当前位置: 仪器信息网 > 行业主题 > >

热电发电效率性能评价系统

仪器信息网热电发电效率性能评价系统专题为您提供2024年最新热电发电效率性能评价系统价格报价、厂家品牌的相关信息, 包括热电发电效率性能评价系统参数、型号等,不管是国产,还是进口品牌的热电发电效率性能评价系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热电发电效率性能评价系统相关的耗材配件、试剂标物,还有热电发电效率性能评价系统相关的最新资讯、资料,以及热电发电效率性能评价系统相关的解决方案。

热电发电效率性能评价系统相关的论坛

  • 【原创】太阳能发电是怎样的

    【原创】太阳能发电是怎样的

    太阳能电池发电 即是通过太阳能电池又叫光伏电池(是由各种具有不同电子特性的半导体材料薄膜制成的平展晶体,可产生强大的内部电场),为了保护这些光伏电池不受环境影响,需要把它们连接起来并封装在组件中,当光线进入晶体时,由光产生的电子被这些电场分离,在太阳能电池的顶面和底面之间产生电动势。这时,如果用电路连通,就会产生直流电流,这些电流储存到蓄电池,再通过固态电子功率调节装置转换成所需的交流电提供给各种负载。所以晚上没有太阳时,负载是一样可以正常工作的。   太阳能电池发电系统可分为太阳能热发电和太阳能光发电两种。太阳能热发电就是利 用太阳能将水加热,使产生的蒸汽去驱除汽轮机发电机组。根据热电转换方式的不同, 把太阳能电站分为集中型太阳能电站和分散型太阳能电站。塔式太阳能电站是集中型的 一种,既在地面上敷设大量的集热器阵列,在阵列中适当地点建一高塔,在塔顶设置吸 热器,从集热器来的阳光热集到吸热器上,使吸热器内的工作介质温度提高,变成蒸汽 通过管道把蒸汽送到地面上的汽轮机发电机组发电。  太阳能电站,一般采用多组反光镜把太阳光转变成水蒸气的内能,然后水蒸气再推动发电机发电。太阳能电池[img]http://ng1.17img.cn/bbsfiles/images/2009/04/200904281202_147012_1634653_3.jpg[/img]太阳能电站[img]http://ng1.17img.cn/bbsfiles/images/2009/04/200904281202_147013_1634653_3.jpg[/img]

  • 【原创】针对建筑节能,太阳能真空管,集热器,太阳能发电系统进行全方面检测

    【原创】针对建筑节能,太阳能真空管,集热器,太阳能发电系统进行全方面检测

    [B]TRM—FD1太阳能发电测试系统(太阳能发电站现场检测[/B]) 一、概述   能源危机,电力紧张是困扰当今中国的一大难题,太阳能作为绿色能源之首已经越来越得到人类的重视,随着太阳能产业的不断发展,其应用产品不断增多,针对太阳能发电的检测及研究显得十分重要,我单位在具有三十余年生产太阳能检测仪器经验基础上,与中国科学院电工研究所共同开发研制的TRM—FD1型太阳能发电测试系统,可保障太阳能发电质量及运行状态检测,已得到广泛应用。可满足太阳能发电站,太阳能发电测试,太阳能光电研究,太阳能实验室等领域的使用。 二、适用范围   用于太阳能发电站的实时监测,对研究太阳能发电质量,效率,故障诊断数据管理,提供数据保障。 三、系统技术指标如下   环境数据是决定太阳能发电的重要指标,对太阳能发电质量起着决定性作用,同时也是对太阳能发电站的设计提供有效的数据保证。本系统即可以独立使用,也可与发电站配合工作,系统主要测试功能如下:风速、风向、环境温度、太阳能电池温度、蓄电池温度、太阳总辐射、太阳直接辐射、充电电流、充电电压、逆变输出电流、逆变输出电压、工作电流、工作电压,该系统可对10W---30KW太阳能电池组件及方阵直接测量,利用自然光做光源能快速测出方阵I-V特性,功率特性等指标。 (1).风速:  通道数:1路;  范 围:0~60米/秒;  精 度:±0.3米/秒;  显示分辨率:0.1米/秒;(2).风向:  通道数:1路;  范 围:0~360度;  精 度:±3度;  显示分辨率:1度;(3).太阳能辐照度:  通道数:4路;3.1 总辐射(水平面和电池板平面)  范 围:0~2000W;  精 度:小于5% ;  显示分辨率:1W;3.2 自动跟踪直接辐射  范 围:0~2000W;  精 度:小于5% ;  显示分辨率:1W;  光谱范围:280—3000nm;3.3 太阳散射辐射  范 围:0~2000W;  精 度:小于5% ;  显示分辨率:1W;  光谱范围:280—3000nm;(4).温度:(蓄电池温度1路,太阳能电池温度2路,环境温度1路)  通道数:4路  范 围:-50~100℃;  精 度:±0.2℃;  显示分辨率:0.1℃;  结构:全密封结构,防潮,防水,粘贴电池表面;   尺寸:20*40*4(mm)(长方形薄片);(5).电压接口(蓄电池电压,逆变器输出电压,太阳能电池电压)  通道数:4路  电压范围:0~250V(交直流均可);  精 度: 小于0.5%;  显示分辨率:0.1V;(6).电流接口(总充电电流,逆变输出电流,太阳能电池电流)  通道数:4路  电流范围:0~30A;  精 度:小于0.5%;  显示分辨率:0.1A;(7).数据存储容量:6000条(小时整点数据连续存储半年以上),存储内容为设定时间内的数据平均值。(8).供电: 交流220V, 直流12V;(9).通讯接口:  标准RS232接口,与管理微机有线连接,实时传送采集数据;也可通过无线通讯器实现远程遥测,进行异地监控,保证发电系统的正常运行。(10).管理微机及软件:  TRM—FD1型太阳能发电测试系统管理软件可在WINDOWS98以上环境即可运行,实时显示各路数据,每隔10秒更新一次,小时整点数据自动存储(存储时间可以设定),与打印机相连自动打印存储数据,数据存储格式,EXCEL标准格式,可供其它软件调用。(11). TRM—FD1型太阳能测试系统数据采集器一台。  该采集器采用高性能微处理器为主控CPU,大容量数据存储器,可连续存储正点数据三个月以上(存储时间可以设定),工业控制标准设计,便携式防震结构,大屏幕汉字液晶显示屏(一屏显示多路监测要素,替代微机),轻触薄膜按键。适合在恶劣工业环境使用。具有停电保护功能,当交流电停电后,由充电电池供电,可维持72小时以上,既可与微机同时监测,又可以断开微机独立监测。11.1.显示方式:大屏幕液晶汉字及图形显示,一屏显示多路数据, 液晶尺寸:115*65(mm);11.2.记录仪具有先进的轻触薄膜按键,操作简单,实现对各路数据的实时观测;11.3.仪器尺寸:340*150*300(mm);    重量:6.5Kg,金属外壳;11.4.显示及存储内容:温度,辐射,电流,电压,风速,风向等信息; TRM—FD1型太阳能发电测试系统基本配置 序号 名  称 型 号 数量 单位 1 数字风速传感器 EC-9S 1 台 2 太阳能总辐射表 (水平面辐射) TBQ-2 1 台 3 太阳能总辐射表(电池板平面辐射) TBQ-2 1 台 4 太阳散射辐射 TBD-1 1 台 5 自动跟踪直接辐射表 TBS-2-2 1 台 6 数字风向传感器 EC-9X 1 台 7 温度传感器(太阳能电池,充电电池) PTWD-3A 3 只 8 环境温湿度传感器(含辐射罩) PTS-2 1 台 9 电压,电流传感器接线箱(电流4路,电压4路) VCS-1 1 台 10 太阳能发电测试记录仪 TRM-FD1 1 台 11 太阳能发电测试系统管理软件 TRM-FD1 1 套 12 传感器支架 TRM-ZJ1 1 台 注:以上传感器连接电缆均为20米 [B] 单位:北京天裕德科技有限公司联系人:石冬 13426494679地址:北京市朝阳区小营路9号邮编:100101开户行:北京农商行亚运村支行小营北路分理处帐号:0111090103000002527电话:010—64931393传真:010—64931393网址:www.bjtyd.com电子邮箱:sales@bjtyd.com[/B] [img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811252245_120446_1670114_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811252246_120447_1670114_3.jpg[/img]

