当前位置: 仪器信息网 > 行业主题 > >

超低振动激光快门控制系统

仪器信息网超低振动激光快门控制系统专题为您提供2024年最新超低振动激光快门控制系统价格报价、厂家品牌的相关信息, 包括超低振动激光快门控制系统参数、型号等,不管是国产,还是进口品牌的超低振动激光快门控制系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超低振动激光快门控制系统相关的耗材配件、试剂标物,还有超低振动激光快门控制系统相关的最新资讯、资料,以及超低振动激光快门控制系统相关的解决方案。

超低振动激光快门控制系统相关的论坛

  • 【资料】六自由度-单自由度/振动台闭环数控程序(以下简称:VibControl控制系统)

    【资料】六自由度-单自由度/振动台闭环数控程序(以下简称:VibControl控制系统)

    振动台闭环数控程序(以下简称:VibControl控制系统)是基于系统非线性迭代补偿理论来对控制信号和响应信号进行修正的。1.1 单自由度系统构成[img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911230112_185926_1634361_3.jpg[/img]1.2 六自由度系统构成[img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911230113_185927_1634361_3.jpg[/img]液压振动台其实就是电液伺服技术的进一步扩展,不过在高性能和大吨位的技术上远远高于电磁台的水平,如大型地震模拟系统和整个装甲车的振动模拟系统都是液压振动台.

  • 微激光束焊接中真空控制系统的压力调节解决方案

    微激光束焊接中真空控制系统的压力调节解决方案

    [color=#990000]摘要:本文针对微激光束焊接中真空控制系统的压力调节,介绍了相应的解决方案。具体实施方案是配备不同量程的真空计、进气电动针阀、排气电动球阀和双通道高精度PID控制器,并采用上游和下游控制模式可实现全量程范围内的气压调节和恒定控制。此解决方案可在全量程范围内任意设定点的真空度恒定控制达到波动率小于±1%。[/color][align=center][color=#990000]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/align][color=#990000] [size=18px]一、背景介绍[/size][/color]微激光束焊接 (LBW) 也称为微焊接,是通过投射出的微小直径激光光束,产生微观焊缝将不同金属熔合在一起。最近有客户提出定制要求,要求在微激光束焊接的系统中,配备用于精确压力调节的真空控制系统。具体要求是焊接腔室内充入惰性气体,焊接腔室内的绝对气压在10Pa至一个大气压(0.1MPa)的真空范围内精确恒定控制,在任意控制点上的气压波动小于±1%。本文将针对上述客户对微激光束焊接中真空控制系统的压力调节技术要求,提出相应的解决方案。具体实施方案是配备不同量程的真空计、进气电动针阀、出气电动球阀和双通道高精度PID控制器,并针对不同真空度量程分别采用上游和下游控制模式实现全量程范围内的气压调节和恒定控制。此解决方案可在全量程范围内任意设定点的真空度恒定控制达到波动率小于±1%。[size=18px][color=#990000]二、解决方案[/color][/size]微激光束焊接 (LBW) 真空控制系统的压力调节解决方案如下图所示。[align=center][img=微激光束焊接中的真空控制系统,400,555]https://ng1.17img.cn/bbsfiles/images/2022/09/202209201618016926_439_3221506_3.png!w590x819.jpg[/img][/align]由于微激光束焊接所要求的气压调节范围(绝对压力)为10Pa~0.1MPa的真空度,并实现全量程任意设定真空度在恒定过程中的波动率小于±1%,而且还要求对焊接过程中所引起的气压波动进行快速调节并恒定能力,故本解决方案采用两个控制回路来覆盖全量程。第一个控制回路负责控制1kPa~101kPa范围的高气压,采用了1000Torr量程的薄膜电容真空计作为传感器。此真空计连接PID控制器的第一通道,PID控制器通过接收到的真空度信号与设定值进行比较来调节电动球阀,使得焊接室内的气压快速达到设定值并保持恒定。第二个控制回路负责控制10Pa~1kPa范围的低气压,采用了10Torr量程的薄膜电容真空计作为传感器。此真空计连接PID控制器的第二通道,PID控制器通过接收到的真空度信号与设定值进行比较来调节电动针阀,使得焊接室内的气压快速达到设定值并保持恒定。为保证控制精度和稳定性,此解决方案中要求电动针阀和球阀需要具有1秒以内的响应速度,并要求双通道PID控制器具有24位AD和16位DA的高精度。此解决方案已成功得到广泛应用。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 激光测振仪在压电变压器振动测试中的应用

    激光测振仪在压电变压器振动测试中的应用

    压电变压器驱动电压低,体积小,质量轻,结构简单,无电池辐射等特点,但工作状态复杂,其振动特性影响它的特性,比如使用频率范围和转换效率等。压电变压器其实是电场和振动场耦合的谐振件,它在谐振时,器件会因多种因素(比如负载、环境、材料、输入电压)而发热、产生疲劳甚至破裂等问题。激光测振仪直接非接触地测得压电变压器在谐振状态下端点的振动位移、速度和加速度信号,便于更深入了解他的谐振状态,促进压电变压器的结构设计与优化。OptoMET数字型激光多普勒测振仪是一套高精度的振动测量仪器。该仪器可非接触且精确地测量振动和声学信号,包括振动位移、速度和加速度。OptoMET数字型激光多普勒测振仪具有超高的光学灵敏度,并利用自行研发的超速数字信号处理技术(UltraDSP),不仅能快速测量简单系统的振动,也能测量极具挑战的系统,包括高频振动,远距离测试,微小振幅,高线性和高振动加速度或速度。超速数字信号处理技术(UltraDSP)确保了测量的高分辨率和高精度。OptoMET激光测振仪具有出色的线性度,测试频带宽,最高可达10MHz。[img=,554,271]https://ng1.17img.cn/bbsfiles/images/2019/03/201903281454403195_8750_3859729_3.jpg!w554x271.jpg[/img]OptoMET单点激光测振仪有3个系列:分别是Vector、Nova、Dual Fiber系列:Vector系列氦氖激光测振仪是通用性激光测振仪,适用与大多数非接触式振动测量应用场合。该系列激光测振仪特别适用于反射性表面或水中的测试,以及需要激光光斑尽可能小的应用场合。Nova系列激光测振仪采用不可见的短波红外激光(1550nm),这种激光束的输出功率超过传统红色氦氖激光10倍,但激光安全等级仍然是人眼安全的激光等级(Class I)。短波红外激光入射功率大,Nova系列红外激光测振仪适用于粗糙表面和低反射率表面的振动测量,长距离振动测量和高频振动测量。选用不同的光学镜头,包括一款准直镜头,Nova系列红外激光测振仪的工作距离覆盖0mm到300m。Dual Fiber双光纤短波红外激光测振系统包括一套短波红外激光测振仪和一套柔性光纤镜头,物镜包括准直镜头和聚焦镜头两种。这套激光测振仪内置了稳定的短波红外激光,在任何被测物表面的测量信号都有非常高的信噪比。多个光纤镜头可通过一个光纤开关连接至测振仪,因此,可以同时传输多个通道(2,4,8,16……),光纤开关带有电气接口(以太网、USB、TTL……),可以由 PC 远程控制。文章来源嘉兆科技官网来源网址:http://www.tnm-corad.com.cn/news/Show-5612.html

  • 激光测振仪在笔记本电脑结构振动测试中的应用

    激光测振仪在笔记本电脑结构振动测试中的应用

    结构振动特性决定了结构工作的可靠性。振动测试中,常用的是传统的接触式测量方式,但对于轻质量结构,这种方式会产生附加质量和刚度问题,影响测试结果。笔记本电脑质量相对较轻,结构也复杂,其振动特性测量适合采用非接触测量方法,利用激光测振仪测量笔记本电脑结构的振动特性或开展模态测试分析。单点式激光测振仪可用于测量笔记本电脑结构的振动响应,扫描式激光测振仪可以用于笔记本电脑结构的模态测试分析或工作变形分析中。 [img=,558,311]https://ng1.17img.cn/bbsfiles/images/2019/03/201903271515449311_283_3859729_3.jpg!w558x311.jpg[/img]OptoMET数字型激光多普勒测振仪是一套高精度的振动测量仪器。该仪器可非接触且精确地测量振动和声学信号,包括振动位移、速度和加速度。它具有超高的光学灵敏度,并利用自行研发的超速数字信号处理技术(UltraDSP),不仅能快速测量简单系统的振动,也能测量极具挑战的系统,包括高频振动,远距离测试,微小振幅,高线性和高振动加速度或速度。超速数字信号处理技术(UltraDSP)确保了测量的高分辨率和高精度。OptoMET激光测振仪具有出色的线性度,测试频带宽,最高可达10MHz。 OptoMET激光测振仪有四个系列:分别是Vector、Nova、Dual Fiber、Scan系列:Vector系列氦氖激光测振仪是通用性激光测振仪,适用与大多数非接触式振动测量应用场合。该系列激光测振仪特别适用于反射性表面或水中的测试,以及需要激光光斑尽可能小的应用场合。Nova系列激光测振仪采用不可见的短波红外激光(1550nm),这种激光束的输出功率超过传统红色氦氖激光10倍,但激光安全等级仍然是人眼安全的激光等级(Class I)。短波红外激光入射功率大,Nova系列红外激光测振仪适用于粗糙表面和低反射率表面的振动测量,长距离振动测量和高频振动测量。选用不同的光学镜头,包括一款准直镜头,Nova系列红外激光测振仪的工作距离覆盖0mm到300m。Dual Fiber双光纤短波红外激光测振系统包括一套短波红外激光测振仪和一套柔性光纤镜头,物镜包括准直镜头和聚焦镜头两种。这套激光测振仪内置了稳定的短波红外激光,在任何被测物表面的测量信号都有非常高的信噪比。多个光纤镜头可通过一个光纤开关连接至测振仪,因此,可以同时传输多个通道(2,4,8,16……),光纤开关带有电气接口(以太网、USB、TTL……),可以由 PC 远程控制。Scan系列扫描式激光测振仪和Nova系列一样采用短波红外激光进行测量。这套激光测振仪用于非接触式的振动测量,可对结构的振动进行可视化的测试和分析。采用这套仪器进行工作变形分析(ODS)或模态分析,过程就如同拍摄视频一样简单。通过预设定的测量点,激光测振仪可对整个被测面进行扫描式的测量。这种强大的扫描测振系统采用了当前最为先进的数字处理技术,同时集成了强大的数据采集、3D可视化以及数据分析软件。来源:嘉兆科技官网 来源链接:http://www.tnm-corad.com.cn/news/Show-5611.html

