当前位置: 仪器信息网 > 行业主题 > >

土壤湿地剖面梯度监测系统

仪器信息网土壤湿地剖面梯度监测系统专题为您提供2024年最新土壤湿地剖面梯度监测系统价格报价、厂家品牌的相关信息, 包括土壤湿地剖面梯度监测系统参数、型号等,不管是国产,还是进口品牌的土壤湿地剖面梯度监测系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合土壤湿地剖面梯度监测系统相关的耗材配件、试剂标物,还有土壤湿地剖面梯度监测系统相关的最新资讯、资料,以及土壤湿地剖面梯度监测系统相关的解决方案。

土壤湿地剖面梯度监测系统相关的资讯

  • 中华环保联合会发布《沉积物/湿地土壤营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程》等两项团体标准征求意见稿
    各相关单位、专家:根据《中华人民共和国标准化法》《团体标准管理规定》和《中华环保联合会团体标准管理办法(试行)》的相关规定,由中华环保联合会归口,中国科学院南京地理与湖泊研究所、长江水利委员会水文局、生态环境部南京环境科学研究所、中国水产科学研究院南海水产研究所等企事业单位共同起草的《沉积物/湿地土壤营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程》《水体营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程》两项团体标准,经编制组会议、专家咨询、专家研讨会等对标准内容研讨论证,现已完成标准征求意见稿。为保证标准的科学性、严谨性和适用性,现公开征求意见。公示期间,请各有关单位及专家认真审阅标准文本,对两项标准提出宝贵建议和意见,并于2024年5月24日前以邮件的形式将《团体标准意见反馈表》反馈至编制组秘书处,逾期未回复按无意见处理。请登录全国团体标准信息平台(http://www.ttbz.org.cn)和联合会官网(http://www.acef.com.cn)下载标准征求意见稿及编制说明等方面信息。 联 系 人:姚雷 18800002545联系电话:010-51230020电子邮箱:13718003807@163.com传 真:010-51230020 附件:1、《沉积物/湿地土壤营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程(征求意见稿)》2、《沉积物/湿地土壤营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程(征求意见稿)》编制说明3、《水体营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程(征求意见稿)》4、《水体营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程(征求意见稿)》编制说明5、中华环保联合会团体标准意见反馈表 中华环保联合会2024年4月18日关于《沉积物湿地土壤营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程》等两项团体标准征求意见的函.pdf附件1 - 《沉积物湿地土壤营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程(征求意见稿)》.pdf附件2 - 《沉积物湿地土壤营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程(征求意见稿)》编制说明.pdf附件3 - 《水体营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程(征求意见稿)》.pdf附件4 - 《水体营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程(征求意见稿)》编制说明.pdf附件5 - 中华环保联合会团体标准意见反馈表.doc
  • 中华环保联合会立项《沉积物/湿地土壤营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程》 等五项团体标准
    各有关单位:依据《中华人民共和国标准化法》、国标委及民政部《团体标准管理规定》的文件精神,按照《中华环保联合会团体标准管理办法(试行)》的相关规定,在有关方面申报项目的基础上,我会组织专家对《沉积物/湿地土壤营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程》《水体营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程》《河湖底泥氮磷污染评价规范》《河湖底泥有机质污染评价规范》《河湖底泥重金属污染评价规范》五项团体标准进行了立项审查。经审查,上述五项团体标准符合立项条件,现批准立项并将项目名称、主要起草单位等项目信息(见附件)在全国团体标准信息平台网站(http://www.ttbz.org.cn)予以公示。请起草单位严格按照有关规定抓紧组织实施,严把质量关,确保标准的适用性和有效性,按期完成标准的编制工作。同时,欢迎有关单位积极申报五项团体标准的起草制定工作。公示期间如有任何建议和要求,请与秘书处联系。特此公告。联 系 人:刘彬 罗春辉联系电话:010-51230041,010-51230020,13910752920邮 箱:lhhzlhzb@126.com附 件:团体标准立项公告列表团体标准立项公告列表项目名称制修订项目周期(月)主要起草单位沉积物/湿地土壤营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程制定12中国科学院南京地理与湖泊研究所、长江水利委员会水文局、生态环境部南京环境科学研究所水体营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程制定12中国科学院南京地理与湖泊研究所、长江水利委员会水文局、中国水产科学研究院南海水产研究所河湖底泥氮磷污染评价规范制定12中国科学院南京地理与湖泊研究所、长江水利委员会水文局、生态环境部南京环境科学研究所、中国环境科学研究院河湖底泥有机质污染评价规范制定12中国科学院南京地理与湖泊研究所、长江水利委员会水文局、生态环境部南京环境科学研究所、中国环境科学研究院河湖底泥重金属污染评价规范制定12中国科学院南京地理与湖泊研究所、长江水利委员会水文局、生态环境部南京环境科学研究所中华环保联合会2023年7月21日关于《沉积物湿地土壤营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程》 等五项团体标准立项的公告.pdf
  • 中科院地理所刘远团队揭示基质可用性调和不同土壤剖面SOC矿化的温度响应
    2018年,由北京普瑞亿科科技有限公司研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达24篇。 今天与大家分享的是中国科学院地理科学与资源研究所刘远团队在调查基质可用性(根系分泌物)的变化如何影响不同土壤剖面中土壤有机碳(SOC)矿化的温度响应(Q10)方面取得的进展,在该项研究中,研究团队利用PRI-8800对SOC矿化率进行高频测量,为研究结果提供了有力的数据支撑。 土壤有机碳(SOC)矿化是导致大量碳从土壤流失到大气中的一个主要过程,而温度会极大地影响这一过程。预计在下个世纪,底土和表土都将经历类似程度的变暖。气候变暖预计会产生土壤碳-气候正反馈,从而加速气候变化。这种正反馈的大小在很大程度上取决于不同深度SOC矿化的温度敏感性(Q10)。因此,更好地了解不同深度的Q10变化及其内在机制,对于准确预测气候变化情景下的土壤碳动态至关重要。尽管在理解全球变暖对底土碳动态影响方面取得了进展,但对于Q10在土壤剖面不同深度的变化方式仍未达成共识。 为了更好地理解气候变化背景下土壤碳动态,刘远团队从三个地点采集了土壤剖面的土壤样品,包括四个深度区间(0-10厘米,10-30厘米,30-50厘米和50-70厘米):两个地点具有典型的矿物质土壤,一个地点是埋藏土壤。研究团队在实验室中使用这些土壤来探讨随着土壤深度的增加SOC矿化的Q10对底物可利用性变化的响应。葡萄糖是一种容易获得的底物,因为它是根分泌物的重要组成部分。土壤在10-25°C的温度下孵育,以0.75°C的温度间隔进行了24小时。然后,在孵育1天后,通过高频率连续测量SOC矿化速率,避免了底物限制和微生物群落的变化对结果的影响,估算Q10。 值得注意的是,针对SOC矿化速率的测量,研究团队使用的是由北京普瑞亿科科技有限公司研发的PRI–8800全自动变温培养土壤温室气体在线测量系统,该系统允许在一定时间内逐步提高孵育温度并与SOC矿化速率的高频测量同步进行,为该项研究提供了更准确的Q10估计。图1:不同土壤深度和不同站点下,控制组(CK)和底物添加组(S+)的土壤有机碳(SOC)矿化的温度响应,使用指数拟合表示。站点:Liangshui(LS)、Huinan(HN)和Hongyuan(HY)。***代表P0.001的显著差异。图2 a:在控制组(CK)和底物添加组(S+)中,土壤有机碳(SOC)矿化速率(R22)在22°C下随深度增加的变化。b:不同站点下不同土壤深度的底物可利用性指数(CAI);c:在CK和S+处理中,SOC矿化的温度敏感性(Q10)随深度增加的变化;d:不同站点下不同土壤深度中CK和S+处理之间Q10的差异(ΔQ10)。 研究结果表明,在典型的矿质土壤中,Q10随深度的增加而降低,但在埋藏土壤中,Q10则先降低后增加。不出所料,在不同的土壤深度,基质的添加会明显增加Q10;但是,增加的幅度(ΔQ10)随土壤深度和类型的不同而不同。出乎意料的是,在典型的矿质土壤中,表土中的ΔQ10比底土中的高,反之亦然。ΔQ10与土壤初始基质可用性(CAI)呈负相关,与土壤无机氮呈正相关。总体而言,气候变化情景下基质可用性的增加(即二氧化碳浓度升高导致根系渗出物增加)会进一步加强SOC矿化的温度响应,尤其是在无机氮含量高的土壤或氮沉积率高的地区。 相关研究成果以“Substrate availability reconciles the contrasting temperature response of SOC mineralization in different soil profiles”为题在线发表于期刊《Journal Of Soils And Sediments》上(中科院三区Top,IF5 =3.8)。相关论文信息:Liu Y, Kumar A, Tiemann L K, et al. Substrate availability reconciles the contrasting temperature response of SOC mineralization in different soil profiles[J]. Journal of Soils and Sediments, 2023: 1-15.原文链接:https://doi.org/10.1007/s11368-023-03602-y 截至目前,以PRI-8800为关键设备发表的相关文章已达24篇,分别发表在10余种影响因子较高的国际期刊上——数据来源:https://sci.justscience.cn/ 很荣幸PRI-8800可以为这些高质量学术研究贡献一份力量,感谢各位老师对普瑞亿科产品的支持和信任。如果您成功发表文章,并且在研究过程中使用了普瑞亿科的国产仪器设备,请与我们公司联络,我们为您准备了一份小礼物,以感谢您对国产设备以及普瑞亿科的信任和支持! 自2018年上市以来,PRI-8800全自动变温培养土壤温室气体在线测量系统得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达23篇。 为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。可设定恒温或变温培养模式;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;150ml样品瓶,25位样品盘;大气本底缓冲气或钢瓶气清洗气路;一体化设计,内置CO2 H2O模块;可外接高精度浓度或同位素分析仪。 为了更好地助力科学研究,拓展设备应用场景,普瑞亿科重磅推出「加强版」PRI-8800——PRI-8800 Plus全自动变温培养土壤温室气体在线测量系统。 1)原状土冻融过程模拟:气候变化改变了土壤干湿循环和冻融循环的频率和强度。这些波动影响了土壤微生物活动的关键驱动力,即土壤水分利用率。虽然这些波动使土壤微生物结构有少许改变,但一种气候波动的影响(例如干湿交替)是否影响了对另一种气候(例如冻融交替)的反应,其温室气体排放是如何响应的?通过PRI-8800 Plus 的冻融模拟,我们可以找出清晰答案。 2)湿地淹水深度模拟:在全球尺度上湿地甲烷(CH4)排放的温度敏感性大小主要取决于水位变化,而二氧化碳(CO2)排放的温度敏感性不受水位影响。复杂多样的湿地生态系统不同水位的变化及不同温度的变化如何影响和调控着湿地温室气体的排放?我们该如何量化不同水位的变化及不同温度的变化下湿地的温室气体排放?借助PRI-8800 Plus,通过淹水深度和温度变化的组合测试,可以查出真相。 3)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800 Plus程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。 除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800 Plus的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。 PRI-8800 Plus除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。 4)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800 Plus可以通过手动调整土壤含水量的做法,并在PRI-8800 Plus快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800 Plus的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。 5)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。 6)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。1.Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.2.Ma X, Jiang S, Zhang Z, et al. Long‐term collar deployment leads to bias in soil respiration measurements[J]. Methods in Ecology and Evolution, 2023, 14(3): 981-990.3.He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2023, 29(4): 1178-1187.4.Mao X, Zheng J, Yu W, et al. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile[J]. Soil Biology and Biochemistry, 2022, 172: 108743.5.Pan J, He N, Liu Y, et al. Growing season average temperature range is the optimal choice for Q10 incubation experiments of SOM decomposition[J]. Ecological Indicators, 2022, 145: 109749.6.Li C, Xiao C, Guenet B, et al. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe[J]. Soil Biology and Biochemistry, 2022, 167: 108589.7.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.8.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.9.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.10.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.11.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.12.Yingqiu C, Zhen Z, Li X, et al. Temperature Affects new Carbon Input Utilization By Soil Microbes: Evidence Based on a Rapid δ13C Measurement Technology[J]. Journal of Resources and Ecology, 2019, 10(2): 202-212.13.Cao Y, Xu L, Zhang Z, et al. Soil microbial metabolic quotient in inner mongolian grasslands: Patterns and influence factors[J]. Chinese Geographical Science, 2019, 29: 1001-1010.14.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.15.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. 2018.Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.16.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.17.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.18.He N P, Liu Y, Xu L, Wen X F, Yu G R, Sun X M. Temperature sensitivity of soil organic matter decomposition:New insights into models of incubation and measurement. Acta Ecologica Sinica, 2018, 38(11): 4045-4051.19.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106: 18-27.20.Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23: 3393-3402.21.Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. Geoderma, 275: 67-73.22.Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research: Biogeosciences, 121: 399-410.23.He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.24.Liu Y, Kumar A, Tiemann L K, et al. Substrate availability reconciles the contrasting temperature response of SOC mineralization in different soil profiles[J]. Journal of Soils and Sediments, 2023: 1-15.
  • 浙江大学罗忠奎研究团队揭示青藏高原不同气候梯度下土壤碳矿化与微生物群落组成之间的解耦
    2018年,由北京普瑞亿科科技有限公司研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达26篇。 今天与大家分享的是浙江大学环境与资源学院罗忠奎研究团队在研究土壤有机碳矿化及其温度敏感性(Q10)与微生物群落多样性和组成之间关系方面取得的进展。在该项研究中,研究团队利用PRI-8800测定土壤CO2排放速率,为研究结果提供了有力的数据支撑。 土壤微生物驱动着有机碳的矿化,由于不同微生物群落在代谢效率以及对不同温度变化的响应存在差异,因此土壤有机碳矿化及其温度敏感性(Q10)与微生物群落多样性和组成之间应该存在密切的关系。然而,这些关系很少被检验。 基于此,浙江大学环境与资源学院罗忠奎研究团队通过室内培养实验,评估了藏东南地区不同海拔(气候)梯度中土壤微生物α多样性对温度的响应以及r-和k-策略微生物的相对丰度。图.培养第128天的土壤有机碳矿化速率及其Q10与门水平微生物群落丰度的相关性。灰色表示相关性不显著(即P 0.05),彩色网格表示相关性显著(P 0.05),颜色梯度表示相关性的大小和强度。R5°C-128和R25°C-128分别为5°C和25°C培养温度下第128天的有机碳矿化速率。Q10-128为土壤有机碳在128天培养期间的温度敏感性。F:新鲜土壤样品;5、25分别为在5°C和25°C培养的土壤样品。 在土壤培养实验设计及有机碳矿化测定的过程中,研究团队采用由普瑞亿科研发的PRI-8800全自动变温土壤培养温室气体分析系统测定土壤CO2排放速率(μg CO2-C g&minus 1 SOC day&minus 1),每个土壤样品测定时间设置为3分钟,此数据的获取为该项研究提供了有力的数据支撑。基于不同温度下测定的土壤CO2排放速率,计算了有机碳矿化的温度敏感性(Q10)。 研究结果表明:培养128后测定的α多样性以及r-和k-策略微生物的相对丰度受温度的显著影响(P 0.05),但是这些微生物变量并不能很好地预测同步测定的土壤有机碳矿化速率。相反,新鲜土壤的微生物群落多样性以及r-和k-策略微生物的相对丰度对不同培养阶段的土壤有机碳矿化速率及其Q10的影响是一致且显著的(P 0.05)。与此同时,路径分析表明,当考虑到气候、土壤有机碳化学、物理保护和土壤性质的变化时,微生物α多样性以及r-和k-策略微生物对土壤有机碳矿化速率及其Q10的影响并不是独立的。本研究结果表明,虽然土壤微生物群落的多样性和组成是土壤有机碳质量和有效性的重要指标,但它们并不是土壤有机碳矿化速率及其Q10的根本的决定因素。 相关研究成果以“Decoupling of soil carbon mineralization and microbial community composition across a climate gradient on the Tibetan Plateau”为题发表在国际SCI期刊Geoderma(IF2022=6.1,中科院一区)。Zheng, J., Mao, X., Jan van Groenigen, K., Zhang, S., Wang, M., Guo, X. et al. (2024). Decoupling of soil carbon mineralization and microbial community composition across a climate gradient on the Tibetan Plateau. 441, 116736.https://doi.org/10.1016/j.geoderma.2023.116736 截至目前,以PRI-8800为关键设备发表的相关文章已达26篇,分别发表在10余种影响因子较高的国际期刊上——数据来源:https://sci.justscience.cn/ 很荣幸PRI-8800可以为这些高质量学术研究贡献一份力量,感谢各位老师对普瑞亿科产品的支持和信任。即日起,如果您成功发表文章,并且在研究过程中使用了普瑞亿科的国产仪器设备,请与我们公司联络,我们为您准备了一份小礼物,以感谢您对国产设备以及普瑞亿科的信任和支持! 为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。可设定恒温或变温培养模式;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;307 mL样品瓶,25位样品盘;一体化设计,内置CO2 H2O模块;可外接高精度浓度或同位素分析仪。 为了更好地助力科学研究,拓展设备应用场景,普瑞亿科重磅推出「加强版」PRI-8800——PRI-8800 Plus全自动变温培养土壤温室气体在线测量系统。 1)原状土冻融过程模拟:气候变化改变了土壤干湿循环和冻融循环的频率和强度。这些波动影响了土壤微生物活动的关键驱动力,即土壤水分利用率。虽然这些波动使土壤微生物结构有少许改变,但一种气候波动的影响(例如干湿交替)是否影响了对另一种气候(例如冻融交替)的反应,其温室气体排放是如何响应的?通过PRI-8800 Plus 的冻融模拟,我们可以找出清晰答案。 2)湿地淹水深度模拟:在全球尺度上湿地甲烷(CH4)排放的温度敏感性大小主要取决于水位变化,而二氧化碳(CO2)排放的温度敏感性不受水位影响。复杂多样的湿地生态系统不同水位的变化及不同温度的变化如何影响和调控着湿地温室气体的排放?我们该如何量化不同水位的变化及不同温度的变化下湿地的温室气体排放?借助PRI-8800 Plus,通过淹水深度和温度变化的组合测试,可以查出真相。 3)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800 Plus程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。 除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800 Plus的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。 PRI-8800 Plus除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。 4)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800 Plus可以通过手动调整土壤含水量的做法,并在PRI-8800 Plus快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800 Plus的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。 5)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。 6)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。1.Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.2.Ma X, Jiang S, Zhang Z, et al. Long‐term collar deployment leads to bias in soil respiration measurements[J]. Methods in Ecology and Evolution, 2023, 14(3): 981-990.3.He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2023, 29(4): 1178-1187.4.Mao X, Zheng J, Yu W, et al. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile[J]. Soil Biology and Biochemistry, 2022, 172: 108743.5.Pan J, He N, Liu Y, et al. Growing season average temperature range is the optimal choice for Q10 incubation experiments of SOM decomposition[J]. Ecological Indicators, 2022, 145: 109749.6.Li C, Xiao C, Guenet B, et al. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe[J]. Soil Biology and Biochemistry, 2022, 167: 108589.7.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.8.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.9.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.10.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.11.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.12.Yingqiu C, Zhen Z, Li X, et al. Temperature Affects new Carbon Input Utilization By Soil Microbes: Evidence Based on a Rapid δ13C Measurement Technology[J]. Journal of Resources and Ecology, 2019, 10(2): 202-212.13.Cao Y, Xu L, Zhang Z, et al. Soil microbial metabolic quotient in inner mongolian grasslands: Patterns and influence factors[J]. Chinese Geographical Science, 2019, 29: 1001-1010.14.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.15.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. 2018.Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.16.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.17.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.18.He N P, Liu Y, Xu L, Wen X F, Yu G R, Sun X M. Temperature sensitivity of soil organic matter decomposition:New insights into models of incubation and measurement. Acta Ecologica Sinica, 2018, 38(11): 4045-4051.19.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106: 18-27.20.Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23: 3393-3402.21.Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. Geoderma, 275: 67-73.22.Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research: Biogeosciences, 121: 399-410.23.He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.24.Liu Y, Kumar A, Tiemann L K, et al. Substrate availability reconciles the contrasting temperature response of SOC mineralization in different soil profiles[J]. Journal of Soils and Sediments, 2023: 1-15.25.Liu YH,Xiong DC,Wu C,et al.Effects of exogenous carbon addition on soil carbon emission in a subtropical evergreen broad-leaf forest[J]. Journal of Forest & Environment, 2023, 43(5).26.Zheng, J., Mao, X., Jan van Groenigen, K., Zhang, S., Wang, M., Guo, X. et al. (2024). Decoupling of soil carbon mineralization and microbial community composition across a climate gradient on the Tibetan Plateau. 441, 116736.