  • 海潮流速0.6米/秒即可发电 国内首台海洋潮流发电设备胶州问世

    最新发现与创新 中国科技网讯 国内首台利用海洋潮流发电的新型永磁直驱式发电装置日前在青岛胶州市的青岛海斯壮铁塔有限公司问世。 据青岛海斯壮有限公司总经理助理王同学介绍,利用潮汐发电不新鲜,我国从上世纪80年代开始,在沿海各地区陆续兴建一批中小型潮汐发电站,比如浙江省的江夏潮汐发电站。 海流(又称洋流)是海洋中海水因热辐射、蒸发、降水、冷缩等而形成密度不同的水团,再加上风应力、地转偏向力、引潮力等作用而具有相对稳定速度的流动。王同学介绍,我国拥有丰富的海洋能资源,其中潮流能资源非常密集,中国近海潮流能属于世界上功率密度最大的地区之一。开发和生产新一代高效可靠的潮流发电机,对于我国实施可再生能源发展战略将起到巨大的推动作用。 据介绍,从2010年开始,青岛海斯壮铁塔有限公司开始与中国海洋大学、哈工大威海校区联合开发研制海洋潮流永磁直驱式发电设备。项目借鉴欧洲成熟经验,吸收最新技术,实现先进的潮流发电装置部件和整机的本土化生产。该潮流发电装置的系统能量转化效率大于30%。由于采用世界大型主流风机的永磁直驱技术,能耗较小,发电效率比常见的齿轮箱变速发电装置高5%—10%。 海底潮流发电机就像把风电发电机放到海里。”王同学介绍,真机风扇直径7米多,翅膀用的是碳纤维纳米材料,研制过程中攻克了密封、防海水腐蚀等数道技术难关,可以实现海上无故障运行时间大于1年的质量目标。设备通过船舶投放到近海海域16—40米左右的距离,只要潮流满足0.6—1.3米/秒的流速即可发电。(通讯员刘振华 记者王建高) 《科技日报》(2013-01-04 一版)

  • 我国垃圾焚烧能源利用潜力巨大,利用效率如何提升?

