户现场实际应用带来了一定的麻烦。为了让客户应用更加方便,LCD显示产品应运而生。2  分体LCD显示与前一代LED显示相比所具有的优势2.1 测量参数、故障记录显示  ARD3可测量三相电流、三相电压、剩余电流、功率、功率因数、频率等电参量,LED显示要借助面板上的发光二极管来确定现在显示的是哪种电参量,很不直观,而且还有很多信息无法显示,例如:开关量状态、故障记录等内容。  LCD显示很好的解决了上述问题,采用128×64点阵式LCD,一屏中可以有4行数据显示,带有中文说明,不用再借助面板上发光二极管来表示具体参数。各种菜单项、开光量状态、故障记录、运行参数等信息都已中文形式在显示面板上显示出来,方便客户参数、故障查询、日常维护。LCD可显示的故障记录数据时包括:本次电机运行时间、停车具体时间、故障原因、停车时的各种电参量(三相电流、三相电压、剩余电流等)。2.2 各种保护功能参数设置  ARD3具有过载、断相、堵转、阻塞、不平衡、欠载、剩余电流、起动超时、过压、欠压、相序、欠功率等保护功能。实际使用中,这些保护功能不一定全部打开,在保护参数设置时,LED产品需要经过一步二进制到十进制转化的过程,现场操作人员对这种设置方法不是十分适应。  LCD显示将各种保护功能使用中文排列好,需要对哪种保护功能进行设置时,直接查找到对应项进入设置即可,在很大程度上方便了客户的使用。2.3 控制方面  原LED显示产品,在显示面板上没有起、停操作按钮,客户只能通过开关量输入信号来完成起、停操作。LCD显示产品,在显示面板上自带起动、停车按钮,客户可以在不安装其它按钮的情况下,通过LCD显示面板完成电机起、停操作,从而节省大量元器件和布线工作。2.4 其他改进方面  分体式LCD显示部分和ARD3主体部分采用航空接口连接,连接紧靠;使用RS485电平进行连接,增强了产品的抗干扰性和传输距离;将各种起动方式归纳在一起,客户在现场使用时可以自行更改;面板增加了停车、起动、运行、报警、脱扣指示灯,更贴近于客户实际使用的需要。新一代分体LCD显示ARD3实物图如图1所示。http://www.acrel.cn/cn/download/common/upload/2011/02/16/155431bn.jpg图1 分体LCD显示ARD3实物图3  分体LCD显示ARD3产品特点、技术指标介绍3.1 产品特点  ■ 显示模块采用嵌入式安装,模块尺寸为90×70,开孔86×66(单位mm),主体采用导轨安装。  ■ 辅助电源支持AC/DC 110/220V,AC 380V。  ■ 测量功能分为基本测量(电流参数)和增选测量(电压、功率、相序、剩余电流(接地/漏电流))。  ■ 具有过载、堵转、阻塞、欠载、断相、不平衡、剩余电流(接地/漏电)、温度、外部故障、相序、过压、欠压、欠功率、tE时间等全面的电动机综合保护功能。  ■ 8路DI无源干节点输入,信号电源采用内置DC24V电源。  ■ 4路DO输出,满足直接起动,星—三角起动,自耦变压器起动,软起动等多种起动方式,通过通讯总线可实现远程主站对电动机进行实时遥控“起/停”操作。  ■ 抗晃电确保电动机运行不间断,重起动功能在短时欠压、失压时用于电动机分批重起。  ■ 具有标准的RS-485通讯接口,采用Modbus- RTU通讯协议,保证了上位机通讯的快速可靠。  ■ 具有DC4-20mA模拟量输出接口,直接与DCS系统相接,可实现对现场设备的监控。  ■ 具有系统时钟和8次故障记录功能,系统时钟记录当前时间(年、月、日、时、分、秒);故障记录功能记录电动机发生故障的时间,总的运行时间,故障原因,发生故障时电动机的各种参数值(如三相电流、三相电压、剩余电流、功率因数、热容比、电机状态等)。 3.2 技术指标  技术指标如表1所示。表1 技术指标技术参数技术指标辅助电源AC/DC 110 / 220V,AC 380V,功耗15VA电机额定工作电压AC220V / 380V / 660V,50Hz / 60Hz电动机额定工作电流2(0.40A-2.00A)采用小型专用电流互感器检测模块6.3(1.6A-6.3A)25(6.3A-25A)100(25A-100A)250(63A-250A)采用外置电流互感器800(250A-800A)继电器输出触点容量阻性负载AC220V、6A;DC24V、6A ;感性负载AC250V、2A;DC24V、2A ;开关量输入干节点(内置DC24V)通讯RS485 Modbus-RTU协议环境工作温度-10ºC~55ºC贮存温度-25ºC~70ºC相对湿度≤95﹪不结露,无腐蚀性气体海拔≤2000m污染等级2级防护等级主体IP20,LCD显示模块IP45(安装在柜体面板时)安装类别III级3.3 过载保护  过载保护是现场是用中最重要的保护之一,用到电机的场所几乎都开启此类保护。ARD3采用热模型保护原理,模拟电机实际发热情况进行过载保护。ARD3共有8条过载保护曲线供客户选用,其中曲线5、10、30分别相当于热继电器的10A、10、30脱扣级线。过载特征曲线图(K曲线图)如图2所示,过载保护对照表如表2所示。http://www.acrel.cn/cn/download/common/upload/2011/02/16/155927uc.jpg图2 过载特征曲线图表2 过载保护对照表http://www.acrel.cn/cn/download/common/upload/2011/02/16/161744dl.jpg 4  结束语  通过本文的介绍,可以看出

  • 样品的快速调湿你们是如何控制的?