  • 激光测振仪测量引线键合劈刀超声振动信号

    激光测振仪测量引线键合劈刀超声振动信号

    [img=,690,293]https://ng1.17img.cn/bbsfiles/images/2019/05/201905271158351897_7669_3859729_3.jpg!w690x293.jpg[/img]引线键合是芯片一级封装的主要工艺之一。热超声键合技术是一种引线键合技术,这种技术是对引线和键合区在加热时施加超声振动,使得焊球和芯片之间的接触区域发生变形,同时破坏界面的氧化膜,通过接触面金属间的原子扩散形成固溶强化组织,从而完成连接,即利用超声能量、压力和热量的相互作用,实现芯片I/O端口之间的连接。在产品生产过程中,影响键合质量的一个主导因素是劈刀的超声振动模式,劈刀超声振动模式的差异将会直接导致芯片凸点获得不同的能量,产生不同的键合效果,甚至可能导致键合失效。键合失效是引起电路失效的主要原因,而劈刀振动模式是影响键合质量的关键,因此对于劈刀振动信号的测量在产品生产过程质量控制中至关重要。[img=,394,235]https://ng1.17img.cn/bbsfiles/images/2019/05/201905271158450487_1473_3859729_3.jpg!w394x235.jpg[/img]热超声键合过程具有键合点空间高度局部化及时间瞬态性等特点,键合点信号的提取相当困难,必须采用非接触测量方式测量。激光多普勒测振仪利用多普勒效应和外差干涉技术能非接触地同时测量振动位移、速度和加速度,测量精度高、信噪比高、动态范围大等优点,适用于测量劈刀的超声振动信号。[img=,327,221]https://ng1.17img.cn/bbsfiles/images/2019/05/201905271158549597_4419_3859729_3.jpg!w327x221.jpg[/img]OptoMET数字型激光多普勒测振仪是一套高精度的振动测量仪器。该仪器可非接触且精确地测量振动和声学信号,包括振动位移、速度和加速度。它具有超高的光学灵敏度,并利用自行研发的超速数字信号处理技术(UltraDSP),不仅能快速测量简单系统的振动,还能测量极具挑战的系统,包括高频振动,远距离测试,微小振幅,高线性和高振动加速度或速度。超速数字信号处理技术(UltraDSP)确保了测量的高分辨率和高精度。OptoMET激光测振仪具有超高的光学灵敏度和信号强度,这对于在生锈和灰暗又无法进行表面处理的结构上获得无噪声和无信号丢失的测试数据至关重要。如需了解更多内容请关注嘉兆科技

  • 温湿度振动试验箱控制系统介绍

    上期给大家介绍到了设备的箱体结构,而这一次小编为您仔细的讲解一下[url=http://www.bjyashilin.com/product_show-98.html][b]温湿度振动试验箱[/b][/url]的制冷系统。 1、制冷机采用法国原装“泰康”全封闭压缩机 2、冷冻系统采用单元或二元式低温回路系统设计 3、美国“艾高”干燥过滤器,台湾“冠亚”油分离器,意大利“卡士妥”电磁阀 4、采用多翼式送风机强力送风循环,避免形成任何死角,可让测试区内温湿度分布均匀 5、风路循环出风回风设计,风压风速都符合测试的标准,并可使开门瞬间温湿度时间回稳快 6、升温、降温、加湿系统完全独立可提高效率,降低测试的成本,增长使用的寿命,降低故障发生可能率。  温湿度振动试验箱的制冷系统就如上文所述,持续关注本站为你解析精彩详情。

  • 激光测振仪在超声变幅杆振动测试中的应用

    激光测振仪在超声变幅杆振动测试中的应用

    超声加工系统主要由超声电源、换能器、变幅杆、加工工具及磨料供给系统组成。超声变幅杆是超声加工系统中的核心部件,主要作用是把机械振动的质点位移或速度放大,或者将超声能量集中于较小面积处,即聚能作用。一般超声换能器辐射的振动幅度在20kHz范围内只有几微米,但在高声强超声应用中,比如超声加工、超声焊接、超声金属成型或其他超声疲劳试验等应用中,辐射面的振动幅度范围一般在几十微米到几百微米,因此必须在换能器的端面连接超声变幅杆,将机械振动放大。除此之外,超声变幅杆可以作为阻抗变换器,在换能器和声负载之间进行阻抗匹配,使超声能量更加有效向负载传输。在超声变幅杆的设计研究中,需要测量其振动频率、振型等参数。变幅杆的尺寸较小,利用传统加速度传感器会面临附加质量影响及如何固定传感器的问题。激光测振仪非接触的测量方式适用于测量变幅杆的振动频率,并获得位移,速度或加速度振幅。利用扫描式激光测振仪可以直接获取变幅杆的振型参数。[img=,334,195]https://ng1.17img.cn/bbsfiles/images/2019/04/201904221426182913_5511_3859729_3.jpg!w334x195.jpg[/img]超声变幅杆[img=,431,181]https://ng1.17img.cn/bbsfiles/images/2019/04/201904221426281325_9396_3859729_3.jpg!w431x181.jpg[/img]OptoMET数字型激光多普勒测振仪是一套高精度的振动测量仪器。该仪器可非接触且精确地测量振动和声学信号,包括振动位移、速度和加速度。它具有超高的光学灵敏度,并利用自行研发的超速数字信号处理技术(UltraDSP),不仅能快速测量简单系统的振动,还能测量极具挑战的系统,包括高频振动,远距离测试,微小振幅,高线性和高振动加速度或速度。超速数字信号处理技术(UltraDSP)确保了测量的高分辨率和高精度。OptoMET Scan系列扫描式激光测振仪采用短波红外激光进行测量。这套激光测振仪用于非接触式的振动测量,可对结构的振动进行可视化的测试和分析。采用这套仪器进行工作变形分析(ODS)或模态分析,过程就如同拍摄视频一样简单。通过预设定的测量点,激光测振仪可对整个被测面进行扫描式的测量。这种强大的扫描测振系统采用了当前最为先进的数字处理技术,同时集成了强大的数据采集、3D可视化以及数据分析软件。文章来源嘉兆科技http://www.tnm-corad.com.cn/news/Show-5665.html

  • 非接触测量物体振动的速度,加速度,位移,运动轨迹,频率-激光测振仪

    激光测振仪(进口)位移分辨率高达0.008纳米。非接触测量物体振动的速度,加速度,位移,运动轨迹,频率.全场激光测振实现整面物体的XY轴的振动测量可以彩色动画输出。三维激光测振可以实现三轴振动测量。多点激光测振可以同时实现16个振动点振动并可以测量物体瞬间振动和实时的振动模拟.激光测振可以实现对振动幅值、频率测量。使用激光进行非接触式测量,记录被测体在振动过程中的运动轨迹,并用最大值减去最小值得到振幅。当振幅超过界定值时,可通过软件设置输出报警信号。采样频率高,能精确还原被测体运动轨迹并通过图像显示出来。传统振动测量仪都会对机械振动带来的影响,而激光测振动测量系统使用各种滤波器,使测量结果更加稳定准确。还可以测量高频振动加速度峰值和平均值,测量低频振动速度有效值。应用于如磁盘振动,压电陶瓷振动,汽车玻璃振动,桥梁振动,油罐车振动,机床精密加工振动等等微小振动的测量。非接触高精密测量精密机械加工微小振动 如压电陶瓷,硬盘振动,山体滑坡,桥梁振动,汽车发动机输油管振动,汽车玻璃振动,高压器振动,水面振动激光多普勒测振仪最大测量速度可达20m/s,最大频率范围可达2.5MHZ,可以检测到纳米级别的振动.激光多普勒测振仪采用非接触式的测量方式,可以应用在许多其他测振方式无法测量的任务中。频率和相位响应都十分出色,足以满足高精度、高速测量的应用。使用非接触测量方式,无需耗时安装调节传感器、无质量负载,且不受被测物体的尺寸、温度、位置、振动频率等的限制。还可以检测液体表面或者非常小物体的振动,同时,还可以弥补接触式测量方式无法测量大幅度振动的缺陷。 应用:如磁盘振动,压电陶瓷振动,汽车玻璃振动,桥梁振动,油罐车振动,机床精密加工振动等等微小振动的测量。 非接触高精密测量 精密机械加工微小振动如压电陶瓷,硬盘振动,山体滑坡,桥梁振动,汽车发动机输油管振动,汽车玻璃振动,高压器振动,水面振动 整片不规则金属大型结构、高温、柔软物体等接触式测量无法满足的振动测量领域的振动情况