    [font=宋体, 微软雅黑, Arial, Helvetica, sans-serif][size=16px][color=#333333]全球二氧化碳排放量的持续增加,带来了一系列的社会问题,如全球每年因空气污染导致的死亡人数正在持续增多等。在这样的背景下,提升能源利用效率已经成为应对气候变化的关键。[/color][/size][/font][b]01提升能源利用效率是应对气候变化的关键[/b]目前能源利用温室气体占全球排放总量的比例为73.2%,从能源利用细分领域温室气体排放占比来看,工业领域、交通运输、建筑行业等占比相对较高。在全球能源供需紧张的背景下,可再生能源扮演着重要角色,可再生能源在全球电力供给中的作用日益重要。提供经济适用的[url=http://www.chndaqi.com/news/field?fid=34]清洁能源[/url]已经成为联合国17个可持续发展目标之一。从2010年到2021年,全世界可再生能源在最终能源消费中的占比从16%上升到了19.44%。国际上,多个国家也发布了相应的能源产业扶持政策。包括上调可再生能源发展的目标,如欧盟2021年将2030年可再生能源占一次能源的比重目标从32%提升至40%,要求所有成员国为之努力;我国明确提出到2030年风电、太阳能发电总装机容量达到12亿千瓦以上等。其次也包括一些支持或调整核能发展的规划,如俄罗斯:计划在2035年前新建10台大型核电机组,将核能发电占比提高到25%;而在加快氢能产业布局方面,英国、德国、日本、韩国等都有发布相关的政策支持文件。2022年6月,我国[url=http://www.h2o-china.com/news/field?fid=83]生态环境[/url]部等部门联合印发了《减污降碳协同增效实施方案》,其中,突出协同增效,推进固体废物污染防治协同控制。强调开展产业园区减污降碳协同创新,升级改造垃圾焚烧设施,提升绿色低碳发展水平。黄立成指出,通过升级改造垃圾焚烧处理设施,提升绿色低碳发展水平,可以使垃圾焚烧发电达到能源替代、节能增效和资源再生的要求。[b]02垃圾焚烧发电行业能源管理的现状如何?[/b]对垃圾焚烧发电厂和传统火力发电厂能量转化效率进行比较,可以看出,垃圾焚烧发电厂全厂发电效率目前在约26%,火电厂约41%。供电效率,垃圾焚烧发电厂约22%,火电厂约39%,垃圾焚烧发电项目供电效率约为火电厂的56%,所以它的能源利用效率还很低。黄立成指出,垃圾焚烧发电项目能源利用率低的原因有以下几点:第一,垃圾焚烧锅炉主蒸汽参数低下,垃圾发电项目常规主蒸汽参数为4.0MPa,450℃到6.4MPa,485℃之间,全厂发电效率约为22.3%~26%之间。主要制约因素有三:垃圾成分复杂,烟气腐蚀性强;防腐材料/防腐工艺成本高昂;相对火力发电,规模小。第二,与欧洲相比,我国垃圾焚烧厂多为单纯发电模式,热量利用不充分。黄立成表示,国内垃圾焚烧厂能效较欧洲还有较大差距,存在巨大提升空间。据调研数据分析,欧洲热电联产垃圾焚烧厂能效较纯发电与纯供热焚烧厂高,统计数据中热电联产焚烧厂平均全厂能效R1可达0.76,而我国大型垃圾焚烧厂平均全厂能效R1约0.58,存在巨大提升空间。[b]03垃圾焚烧发电行业如何提升能源管理效率?[/b]以国内某垃圾焚烧发电项目为例,全厂发电效率约26%,凝气损失占比约48.7%,排烟损失占比约14.7%,锅炉等其他损失,如机械未燃烧、化学未燃烧以及散热损失等占比为5.6%。黄立成认为,提高发电能效、降低凝汽损失和排烟损失是提高能源利用效率的关键。国际上已经有很多垃圾焚烧行业的高效率电厂热力系统的成功经验。如在提高蒸汽参数方面,意大利Naples,采用9MPa/500°C,全厂热效率达到30.2%;在再热循环系统方面,荷兰阿姆斯特丹AEB,采用13MPa/440°C,采用汽包饱和蒸汽将高压缸排汽再热到330°C,全厂热效率达到30%以上。此外,在热电联产及外部热源组合式高效垃圾发电工艺方面,国际上也有很多尝试和经验积累。基于此,黄立成介绍,康恒在提升能效上也积极采取了多种措施:一是高参数再热,已经得到了应用;二是正在实施的烟气余热利用系统;三是实现热电联产助力全厂能效提升。高参数再热发电技术能提升全厂能效,但面临高难度的技术挑战。如参数提高后,锅炉高温腐蚀,对于防腐蚀工艺、材料提出了更高的要求。而压力提高之后会导致汽机排汽干度降低,汽机末级叶片水蚀风险增加。针对这些技术挑战,康恒环境做了很多实践探索。应对锅炉高温腐蚀,康恒通过大数据模型的建立,来找寻解决办法。通过分析40多个焚烧厂运行早期至运行末期的运行数据,确定余热锅炉在一个运行周期中运行状态,并通过记录的运行数据,反向校核锅炉的热力计算模型,达到准确计算锅炉运行各热力计算参数;通过腐蚀曲线和壁温计算手段,评判过热器不同部位的腐蚀风险。最终实现主蒸汽参数提高后,锅炉各受热面的腐蚀风险可控。应对汽机末级叶片水蚀,康恒实践中,采用炉外除湿再热技术有效解决水蚀问题,提高全厂发电效率。通过高压缸抽汽加热高压缸排汽,使其除湿再热后进入低压缸做功。这个系统的优势在于,控制方便:汽机抽汽再热,系统简单;配置灵活:可实现多机母管制运行。设备优势也很明显,汽机水蚀小:除湿再热,大大降低末级叶片湿度;锅炉腐蚀小:主蒸汽温度低,过热器腐蚀小;再热方式成熟:借鉴核电成熟的MSR除湿再热工艺。

  • 【原创】原子吸收仪器性能评价与检验二(继续抄点书发上来)