  • 共378人!土壤三普 剖面土壤调查与采样技术领队第三批名单公布
    为深入推进和规范各地剖面土壤调查与采样工作,国务院第三次全国土壤普查领导小组办公室在遴选前两批720名剖面土壤调查与采样技术领队的基础上,根据各省需求,指导省级培训,组织统一考核,遴选了第三批378名剖面土壤调查与采样技术领队,其名单及证书编号公布如下,剖面技术领队资格全国通用。附: 第三批剖面技术领队名单及证书编号(全国通用)序号姓名单位证书编号省份1吕云浩东北农业大学QGWY(PM)202300648黑龙江2张明聪黑龙江八一农垦大学QGWY(PM)202300649黑龙江3姜佰文东北农业大学QGWY(PM)202300650黑龙江4刘瑞东北地理所农业技术中心QGWY(PM)202300651黑龙江5侯萌东北地理所农业技术中心QGWY(PM)202300652黑龙江6嵩博东北农业大学QGWY(PM)202300653黑龙江7姚钦黑龙江八一农垦大学QGWY(PM)202300654黑龙江8马亮乾东北地理所农业技术中心QGWY(PM)202300655黑龙江9郝磊东北地理所农业技术中心QGWY(PM)202300656黑龙江10刘炜东北林业大学QGWY(PM)202300657黑龙江11张娟东北农业大学QGWY(PM)202300658黑龙江12宋金凤东北林业大学QGWY(PM)202300659黑龙江13于贺东北地理所农业技术中心QGWY(PM)202300660黑龙江14李鹏飞东北农业大学QGWY(PM)202300661黑龙江15王辰黑龙江八一农垦大学QGWY(PM)202300662黑龙江16刘宝东东北林业大学QGWY(PM)202300663黑龙江17郭亚芬东北林业大学QGWY(PM)202300664黑龙江18孙宝根黑龙江八一农垦大学QGWY(PM)202300665黑龙江19姜泊宇东北地理所农业技术中心QGWY(PM)202300666黑龙江20王殿尧东北农业大学QGWY(PM)202300667黑龙江21刘金彪黑龙江八一农垦大学QGWY(PM)202300668黑龙江22米刚农科院黑土院QGWY(PM)202300669黑龙江23桑英东北林业大学QGWY(PM)202300670黑龙江24蒋雨洲黑龙江八一农垦大学QGWY(PM)202300671黑龙江25娄鑫东北林业大学QGWY(PM)202300672黑龙江26匡恩俊农科院黑土院QGWY(PM)202300673黑龙江27袁佳慧农科院黑土院QGWY(PM)202300674黑龙江28于洪久农科院黑土院QGWY(PM)202300675黑龙江29周宝库农科院黑土院QGWY(PM)202300676黑龙江30葛壮东北林业大学QGWY(PM)202300677黑龙江31王里根东北地理所农业技术中心QGWY(PM)202300678黑龙江32李伟群农科院黑土院QGWY(PM)202300679黑龙江33王晓军农科院黑土院QGWY(PM)202300680黑龙江34郑子成四川农业大学QGWY(PM)202300681四川35李冰四川农业大学QGWY(PM)202300682四川36徐小逊四川农业大学QGWY(PM)202300683四川37兰婷四川农业大学QGWY(PM)202300684四川38罗由林四川农业大学QGWY(PM)202300685四川39杨刚四川农业大学QGWY(PM)202300686四川40陈光登四川农业大学QGWY(PM)202300687四川41蔡艳四川农业大学QGWY(PM)202300688四川42崔俊芳中国科学院水利部成都山地灾害与环境研究所QGWY(PM)202300689四川43李婷四川农业大学QGWY(PM)202300690四川44夏建国四川农业大学QGWY(PM)202300691四川45晏朝睿四川农业大学QGWY(PM)202300692四川46李阳四川农业大学QGWY(PM)202300693四川47秦鱼生四川省农业科学院农业资源与环境研究所QGWY(PM)202300694四川48黄容四川农业大学QGWY(PM)202300695四川49王永东四川农业大学QGWY(PM)202300696四川50唐晓燕四川农业大学QGWY(PM)202300697四川51盛响元中国科学院水利部成都山地灾害与环境研究所QGWY(PM)202300698四川52张锡洲四川农业大学QGWY(PM)202300699四川53蔡恺四川省农科院资源与环境研究所QGWY(PM)202300700四川54邓石磊四川省农业科学院农业资源与环境研究所QGWY(PM)202300701四川55凌静四川农业大学QGWY(PM)202300702四川56李启权四川农业大学QGWY(PM)202300703四川57王宏四川省农业科学院农业资源与环境研究所QGWY(PM)202300704四川58李一丁四川农业大学QGWY(PM)202300705四川59徐文四川农业大学QGWY(PM)202300706四川60雷斌四川农业大学QGWY(PM)202300707四川61胡玉福四川农业大学QGWY(PM)202300708四川62王贵胤四川农业大学QGWY(PM)202300709四川63蒋俊明四川省林业科学研究院QGWY(PM)202300710四川64王小国中国科学院、水利部成都山地灾害与环境研究所QGWY(PM)202300711四川65徐鹏中国科学院、水利部成都山地灾害与环境研究所QGWY(PM)202300712四川66李远伟四川农业大学QGWY(PM)202300713四川67周子军四川省农业科学院农业资源与环境研究所QGWY(PM)202300714四川68魏锴中国科学院、水利部成都山地灾害与环境研究所QGWY(PM)202300715四川69赵淼中国科学院、水利部成都山地灾害与环境研究所QGWY(PM)202300716四川70杨远祥四川农业大学QGWY(PM)202300717四川71陈超四川农业大学QGWY(PM)202300718四川72刘祥龙中国科学院成都山地灾害与环境研究所QGWY(PM)202300719四川73周明华中国科学院、水利部成都山地灾害与环境研究所QGWY(PM)202300720四川74徐明四川省林业科学研究院QGWY(PM)202300721四川75章熙锋中国科学院、水利部成都山地灾害与环境研究所QGWY(PM)202300722四川76王涛中国科学院、水利部成都山地灾害与环境研究所QGWY(PM)202300723四川77李堃四川省林业科学研究院QGWY(PM)202300724四川78吴小波四川农业大学QGWY(PM)202300725四川79曾建四川农业大学QGWY(PM)202300726四川80吴英杰四川农业大学QGWY(PM)202300727四川81贾永霞四川农业大学QGWY(PM)202300728四川82严坤中国科学院、水利部成都山地灾害与环境研究所QGWY(PM)202300729四川83范继辉中国科学院、水利部成都山地灾害与环境研究所QGWY(PM)202300730四川84喻华四川省农业科学院农业资源与环境研究所QGWY(PM)202300731四川85郭松四川省农业科学院农业资源与环境研究所QGWY(PM)202300732四川86刘定辉四川省农业科学院农业资源与环境研究所QGWY(PM)202300733四川87汪涛中国科学院、水利部成都山地灾害与环境研究所QGWY(PM)202300734四川88况福虹中国科学院、水利部成都山地灾害与环境研究所QGWY(PM)202300735四川89鲜骏仁四川农业大学QGWY(PM)202300736四川90姚致远中科学院、水利部山地灾害与环境研究所QGWY(PM)202300737四川91刘涛四川农业大学QGWY(PM)202300738四川92张世熔四川农业大学QGWY(PM)202300739四川93赵鑫涯四川省林业科学研究院QGWY(PM)202300740四川94林超文四川省农业科学院农业资源与环境研究所QGWY(PM)202300741四川95张庆玉四川省农业科学院农业资源与环境研究所QGWY(PM)202300742四川96周伟四川农业大学QGWY(PM)202300743四川97上官宇先四川省农业科学院农业资源与环境研究所QGWY(PM)202300744四川98魏雅丽四川农业大学QGWY(PM)202300745四川99吴德勇四川农业大学QGWY(PM)202300746四川100王方甘肃省农业科学院QGWY(PM)202300747甘肃101郭慧慧甘肃省地质调查院QGWY(PM)202300748甘肃102冯备战甘肃省地质调查院QGWY(PM)202300749甘肃103谢 娜甘肃省地质调查院QGWY(PM)202300750甘肃104焦翻霞甘肃省地质调查院QGWY(PM)202300751甘肃105朱利辉甘肃省地质调查院QGWY(PM)202300752甘肃106邓 伟甘肃省地质调查院QGWY(PM)202300753甘肃107张 元甘肃省地质调查院QGWY(PM)202300754甘肃108姚志龙陇东学院QGWY(PM)202300755甘肃109王文丽甘肃省农业科学院土壤肥料与节水农业研究所QGWY(PM)202300756甘肃110吕 彪河西学院QGWY(PM)202300757甘肃111张 磊甘肃省地质调查院QGWY(PM)202300758甘肃112师伟杰甘州区农业技术推广中心QGWY(PM)202300759甘肃113康 蓉榆中县农业技术推广中心QGWY(PM)202300760甘肃114宋 蓉甘肃省地质调查院QGWY(PM)202300761甘肃115李元茂甘肃省地质调查院QGWY(PM)202300762甘肃116尤泽华甘肃省地质调查院QGWY(PM)202300763甘肃117马 剑陇东学院QGWY(PM)202300764甘肃118祝 英甘肃省科学院生物研究所QGWY(PM)202300765甘肃119张 鹏兰州市农业科技研究推广中心QGWY(PM)202300766甘肃120苏彦平陇南市土壤普查办QGWY(PM)202300767甘肃121丁素婷兰州大学QGWY(PM)202300768甘肃122张连科甘肃省科学院地质自然灾害防治研究所QGWY(PM)202300769甘肃123刘金山甘肃省地质矿产勘查开发局水文地质工程地质勘察院QGWY(PM)202300770甘肃124张 亮陇东学院QGWY(PM)202300771甘肃125吴永强甘肃省地质调查院QGWY(PM)202300772甘肃126黄艺江西省地质局地理信息工程大队QGWY(PM)202300773江西127李豪江西省地质局能源地质大队QGWY(PM)202300774江西128夏金文南昌工程学院QGWY(PM)202300775江西129李亮江西省科学院微生物研究所QGWY(PM)202300776江西130张浩然江西核工业环境保护中心有限公司QGWY(PM)202300777江西131孙景玲赣南师范大学QGWY(PM)202300778江西132李伟峰江西吉新勘察规划工程咨询有限公司QGWY(PM)202300779江西133刘煜江西省科学院微生物研究所QGWY(PM)202300780江西134王妍九江市测绘地理信息有限公司QGWY(PM)202300781江西135尧波江西师范大学QGWY(PM)202300782江西136方瑛江西省吉新勘察规划工程咨询有限公司QGWY(PM)202300783江西137邓邦良南昌工程学院QGWY(PM)202300784江西138赖玉莹江西省地质调查勘查院基础地质调查所(江西有色地质矿产勘查开发院)QGWY(PM)202300785江西139刘亚南速度科技股份有限公司QGWY(PM)202300786江西140陈知富江西金达地矿工程有限责任公司QGWY(PM)202300787江西141朱新伟江西核工业环境保护中心有限公司QGWY(PM)202300788江西142蒙智宇江西省地质局第十地质大队QGWY(PM)202300789江西143胡启武江西师范大学QGWY(PM)202300790江西144赵苗苗速度科技股份有限公司QGWY(PM)202300791江西145刘雪梅江西省梦保美环境检测技术有限公司QGWY(PM)202300792江西146林建平赣南师范大学QGWY(PM)202300793江西147乐丽红江西省吉新勘察规划工程咨询有限公司QGWY(PM)202300794江西148陈志江西省地质局地理信息工程大队QGWY(PM)202300795江西149高雷北华大学QGWY(PM)202300796吉林150傅民杰延边大学QGWY(PM)202300797吉林151曹志远延边大学QGWY(PM)202300798吉林152王兴安东北师范大学QGWY(PM)202300799吉林153朱瑞杰吉林大学QGWY(PM)202300800吉林154尹秀玲吉林农业科技学院QGWY(PM)202300801吉林155吴琼吉林大学QGWY(PM)202300802吉林156李宏卿吉林大学QGWY(PM)202300803吉林157杨峰田吉林大学QGWY(PM)202300804吉林158鲍新华吉林大学QGWY(PM)202300805吉林159周静雅延边大学QGWY(PM)202300806吉林160张春鹏吉林大学QGWY(PM)202300807吉林161于海燕吉林农业科技学院QGWY(PM)202300808吉林162杨镇吉林大学QGWY(PM)202300809吉林163郭平吉林大学QGWY(PM)202300810吉林164梁运江延边大学农学院QGWY(PM)202300811吉林165熊毅东北林业大学QGWY(PM)202300812吉林166刘振吉林农业科技学院QGWY(PM)202300813吉林167李鸿凯东北师范大学QGWY(PM)202300814吉林168高纪超吉林省农业科学院QGWY(PM)202300815吉林169肖玉亮吉林省第五地质调查所QGWY(PM)202300816吉林170陈静吉林省第五地质调查所QGWY(PM)202300817吉林171陈健吉林省第五地质调查所QGWY(PM)202300818吉林172曾年发吉林省第五地质调查所QGWY(PM)202300819吉林173王军吉林大学QGWY(PM)202300820吉林174彭靖吉林农业科技学院QGWY(PM)202300821吉林175刘明吉林农业科技学院QGWY(PM)202300822吉林176宋金红吉林农业大学QGWY(PM)202300823吉林177吕伟超吉林省第五地质调查所QGWY(PM)202300824吉林178黄一格吉林省第五地质调查所QGWY(PM)202300825吉林179刘龙飞扬州大学QGWY(PM)202300828江苏180张楚中国科学院南京土壤研究所QGWY(PM)202300829江苏181张梓良中国科学院南京土壤研究所QGWY(PM)202300830江苏182刘琦南京林业大学QGWY(PM)202300831江苏183李冬雪中国科学院南京土壤研究所QGWY(PM)202300832江苏184钱睿中国科学院南京土壤研究所QGWY(PM)202300833江苏185张昊哲中国科学院南京土壤研究所QGWY(PM)202300834江苏186柏彦超扬州大学QGWY(PM)202300835江苏187孙海军南京林业大学QGWY(PM)202300836江苏188樊亚男中国科学院南京土壤研究所QGWY(PM)202300837江苏189赵晨浩扬州大学QGWY(PM)202300838江苏190左文刚扬州大学QGWY(PM)202300839江苏191王小治扬州大学QGWY(PM)202300840江苏192钱晓晴扬州大学QGWY(PM)202300841江苏193樊建凌南京信息工程大学QGWY(PM)202300842江苏194张晶中国科学院南京土壤研究所QGWY(PM)202300843江苏195周宏伟扬州大学QGWY(PM)202300844江苏196李云龙扬州大学QGWY(PM)202300845江苏197高璐璐中国科学院南京土壤研究所QGWY(PM)202300846江苏198沈贝贝扬州大学QGWY(PM)202300847江苏199叶明亮中国科学院南京土壤研究所QGWY(PM)202300848江苏200郭刚江苏省地质调查研究院QGWY(PM)202300849江苏201李奇祥江苏华东有色深部地质勘查有限责任公司(江苏省有色金属华东地质勘查局资源调查与评价研究院)QGWY(PM)202300850江苏202冯文娟中国科学院南京土壤研究所QGWY(PM)202300851江苏203丁琪洵中国科学院南京土壤研究所QGWY(PM)202300852江苏204李程南京农业大学QGWY(PM)202300853江苏205胡瑾中国科学院南京地理与湖泊研究所QGWY(PM)202300854江苏206王小兵扬州大学QGWY(PM)202300855江苏207斯天任南京农业大学QGWY(PM)202300856江苏208孙越琦中国科学院南京土壤研究所QGWY(PM)202300857江苏209龚可杨中国科学院南京土壤研究所QGWY(PM)202300858江苏210黄启为南京农业大学QGWY(PM)202300859江苏211朱福斌南京农业大学QGWY(PM)202300860江苏212陆海鹰南京林业大学QGWY(PM)202300861江苏213蒋洪毛上海数喆数据科技有限公司QGWY(PM)202300862江苏214李久海南京信息工程大学QGWY(PM)202300863江苏215刘晓雨南京农业大学QGWY(PM)202300864江苏216文慧颖中国科学院南京土壤研究所QGWY(PM)202300865江苏217郑聚锋南京农业大学QGWY(PM)202300866江苏218李兆富南京农业大学QGWY(PM)202300867江苏219张焕朝南京林业大学QGWY(PM)202300868江苏220姚粉霞扬州大学QGWY(PM)202300869江苏221程增涛江苏华东有色深部地质勘查有限责任公司(江苏省有色金属华东地质勘查局资源调查与评价研究院)QGWY(PM)202300870江苏222董歌南京农业大学QGWY(PM)202300871江苏223徐萍江苏华东有色深部地质勘查有限责任公司(江苏省有色金属华东地质勘查局资源调查与评价研究院)QGWY(PM)202300872江苏224李学林南京农业大学QGWY(PM)202300873江苏225许哲中国科学院南京土壤研究所QGWY(PM)202300874江苏226王敬南京林业大学QGWY(PM)202300875江苏227程琨南京农业大学QGWY(PM)202300876江苏228刘志伟南京农业大学QGWY(PM)202300877江苏229程瑜江苏省地质调查研究院QGWY(PM)202300878江苏230欧阳凯湖南农业大学QGWY(PM)202300879湖南231段勋中国科学院亚热带农业生态研究所QGWY(PM)202300880湖南232翟世斌湖南中核建设工程有限公司QGWY(PM)202300881湖南233曹俏湖南经地科技发展有限公司QGWY(PM)202300882湖南234张鹏博湖南经地科技发展有限公司QGWY(PM)202300883湖南235周伟军湖南省泽环检测技术有限公司QGWY(PM)202300884湖南236陈建国中南林业科技大学QGWY(PM)202300885湖南237李洪斌湖南经地科技发展有限公司QGWY(PM)202300886湖南238曾思磊湖南省农林工业勘察设计研究总院QGWY(PM)202300887湖南239王宝隆佛山市铁人环保科技有限公司QGWY(PM)202300888湖南240赵双飞中南林业科技大学QGWY(PM)202300889湖南241龚飞湖南中核建设工程有限公司QGWY(PM)202300890湖南242段良霞湖南农业大学QGWY(PM)202300891湖南243龙坚中南林业科技大学QGWY(PM)202300892湖南244王维湖南省泽环检测技术有限公司QGWY(PM)202300893湖南245肖艳虹中大智能科技股份有限公司QGWY(PM)202300894湖南246李乐佛山市铁人环保科技有限公司QGWY(PM)202300895湖南247陈峪霭佛山市铁人环保科技有限公司QGWY(PM)202300896湖南248杜辉辉湖南农业大学QGWY(PM)202300897湖南249肖栋湖南中核建设工程有限公司QGWY(PM)202300898湖南250李国满中国科学院亚热带农业生态研究所QGWY(PM)202300899湖南251舒相石湖南省易净环保科技有限公司QGWY(PM)202300900湖南252丰明佳湖南省遥感地质调查监测所QGWY(PM)202300901湖南253田宇湖南经地科技发展有限公司QGWY(PM)202300902湖南254张亮湖南农业大学QGWY(PM)202300903湖南255胡玮中大智能科技股份有限公司QGWY(PM)202300904湖南256汪景宽沈阳农业大学QGWY(PM)202300905辽宁257裴久渤沈阳农业大学QGWY(PM)202300906辽宁258张国显沈阳农业大学QGWY(PM)202300907辽宁259黄文韬沈阳农业大学QGWY(PM)202300908辽宁260可欣沈阳建筑大学QGWY(PM)202300909辽宁261张明亮辽宁省地质矿产调查院有限责任公司QGWY(PM)202300910辽宁262王大鹏辽宁省地质矿产调查院有限责任公司QGWY(PM)202300911辽宁263刘灵芝沈阳农业大学QGWY(PM)202300912辽宁264隋真龙辽宁省地质矿产调查院有限责任公司QGWY(PM)202300913辽宁265刘亚龙沈阳农业大学QGWY(PM)202300914辽宁266于成广辽宁省地质矿产调查院有限责任公司QGWY(PM)202300915辽宁267李嘉琦沈阳农业大学QGWY(PM)202300916辽宁268任彬彬沈阳农业大学QGWY(PM)202300917辽宁269王天豪大连大学QGWY(PM)202300918辽宁270彭金皓辽宁省地质矿产调查院有限责任公司QGWY(PM)202300919辽宁271王萍沈阳农业大学QGWY(PM)202300920辽宁272边振兴沈阳农业大学QGWY(PM)202300921辽宁273张大庚沈阳农业大学QGWY(PM)202300922辽宁274刘宁沈阳农业大学QGWY(PM)202300923辽宁275王冰沈阳农业大学QGWY(PM)202300924辽宁276刘国昊辽宁省地质矿产调查院有限责任公司QGWY(PM)202300925辽宁277王诚煜辽宁省地质矿产调查院有限责任公司QGWY(PM)202300926辽宁278姜春宇辽宁省地质矿产调查院有限责任公司QGWY(PM)202300927辽宁279关峰辽宁省地质矿产调查院有限责任公司QGWY(PM)202300928辽宁280史金生辽宁省地质矿产调查院有限责任公司QGWY(PM)202300929辽宁281关旭辽宁省地质矿产调查院有限责任公司QGWY(PM)202300930辽宁282杨丽娟沈阳农业大学QGWY(PM)202300931辽宁283党秀丽沈阳农业大学QGWY(PM)202300932辽宁284王帅沈阳农业大学QGWY(PM)202300933辽宁285金鑫鑫沈阳农业大学QGWY(PM)202300934辽宁286李玉超辽宁省地质矿产调查院有限责任公司QGWY(PM)202300935辽宁287张吉星辽宁省地质矿产调查院有限责任公司QGWY(PM)202300936辽宁288毛永涛辽宁省地质矿产调查院有限责任公司QGWY(PM)202300937辽宁289孔繁昕辽宁省地质矿产调查院有限责任公司QGWY(PM)202300938辽宁290王展沈阳农业大学QGWY(PM)202300939辽宁291杨明沈阳农业大学QGWY(PM)202300940辽宁292罗培宇沈阳农业大学QGWY(PM)202300941辽宁293李道林安徽农业大学QGWY(PM)202300942安徽294廖霞安徽农业大学QGWY(PM)202300943安徽295王世航安徽理工大学QGWY(PM)202300944安徽296李孝良安徽科技学院QGWY(PM)202300945安徽297魏俊岭安徽农业大学QGWY(PM)202300946安徽298李涛安徽中青检验检测有限公司QGWY(PM)202300947安徽299吕成文安徽师范大学QGWY(PM)202300948安徽300史春鸿安徽省地质调查院(安徽省地质科学研究所)QGWY(PM)202300949安徽301赵旭广电计量检测(合肥)有限公司QGWY(PM)202300950安徽302张平究安徽师范大学QGWY(PM)202300951安徽303索改弟安徽科技学院QGWY(PM)202300952安徽304张纯安徽友诚地理信息技术有限公司QGWY(PM)202300953安徽305陈皓龙安徽省地质矿产勘查局327地质队QGWY(PM)202300954安徽306刘健健安徽科技学院QGWY(PM)202300955安徽307赵悦安徽省地球物理地球化学勘查技术院QGWY(PM)202300956安徽308童心安徽中青检验检测有限公司QGWY(PM)202300957安徽309荚伟安徽友诚地理信息技术有限公司QGWY(PM)202300958安徽310梁先龙安徽中青检验检测有限公司QGWY(PM)202300959安徽311王翔翔广电计量检测(合肥)有限公司QGWY(PM)202300960安徽312杨立辉安徽师范大学QGWY(PM)202300961安徽313梁红霞安徽省地质调查院(安徽省地质科学研究所)QGWY(PM)202300962安徽314杨阳广电计量检测(合肥)有限公司QGWY(PM)202300963安徽315梁宏旭安徽农业大学QGWY(PM)202300964安徽316金宝枝广电计量检测(合肥)有限公司QGWY(PM)202300965安徽317唐贤安徽科技学院QGWY(PM)202300966安徽318王永香安徽省地质调查院(