    很多的测试需要调湿样品,但是有时候客户急要,这种情况免不了需要快速调湿,可是快速调湿相对来说感觉不太稳定,应为产品的吸湿性能是不一样的,如果产品吸湿性能差的话很容易吸湿不匀而导致产品的结果偏差较大,这种情况单单通过称重能控制好湿度吗?

  • 【求助】关于喷金仪的气体流量控制单元

    请教各位~mass flow control(质量流量控制)的原理是啥呀~这个在喷金仪的氩气控制上有用,但是不知道是怎么工作的。。。附上文献一篇,查了,但是看不懂啊~各位帮帮忙,谢谢了~[~160708~]

  • 串级控制和超高精度PID调节器在微张力精密控制中的应用

    串级控制和超高精度PID调节器在微张力精密控制中的应用

    [size=16px][color=#339999][b]摘要:采用当前的各种涂布机很难适用气体扩散层这类脆性材料的涂布工艺,需要控制精度更高的微张力控制系统。为此本文基于串级控制原理,提出了采用双闭环PID控制模式和超高精度PID张力控制器的解决方案,一方面形成浮动摆棍闭环和主动辊闭环构成的串级控制回路,另一方面是采用目前测控精度最高的工业用PID控制器,结合相应配套的高精度传感器和执行器,可真正实现微张力的精密控制。[/b][/color][/size][align=center] [img=微张力精密控制,690,225]https://ng1.17img.cn/bbsfiles/images/2023/07/202307261628010805_2785_3221506_3.jpg!w690x225.jpg[/img][/align][size=16px] [/size][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 气体扩散层(GDL)在燃料电池中起到支撑催化层、收集电流、传导气体和排出反应产物水的重要作用,常用于质子交换膜燃料电池,在具体生产工艺中需要在GDL材料表面定量涂布一层特定功能涂料。由于GDL基体层材料较脆,涂布工艺过程中易造成基体层材料断裂或撕裂,转弯处易折断,在高温状态下材料比常温下更脆弱,一般要求涂布过程中控制张力设定在5~10N很窄的一个范围内,且还需要在此微张力范围内具有较高的控制精度。[/size][size=16px] 传统涂布设备,浮动摆辊均为气缸驱动,直线电位器反馈摆辊位置。存在以下问题:[/size][size=16px] (1)无法精确控制摆辊位置。[/size][size=16px] (2)气缸行程只有一个方向,需要料膜的张力平衡气缸推力,易造成GDL脆性材料拉伸。[/size][size=16px] (3)摆辊瞬间偏移至一端时,料膜张力瞬间增大或减小,极易造成GDL脆性材料的撕裂甚至断裂。[/size][size=16px] (4)张力控制器中的模数转换AD精度和数模转换DA精度较低,最小输出百分比也只能达到0.1%,无法提供更高精度的测量和控制。[/size][size=16px] 由此可见,为实现GDL脆性材料的微张力控制,实现具有精度高、张力小、控制稳的伺服电机驱动的浮动摆辊微张力控制是氢能材料制备的关键技术,为此本文提出了相应的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 为实现涂布工艺中的微张力高精度控制,本文提出的解决方案包含以下两方面的内容:[/size][size=16px] (1)采用双闭环PID控制形式调节料膜张力,即对浮动摆棍和主动辊进行独立的PID控制。[/size][size=16px] (2)采用超高精度的双通道PID控制器,每个通道都具有24位AD、16位DA和0.01%最小输出百分比。[/size][size=16px] 解决方案所涉及的微张力控制系统结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=双闭环微张力控制系统结构示意图,500,200]https://ng1.17img.cn/bbsfiles/images/2023/07/202307261628351448_1980_3221506_3.jpg!w690x277.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 双闭环微张力控制系统结构示意图[/b][/color][/size][/align][size=16px] 在图1所示的双闭环控制系统中,浮动摆辊PID闭环控制的具体过程是根据工艺要求,给控制器输入张力值,控制器根据张力传感器信号与设定张力值之差进行快速PID计算后输出控制信号,此控制信号控制浮动摆辊伺服驱动器和伺服电机动作,从而使浮动摆棍产生偏移使得料膜张力快速达到设定值。[/size][size=16px] 浮动摆辊的PID闭环控制过程主要是通过浮动摆辊偏移来调节料膜张力,主动辊速度仍为主机速度,并未参与调节。当浮动摆辊伺服电机持续动作调节料膜张力时,浮动摆辊偏差会导致累积,最终达到浮动摆辊位置报警值。因此仅由浮动摆辊伺服电机调节料膜张力不能完全解决张力不稳、精度不高的问题,为此增加主动辊PID闭环控制实现张力的精准控制。[/size][size=16px] 第二路主动辊PID闭环控制的具体过程是在浮动摆辊PID闭环控制实现调节后,由于浮动摆辊偏离中位,位移传感器跟随浮动摆辊偏移产生对应的偏移电压信号并输入给控制器,控制器根据此偏移电压信号与0V值的正负偏差进行快速PID计算后输出控制信号,此信号控制主动辊伺服驱动和主动辊伺服电机来改变主动辊速度,使得浮动摆棍回到中位,最终实现GDL脆性材料的微张力精准控制。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过上述解决方案,可很好的解决微张力的精密控制问题,具体优点如下:[/size][size=16px] (1)解决方案所采用的双闭环控制结构,实际上是一个非常典型的串级控制结构,因此充分利用了串级控制结构的优势,更利于实现高精度张力的控制。[/size][size=16px] (2)制约微张力精密控制的另一个主要因素是控制器的精度普遍不高,采用PLC很难达到超高的采集和控制精度。因此,本解决方案中采用了超高精度的双通道PID控制,既使用了串级控制功能,又实现了超高精度的PID控制。[/size][size=16px] 当然,传感器和执行器精度也是制约微张力精密控制的因素,为了真正实现微张力的精密控制,还需在使用串级控制和超高精度PID控制器的基础上,配备相应高精度的传感器和执行器。[/size][size=16px][/size][size=16px][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/b][/align][align=center][b][color=#339999][/color][/b][/align][align=center][b][color=#339999][/color][/b][/align][align=center][b][color=#339999][/color][/b][/align][align=center][b][color=#339999][/color][/b][/align]