    特征浓度(特征量)与灵敏度1, 特征浓度(特征量)与灵敏度的含义特征浓度(特征量)是指在原子吸收分光光度计测量样品时,对应于1%净吸收或0.0044吸光度时的被分析物浓度或被分析物的质量(特征量).检定规程应用的灵敏度指标是指在一定浓度时,测定值的增量(△X)与相应的待测元素浓度的增量(△c)之比.有文献解释是指分析信号随待测元素含量变化的大小.该项指标用于评价仪器检出物质成分含量的灵敏程度,是评价与分析方法相关的仪器性能指标之一.不少文献使用吸光度(A-c)关系曲线斜率来表示仪器的检测灵敏度S,是指一定量的待测元素引起的仪器吸光度值变化的大小.2,影响特征浓度(特征量)与灵敏度的因素仪器对特征浓度(特征量)产生影响,源自于以下四个方面的因素.第一,原子化系统的影响成为主要因素.火焰原子化系统的雾化效率高低,吸液量或提升量的多少,火焰的高度、种类及火焰燃助比的选择等;石墨炉原子化系统的炉体结构、石墨管性能、加热方式、原子化条件的选择等都是关键因素.第二,光源的影响.光源的种类、光源的制造质量、光源的供电方式以及供电参数的选择等都有重要影响.第三,光学系统调整的光束宽度、输出的光谱纯度、分辨率等也有一定影响.第四,检测器系统的光谱响应灵敏度、电学系统的放大倍数及响应时间等也是影响因素.以上所述的影响因素都是从仪器角度提出的,并未涉及与样品有关的因素.在测量实际样品时,样品具有的各种成分以及被测元素本身,在原子化过程中发生的某些化学反应可能会对灵敏度产生增强或衰减的不同影响.在有些情况下,其影响甚至很大,是不能被忽略的.当然,作为仪器的检测指标,使用标准样品,以尽量减少样品本身产生的影响.3, 特征浓度(特征量)与灵敏度的检验方法新标准与检定规程在检测特征浓度或特征量时并未规定仪器的各项工作参数,如光谱带宽、灯电流、火焰条件或石墨炉条件等,只是要求将仪器调整到最佳工作状态.因为与本项指标相关的因素不仅仅是仪器自身诸多参数,还与分析方法及检测元素性质密切相关,而不同企业制造的仪器差异性又大,确实很难提出统一的仪器工作参数要求.精密度与准确度1,精密度与准确度的含义在相关文献中准确度被定义为在给定的水平下,多次重复测定的平均值与真值的接近程度.精密度被定义为在给定的试验条件下多次重复测定结果之间相一致的程度.精密度与准确度是所有分析方法的重要评价指标,自然与是仪器分析方法的评价指标.精密度用于评价仪器分析的随机误差,准确度用于评价仪器分析的系统误差.两者虽然是评价不同性质的误差,但两者之间是相互关联的.测量精密度好,准确度不一定好,测量精密度不好,准确度偶然巧合也可能好.一般情况下,测量精密度好是获得准确度好的先决条件.2,影响精密度与准确度的因素精密度与准确度既然是测量误差的评价指标,则产生误差的原因就是影响测量精密度与准确度的因素.误差的来源分为仪器误差、方法误差、环境误差及操作误差四个方面,结合原子吸收分光光度计的具体情况,粗浅分析如下:(1)仪器因素 仪器的稳定性和信噪比性能,原子化系统的性能以及原子化条件的选择是主要的因素.有文献将仪器的稳定性定义为在一段时间内,仪器保持其精度度的能力.实际上,这两个因素涉及仪器的光、机、电、计算机等各系统信噪比.如果仪器光源辐射能量强、噪声小,光信号检测器灵敏度高、噪声小,火焰发射噪声及喷雾噪声小,电学系统的信号强、噪声小.样品分析获得高精密度与准确度的仪器因素的不利影响将大大下降.(2)方法因素 测试方法方面的因素包括样品制备是否正确、器皿及制备过程是否受到污染、样品自身是否存在干扰因素、背景校正使用是否正确等.(3)环境因素 仪器所处的工作场所是否受到污染,实验室的温度、湿度、气压、清洁度是否符合要求,因为这些因素会对仪器的工作状态或样品产生影响.(4)操作因素 主要是仪器使用人员在仪器测试过程中操作不当产生的影响.例如,仪器工作参数选择不正确,测试过程的人为不当干预等.3,精密度与准确度的检验方法作为标准和规程的新标准与检定规程只给出了评价仪器分析性能的精密度指标.并且均采用相对标准差(RSD)度量仪器测量精密度.检测仪器精密度时,新标准和检定规程并没有给出仪器的具体工作参数,只要求将仪器各项参数调整到最佳工作状态.新标准没有规定测试用标准溶液浓度,只要求该浓度溶液能产生0.3-0.5吸光度值,并在线性范围内,对火焰法规定仪器积分时间为3秒.具体测试方法是样品溶液和空白溶液交替进行连续测定,火焰法测11次,石墨炉法测7次.检定规程在测试要求上与新标准有些区别:测试溶液产生的吸光度值范围是0.1-0.3,火焰法与石墨炉法连续测定次数均为7次,火焰法不要求样品与空白溶液交替测试,石墨炉法测试的镉标准溶液浓度规定为3ng/mL.相对标准差(RSD)的计算公式是:RSD=s/ ×100%,式中s为绝对标准差; 为标准溶液多次测定吸光度值的平均值.(此处公式里有符号显示不出来)原子吸收分光光度计的精密度、准确度与灵敏度或特征浓度等指标有一个共同特点是,不同样品中的不同元素,使用不同的原子化方法,其测定精密度与准确度各不相同,不存在统一的衡量指标.作为仪器检测标准,新标准和检定规程给出火焰法测铜元素的RSD应不大于1%;石墨炉法测镉元素的RSD应不大于5%.新标准还给出石墨炉法测铜元素的RSD应不大于4%.