  • 噪声污染扰民 当务之急是噪声与振动控制

    由于噪声与振动污染的物理特征最为直观易感,且与民众的日常工作生活息息相关,近年来,噪声污染投诉事件的数量几乎在所有城市一直高居各类环境污染诉讼事件的首位。噪声污染、空气污染和水污染一起被列为三大污染。当空气污染和水污染得到控制后,噪声污染被列为21世纪环境污染控制的主要问题。近年来,我国城市噪声污染日趋严重,多数城市处于噪声污染的中等水平,许多城市生活区噪声已高于60dB,成为我国现代城市的一大公害。据一些热点城市统计,目前噪声污染投诉事件约占到环境污染投诉总量的60%-70%,直接影响了社会的安定、和谐发展,其污染评估和治理工程也再次成为我国环保产业发展的热点。根据前瞻产业研究院发布的《中国噪声与振动控制行业发展前景与投资预测分析报告》资料显示,据中国环境保护产业协会噪声与振动控制委员会统计,2012年全国从事噪声与振动控制相关产业和工程技术服务的专业企业总数约900家,从业总人数维持在约3万人。噪声与振动污染防治行业总产值达到160亿元。前瞻网噪声与振动控制行业分析认为,随着各级政府、各大部委对于环境保护工作的日益重视和环境噪声控制技术政策的深入执行,全国环境噪声与振动控制行业的发展环境将得到进一步的改善,行业将大有可为。

  • 冻干机控制系统验证

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=34467]冻干机控制系统验证[/url] 冻干机的验证方案,大家可能都会作,冻干机控制系统验证的你作过吗!!!看看吧!!! 希望对你会有帮助!!!

  • 锅炉水位检测与控制系统

    锅炉水位检测与控制系统主要包括水位的检测、显示、排污阀门和报警控制等环节。锅炉水位测控过程主要有:锅炉水位进入磁翻板接液内层、磁浮子的检测和进水阀门控制。系统通过磁翻板或翻柱主体检测锅炉内液位。当锅炉内水位下降至设定的下限水位值时,启动翻板显示报警系统;反之,水位上升超过上限水位设定值时,则启动上限报警,该磁浮子液位计可设置多个报警点,满足系统上多方面控制要求。该水位系统采用磁敏液位传感器测量锅炉内水位。磁敏液位传感器(UHZ-10C00液位计)的输出端可外接PC+PCL机自动化控制设备,驱动LED显示器,并可向远传装置发出4~20mA电信号或无线通讯输出信号。经过处理后,反馈给报警系统通过继电器动作控制电磁阀并报警。 燃气锅炉是一个大惯性、大滞后系统,为验证确保锅炉水位控制效果,在系统完成后通过数据进行验证,控制过程中响应初始阶段的超调大约12%,响应速度快,在300s内达总测量峰值,随后420s后达稳态。水位期望值与实际值最大误差为0.15cm,最大相对误差在0.5%以内,满足精度要求。通过试验证明,该磁浮子液位传感器具有良好稳态性能和动态性能。 测试次数 期望数位/cm 实测水位/cm 误差/cm 1 20 20.12 +0.12 2 25 25.07 +0.07 3 30 29.98 -0.02 4 35 35.09 +0.09 5 40 40.15 +0.15 表中 水位期望值和实测值及其误差本文提出一种用于锅炉水位智能控制系统,可达到水位控制的预期要求,能够实现锅炉水位实时显示、控制及报警,且该装置测量量程宽泛、准确度高、性能稳定、重复性好、操作简单、界面直观,完全可满足液位量值化传递需要。

  • 超低温容器运输中的震动保护

    低温容器已经成为了现代生物医学和生命科学研究领域中不可或缺的设备。超低温容器被广泛应用于低温保存、冷冻存储以及运输过程中的样品、细胞和生物制品。然而,在超低温容器的运输过程中,震动会对其中的样品造成损害,降低其质量和效果。因此,研究如何有效保护超低温容器中的样品免受震动的影响变得非常重要。  I. 震动对超低温容器中样品的影响   在超低温容器的运输过程中,震动会对其中的样品产生一系列的影响。首先,震动会导致样品的分散和混合,从而使得样品中的溶液、细胞或其他生物制品的浓度失去均匀性。这将直接影响到实验结果的准确性和可重复性。其次,震动会引起样品内部的机械应力和变形,导致细胞破裂、溶液泄漏以及其他损害。这不仅会降低样品的质量,还可能导致实验的失败。此外,长时间的震动还会对超低温容器本身造成损坏,从而影响其使用寿命和稳定性。  II. 震动保护技术的应用  为了保护超低温容器中的样品免受震动的影响,研究人员提出了多种震动保护技术。其中一个常用的方法是在超低温容器周围添加缓冲材料,如泡沫塑料或凝胶。这些材料能够吸收震动能量,减少震动对容器和样品的传递。另一个方法是设计更加结实和耐震的超低温容器,并通过合理的结构设计来减少震动产生的应力。此外,还可以采用电磁悬浮技术或其他主动控制技术来平衡和减小震动。  III. 震动保护效果的评估和优化  为了评估和优化震动保护技术的效果,研究人员需要进行一系列的实验和测试。首先,他们需要确定合适的震动指标,如加速度、频率和持续时间,来模拟实际运输过程中的震动环境。然后,他们可以通过在超低温容器中放置传感器或使用高速摄像技术来监测和记录震动的变化。最后,通过比较不同震动保护技术下样品的质量和效果,可以评估其保护效果,并进一步优化技术。[url=http://www.mvecryoge.com/]金凤液氮罐[/url]  超低温容器运输中的震动保护是一个复杂而重要的研究领域。震动对样品的影响会直接影响到实验结果的可靠性和准确性。通过应用合适的震动保护技术和方法,可以减少样品损害,提高超低温容器的使用寿命和稳定性。然而,目前仍然存在一些挑战,如如何选择合适的震动保护技术、如何评估和优化震动保护效果等。因此,未来的研究还需要深入探索这些问题,并提出更加有效的解决方案。

  • 【分享】振动的测量

    测量振动的仪器泛称拾振器,拾振器的种类很多,最常用的方法是将机械振动转换成电量,测量位移的称为测振计,测量速度的称为速度计,测量加速度的称为加速度计。 拾振器主要是由一块重金属(质量为M)和弹性元件(力顺为CM)组成。测量时,壳体和待测振动体紧密固定,与振动面一起振动。重金属块对壳体的相对位移和所测振动位移成正比,相位相差180度;重金属块的振速与所测振速成正比.相位相差180度。当测量系统的固有频率ωo很大时,重金属块对壳体的相对位移与所测的振动加速度成正比。 利用M与CM的振动系统可以做成测振计、速度计和加速度计,用来测量振动参数。在测量振幅和速度时,固有频率ωo要低,也就是说,测振计和速度计是质量控制系统;而在测量加速度时,ωo要高,即加速度计是弹性控制系统。这三种拾振器在输出中可用积分电路和微分电路互相转变。 电容式测振计是测量位移的器件,它的输出比例于电位移引起两极板间电容的变化。电容式测振计的主要特点是测量时对振动体不增加负载,可测量的频率与位移范围都比较宽。 感应式速度计是测量速度的器件。 压电式加速度计是最常用的拾振器,它所产生的电荷与所加的加速度成正比。国产YD型压电式加速度计可与ND2型精密声级计及积分器组成简单便携的振动测量分析系统,通过振动单位换算尺和积分器,可将声级计的分贝读数转换成加速度、速度和位移读数。 使用时要注意压电式加速度计与被测物体的质量比例应在1:10以上.否则会破坏物体原有的振动规律。

  • 微机控制冲击试验机在加荷过程中会出现震动现象

    微机控制冲击试验机的的试验往往是冲击试验机是主要是用来做材料在动负荷下抵抗冲击的试验,以测定材料的冲击韧性指标是否满足标准要求。作为一种精密仪器微机控制冲击试验机如果使用年限很长之后,由于机械的磨损,操作的不当等等,会出现一些小问题,加荷时振动(指针抖动)就是比较常见的问题之一。那么冲击试验机加荷时为什么会振动呢?是什么原因造成试验机的指针抖动呢? 造成产生加荷时振动(指针抖动)现象的原因有很多,主要有以下几个原因: (1) 电动机有较大振动引起共振。 (2) 径向柱塞油泵的变速箱内齿轮副啮合不良; (3) 溢油阀稳压弹簧压力过大; (4) 送油阀内有杂质或锈蚀等原因; (5) 用油粘度过低,活塞周围大量溢油或高压管等处漏油; (6) 油泵钢球与球座不密合或脏污,活塞上的弹簧断裂或弹力过小,柱塞运动受阻等; (7) 油路系统中有大量空气; (8) 机械共振,来源于附近其它机器的影响; (9) 安装地基不牢或地脚螺丝松动; 以上这几点是微机控制冲机试验机产生振动的主要原因,因此操作人员必须掌握这几点,只有掌握了这几点才能针对性的解决为什么冲击试验机在试验过程中会出现抖动的现象。

  • 【求助】示差折光检测器带有温度控制系统吗?