安徽省地质科学研究所)QGWY(PM)202300967安徽319李廷强浙江大学QGWY(PM)202300968浙江320丁枫华丽水学院QGWY(PM)202300969浙江321杨静丽水学院QGWY(PM)202300970浙江322张奇春浙江大学QGWY(PM)202300971浙江323周银浙江财经大学QGWY(PM)202300972浙江324潘艺浙江财经大学QGWY(PM)202300973浙江325程中一浙江大学QGWY(PM)202300974浙江326邹湘浙江大学QGWY(PM)202300975浙江327关浩然浙江大学QGWY(PM)202300976浙江328杨雪玲浙江大学QGWY(PM)202300977浙江329汤胜浙江大学环境与资源学院QGWY(PM)202300978浙江330马斌浙江大学QGWY(PM)202300979浙江331张涛浙江省农业科学院QGWY(PM)202300980浙江332张明中国计量大学QGWY(PM)202300981浙江333邵帅浙江农林大学环境与资源学院QGWY(PM)202300982浙江334王繁杭州师范大学QGWY(PM)202300983浙江335刘扬浙江省农业科学院QGWY(PM)202300984浙江336王童浙江大学QGWY(PM)202300985浙江337袁国印丽水学院QGWY(PM)202300986浙江338张佳雯浙江大学QGWY(PM)202300987浙江339泮莞坤浙江大学环境与资源学院QGWY(PM)202300988浙江340王卫平浙江省农业科学院QGWY(PM)202300989浙江341祝锦霞浙江财经大学QGWY(PM)202300990浙江342方凯凯浙江大学QGWY(PM)202300991浙江343吕豪豪浙江省农业科学院QGWY(PM)202300992浙江344李文瑾浙江大学QGWY(PM)202300993浙江345王铭烽浙江大学QGWY(PM)202300994浙江346刘秒杭州师范大学QGWY(PM)202300995浙江347邓明位浙江大学QGWY(PM)202300996浙江348李昌娟浙江省农业科学院QGWY(PM)202300997浙江349韦国春浙江省农业科学院QGWY(PM)202300998浙江350程敏浙江财经大学QGWY(PM)202300999浙江351戴之希中国计量大学QGWY(PM)202301000浙江352梁欣浙江省农业科学院QGWY(PM)202301001浙江353邱瑜青海省第五地质勘查院QGWY(PM)202301002青海354刘允文江西省瑞华国土勘测规划工程有限公司QGWY(PM)202301003青海355赵胜楠青海省第四地质勘查院QGWY(PM)202301004青海356乔明强青海省有色第二地质勘查院QGWY(PM)202301005青海357肖涛江西省瑞华国土勘测规划工程有限公司QGWY(PM)202301006青海358杨映春青海省第五地质勘查院QGWY(PM)202301007青海359郑雅之青海省有色第三地质勘查院QGWY(PM)202301008青海360曹有全青海省第五地质勘查院QGWY(PM)202301009青海361晁海德青海省第四地质勘查院QGWY(PM)202301010青海362薛发明青海省有色第二地质勘查院QGWY(PM)202301011青海363马有为青海九零六工程勘察设计院有限责任公司QGWY(PM)202301012青海364张增艺青海省第三次全国土壤普查领导小组办公室QGWY(PM)202301013青海365徐崇荣江西省瑞华国土勘测规划工程有限公司QGWY(PM)202301014青海366张子龙四川省西南大地集团有限公司QGWY(PM)202301015青海367张永升四川省西南大地集团有限公司QGWY(PM)202301016青海368白文洪青海九零六工程勘察设计院有限责任公司QGWY(PM)202301017青海369何鹏青海省水文地质工程地质环境地质调查院QGWY(PM)202301018青海370马志强甘肃省地质矿产勘查开发局第四地质矿产勘查院QGWY(PM)202301019青海371徐玺萍青海岩土工程勘察院有限公司QGWY(PM)202301020青海372殷海燕青海农田建设和土地整治中心QGWY(PM)202301021青海373郝源中国冶金地质总局青海地质勘查院QGWY(PM)202301022青海374黄来明中国科学院地理科学与资源研究所QGWY(PM)202300826北京375袁承程中国农业大学QGWY(PM)202300827北京376赵华甫中国地质大学(北京)QGWY(PM)202300053北京377郝士横中国地质大学(北京)QGWY(PM)202300108北京378胡雪峰上海大学QGWY(PM)202300022上海
  • 理加联合土壤温室气体通量监测系统应用
    1 摘要陆地生态系统中土壤温室气体排放或吸收过程极其复杂。实现多种土壤温室气体的同步原位监测已成为土壤温室气体研究人员的迫切需求。基于此,北京理加联合科技有限公司(以下简称理加)研发了土壤呼吸系列产品。其中PS-9000便携式土壤碳通量自动测量系统(以下简称“PS-9000”)用于测量土壤CO2通量,LGR UGGA+PS-3000便携式土壤呼吸系统(以下简称“PS-3000”)用于测量土壤CO2和CH4通量,LGR MGGA+PS-3010超便携CH4/ CO2土壤呼吸系统(以下简称“PS-3010”)用于测量土壤CO2和CH4通量,PS-3020便携式土壤呼吸系统(以下简称“PS-3020”)用于测量土壤N2O/CH4或N2O/CO通量。SF-9000多通道土壤碳通量自动测量系统(以下简称“SF-9000”)可连接多达18个呼吸室,多点测量土壤CO2通量,实现土壤碳通量的连续长期监测。SF-3500多通道土壤气体通量自动测量系统(以下简称“SF-3500”旧型号:SF-3000)可以连接多种气体分析仪来测量CO2,CH4,N2O,NH3和其他气体通量,也可以连接同位素分析仪来测量13CO2,12C18O16O,15N14NO同位素值。SF-3500可以收集多达18个呼吸室的连续数据集,以表征研究区域气体交换的时空变化。2 应用案例2.1 PS-9000中国科学院沈阳应用生态研究所,利用PS-9000测量果树园土壤CO2排放。2.2 PS-30001. 中国科学院大气物理研究所,在长白山森林生态系统的应用。2. 海南大学,在热带雨林的应用2.3 PS-3010中国科学院成都山地灾害与环境研究所,利用ABB LGR MGGA+LICA PS-3010监测海拔约4600 m的青藏高原五道梁土壤CO2和CH4排放。2.4 PS-3020上海市环境科学研究院,在崇明水稻田进行便携式N2O/CH4通量测量。2.5 SF-9000中国科学院西北高原生物研究所,在海北站高寒草地进行研究。2.6 SF-3000ABB LGR 分析仪+SF-3000可在不同生态系统中使用:森林、草地、湿地、沙漠和农业生态系统。也可在不同环境条件下使用:高海拔地区或低海拔地区、高温地区或低温地区、高湿地区或干旱地区。在国内有许多的应用案例:1 青藏高原(若尔盖草原),海拔超过3300 m。中国科学院地理科学与资源研究所。利用N2O/CO+UGGA+SF-3000长期监测土壤CO2,CH4, N2O,CO,H2O通量。2 内蒙古草原生态系统。北京师范大学。利用UGGA+SF-3000长期监测草地土壤CO2,CH4和H2O通量。3 天山(沙漠生态系统)。中国科学院新疆生态与地理研究所。利用CCIA+ SF-3000长期监测沙漠生态系统土壤CO2,δ13C,δ18O,H2O。4 长白山(森林生态系统),海拔超过2000 m,冬季寒冷。利用CCIA+ SF-3000长期监测森林生态系统土壤CO2,δ13C,δ18O,H2O。5 清原森林生态系统观测研究站。中国科学院沈阳应用生态研究所。SF-3000土壤通量系统用于清远林业站NOx的长期监测。6 青藏高原(湿地生态系统)。中国林业科学研究院湿地研究所。利用UGGA+ SF-3000监测青藏高原湿地生态系统的土壤CO2和CH4通量。7 云南哀牢山(森林生态系统)。中国科学院西双版纳热带植物园。利用CCIA+UGGA+SF-3000长期监测CO2, δ13C, δ18O, CH4, H2O。8 兰州市农田生态系统。兰州大学。利用N2O分析仪+SF-3000监测苜蓿地土壤的N2O通量。3 应用文章从研发生产至今,已经有许多科学家利用理加的土壤呼吸系列产品进行了诸多研究。例如,中国林科院湿地研究所湿地与气候变化团队以四川若尔盖高原泥炭地为研究对象,依托模拟极端干旱的野外控制实验平台,通过原位观测和室内试验相结合,利用PS-9000研究了若尔盖高原泥炭地生态系统碳排放(生态系统呼吸和土壤呼吸)对植物生长季不同时期极端干旱事件的响应,并揭示了植物和土壤酶活性对泥炭地碳排放变化的驱动机理;一组研究人员在青藏高原风火山利用PS-3000测量了两个生长季节(2017年和2018年)不同坡向(北向(阴坡)和南向(阳坡))和不同海拔的生态系统呼吸(Re)和CH4通量,旨在阐明其Re和CH4通量模式并量化生物和非生物因子调节Re和CH4通量的相对贡献;来自中国科学院地理科学和资源研究所的研究团队利用SF-3500研究了青藏高原高寒草甸CO2、CH4和N2O通量及其总平衡对3个增温水平的响应(环境、+1.5℃、+3.0℃),以理解(a)CO2与CH4和N2O通量对增温响应的差异,(b)年GHG通量对不同增温水平的短期敏感性以及(c)生长季和非生长季GHG通量对增温响应的差异。4 小结理加公司专注国产生态仪器的研发和生产,相信随着加大研发的投入和市场及时间的积累,理加公司一定会生产出更多、更好的生态仪器,给更多的国内外客户提供更有价值的产品。理加将继续努力以全新的面貌迎接更多的挑战和机遇,以更大的热情服务新老客户,为科研人员的科研事业保驾护航。5 Published Literature1.Yan ZQ, Kang EZ, Zhang KR et al. 2021. Plant and Soil Enzyme Activities Regulate CO2 Efflux in Alpine Peatlands After 5 Years of Simulated Extreme Drought[J]. Frontiers in Plant Science, 12: 756956. (PS-9000)2.Li Y, Wang GW, Bing HJ et al. 2021. Watershed scale patterns and controlling factors of ecosystem respiration and methane fluxes in a Tibetan alpine grassland[J]. Agricultural and Forest Meteorology, https://doi.org/10.1016/j.agrformet.2021.108451. (PS-3000)3.Rong YP, Ma L, Johnson DA. 2015. Methane uptake by four land-use types in the agro-pastoral region of northern China[J]. Atmospheric Environment, 116: 12-21. (SF-3000)4.Rong YP, Ma L, Johnson DA et al. 2015. Soil respiration patterns for four major land-use types of the agro-pastoral region of northern China[J]. Agriculture, Ecosystems and Environment, 213: 142-150. (SF-3000)5.Pan ZL, Johnson DA, Wei ZJ et al. 2016. Non-growing season soil CO2 efflux patterns in five land-use types in northern China[J]. Atmospheric Environment, 144: 160-167. (SF-3000)6.Pan ZL, Wei ZJ, Ma L et al. 2016. Effects of various stocking rates on grassland soil respiration during the non-growing season[J]. Acta Ecologica Sinica, 36: 411-416. (SF-3000)7.Ma L, Zhong MY, Zhu YH et al. 2018. Annual methane budgets of sheep grazing systems were regulated by grazing intensities in the temperate continental steppe: A two-year case study[J]. Atmospheric Environment, 174: 66-75. (SF-3000)8.Su CX, Zhu WX, Kang RH et al. 2021. Interannual and seasonal variabilities in soil NO fluxes from a rainfed maize field in the Northeast China[J]. Environmental Pollution, 286, 117312. (SF-3000)9.Yang L, Zhang QL, Ma ZT et al. 2021. Seasonal variations in temperature sensitivity of soil respiration in a larch forest in the Northern Daxing’an Mountains in Northeast China[J]. Journal of Forestry Research, 3. (SF-3000)10.Jia Z, Li P, Wu YT et al. 2020. Deepened snow cover alters biotic and abiotic controls on nitrogen loss during non-growing season in temperate grasslands[J]. Biolog11.Wang JS, Quan Q, Chen WN et al. 2021. Increased CO2 emissions surpass reductions of non-CO2 emissions more under higher experimental warming in an alpine meadow[J]. Science of the Total Environment, https://doi.org/10.1016/j.scitotenv.2020.144559. (SF-3500)12.庄静静, 张劲松, 孟平等. 2015. 华北低山丘陵区土壤CH4通量对脉冲降雨的响应[J]. 东北林业大学学报, 43(10): 72-78. (SF-3000)13.庄静静, 张劲松, 孟平等. 2015. 华北低山丘陵区人工林土壤CH4通量测定代表性时段研究[J]. 生态环境学报, 24(11): 1791-1798. (SF-3000)14.刘博奇, 牟长城, 邢亚娟等. 2016. 小兴安岭典型温带森林土壤呼吸对强降雨的响应[J]. 北京林业大学学报, 38(4): 77-85. (SF-3000)15.庄静静, 张劲松, 孟平等. 2016. 非生长季刺槐林土壤CH4通量的变化特征及其影响因子[J]. 林业科学研究, 29(2):274-282. (SF-3000)16.何方杰, 韩辉邦, 马学谦等. 2019. 隆宝滩沼泽湿地不同区域的甲烷通量特征及影响因素[J]. 生态环境学报, 28(4): 803-811. (SF-3000)17.何可宜, 沈亚文, 冯继广等. 2021. 植物残体输入改变对樟子松人工林土壤呼吸及其温度敏感性的影响[J]. 北京大学学报(自然科学版), 57(2): 361-370. (PS-2000)
  • 3523万!兰州大学土壤剖面CO2浓度测量设备等仪器采购项目
    项目编号:LZU-2022-363-HW-GK项目名称:兰州大学土壤剖面CO2浓度测量设备等仪器采购项目预算金额:3523.0000000 万元(人民币)采购需求:标段号序号标的名称数量预算金额(万元)是否进口第一标段1土壤剖面CO2浓度测量设备37套362.6是第二标段1区域土壤水观测系统(中子仪)7套175否2区域降雪测量系统36套298.4否第三标段1泥沙含量固定观测系统20套800否2流量流速观测系统23套192否第四标段1多参数水质观测系统23套1035是第五标段1蒸渗仪6套660否详见采购文件第三章项目采购需求合同履行期限:合同签订之日起进口设备180日历日,国产设备2022年12月31日前完成验收并交付使用;本项目( 不接受 )联合体投标。
  • 同位素 | 湿地土壤CO2和CH4排放及其碳同位素特征
    CO2和CH4排放增加是全球变暖的主要原因(IPCC,2013),人类活动导致大约44%和60%的CO2和CH4排放到大气中。人类活动如拦河筑坝干扰湿地的结构和功能,引发大量土壤CO2和CH4排放。然而,目前对湿地水库CO2和CH4排放及其碳同位素特征的影响机制知之甚少。基于此,为了填补研究空白,在本研究中,来自云南大学和中科院武汉植物园的研究团队在三峡消落区原位条件下调查了4个海拔梯度(即不同淹水状态)(175 m,160–175 m,145–160 m和<147 m)饱和和排干状态下CO2和CH4排放模式及其碳同位素特征,以及相关的控制因子。他们作出了如下假设:1)由于淹水下优势植物种的转变,土壤条件(例如土壤基质质量,土壤水分和温度)的变化将会改变CO2排放以及CO2的δ13C值;2)CH4排放模式及其同位素特征对淹水更敏感,反映了土壤厌氧环境的增加;3)不同淹水状态下(例如饱和和排干状态下)将会导致酶表达和微生物属性的改变,进而极大影响CO2和CH4排放。图1 重庆忠县研究区位置(a);三峡消落区采样地卫星图像及沿海拔梯度详细的静态通量室放置图(b)。作者于2017年6-8月测量了土壤/水大气界面CO2和CH4的交换率。利用ABB LGR CO2同位素分析仪分析CO2的浓度及δ13C,并利用ABB LGR甲烷碳同位素分析仪分析CH4的浓度及δ13C。【结果】高海拔地区CO2排放明显较高,饱和状态和排干状态之间差异显著。相比之下,在整个观测期,高海拔地区(41.97 μg CH4 m-2 h-1)平均CH4排放量高于低海拔地区(22.73 μg CH4 m-2 h-1)。从饱和状态到排干状态,低海拔CH4排放降低了90%,在高海拔增加了153%。与低海拔和高地相比,高海拔CH4的δ13C更富集,饱和状态比排干状态更贫化。作者发现土壤CO2和CH4排放与土壤基质质量(例如,C:N)和酶活性密切相关,而CO2和CH4的δ13C值分别主要与根呼吸和产甲烷细菌活性有关。具体而言,饱和和排干状态对土壤CO2和CH4排放的影响强于水库海拔的影响,从而为评估人类活动对碳中和的影响提供了重要依据。不同海拔下土壤CO2排放的周平均值以及整个非淹水期土壤CO2排放量。不同海拔下CH4排放的周平均值以及整个非淹水期土壤CH4排放量。非淹水期不同海拔土壤呼吸CO2的δ13C(a)和CH4的δ13C(b)。土壤饱和和排干状态下不同海拔CO2(a)和CH4平均排放量(b)。土壤饱和和排干状态下不同海拔土壤呼吸CO2的δ13C(a)和CH4的δ13C(b)平均值。【结论】三峡水库消落区土壤CO2和CH4排放及其碳同位素特征的变化受周期性淹水的强烈影响,可以确定其CO2和CH4的源/汇强度。与高地相比,消落区土壤环境适宜,酶活性较高,土壤基质质量较低,因此CO2排放量较高。土壤呼吸CO2的δ13C值进一步证实了,基质质量和酶活性变化是CO2排放的主要贡献者。随着高地CH4吸收,消落区CH4累积排放量从低海拔到高海拔地区增加。基于CH4的δ13C值,作者得到的初步结论是饱和状态下较高的CH4排放以较强的厌氧环境中乙酸盐裂解过程为特征。因此,结果强调了拦河筑坝引发了周期性淹水,导致土壤质量、酶表达和微生物利用C的策略,以及甲烷氧化过程的转变,潜在的改变了CO2和CH4排放及其碳同位素特征。点击下方链接,阅读全文:https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650309820&idx=2&sn=7f8a55c7547af8ca81cda8c57cc85feb&chksm=bee1a84389962155c285bd7b4ed3a8b80b75fc345cd33b8ef85851689eb50545bada7101169f&token=1524960455&lang=zh_CN#rd
  • 变化内容解读∣第三次土壤普查土壤样品制备与检测技术规范(修订版)
    《第三次土壤普查技术规范》从2022年4月份的审议稿、2022年5月份的试行稿、2022年7月份的试行稿、到最后2023年2月的修订稿。每一版都有一些变化,但最终修订版变化最大,我现将最终修订版与7月份试行稿的变化内容做一个总结。一、样品制备变化内容(一)制样场地要求发生变化1、风干室要求增加了:“温湿度适宜,其面积应与承接制样任务数量相匹配,高湿地区根据需要安装除湿设施,如受场所限制不能集中风干,应确保每个分散风干的场所均满足本规范要求,并安排专人负责日常监督管理。”2、样品制备室制样过程全程摄像,保存记录由以前的“不少于3年”变为“不少于1年”。(二)制备流程1、一般样品制备(1)“一般样品”全部改为“表层样品”(2)风干:a、对于黏性土壤的风干更加具体,变为“在土壤样品半干时,戴一次性丁腈或聚乙烯等无污染材质手套将大块土捏碎,以免完全干后结成硬块。”b、把风干 “样品风干后混匀,用以粗磨”一句改为“一部分按照国家级和省级土壤样品库留存量要求,采用四分法分取后装入容器中流转至土壤样品库保存,剩余样品粗磨制成2mm样品,数量要确保样品检测和质控等需要。”说明样品库样品只需要风干即可,不需要粗磨。(3)粗磨:粗磨中去掉了“石砾含量较多时,耕地园地土壤样品应记录风干、粗磨过程中弃去的石砾质量,并计算石砾质量百分数。林地草地土壤样品应记录风干、粗磨过程中弃去的砖瓦石块、石灰结核、石砾质量,并计算碎石和石砾的总体质量百分数。”其实不管耕地园地、林地草地要求是一样的,都需要挑拣、称重、记录,所以去掉了。(4)称重:增加了称重“土壤样品应记录风干、粗磨过程中弃去的碎石和石砾等质量, 并计算质量百分数。”其实就是粗磨中去掉的部分,一句话概括为这一条“称重。”(5)分装:分装不按耕地园地、林地草地分不同要求了,统一变为:“粗磨后样品充分混匀后进行分装,每个表层样品的送检样品不少于800g,留存样品不少于200g,如果送检样品含密码平行样,则不少于1600。”2、剖面样品也不分耕地园地、林地草地,基本参照表层样品风干、粗磨、称重、分装步骤要求。3、土壤水稳性大团聚体样品(1)去掉了“一般样品、剖面样品的第1层样品采集时,均需采集土壤水稳性大团聚体样品”要求。(2)水稳性大团聚体送检要求由原来了“送检1000g、含密码1500g”变为:“送检样品不少于1100g,如果送检样品含密码平行,则不少于1600g。”二、样品流转变化内容(一)流转场地增加了流转场地要求:“承担制备任务的实验室应向省级质量控制实验室提供相对独立且配备相关设备设施场地,用于样品转码、组批和流转等,有条件的省级质控实验室也可自行设置专门场地用于样品转码、组批和流转等。”(二)样品组批和装运剖面样品组批要求发生变化,变为:“原则上按照10个剖面样点的全部剖面发生层样品组成一个批次,剖面样点量不足10个时,按照实际样品数量组批,每个批次的密码平行样品和质控样品各不少于1个,其余要求同表层样品。”三、样品保存变化内容(一)留存样品保存留存样品保存条件由原来的“存放温度不高于25℃”变为“实验室保存样品须密封存放,室温保存 (或不高于30 ℃) ”。(二)预留样品保存预留样品统一改为:“每份不少于400g,预留样品须移交本实验室保存室造册保存,保存时间不少于2年,保存条件同留存样品要求。”(三)剩余样品保存剩余样品保存时间由以前的“不少于半年”变为“”不少于1年,保存条件同留存样品要求。”四、样品检测变化内容(一)检测指标1、耕地园地检测指标中去掉了科研部门检测的 “土壤田间持水量”、“凋萎系数”、“矿物组成”,由原来的46项变为43项。林地草地检测指标中去掉了“土壤水稳性大团聚体”和“矿物组成”,由原来的19项变为17项。具体变化见下表1、表2。2、去掉了盐碱地水样检测指标,原备注由省级质量控制实验室检测。表1 耕地园地检测指标变化序号参数剖面样表层样备注修订后备注1机械组成√√剖面样品全部检测,表层样品选择50%检测2土壤水稳性大团聚体√√30%表层土样剖面样品的第一层样品检测,表层样品选择10%检测3可交换酸度√南方酸性土壤区域(pH小于6.0)检测pH6.0的样品检测4水溶性盐(水溶性盐总量、电导率、水溶性钠离子、钾离子、钙离子、镁离子、碳酸根、碳酸氢根、硫酸根、氯根)√√盐碱土普查涉及的县中均需侧水溶性盐总量、电导率和8大离子。注:水溶性盐总量小于0.1%时,不测电导率和8大离子。全部样品检测水溶性盐总量和电导率,当水溶性盐总量1.0g/kg时不检测八大离子5碳酸钙(无机碳)√除铁铝土纲不测,其余都测。pH7.0的样品检测6游离铁√仅测定铁铝土纲和淋溶土纲的土样长江以南 (除青藏高原) 所有剖面样品检测,长江以北 (含青藏高原) 水田剖面样品检测7土壤田间持水量√科研部门检测。