  • TEC半导体可编程超高精度温度控制装置在热电化学电池性能测试中的应用

    TEC半导体可编程超高精度温度控制装置在热电化学电池性能测试中的应用

    [size=16px][color=#339999]摘要:电化学热电池(electrochemical thermcells)作为用于低品质热源的热电转换技术,是目前可穿戴电子产品的研究热点之一,使用中要求具有一定的温差环境。电化学热电池相应的性能测试就对温度和温差形成提出很高要求,特别是要求温度控制仪器具有高控制精度、可编程控制、周期交变控制、通讯和随机软件功能。本文介绍了新型超高精度具有多功能的PID控制仪,并详细描述了电化学热电池特性测试中的温度控制系统结构。[/color][/size][align=center][size=16px][img=电化学热电池性能测试中的TEC半导体制冷片温度控制解决方案,600,379]https://ng1.17img.cn/bbsfiles/images/2023/04/202304171026207841_631_3221506_3.jpg!w690x436.jpg[/img][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 温差发电在固体材料与半导体材料的发展上均比较成熟,而近年出现了一种新型的电化学热电池(electrochemical thermcells)拥有更高的塞贝克系数,同时成本较低、能够适应复杂热源表面,因而具有一定的应用前景,成为当前研究的热点方向之一。如图1所示,这种电化学热电池的基本原理是利用电化学体系中的赛贝克效应,将冷热电极之间的温差直接转化为电势差而产生发电效果,因此温差环境是使用和测试评价电化学电池的必要条件。[/size][align=center][size=16px][color=#339999][b][img=01.电化学热电池原理图,450,396]https://ng1.17img.cn/bbsfiles/images/2023/04/202304171027053355_4631_3221506_3.jpg!w690x608.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 电化学热电池基本原理[/b][/color][/size][/align][size=16px] 电化学热电池中的电解质、材料和电极受温度的影响,以及整个热电池的相关性能测试评价,对测试过程中的温差形成有十分复杂的要求,具体内容如下:[/size][size=16px] (1)热电池的两个冷热端电极要处于不同温度以形成温差,两个电极温度要具有一定的变化范围以便在不同电极温度和不同温差条件下测试评价热电池的各种性能。[/size][size=16px] (2)对于冷端温度,可采用TEC半导体制冷片进行调节和控制,但热端温度普遍较高,采用制冷片无法实现高温加热,需采用电阻等加热。[/size][size=16px] (3)在热电池性能测试过程中,需要在冷热电极处实现台阶式或周期交变式可编程温度变化。这样一方面是能够测试不同电极温度和不同温差下的热电池性能,得到热电池最佳工作状态时的温度和温差条件,另一方面是测试考核热电池的疲劳衰减特性。[/size][size=16px] (4)新型的电化学热电池往往很薄,如各种可穿戴电子产品用热电池。在实际应用中,这类薄片或薄膜状热电池上形成的温差很小,这就要求热电池性能测量装置需要具备在冷热电极之间提供小温差的能力。[/size][size=16px] 根据上述要求可以看出,一旦电化学热电池形状确定,热电池性能测试装置的结构也基本确定,而测试装置中温度控制的关键是确定合理的加热方式和温控仪表。[/size][size=16px] 对于加热形式,采用电阻加热和TEC半导体制冷片两种形式,可满足绝大多数电化学热电池在任意温度和温差范围内的测试需要,对于温度不高的测试,可仅使用TEC半导体制冷片进行温度控制。电阻加热用于热电极处的高温加热,温度范围为50~150℃以上。TEC半导体制冷片加热用于冷电极处的低温加热和冷却,温度范围为-10~60℃。[/size][size=16px] 对于温控仪表,满足上述温度控制要求的控温仪表需具备以下功能:[/size][size=16px] (1)可对电阻加热和TEC半导体制冷片分别进行控制。[/size][size=16px] (2)可编程控制功能,可控制温度按照编程设定的温度折线进行变化。[/size][size=16px] (3)交变温度控制功能,可控制温度按照设定周期和幅度进行交替变化。[/size][size=16px] (4)带PID自整定功能,避免繁琐的人工调整PID参数,并可存储和调用多组PID参数。[/size][size=16px] (5)测量和控温精度高,特别是要满足薄膜热电池的温差控制,控温精度要达到0.01℃。[/size][size=16px] (6)带通讯功能可与上位机连接,由上位机进行设置、编程、控制运行、显示和存储。[/size][size=16px] (7)带计算机软件,无需编程,可通过计算机进行设置、编程、控制运行、显示和存储。[/size][size=16px] 从上述功能要求中可以看出,电化学热电池性能测试中对温度和温差形成的要求很高,特别是要求温控仪表具有高控制精度、可编程控制、周期交变控制、通讯和随机软件功能,而这些很多都是目前电化学热电池性能测试用控温仪无法具备的功能。为此,本文介绍了新型超高精度具有多功能的PID控制仪,并详细描述了电化学热电池特性测试中的温度控制系统结构。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案设计的温控系统典型结构如图2所示。[/size][align=center][size=16px][color=#339999][b][img=02.电化学热电池性能测试温控系统结构示意图,690,343]https://ng1.17img.cn/bbsfiles/images/2023/04/202304171027488618_9875_3221506_3.jpg!w690x343.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 电化学热电池性能测试温控系统结构示意图[/b][/color][/size][/align][size=16px] 图2所示的解决方案示意图包含了电化学热电池性能测量装置和温度控制系统两部分。其中的电化学热电池测量装置示出的是对块状、板状或薄膜状热电池的测试结构,电极分别贴服在热电池的顶部和底部,顶部的阴极电极处通过TEC半导体制冷片进行低温控制形成冷电极,底部的阳极电极处通过电阻加热方式(电热膜和电热块)进行高温控制形成热电极,由此在热电池上下两端形成所需温差。需要说明的是,解决方案在冷电极处选择TEC半导体制冷片的主要目的是为了实现高精度的温度控制,这在测试评价薄膜式可穿戴用热电池中实现高精度小温差时非常重要。在热电极出选择电阻加热方式主要是为了满足更高温度的大温差测试需要。[/size][size=16px] 由于半导体制冷片和电阻加热是两种完全不同的发热制冷原理,它们的温度控制方式也完全不同,因此图2所示解决方案设计了两个独立的温控回路,两个温控回路采用的是相同的超高精度PID控制器VPC2021-1。选择使用VPC202-1这种PID控制器,是出于多功能和超高精度的考虑,此控制器可以满足前面所述的对温度控制器的所有要求。[/size][size=16px] 在TEC半导体制冷片温控回路中,使用了VPC2021双向控制功能,通过采集温度传感器信号与设定温度进行比较后,驱动双向电源对TEC制冷片进行加热或制冷控制,由此实现高精度的温度控制。[/size][size=16px] 在电阻加热温控回路中,使用了VPC2021基本的温度控制功能,通过采集温度传感器信号与设定温度进行比较后,驱动固态继电器进行加热,由此实现高精度的温度控制。这里需要注意的是,如果要在电阻加热中实现较高精度的温度控制,除了采用高精度的温度传感器(如铂电阻或热敏电阻)之外,还需要与相应的冷源配合以减小热惯性,如在电阻发热体下面配备冷却装置以便能够形成快速散热。如果是测量薄膜热电池,则无需这些考虑,只需在电阻发热体下面增加绝热层即可,因为热电池和电阻加热膜厚度很小,热惯性自然也小,冷电极的低温可以对热电极进行快速散热,有利于热电极处的温度高精度控制。[/size][size=16px] 为了实现热电池的温度交变试验,解决方案采用了VPC2021控制器的高级功能:远程设定点功能,即在辅助输入通道上接入外部信号发生器以生成各种周期性波形信号作为交变设定值,由此可控制热电极温度按照此设定波形进行周期性变化,从而形成交变温差。如图2所示,此远程设定点功能的选择可以通过一个外置开关进行选择,实现正常控温和交变控温之间的切换。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 本文提出的解决方案,可以满足绝大多数电化学热电池性能测试中的温差环境控制需要,为测试评价热电池性能和优化使用条件提供了便利的试验和考核手段。[/size][size=16px] 更重要的是高精度PID控制器配备了相应的计算机软件,采用了具有标准MODBUS通讯协议的RS485接口,与计算机一起可以组成独立的测控系统,通过计算机可方便的对PID控制器进行远程操控,设置控制器的各种参数,采集、存储和曲线形式显示PID控制器的过程参数,无需再进行任何编程即可进行测试试验,非常适应于实验室研究试验。[/size][size=16px] 此解决方案的另外一个特点是具有很强的灵活性和拓展性,可通过外置不同传感器和信号发生器实现多种物理量和波形的准确控制,更可连接上位机直接与中央控制器进行集成,与整个设备形成很好的配套。[/size][align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~[/align]