    [size=4]请问用过示差折光检测器的同仁,示差折光检测器带有温度控制系统吗?如果没带温度控制系统该如何进行温度控制呢?这个检测器大概价位是多少?当然这与生产品牌有关,准备购买,所以想多了解一下性能和价位,希望能得到更多的信息。[/size]

  • 干式运输型液氮罐的智能控制系统

    干式运输型液氮罐的智能控制系统

    干式运输型液氮罐在现代物流中扮演着重要的角色。这种特殊的液氮罐能够安全、高效地储存和运输液体氮气,被广泛应用于医疗、化工、半导体等领域。  然而,在使用过程中,液氮罐的温度和压力控制是至关重要的,这直接关系到液氮罐内液氮的稳定性和可靠性。为了提高效率和保障安全,智能控制系统成为必不可少的一部分。本文将探讨干式运输型液氮罐智能控制系统的设计与优化。  首先,我们需要了解液氮罐的基本工作原理。干式运输型液氮罐主要由罐体、内胆、真空绝热层和控制系统组成。当液体氮气进入储罐后,通过真空绝热层的保护,减少了热量的传输,从而保持液态状态。而控制系统则对液氮罐的温度和压力进行监测和控制,以确保液氮罐内的环境始终稳定。[img=液氮罐,400,372]https://ng1.17img.cn/bbsfiles/images/2023/11/202311301123439518_1703_3312634_3.jpg!w400x372.jpg[/img]  传统的液氮罐控制系统通常采用传感器和人工操作的方式来实现温度和压力的监测与调节。然而,这种方式存在着人工操作不准确、反应迟缓等问题,同时也增加了人工成本。因此,智能控制系统应运而生。  智能控制系统通过集成传感器、执行器、控制算法和通信技术,能够实时监测和控制液氮罐的温度和压力。首先,通过温度传感器和压力传感器采集罐内环境的数据,并将其传输给控制器。控制器根据预设的参数和算法进行数据处理,判断罐内环境的状态,并根据需要发送控制信号给执行器。  在控制信号的作用下,执行器可以自动调节液氮罐的温度和压力。例如,当温度过高时,控制系统可以启动冷却装置将温度降低 当压力过大时,控制系统可以通过排气阀门释放部分气体来降低压力。通过智能控制系统的优化和升级,液氮罐的温度和压力控制将更加准确和高效。  此外,智能控制系统还具有远程监控和故障诊断的功能。通过通信技术,控制系统可以与上位机或云平台进行数据交换和传输,实现远程监控。操作人员可以随时查看液氮罐的运行状态和数据,并根据需要进行调整和控制。同时,智能控制系统可以对液氮罐进行故障诊断,及时发现并报警故障,提高维护效率和减少停机时间。  总之,干式运输型液氮罐(www.cnpetjy.com)的智能控制系统在提高效率和保障安全方面具有重要作用。通过集成传感器、执行器、控制算法和通信技术,智能控制系统能够实时监测和控制液氮罐的温度和压力,实现自动化调节 同时,还能够实现远程监控和故障诊断,提高了运行效率和可靠性。未来,随着技术的不断进步,液氮罐智能控制系统的功能和性能还将进一步提升,为物流行业带来更多的便利和效益。

  • teamcorporation大型地震模拟振动系统

    [cp]TEAM公司?TEAM公司成立于1954年,总部位于美国的西雅图市。它在制造高性能震动试验系统和扭转疲劳试验方面有着丰富的经验。TEAM在全世界最早推出了6自由度震动台系统。独特的设计和极高的工艺加工精度,使震动台系统有着极好的波形再现精度。TEAM公司也在世界上首次推出了发动机模拟系统,通过其核心的扭转作动器或电液伺服马达,该系统可精确的模拟发动机的输出扭矩曲线,为发动机整机及辅助系统的研究提供了非常有用的手段。50年来,TEAM公司的产品遍布世界各地。它的应用从航空航天到汽车,从电子设备的震动试验到建筑物的抗震模拟,从噪音激励系统到冲击研究。TEAM公司的努力,为我们在提高研究能力改善产品品质方面提供了信心和保障。单轴震动台高性能垂向震动台- 0到500Hz- 1kN 到250kN推力。- 50到250mm行程。- 无摩擦力静压轴承作动器。- 满足正弦、随机、正弦随机叠加、随机叠加、锯齿、冲击、瞬态、波形再现等各种波形震动试验。高性能水平向震动台- 0到500Hz- 1kN 到250kN推力。- 50到250mm行程。- 无摩擦力静压轴承作动器,T-Film 静压支撑台面系统。满足正弦、随机、正弦随机叠加、随机叠加、锯齿、冲击、瞬态、波形再现等各种波形震动试验。高性能X-Y双向震动台 ( NEBS GR-63)- X-Y双向快速调整机构,可抵抗高冲击力无间隙。- 0到500Hz- 1kN 到250kN推力。- 50到250mm行程。- 无摩擦力静压轴承作动器,T-Film静压支撑台面系统。 - 满足正弦、随机、正弦随机叠加、随机叠加、锯齿、冲击、瞬态、波形再现等各种波形震动试验。满足NEBS GR63震动试验标准。高性能座椅俯仰震动台- 用于桌椅的震动噪音评估。- 满足各汽车公司对座椅的震动试验标准-IP试验(如福特汽车公司的 ES-F58B-1600034-A的标准)。- 垂向和俯仰耦合运动.- 无摩擦力静压轴承作动器.- 全数字控制系统。- 手动控制模式,用于发现噪音源。- 方便用户二次编程,适合特殊试验标准。单轴及多轴耦合振动试验MANTIS系统高性能6自由度电液伺服震动台- 0到100Hz- 至150kN推力。- 150mm行程。- 无摩擦力静压轴承作动器, 静压支撑球铰。满足正弦、随机、正弦随机叠加、随机叠加、锯齿、冲击、瞬态、波形再现等各种波形震动试验。CUBE 系统高性能6 自由度电液伺服震动台- 0到250Hz- 至60kN推力。- 100mm行程。- 无摩擦力静压轴承作动器, 静压支撑台面系统。- 满足正弦、随机、正弦随机叠加、随机叠加、锯齿、冲击、瞬态、波形再现等各种波形震动试验。TENSOR系统- 高性能6自由度电液伺服震动台- 0到1000Hz- 至30kN推力。- 25mm行程。- 无摩擦力静压轴承作动器, 静压支撑台面系统。- 专利的ICCU ( Intergrated Cross Coupling Unit-集成式多轴耦合单元),减少了各轴间的交叉影响,提高了系统的相应精度。满足正弦、随机、正弦随机叠加、随机叠加、锯齿、冲击、瞬态、波形再现等各种波形震动试验。Four Post 系统- 高性能汽车整车震动台架- 高性能整车台架试验系统。- 低轮廓无摩擦力静压轴承作动器。- 用于噪音-震动试验,路谱回放、疲劳试验。- 满足正弦、随机、正弦随机叠加、随机叠加、锯齿、冲击、瞬态、波形再现等各种波形震动试验。901发动机模拟系统TEAM公司的901发动机模拟系统利用电液伺服扭转震动装置和电液伺服马达可真实的模拟从单缸到多缸发动机的运动和扭矩输出特性。可用以研究新发动机前置装置(如压缩机、发电机、皮带轮、机油泵等)和驱动传动系统(如变速器、离合器等)的运动和震动特性。转速可达10000RPM,输出扭矩可达4500NM,扭震频率可达600Hz.发动机气阀运动模拟系统TEAM公司的气阀运动模拟系统用来研究活塞发动机的可变气门正时。它取代了发动机气缸头上的凸轮轴和凸轮,直接安装在燃烧的活塞缸上。气门和模拟系统中的电液伺服作动器联接,通过数字电液伺服控制系统直接编程定义气门的运动轨迹,用以寻找最佳的凸轮外廓和研究可变正时特性。气门运动模拟系统帮助研究人员有效的提高了发动机的燃油经济性和改善了发动机的性能。R10高性能电液伺服扭转作动器TEAM公司可提供R10系列的电液伺服扭转作动器,最大输出扭矩可至20000NM, 摆动角度达+/-50度,扭转频率可达250Hz。它广泛的运用在结构和材料的疲劳扭转和扭转震动研究,如驱动系统、耦合系统等。它采用静压轴承支撑,无摩擦损耗,可抗大的轴向推力。单轴及多轴耦合振动试验发动机模拟系统与扭转疲劳系统噪音激励振动台离心机静压轴承[/cp][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210271431428260_9592_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210271431445362_9706_1602049_3.png[/img]

  • 反应釜温度控制系统中为何存在空气?

    在制药化工行业中,反应釜温度控制系统是经常需要使用的,但是由于反应釜温度控制系统存在一定的空气、氢气、氮气、润滑油蒸汽等一些气体,这些气体是不利于反应釜温度控制系统运行的,那么到底是怎么一回事呢?反应釜温度控制系统中这些杂质气体是使制冷系统冷凝压力升高,从而使冷凝温度升高,压缩机排气温度升高,耗电量增加,制冷效率降低,同时由于排气温度过高可能导致润滑油碳化,影响润滑效果,严重时会烧毁制冷压缩机电机。反应釜温度控制系统中的这些气体产生可能是漏入的空气,可能是在充注制冷剂、加注润滑油的时候,外界空气趁机进入,或者反应釜温度控制系统密封性不严密导致空气进入系统内部。此外,冷冻油的分解、制冷剂不纯以及金属材料的腐蚀等原因也会产生气体。当然,无锡冠亚在反应釜温度控制系统上采用的是全密闭的循环系统,避免这些空气进入反应釜温度控制系统中。一般来说,反应釜温度控制系统中的气体表现在反应釜温度控制系统压缩机的排气压力和排气温度升高,冷凝器(或储液器)上的压力表指针剧烈摆动,压缩机缸头发烫,冷凝器壳体很热;反应釜温度控制系统蒸发器表面结霜不均匀,反应釜温度控制系统存在大量气体时,因装置的制冷量下降而使环境温度降不下来,压缩机运转时间长,甚至因高压继电器动作而使压缩机停车。反应釜温度控制系统是否存在这些气体的话,可以用压力表实测制冷系统的冷凝压力与当时环境气温下的饱和压力作比较。如果实测压力大于环境温度下的饱和压力,则说明该系统中含有气体了。如果发现了反应釜温度控制系统中存在上述的这些气体的话,就需要及时排除这些气体,及时解决故障。