黑土、棕壤、潮土、栗钙土、黄绵土、紫色土、红壤、黄壤、灰漠土、水稻土各100个土样,环刀法测定。耕地园地采集耕作层、犁底层、心土层3个土层环刀样,林草地采集0-20cm表层、20-40cm亚表层土层环刀样。去掉此项目8凋萎系数√科研部门检测。具体同“4 土壤田间持水量”去掉此项目9矿物组成√科研部门检测去掉此项目表2 林地草地检测指标变化序号参数剖面样表层样备注修订后备注1机械组成√√剖面样品全部检测,表层样品选择50%检测2土壤水稳性大团聚体√去掉此项目3矿物组成√去掉此项目4碳酸钙(无机碳)√除铁铝土纲不测,其余都测pH7.0的样品检测5全铁√pH6.0的样品检测6游离铁√仅测定铁铝土纲和淋溶土纲的土样长江以南(除青藏高原)所有剖面样品检测(二)检测方法变化以前耕地园地、林地草地的检测方法都是分开的,现在检测方法不分耕地园地、林地草地,统一为土壤样品检测指标方法。具体变化见下表3。表3 检测方法变化序号指标方法标准或规范备注变化内容1机械组成吸管法《土壤分析技术规范》(第二版),5.1吸管法1、仅能用吸管法2、去掉了比重计法2土壤水稳性大团聚体筛分法《土壤检测第19部分:土壤水稳性大团聚体组:成的测定》(NY/T1121.19-2008) (机械筛分方式,详见土壤样品制备与检测技术规范培训教材1、仅能用机械筛分法2、去掉了人工筛分法3阳离子交换量乙酸铵交换法《土壤分析技术规范》(第二版)12.2乙酸铵交换法pH≤7.5的样品1、方法全部变为《土壤技术规范的方法》。2、去掉了NY/T295- 1995和NY/T1121.5-2006两个方法。EDTA-乙酸铵盐交换法《土壤分析技术规范》(第二版)12.1EDTA-乙酸铵盐交换法pH7.5的样品4交换性盐基及盐基总量(交换性钙、交换性镁、交换性钠、交换性钾、盐基总量)乙酸铵交换法等《土壤分析技术规范》(第二版),13.1 酸性和中性土壤交换性盐基组成的测定 (乙酸铵交换法) (交换液中钾、 钠、 钙、 镁离子的测定增加等离子体发射光谱法,详见本规范培训教材)pH≤7.5的样品测定方法增加了ICP法氯化铵-乙醇交换法等《石灰性土壤交换性盐基及盐基总量的测定》(NY/T1615-2008) (交换液中钾、钠、钙、镁离子的测定增加等离子体发射光谱法,详见本规范培训教材)pH7.5的样品5水溶性盐(水溶性盐总量、电导率、水溶性钠离子、钾离子、钙离子、镁离子、碳酸根、碳酸氢根、硫酸根、氯根)质量法等《森林土壤 水 溶 性 盐 分 分 析》(LY/T1251-1999) (浸提液中钾、 钠、 钙、 镁离子的测定采用等离子体发射光谱法,硫酸根和氯根的测定增加离子色谱法,详见本规范培训教材)1、浸提液中钾、 钠、 钙、 镁离子的测定只能用ICP法。2、硫酸根和氯根的测定增加了离子色谱法。3、去掉了NY/T1121.16-2006法6有机质重铬酸钾氧化-容量法《土壤检测第6部分:土壤有机质的测定》(NY/T1121.6-2006)增加了元素分析仪法元素分析仪法《土壤中总碳和有机质的测定 元素分析仪法》(农业行业标准报批稿)7碳酸钙气量法《土壤分析技术规范》(第二版)15.1土壤碳酸盐的测定1、仅能用气量法2、去掉了非水滴定法 8全磷酸消解-电感耦合等离子体发射光谱法《森林土壤磷的测定》(LY/T1232-2015) (详见本规范培训教材1、仅能用ICP法2、去掉了氢氧化钠熔融-钼锑抗比色法3、去掉了酸溶-钼锑抗比色9全钾酸消解-电感耦合等离子体发射光谱法《森林土壤钾的测定》(LY/T1234-2015)1、仅能用ICP法2、去掉了碱熔-火焰光度法和原子吸收分光光度法《土壤分析技术规范》(第二版),9.1土壤全钾的测定10全硫硝酸镁氧化-硫酸钡比浊法《土壤分析技术规范》(第二版),16.9全硫的测定1、去掉了燃烧碘量法LY/T 1255-19992、增加了燃烧红外光谱法燃烧红外光谱法本规范培训教材11全硼碱熔-姜黄 素-比色法《土壤分析技术规范》(第二版),18.1土壤全硼的测定去掉了碱溶-亚甲胺-比色法碱熔-等离子体发射光谱法《土壤分析技术规范》(第二版),18.1土壤全硼的测定12全铁酸消解-电感耦合等离子体发射光谱法《固体废物22种金属元素的测定电感耦合等离子体发射光谱法》(HJ781-2016)去掉了碱溶-ICP法HJ974-2018 13全锰14全铝15全钙16全镁17速效钾乙酸铵浸提-火焰光度法《土壤速效钾和缓效钾含量的测定》(NY/T889-2004)前处理统一为2mm粒径样品样品粒径要求由原来的1mm统一变为2mm18缓效钾热硝酸浸提-火焰光度法19有效硼沸水提取-电感耦合等离子体发射光谱法土壤样品制备与检测技术规范培训教材1、仅能用ICP法2、去掉了沸水提取-甲亚胺-H比色法3、去掉了沸水提取-姜黄素-比色法20有效钼草酸-草酸铵浸提-电感耦合等离子体质谱法《土壤检测第9部分: 土壤有效钼的测定》(NY/T1121.9-2023)1、仅能用ICP法2、去掉了示波极谱法NY/T 1121.9-201221总铅酸消解-电感耦合等离子体质谱法《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ766-2015)1、仅能用ICP-MS法2、去掉了ICP法HJ781-20163、去掉了火焰光度法HJ491-20194、去掉了石墨炉原子吸收法GB/T17141-199722总镉23总铬24总镍中国冶金地质总局第三地质中心实验室总工程师 刘桀佳2023年6月22日
  • 全面体检!第三次全国土壤普查全面铺开
    农为政首,地为粮基。2023年中央一号文件要求“做好第三次全国土壤普查工作”。农业农村部认真贯彻党中央、国务院决策部署,全力推进第三次全国土壤普查工作。自2022年年初第三次全国土壤普查(以下简称土壤三普)启动至今,经过一年的试点工作,全国各地已经自上而下构建了比较完善的组织体系、技术体系、保障体系和质控体系。一年的实践证明,“六结合”“六统一”技术路线(即实现摸清土壤质量与完善土壤类型、性状普查与利用调查、外业观测与内业化验、表层采样与剖面采集、摸清障碍因素与提出改良培肥措施、政府保障与专业支撑等六方面结合;统一技术规程、工作平台、工作底图、规划布设采样点位、筛选测试分析专业机构标准、全过程质量控制等六方面工作)是正确、可行的;编制的技术规程规范是科学、适用的;建立的组织、技术等工作体系是务实、有效的。摸清家底意义重大,全面体检任重道远民以食为天,食以土为本。土壤是农业基础的生产资料,是农业生产的重要依托。时隔40余年,国务院印发《国务院关于开展第三次全国土壤普查的通知》(国发〔2022〕4号)(以下简称《通知》),部署开展了土壤三普,重点对耕地、园地、林地、草地等约110亿亩农用地和部分未利用地土壤开展一次“全面体检”。新中国成立以来,已完成了两次全国土壤普查。第一次普查于1958-1960年开展,毛泽东同志亲自批转原农业部党组《关于土壤普查鉴定工作现场会议的报告》,重点围绕摸清耕地数量和农民改土用土的经验而开展。第二次普查于1979-1984年开展,《国务院批转农业部关于全国土壤普查工作会议报告和关于开展全国第二次土壤普查工作方案》(国发〔1979〕111号)部署了全国土壤普查工作,重点普查了我国土壤资源的类型、数量、分布、肥力等基本性状,普查成果成为我国各种资源调查、评价和规划的基础数据。改革开放40多年来,我国农业快速发展,粮食总产量从1979年的6642亿斤增长到2022年的13731亿斤。棉、糖、油等重要农产品产量也都有大幅增加,而且种类日趋丰富,品质日益提升。我国耕地资源相对不足,耕地质量总体不高,人多地少,耕地的开发利用强度高、局部耕地退化严重。经过40年发展,第二次普查的数据已经不能反映全面当前土壤质量的情况。土情连着农情、国情、民情。土壤三普是对农用地土壤的一次全面体检,是新阶段开展的一项重要国情国力调查。“这次土壤普查具有多功能集成、多目标协同、多领域协作的特点,技术难度大,复杂程度高,综合性系统性强。”农业农村部农田建设管理司司长、全国土壤普查办常务副主任郭永田介绍,“做好普查工作,全面掌握全国耕地、园地、林地、草地等土壤性状和耕作造林种草用地土壤适宜性,协调发挥土壤的生产、环保、生态等功能;做好土壤普查工作,更好地满足守牢耕地红线、合理利用水土资源、优化农业生产布局、提高农业生产效率、保障粮食和重要农产品有效供给及食物多样性目标;做好土壤普查工作,需要统筹土壤、地质、地理、植物、生态、环境及遥感、信息技术等多学科协同,还要统筹行政管理、科研教育、技术推广等多领域协作。”试点工作成效显著,各地普查有序开展土壤三普工作启动以来,全国88个试点县已经完成了8.8万个样点的调查采样、样品制备和内业化验检测等工作,构建了较为完善的组织、技术、保障、质控四大体系。“试点县初步形成了由土壤类型图、土壤酸化分布图、‘土特产’品生产区域分布图、土壤农业利用适宜性评价图、耕地质量等级图组成的数字化图件成果等,并开始着手数据及数据库成果的形成与汇交,以及土壤志的编撰工作。”中国农业科学院农业资源与农业区划研究所副研究员、全国土壤普查办综合组干部阮志勇告诉记者。强有力的工作组织体系是完成普查任务的根本保障。在2022年的试点工作中,陕西省形成了政府领导、部门统揽、下属联包、三方实施、镇村配合的5级管控机制,按照时间节点倒排工期,挂图作战。内蒙古自治区的12个盟(市)和55个旗(县),均成立了普查领导小组和办公室,实施自治区、盟(市)、旗(县)的三级联动。不同层级、不同主体间协作畅通了,土壤三普工作才能实现高效运转。经费是做好土壤普查的重要保障。国务院《通知》明确,本次土壤普查经费由中央财政和地方财政按承担的工作任务分担,各地可按规定统筹现有资金渠道支持土壤普查相关工作。各地积极落实土壤普查经费,据全国土壤普查办调度,内蒙古、河北、江苏、山东、湖南、广西、青海等省(区)每个地方落实省级财政经费超1亿元;黑龙江、浙江、福建、广东(含广东农垦)、贵州、西藏6省(区)每个地方落实省级财政经费超5000万元。全面铺开土壤普查工作,系统谋划综合施策土壤三普是一项系统性工作,需要全链条系统谋划、综合施策,需要抓实抓细各环节,需要动员各方面力量落地落实落好各项工作。要让专业的人干专业的事。今年,全国土壤普查办已经相继在西南区、华北区、华东区及华南区、西北区、华中区、东北区举办2023年土壤三普培训班6期,培训了各省份土壤普查办相关负责人、各试点县土壤普查办相关负责人,各省份土壤普查办外业工作和技术负责人、剖面土壤调查技术领队,各试点县成果形成技术负责人1500余人。中国科学院南京土壤研究所研究员、全国土壤普查办外业工作组副组长、第三次全国土壤普查专家技术指导组外业技术组组长赵玉国介绍:“培训班旨在提高各地对土壤三普工作重要性、复杂性、专业性的认识,有效推动各地行政与技术体系的融合,进一步强化试点成果编制进度与质量要求,增强外业队伍专业导向和作业能力。经考核发证的人员数量能够满足全国剖面调查采样工作需求。”3月3日上午,在重庆北碚的西南区剖面土壤调查与采样培训考核现场,109位参训学员刚刚结束完野外实操考核,正仔细聆听着关于剖面调查采样技术要点的讲解。“在进行完剖面观察时,也要记得抬头观察附近的地形,这样才能更好地判断周边的成土环境。”西南大学资源环境学院教授、第三次全国土壤普查专家技术指导组顶层设计组副组长、重庆市土壤三普专家咨询组组长谢德体对剖面考核点介绍道。土壤普查队伍是保障土壤普查保质保量完成的核心。“各地要统筹省内的技术力量,在对采样和检测队伍进行筛选时,一定要严格把握人员的能力、技术和设备等条件,严格遴选任务承担单位,确保工作质量。”农业农村部耕地质量监测保护中心总农艺师、第三次全国土壤普查专家技术指导组副组长兼内业技术组组长马常宝介绍,“不能只依靠省级或国家级的培训,各地的外业采样队和内业检测化验室要提前进行多次的内部培训。”因此,人员培训要久久为功,把功夫用在平时。无论是外业采样调查还是内业检测化验,土壤普查队伍人员短缺,是很多省推进试点工作时遇到的难处。在2023年土壤三普工作全面铺开之际,在高度重视人员培训的同时,还需充分调动社会各方力量,让更多具有土壤或者相关专业背景的工作人员参与到土壤三普工作中。信息化工作平台是衔接土壤三普内外业等多个环节的重要组成部分。2022年,平台技术组以普查全环节工作流程为核心,开发了由1个桌面端系统和5个移动端App组成的工作平台,实现了普查全流程的信息化记录、数字化管理和可视化调度。“按照‘试点期基本定型、铺开期持续改进’的思路,2023年平台技术组将深入迭代工作平台功能模块,进一步提升平台的界面友好性和功能稳定性。”中国农科院农业资源与农业区划研究所所长、全国土壤普查办平台工作组组长、第三次全国土壤普查专家技术指导组副组长兼平台技术组组长吴文斌介绍。土壤普查参与主体多、涉及链条长、专业性强,因此全程质量控制就显得十分必要。“土壤三普的全程质量控制要以技术规程规范、作业人员资质、专家技术指导、工作平台管控、同步监督抽查等‘五靠’为抓手,在全流程各环节做到全程控制、源头控制、前端控制、同步控制等‘四控’。”农业农村部农田建设管理司一级巡视员、全国土壤普查办专职副主任陈章全告诉记者,“今年,我们会基于试点经验,提前谋划思考,做好各个环节之间的有效衔接,统筹安排外业采样、样品制备、实验室招标、样品检测、数据审核等,严把土壤普查质量关。”他同时强调,土壤三普已全面铺开,在成果产出上要守土壤普查传统成果之正,创为农业生产乡村振兴现代需求服务之新;在普查方法上守传统外业采样内业化验之正,创“六结合”“六统一”技术路线之新;在普查组织方式上守专业人员干专业事之正,创调动全社会力量之新。了解更多土壤三普相关检测信息,点击报名参加“第四届土壤检测技术与应用”网络会议:https://www.instrument.com.cn/webinar/meetings/soil230509/
  • 北京市全面启动土壤三普工作
    2022年北京市作为全国8个省市县三级联动试点省份之一,按照国家要求高质量完成了试点任务。今年,土壤普查工作进入全面实施阶段,北京市坚持把做好第三次全国土壤普查作为政治任务,提前谋划、全面部署,市土壤普查领导小组办公室制定并印发了《北京市第三次全国土壤普查实施方案》,有力有序推进土壤普查各项工作。截至目前,全市已完成土壤普查全部前期准备工作,进行实操阶段。全面完成普查样点校核。一是开展样点内业校核。根据《第三次全国土壤普查样点省级校核实施方案》,市三普办组织市农林科学院对朝阳、海淀、丰台3个区的276个土壤表层和剖面样点开展内业校核,在此基础上加密布设土壤样点113个。二是开展样点外业校核。为确保土壤普查工作的科学性,提高普查质量,按照国家样点校核原则,在前期开展样点内业校核的基础上,4月20日,市三普办组织海淀、朝阳、丰台三区土壤普查办对全部土壤普查样点开展现场踏勘和实地校核,对因土地利用现状变更、样点可用性与持久性、道路可达性等原因导致布设不合理的表层样点进行调整,共计完成389个土壤样点野外校核。目前全部普查样点已通过国家审核并下发至各区。深入开展三普技术培训。5月25日,市三普办举办第三次全国土壤普查外业技术培训会。市、区土壤普查办工作人员及外业调查采样队技术负责人和技术骨干参加了培训。中国农科院、市农林科学院专家就三普信息化工作平台操作及外业调查采样关键技术进行了全面培训,有95%的参训学员通过了现场考核,获得市土壤普查办颁发的第三次全国土壤普查外业调查采样工作证,为即将开展的外业调查采样工作奠定了基础。3月6-7日和5月26日,市三普办分别组织开展了土壤三普内业检测技术培训和专题培训,北京市16家检测机构的技术负责人、质量负责人以及检测技术骨干等190余人通过线上、线下相结合的方式参加了培训。通过内业培训,系统讲授了土壤检测标准、检测技术要点以及实验室质量控制内容,快速提升了第三方检测队伍的专业能力,为土壤普查内业测试化验高效、规范、有序开展打下了坚实基础。完成调查采样队伍遴选。为了确保北京市土壤三普外业调查采样工作质量,市三普办组织相关区严格按照国家《关于加强第三次全国土壤普查外业调查采样机构遴选管理的通知》要求遴选外业调查采样机构,遴选工作注重第三方机构的土壤普查专业能力。目前,朝阳、海淀、丰台三区均选定了具有土壤专业背景,且技术力量较强的外业调查采样机构,并建立了专业技术队伍。此外,北京市土壤普查办积极发挥指挥棒作用,统筹各方力量,强化组织实施,对2023年北京市土壤普查工作进行了全面部署,北京市要以最高的标准、最快的速度全面完成三普任务。
  • 南昌推进国家网土壤风险点监测
    阳春三月,春回大地,奋战在土壤环境监测工作一线的生态环保人整装待发,拉开了江西省2023年国家网土壤风险点监测工作的序幕。作为土壤环境质量监测的“第一道关”,土壤采样工作意义重大。为按时、保质完成土壤采样工作,江西省南昌生态环境监测中心提前谋划、精心准备,派出业务骨干奔赴南昌市指定点位进行采样。3月14日,记者跟随监测人员深入一线,探访土壤采样工作的全过程。样品采集必须在点位30米范围内位于进贤县下埠集乡调塘村的采样点,是此次491个土壤环境监测风险点位之一。上午9点,江西省南昌生态环境监测中心监测人员带上GPS、打印机、布袋、铁锹等采样必备工具从单位出发,驱车84公里,于10点20分到达目的地。沿着村道行走时,采样人员彭勇利用GPS寻找土壤点位的具体位置。“找到了,就在这片水田附近,大家快过来。”徒步20分钟后,一行人终于进入了GPS探测到的采样点范围。随着点位的确定,记录人员张瞳打开了“土壤环境监测网采样管理系统APP”。记者看到这个系统中明确标注了采样任务的编号、目标位置、采样人员、核验人员等信息。张瞳介绍说,只有到达点位半径30米范围内,才能点击“开始采样”按钮,之后再录入点位经纬度、地形地貌等信息。严把采样质量关,确保监测样品的准确性、代表性,对摸清土壤环境质量状况至关重要。土壤采样看似简单,实则有着严格的规范和标准。经过一番观察,采样人员找到符合土壤采样代表性要求的位置后,拿出铁锹等工具去除土壤表层的杂物、植物及根系,并在坑中放入标尺测量深度,按照土壤采样工作操作细则,挖出一个长、宽约20厘米的直角剖面,采集0厘米至20厘米深的表层土壤样品。针对监测指标,采集方式有所不同按要求挖好剖面准备取样时,记者注意到,采样人员放下铁锹,换上小木铲一点点刮掉表面的土壤,为什么要这么做?“铁铲属于金属物,它会影响土壤中金属含量。所以,用铁铲挖好剖面后,需要用木铲刮去表面接触了金属铲的土壤,再用竹片采取样品。”核校人员肖军解释道。这时彭勇拿出牛皮纸将其卷好插入棕色旋盖玻璃瓶,将土壤样品一点点装满,并用锡箔纸包裹瓶身,拧紧瓶盖,防止玻璃口被污染。他告诉记者,土壤中可能存在一些长时间见光容易挥发的污染物,所以要用深色瓶子。据了解,本次江西省国家网土壤监测指标主要是半挥发性有机污染物、无机污染物、土壤理化指标,装入棕色玻璃瓶中的土壤样品则是用于半挥发性有机物污染分析,有机物样品在中心点上单独采集,无机物样品采用“五点法”采集。随后,彭勇以采样点为中心,在采样点的东、南、西、北按照20米×20米的范围采集分点样品,再将中心点的土壤与4个分点的土壤混合成2000克样品,装入聚乙烯自封袋中并称重,用于分析土壤理化指标和无机物污染项目。同时,核校人员肖军用手机拍下了采样点位前后照片、采样点东西南北方位等图片上传至系统。如此一来,每一个采样步骤都可通过系统追溯,保证采样的真实性、准确性。“当有机、无机样品贴上采样终端的二维码及样品标签,与第三张样品标签一并装入布袋后,样品采集工作就完成了。”结束第一个点位采样时,已是中午时分,来不及吃午饭,大家拿起铁锹将土坑进行回填,恢复土地原貌,随后投入下一个点位的采样。为土壤环境保护提供准确的技术支持根据中国环境监测总站的工作部署,今年江西省共安排491个风险点监测任务,其中南昌有46个一般风险点采样任务。开展国家网土壤风险点监测工作有什么意义?江西省生态环境监测中心网络和统计评价处副处长江驰告诉记者,我国是农业大国,但耕地数量有限,因此土壤环境质量非常重要,一旦遭到污染,不仅会带来食品安全风险,还会影响居民生活健康。早在“十三五”期间,国家就启动了全国土壤环境质量监测工作,并建立了国家土壤环境监测网络。据介绍,国家土壤环境质量监测网包括三类点位,分别是基础点、背景点和风险监控点,它们分别对应着不同的工作目标。比如,风险监控点以农用地土壤环境风险管控为导向,重在风险监控和预警。当样品采集结束后,江西省生态环境监测中心核校人员会将有机样品全部带回单位,并按照批次质控要求,交接给省中心分析和质量控制处、南昌生态环境监测中心进行样品前处理和分析测试;无机和理化性质样品交接给景德镇生态环境监测中心进行集中样品制备,再分发到相关实验室,经过分析测试,获得监测数据。“通过农用地土壤‘体检’数据,技术人员能对全省土壤质量变化趋势进行分析研判,为土壤环境保护提供准确的技术支持,助力打好污染防治攻坚战。下一步,我们将持续提升环境监测质量水平,确保监测数据真、准、全,守护好我们脚下每一寸土。”江驰表示。
  • 重庆开展土壤全面体检 已完成2398个样点调查采样
    12月5是世界土壤日,今年世界土壤日主题为:土壤,食物之源。重庆市农业农村委员会消息,第三次全国普查启动后,重庆市在江津区和南川区开展了试点,截至目前,已完成国家下达的试点区2398个样点外业调查采样任务。健康肥沃的土壤是粮食安全和人类健康的重要保障,通过土壤普查可以清楚了解到土壤类型及分布规律,查清土壤资源数量和质量。普查结果可为土壤的科学分类、规划利用、改良培肥、保护管理等提供科学支撑,也可为经济社会生态建设重大政策的制定提供决策依据。我国已先后开展了两次土壤普查(1958年-1960年开展了第一次普查,1979年-1994年开展了第二次普查)。重庆市第三次全国土壤普查领导小组办公室相关负责人介绍,通过前两次普查结果显示,重庆市在复杂的地质、地貌、气候等条件下,兼受人为活动影响,形成了丰富多样的土壤类型。西部方山丘陵区,紫色土和水稻土广泛分布;中部平行岭谷区,紫色土、黄壤、石灰(岩)土呈带状相间分布;东北部和东南部则主要分布着黄壤、黄棕壤和山地草甸土等。目前正在开展的第三次全国土壤普查(2022年-2025年),普查对象包括全国耕地、园地、林地、草地等农用地的土壤。普查内容为土壤性状、类型、立地条件、利用状况等。第三次全国普查启动后,重庆市在江津区和南川区开展了试点,截至目前,已完成国家下达的试点区2398个样点外业调查采样任务,开展了试点区特色农产品生产区域和高标准农田建设区域两项土壤专题调查。正在加紧推进试点内业测试化验、成果汇交汇总、与农村土地承包经营权确权成果套合试点等。剖面样调查采样。西南大学资源环境学院供图上述负责人介绍,接下来,将按照第三次全国土壤普查时间节点要求,加快推进土壤普查试点工作,及时上报试点成果、总结试点经验,早部署早安排,在2023年起全面开展全市土壤普查,确保到2025年完成我市土壤全面体检,全面查明全市土壤类型及分布规律、查清土壤质量家底,尽快提升全市土壤资源保护和利用水平,为守住耕地红线、推进高标准农田建设与改造提升、确保粮食安全奠定坚实基础。此外,为提高全民保护土壤意识,促进广大市民知晓我国及重庆市土壤资源情况,鼓励全社会珍惜爱护土壤,提高人们对维护健康生态系统和人类福祉重要性的认识。世界土壤日前后,重庆市第三次全国土壤普查领导小组办公室和西南大学联合举办重庆市2022年世界土壤日科普活动暨西南大学第二届土壤文化节活动,面向全市征集重庆市2022年世界土壤日活动手绘宣传图,开展重庆市2022年世界土壤日知识竞赛,举行科普博文推送以及专家科普讲座等。(重庆市农业农村委员会供稿)
  • 两会总结|加强土壤保护,做好耕地土壤污染检测修复工作
    “民以食为天”,土壤是人类赖以生存、兴国安邦、生态文明建设的基础资源,是保障国家粮食安全与生态环境安全的重要物质基础。对于我国这样一个人口众多、土壤资源紧缺的国家而言,健康的土壤则显得尤为重要。2023年3月4日-3月13日,全国两会召开,各界代表就土壤环境问题提出了一系列建议,强化政策支持,保障土壤环境安全健康。仪器信息网对“两会土壤相关建议”进行了部分统计,展示如下:国务院总理李克强政府工作报告:加大土壤污染风险防控和修复力度国务院总理李克强3月5日在政府工作报告中指出,加大土壤污染风险防控和修复力度,强化固体废物和新污染物治理。全面划定耕地和永久基本农田保护红线、生态保护红线和城镇开发边界。坚持山水林田湖草沙一体化保护和系统治理,实施一批重大生态工程,全面推行河湖长制、林长制。深入实施长江流域重点水域十年禁渔。加强生物多样性保护。完善生态保护补偿制度。森林覆盖率、湿地保护率分别达到24%、50%以上,水土流失、荒漠化、沙化土地面积分别净减少10.6万、3.8万、3.3万平方公里。人民群众越来越多享受到蓝天白云、绿水青山。沈仁芳:制定土壤环境标准体系是打好净土保卫战的关键沈仁芳为准备建议开展的调研中发现,一是我国土壤类型及其利用方式多,空间分布格局复杂;二是我国土壤污染类型多,耕地重金属污染严重,呈区域差异化分布,同时出现抗生素和微塑料等多种新污染物;三是我国土壤污染防治工作起步晚、历史欠账多、底子依然薄弱。沈仁芳建议,全面持续推进我国土壤(特别是耕地)污染防治工作,并将其作为建设人与自然和谐共生的美丽中国和健康中国的重要任务。其中,土壤环境基准科学求证和土壤环境质量标准合理制定是高质量推进土壤环境管理和深入打好净土保卫战的关键所在。中国绿发会:在全国土壤普查中将“土壤生物多样性”列入全国普查一级指标。当前,关于土壤中的生物多样性,我国在本底数据方面的重视不够。而土壤生物多样性及其所提供的生态系统服务对全球生态系统至关重要,在解决粮食安全、环境污染、气候变化及公共卫生等全球重大问题方面起着关键作用。由中国生物多样性保护与绿色发展基金会建议我国政府采取进一步行动,可由国务院牵头,并协调农业农村部、自然资源部、国家发展改革委、财政部、生态环境部、水利部、国家统计局、国家林草局等部门,尽快在全国土壤普查中将“土壤生物多样性”列入全国普查一级指标。朱晓丽:深化耕地污染土壤防治 把“饭碗”端稳端牢“农田土壤修复不只是治理污染,还要在治理后提升土壤的生产能力,让它成为老百姓的‘饭碗田’。”2023年全国两会上,全国人大代表、西北大学城市与环境学院教授朱晓丽接受采访时表示。今年全国两会,朱晓丽将履职目光聚焦到农业环境领域,针对土壤污染生态修复、土壤质量提升以及进一步完善高标准农田建设等话题提交了相关建议。她建议,加大遴选绿色生态修复技术力度,加强科研创新,提升土壤利用效率;对严格管控的受污染土地进行更详细排查,通过采取挖沟或者筑坝的形式,把干净的土壤区域分隔开,进行再次利用。同时,政府应加大人才培养力度,设立专门的研究机构,建立人才培养机制,发挥人才队伍作用,促进更多的科研成果转化落地,从而为经济高质量发展奠定基础。苏家恩:加强农作物核心产区土壤保护“一直以来,党中央高度重视土壤污染防治和土壤环境保护工作。国家先后制定了《中华人民共和国土壤污染防治法》《中华人民共和国黑土地保护法》等法律法规,但目前尚缺少针对高标准农田或农作物核心产区制定土壤保护方面的法律法规。”全国人大代表苏家恩说。他建议,制定单行的《耕地土壤污染防治法》,在现行法律中增加、细化高标准农田或农作物核心产区土壤保护内容。同时,健全相关的配套措施和救济机制,加强高标准农田保护,确保高标准农田或农作物核心产区能够高效绿色地促进农业增产和稳产,保障国家粮食安全。朱永官:塑料污染破坏土壤生态系统,亟待治理“2020年,我国塑料用量为9087.7万吨,废弃量约为6000万吨。其中,40%是一次性塑料制品,如塑料包装袋、农业塑料薄膜、快餐盒、饮料瓶等。我国面临着严重的塑料污染问题。”全国人大代表、中国科学院院士朱永官指出。预计到2050年,全球塑料累计产量将增至340亿吨。届时,全球年人均塑料消费量将达到84.37千克。“地膜、轮胎颗粒等塑料在土壤环境中不断积累,这直接影响到了土壤的物理化学结构。塑料会吸附农药、重金属等有毒有害物质,干预土壤生物新陈代谢,破坏土壤生态系统。”朱永官说。因此,他建议,积极推动国家塑料污染防治行动计划。