  • 光伏发电斜面太阳辐照度仪器

    光伏发电斜面太阳辐照度仪器

    光伏发电斜面太阳辐照度仪器太阳总辐射是地球表面某一观测点水平面上接收太阳的直射辐射与太阳散射辐射的总和。其中太阳总辐射由太阳直接辐射强度和太阳散射辐射组成。随着科技的进步,人们对太阳的认识逐渐加深,太阳辐射的神秘面纱开始逐渐被揭开。为了提高太阳总辐射利用率,使其发挥更大的作用,工业上通过使用太阳辐照度仪器实现对太阳总辐射的监测,并根据其强度的大小,做出合理的规划。太阳辐照度仪器是一种重要的地面气象观测仪器,也是太阳能资源普查与光伏电站运行监控领域不可或缺的装备。常见的太阳辐照度仪器类型有热电式和光电式两种。太阳辐照度仪器是测量太阳直接辐射光谱特性的仪器,仪器不仅能测量太阳直接辐射的光谱特性,还能测量太阳角散射(日晕)辐射特性。仪器在PC微机控制下,能自动对准和跟踪太阳,完成转换滤光片、调整增益、定时采集和存储数据等测量工作。[img=太阳辐照度仪器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204120901285483_1842_4136176_3.jpg!w690x690.jpg[/img]目前已有的太阳辐照度仪器大致可分成三种,一种是便于普及的简易型,需要人工瞄准和记录,精度不高但成本低。第二种为实验室型通常采用光电倍增管及光栅单色仅,因而可达到很高的性能。但是操作复杂成本高昂,一般只用于基地测量。第三种是采用最新的光电元件和电子技术,在比较简单的装置上达到了很高的性能指标。例如采用微机控制实现主动式追寻,程控工作,自动采集和存储数据等,因而大大简化操作,便于推广,成为当前的发展方向。选取合适波长的滤光片,从大气光学厚度数据可以计算大气中沉降水,臭氧及一些污染气体含量。或者利用反演方法得到大气中气溶胶粒子的粒谱特性。而测量辐射的散射特性可以得到更多的大粒子信息。太阳是一个高质量的且可以廉价使用的光源,故利用太阳辐射计的研究工作在大气物理,气象研究、环境保护等许多领域都受到重视。[img=太阳辐照度仪器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204120901492233_3019_4136176_3.jpg!w690x690.jpg[/img]二、太阳辐照度仪器设计对多功能太阳辐照度仪器的基本要求是在测量直接辐射时应有较高的精度,而在测量散射辐射时要有足够的灵敏度和很低的杂散光干扰。要在一个系统上实现这两种功能是有一定困难的,必须具备三个数量级以上的动态范围和极低的系统噪音。仪器应该使用方便,操作简单,能自动完成测量工作。

  • 太阳能光热发电的各个方面

    太阳能光热发电的各个方面  太阳能光热发电以其与现有电网匹配性好,发电连续稳定,调峰发电能力较强和生产过程绿色环保等特点受到广泛关注,日益受到追捧,引发了新一轮跑马圈地和投资热潮。  然而,在高技术领域,先驱和先烈往往只有一步之遥。前景的美好,不能改变现实的残酷。就目前来看,光热发电所向披靡至少还需要在技术、成本、政策三大方面进一步发力。  技术方面,虽然我国已经具备相当的技术储备,但同支撑整个行业的健康可持续发展的需要还有一定的差距。尤其是过去的技术研发都是针对单个器件,最大的缺陷在于没有完成太阳能热发电项目的经验,而电站集成是非常困难的技术。  为此,我们应调动产业链各相关单位,通过建设实际电站项目锻炼提高,加大研发力度,提高产业链各环节的集成水平。在这一过程中,尤其要强化自主研发和知识产权保护,避免盲目引进国外技术,从而造成核心技术的缺失,桎梏整个产业在全球范围内的竞争力。  一切取决于降低成本,成本决定产业化的成败。光热发电关键技术上的进展,必须着眼于成本的降低。在市场经济环境下,技术成果的产业化,必须满足成本竞争的需要。高效率、低成本,是太阳能热发电能否实现商业化的关键。  业内专家就指出,光热发电单位投资如果在5万元/KW以上,是难以推广的,市场是看不见的。如果能够降到3万元/KW,则市场开始出现;如果再降到1.5万元/KW,市场将非常大;再降到1万元/KW,那么其市场就不可估量。  目前,光热发电目前还处于孕育和起步阶段,国家政策的重视和支持必不可少,尤其是在“电价”和“并网”这两个方面更应给予足够的支持。  大唐新能源公司自去年中标鄂尔多斯光热发电项目后,1年多来项目并未获得明显进展。究其原因,业内普遍认为是由“中标价格太低”所致。据测算,在西班牙、美国等光热发电大国,即便目前最为成熟和经济的槽式光热发电项目,每千瓦时电成本也为2元左右;如果在我国做同类项目,每千瓦时电成本会低些,但也会大致维持在1.4元左右。以当时0.9399元/千瓦时的中标价建成并运营项目,肯定是亏本,企业的积极性自然不高。  电价政策制定也应当科学合理,不应按时间划线,而是应该按装机容量来测算。规模的扩大,必然带来成本的下降。如,当装机总量达到1000兆瓦时,定出一个电价;2000兆瓦时,又是另外一个电价。当然,电价将呈逐步下调的趋势,直到实现平价上网为止。文章来源:中国电力电子产业网

  • 风力发电用耐扭曲软电缆试验机

    哪位大神知道 哪个厂家的风力发电用耐扭曲软电缆试验机 符合以下的标准《额定电压1.8/3kV 及以下风力发电用耐扭曲软电缆 第3部分:扭转试验方法》 NB/T 31036-2012《电工电子产品环境试验 第2部分:试验方法 试验 A:低温》GB/T 2423.1-2001《电工电子产品环境试验 第2部分:试验方法 试验 B:高温》GB/T 2423.2-2001《电线电缆电性能试验方法 第8部分:交流电压试验》GB/T 3048.8-2007可以加qq 3135801164 谢谢电话 15898600070