  • 【原创】中真空控制系统

    一、操作便捷性:1、抽气口及气路连接口采用KF式快速连接结构。简化安装过程,只需一支卡箍便可完成连接,方便操作。2、配置两种电源连接线,即可直接与我公司的产品直接连接组合使用,也可单独连接独立使用。二、控制智能化:1、采用数显真空计,配合热偶规管采集数据。测量精度高、稳定性好、抗干扰能力强。真空度显示采用科学计数法,数字显示,使用方便直观。2、自动控制与手动控制切换功能。自动控制模式能通过设定值自动开启/关闭真空泵,时容器内保持在一定的真空压力范围内。手动控制模式使用户通过真空泵开启/关闭按钮直接操作真空泵。以满足不同实验的需要。3、电磁阀缓启动技术,使电磁阀在真空泵开启10秒钟后打开,使炉管内压力保持准确,也保证了废气不会返回到容器内影响实验效果。三、结构实用性:1、内置双极旋片式机械真空泵,有效的提高了抽气效率。2、内置压差式防返油机构,使真空泵中的油不会返出。结合气镇阀在使用时更加安全可靠。3、本身作为真空控制系统的同时,也可作为活动平台使用,方便放置电炉及其它设备。

  • 采用压力串级控制系统实现气动马达的精密调节

    采用压力串级控制系统实现气动马达的精密调节

    [color=#ff0000]摘要:气动马达作为一种将压缩空气的压力能转换为旋转机械能的装置,其运行的关键是要进行驱动气体压力的控制。本文介绍了目前气动马达压力控制装置的技术现状,特别指出了现有技术中使用电空变换器存在的不足,介绍了电空变换器的更新换代产品——电气比例阀。本文对这两种新旧技术进行了详细比较,新一代的电气比例阀技术更能满足今后气动马达对小型化、集成化、智能化、精细化、高寿命和高可靠性等方面的需求。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~[/align] 气动马达也称为风动马达,是指将压缩空气的压力能转换为旋转的机械能的装置。气动马达一般作为更复杂装置或机器的旋转动力源,它的作用相当于电动机或液压马达,即输出转矩以驱动机构作旋转运动。气动马达的主要特点有: (1)使用空气作为介质,无供应上的困难,用过的空气不需处理,放到大气中无污染 压缩空气可以集中供应,远距离输送。操纵方便,维护检修较容易。 (2)气马达具有结构简单,体积小,重量轻,马力大,操纵容易,维修方便。 (3)可以无级调速,只要控制进气阀或排气阀的开度,即控制压缩空气的流量,就能调节马达的输出功率和转速。即通过调节气源压力或者改变气流量,也可通过同时调节两者来实现。 (4)能够正转也能反转。大多数气马达只要简单地用操纵阀来改变马达进、排气方向,即能实现气马达输出轴的正转和反转,并且可以瞬时换向。在正反向转换时,冲击很小,而且不需卸负荷。 (5)工作安全,不受振动、高温、电磁、辐射等影响,适用于恶劣的工作环境,在易燃、易爆、高温、振动、潮湿、粉尘等不利条件下均能正常工作。 从上述气动马达的特点可以看出,气动马达运行的关键是压力控制。目前气动马达常用的压力控制装置如图1所,其中主要包括电空变换器(E/P或V/P转换器)和增压器,由此构成压力的开环控制,通过电流或电压信号输入就可以进行气动马达的调节。[align=center][color=#ff0000][img=气动马达常用压力控制装置结构示意图,500,359]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301217044251_5561_3221506_3.jpg!w690x496.jpg[/img][/color][/align][align=center][color=#ff0000]图1 气动马达常用压力控制装置结构[/color][/align] 如果增加传感器(如旋转编码器)和PLC控制器,由此可构成闭环控制回路,传感器检测气动马达的转速等参量,PLC控制器通过检测传感器信号并与设定值比较可进行气动马达高精度的自动控制。另外,整个控制装置还可以通过增加双向阀来实现气动马达的正反转自动控制。 在图1所示的气动马达压力控制装置中,所用的电控变换器(电气转换器)是一种比较传统的压力调节装置,目前正逐渐被电气比例阀所代替。图2所示为这两种压力调节装置的对比。[align=center][color=#ff0000][img=电气比例阀和电气转换器比较表,690,520]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301217340426_2793_3221506_3.jpg!w690x520.jpg[/img][/color][/align][align=center][color=#ff0000]图2 电气比例阀和电气转换器特性对比表[/color][/align] 从上述对比可以看出,电气比例阀采用了更新的技术,与传统的电气转换器相比具有更优异的性能,电气比例阀正在快速对电气转换器形成升级替换,特别是随着电气比例阀的价格逐渐降低,已逐渐成为电气压力控制领域内主要产品。 另外,由于电气比例阀内置了压力传感器和PID控制器,为很多压力和流量控制应用场合提供了极其丰富的拓展应用,即采用电气比例阀可很方便的与其他物理量(如温度、位移、出力等)的探测和控制组成更复杂的串级控制回路,实现更多工业应用领域中的精密控制功能。 特别是采用电气比例阀与超高精度PID控制器结合形成的串级控制回路,可实现超高精度定位、超低速度运转和细小载荷的控制。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 基于FPGA智能变送器控制系统总体方案

    随着工业自动化控制技术的发展,自控水平越来越高,对过程参数控制精度要求越来越严,要求变送器表不仅精度高,而且要功能多、稳定可靠、能准确传送过程参数(压力、差压、绝压、流量)、抗干扰能力强、使用维护简单,并能与控制器、执行器等设备组成功能强大的控制系统,实现通讯和过程的自动控制。所以,过去的变送器由于受测量原理和通讯所限,很难实现这种高精度控制要求,因此,自然而然地产生了原理先进具有通讯功能的智能变送器。这类先进的智能变送器集现代科技与一身,是微电子技术、精密机械加工技术、计算机技术和现代通讯技术完美结合的产物,能实现过程控制的多种要求,推动了整个自控技术的向前发展。先进的智能变送器是工业过程控制技术发展的需要,也是工艺过程实现高精度控制的必须,具有很好的市场前景。    本文根据工业应用的实际需要以及网络通信发展的功能要求,提出了基于FPGA智能变送器控制系统的总体方案,硬件系统设计、软件设计。该设计实现了系统MCU主控模块、数据采集模块、电源控制模块、数据处理模块、数据通信模块等硬件电路,并给出了系统软件流程图,重点论述了数据采集和数据模拟输出控制电路的FPGA实现,详细阐述了系统各模块电路的组成原理和实现方法,给出了整个电路系统的原理图,并制作了印刷电路板。结合XILINX公司的ISE10.1设计软件给出了模/数转换、数/模转换的仿真结果,验证了系统功能。    1、智能变送器的总体设计    本智能变送器由前端信号调理电路、高速A/D采样电路、数字信号处理电路、模拟输出电路和数字输出电路组成。如图1所示。    分析不同类型的传感器,其输出信号可分为电流信号、电压信号和电荷信号3大类,相应地设计了3种信号调理电路。以大型设备振动监测项目为例,县体的传感器有加速度、速度和位移传感器。选择不同的前端信号调理电路,变成统一规格的电压信号供后面的A/D采样。    A/D采样部分对前端电路的输出电压信号进行采样。A/D采样芯片采用ADI公司的AD7264,AD7264是双通道同步采样、14-bit、高速、低功耗、逐次逼近型模数转换器,采用5V单电源供电,采样速率高达1MSPS。A/D采样电路与前端信号调理电路用同一隔离电源供电,与后级数字信号处理电路隔离。AD7264的数据接口为串行接口,便于隔离处理。    数字信号处理电路选择带有CPU软核的FPGA。FPGA是智能式变送器的核心,它不但能对采样数据进行计算、存储和数据处理,还可以通过反馈回路对传感器进行调节。在整个系统中,FPGA主要实现对系统的控制和数据的预处理。    智能式变送器有两种输出方式:模拟输出和数字输出。数字输出将处理后的信号直接输出,通过CAN接口、TCP/IP接口传给上位机。模拟输出通过DAC芯片将信号转换成标准电压电流信号输出。    2、系统硬件设计与实现    智能变送器具有采集、处理、指示、通讯等功能,其硬件设计围绕功能进行。整个智能变送器单元根据所完成的功能分为以下几个主要功能模块:信号采集模块(传感器放大电路)、信号转换模块(模/数转换和数/模转换电路)、FPGA控制模块、通信模块(以太网和CAN总线通信)以及为整个系统提供电源的电路部分等。其中FPGA系统为整个控制器单元的核心,是变送器实现数字智能化的标志。    智能变送器的硬件总体结构框图如图2所示。变送器工作时,由传感器把被测量转变为电信号,然后将信号作A/D转换,把模拟信号变换成数字信号,送入到FPGA(XC3S4005PQ205)控制模块,FIGA通过FIR滤波器核对信号进行滤波,并通过查表法对信号进行自动补偿,然后根据实际需要。经数/模转换后将数据传给下级电路,同时也可能通过以太网或CAN总线传给局域网,实现智能变送功能。系统PCB板实物图如图3所示。    3、系统软件设计与仿真    该系统以XILINX公司的XC3S4005PQ208C作为中央处理器,整个系统主要包括初始状态(Initialization)、数据采集状态(Data_Sample)、数据处理状态(Data_Processing)、以太网传输状态(Enet_Transfers)、CAN总线传输状态(CAN_Transfers)、和模拟输出状态(Analog_Transfers)等6种状态,因此,可以利用有限状态机的设计方案来实现。其状态转换图如图4所示,通过开发工具ISE10.1对各个模块的VHDL源程序及顶层电路进行编译、逻辑综合,电路的纠错、验证、自动布局布线及仿真等各种测试,最终将设计编译的数据下载到芯片中即可。    初始状态:实现系统初始化;数据采集状态:完成数据采集过程;数据处理状态:对采集的信号进行一系列的滤波处理,非线性校正等;以太网传输状态,CAN总线传输状态:根据实际需要将信号数字输出;模拟输出状态:进行数模转换,输出标准的电压电流信号。    3.1数据采集的FPGA设计    数据采集是工业测量和控制系统中的重要部分,它是测控现场的模拟信号源与上位机之间的接口,其任务是采集现场连续变化的被测信号。对数字系统来说,数据采集主要由传感器放大电路和A/D转换电路构成,由硬件电路可见,系统通过AD7264模/数转换器来实现模/数转换。AD7264内含6个寄存器,分别是A/D转换器的结果寄存器、控制寄存器、A/D转换器A和B的内部失调寄存器、A/D转换器A和B通道的外部增益寄存器。由于XC3S4005PQ208C和AD7264都兼容SPI接口,两者的编程只需按照时序图进行即可。AD7264与FPGA的接口主要包括PD0数据输入选择端:DoutA(DoutB)两路数据输出端;OUTa(OUTb)两路数据输入端;CoutA(CoutB、CoutC、CoutD)比较器输出;G3(G2、G1、G0)四路增益控制输入信号。增益由控制寄存器的低四位控制;ADSCLK时钟信号;ADCS片选信号,低电平有效。AD7264工作频率为20MHz,在CS下降沿,跟踪保持器处于保持模式。此时,采样、转换同时被初始化模拟输入。这需要至少19个SCLK周期。第19个SCLK的下降沿到来时。AD7262恢复至跟踪模式,并设置DOUTA、DOUTB为使能。数据流由14位组成,MSB在前。图5为AD7264读寄存器时序仿真图。    3.2数据输出的FPGA实现    智能化信号调理器的输出分为数字输出和模拟输出,数字输出通过CAN接口和TCP/IP输出到上位机,或者通过总线方式输出;模拟输出通过DA转换成标准的电压电流信号输出。系统选用ADI公司AD5422数/模转换器来实现数/模转换。AD5422通过数据移位寄存器输入数据,数据在串行时钟输入SCLK的控制下首先作为24位字载入器件MSB中。数据在SCLK的上升沿逐个输入。该24位字在LATCH引脚的上升沿无条件锁存,然后数据继续逐个输入,此时与LATCH的状态无关。图6为AD5422写操作时序仿真图。    4、结束语    采用XILINX公司的ISE10.1设计软件及MODELSIM软件对系统进行反复调试仿真,给出了试验结果,验证了系统功能。并运用美国PCB公司的608A11作为加速度传感器。对设备的振动进行监测,其模拟输出的测试结果如表1所示。    最终的调试结果表明,本文所设计的智能变送器器能够稳定的实现温度、压力等变量的变送,并且频率、幅值的调节精度等技术指标均达到了预期的设计要求。