  • 多功能PID控制器和耐腐蚀高速数控针阀在化学药品注入双闭环比值控制中的应用

    多功能PID控制器和耐腐蚀高速数控针阀在化学药品注入双闭环比值控制中的应用

    [size=16px][color=#339999][b]摘要:在目前的流体比值混合控制系统中,普遍采用的是多通道闭环PID控制系统对各路流量进行准确控制后再进行混合,这种控制方式普遍存在的问题是对流量调节阀的响应速度、耐腐蚀性和线性度有很高要求。为此本文提出的第一个解决方案是采用NCNV系列强耐腐蚀的高速和高线性度电控针阀,第二个解决方案则是不再使用流量调节阀,改用压力控制器通过调节流体进口压力来实现流量的精密控制,而第二种方案更适用于微流量的精密控制。[/b][/color][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/b][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 在医药实验室、燃烧系统和化工领域的生产过程中,常需要将两种或两种以上的流体物料保持一定的比例进行混合,如比例一旦失调,将影响质量甚至造成事故,因此这种多种流体精密混合的控制需要采用精密的PID比值控制系统。一个比较典型的两种流体混合的双闭环PID比值控制系统如图1所示,但这种比值控制系统存在以下几方面的问题和注意事项:[/size][align=center][size=18px][color=#339999][b][img=常用双回路比值控制系统示意图,600,354]https://ng1.17img.cn/bbsfiles/images/2023/08/202308231002390515_7752_3221506_3.jpg!w690x408.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 常用化学药品注入双回路比值控制系统示意图[/b][/color][/size][/align][size=16px] (1)图1所示结构是一种典型的流量调节方式的控制系统,即通过两个控制阀同时调节两路流体流量,并使两路流量达到设定比值,以实现混合后的准确比率。但这种流量调节方式的前提是其中的两路液体必须有相应的压力进行驱动,且要求相应的驱动压力尽可能稳定。[/size][size=16px] (2)流量调节方式要求控制阀具有较快的调节速度,如果流量调节速度慢于驱动压力的波动速度,则很难实现准确控制。[/size][size=16px] (3)在很多流体比值混合中,流体介质往往都带有腐蚀性,这就要求液体流动管路中的所有装置都需要具有耐腐蚀性,特别是对内部带有运动机构的控制阀,其耐腐蚀性尤为关键。[/size][size=16px] (4)PID控制是一种典型的线性控制技术,为了保证比值控制的准确性,除了要求流量计和PID控制器具有相应的测量控制精度之外,更要求控制阀开度与控制信号之间具有很好的线性关系,否则很难实现较高精度的流量控制,从而也无法实现高精度的比值控制。[/size][size=16px] 上述的快速调节能力、耐腐性以及线性度往往是对流量控制阀的严峻挑战,很少有控制阀能同时满足这些要求,而且口径越大的控制阀越难实现。[/size][size=16px] 为了解决比值控制中控制阀中存在的响应速度、耐腐蚀性和线性度问题,本文提出了两种解决方案。第一种方案是在流量调节的基础上,采用耐腐蚀的线性度好的高速数控针阀;第二种方案是采用压力控制方式来实现流量调节,省略掉流量控制阀,同样可以实现高精度比值控制。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 本文在这里设计了两套解决方案,第一套方案还是采用流量调节技术,只是对控制阀和比值控制器进行了明确,关键是将流量控制阀采用了NCNV系列步进电机驱动的高速高线性度的数控针阀来代替,整个控制系统结构如图2所示。[/size][align=center][size=16px][color=#339999][b][img=采用高速数控针阀的比值控制系统,600,341]https://ng1.17img.cn/bbsfiles/images/2023/08/202308231003088266_938_3221506_3.jpg!w690x393.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 采用高速数控针阀的比值控制系统[/b][/color][/size][/align][size=16px] 所用的NCNV数控针阀的通经范围为0.9~4.1mm(甚至更大),全量程响应时间小于1秒,可实现高速流量调节。由于采用了步进电机驱动,从而具有很小的磁滞和优于±2%的线性度,全量程的重复精度可以达到±0.1%。另外此系列数控针阀还具有极低的漏率,可用于对真空密封要求苛刻的使用场合。数控针阀的控制除了可以直接采用0~10V模拟电压控制之外,也可采用RS485信号进行通讯控制。[/size][size=16px] 图2所示的流量调节比值控制系统中,比值控制器采用了VPC2021系列多功能PID控制器。此控制器具有两路独立通道进行比值控制。重要的是这两路PID控制通道都具有24位AD采集精度和16位DA控制精度,由此可进行高精度的比值控制,还可以满足微小流量变化的控制要求。[/size][size=16px] 在第二套解决方案中,采用了压力控制器、流量计和比值控制器构成的双闭环控制回路来进行每个独立管路中的流量控制,由此最终实现比值控制。由于每个管路中的管径保持不变,那么通过改变进液压力就可以调节流量。这种采用压力控制方式的比值控制系统如图3所示。进液压力控制可以采用对进液容器内部的气压控制方式将流体压出,这时的气压控制就相当于一个气压泵,此流量控制方式可以实现很高的控制精度。[/size][align=center][size=16px][color=#339999][b][img=采用压力控制器的比值控制系统,600,338]https://ng1.17img.cn/bbsfiles/images/2023/08/202308231003293037_3318_3221506_3.jpg!w690x389.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 采用压力控制器的比值控制系统[/b][/color][/size][/align][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过上述的两套解决方案,可以很好的解决目前流体混合中比值控制在响应速度、耐腐蚀性和线性度等方面存在的问题,可以实现流体比值混合的高精度控制。特别在第二套解决方案中所采用的压力控制技术,去掉了流量控制阀,但增加了压力控制来调节流量,由此可以实现超高精度的流量控制,特别适用于微流量的快速控制,可推广应用于微流控领域。[/size][align=center][size=16px][/size][/align][align=center][b][color=#339999]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 【求购】Waters 510双泵控制器