  • 【原创大赛】【开学季】+实验室导热测试系统性能评价

    【原创大赛】【开学季】+实验室导热测试系统性能评价

    作为实验室仪器质控一部分,看了GB/T 27407-2010《实验室质量控制利用统计质量保证和控制图技术评价分析测量系统的性能》之后,决定实际演练一番。实际数据处理中,确实遇到了一个大难题。先把实际流程呈上来:导热系数测试仪性能评价评价依据:GB/T 27407-2010《实验室质量控制利用统计质量保证和控制图技术评价分析测量系统的性能》第一步:收集原始数据收集20个测试数据。表1 单质量控制样品的系列结果样品序号导热系数http://ng1.17img.cn/bbsfiles/images/2014/09/201409231241_515057_2552812_3.bmp 导热系数平均值http://ng1.17img.cn/bbsfiles/images/2014/09/201409231242_515059_2552812_3.bmpSUS304#不锈钢片115.2015.33 215.12315.43415.32515.24615.27715.24815.27915.191015.431115.56[/fon

  • 【原创】红外气体传感器应用于瓦斯发电

    瓦斯或称煤层气,实际上是一种非常规天然气,其主要成分是甲烷CH4。CH4瓦斯易爆,煤矿开采时的瓦斯爆炸给人们的生命财产带来严重祸殃,瓦斯直排大气,其温室效应是CO和CO2的多倍。我国煤层瓦斯资源十分丰富,是继俄罗斯和加拿大之后的第三大储量国。据悉,我国煤矿埋深在2 km 以内的瓦斯估计有30×1012 ~35×1012 M3,其热值较高,煤矿瓦斯每立方米可发电1~ 3.2 kW • h。。我国每年煤矿排出的瓦斯总量大约为135亿m3,可产生470亿kWh电能。而现在利用煤矿瓦斯发电产生的发电量仅为20亿kWh左右,大部分瓦斯都被直接排放到大气中,既浪费了资源,也污染了环境。因此大力发展瓦斯发电,不仅能缓解我们能源紧张问题,而且还可以保护环境,取得巨大的经济效应。我国瓦斯发电技术已经比较成熟,尝试和推广瓦斯发电可以拓展瓦斯应用领域,达到“以抽保用,以用促抽”的目的,保证矿井安全生产,保护环境,实现科学发展。国内现在已有多家瓦斯发电厂,相信不久将会更多,瓦斯发电主要关键技术有电控燃气混合器技术,贫燃技术,数字式点火技术,全电子控制技术。电控燃气混合器技术是针对煤矿瓦斯浓度不稳定、压力波动大的特点而采用先进的电子控制系统。首先,发电机组混合器腔内的氧传感器提供精确控制信号,通过步进电机控制空气和瓦斯的流量,实现对空燃比的精确控制,即甲烷与氧气的体积比为1:2。在机组运行过程中,甲烷的含量控制在5% 一16%爆炸极限之间,电子点火后,甲烷在气缸内充分爆炸做功,内燃机活塞上下往复运动,带动曲轴旋转,从而发电机转子切割磁力线发出电能。这种技术使内燃机无条件地适应了煤矿瓦斯的特点,解决了因瓦斯不稳定而影响发电机组功率波动大的问题。毫无疑问,在电控燃气混合技术中是要用到气体传感器的,只有有气体传感器的存在,才能把气体浓度信号传送给电子控制系统,使电机控制进气量,控制燃烧比,最大的利用热能,适应煤矿瓦斯浓度不稳定、压力波动大的问题。因此好的气体传感器在此技术中至关重要。武汉四方光电科技有限公司(www.gassensor.com.cn)专业生产红外气体传感器和红外气体分析仪器。该公司红外气体传感器采用非分光红外吸收光谱法(NDIR)技术,结合嵌入式的硬件和软件技术,可实现不同浓度、不同气体的高精度连续检测。公司产品已经广泛应用到机动车尾气检测、连续污染物监测系统CEMS、沼气分析、冶金炉气分析、红外可燃气体检测、石油天然气勘探等诸多领域。此外,瓦斯中可能含有H2S和水,这两种气体含量要严格控制,否则对管道及发动机的金属部件产生腐蚀,特别是对铜质及铝质部件腐蚀更为严重,因此,H2S的浓度监测也非常重要,四方光电的产品相信也能派上用场。总之,瓦斯发电在我国这样一个煤炭大国将是一个非常有前景的产业,而气体传感器相信也是推动这一产业进步的技术之一。[color=red]【由于该附件或图片违规,已被版主删除】[/color]

  • 功能性纺织品性能评价标准亟待系统化

    近期,亚洲纺织联盟和世界服装鞋帽网等主要纺织行业讯息网纷纷转载《现阶段关于功能性纺织品的安全问题》一文,称目前功能性纺织品开发中面临的最大问题是缺乏功能评价方法和评价标准。  文章首先以“阻燃纺织品”为例,指出目前大部分的纺织品阻燃功能仍借助传统的化学阻燃剂,而常见的化学阻燃剂主要以卤系阻燃剂和溴化阻燃剂为主,一旦消费者与这些产品接触过久,在长久的产品暴露下,极可能对身体产生严重的影响。  其次是“防辐射纺织品”的安全性,首要问题在于“防辐射功能的”不可确定性,其次是厂家可能在产品中添加汞、铅、镍、铬等重金属的材料制成涂层防辐射孕妇装,的确也起到了防辐射效果,但重金属对孕妇及胎儿造成的危害却不可估量。  据悉,功能性纺织品是指纺织品除具有自身的基本使用价值外还具有抗菌、除螨、防霉、抗病毒、防蚊虫、防蛀、阻燃、防电磁辐射、负离子保健等一种或多种功效。在对功能性纺织品进出口的监管上,原“国家质量监督检验检疫总局”于2010年12月1日开始推行实施《进出口功能性纺织品性能检验方法 第1部分:防紫外线性能》(SN/T 2558.1-2010);其后再于2011年2月25发布并于同年7月1日实施的《进出口功能性纺织品性能检验方法 第2部分:负离子含量检测》(SN/T 2558.2-2011),对该类纺织品监管做了进一步的补充;将于2012年11月16日实施的《进出口功能性纺织品性能检验方法 第3部分:免烫性能》(SN/T 2558.3-2012)代替《出口免熨烫服装检验规程》(SN/T 0779-1998)对功能性纺织品的免烫性能作出进一步要求。  目前,我国的功能性纺织品尚未形成标准化的国家或行业标准,未能实现全部功能性评价方法的标准化。结合对欧美等国的相关法规研究,常规的功能性纺织品测试项目有;●防火阻燃性能测试●抗静电测算●三防测试(防水、防油、易去污)●透湿性测试●透气性测试●抗紫外线测试  对于已形成一定规模、发展相对稳定的功能性纺织品产业而言,功能性纺织品性能评价标准亟待系统化,并据此规范生产,其安全性和市场竞争力方可得以保证。