  • 【我们不一YOUNG】生态环境部办公厅关于推荐先进大气污染防治、噪声与振动控制技术的通知

    各省、自治区、直辖市生态环境厅(局),新疆生产建设兵团生态环境局,生态环境部有关单位,各工程技术中心和重点实验室,全国性行业组织及有关单位:为深入贯彻党的二十大精神,认真落实全国生态环境保护大会要求,根据《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》《中华人民共和国噪声污染防治法》相关规定,充分发挥先进技术在大气污染防治、噪声与振动控制和减污降碳协同增效中的重要作用,我部向社会公开征集大气污染防治、噪声与振动控制及其减污降碳协同技术,编制《国家污染防治技术指导目录(2024年)》(以下简称《目录》)。现将有关事项通知如下。一、重点领域(一)大气污染防治领域1.钢铁、水泥、焦化等行业烟气超低排放技术,玻璃、陶瓷等行业烟气深度治理技术,燃煤电厂烟气多污染物协同控制技术,工业锅炉烟气综合治理技术;2.石化、化工、工业涂装、包装印刷等行业挥发性有机物(VOCs)治理技术;3.船舶、矿山机械等移动源污染治理技术;4.生活垃圾、危险废物、生物质等焚烧烟气净化技术;5.餐饮业油烟污染防治技术;6.恶臭治理技术;7.扬尘等无组织排放治理技术;8.减污降碳协同增效技术。(二)噪声与振动控制领域1.城市轨道交通和铁路、公路交通等噪声与振动控制技术;2.工业行业噪声与振动控制技术;3.建筑施工噪声与振动控制技术;4.电力生产行业与输变电系统噪声控制技术;5.新型吸声材料、阻尼材料、隔声门窗等噪声与振动控制技术;6.噪声与振动预测等环境规划设计技术。二、推荐要求(一)符合国家生态环境保护相关法规、政策和标准。(二)污染防治或减污降碳效果明显,主要技术、经济指标具有先进性。(三)技术持有单位为依法注册、经营的单位,技术知识产权清晰,不涉及产权纠纷。(四)示范技术是指创新性强、技术指标先进、治理效果好,基本达到实际工程应用水平,具有工程示范价值和良好应用前景的技术。应至少有1个运行1年以上(即在2023年7月31日前已完成验收)的成功应用案例。(五)推广技术是指经工程实践证明技术成熟、治理效果稳定、经济合理可行,尚未广泛推广应用的技术。应至少有3个运行1年以上(即在2023年7月31日前已完成验收)的成功应用案例。(六)全行业应用较为普及的技术、已纳入《国家先进污染防治技术目录》的技术不再推荐。三、报送方式申报单位申报技术须经单位推荐,“国家污染防治技术申报表”(见附件1)的“推荐单位盖章”处应加盖推荐单位公章。推荐单位主要包括各省级生态环境部门、生态环境部各直属单位、各生态环境部工程技术中心和重点实验室、全国性行业组织、高等院校、科研院所等。请推荐单位认真组织推荐符合条件的技术,并对申报材料的真实性进行审核,各单位推荐技术原则上不超过5项。请申报单位填写“国家污染防治技术申报表”(见附件1),按附件2、附件3要求编写技术报告和《目录》(初稿),并按附件4要求准备证明材料,将上述材料合订胶装成册(按附件序号排序),报经推荐单位审核同意后,于2024年8月20日前寄送2册至指定邮寄地址,同时将上述材料电子件(可编辑版,不超过50MB)发送至联系人邮箱,邮件名称格式为“2024+技术领域+技术名称+申报单位名称”。四、联系人及联系方式联系人:生态环境部科技与财务司刘元生电话:(010)65645390邮寄地址:北京市西城区二七剧场路6号207室邮箱:liu.yuansheng mee.gov.cn附件:1. [img=,16,16,absmiddle]http://law.foodmate.net/member/editor/fckeditor/editor/images/ext/doc.gif[/img] [url=http://file1.foodmate.net/file/upload/202407/12/110913681643769.docx]国家污染防治技术申报表.docx[/url]2. [img=,16,16,absmiddle]http://law.foodmate.net/member/editor/fckeditor/editor/images/ext/doc.gif[/img] [url=http://file1.foodmate.net/file/upload/202407/12/110945581643769.docx]技术报告编写要求.docx[/url]3. [img=,16,16,absmiddle]http://law.foodmate.net/member/editor/fckeditor/editor/images/ext/doc.gif[/img] [url=http://file1.foodmate.net/file/upload/202407/12/111007391643769.docx]《国家污染防治技术指导目录(2024年)》初稿模板及编写要求.docx[/url]4. [img=,16,16,absmiddle]http://law.foodmate.net/member/editor/fckeditor/editor/images/ext/doc.gif[/img] [url=http://file1.foodmate.net/file/upload/202407/12/111022171643769.docx]证明材料要求.docx[/url][align=right]生态环境部办公厅[/align][align=right]2024年7月10日[/align](此件社会公开)抄送:国家发展改革委、科技部、工业和信息化部、住房城乡建设部办公厅。