    本人老师有Waters510双泵,现控制梯度的控制器损坏,想买个2手的控制器。不知哪位有相关信息。请与赵老师联系。电话13957149763(杭州)

  • 快速温变试验箱电气控制系统原理

    快速温变试验箱电气控制系统原理 快速温变试验箱电气系统设有手动和自动控制;具有温度测控、实时数据显示、参数设定、记录打印、报警、故障显示等功能,快速温变试验箱电气控制系统基本构成:  系统配置压缩机高、低压力开关,用于系统运行故障报警和保护压缩机作用。系统还为压缩机设有超压、过载、过热、缺相保护。风机设有热保护功能快速温变试验箱电气系统分强电和弱电两部分。强电部分主要由控制R404A压缩机的起停、箱内风机运行的交流接触器、热继电器;控制辅助加热器的固态继电器及线路保护的断路器等器件组成。弱电部分由日本优易1100型彩色液晶触摸屏及配套PLC(带USB接口1个,RS232接口1个,可与电脑连接,可与电脑进行数据通讯)和人机界面触摸屏、温度传感器组成。温度测量传感器为:Pt100铂电阻,通过Pt100铂电阻把温度信号送入PLC的A/D转换模块,实现试验箱内的温度的控制和显示,Pt100选用进口A级元件。http://www.whgt17.com/uploads/allimg/160817/1-160QG515350-L.jpg