  • 治疗土壤“疑难杂症” 土壤检测治理势在必行
    土壤是一个具有高度生命力的系统,它由生物、气候、地形等因素相互作用而成。土壤中的生物具有千万种,据数据显示1平方米的土壤中至少含有百万细菌,数条蚯蚓、蜗虫以及1只脊椎动物。   但近年来,土壤污染问题不容小觑。土壤酸化导致土壤重金属活化、土壤生物多样性骤减、土壤矿物质流失惊人、影响农作物健康等问题愈加严重。   近日,中科院西双版纳热带植物园研究人员揭示了硫改良剂对农业污染土壤中植物重金属吸附的影响。硫作为一种吸附植物重金属有积极效用的非金属元素,可促进土壤修复或减缓污染。该项研究成果发表在国际期刊《环境污染》上。该项研究有效进行土壤农田问题修复,但纵观目前土壤环境来看,土壤污染问题仍较为严峻。   土壤“疑难杂症”繁多 农田污染修复迫在眉睫   土壤是水质污染和大气污染的归宿,这些污染物沉降到土壤之中造成二次污染,土壤作为环境、农产品等污染源头,进入新一轮的污染中。如雨后土壤中的污染物会污染地下水和地表水。而在光照环境中,土壤中蒸发出的挥发性物质也会传播到空气中。麻烦的是,这些土壤并不能被搬运到其他地方,不然新地方依然会被污染,处理十分棘手。   另外,化肥过度使用给土壤生态带来极大危害。化肥农药过度施用容易引起土壤急剧酸化和生态系统功能弱化。而土壤酸化将原本存在于矿物质、吸附在土壤黏粒上的重金属活化,土壤金属性超标,粮食作物含金属量超标。特别是于镉,一种在土壤—植物系统容易迁移的有害重金属。土壤酸化后镉活化效应明显,导致农产品超标。   土壤质量改良措施出台 土壤监测治理走上快车道   土壤污染类型主要包括农业、矿山等场所土壤污染。根据环保部2014年4月发布的全国土壤污染状况调查显示,全国土壤污染总点位超标率16.1%。同时,专家强调,目前全国土壤污染空间分布与工业生产状况有一定相关性。   2018年,环保部起草并发布《中华人民共和国土壤污染防治法》,制定土壤污染行动计划,至此土壤监测大有可为。   首先从土壤监测上来说。监测人员可利用激光熔蚀法(LA)、氢化物发生法(HG)、X射线荧光光谱法,对土壤中痕量元素进行测定和分析。在土壤监测和生物恢复方面则可利用PCR技术、变性梯度凝胶电泳(DGGE)技术和生物芯片技术。现场污染事故中常用快速监测,及时的掌握污染物排放源和污染情况,对污染物进行快速的分析,并得出污染物相关数据。ICP-MS法等痕量和超痕量分析技术检测重金属污染物的毒性,提升了我国土壤环境监测精度,控制土壤污染。   其次从土壤农田污染修复上看,了解和掌握土壤性质、土壤污染特征等问题是基础。这就要求研究人员选择重金属吸收能力低的农产品;降低土壤重金属适时水分;降低施用土壤重金属的调理剂;进一步将植物体内的离子拮抗或者络合固定阻碍已经进入作物体内的重金属 迁移到籽实部位的叶面;施用微生物添加剂,降低镉活化。   另外,相关技术干预手段研发。硫改良剂就是其中之一。研究人员梳理了硫改良剂对污染土壤中农作物的吸附重金属效应,并随机分析效应模型。结果显示,农作物被施用硫后,植物对镉、铬、镍的吸附量分别提高了1.6、3.3、12.6倍,对铜吸附量降低了0.3倍。植物的独立器官对重金属的吸附差异显著。各器官重金属吸附量从大到小依次为根、叶、茎、籽粒、谷壳。   值得注意的是,土壤施用硫不会影响粮食品质,但在施硫情况下,作物叶子的重金属积累量可能会超标,从而对人体健康构成威胁。因此应针对不同植物器官,政府应该制定相应的农产品质量监控标准。   目前,土壤监测、治理手段渐渐向着技术化看齐。未来,土壤监测还需向着几个方向努力:基本摸清土壤污染底数,分块检测土壤污染状况以及污染地块;重点区域重金属污染物排放限值、加强企业强制性清洁生产审核,减少重金属排放;对于毒质土壤,应当采取固化的方法,不让污染物具有活动性和迁移性,使其和矿物质结构形成固定的物质;收回、回购或供应对人体健康有严重影响的污染场地或是未经治理修复、修复不达标的场地。   土壤的状况影响着粮食的安全与营养。因此,土壤污染治理不是单纯地关注土壤重金属含量是否超标这一因素上,而能从改善整体土壤状况下手。随着国家多个于土壤污染防治政策出台,我国土壤污染防治工作又将往前迈一大步。
  • 土壤“三普” 一场时隔43年的“摸家底”
    2月22日,第三次全国土壤普查的消息正式在中央一号文件里亮相,普查进入实地调查的时间越来越近。第三次全国土壤普查,在业内多被称为“三普”,距离“二普”开启的时间1979年,已经时隔43年。40多年来,中国的城乡社会经历了最剧烈的变化,乡野变成城市,机械驰骋于农田,全国的粮食产量从1979年的3.3多亿吨,升到2022年的6.8多亿吨,翻了一倍还多。然而,发展也付出了代价,中国的土地,尤其是耕地,一直处在极限利用的状态,许许多多的问题,早已引发普遍的关注,但一直缺乏更全面、更完善的土壤数据。“三普”的推进,将为一切问题的解答,提供最为详细和科学的依据。这次普查将历时4年,6万个样点分散在700万平方公里的土地上,预计会动员17万人。“三普”的筹备,其实早已开始2022年2月22日,中国农业科学院农业资源与农业区划研究所,卢昌艾匆匆忙忙地回到办公室,短暂停留后,又匆匆忙忙地离开。这样的忙碌,已经持续了很长时间。打开APP 阅读最新报道卢昌艾,土壤学专家、中国农业科学院农业资源与农业区划所研究员。新京报记者 王巍 摄2022年2月16日,国务院印发《关于开展第三次全国土壤普查的通知》。事实上,早在2021年上半年,关于三普的前期工作就已经开始。卢昌艾就是从那时开始进入“三普”筹备工作的。土壤普查是一个庞大而复杂的工作,调查哪些土壤,如何确定取样点,需要哪些土壤的数据、如何汇总数据、如何控制质量… … 这一系列的工作,都要在第一次取样之前完成。“前期的工作,是要为普查建立一整套完善的工作体系,包括很多方面的内容,”卢昌艾说,“这一套体系要为之后普查中的所有工作提供指导,让大家按照统一的程序完成每一个环节。”“统一”是多方面的,卢昌艾介绍,第一是建立了一个统一的工作平台,从取样到最终的数据入库,全程智能化,都要在这个平台上体现出来。第二是制订统一的技术规程,让普查的操作标准化、规范化,否则,如果没有一个标准,汇总的数据就会千差万别。第三,编制统一的工作底图,这一底图主要以此前的土壤图、地形图等各种资料为基础。第四,在工作底图上统一规划布设调查采样点位。第五,统一筛选测试化验专业机构,取得的土壤样本,将由这些专业机构进行测试化验。第六,构建统一质控体系,保障普查的质量。这些工作是普查得以顺利进行的基础,卢昌艾和其他多个部门的专家们一起,为此准备了10个月左右。“时间非常紧张、任务非常重,过程中也有很多焦灼和思考,比如普查的对象,总觉得查一次不容易,不能丢下任何一块,最终匡算出来的范围比较大,也是想尽可能地把可以普查的都查一遍,把我们的土壤家底儿查清楚。”土壤摸家底,从一普到二普天覆地载,万物育焉。我们脚下的土地,是世间万物立足于这个世界的根基。普查不仅包括耕地、园地,也包括林地、草地等各种各样的土地,它们都是陆地生态系统中最重要的基础。而土壤普查,就是要真正弄明白,我们的土壤根基到底是怎样的。东北黑土地。新京报记者 王巍 摄新中国成立以来,曾经进行过两次土壤普查,卢昌艾介绍,土壤一普于1959年开始,于1961年完成相关普查任务。这一次普查,也是用时最短的一次,“当初进行一普,就是主要了解中国的耕地资源到底有多少,在哪儿。这次普查,初步建立了一个土壤分类系统,摸清了耕地资源分布与土壤基本性状。”卢昌艾介绍。一普的成果,为后来的农田基本建设、贯彻“土、肥、水、种、密、保、管、工”的农业“八字宪法”提供了支持。一普结束18年后的1979年,我国进行了第二次土壤普查。“事实上,这一次普查的准备工作,在1975年就开始了,从1975年到1978年,用了4年的时间,形成了一个二普的技术规程,期间还在全国南方与北方的3个县进行了试点。”卢昌艾介绍。相对于一普,二普所用的时间更长,普查的范围更大,也更精细。卢昌艾介绍,“二普按照农区1∶1万、林区牧区等其他区域1∶10万-1∶20万比例尺图件开展普查工作,大部分地区的普查,在1984年底基本完成,少数地区延续到了1986年。之后开始成果汇总,汇总工作一直到1994年才结束。”为何二普数据的汇总用了这么长时间?卢昌艾介绍,是因为二普采用自下而上的方式,从乡镇级开展调查采样,最终汇总全国的工作方式,这其中,各地的标准不统一,当时的技术手段也相对不足,成果汇总整理非常复杂。事实上,到今天,二普的县级资料都没有收集齐,近几年,通过科技部立项的基础性工作项目,挽救了二普图件等资料成果。尽管在今天看来,二普留下了很多遗憾,但仍为我国农业的发展做出了巨大的贡献,卢昌艾介绍,“通过二普,第一次全面查清了我国土壤资源的类型、数量、分布、基本性状等,建立了我国土壤分类系统并编制了《中国土壤》、《中国土种志》等资料和图件,摸清了中低产田的比例、分布以及主要障碍类型,为改革开放后四十多年农业综合开发、耕地开垦、中低产田改造、科学施肥、农业区划等提供了重要的基础支撑。”四十年变迁,土壤不一样了即便从二普大部分工作结束的1984年算起,至今也快40年了,40年来,中国社会发生了巨变,土壤性状也同样发生了变化。“这40年,恰恰是我国农业集约化发展的关键时期,”中国工程院院士、中国农业科学院耕地科技创新总首席科学家周卫说。周卫,中国工程院院士、中国农业科学院农业资源与农业区划所研究员。新京报记者 王巍 摄在北方,农业机械化的推进,改变了农业生产的模式,但也带来了许多问题,“比如农机作业造成的土壤压实现象,以及大量旋耕造成了耕层变浅问题等。”在全国范围内,农作物产量不断提升,保障了14亿人的食物,粮食不断增产,蔬菜周年供应,肉类、水果供给充足,生活水平不断提升的同时,也给耕地带来了沉重的压力,“这一时期,我国土壤出现了一系列问题,如东北黑土地退化,南方红黄壤酸化等。”土壤急剧的变化,使得原来的数据,渐渐不能完全反映当前土壤的质量实况,一场新的普查亟待开始。耕地之外,园地、草地、林地等,同样在40年中发生了剧烈的变化,经历了生态破坏到生态修复的历程,这些,也都是三普所需要查清楚的。国务院第三次全国土壤普查领导小组办公室发布的《第三次全国土壤普查工作方案》显示,三普的普查对象,包括“全国耕地、园地、林地、草地等农用地和部分未利用地的土壤。其中,林地、草地重点调查与食物生产相关的土地,未利用地重点调查与可开垦耕地资源相关的土地,如盐碱地等。”“土壤普查不仅查耕地,也需要查其他的土地上的土壤,”周卫解释,“如林地、草地、园地等,直接关系着未来生态发展的战略,以及碳达峰、碳中和等国家战略,所以非常重要。”值得注意的是,《方案》中还提出了未利用地的普查,长久以来,一直有观点认为,我国耕地面积已经接近极限,很难再有太大的扩展空间,此次未利用地的土壤普查,又会产生怎样的影响?周卫解释,“我们的后备耕地资源到底有多少,目前还没有底。比如盐碱地有多少可利用的空间,能作为农用地的潜力有多大等,在未来的普查中,都可以做到心里有底,这对未来落实耕地保护责任,严守耕地红线,确保国家粮食安全具有重大意义。”没有普查时,曾经做过什么从二普到三普,40年没有进行过土壤普查,是否意味着,这40年的时间中,我们对土壤的变化一无所知?并非如此,事实上,小规模、局部的调查和监测一直在进行。在湖南祁阳县,有一座建立了60年“祁阳红壤实验站”,这是一座国家级重点野外观测实验站,60多年来,一直监测着红黄壤土壤性状变化,并建立了多套红壤改良技术。湖南祁阳红土地。新京报记者 王巍 摄在山西寿阳,有一座建立30多年的“寿阳旱地农业重点野外科学观测试验站”,长期对当地旱地进行监测和试验,研发北方旱地增产稳产的技术。如今,大片的北方旱地,从原来的靠天吃饭、亩产二三百斤,到如今的旱涝保收、亩产千斤,与大量的旱地农业技术应用有直接的关系。“二普到三普之间的40年中,我们国家做过很多调查,比如测土配方施肥的调查,土壤污染调查等,”周卫介绍,此外还有全国国土调查的一调、二调、三调,其中也都涉及到了土壤部分性状的调查。在众多调查中,耕地质量等级评价可能是和农业、耕地直接相关的一次最大规模的专项调查。2016年12月30日,我国首部耕地质量等级国家标准《耕地质量等级》正式实施。2019年,农业农村部依据《耕地质量等级》《耕地质量调查监测与评价办法》,组织完成全国耕地等级调查评价工作,将全国20.23亿亩土地,从高到低划分为10个等级。不过,即便有长期的局部监测,即便有各种专项调查,但仍不足以满足对土壤数据的需求,周卫介绍,“这些调查和监测,或者目标比较单一,或者指标不全,或者覆盖面有限,不能真正摸清土壤的家底。比如耕地质量等级,是以主要粮食作物的产量来划分的,每100公斤一个等级,同时有对应的土壤有机质含量、氮磷钾含量等。这个体系很重要,但和土壤普查还是不太一样,比如土壤普查可以发现土壤养分不平衡的问题,但地力等级评价没有这个功能。”三普怎么查,每个细节都严格2022年2月22日,第三次全国土壤普查领导小组会议暨全国土壤普查动员部署电视电话会议在京召开。三普进入取样调查的时间越来越近。三普究竟查什么?怎么查?《第三次全国土壤普查工作方案》显示,三普的普查内容,包括土壤性状普查、土壤类型普查、土壤立地条件普查、土壤利用情况普查、土壤数据库和土壤样品库构建、土壤质量状况分析、普查成果汇总等。卢昌艾介绍,“8个方面的内容,以完善土壤分类系统与校核补充土壤类型为基础,以土壤理化性状普查为重点,更新和完善全国土壤基础数据,构建土壤数据库和样品库,开展数据整理审核、分析和成果汇总。查清不同生态条件、不同利用类型土壤质量及其障碍退化状况,摸清特色农产品(000061)产地土壤特征、后备耕地资源土壤质量、典型区域土壤环境和生物多样性等,全面查清农用地土壤质量家底。”广袤的东北黑土地。新京报记者 王巍 摄这么多的内容,究竟怎么查?其实,在开始调查采样之前,已经有一套完整的体系,卢昌艾介绍,“在具体操作中,第一步是在国家层面,发布工作方案、制定技术规程规范、研发土壤普查工作平台、布设样点等。这一部分目前已经基本完成或正在开展中。第二步,任务会分派给各个省,各省成立三普办公室,组织专家进行调查采样,根据统一的平台要求,按照标准流程采集样品。第三步,将样品流转到对应的实验室,包括监测和质控的实验室,这也是对数据的第一次质控。第四步,测试完成后,要进行数据的校核和质控,这是第二次质控。第五步,在国家再次抽检之后,将数据上报到土壤普查平台系统中,各省组织专家再一次审核和抽检,也是第三次质控,合格后形成省级土壤数据库。第六步,省级数据库上报给国家,国家再进行一次大范围的抽检,然后形成总的数据库、数据产品。第七步,将数据套入不同的模型分析,并进行报告的撰写和图件的制作。”庞大的工程,17万人将参与《第三次全国土壤普查工作方案》显示,三普工作将持续4年,于2025年形成土壤三普成果。在这4年中,到底要调查多少面积内的土壤,要做多少工作?卢昌艾介绍,任务非常繁重。事实上,在二普中,一共动用了20多万科研技术人员,调查了2444个县(区)、312个国营农(牧、林)场和44个林业区,挖取观测了500余万个土壤剖面,采集了370万个剖面样品、412万个农化样品。在三普的前期工作中,调查范围、规模、样点数量等,同样是工作的重点,卢昌艾介绍,“三普的对象有五大类,耕地、园地、林地、草地、未利用地,看起来大部分是和食物相关的,但实际上,在规划的时候,总觉得普查一次不容易,不能丢下任何一块。所以初步匡算的土壤普查面积,约有700万平方公里。”700万平方公里的调查,通过样点采集的方式进行普查,卢昌艾介绍,目前初步匡算,总共布设了6万个剖面样点,200万-300万个表层样点。要完成所有的普查工作,需要庞大的人力,卢昌艾介绍,“初步匡算,包括采集、测试、质控、技术指导、成果汇总等,总共可能要动员17万人左右。”最终,多个方面的成果将汇集成三普的总成果,卢昌艾介绍,“第一是土壤剖面为主的样品库,普查一次不容易,许多样品也非常珍贵,值得保留下来。第二是数据库,包含数据、图片、影像等。第三是图件,包括各种不同的图件,如土壤类型图、属性图、专题图等。第四是两个总结报告,技术报告和工作报告等。”查清“土壤质量家底”的工作并不容易,但一旦查清,对未来的发展意义重大,“在将来,农业产业结构的调整,耕地质量的保护,粮食安全的保障,生态发展的推进等,都需要用这次土壤普查的数据做基础。”
  • 土壤好不好,测一测很重要!一起探秘土壤检测!
    土壤好不好,测一测很重要。2022年,国务院启动第三次全国土壤普查工作,计划在4年内完成对我国土壤的全面“体检”。全国土壤普查查什么?采集回来的样品是如何变成土壤资源数据的呢?内业测试化验与外业调查工作如何进行衔接?宝贵的普查数据将怎么保存和应用呢?11月2日,“全国土壤普查超级会客厅——探秘土壤检测”直播活动在京举行。国务院第三次全国土壤普查领导小组办公室(以下简称“全国土壤普查办”)相关负责人、第三次全国土壤普查专家技术指导组专家及一线工作人员就第三次全国土壤普查(以下简称“土壤三普”)内业测试化验、全程质量控制等重点工作进行了详细介绍。全国土壤普查查什么?“随着城镇化、工业化快速推进,大量废弃物排放直接或间接影响农用地土壤质量;土壤生物多样性下降、土传病害加剧,制约土壤多功能发挥。” 在“全国土壤普查超级会客厅”第一期直播活动中,全国土壤普查办相关负责人曾表示,为全面掌握全国耕地、园地、林地、草地等土壤性状、协调发挥土壤的生产、环保、生态等功能,需开展全国土壤普查。那么,土壤普查都查些什么呢?“此次普查对象是全国耕地、园地、林地、草地等农用地和部分未利用地的土壤。其中,林地、草地重点调查与食物生产相关的土地,未利用地重点调查与可开垦耕地资源相关的土地,如盐碱地等。”全国土壤普查办副主任、农业农村部农田建设管理司一级巡视员陈章全在直播活动中介绍。记者从农业农村部官网了解到,根据《第三次全国土壤普查工作方案》,此次土壤普查内容包括土壤性状普查、土壤类型普查、土壤立地条件普查、土壤利用情况普查、土壤数据库和土壤样品库构建、土壤质量状况分析、普查成果汇交汇总等。“目的在于查清不同生态条件、不同利用类型土壤质量及其退化与障碍状况,摸清特色农产品产地土壤特征、耕地后备资源土壤质量、典型区域土壤环境和生物多样性等,全面查清农用地土壤质量家底。”陈章全继续补充。以土壤性状普查为例,就是要通过土壤样品采集和测试,普查土壤颜色、质地、有机质、酸碱度、养分情况、重金属等土壤物理、化学指标,以及满足优势特色农产品生产的微量元素;在典型区域普查植物根系、动物活动、微生物数量、类型、分布等土壤生物学指标。全国土壤家底怎么查?土壤普查的工作量如此巨大,具体怎么查呢?根据国家有关部门统一安排,土壤三普工作步骤具体包括8项:构建工作平台、制作工作底图、布设采样样点、外业调查采样、内业测试化验、数据整理分析、质量控制校核、成果汇交汇总等。“外业调查采样和内业测试化验是必不可少的两个环节,即野外作业和室内作业。”陈章全介绍,外业调查采样和内业测试化验由各省(区、市)共同组织实施,主要以县为单位组织专门队伍到野外定点取样,编码后送专业机构进行测试化验。“在‘土壤三普’工作中,外业调查采样是最基础的关键环节。通常来说,一个点的土壤性状可以代表类似的一片区域,我们通过挖掘点位土壤剖面、采集点位土壤样品的办法,可以了解土壤空间变化规律,实现以点带面,进而支撑土壤资源管理。”陈章全表示,外业调查采样是决定普查成果科学性、准确性的核心。据介绍,土壤三普外业调查充分利用了遥感、地理信息系统、全球定位系统、移动互联等现代技术,构建了多层级的现场实操、在线技术指导和质控体系,可实现对每一个采样点位的实时技术支撑、过程跟踪和质量控制。“国家级土壤普查工作平台系统让土壤三普插上了信息化的翅膀,在平台上可进行全流程的调度、控制与管理。”第三次全国土壤普查专家技术指导组成员、中国农业科学院农业资源与农业区划研究所副研究员余强毅说道,土壤普查采样点不仅有“身份证”,还有“行程码”,他现场详细展示了土壤三普调查采样、样品流转和质量控制APP。“9月开始了大规模的土壤普查工作,已对88个试点县实施了外业调查,采样样点将近9万个,基本已完成了90%;大约需采集样品20万个,目前已完成了14万。”陈章全介绍了土壤三普的工作进展,他表示,当前,全国土壤普查已开始从外业调查阶段转为内业测试化验阶段,已有22个省进入内业化验环节,有5000多个样品已化验结束,数据结果已出。当前,全国土壤普查外业调查工作正有序推进,各地已经采集到了不少土壤样品。接下来,这些取自耕地、园地、林地、草地等的大量土壤样品将进行测试化验,获取进一步的理化数据。内业测试化验是土壤三普核心环节之一“内业测试化验是土壤三普数据的重要来源,是形成普查成果的重要依据。”全国土壤普查办副主任、内业工作组组长、农业农村部耕地质量监测保护中心主任谢建华介绍,土壤三普是距离二普43年后,我国开展的又一次土壤的“全面体检”,当前,土壤三普内业测试化验工作进入关键时期,信息化平台建设有序推进,普查各项工作正向预期目标前进。谢建华表示,内业测试化验要以国家标准、行业标准和现代化验分析技术为基础,规范确定土壤三普统一的样品制备和测试化验方法。其中,重金属指标的测试方法与全国农用地土壤污染状况详查相衔接一致。开展标准化前处理,进行土壤样品的物理、化学等指标批量化测试。充分衔接已有专项调查数据,相同点位已有化验结果满足土壤三普要求的,不再重复测试相应指标。选择典型区域,利用土壤蚯蚓、线虫等动物形态学鉴定方法和高通量测序技术等,进行土壤生物指标测试。第三次全国土壤普查专家技术指导组副组长、内业技术组组长、农业农村部耕地质量监测保护中心总农艺师马常宝从四个方面介绍了内业测试化验的重点工作,对内业测试化验三级质量控制进行了详细解读。“由检测实验室对土壤样品有机质、酸碱度、水溶性盐等多项理化指标进行测试化验,并出具检测报告,为后期开展土壤质量状况和土壤利用适宜性评价分析提供科学的数据支撑。”马常宝介绍,样品应由调查采样队指定专人负责流转,并由实验室指定专人负责样品接收。“全程质量控制对土壤三普工作具有重要意义,要通过技术规程规范完善与宣贯、严格作业人员资质要求、加强专家技术指导服务、工作平台全程管控、落实分级监督抽查等五大环节,切实把好土壤三普质量关。”陈章全如是说,普查即将进入内业测试化验阶段,以完善与校核补充土壤类型为基础,以土壤理化性状普查为重点,更新和完善土壤基础数据,构建土壤数据库和样品库,开展数据整理审核、分析和成果汇总等工作。
  • 物联网土壤墒情监测系统-关注土壤-发展农业
    物联网土壤墒情监测系统-关注土壤-发展农业【FT-TS600】土壤含水量是农业生产中的重要信息,快速准确地测定农田土壤含水量,不仅对研究土壤含水量和作物生长发育期对我来说意义重大,而且还可以按照科学的灌溉时间调节,实现自动灌溉精细化,节约宝贵的水资源,更好地发展农业生产。  FT-TS600土壤墒情监测站是一款高度集成、低功耗、可快速安装、便于野外监测使用的高精度自动气象观测设备。  该设备支持有线、GPRS、蓝牙等传输方式,免调试,可快速布置,广泛应用于农业、林业、地质、高校、科研等方面。主要针对土壤水分含量和土壤温度进行监测,通过水分传感器和温度传感器测量土壤的体积含水量(VWC)和温度值。同时,根据用户需求,可以扩展配置土壤电导率、土壤PH、空气温度、空气湿度、太阳辐射、雨量等气象传感器。技术参数  1)土壤水分:测量范围:0-100%,精度:±3%,探针长度:5.5cm,探针直径:3mm,探针材料:不锈钢  2)土壤温度:测温范围 -40+125℃,测量精度±0.5℃,分 辨 率:0.1℃  3)土壤电导率:测量范围 可选量程:0-5000us/cm,10000us/cm,20000us/cm,测量精度0-10000us/cm范围内为±3% 10000-20000us/cm范围内为±5%,分辨率0-10000us/cm内10us/cm, 100000-20000us/cm内50us/cm(选配)  4)土壤PH:测量范围:0-14 分辨率:0.1 测量精度:±0.2%(选配)  5)空气温度:测量原理二极管结电压法,-40℃~85℃(±0.3℃)(选配)  6)空气湿度:测量原理电容式,0~100%RH(±2%RH)(选配)  7)太阳辐射:测量原理光电效应,0-2000W/m2(0.1W/m2)(选配)  8)光学雨量:测量原理光电式,0~4mm/min(选配)  9)数据存储:不少于50万条   10布设时间:1人,不大于30分钟完成布设   11)生产企业具有ISO质量管理体系、环境管理体系和职业健康管理体系认证  12)生产企业具有和土壤墒情软件注册证书  13)生产企业为3A级信用企业