  • CVD和PECVD管式炉真空控制系统的升级改造

    CVD和PECVD管式炉真空控制系统的升级改造

    [color=#ff0000]摘要:本文介绍了根据客户要求对CVD管式炉真空控制系统进行升级改造的过程,分析了客户用CVD管式炉真空控制系统中存在的问题,这些问题在目前国产CVD和PECVD管式炉中普遍存在。本文还详细介绍了改造后的真空压力控制系统的工作原理、结构和相关部件参数等详细内容,改造后的真空压力控制精度得到大幅度提高。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#ff0000]一、背景介绍[/color][/size]客户订购了一台CVD管式炉以进行小尺寸材料的制作,CVD管式炉及其结构如图1所示。在使用中客户发现这台管式炉在CVD工艺过程中无法保证材料的质量和重复性,材料性能波动性较大,分析原因是真空压力控制不准确且不稳定。为解决此问题,客户提出对此CVD管式炉的真空控制系统进行升级改造。[align=center][img=CVD和PECVD管式炉真空控制系统,690,370]https://ng1.17img.cn/bbsfiles/images/2022/06/202206281659560038_5783_3384_3.png!w690x370.jpg[/img][/align][align=center]图1 用户购置的CVD管式炉及其结构内容[/align]我们通过分析图1所示CVD管式炉的整体结构,发现造成真空压力控制效果较差的原因,主要是此管式炉的真空控制系统存在以下几方面的严重问题,而这些问题在目前国产CVD和PECVD管式炉中普遍存在。(1)真空计选择不合理:对于绝大多数的CVD和PECVD管式炉,其真空度的控制范围一般都为1Pa~0.1MPa(绝对压力),并要求实现真空度精确控制。而在客户所购置的CVD管式炉(包括其他品牌产品)中,为了节省造价,管式炉厂家配备了皮拉尼计和皮拉尼+电容真空计,但这种组合式电容真空计在10kPa~95kPa范围内的精度只有±5%,0.1Pa~10kPa范围内的精度则变为±15%,比单纯的薄膜电容真空计的全量程±0.25%精度相差太大。合理的选择是使用单纯的薄膜电容真空计,而且须配置2只真空计才能覆盖整个真空度范围的测量和控制。(2)控制方法错误:对于1Pa~0.1MPa(绝对压力)范围内的真空度控制,需要分别采用上游和下游控制模式进行控制才能达到很好的控制精度。例如,在1Pa~1kPa范围内采用上游控制模式,即固定真空泵抽速而只调节上游进气流量;在1kPa~0.1MPa范围内采用下游控制模式,即固定上游进气流量而只调节下游的排气流量。客户所采用的CVD管式炉则仅采用了调节进气流量的上游控制模式,势必会造成1kPa~0.1MPa范围内的真空度控制波动性很大,同时造成工作气体的极大浪费。(3)多种比例混合气体控制结构错误:在CVD工艺中,反应气体为按比例配置的多种工作气体混合物。尽管CVD管式炉中采用了4只气体质量流量计来配置工作气体,但质量流量计只能保证气体混合比的准确性而无法对真空度进行准确控制,除非是单一气体则可以通过一个质量流量计来调节进气流量来实现真空度控制。综上所述,客户所购置的CVD管式炉存在一些严重影响真空度控制精度的问题,文本将详细介绍解决这些问题的具体方法和升级改造详细内容。改造后的真空度控制系统可在全量程范围内控制精度优于±1%。[size=18px][color=#ff0000]二、升级改造技术指标[/color][/size]对客户的CVD管式炉的真空控制系统进行升级改造,需要达到的技术指标如下:(1)真空度控制范围:1Pa~0.1MPa(绝对压力)。(2)真空度控制精度:±1%(全量程范围)。(3)控制形式:定点控制和曲线控制。(4)输入形式:编程或手动。(5)PID参数:自整定。[size=18px][color=#ff0000]三、升级改造技术方案[/color][/size]针对客户的4通道进气CVD管式炉,为实现真空控制系统的上述技术指标,所采用的技术方案如图2所示。[align=center][img=CVD和PECVD管式炉真空控制系统,690,360]https://ng1.17img.cn/bbsfiles/images/2022/06/202206281700285160_4408_3384_3.png!w690x360.jpg[/img][/align][align=center]图2 CVD管式炉真空度控制系统结构示意图[/align]如图2所示,升级改造的技术方案主要在以下几方面进行了改动:(1)还保留了皮拉尼真空计以对真空度进行粗略的测量,更主要的是采用皮拉尼计可以覆盖0.001Pa~1Pa的超高真空监控。但在1Pa~0.1MPa真空度范围内,增加了两只薄膜电容真空计分别覆盖1Pa~1kPa和10kPa~0.1MPa,以提高CVD工艺过程中的真空度测量精度。(2)对于1Pa~0.1MPa(绝对压力)范围内的真空度控制,分别采用上游和下游控制模式进行控制以实现更高的控制精度。例如,在1Pa~1kPa范围内采用上游控制模式,即固定真空泵抽速而只调节上游进气流量;在1kPa~0.1MPa范围内采用下游控制模式,即固定上游进气流量而只调节下游的排气流量。(3)对于多种比例混合工作气体的CVD工艺,继续保留4路气体质量流量控制器以实现比例准确的工作气体混合,但精密混合后的气体进入一个缓冲罐。缓冲罐内气体进入CVD管式炉的流量通过一个电动针阀进行调节,由此既能保证工作气体的准确混合比,又能实现上游进气流量的精密调节。(4)为实现下游控制模式,在CVD管式炉的排气口处增加一个电动针阀,此电动针阀的作用是调节排气流量。下游控制模式在CVD工艺中非常重要,这种模式可以保证1kPa~0.1MPa范围内真空度的精确控制。如果在1kPa~0.1MPa范围内采用上游控制模式,一方面是真空度控制波动太大,另一方面是会无效损耗大量工作气体。(5)真空度的控制精度,除了受到真空计测量精度和电动针阀调节精度的影响之外,还会受到PID控制精度的严重制约。为此,技术方案中选用了24位AD和16位DA的高精度PID控制器,且具有定点和可编程控制功能,同时PID参数可进行自整定以便于准确确定控制参数。(6)由于采用了两只高精度的电容真空计测量整个量程范围的真空度,在实际真空度控制过程中,就需要根据不同量程选择对应的电容真空计并进行真空度控制。由此,这就要求PID控制器需要具备两只真空计之间的自动切换功能。(7)在CVD和PECVD管式炉真空度控制系统升级改造方案中,使用了上下游两种控制模式,这就要求PID控制器同时具备正向和反向操作功能,也可以采用2通道可同时工作的PID控制器,一个通道对应一个电动针阀。[size=18px][color=#ff0000]四、总结[/color][/size]针对客户的4通道进气CVD管式炉存在的CVD工艺中真空度控制严重不稳定的问题,分析了造成真空度控制不稳定的主要原因是真空计测量精度不够、控制方法不正确、多种工作气体混合结构不正确。为解决上述问题,本文提出了相应的升级改造技术方案,更换了精度更高的薄膜电容真空计,采用了控制精度更高的上下游控制方法,在多种气体混合管路上增加了缓存罐,并使用了调节和控制精度较高的电动针阀和2通道PID控制器。升级改造后的真空控制系统,可在全量程的真空度范围(1Pa~0.1MPa)内实现±1%的控制精度和稳定性。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 摩擦磨损试验机的控制系统

    摩擦磨损试验机的控制系统是连接试验人员与设备主机之间的纽带,用于对试验的进行控制与数据的显示,今天介绍的控制系统是济南凯锐公司自主研发,其不仅操作简单,而且功能齐全,还可以根据客户的需要量身定做。另外像电子万能试验机和液压万能试验机的控制系统其功能跟该系列产品大体也类似,具体看参照其他相关文章。1.摩擦磨损试验机的控制系统依托于windows控制系统,一切功能的实现都是在此基础上进行的,其全部内容所占空间也不过几百兆。控制系统相比较电脑系统来说,升级更容易,也更好操作。2.系统实现了分级别管理,控制系统的全部数据对于高权限的操作来说是完全公开的,不仅包括试验操作部分还包括设备的检定标定等功能。而对于普通的使用者来说也能对完全满足试验进行操作,即常规的试验操作部分。这样就保证系统的安全性,避免了因其他人对系统的操作造成系统的紊乱。3.控制系统具有完善的功能模块,有菜单栏,数据显示区(试验力显示区、摩擦力显示区、时间控制区、转速显示区、温度显示区、报警提示),曲线显示区(试验力-时间、摩擦力-时间-摩擦系数、摩擦系数-时间、转速-时间、温度-时间、摩擦力矩-时间),试验控制部分等思达部分组成。每个部分所能实现的功能还有很多,这里不一一介绍,详情可咨询凯锐的其他相关资料。4.该控制系统支持各种品牌商业用打印机,类似于三星、联想、爱普生等,兼容性高。5.操作功能不仅包括自动操作还可以进行手动操作,手动操作弥补了自动操作的一些缺点。适合用户进行各类复杂的数据分析。

  • 迈克尔逊激光干涉仪微位移和倾角测量中的真空度精密控制技术

    迈克尔逊激光干涉仪微位移和倾角测量中的真空度精密控制技术

    [color=#990000]摘要:在迈克尔逊激光干涉仪微位移和倾角的精密测量中,需要对真空度进行准确控制,否则会因变形、折射率和温度等因素的影响带来巨大波动,甚至会造成测量无法进行。本文介绍了真空度的自动化控制技术,详细介绍了具体实施方案。[/color][size=18px][color=#990000]一、问题的提示[/color][/size] 作为一种高精密光学仪器,迈克尔逊激光干涉仪得到了非常广阔应用,它可用于测量波长、气体或液体折射率、厚度、位移和倾角,具备对长度、速度、角度、平面度、直线度和垂直度等的高精密测量。但在高精密测量中,迈克尔逊干涉仪会受到气氛环境的严重影响,为此一般将被测物放置在低压真空环境中,如图1所示,并对真空度进行精密控制,否则会带来以下问题:[align=center][color=#990000][img=激光干涉仪真空度控制,500,315]https://ng1.17img.cn/bbsfiles/images/2022/01/202201270813137507_5730_3384_3.jpg!w690x435.jpg[/img][/color][/align][color=#990000][/color][align=center]图1 迈克尔逊激光干涉仪典型测试系统结构[/align] (1)测试环境的气体折射率波动,会对高精密测量带来严重影响。如果采用专门的气体折射率修正装置,测量精度也只能达到微米或亚微米量级,而无法实现更高精度的测量。 (2)如果真空腔室内有温度变化,腔室内的气压也会剧烈变化,相应折射率也会发生剧烈波动而严重影响干涉仪测量。 (3)在抽真空过程中,内外压差会造成真空腔室的微小变形,同时也会造成光学窗口产生位移和倾斜,从而改变测量光路的光程。 (4)在有些变温要求的测试领域,要求被测物能尽快的被加热和温度均匀,这就要求将真空度控制在一定水平,如100Pa左右,由此来保留对流和热导热传递能力。 总之,在迈克尔逊激光干涉仪微位移和倾角的精密测量中,需要对真空度进行准确控制。本文将介绍真空度的自动化控制技术以及具体实施方案。[size=18px][color=#990000]二、实施方案[/color][/size] 迈克尔逊激光干涉仪测试过程中,真空度一般恒定控制在100kPa左右,并不随温度发生改变。为此,拟采用如图2所示的真空度控制系统进行实施,具体内容如下:[align=center][color=#990000][img=激光干涉仪真空度控制,690,411]https://ng1.17img.cn/bbsfiles/images/2022/01/202201270813484950_7314_3384_3.jpg!w690x411.jpg[/img][/color][/align][align=center][color=#990000]图2 迈克尔逊激光干涉仪测试真空度控制系统结构[/color][/align] (1)采用1torr量程的电容真空计进行真空度测量,其精度可达±0.2%。 (2)采用24位A/D采集的高精度PID真空压力控制器,以匹配高精度真空压力传感器的测量精度,并保证控制精度。 (3)在真空腔室的进气口安装步进电机比例阀以精密调节进气流量。 (4)控制过程中,真空泵开启后全速抽取并保持抽速不变。然后对控制器进行PID参数自整定,使控制器自动调节比例阀的微小开度变化实现腔室真空度的精确控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 气相色谱仪机械控制系统简述