  • 【“仪”起享奥运】国务院办公厅印发《加快构建碳排放双控制度体系工作方案》

    各省、自治区、直辖市人民政府,国务院各部委、各直属机构:《加快构建碳排放双控制度体系工作方案》已经国务院同意,现印发给你们,请结合实际认真贯彻执行。[align=right]国务院办公厅[/align][align=right]2024年7月30日[/align](本文有删减)[align=center][b]加快构建碳排放双控制度体系工作方案[/b][/align]为贯彻落实党中央、国务院决策部署,建立能耗双控向碳排放双控全面转型新机制,加快构建碳排放总量和强度双控(以下简称碳排放双控)制度体系,积极稳妥推进碳达峰碳中和、加快发展方式绿色转型,制定本工作方案。一、总体要求以习近平新时代中国特色社会主义思想为指导,深入贯彻党的二十大和二十届二中、三中全会精神,全面贯彻习近平经济思想、习近平生态文明思想,完整准确全面贯彻新发展理念,加快构建新发展格局,着力推动高质量发展,将碳排放指标及相关要求纳入国家规划,建立健全地方碳考核、行业碳管控、企业碳管理、项目碳评价、产品碳足迹等政策制度和管理机制,并与全国碳排放权交易市场有效衔接,构建系统完备的碳排放双控制度体系,为实现碳达峰碳中和目标提供有力保障。到2025年,碳排放统计核算体系进一步完善,一批行业企业碳排放核算相关标准和产品碳足迹标准出台实施,国家温室气体排放因子数据库基本建成并定期更新,相关计量、统计、监测能力得到提升,为“十五五”时期在全国范围实施碳排放双控奠定基础。“十五五”时期,实施以强度控制为主、总量控制为辅的碳排放双控制度,建立碳达峰碳中和综合评价考核制度,加强重点领域和行业碳排放核算能力,健全重点用能和碳排放单位管理制度,开展固定资产投资项目碳排放评价,构建符合中国国情的产品碳足迹管理体系和产品碳标识认证制度,确保如期实现碳达峰目标。碳达峰后,实施以总量控制为主、强度控制为辅的碳排放双控制度,建立碳中和目标评价考核制度,进一步强化对各地区及重点领域、行业、企业的碳排放管控要求,健全产品碳足迹管理体系,推行产品碳标识认证制度,推动碳排放总量稳中有降。二、完善碳排放相关规划制度(一)推动将碳排放指标纳入规划。将碳排放指标纳入国民经济和社会发展规划,充分考虑经济发展、能源安全、群众正常生产生活以及国家自主贡献目标等因素,合理确定五年规划期碳排放目标,并对重点任务和重大工程进行统筹部署。“十五五”时期,将碳排放强度降低作为国民经济和社会发展约束性指标,开展碳排放总量核算工作,不再将能耗强度作为约束性指标。(二)制定碳达峰碳中和有关行动方案。围绕国民经济和社会发展五年规划纲要有关部署,研究制定碳达峰碳中和有关行动方案,细化碳排放目标控制的工作举措、重点任务和保障措施。“十五五”时期,细化落实《2030年前碳达峰行动方案》部署,确保2030年前实现碳达峰。(三)完善碳排放双控相关法规制度。全面清理现行法规政策中与碳排放双控要求不相适应的内容。加快修订固定资产投资项目节能审查办法、重点用能单位节能管理办法等制度,纳入碳排放双控有关要求。三、建立地方碳排放目标评价考核制度(四)合理分解碳排放双控指标。五年规划初期,综合考虑经济社会发展水平、区域和功能定位、产业和能源结构等因素,将碳排放双控指标合理分解至各省份。各省份可进一步细化分解碳排放双控指标,压实地市及重点企业控排减排责任。(五)建立碳达峰碳中和综合评价考核制度。制定出台碳达峰碳中和综合评价考核办法,明确评价考核工作程序及结果运用方式,对各省份开展评价考核。统筹建立评价考核指标体系,以碳排放总量和强度指标为重点,纳入能源结构、能耗强度、资源利用效率、生态系统碳汇、重点领域绿色转型等指标。(六)推动省市两级建立碳排放预算管理制度。推动各地区结合实际开展碳排放核算,指导省市两级建立碳排放预算管理制度,按年度开展碳排放情况分析和目标预测,并加强与全国碳排放权交易市场的工作协同。