  • 安徽省发布第三次全国土壤普查试点方案 将在明光市开展试点
    按照《国务院关于开展第三次全国土壤普查工作的通知》(国发〔2022〕4 号)要求,根据《第三次全国土壤普查工作方案》(农建发〔2022〕1 号),为保障安徽省第三次全国土壤普查(以下简称“土壤三普”)工作科学有序开展,安徽省第三次全国土壤普查领导小组办公室制定印发《安徽省第三次全国土壤普查试点工作方案》。目标任务:通过试点为全省全面推开普查工作积累经验、探索路径;检验和完善普查工作流程、技术规程和方法,明确成果要求,探索运行机制,总结工作经验。2022 年,试点县按期完成样点规划布设核对工作;6 月底前完成外业调查采样工作;8 月底前完成内业测试化验工作;9 月补充样品及分析化验;10 月审核上报数据,汇总分析;12 月底前实现对辖区耕地、园地、林地、草地等土壤的“全面体检”,摸清土壤质量家底,并形成试点工作总结上报国务院土壤三普办公室。试点对象和内容:试点对象。经省、市农业农村部门推荐,并报农业农村部同意,明光市为安徽省第三次全国土壤普查工作试点单位。试点对象为明光市辖区内的耕地、园地、林地、草地等农用地和部分未利用地的土壤。其中,林地、草地重点调查与食物生产相关的土地,未利用地重点调查与可开垦耕地资源相关的土地等。试点内容。包括土壤性状普查、土壤类型普查、土壤立地条件普查、土壤利用情况普查、土壤数据库和土壤样品库构建、土壤质量状况分析、普查成果汇交汇总等。国家层面负责统一构建工作平台、制作工作底图和布设采样样点等,省、市、县共同推进外业调查采样、内业测试化验、质量控制校核、数据整理分析和成果汇交汇总等工作。1.外业调查采样。外业调查采样包括任务认领、立地与生产信息调查、表层土壤样品采集、剖面样品采样、土壤类型校核与完善等。省土壤三普办公室认领试点外业调查与采样任务并分发至明光市土壤三普办公室。明光市成立外业调查队,负责现场确认样点位置,样点的地形地貌、水文地质、植物类型、化肥农药使用等立地与生产信息调查以及采集表层样品、土壤剖面样品。其中采集土壤剖面的调查采样,由省土壤三普办公室安排熟悉土壤分类与制图的专家带队,在明光市外业调查采样队的协助下,重点对挖掘土壤剖面、观察与记载剖面形态、采集剖面土壤样品与标本,开展土壤类型校核完善与边界勾绘等。外业调查采样队通过手持终端 APP 完成任务认领、实地采样、数据保存和上传等,及时完成样品包装与寄送等工作。2.内业测试化验。内业测试化验主要包括样品制备、流转、检测等。省土壤三普办公室组织初筛检测实验室、确认省级质量控制实验室,报送国务院土壤三普办公室,并从国务院土壤三普办公室公布的实验室名录中择优选择承担明光市试点任务的检测实验室。省土壤三普办公室组织实验室开展样品制备、流转、检测等工作。省级质量控制实验室负责样品转码、流转等工作。检测实验室负责样品风干、粗磨等制备工作,严格按照统一的检测指标和检测方法开展检测工作,加强内部质量控制。3.全程质量控制校核。全程质量控制包括外业调查采样、样品制备保存流转、样品检测、数据审核等 4 个环节质量控制。省土壤三普办公室负责组织开展明光市外业调查采样任务的监督检查,资料检查不低于采样任务 5%、现场检查不少于 5‰;组织省级质量控制实验室对所有制样实验室开展样品制备任务的监督检查,检查数量不少于样品总量 5%;对承担检测任务实验室开展留样抽检,抽检量不低于检测样品量 5‰,同时配合国家层面开展能力验证和飞行检查。省土壤三普办公室负责组织专家及质量控制实验室开展数据审核工作,范围覆盖所有入库数据。4.数据整理分析。数据整理分析包括数据汇总整理和数据分析,主要对基础地理信息和历史土壤调查资料、土壤三普调查的土壤立地与利用信息以及检测的土壤物理化学性状等数据开展汇总计算、分析模型构建等。试点县要将相关数据与第三次全国国土调查耕地资源质量分类、农用地质量分等定级等相关成果进行校核比对,并对异常数据进行排查。省土壤三普办公室负责组织通过全国土壤普查信息化工作平台填报普查数据,组织专家对上报普查数据进行审核,开展数据系统整理分析。5.成果汇交汇总。成果汇交汇总包括形成土壤普查试点成果报告,包括相关数据资料、土壤类型图、土壤属性图、以及文字报告和技术报告等,初步构建数据库和样品库。明光市土壤三普办公室负责完成本区域内普查工作数据汇总、土壤质量专题评价报告、土壤类型图和土壤属性图制作以及试点总结报告撰写,初步建成省级土壤普查数据库。省土壤三普办公室组织专家对明光市上述成果进行论证,2022 年底将试点相关成果及2023年工作安排按要求报送国务院土壤三普办公室。
  • 12月底力争完成内业测试化验,持续推进土壤三普工作
    按照《国务院关于开展第三次全国土壤普查的通知》(国发〔2022〕4号,以下简称“国务院《通知》”)、《第三次全国土壤普查工作方案》(农建发〔2022〕1号,以下简称《工作方案》)要求,2024年要持续推进第三次全国土壤普查(以下简称“土壤三普”)工作,完成外业调查采样和内业测试化验,强化内外业各环节质量控制和分环节验收,推进专题调查,开展土壤资源库(数据库与样品库)规范化构建等。现将有关事项通知如下。 一、目标任务 根据《工作方案》总体安排,各地要按照统一的土壤三普样点布设结果和技术规程规范要求,于2024年11月底前完成外业调查采样,12月底力争完成内业测试化验,优先完成盐碱地土壤、黑土地土壤、土壤生物、土特产品区土壤专题调查的外业调查采样和内业测试化验。各地要严格落实外业调查采样和内业样品风干、制备、保存、流转与检测各环节全程质量控制要求,加强外业调查采样、内业测试化验数据分环节审核与验收。要迭代更新土壤三普信息化工作平台,开发完善数据与成果汇交管理系统。基本完成全国一半以上县级成果编制,优先形成盐碱地土壤等专题调查成果,规范构建国家和省级土壤资源库,加快推进土壤样本入库和土壤普查数据汇交汇总。 二、重点工作 国务院第三次全国土壤普查领导小组办公室(以下简称“全国土壤普查办”)负责土壤三普工作的组织实施与调度指导,统筹组织协调各工作组和第三次全国土壤普查专家技术指导组(以下简称“专家技术指导组”),加强对地方的指导服务;会同专家咨询组和专家技术指导组,制定土壤三普成果清单及形成方法,推动成果编制;会同专家技术指导组顶层设计组牵头跟踪与评估工作方案与技术规程规范执行情况。全国土壤普查办平台工作组会同专家技术指导组平台技术组,牵头负责完善土壤三普信息化工作平台功能,开发数据与成果汇交管理系统,做好过程数据下发与成果数据汇交,强化普查数据管理,指导各地开展土壤属性制图、土特产品区土壤专题调查等。全国土壤普查办外业工作组会同专家技术指导组外业技术组,牵头负责外业调查采样与土壤类型鉴定等工作的组织实施、质量控制与技术指导,指导各地开展土壤类型制图、土壤资源现状及变化分析、土壤生物专题调查、黑土地土壤专题调查、土壤资源库构建等。全国土壤普查办内业工作组会同专家技术指导组内业技术组,牵头负责内业样品风干、制备、保存、流转与检测等工作的组织实施、质量控制与技术指导,指导各地开展土壤农业利用适宜性评价、耕地质量等级评价、土壤退化与障碍分析、盐碱地土壤专题调查等。各级土壤普查办负责组织开展本区域外业调查采样、内业测试化验、全程质量控制、相关专题调查、土壤资源库建设、数据汇交汇总、成果编制与应用等工作。 (一)完成外业调查采样。省级土壤普查办根据本区域外业调查采样任务量和物候特点倒排工期,制定年度外业调查采样工作方案,涉盐碱土区域要在盐分累积高峰期(雨季和灌溉前)完成外业调查采样。指导地市级、县级土壤普查办细化工作要求,落实经费和物资,组织基层农技人员参与现场作业质控,及时总结和解决外业调查采样问题,保质保量完成任务。组织省级外业技术专家,采取现场跟队、在线值班、资料审核等方式开展答疑指导、梳理并解决相关技术问题,对于剖面样点的选点、层次划分等关键环节,要切实落实专家实时在线指导、逐点把关。 (二)完成内业测试化验。省级土壤普查办按照年度目标任务,制定本区域内业测试化验工作方案,明确责任主体、路线图、时间表等;通盘考虑采样、制样和测试化验工作衔接,避免样品积压与闲置窝工。指导地市级、县级土壤普查办细化任务,合理规划进度,加快推进样品风干、制备、保存、流转与检测等各个环节工作,确保按期完成任务。组织省级及以下技术专家,开展多形式技术培训,在内业各环节关键时期,包片开展全程跟踪技术指导,下沉一线,查找并指导整改相关问题,确保承接任务主体严格按照技术规范操作。组织地市级、县级土壤普查办严格遴选和管理实验室,确保实验室环境条件、仪器设备和人员资质等符合普查工作要求。 (三)严格落实质量控制措施。省级土壤普查办要督促落实“五靠四控”全程质量控制措施,制定本区域土壤三普质量控制年度工作方案,强化技术培训,严格落实持证上岗制度,全面推进质量控制,形成年度质控工作总结。在现场质控方面,组织省级技术指导与质控专家分区包片抽验外业调查采样工作质量,外业调查采样现场抽检质控比例不低于0.5%,剖面样点100%在线同步质控;组织省级质量控制实验室开展样品流转转码、添加密码平行样、留样检测等;组织省级专家在样品风干、制备、保存、流转与检测等各个环节开展视频监控和现场监督检查等,避免检测实验室“带病作业”。在数据审核方面,依托土壤三普信息化工作平台,组织省级专家开展外业调查采样和内业测试化验数据100%审核,指导县级土壤普查办组织开展数据100%审核,强化内外业数据关联、历史数据比对等审核措施,发现问题及时开展回溯整改。在阶段验收方面,按要求组织开展外业调查采样、内业测试化验验收工作,通过分阶段验收,避免把基础数据问题带到成果编制阶段。 (四)及时形成普查成果。省级土壤普查办联合相关部门、组织行业力量按要求编制地市级、省级成果清单,因地制宜形成区域特色成果,探索相关成果编制方法及验收办法;打造县级土壤三普成果样板,组织完成一半以上的县级成果编制;优先形成一个地市级成果;优先形成盐碱地土壤、黑土地土壤、土壤生物、土特产品区土壤等专题调查成果。组织修订省级土壤分类系统,鉴定剖面土壤类型(土壤发生分类鉴定至土种,土壤系统分类鉴定至土族),避免地市内部、地市之间、地市与省之间出现同土异名、同名异土问题,支撑国家土壤三普暂行土壤分类系统修订。组织开展省级土壤资源库建设,规范并加快土壤样本省级入库,汇交土壤样本至国家级土壤资源库。压实地市级、县级土壤普查办责任,依据本地土壤资源特点和农业发展实际,形成有特色、实用性强的成果。 (五)强化平台支撑和数据管理。省级土壤普查办负责组织按要求汇交各类数据,维护土壤三普信息化工作平台省级功能,合理分配平台账号并做好账号的安全管理;开展多层级培训,确保各级用户熟练使用平台;监测平台运行情况,及时向全国土壤普查办反馈平台使用中出现的问题。根据省级数据库及成果应用系统建设技术指引,设计本省土壤三普数据库,建设安全可靠的网络和数据存储环境,打通国家与省级数据库的数据传输通道,获取本省土壤三普数据资源;开发省级应用系统,强化数据分析利用。按要求落实信息系统安全等级保护测评等工作。 三、保障措施 (一)强化组织保障。地方各级农业农村部门牵头完善土壤三普组织体系,保障土壤普查办实体办公、有效运行。地方各级土壤普查办负责本地区土壤三普工作的组织、协调、调度、指导,统筹协调科研教学及技术推广等单位,充分利用社会资源,共同推进土壤三普工作。鼓励乡镇行政和技术人员深度参与土壤三普,压实基层农技推广人员在外业调查采样、质量控制、成果汇总等工作中的责任。 (二)加强培训指导。各级土壤普查办加强分级分类培训,组织专家技术指导组严格按照土壤三普技术规程规范要求,加大质量控制、数据汇交、成果编制等技术培训力度,落实线上线下相结合的专家技术培训与指导工作机制,实施现场和线上技术指导等,确保普查质量。 (三)落实普查经费。各地土壤普查办要按照国务院《通知》要求,积极争取各级财政预算,保障平台建设、外业调查采样、内业测试化验、全程质量控制、专家技术指导、宣传培训、数据汇交及成果形成等环节所需经费足额及时到位,确保普查工作顺利进行。 (四)严守规章制度。建立健全外业调查采样队伍和技术领队负面清单、退出机制,强化外业调查采样环节质量把关。按照《第三次全国土壤普查实验室管理暂行规定》,对承接业务挂靠、转包,检测数据虚报、瞒报、拒报等问题依法依规严肃处理。实验室及其人员对出具的检测数据、结果和报告负责,如出现上述问题,须依法依规承担民事、行政法律责任。 (五)加强宣传引导。加大宣传力度,创新宣传方式方法,充分利用全国各地广播、电视、报刊、互联网等媒体,用好土壤三普宣传标语、科普宣传片、公益短视频等素材,多层级、多渠道、全方位宣传土壤三普工作成效,推广先进做法,曝光反面案例。 (六)细化工作方案。省级土壤普查办要结合本方案要求,组织编制形成本区域年度外业调查采样、内业测试化验、质量控制工作方案,层层压实责任,积极有序推进普查工作。2024年4月26日前将省级年度实施方案报全国土壤普查办备案。鼓励各地优先整地市完成外业调查采样与内业测试化验任务,总结形成地市级土壤三普成果。 联系方式:张青璞,电话:010-59193581;李旭冉,电话:010-59193534,电子邮箱:qgtrpcb@126.com。    国务院第三次全国土壤普查领导小组办公室    2024年3月29日
  • 全面启动!各省陆续公布第三次土壤普查方案
    “第三次全国土壤普查”(以下简称土壤三普)是按照党中央、国务院有关决策部署,为全面掌握中国土壤资源情况而开展的一次普查,开展土壤三普是守牢耕地红线确保国家粮食安全的重要基础。土壤三普距离土壤二普已有43年,当前我国仍然缺乏更全面的土壤数据,土壤的家底仍然是不清楚的,难以支撑未来农业现代化和粮食安全的战略目标。因此,国家决定自2022年起开展土壤三普,到2025年底利用四年时间进行“全面体检”,查清农用地土壤质量家底。据悉,2022年,31个省(自治区、直辖市)的80个以上县将陆续开展土壤三普试点,验证和完善土壤三普技术路线、方法及技术规程,健全工作机制,培训技术队伍,同时启动并完成盐碱地普查工作。2023—2024年全面开展土壤三普工作,开展多层级技术实训指导,分时段完成外业调查采样和内业测试化验,强化质量控制,开展土壤普查数据库与样品库建设,形成阶段性成果,最终在2025年形成土壤三普成果。目前,126家土壤普查第一批检测实验室名单已经公布,不少地方已经启动第二批检测实验室的申请工作。土壤普查工作的全面展开,势必会涉及土壤的采样,以及土壤理化性质、污染物等的检测,涉及电感耦合等离子体质谱法、电感耦合等离子体发射光谱法、原子吸收分光光度法、原子荧光光谱法等多类别的仪器分析方法。在政策的牵引下,相关科学仪器市场也将迎来新的一轮发展机遇。据不完全统计,广西、广东、重庆和山东等多个省份已先后发布土壤三普工作方案和试点县工作任务。小编对部分省份土壤三普的进度安排和试点县进行了汇总,以飨读者:各省份土壤普查进展(据不完全统计)省份普查进度安排普查试点县广西2022年启动土壤普查,要求试点县10月底前完成各项试点工作任务;2023—2024年全面铺开;2025年完成成果上报。上林县重庆2022年启动普查,试点区江津区、南川区普查工作实施方案于2022年4月中旬前,其他区县于2023年1月底前上报,全市土壤普查工作实施方案于2022年6月底前组织编制完成;2023—2024年全面开展普查,外业采样于2024年10月底前全部完成;2025年进行成果汇总、验收总结。江津区、南川区山西2022年启动普查,试点县完成普查试点工作,并完成全省盐碱地普查;2023-2024年开展技术实训指导和外业调查和采样;2025年建立普查数据库和样品库,形成全省耕地质量报告和土壤利用适宜性评价报告。运城市绛县广东试点县在2022年4月底前完成前期工作,8月中旬前完成外业调查采样,10月上旬前完成土壤样品制备与检测分析,12月初完成数据汇总与成果编制,确保12月底前全面完成土壤三普试点工作。茂名高州市湖南2022年,在邵东市开展普查试点。编制全省实施方案,组建专家指导组,配齐配强普查所需物资装备,建立质量控制机制,开展培训和宣传等工作;2023—2024年,全面开展普查,完成外业调查采样和内业测试化验,初步建成省级土壤普查数据库与样品库。外业调查采样时间截至2024年11月底;2025年,完成普查成果汇总验收与总结,建成土壤普查数据库与样品库,形成全省耕地质量报告和全省土壤利用适宜性评价报告,配合国家完成成果汇交与汇总工作。邵东市湖北2022年,我省在天门开展普查试点;2023-2024年,在全省全面开展普查;2025年,进行成果汇总、验收、总结,建成省级土壤普查数据库与样品库,形成全省耕地质量报告和全省土壤利用适宜性评价报告。天门市福建2022年在浦城县开展全国普查试点;2023—2024年在全省全面开展普查工作,2024年11月底前完成全部外业调查采样工作;2025年上半年,完成全省普查成果整理、数据审核汇总,形成全省第三次土壤普查基本数据,按要求报送全国三普办;下半年,建成省级土壤普查数据库与样品库,形成福建省耕地质量报告和土壤利用适宜性评价报告,向全国三普办汇交普查成果。浦城县江苏2022年在7各县开展试点,6月底前完成省级实施方案编制,明确技术支撑及服务机构,各设区市实施方案按要求在8月底前编制完成并报省第三次全国土壤普查领导小组办公室;2023-2024年全面铺开;2025年完成成果上报的总体安排,细化任务书、路线图、时间表。新沂市、盐城市大丰区、海安市、泰兴市、仪征市、太仓市、昆山市山东2022年,开展动员部署,健全工作机制,培训技术队伍,完成实施方案编制、采样点位布设、普查试点任务和全省盐碱地资源调查等工作;2023—2024年,组织开展外业调查采样和内业测试化验,建设土壤普查数据库和样品库。2024年9月底前完成全部外业调查采样工作,10月底前完成全部内业测试化验任务;2025年,组织开展土壤基础数据、土壤剖面调查数据、土壤利用数据的审核、汇总和分析,完成耕地质量报告和土壤利用适宜性评价报告,以及盐碱地、酸化耕地改良利用等专项报告,全面总结普查工作。青岛市即墨区、烟台市招远市、东营市垦利县甘肃2022年编制完成全省普查实施方案,筛选确定普查实验室,组建外业调查采样专业队伍,开展技术培训和业务练兵。在兰州市榆中县开展并完成普查试点。在兰州、金昌、酒泉、张掖、武威、白银6市的18个县市区开展并完成盐碱地普查;2023年—2024年组织开展多层级技术实训指导,组织专业队伍完成以县级为单位的外业实地调查采样和内业测试化验任务。开展普查数据库与样品库建设,形成阶段性成果;2025年组织开展土壤基础数据、土壤剖面调查数据和标本、土壤利用数据审核、汇总、分析,形成普查基本数据。绘制专业图件,完成普查成果验收、汇交与总结,建成土壤普查数据库与样品库,全面总结普查工作。完成全省耕地质量报告和土壤利用适宜性评价报告,以及盐碱地现状及改良利用、特色优势农产品产地土壤现状评价、土壤适宜性评价等专项报告。兰州市榆中县土壤三普查什么?普查对象:全国耕地、园地、林地、草地等农用地和部分未利用地的土壤。其中,林地、草地重点调查与食物生产相关的土地,未利用地重点调查与可开垦耕地资源相关的土地,如盐碱地等。普查内容:土壤性状、类型、立地条件、利用状况等。其中,性状普查包括野外土壤表层样品采集、理化和生物性状指标分析化验等;类型普查包括对主要土壤类型的剖面挖掘观测、采样化验等;立地条件普查包括地形地貌、水文地质等;利用状况普查包括基础设施条件、植被类型等。此次普查以土壤理化性状普查为重点。相关专题:《“土壤普查”之理化性状检测技术》《“土壤普查”之有机污染物检测技术》《“土壤普查”之无机污染物检测技术》
  • 用好7地试点经验,四川全力推动第三次全国土壤普查全面开启
    会议分析研判了四川省第三次全国土壤普查试点工作情况,安排部署今年四川省土壤普查工作重点,并提出明确要求3月6日,四川省第三次全国土壤普查工作领导小组会议暨全省土壤普查动员部署电视电话会议召开。。副省长胡云出席会议并讲话。会议分析了四川省第三次全国土壤普查试点工作情况,去年以来,四川7个试点县(市、区)先行先试、主动作为,创新了省市县三级联动等工作机制,形成了“县、镇、村”三级分工负责工作体系等一批可复制、可推广的试点工作经验,建立了由1家国家级质量控制实验室、3家省级质量控制实验室、41家检测实验室构成的检测质控体系,为普查工作全面铺开打下了坚实基础。会议指出,今年是第三次全国土壤普查全面开启之年,各地各有关部门要充分认识、全面把握做好本次土壤普查的重大意义。聚焦今年全省要完成60%剖面土壤调查采样、60%土壤生物调查采样、100%表层土壤调查采样等目标任务,把握重点环节。严格落实属地责任,统筹协调自然资源、财政、生态环境、林草等成员单位,构建起第三次土壤普查的工作格局。
  • 高温下为土壤做“体检” 河北提前完成2018年国家网土壤环境监测采样任务
    p  随着河北省秦皇岛市国家网土壤环境监测背景点采样工作的结束,河北省129个土壤“国控点”采样任务近日提前完成。/pp  为了直观地展现土壤采样工作的全过程,本报记者跟随河北省采样监测人员深入一线,头顶酷暑骄阳,脚踩丛林险滩,亲历了土壤环境监测采样工作的艰辛与严谨。/pp  1 “我放羊都走不到这么艰险的地方”/pp  位于河北省承德市围场的梨树沟采样点,是此次土壤环境监测采样129个点位之一。/pp  由于刚刚下过一场雨,沿途山路泥泞,车行缓慢。记者与河北省环境监测中心监测人员一早出发,到达丰宁满族自治县采样点已是中午12点。/pp  “这次国家网土壤环境监测点采样工作,选的是背景点采样监测。为避免过多的人为干扰,采样点一般设在人迹罕至的地方。我们的采样人员去年来过梨树沟采样点,有向导带路。”监测人员贾建华介绍说。/pp  但突发状况令人始料未及,由于山里信号差,从早上到中午,当地向导的电话一直未打通。监测车几经周折,两次走错路折返,最终找到了向导所在的小山村。这时,已是下午1点多。/pp  贾建华所说的“向导”是村里的羊倌徐林果。见到监测人员一行,他像见到了亲人。“我知道这个点位,去年就是我领着监测人员找到的,费老劲了。当时,省里来了3个监测人员,前两次上山都没找到,第3次进山,我带着他们才找到。别看地图上显示的点位直线距离不过四五百米,可深山老林里没有路。有时候你走过去就是悬崖深沟,根本到不了目标点位。”/pp  在徐林果的带领下,记者随监测人员一行开始了进山之路。虽然有向导领路,但山里刚下过雨,苔藓湿滑、道路泥泞,使这条抄近路的捷径并不好走。“我放羊都走不到这么艰险的地方。”徐林果边走边说。/pp  手脚并用攀爬了两个多小时,终于抵达采样点,时间已是下午3点半。“要赶在天黑前下山,否则深山老林里会迷路,看不清路也不安全。”徐林果叮嘱道。/pp  顾不上休息,监测人员贾建华、申英锋抄起铁镐、铁锨便开始挖掘采样坑。“去年只采表层土就行,今年要采剖面土。按照要求,我们要挖一个长1.5米、宽1米、深1.2米的采样坑,分层进行土壤采样。”贾建华介绍说。/pp  说话间,贾建华一镐下去敲在石头上,几乎震出了火花。接下来,他刨出乱石、铲断盘根错节的树根。一个1.2米深的采样坑竟花费了监测人员一个多小时时间。/pp  记录方位、上传采样图片、分层采样、精心称重、做好标识、回填覆土……整个采样工作结束已是下午5点,原路下山返回采样车时已是7点,一个采样点用了整整一天时间。/pp  2 “连手指都不能碰及样品”/pp  据了解,河北省此次土壤采样点和背景点位的数量居全国第四,为了保证土壤采样的准确性和全面性,这些点位覆盖了耕地、林地、可利用土地、不可利用土地、自然保护区等多种地貌。/pp  与梨树沟土壤采样点位于深山老林不同,承德市围场满族蒙古族自治县的机械林场采样点则位于坝上防风固沙区。/pp  “土壤背景点位是反映长时间序列土壤环境质量变化情况的对照点位。为了确保历年来土壤背景点监测数据的有效性和连续性,土壤背景点采样要求,在坐标30米范围内才可以打开手机APP,上传采样信息。”贾建华向记者介绍说,同时搜寻机械林场采样的准确点位。/pp  “好,就是这里,现在我手机能打开采样软件了。”记者看到,机械林场采样点土壤松软,随着点位敲定,贾建华一铁锨就挖出20多厘米深。/pp  挖到30多厘米深时,贾建华和监测人员挖到了沙土层,“这土壤能采吗,都是沙子没办法制样,要不我们错开些再挖一个采样坑?”贾建华和同事们几经商量,决定挖到底,看情况再决定是否重新挖掘采样坑。/pp  当挖到1米深左右时,沙土层淡了,重新现出了土壤,这让贾建华和同事们松了一口气。“这个采样坑中一层土一层沙,分层非常明显,这也正是我们这些年防风固沙的一个见证。”/pp  据了解,围场机械林场采样点位于河北防风固沙区,上层土说明近年来河北植树造林使水土保持较好。中间的沙土层正是当年风沙入侵的见证。再下层重新出现土壤则说明这里原来是有植被的。/pp  在这个相对宽敞的采样坑中,记者注意到,贾建华和申英锋采样用的铲子并不相同。贾建华负责采集不同深度、监测土壤无机物的样品,使用木铲子。申英锋采集表层土化验有机物的土壤样品,用的是铁铲子。/pp  “测无机物不能用铁铲子,因为铁铲子会影响土壤中金属含量。而化验有机物的土壤样品采集不仅不能用木铲,甚至连采样人员的手指都不能碰及样品,这是为了避免对土壤样品产生污染,影响监测结果。”申英锋解释说。/pp  3 “你们大中午也干活啊”/pp  为了保障土壤采样严格按照规范进行,河北各地对采样过程进行严格控制。/pp  “用于测试无机物项目的土壤样品,采样后要先装入塑料袋,再套上布。用于测试有机物项目的土壤样品则要装瓶子后,密封冷藏运输。”在沧州市,环境监测中心土壤质控人员冒着夏日高温,完成了辖区内6个土壤监测点位的采样工作。从精准定位、掘坑到选取采样工具、样品装袋等各环节,全程高标准行动,严格按照土壤采样规范执行,圆满完成各项土壤取样任务。/pp  为保障采样工作如期完成,河北省邢台环境监测中心提前勘查采样点位,并做好沟通协调工作。在前期点位勘查中,监测人员发现,临城县西竖镇正在进行大面积施工,几台大型挖掘设备正对地面进行开挖作业,而背景点就位于施工范围内。“邢台市监测中心多方协调,最终商定,在点位30米范围内暂缓施工,以防止土层扰动,这为临城点位采样的准确性及延续性提供了保障。”邢台环境监测人员告诉记者。/pp  在唐山市,尽管持续高温,唐山环境监测中心监测人员依旧连续作战,高质量、高标准完成了境内10个国家网土壤背景点的采样工作。多日暴晒,让监测中心袁鹏同志被严重晒伤。/pp  在邯郸市的烈日下,麦田里的采样人员一个个汗流浃背。连乡民都禁不住说:“你们大中午也干活啊。”历经5天干热天气的连续奋战,邯郸市于6月11日全部完成了辖区11个土壤背景点监测采样工作。/pp  ....../pp  从5月21日,河北省张家口市国家网土壤环境监测采样点开始采样,到6月17日,河北省秦皇岛市最后一个采样点结束,河北省提前圆满完成了此次土壤国控点任务。/p