    气相色谱仪机械控制系统简述

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]机械控制系统简述[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体][font=宋体]随着色谱分析应用要求的日益提高,并且伴随着现代机械[/font][font=Times New Roman]-[/font][font=宋体]电子技术的发展,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]([url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url])色谱仪逐渐成为复杂的机械[/font][font=Times New Roman]-[/font][font=宋体]光学[/font][font=Times New Roman]-[/font][font=宋体]电子[/font][font=Times New Roman]-[/font][font=宋体]化学分析系统。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]([url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url])系统中安装的自动进样器单元(包括液体自动进样器、自动阀进样器、顶空进样器、热解析进样器、吹扫捕集进样器、热裂解进样器等)、自动阀切换单元、风扇和柱温箱后开门部分在仪器运行工作中都需要进行精确地机械控制,这些单元需要精确控制的物理量有机械位置、机械位移、旋转角度、速度和加速度等。本文对机械控制系统的基本原理和方法给予简单叙述,希望对色谱工作者和色谱维修工作者的日常工作给予一定帮助。[/font][/font][align=center][font=宋体][font=宋体]简述[/font] [font=宋体]开环和闭环控制[/font][/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url](或[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url])分析系统中存在较多机械运动部件,系统需要根据分析方法的要求,在合适的时间和状态下对运动部件进行合适的控制,例如部件的空间位置和位移、部件的运行速度和角度以及部件运行的加速度。[/font][font=宋体][font=宋体]常见情况下,部件的基本控制方式分开环控制和闭环控制两种,图[/font][font=Times New Roman]1[/font][font=宋体]为开环控制的基本原理框图,控制系统由控制器、执行器(一般为电机或气缸)、传动机构和目标部件组成。信号由输入端向输出端单向传递,没有信号反馈形成闭环的回路,此种控制方式的特点为,输出量不会对输入量产生任何影响。[/font][/font][font=宋体]开环控制方式结构较为简单、调节方便、故障率低,控制器直接给出系统输入量,对系统中可能产生的干扰或者系统中参数变化均不给出补偿,在精度要求不高或者扰动影响较小的场合下较为适用。例如[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱温箱后开门角度的控制、柱温箱或其他部件风扇运转速度的控制或者色谱柱切换阀旋转控制,一般采用开环控制方式。[/font][font=宋体]开环控制方式的缺陷较为明显,当系统出现故障时,目标部件不能完成控制目标,单系统不能识别此故障。例如在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]柱温箱后开门控制系统中,当执行器(电机)不能运转致使柱箱后开门不能开启,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱温箱温度将会产生降温速度异常降低的故障,但系统并不会给出硬件报警信息。[/font][img=,483,40]https://ng1.17img.cn/bbsfiles/images/2023/10/202310242115130118_3723_1604036_3.jpg!w690x57.jpg[/img][font=Calibri] [/font][align=center][font=宋体][font=宋体]图[/font][font=Calibri]1 [/font][font=宋体]开环控制系统原理框图[/font][/font][/align][font=宋体][font=宋体]图[/font][font=Calibri]2[/font][font=宋体]为闭环控制系统原理框图,与开环系统相比,该系统增加了传感器测量回路,使闭环控制系统有较高的精度,但结构更为复杂,系统的分析与设计相应较为困难。[/font][/font][font=宋体]闭环控制的工作原理是基于偏差的控制,在系统工作过程中,系统将传感器反馈的目标部件的实际位置传递给比较器,控制系统将反馈量与设定量进行比较,如果发生正向偏差,系统将向执行器(电机)给出命令,使其旋转或者降低速度,最终减小偏差。[/font][img=,503,114]https://ng1.17img.cn/bbsfiles/images/2023/10/202310242115216501_132_1604036_3.jpg!w690x157.jpg[/img][font=宋体] [/font][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]闭环控制系统原理框图[/font][/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url](或[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url])的温度、流量、进样器位置、角度、速度的控制一般采用闭环控制方式,用以实现高稳定性、高速、高准确性的控制。例如某些型号的自动进样器,可以对进样针的空间位置实现[/font][font=Times New Roman]0.01mm[/font][font=宋体]精度的控制。[/font][/font][font=宋体] [/font][font='Times New Roman'] [/font]

  • 小型恒温控制系统设备焊接维修注意事项

    小型恒温控制系统设备在维修的时候注意点比较,无锡冠亚小型恒温控制系统设备专业厂家提醒,其焊接部分也是维修的重点之一,那么,小型恒温控制系统设备焊接的时候注意哪些方面呢?  小型恒温控制系统设备焊接时要对机箱及小型恒温控制系统设备各部件采取保护措施,防止被焊枪火焰烧坏。焊接时要注意焊枪火焰的调节,将火焰调节至中性火焰时才能焊接,焊接时速度要尽可能的快,避免长时间加热温度过高对压缩机、制冷阀体、铜管等产生破坏。  小型恒温控制系统设备焊接时如果发现焊接后铜管有发黑的现象应调大助焊剂的流量,直到焊接后铜管呈紫色为止。更换小型恒温控制系统设备板式换热器时,焊接时焊接点以下应泡在水中,使用含银 50%的银焊条对板换进行焊接,禁止不采取保温措施直接对板式换热器进行焊接否则会导致温度过高而损坏,焊接好后,一定要用保温板对其进行保温,防止表面结露。安装时,进液端在下部,出气管端在上部。  小型恒温控制系统设备的压缩机搬动过程中不得将压缩机横放或倒置,否则会使滑动部分的润滑性能降低导致压缩机启动时损坏。相对于水平状态的倾斜度不得超过 5 度,在拔去橡胶塞后应尽快焊入系统中,时间控制在 10 分钟内。更换毛细管时,不能随意增加或减少毛细管的长度,当毛细管的长度增加时,将会产生不利情况。铜管与毛细管、过滤器与毛细管套接时毛细管插入深度控制在 10mm 左右,铜管钎焊的装配间隙:单边为 0.05~0.15mm。  小型恒温控制系统设备的焊接部分是很重要的,同时需要注意其工艺部分的强化,焊接的部分尽量找专业点的技术人员进行焊接。

  • 东菱公司成功研制世界单体最大推力100吨电动振动试验系统

    据苏州高新股份4月15日消息,由中国机械工业联合会组织的科技成果鉴定会在苏州召开,会议对苏高新股份下属东菱公司自主研制的100吨电动振动试验系统等产品技术进行了科技成果鉴定。[b]由中国科学院院士胡海岩、翟婉明领衔的7位行业权威专家组成的鉴定委员会一致认为,ES-1000型(100吨)电动振动试验系统已通过计量检定,是我国自行研制的单台最大推力的电动振动试验装备,获得多项国家发明专利,具有完全自主知识产权。该装备为全球首台套,总体水平国际领先。[/b][align=center][b][img=东菱.png]https://img1.17img.cn/17img/images/202404/uepic/f8456888-e070-4f7d-8d4b-eaba547ec817.jpg[/img][/b][/align]据悉,此次100吨电动振动试验系统的成功研制,是东菱公司继2007年研制出世界最大推力35吨振动台、2012年推出世界最大推力50吨振动台后取得的又一个“世界第一”。东菱公司于2021年开始对单体100吨电动振动试验系统的自主研发。历时2年的技术攻关,突破了超大推力高强动圈设计制造技术、动圈自适应高效冷却控制技术,以及超大型功率放大器等关键核心技术,解决了超大推力驱动下动圈设计制造难、导向持续可靠性稳定性差,以及超大推力电动振动试验系统发热量大、冷却效果差等难题,成功研制出单体100吨超大推力电动振动试验系统,通过了中国计量院的第三方计量。100吨电动振动试验系统的成功推出,可满足我国航空航天、船舶、轨道交通等重大部件乃至整机的可行性试验需求,提供可靠的试验保障,为我国高端装备制造的整机和零部件模拟现实工况提供正弦振动、随机振动、冲击、连续碰撞等力学试验,还可与环境试验箱配用进行综合环境的可靠性试验等等,为解决我国重点科研产品进行大推力振动试验的瓶颈问题提供全面的解决方案。[来源:仪器信息网] 未经授权不得转载[align=right][/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制