2025年底前,指导各地区开展碳排放预算试编制工作。“十五五”时期,指导各地区根据碳排放强度降低目标编制碳排放预算并动态调整。“十六五”时期及以后,推动各地区建立碳排放总量控制刚性约束机制,实行五年规划期和年度碳排放预算全流程管理。四、探索重点行业领域碳排放预警管控机制(七)完善重点行业领域碳排放核算机制。发挥行业主管部门及行业协会作用,以电力、钢铁、有色、建材、石化、化工等工业行业和城乡建设、交通运输等领域为重点,合理划定行业领域碳排放核算范围,依托能源和工业统计、能源活动和工业生产过程碳排放核算、全国碳排放权交易市场等数据,开展重点行业碳排放核算。(八)建立行业领域碳排放监测预警机制。摸清重点行业领域碳排放底数与减排潜力,常态化开展碳排放形势分析监测,对碳排放增长较快的行业领域进行形势预警,并视情采取新上项目从严把关、全国碳排放权交易市场从严管控、重点用能和碳排放单位从严管理等措施。条件成熟时,将重点行业领域碳排放管控要求纳入碳达峰碳中和综合评价考核指标体系。五、完善企业节能降碳管理制度(九)健全重点用能和碳排放单位管理制度。制修订电力、钢铁、有色、建材、石化、化工等重点行业企业碳排放核算规则标准。制定出台重点用能和碳排放单位节能降碳管理办法,将碳排放管控要求纳入现行重点用能单位管理制度,推动重点用能和碳排放单位落实节能降碳管理要求,加强能源和碳排放计量器具配备和检定校准。(十)发挥市场机制调控作用。完善全国碳排放权交易市场调控机制,逐步扩大行业覆盖范围,探索配额有偿分配机制,提升报告与核查水平,推动履约企业减少碳排放。健全全国温室气体自愿减排交易市场,逐步扩大支持领域,推动更大范围减排。加快健全完善绿证交易市场,促进绿色电力消费。六、开展固定资产投资项目碳排放评价(十一)完善固定资产投资项目节能审查制度。将碳排放评价有关要求纳入固定资产投资项目节能审查,对项目用能和碳排放情况开展综合评价,将有关审查评价意见作为固定资产投资项目开工建设以及竣工验收和运营管理的重要依据。(十二)完善建设项目环境影响评价制度。将温室气体排放管控纳入环境影响评价,对建设项目温室气体排放量和排放水平进行预测和评价,在电力、钢铁、建材、有色、石化、化工等重点行业开展温室气体排放环境影响评价,强化减污降碳协同控制。制定重点行业建设项目温室气体排放环境影响评价技术规范,健全环境影响评价技术体系。七、加快建立产品碳足迹管理体系(十三)制定产品碳足迹核算规则标准。制定发布产品碳足迹量化要求通则等国家标准,对产品碳足迹核算原则、核算方法、数据质量等明确统一要求。按照急用先行原则,聚焦电力、燃油、钢铁、电解铝、水泥、化肥、氢、石灰、玻璃、乙烯、合成氨、电石、甲醇、煤化工、动力电池、光伏、新能源汽车、电子电器等重点产品,组织相关行业协会、企业、科研单位等制定发布产品碳足迹核算行业标准或团体标准。(十四)加强碳足迹背景数据库建设。加快建设全国温室气体排放因子数据库,建立定期更新发布机制,为地方、企业开展产品碳足迹核算提供基准数据。行业主管部门和有条件的地区可以根据需要建设重点行业碳足迹背景数据库,鼓励相关行业协会、企业、科研单位探索建设细分行业领域产品碳足迹背景数据库。(十五)建立产品碳标识认证制度。制定产品碳标识认证管理办法,研制碳标识相关国家标准,组织有条件的城市聚焦重点产品开展先行先试,鼓励企业按照市场化原则开展产品碳标识认证。八、组织实施各地区、各有关部门要深入贯彻落实党中央、国务院决策部署,加快构建碳排放双控制度体系,结合实际细化落实方案,按照职责分工扎实推进各项重点任务,持续夯实工作基础。国家发展改革委要切实履行“双碳”有关协调职责,强化调度督促和推进落实,加强前瞻性政策研究,及时优化有关任务举措,抓紧补齐制度短板,并会同有关部门加强宣传解读和教育培训。重大事项及时请示报告。