  • 助力国家双碳目标,普瑞亿科温室气体监测系统解决方案案例集锦
    北京普瑞亿科科技有限公司(PRI-ECO)成立于2007年,深耕温室气体科学研究与监测领域16年,承担和参与过科学技术部、中国科学院和北京市科学技术委员会等授予的温室气体分析相关的重大仪器研发专项,具有优秀的仪器研发、设计和生产能力,可以提供各种高、中、低精度的痕量和温室气体分析仪、光谱和质谱同位素分析仪、室内和室外土壤呼吸测量系统等。2022年,针对“双碳”市场需求,在遵循MRV体系的前提下,普瑞亿科升级体系至MVS(可监测-Monitoring、可核查-Verification、可支持-Support),并针对性地开发了国内首套区域碳监测核查支持系统解决方案,包含监测设备租售运维、碳核查核算支持、碳源汇科学评价、以及区域“碳中和”建议。公司产品及解决方案:1、会“飞”的分析仪——PRI-5251F 飞行版温室气体测量系统全球气候变暖给人类的生产生活带来严重威胁,减缓气候变暖、监测温室气体排放变得日益迫切,而传统的监测方法只能获取有限的数据,很难测量一些难以到达的区域,因此构建“天-空-地”一体化监测体系已然成为新形势下生态环境、农林气象等领域的重要解决方案。普瑞亿科创新研发的PRI-5251f Plus CO CO2 CH4 N2O H2O 飞行版温室气体测量系统,通过创新的微型激光传感器引擎,可以短时间内获得更高精度、准确度和宽范围的气体浓度数据,多样化的应用场景为研究人员提供更加灵活、高效、便捷的温室气体测量解决方案。PRI-5251f Plus CO CO2 CH4 N2O H2O 飞行版温室气体测量系统是一套高精度、多组分飞行版温室气体测量的全新解决方案,采用中红外激光直接吸收光谱技术(MIRLAS)。系统包含了高精度多组分温室气体分析模块、微型气象站和ELF-600六旋翼无人机系统,能同步在线测量3种主要的温室气体(CO2、N2O、CH4)、伴生气体(CO)和水汽(H2O),以及三维超声、空气温湿度、大气压等参数。系统核心的PRI-5251f Plus CO CO CO2 CH4 N2O H2O 分析仪基于创新的微型激光传感器引擎,通过中红外波段极强的光谱吸收提供更高精度、准确度和宽范围的气体浓度数据,具有ppb级的灵敏度;在尺寸、重量和低功耗与整体性能的综合优化设计上,最佳适配微型无人机载。2、PRI-5251CT:空气高效除水“新标杆”,高精度温室气体观测“必备品”“双碳”战略目标的实现,需要对区域范围内、特定排放源进行温室气体的高精度监测,并将监测分析计算结果服务于国家战略目标和国家核证自愿减排量(CCER)。包含但不限于二氧化碳、甲烷、氧化亚氮等温室气体的高精度测量和监控是评估“双碳”目标行动有效性重要的技术手段,是获取我国二氧化碳气体及其他温室气体浓度的长期变化趋势、深入开展气候变化研究的基础,有助于科学评估各地区、各行业的碳减排成效,有助于支撑我国“碳达峰、碳中和”工作的开展和相应政策的制定。通常,我们需要采用高精度温室气体监测设备连续抽取大气进行目标气体的在线测量。但是大气中的不同水平的水汽含量会很大的影响高精度温室气监测设备对目标气体测量精度和准度。针对目前基于光谱技术的高精度温室气体分析仪,世界气象组织(WMO)和生态环境部环境监测总站等组织和机构明确要求,其待检目标气中的水汽含量应低于500ppm,因此,需要通过专业设备对待测气进行高水平的干燥处理,以获得低于500ppm 或者更低水平水汽含量的待测气体。为实现高效地大气除水,普瑞亿科针对性地开发了一套PRI-5251CT 全自动低温冷阱在线除水系统,该系统特别适配温室气体高精度观测量,具有两级除水功能,可以通过交替双工模式实现待测气体的高效除水和快捷除冰,输出的水汽浓度低于0.01%。PRI-5251CT包含两个一级低温除水单元和两个超低温除水单元,通过两次除水提高冷阱除水效率和降低冷阱切换频率;优化设计的冷阱管内容积小,气体消耗量低而气体周转速率高,且标准气和样品气都过冷阱,能确保标定和测样具有统一的系统误差;包含双泵双通道主动送气单元,可以提前对下一个待测通道进行吹扫净化并制取干燥气体,实现不同冷阱之间的无缝切换;包含压力和流量平衡设计,可以消除不同通道间因电磁阀切换造成的压力波动带来的测量误差。PRI-5251CT 全自动低温冷阱在线除水系统是高精度温室气体测量更好的除水解决方案,针对性解决了目前其他品牌冷阱稳定性差等各种弊端。3、PRI-8800: 土壤呼吸温度敏感性(Q10)室内快速测量的新方法气候变暖如何影响土壤有机质分解,以及陆地生态系统碳排放如何响应气候变暖成了目前科学家主要关注的内容之一。在国内“双碳”背景的目标下,如何快速、科学、高效地监测、核查和支持因为升温导致的土壤呼吸速率的增加成了科学家和政府组织的重点关注。为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,2022年普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。为了更好地助力科学研究,拓展设备应用场景,普瑞亿科重磅推出「加强版」PRI-8800——PRI-8800 Plus全自动变温培养土壤温室气体在线测量系统。1)选型推荐:2)实验设计:1)原状土冻融过程模拟:气候变化改变了土壤干湿循环和冻融循环的频率和强度。这些波动影响了土壤微生物活动的关键驱动力,即土壤水分利用率。虽然这些波动使土壤微生物结构有少许改变,但一种气候波动的影响(例如干湿交替)是否影响了对另一种气候(例如冻融交替)的反应,其温室气体排放是如何响应的?通过PRI-8800 Plus 的冻融模拟,我们可以找出清晰答案。2)湿地淹水深度模拟:在全球尺度上湿地甲烷(CH4)排放的温度敏感性大小主要取决于水位变化,而二氧化碳(CO2)排放的温度敏感性不受水位影响。复杂多样的湿地生态系统不同水位的变化及不同温度的变化如何影响和调控着湿地温室气体的排放?我们该如何量化不同水位的变化及不同温度的变化下湿地的温室气体排放?借助PRI-8800 Plus,通过淹水深度和温度变化的组合测试,可以查出真相。3)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800 Plus程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800 Plus的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。PRI-8800 Plus除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。4)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800 Plus可以通过手动调整土壤含水量的做法,并在PRI-8800 Plus快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800 Plus的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。5)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。6)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。
  • 全国这些省份开始土壤三普采样“第一铲”了
    按照党中央,国务院要求,自2022年起我国各地将陆续开展“第三次全国土壤普查”(以下简称“土壤三普”)。此项任务是保障国家粮食安全的重要普查,也是针对我国国情国力的一项重要调查。它将重点围绕耕地、园地,以及和食物生产相关的林地、草地,未开发的滩涂等调查研究。从进度上来说,此次土壤专项普查将按照“一年试点、两年铺开、一年收尾”的时间安排进度有序开展。2022年启动土壤三普工作,开展普查试点;2023—2024年全面铺开普查;2025年进行成果汇总、验收、总结。从具体工作来看,土壤样品的采集与检测正好计划将于本年度6-10月由各地方陆续开展,虽然各个地方的进度略有不同,但样品的采样工作作为整个环节的第一步骤,很多省份已经在陆续展开了。外业调查与采样时间进度(来源第三次全国土壤普查试点工作方案试点实施指南)仪器信息网了解到,有的省份已经开展了专家论坛与讲座,有的已经将初步的土壤采样工作落到了实处。9月初,仪器信息网汇总了已经切实开展采样的如下省份(截止至发稿日不完全统计),让我们一起看看大家“采样第一课”的作业成果——“江苏第一锹” 昆山铲下5月17日,在国家布设全国普查76号点位(位于花桥经济开发区天福国家湿地公园),市农业农村局工作人员铲下了第三次全国土壤普查的“江苏第一锹”。这次普查是时隔40多年来的又一次重大国情调查,我市被列入江苏省全国第三次土壤普查的七个试点县之一,表层土壤样点数共计有295个,截至5月23日已完成采样202个。广西多点发力推动第三次全国土壤普查广西土壤三普领导小组办公室8月11日介绍,为进一步推动第三次全国土壤普查(下称“土壤三普”)工作,当地通过“早、实、准、快”四大举措,已于7月中旬,赶在南方水稻“双抢”全面开展前,全部完成水田表层采样任务,共采集表层样品216个,占试点采样任务的31%,同步开展内业测试化验工作,为第三次全国土壤普查试点实现良好开局。为全面掌握国家土壤资源情况,国务院2022年起开展第三次全国土壤普查工作。广西已选择南宁市上林县作为全国88个试点之一,也是广西唯一的试点县。安徽明光市8月18日进行剖面土壤样品采集调查8月18日,安徽省第三次全国土壤普查试点外业采样专业技术人员在明光市明东街道抹山村进行剖面土壤样品采集调查。第三次全国土壤普查工作于今年启动,是继第二次普查时隔40年后再次进行的土壤普查,是对全国耕地、园地、林地、草地等的一次全面体检,明光市是安徽省唯一的试点单位。明光市共有安徽农业大学等5家科研及专业机构进行土壤剖面及表层样品采集调查,已完成150多个表层样品、2个剖面样品工作。广东省高州试点外业调查采样稳步推进,采样完成度超90%!自7月30日起,广东省第三次全国土壤普查试点外业调查采样在广东省茂名高州市正式启动,耕地、园地、林地、草地等农用地土壤的9个区域的外业调查采样工作队(下称工作队)奔赴山林与田野,对当地1619个样点进行调查采样。近日,南方农村报记者前往高州,跟进各工作队进展。省农业农村厅相关负责人介绍,目前工作队整体采样进度超过90%,采样任务稳步推进。湖北省:“第一铲”!已进入外业剖面采样实操阶段8月28日,湖北省第三次全国土壤普查外业采样启动仪式暨剖面采样技术培训在天门举行。这标志着湖北省第三次土壤普查工作进入正式外业采样实操阶段。当天,国务院三普办设计专家组成员、第三次全国土壤普查外业技术专家组华中片区组长蔡崇法教授进行现场技术指导,省农科院、省地质调查院、华中农大、长江大学等外业采样队接受了表层及剖面调查采样技术培训,并对高质量完成采样充满信心。河南省启动第三次全国土壤普查外业调查采样8月30日,邓州市文渠镇岳洼村,秋风送爽。高粱地头,一处长10米、宽1米、深1米的土壤剖面里,中国科学院南京土壤研究所研究员李德成正在跟学员们讲解“土壤三普”外业调查技术要点,我省第三次全国土壤普查外业调查采样技术培训在这里举行。浙江启动第三次全国土壤普查试点采样8月,浙江省第三次全国土壤普查试点外业调查采样工作启动仪式暨现场培训会在杭州市富阳区举行。浙江正式启动了第三次全国土壤普查(简称“三普”)的试点采样。其中,杭州市富阳区、宁波市鄞州区、桐乡市、温岭市作为全国三普试点,率先开启外业调查采样。目前较快的省份进展如上,可以看到的是,虽然全国各地方在进展上各有不一,但是相关采样的准备工作已经于近日顺利展开。有关土壤三普相关工作进展,仪器信息网将进行持续追踪,敬请关注。“土壤三普”七问https://www.instrument.com.cn/news/20220905/630607.shtml 盘点:多方位齐头并进 各地加快推进土壤三普工作部署https://www.instrument.com.cn/news/20220621/621093.shtml 近2亿!第三次全国土壤普查项目迎来采购热潮https://www.instrument.com.cn/news/20220607/619111.shtml
  • 土壤指标检测方法全公布!第三次全国土壤普查技术规程规范(修订版)发布
    日前,国务院第三次全国土壤普查领导小组办公室发布了《第三次全国土壤普查技术规程(修订版)》。此规程规定了第三次全国土壤普查(以下简称“土壤三普”)的总体组织与任务要求包括资料收集整理与前期准备、外业调查采样与内业测试化验等具体工作流程、质量控制体系、成果汇总与验收等技术规范。本规程适用于土壤三普,也可作为全国或地方性大面积土壤调查或监测工作的参考。部分样品检测方法如下:7 样品检测7 1 基本要求省级土壤普查办负责组织样品检测工作,承担检测任务的实验室应在省级质量控制实验室的指导下按照检测任务要求和本技术规范有关规定开展土壤样品检测工,作按时报送检测结果。7 2 检测计划省级土壤普查办负责对本区域内检测工作进行统筹,制定样品检测计划,样品检测计划应明确承担单位、样品细磨、检测指标及方法、结果上报等内容,原则上,土壤容重指标由县级土壤普查办负责,其他指标由承担检测实验室负责,开展盐碱土普查省份的省级质量控制实验室,负责参照本文件及相关标准做好剖面样点地下水与灌溉水样品相关指标检测及结果上报等。7 3 样品细磨将通过2mm 孔径筛的土样用多点取样法分取约25g (根据检测指标确定), 磨细,使之全部通过0.25 mm 孔径筛,供有机质、碳酸钙、全氮、游离铁等指标检测,将通过2mm 孔径筛的土样用多点取样法分取约25g (根据检测指标确定),用玛瑙研钵或玛瑙球磨机磨细,使之全部通过0.149mm孔径筛,供全磷等全量养分、重金属等指标检测,细磨过程中样品编码必须始终保持一致,制样所用工具每处理完1个样品后需清洁干净,避免交叉污染,不同粒径的样品必须自通过2mm孔径筛的土样重新取样制备并全部过筛,严禁套筛,样品制备时, 应现场填写土壤样品制备记录。7 4 检测指标及方法7 4 1 检测指标耕地园地、林地草地的表层样品和剖面样品检测指标见附录F。7 4 2 检测方法各项指标检测方法见附录G。7 4 3 烘干基换算烘干基结果换算需测定风干土样水分的含量,每次检测称样量5.00g,做平行双样检测。7 5 结果上报完成样品检测后,检测员需及时填写原始记录,原始记录以烘干基计,并上报风干土样水分含量,原始记录经三级审核无误后,及时填写检测结果电子数据填报记录表(参见附录H),并上报至土壤普查工作平台。全部内容详见附件:《第三次全国土壤普查技术规程(修订版)》.pdf
  • ASD | ASD Fieldspec 3 FR光谱仪在东北典型黑土地区农田土壤侵蚀热点探测方面的
    黑土地是指具有黑色或者暗黑色腐殖质表土层,性状好、肥力高的耕地,这类耕地可用于粮食生产。黑土地黑土地是地球上最珍贵的土壤资源,地球上一共有四块黑土地,分别是乌克兰的乌克兰平原、美国的密西西比平原、中国的东北平原以及南美洲阿根廷连至乌拉圭的潘帕大草原。我国东北平原典型黑土区耕地面积约2.78亿亩,是重要的粮食生产优势区和全国最大的商品粮生产基地。然而,近年来相关研究和调查发现,由于掠夺经营、水土流失等原因,黑土层厚度已逐渐减少,土壤有机质含量也明显降低,土壤侵蚀成了黑土地不容忽视的问题之一。保护黑土地对于保障国家粮食安全、生态安全,促进农业绿色可持续发展具有重大的意义。接下来我们了解一篇在黑土地区探测土壤侵蚀状况的论文。ASD Fieldspec 3 FR光谱仪在东北典型黑土地区农田土壤侵蚀热点探测方面的应用土地退化影响着世界上大约三分之一的农田 ,其中土壤侵蚀是最严重和最广泛的退化形式。在侵蚀严重的地区,土壤剖面可能出现明显的截断现象,导致富含碳和营养丰富的表土物质空间重组,造成土壤有机碳(SOC)加速损失,土壤肥力下降,从而影响退化农田的粮食生产。据估计,每10厘米土壤损失作物产量平均减少约4%,而由于农业管理不当和施肥水平低,发展中国家减产的程度可能会加剧。联合国可持续发展目标框架下的土地退化中立方案明确采用了SOC作为评估和监测土地退化状况的关键指标。因此,更好地了解发生土壤侵蚀的地点和加速侵蚀程度,以及SOC损失的发生,将在很大程度上有助于全球在粮食安全和气候方面可持续利用土壤资源的努力。普遍通用的土壤损失方程(USLE)拥有高度的数据可访问性,然而,它仍然是一种经验方法,只考虑了水蚀,而忽略了其他形式,如耕作和风蚀,并没有模拟土壤沉积。另外,主要在流域规模上,存在许多基于过程的物理模型来模拟单个降雨事件中相互作用的侵蚀和沉积过程,但其模型结构的复杂性和模型参数化的不平衡往往会影响模型的空间预测能力,且当前评估侵蚀发生地点和程度的方法仍然不足以在高空间分辨率下精确探测侵蚀热点。无论使用何种建模方法,阻碍土壤侵蚀精确建模和制图的常见问题还包括:(1)输入过时的、静态的和粗糙的分辨率数据,通常无法捕捉到侵蚀过程尺度上土壤侵蚀的时空变化;(2)缺乏空间分布的观测数据来进行严格的模型校准和验证。此外,土壤侵蚀追踪技术作为得出净侵蚀空间估计的可行选择,其价格昂贵,在大空间尺度上的适用性有限。遥感的发展将解决上述问题,不仅因为高分辨率卫星图像的日益普及,土壤成像光谱学的快速发展也提供了直接捕获由侵蚀引起的土壤特性变化的潜力,特别是SOC,如哨兵-2可以很好地明确评估土壤侵蚀程度。然而,很少有研究直接与哨兵-2衍生的土壤光谱信息检测土壤侵蚀热点相关,且一些检测方法的普遍适用性以及支持基于不同侵蚀程度土壤光谱特征分类的基本机制仍有待进一步探讨。鉴于上述研究差距,迫切需要一种有效的土壤侵蚀测绘方法,从而能够精确地检测出多重侵蚀过程导致的侵蚀热点。中国东北黑土区是一个粮仓,年产量超过国家粮食产量的20%,然而其是中国受土壤侵蚀影响最严重的地区之一,因此,一种有效检测局部侵蚀热点的方法对于实施针对性的保护措施具有重要意义。为此,本研究的目标是建立一个方法框架,实现仅基于光谱特征对土壤侵蚀进行准确分类和高分辨率制图。基于此,在本研究中,由吉林大学地球科学学院、鲁汶大学地球与生命研究所、中国农业科学院农业环境与可持续发展研究所组成的一组研究团队以中国东北吉林省中部德惠市木石河流域(44°34′-44°38′N,125°51′-125°59′E,面积约46.20 km2)为例,进行土壤取样与分析(共选取72个采样点,其中山顶19个,斜坡中段28个,山脚25个);在实验室内使用ASD Fieldspec 3 FR光谱仪测量土壤样品VNIR光谱数据;建立地面真实数据集;结合主成分分析和综合光谱判别分析(PCA-LDA)方法对实验室高光谱数据进行测试与分析、研究不同侵蚀影响下土壤的光谱可分性;建立侵蚀分类方案、创建混淆矩阵,通过Kappa系数评估分类性能;最后通过多时间裸土像素合成方法,优化裸土反射率稳定性,基于哨兵-2衍生的宽带光谱对研究区土壤侵蚀情况进行测绘与验证。(a, b)中国东北流域数字高程模型上采样点空间分布;(c,d)哨兵-2彩色图像(2021年5月13日);(e,f)沿典型斜坡剖面的代表性采样位置。【结果】基于实验室VNIR谱PC评分的线性判别分析(LDA)对三个斜坡位置进行分类。基于土壤的三个土壤侵蚀强度等级表土实验室平均光谱。(a)原始光谱和(b)连续体去除反射率。用于侵蚀强度等级光谱分离的表土实验室光谱指数的箱形图。基于哨兵2裸土壤光谱的PC得分的线性判别分析(LDA)确定三个侵蚀强度等级。三种土壤侵蚀强度等级的平均光谱。(a)原始光谱和(b)连续去除反射率。用于侵蚀强度类别光谱分离的哨兵-2光谱指数的箱形图。10米分辨率下的土壤侵蚀强度图。2021年6月,农田范围内三个侵蚀强度等级的NDVI密度图;(b,c)是详细土壤侵蚀模式的放大区域,(d,e)相应的田间尺度NDVI图。【结论】本研究在中国东北黑土区流域尺度上测试了多时间遥感探测侵蚀热点的潜力。建立了一个地面真实数据集,包括在山顶、中坡和脚坡位置收集的土壤,由于其地形特征、净侵蚀率和SOC含量的差异,对应于中、重度和低侵蚀程度类别。对实验室和基于哨兵-2的土壤光谱数据的调查表明,由于侵蚀引起的土壤反照率和生化组成的变化,三个侵蚀类别中的土壤显示出明显的光谱特征,特别是在严重侵蚀的地区,其表土层明显有大量土壤损失。PCA-LDA在不同侵蚀影响下表现出明显的类间光谱可分性,其对两种数据源都产生了良好的分类精度(Kappa系数 0.9),对哨兵-2光谱更是如此,从而能够开发一种光谱分类方案,该方案由确定的光谱指数阈值组成,用于基于哨兵-2裸土混合物质的像素级土壤侵蚀测绘,其中15.9%的农田面积为侵蚀热点,中等类占65.4%。将侵蚀图与NDVI图进行比较,从空间角度来看,显示了土壤侵蚀对作物生长的负面影响。制作的高分辨率土壤侵蚀图可以对土壤侵蚀和作物生产力之间的关系进行进一步分析,突出了本研究提出的方法在黑土地区帮助粮食安全和气候的有针对性可持续农田管理方面的潜力。未来的研究应进一步检验这种方法在其他领域和更大的空间尺度上的可转移性。
  • ABBLGR便携式温室气体分析仪亮相直播节目湿地“碳”究
    文章来源:观沧海9月16日,作为全国科普日联合主办单位,自然资源部以线上、线下相结合的方式举办了丰富多彩的主场活动,其中直播节目《湿地“碳”究》格外引人注目。滨海湿地对于固碳释氧、应对气候变化等具有重要作用。调查发现,滨海湿地的碳主要分布在植物、土壤和水域中,但这些碳也会通过呼吸作用释放到大气中,俗称为碳在“水-土-气-生”多圈层中的循环过程。那么,这些过程是如何观测?又有哪些因素控制着碳在各圈层分布?气候变暖是如何影响碳汇过程的?这些都是科研工作者重点攻关的科学问题。直播节目中,自然资源部北方滨海盐沼湿地生态地质野外科学观测研究站(以下简称滨海湿地野外站)站长叶思源带领观众走进滨海湿地野外站位于江苏盐城的观测站点,用通俗易懂的语言讲解了滨海湿地的生态功能,介绍了该团队野外作业相关情况,展示了在滨海湿地碳汇调查和研究方面取得的工作成果,深化了公众对碳达峰、碳中和目标的理解,推广了关爱湿地、保护湿地的理念。滨海湿地野外站一角科研人员野外调查现场地上植物能固碳研究滨海湿地碳汇奥秘,离不开调查装备的“硬件”支撑。 “芦苇是盐沼湿地的典型植物,植物体中45%的成分是碳。科研人员可以利用仪器观测植物进行光合作用的过程,也就是植物的固碳过程。”在江苏盐城湿地的芦苇地,叶思源首先向观众展示了调查常用仪器——新一代光合仪。“显示屏上的这条曲线反映了测量时间段内二氧化碳浓度的变化,如果曲线下降,表明二氧化碳浓度降低,说明植物正在吸收二氧化碳。” 那么,科研人员是如何得知这些地上植物的碳储量的呢?“最直接的办法是将其割了、晒干、再称重,从而估算出它的碳储量。”叶思源介绍,由于湿地调查范围较大,科研人员通常采用样方调查方法,了解湿地植物的种群、数量和生长状况,并进行生物量的测算,从而对湿地的固碳能力作出评估。 目前,滨海湿地野外站根据芦苇的生长特征,设置了50厘米×50厘米样方。科研人员对样方范围内每一株植物进行体检,测量其身高、体重、“腰围”等,计算每个样方的生物量,并根据区域植被分布面积,评估湿地的生物量,再根据碳转换系数,得出区域内植被圈层的碳储量。地下的巨大碳库除了湿地植物通过光合作用从大气中吸收二氧化碳,湿地的地下也存在一个巨大的碳库,而且地下碳的库存量远大于植被圈层的库存量。直播节目中,叶思源拿起一个刚从芦苇湿地取出的土壤柱状样品说:“由于湿地大部分时间处于静水水淹状态,缺氧的环境使得土壤中微生物分解碳的能力变得非常弱,再加上滨海地区河流较多,带来的泥沙快速埋藏植物残骸,形成长期稳定的碳库。我们通过仔细观察,可以看到土壤里面包含湿地植物的根茎,把土壤洗掉,称量植物的根,就能获得植物的地下生物量。”叶思源表示,在盐沼湿地中,土壤中的碳储量可占总碳储量的50%~98%。地上的芦苇,相当于一个加工厂,把碳生产出来,最后储存到土壤中。土壤的碳年复一年保存在这里,形成了一个巨大的碳库。水域固碳不容忽视此外,湿地中的水域固碳能力也不容忽视。叶思源介绍,湿地水域中生长的各类浮游植物也可以进行光合作用。浮游植物将水中游离的碳转化为有机碳,这样水里的碳少了,大气中的二氧化碳就会进入水体中进行补充,从而减少了大气中的二氧化碳,这就是水域光合固碳作用。直播节目中,叶思源向观众展示了一套可以测定浮游植物光合作用能力的实验装置。“我们通过监测发现,水质清澈的辽东湾水域比江苏近海浑浊水域初级生产力高出48倍,因此证明水的悬沙量对水域光合固碳效率影响很大。这提示我们,可以通过增加河流的漫游路径来减少浑浊度,进而增加近海水域的光合固碳能力。”叶思源说。监测温室气体排放速率调查发现,湿地生态系统中,储存于植物、土壤和水这3个圈层的碳并不是完全稳定储存的,有一部分通过呼吸作用和土壤矿化分解作用,以二氧化碳或甲烷的形式返回到大气中。那么,科研人员又是如何监测二氧化碳或甲烷等温室气体排放速率的呢?叶思源向观众介绍了一个形似黑箱的测量装置。“我们通过该封闭箱采集气体,用布罩住形成一个黑箱,连接仪器,可以看到在没有光合作用的情况下二氧化碳浓度的变化,从而测量湿地生态系统二氧化碳的释放速率。”叶思源介绍,总体来说,滨海湿地吸收的碳量远大于排放的碳量,是典型的负排放系统。滨海湿地野外站开展碳循环的研究工作,主要是围绕碳在不同圈层中的循环过程和控制因素,试图找到好的方法,能使生态系统多储存碳。研究发现,滨海湿地温度小于18摄氏度、盐度大于18‰时,二氧化碳和甲烷基本不排放。当盐度达到15‰时,湿地系统固碳能力可达到最佳状态。因此,科研人员可以通过调控湿地水的盐度增强其固碳能力。研究碳循环模式当前,在全球气候变化大背景下,碳循环模式发生了很大变化。叶思源介绍了一个用于研究湿地碳汇资源对全球变暖影响的增温模拟试验装置。该装置形似玻璃房,“房中”安装了很多传感器,可实时监测46个环境因子。叶思源表示,类似这种装置,滨海湿地野外站已布设于辽河三角洲、黄河三角洲、盐城3个湿地,覆盖了2种植被、3个纬度带,并与欧美国家同等的增温站联网,全球科学家共享数据,合作研究预测不同纬度、不同生境、不同地质演化阶段的滨海湿地在未来气候变暖情况下固碳能力的变化,为应对全球变暖提出科学建议。“我们初步研究发现,增温会破坏本土植物的固碳器官,但是会增强互花米草等入侵植物的固碳能力。”叶思源说,“当前该结论在学术界还存在争议,主要是增温的响应存在短期效应和长期效应的区别。为了更科学地认识湿地碳汇功能对增温响应的规律,我们必须在观测站进行长期监测,这也是建设该观测站点的目的。”直播节目尾声,叶思源向观众发出呼吁:“希望大家多多了解滨海湿地,保护湿地,关注全球气候变化,践行低碳生活,为实现‘双碳’目标作出自己的贡献。”链接:盐沼湿地如何固碳释氧地球上有四大碳库:岩石圈碳库、大气碳库、陆地生态系统碳库和海洋碳库。其中,海洋是地球上最大的活跃碳库,是陆地碳库的20倍、大气碳库的50倍。海洋每年吸收约30%的人类活动排放到大气中的二氧化碳。海洋储碳周期可达数千年,在全球气候变化中发挥着不可替代的作用。要实现碳达峰、碳中和目标,必须下大力减少大气中的二氧化碳,除了调整能源结构、推动产业结构转型、提升能源利用高效率、加速低碳技术研发推广,增加生态系统碳汇也是行之有效的方式之一。比如,滨海湿地生态系统单位面积的固碳速率是陆地生态系统的15倍和海洋生态系统的50倍。湿地是位于陆生生态系统与水生生态系统之间的过渡地带,泛指暂时或长期覆盖水深不超过2米的低地、土壤充水较多的草甸以及低潮时水深不过6米的沿海地区,包括咸水淡水沼泽地、湿草甸、湖泊、河流以及河口三角洲、泥炭地、湖海滩涂、河边洼地或漫滩、湿草原等。滨海湿地位于陆海交互带,是海岸带的一部分。天然的滨海湿地主要分为盐沼湿地、红树林湿地、珊瑚礁湿地、水草床湿地等类型。滨海湿地物种丰富,有很高的生态服务功能,在水土保持、岸线稳定、污染物质净化、碳埋藏与温室气体吸收以及为人类提供休息娱乐场所等方面具有很高的价值。作为滨海湿地的重要组成部分,盐沼湿地基本特性是地表水呈碱性且土壤中盐分含量较高,表层积累有可溶性盐,其上生长着盐生植物,如芦苇、互花米草、柽柳和赤碱蓬等。滨海盐沼湿地具有很高的初级生产力,其土壤除了表层数厘米或数毫米的氧化层外,下部还储有巨大的碳库。该生态系统碳库大致可分为3个部分,包括地上活生物量(灌木、禾本和草本等),地下活生物量(根系和根状茎)以及土壤碳库。盐沼湿地碳库主要由内源碳和外源碳组成。其中,外源碳是通过水系输入至盐沼系统,而内源碳主要来自盐沼湿地系统中的大型植物或藻类的光合作用,但内源碳大部分却以二氧化碳或甲烷的形式又返回到大气中了。植物是盐沼碳汇功能实现的关键所在。盐沼中的植物光合作用,又称初级生产过程。该过程以大气中的二氧化碳和土壤中的水为反应物,以光能为能源,以自身为反应器将光能转化成化学能固定于体内,完成碳元素从无机态向有机态的转化。盐沼中的植物与藻类生长能够通过光合作用快速固定大气中的二氧化碳。在潮下带盐沼中,主要初级生产者是浮游藻类和底栖藻类。这些藻类在空间上来源于海水水体、底部沉积物2个部分,海水水体固定的碳元素在潮汐水流的搬运作用下进行空间上的再分配,而底部沉积物固定的碳元素在空间上的分布较为稳定。在潮间带和潮上带盐沼中,大型植物类型是确定滨海湿地初级生产力的主要因素,大型植物固碳量普遍占滨海盐沼生态系统固碳量的90%以上。 UGGA 采用紧凑型设计,将所有组件集成于一只小巧的野外便携箱中。大大减少了体积,降低了重量,并提高了便携性。适合于各种测量载体,诸如汽车、飞机、舰船、无人机载,甚至单人人力携带。UGGA 可使用直流供电,且能耗低至 60W,内置 Wifi,可以通过多种电子终端进行遥控操作。UGGA 可以快速同时测量 CH4,CO2 和 H2O 浓度,操作简单,使用方便,是一款进行野外研究,泄漏检测,空气质量研究和土壤通量研究的理想设备。特点:● 便携式箱体设计● 体积小,重量轻 ● 可直流供电,且能耗低至 60W● 三种气体(CH4, CO2, H2O)同时测量● 内置 Wifi,可通过多种终端设备遥控操作性能指标:◆ 测量范围:● CH4:0~100 ppm● CH4:0~1%(需增加扩展量程选项)● CO2:0~20000 ppm● H2O:0~30000 ppm三种气体(CH4, CO2, H2O)同时测量内置 Wifi,可通过多种终端设备遥控操作◆ 可选测量范围:● CH4:0~1000 ppm● CH4:0-1%(需增加扩展量程选项)● CO2:0~3%● H2O:< 99%RH,无冷凝◆ 重复性 / 精度(1σ,1 秒 /10 秒 /100 秒)● CH4:1.4 ppb / 0.5 ppb / 0.2 ppb● CO2:300 ppb / 100 ppb / 30 ppb● H2O:50 ppm / 20 ppm / 10 ppm◆ 测量速度:0.01-1 Hz(用户可选)◆ 环境条件:● 操作温度:5~45 ℃● 环境湿度:0~100% RH,无冷凝◆ 输出:数字(RS 232)、模拟、以太网、USB◆ 电力需求:60 W (11–30 VDC) 66 W (100–240 VAC, 50/60 Hz)◆ 尺寸与重量:18cm(H)x 47 cm(W)x 36 cm(D),16.9 kg
  • 案例分享丨复旦大学聂明团队在土壤碳循环方面取得新进展
    近日,复旦大学生科院聂明团队在全球变化生态学研究领域取得重要进展。相关成果以“Rising temperature may trigger deep soil carbon loss across forest ecosystems”为题发表于Advanced Science 杂志。 因大气CO2浓度升高引起的全球变暖问题是21世纪人类社会所面临的最严峻挑战之一。全球土壤有机碳库储量约是大气碳库的三倍,因此通过土壤有机碳分解释放的CO2对大气CO2浓度有着重要的影响,进而改变区域乃至全球气候。土壤有机碳的分解强度受到温度的调控,其对温度的敏感性被认为是决定未来气候变化态势的关键因素之一,也是陆地气候预测模型的关键假设与重要参数。底层土壤储藏着与表层土壤相当的有机碳,然而以往研究主要集中于表层土壤,对底层土壤碳分解的温度敏感性还知之甚少,这直接制约了对未来气候变化态势的判断。 为此,该研究团队选取我国90个典型森林生态系统(图1),涉及热带雨林、亚热带森林、暖温带森林、寒温带森林与北方森林。每个森林中分6个土层采集了1米深度的土壤,探究土壤有机碳分解温度敏感性随土壤剖面变化的一般性规律及其调控机制。 图1 中国森林90个典型土壤剖面采样点空间分布图。 研究发现,随着土壤深度的增加,有机碳分解的温度敏感性随之增大,表明底层土壤碳分解对全球变暖的响应更为敏感(图2a)。此外,表层土壤碳分解温度敏感性主要受气候因子调控,而底层土壤主要受气候因子和碳质量的共同调控(图2b)。 图2 土壤有机碳分解温度敏感性(Q10)随土壤深度增加而增大(a)及不同因子对Q10调控作用的相对贡献随土壤深度的变化(b)。 该研究还发现,忽视土壤有机碳分解温度敏感性沿土壤剖面的变异,会极大低估土壤释放的CO2量(图3),强调急需将这一特征纳入到陆地气候预测模型中以提高预测精度。 图3 与多层模型(six-layer model;使用剖面变异的温度敏感性Q10值)相比,单层模型(single-layer model;将表层0–10 cm土壤的Q10值应用于整个土壤剖面)会低估本世纪末温度升高3°C时土壤碳排放,即高估土壤相对碳库(relative SOC stock)。 论文链接:https://onlinelibrary.wiley.com/doi/10.1002/advs.202001242 从聂明老师团队的研究中发现,土壤有机质分解的温度敏感性(Q10)不仅是生态学和土壤学研究的核心科学问题之一,也是全球变化生态学研究的热点领域。国内外学者对Q10的影响因素或机制开展了大量卓有成效的研究工作,并有不少相关的综述或展望。 在该项研究中,聂明老师团队运用的测定方法是连续变温培养+气相色谱手动测量,而今天要为大家介绍的是一种更快的连续变温培养+连续自动测试新模式。 长期以来,室内培养研究的方法经历了几次技术更新。最早是用碱液吸收法+气相色谱来进行(CDM模式),该方法无法变温,测试点少,并且需要人工操作;之后经过技术改进,可以变温培养,仍然采用气相色谱设备检测(VDM模式),该方法仍然存在取样点少,人工操作不方便,无法大量样点试验等问题。 鉴于培养和测定模式对实验研究的重要性,北京普瑞亿科科技有限公司和中国科学院地理科学与资源研究所何念鹏研究团队合作研发了PRI-8800全自动变温土壤培养温室气体(同位素)分析系统,并发展了Q10研究的连续变温培养+连续自动测试的新模式。3种模式的示意图见【图1】,各自的特点、优缺点见【表1】。图1:3种模式示意表1:3种模式的特点VCM模式实验过程 150mL样品瓶(PRI-8800样品瓶)中填装40g土壤样品,向其中混入10g石英砂,防止土壤板结,调整含水量至60%(WHC),放置在样品盘上。土壤样本在25°C下预培养7天,排除微生物活动干扰。分别在第1天、5天、8天、15天、22天和26天的时候,使用PRI-8800全自动变温控制土壤通量系统(PRI-ECO,中国)测量每个样品瓶中SOM分解速率(Rs)。该系统允许连续改变培养温度并在高频下测量Rs。测样时,每个样品需在一个设定温度恒温稳定至少30分钟,然后在12小时的测量周期内测量36次(75s一个样品)。PRI-8800每秒钟记录一次CO2浓度,同步记录土壤温度,以提供准确的Rs和土壤温度配对数据。采用称重法监测土壤水分。最后,使用经典指数方程计算Q10值,每个方法的R2和P值。所用设备 点击图片查看详情 PRI-8800即可对接温室气体分析仪,又可对接碳氮同位素分析仪。稳定同位素技术具有示踪、整合和指示等多项功能和检测快速、结果准确等特点,δ13C、δ15N同位素技术被广泛用于土壤碳氮循环研究,也成为探讨土壤中有机组分来源和转化动态的有效手段,利用δ13C同位素可区分土壤呼吸的不同成分,指示碳的来源和周转途径;δ15N用于土壤氮素转换等的研究。可灵活对接不同分析仪(同位素分析仪、气体浓度分析仪等);标配16位样品盘,也可选配4位或9位样品盘;自动化程度高,无人值守,24h不间断工作;可方便拆卸土壤瓶固定装置,实现在线置换土壤瓶;全自动控温系统(-20~80 ℃),控温精度优于0.1 ℃;土壤温度传感器探针可频繁自动插入土壤瓶中,准确测量土壤温度;高效的气体循环气路——双回路气路设计,可根据需要对CO2浓度进行预处理,调控系统内的起始CO2浓度(避免过高CO2浓度的抑制效应);高效的气路设计,缩短响应时间;可灵活设定的标定系统,保障测量数据的准确性;友好的软件界面,可根据具体实验需要设定参数及数据存储等功能;全自动日变化温度模拟功能。参考文献: Robinson J M , T. A. O’Neill, Ryburn J , et al. Rapid laboratory measurement of the temperature dependence of soil respiration and application to changes in three diverse soils through the year[J]. Biogeochemistry, 2017, 133(3):101-112.Liu Y, He NP*, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition[J]. Soil Biology & Biochemistry, 2019, 138, 107596何念鹏, 刘远, 徐丽, et al. 土壤有机质分解的温度敏感性:培养与测定模式[J]. 生态学报, 2018, 38(11).
  • GEODERMA丨肖春旺教授团队在草地土壤碳激发效应研究领域取得新进展
    2018年,由北京普瑞亿科科技有限公司研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达23篇。 今天与大家分享的是肖春旺教授团队在草地土壤碳激发效应研究领域取得新进展,在该项研究中,研究团队利用PRI-8800对来自外源碳和土壤有机质的土壤微生物呼吸的快速、连续、高频观测,为研究结果提供了有力的数据支撑。 来自植物根际和凋落物层淋溶的易分解外源碳(LOC)输入土壤是生态系统常见的自然现象,其在微生物介导的土壤碳循环中发挥着关键作用,尤其是在植物根系密集的草原生态系统。然而,外源碳的输入并不总是意味着土壤碳的净增加,因其能为异养微生物群落提供可用的碳和能量,进一步对土壤有机质的分解产生影响,即激发效应(Priming Effect,PE)。长期以来,尽管许多研究已经探讨了由外源碳添加诱导的激发效应,但很少有研究关注其短期效应。其次,输入土壤的外源碳是高度动态变化的,会迅速融入微生物、土壤有机质,或分解为CO2,但由于土壤微生物对外源碳输入的反应很快,来自外源碳的呼吸作用对微生物呼吸作用的相对贡献及其影响因素仍不确定。此外,围栏禁牧被认为是实现草地生态系统自我恢复的重要途径,其对土壤碳氮特性具有重要的积极影响,而围栏禁牧所导致的土壤碳氮特征变化可能进一步影响微生物对外源碳和土壤有机质的分解,但目前仍然缺乏对此的全面了解。 针对以上科学问题,肖春旺教授团队在中科院内蒙古草原生态站开展了相关研究,研究人员采集了3个不同围封禁牧时间(42年、22年和0年[自由放牧])和4个不同土层深度(0–10、10–30、30–50、50–100 cm)的土壤。通过向土壤中添加δ13C标记的葡萄糖以模拟自然界的碳输入,并使用北京普瑞亿科科技有限公司研发的PRI–8800全自动变温培养土壤温室气体在线测量系统,在105-h内实现了分钟尺度上对来自外源碳和土壤有机质的土壤微生物呼吸的快速、连续、高频观测,主要探究了土壤碳氮特征变化对土壤微生物响应外源碳输入的短期过程以及对外源碳和土壤有机质分解的影响及机制。 研究结果发现,土壤微生物对外源碳的输入反应迅速,由土壤有机碳和碳氮比控制的微生物生物量是直接影响微生物对外源碳输入反应强度的最重要因素。放牧和较深的土壤层减少了来自外源碳的呼吸作用及其对总呼吸作用的相对贡献(图1),主要归因于土壤碳氮比和真菌/细菌的变化。此外,外源碳添加促进了所有土壤中有机质的分解,使土壤有机质的呼吸作用增加了11.3–92.4 mg C g-1 SOC,相当于18.7–266.1%的激发效应。放牧和土壤深度增加导致了更大的激发效应和土壤碳损失,其中土壤碳氮比和有机碳含量是最重要的调节因素。图1 不同土壤中来自外源碳和土壤有机质的累积碳矿化量及其比值注:GE42(10)、GE22(10)和GE0(10)分别代表围栏禁牧42年、22年和0年样点的0–10 cm土壤;GE42(10)、GE42(30)、GE42(50)和GE42(50)分别代表围栏42年样点的0–10、10–30、30–50、50–100 cm的土壤。 禁牧被认为是实现草原生态系统自我恢复的重要途径,了解放牧对外源碳输入下草原碳循环的影响可能有助于提高我们对未来草原土壤碳动态的预测。因此,结合本研究结果,研究人员建立了一个概念框架,阐明了禁牧年限和土壤深度变化对外源碳输入下草原土壤微生物呼吸和土壤碳动态的影响(图2)。禁牧对植被的积极影响进一步提升了土壤有机质的质和量,进而通过影响微生物特性导致更多的外源碳被微生物呼吸代谢,并增大其对总微生物呼吸的贡献,但是却会减小其诱导的激发效应和土壤碳损失。然而,对于不同深度的土壤而言,增加土层深度会影响土壤有机质的质和量,导致来自外源碳的呼吸及其对总微生物呼吸的贡献均减小,但是却会减小其诱导的激发效应和土壤碳损失。目前在世界大部分地区,由于受到人类活动的影响,草原正面临着严重退化的困境,而禁牧可能是实现表层土壤碳固持的有效措施。图2 禁牧和土壤深度变化对外源碳输入下草原土壤微生物呼吸和土壤碳动态影响的概念图 相关研究成果以“The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands”为题在线发表于国际土壤学领域主流期刊《Geoderma》(中科院一区Top,IF5 = 7.444)上。 生命与环境科学学院2019级博士研究生李超为本论文第一作者,肖春旺教授为本论文的通讯作者。中国科学院地理科学与资源研究所何念鹏研究员为本研究的重要合作作者,另外,中国科学院地理科学与资源研究所的徐丽副研究员和李明旭博士也参与了本研究。来源丨中央民族大学生命与环境科学学院官网相关论文信息:Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.原文链接:https://doi.org/10.1016/j.geoderma.2023.116385. 自2018年上市以来,PRI-8800全自动变温培养土壤温室气体在线测量系统得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达23篇。 为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。可设定恒温或变温培养模式;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;150ml样品瓶,25位样品盘;大气本底缓冲气或钢瓶气清洗气路;一体化设计,内置CO2 H2O模块;可外接高精度浓度或同位素分析仪。 为了更好地助力科学研究,拓展设备应用场景,普瑞亿科重磅推出「加强版」PRI-8800——PRI-8800 Plus全自动变温培养土壤温室气体在线测量系统。 1)原状土冻融过程模拟:气候变化改变了土壤干湿循环和冻融循环的频率和强度。这些波动影响了土壤微生物活动的关键驱动力,即土壤水分利用率。虽然这些波动使土壤微生物结构有少许改变,但一种气候波动的影响(例如干湿交替)是否影响了对另一种气候(例如冻融交替)的反应,其温室气体排放是如何响应的?通过PRI-8800 Plus 的冻融模拟,我们可以找出清晰答案。 2)湿地淹水深度模拟:在全球尺度上湿地甲烷(CH4)排放的温度敏感性大小主要取决于水位变化,而二氧化碳(CO2)排放的温度敏感性不受水位影响。复杂多样的湿地生态系统不同水位的变化及不同温度的变化如何影响和调控着湿地温室气体的排放?我们该如何量化不同水位的变化及不同温度的变化下湿地的温室气体排放?借助PRI-8800 Plus,通过淹水深度和温度变化的组合测试,可以查出真相。 3)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800 Plus程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。 除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800 Plus的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。 PRI-8800 Plus除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。 4)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800 Plus可以通过手动调整土壤含水量的做法,并在PRI-8800 Plus快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800 Plus的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。 5)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。 6)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。1.Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.2.Ma X, Jiang S, Zhang Z, et al. Long‐term collar deployment leads to bias in soil respiration measurements[J]. Methods in Ecology and Evolution, 2023, 14(3): 981-990.3.He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2023, 29(4): 1178-1187.4.Mao X, Zheng J, Yu W, et al. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile[J]. Soil Biology and Biochemistry, 2022, 172: 108743.5.Pan J, He N, Liu Y, et al. Growing season average temperature range is the optimal choice for Q10 incubation experiments of SOM decomposition[J]. Ecological Indicators, 2022, 145: 109749.6.Li C, Xiao C, Guenet B, et al. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe[J]. Soil Biology and Biochemistry, 2022, 167: 108589.7.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.8.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.9.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.10.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.11.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.12.Yingqiu C, Zhen Z, Li X, et al. Temperature Affects new Carbon Input Utilization By Soil Microbes: Evidence Based on a Rapid δ13C Measurement Technology[J]. Journal of Resources and Ecology, 2019, 10(2): 202-212.13.Cao Y, Xu L, Zhang Z, et al. Soil microbial metabolic quotient in inner mongolian grasslands: Patterns and influence factors[J]. Chinese Geographical Science, 2019, 29: 1001-1010.14.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.15.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. 2018.Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.16.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.17.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.18.He N P, Liu Y, Xu L, Wen X F, Yu G R, Sun X M. Temperature sensitivity of soil organic matter decomposition:New insights into models of incubation and measurement. Acta Ecologica Sinica, 2018, 38(11): 4045-4051.19.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106: 18-27.20.Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23: 3393-3402.21.Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. Geoderma, 275: 67-73.22.Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research: Biogeosciences, 121: 399-410.23.He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制