  • CHI660D关于电镀镍层电解退镀的计时电位法设置问题

    本人第一次使用电化学工作站,非常不懂。先说明下实验内容:把一定面积的电镀镍层在恒电流下电解,测量这个过程中的电位-时间曲线,电解液使用的是瓦特液,镀镍层做为阳极电解溶出,使用AgCl参比电极,不锈钢做阴极,接线的方法是绿线接阳极,白线接参比,红线接阴极吗,这个是正确的吗?采用的计时电位法应该如何设置?里面有阴极电流阳极电流高电位限制高电位保持时间低电位保持时间阴极时间阳极时间初使极性数据储存间隔时间段数电流极性切换优先auxiliary signal recording when sample interval我偿试了几次,设置都不对,工作站不启动,谁能告诉我,感激不尽!另外哪位大大能推荐下电化学入门比较好的书?

  • 【求助】配制双喷电解液

    第一次配制10%高氯酸+90%甲醇的双喷电解液,想请教各位在配制溶液和双喷时需要注意哪些问题?是不是需要在通风橱中配制?多谢!

  • 【原创】全铝X-射线分析仪分析铝电解质

    摘要:本文叙述全铝X-射线分析仪分析铝电解质中的Al、F、Na、Ca、Mg含量,进一步计算分子比、CaF2、MgF2、Al2O3、过剩AlF3的方法,以及每个元素及化合物谱线的选择与修正、分析参数的建立、工作曲线的绘制、样品的制备方法等。实践证明:分析结果准确可靠,精密度良好,实现了准确快速测定的目的。一 前言铝槽电解质的分子比是铝电解生产控制的重要参数之一,正确分析电解质的各项指标,直接影响铝电解的工艺控制和经济效益。目前,在国内铝工业生产中铝电解质的分析方法有热滴定法、化学法、结晶光学法和X-射线衍射法,在这些方法中,热滴定法和化学法是基础,但其分析速度慢,分析结果严重滞后;结晶光学法对于有多种添加剂和低分子比的电解质分析时误差太大。X-射线衍射法只有国内少数铝厂采用,其分析的项目较少。本文介绍全铝X-射线分析仪(X荧光+X衍射综合性仪器)分析铝电解质的方法。这是国内从瑞士ARL公司引进的最先进的仪器,经过近一年的实践,证明仪器所分析的数据准确、精密度高、速度快。为青铜峡铝厂三期13万吨200千安预焙电解槽在短时间内达产达标提供了有力的技术支持。使其在4个月内电流效率提高到92%,创造了可观的经济效益。二 实验部分1 实验原理根据邱竹贤、K. Grjotheim等人铝电解质的酸度理论,固态酸性电解质的基体是由冰晶石(Na3AlF6)、亚冰晶石(Na5Al3F14)和Al2O3组成。当加入CaF2时,增加了NaCaAlF6相,液态中增加了CaF2相;加入MgF2时,增加了Na2MgAlF7相,液态中增加了NaMgF3相;加入LiF时,增加了Na2LiAlF6相,液态中增加了Li3AlF6相。因预焙槽工艺中不加LiF,其含量可忽略。根据以上理论,用仪器的荧光部分测定电解质的Al、F、Na、Ca、Mg含量, 再用数学模型计算NaF,AlF3,CaF2,MgF2,Al2O3,过剩AlF3及分子比。2 标样的研制这种标样在实际生产电解槽中直接采取。保证基体相同及每个元素和化合物有足够的梯度。我们在实际生产的640台槽中取样,先用仪器分析其强度,发现单元素有异常的样品,立即大量取样,选取17个单元素有一定梯度的样品,经本厂化验室、郑州轻金属研究所、北京有色金属研究院、包头铝厂、中宁铝厂多家单位化学定值。综合评定,最后选取10个作为标样。3 样品制备为保证分析结果的重复性,从电解槽取样必须严格遵守取样的操作规程。新型全铝分析仪使用慢冷样品,样品中基本上没有非晶质物质存在。各标准样品的冷却条件要和实际取样时尽量保持一致。试样制备过程如下;(1) 粉碎:取电解厂房送来的铝电解质冷却试料块约30g,放入破碎机的试料容器中进行破碎。为了避免破碎时试料粘在容器壁上及压片时易于成型,破碎前滴上1-2滴无水乙醇。经实验在转速1550转/分条件下破碎20秒,可使试料达到300目以上。(2) 压片:将料环放在样托上,称取5克试样粉末倒入料环内,放入压样机,选用30吨压力静压15秒,取出压成的试样片,即可上仪器分析。注意:正常分析样品的取样冷却条件、试样的破碎程度、压样时的压力、静压时间对测量结果均有影响,尽量和标样制备时保持一致。4 选择谱线X-射线荧光是激发原子的最内层K层电子,所以每种元素的特征谱线有好几条,首选Ka谱线,理论Ka谱线与实际生产工艺中元素的谱线并不吻合,必须多做实验加以调整,衍射的谱线也应做调整,无需扣背景,具体谱线见表1。5 确定激发条件对某一种元素,其谱线、晶体、探测器、计数时间、准直器、X-光管电压、电流选择搭配不同,其分析效果也不同。必须做大量实验,总结经验,选择适合生产工艺并能准确反映元素真实含量的分析参数

  • 具有双传感器自动切换功能的双通道24位高精度PID控制器

    具有双传感器自动切换功能的双通道24位高精度PID控制器

    [align=center][size=14px][img=双传感器自动切换PID控制器,690,426]https://ng1.17img.cn/bbsfiles/images/2021/07/202107281550092924_2978_3384_3.png!w690x426.jpg[/img][/size][/align][color=#990000]摘要:为了解决PID过程控制器中双传感器自动切换的难题,降低成本提高性价比,替代昂贵的英国欧陆公司2704系列产品,上海依阳实业有限公司推出了单通道和双通道系列的24位高精度PID过程控制器,每个通道都可以实现双传感器自动切换。采用双通道控制器还可以实现温度和真空度的同时测量和控制,温度和真空度测控都可以实现双通道自动切换。另外双传感器自动切换功能还可使备份传感器成为可能,可有效保证过程控制的连续性和安全性。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=24px][color=#990000]1. 问题的提出[/color][/size][size=14px][/size]  在许多工业控制领域中,如真空热处理、冷冻干燥机、高压釜、半导体加热炉、空间环境模拟室等,被控参数的量程往往会很宽泛,为了覆盖全量程范围内的准确测量和控制,往往需要两只不同量程的传感器。[size=14px][/size]  如在温度测控过程中,往往在低温段采用热电偶温度传感器,在高温段采用红外测温仪,有时也会采用两种不同类型的热电偶温度传感器来覆盖宽的温度区间。[size=14px][/size]  如在真空度测控过程中,往往会采用10Torr和1000Torr两只薄膜电容真空计来完成0.1~760Torr全量程范围的真空度准确测量和控制。[size=14px][/size]  对于这种需要双传感器测量和控制的场合,目前普遍还是采用人工判断切换方式,这给实际应用带来很大不便。[size=14px][/size]  国外著名厂商欧陆(EUROTHERM)公司针对上述应用,专门推出了2704系列PID过程控制器,但价格较贵。[size=14px][/size]  为了解决PID过程控制器中双传感器自动切换的难题,降低成本提高性价比,替代昂贵的国外产品,上海依阳实业有限公司推出了单通道和双通道系列的24位高精度PID过程控制器,每个通道都可以实现双传感器自动切换,采用双通道控制器还可以实现温度和真空度的同时测量和控制,温度和真空度测控都可以实现双通道自动切换。另外双传感器自动切换功能还可以使备份传感器成为可能,有利于控制过程中若一只传感器出现故障而自动切换到第二只备份传感器,保证过程控制的连续性和安全性。[size=24px][color=#990000]2. 基本原理[/color][/size][size=14px][/size]  双传感器自动切换的基本原理是在控制器主输入接口的基础上引入了一个辅助输入接口,如图2-1所示为两只传感器切换的情况。以温度传感器为例,高切换点(2-3)是第一只传感器工作的高点,低切换点(1-2)是第二只传感器工作的低点,在这两点之间控制器进行平滑计算。当主输入PV1和辅助输入PV2的测量值连续采样低于下切换点,切换到低温传感器。当主输入PV1和辅助输入PV2的测量值连续采样高于上切换点,则切换到高温传感器。[align=center][color=#990000][img=双传感器自动切换原理,690,452]https://ng1.17img.cn/bbsfiles/images/2021/07/202107281552543835_2273_3384_3.png!w690x452.jpg[/img][/color][/align][size=14px][/size][align=center][color=#990000]图2-1 双传感器自动切换原理图[/color][/align][size=24px][color=#990000]3. 控制器参数设置[/color][/size][size=14px][/size]  双传感器高低量程的切换点数值判断以辅助输入测量值为判断依据,因此当系统采用双传感器测量和控制时,辅助输入接口做为高端量程传感器的信号输入源。[size=18px][color=#990000]3.1. 双传感器切换功能时,输入类型分辨率的设置[/color][/size][size=14px][/size]  (1)主输入接口输入类型为热电偶或热电阻时[size=14px][/size]  此时的温度单位“摄氏度”和“开尔文”设置为0.1度分辨率,温度单位“华氏度”为1度分辨率。即,主输入类型为热电偶或热电阻,温度单位为摄氏度或开尔文时,辅助输入通道小数点设置为1位小数。温度单位为华氏度时,小数点设置为0位小数。[size=14px][/size]  (2)主输入通道的输入类型为模拟信号时(真空度测控情况)[size=14px][/size]  根据小数点设定分辨率,两通道必须相同分辨率,即主输入和辅助输入保持相同小数位数,但相应的量程要根据传感器的实际量程进行设置。如对于10Torr和1000Torr两只真空计,其对应的模拟信号都是0~10V,但显示量程分别要设置为10和1000。[size=18px][color=#990000]3.2. 双传感器切换功能中的上下限切换点设置[/color][/size][size=14px][/size]  在使用双传感器切换功能时,还需在控制器上进行相应子菜单设置,分别设置上限切换点和下限切换点,具体内容详见控制器使用说明书。[size=24px][color=#990000]4. 双传感器自动切换功能的应用[/color][/size][size=14px][/size]  具有双传感器自动切换功能的PID过程控制器可应用于多种场合:[size=14px][/size]  (1)由于双传感器功能能够同时从两个独立的传感器接收输入信号,这就使得控制器可用于测量两传感器之间的差值和平均值,如温差、平均温度、真空压力差和真空压力平均值。[size=14px][/size]  (2)双传感器自动切换功能也可作为备份传感器切换功能使用,即在控制器上连接两只完全一样的传感器,当第一只传感器开路时,当前测量自动切换到第二只传感器测量值进行控制,由此对测量和控制起到保护和保险作用。[size=14px][/size]  (3)由于上海依阳公司的VPC2021-2系列PID过程控制器具有双通道同时测控能力,而每一通道都配备了辅助输入端口,这样就可以同时连接4只传感器。这种4只传感器的接入能力,能带来非常多的组态形式,如同时进行两路不同变量(如温度和真空度)的测量和控制,其中2只传感器同时测控温度和真空度,其他2只传感器用来同时监测其他两个测量点处的测量值变化情况。[size=14px][/size]  (4)在高真空工艺过程中,最常见的是使用扩散泵,并将扩散泵放置在真空炉膛和机械泵(粗真空)之间,而扩散泵和机械泵之间的区域称为前级室。机械泵将前级室气压降低到扩散泵的最大吸入压力以下,扩散泵才能开始正常运行。在典型的单室真空系统中,一般会配备三个真空计:在主真空室(或炉膛)中将安装两个真空计,一个用于低真空(皮拉尼真空计10-3 mbar),另一个用于高真空(有源倒磁控管AIM)仪表10-8mbar。而另一个皮拉真空计被视为单独的输入用来监控前级室气压。在实际应用中需要两个主真空室上的真空计进行自动切换,同时外加一个真空计监测前级室气压和一个温度传感器进行腔室温度测控。两种类型的真空计(每种都需要24V直流电源)提供2~10V直流对数输出,涵盖不同的真空范围。在实际控制过程中,两通道控制器将前级室与主真空室隔离并打开前级泵,当前级室达到设定的真空度时,控制器将改变其联锁装置,使扩散泵能够将炉子抽真空。同样,当炉子达到设定的真空度时,两通道控制器将控制执行设定的温度曲线,同时继续监测是否保持必要的真空度。[align=center]=======================================================================[/align][align=center][img=,690,349]https://ng1.17img.cn/bbsfiles/images/2021/07/202107281553360737_7536_3384_3.jpg!w690x349.jpg[/img][/align][size=14px][/size]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制