  • 【转帖】垃圾发电:其实你不懂我的心

    北京六里屯、江苏吴江、南京天井洼、上海江桥、广州番禺……从北到南的反对声音,将国内新兴的垃圾发电产业推到了一个尴尬的位置。  垃圾发电,在采用成熟的“3T”技术后,已能使二噁英(Doxlin)完全分解,但人们对于垃圾发电的认识究竟有多深,仍实在是说不清楚,因为专家或者所谓专家之间有关二噁英污染的争执,加上各类媒体、网络的放大效应,已经彻底搅乱了人们的判断。  但有一个事实人们否定不了,也暂时改变不了的,就是垃圾越积越多,污染问题越来越严重。随着这些年中国经济的飞速发展和城市化进程的加速,至2008年中国城市生活垃圾总量已经达到1.55亿吨,“垃圾围城”已经是每个地方政府都遇到和感到头痛的难题。  不过,铺天盖地的媒体及网络炒作虽然有失偏颇,对于垃圾处理行业来说却是件好事,这说明公众的环保意识增强了,垃圾问题也被提到政府的议事日程上来。一位垃圾处理行业专家向记者表示,垃圾问题必须要得到解决,关键是如何找到一个相对高效而环保的垃圾处理解决方法,“垃圾发电,在我看来,就是一种生物发电、可再生能源,最为环保的处理方式之一。” 垃圾处理方式大PK  -全国600多座城市当中的三分之一以上已被垃圾包围,全国城市垃圾堆存累计侵占土地5亿平方米,相当于75万亩土地  -作为发达国家广泛采用的城市生活垃圾处理方式,垃圾焚烧发电最符合“无害化、减量化、资源化”三原则  一份资料显示,假如每人每天产生1公斤的垃圾,全球每天新增的垃圾数量就高达600多万吨,一年产生的垃圾数量更是惊人。长期以来,全球每日数百、上千万吨的生活垃圾仅以填埋的方式被处理,土地被一座座人工堆积的垃圾山所蚕食,空气、地下水和土壤被严重污染……这就是我们人类所面临的严酷现实。  垃圾填埋的最大优势在于处理成本相对较低,但要占据很大的土地资源,据北京市市政市容管理委员会有关人士曾透露,北京日产垃圾1.84万吨,垃圾填埋令北京市每年约需占用500亩土地,几乎要消耗掉两个小村庄。垃圾填埋场易产生恶臭、排放甲烷、氨、硫化物等污染物,以及垃圾渗滤液等环境问题。尤其是垃圾渗滤液,作为一种剧毒物质,造成的地表水或地下水污染非常严重,土地至少50年不能再使用。垃圾堆放还是有机物、重金属和病原微生物三位一体的污染源,包含许多致癌、致畸物,并成为蚊、蝇和啮齿类动物繁殖的温床,危害人类健康。  但由于缺乏资金和技术手段,国内对于垃圾的传统处理方法就是露天集中堆放或简易填埋。建设部2006年的调查表明,由于这种露天集中堆放或简易填埋的垃圾处理方式,全国600多座城市当中的三分之一以上已被垃圾包围,全国城市垃圾堆存累计侵占土地5亿平方米,相当于75万亩土地,而且,这一数字还在不断增大。  目前对于城市生活垃圾有三种技术较可靠的处理方式,即卫生填埋、焚烧发电和堆肥。在国金证券2008年初发表的一份报告中,就对这三种处理方式进行了一番比较。  国金证券对于卫生填埋的评价是,投资低但有大气污染、土壤污染,并有地表水污染和地下水污染的可能,占地大,选址困难。在北京、深圳等一些大中城市,目前所采用的是填埋场的场底辅设聚乙烯隔膜防渗,垃圾压实后再覆膜掩盖的处理方式,并有收集处理渗滤液、填埋气、防治土壤污染的一整套措施。但实际上这些塑料膜材料仍存在未来填埋垃圾出现渗漏、污染地下水等隐患,并且这种填埋场的建造成本和运营费用也相当高,让普通中小城市望尘莫及。  对于堆肥技术,国金证券的评价是投资适中,选址较易但需避开居民密集区,有轻微气味影响,重金属污染是最大隐患。业内专家评论认为,由于堆肥质量差、缺乏应用市场,运营商压力很大。  相比较而言,国金证券认为焚烧发电占地小而选址容易,可靠近市区,垃圾减容减量十分明显,仅有10%的残渣需要处理,在防止地表水、地下水和土壤污染方面较前两者有优势,在大气污染方面有控制技术,但投资较大。  业内人士表示,建设垃圾焚烧发电厂可节约大量土地资源,这对于面临垃圾围城、填埋场选址困难的城市尤其是沿海地区和大城市尤具吸引力。另一方面,焚烧可大大减少垃圾中的有害物质,烟气经过处理达标排放,减少对地下水和填埋场周边环境的大气污染,焚烧产生的蒸汽则可用于发电、供热,实现资源的回收利用。  国金证券的报告认为,作为发达国家广泛采用的城市生活垃圾处理方式,垃圾焚烧发电最符合“无害化、减量化、资源化”三原则,垃圾焚烧发电的资源回收利用效益相当可观,按发热值比较,我国目前城乡年产2.5亿吨垃圾相当于5000万吨标准煤。若综合考虑到经济成本与环境成本,垃圾焚烧发电成为我国城市生活垃圾处理方式的首选具备其必然性。  垃圾发电的二噁英之争  -1吨垃圾露天焚烧或在填埋场自燃排放的二噁英,是同量垃圾经过现代化焚烧排放的二噁英几千倍  -《纽约时报》:中国的焚烧炉也可以表现优异。在深圳另一端,政府所有的宝安焚烧厂大烟囱不见烟冒出。检验表明,该公司几乎没有污染物排出。  关于垃圾发电,目前市场各方争执的焦点就在于二噁英的排放。

  • 功能性纺织品性能评价标准亟待系统化

    近期,亚洲纺织联盟和世界服装鞋帽网等主要纺织行业讯息网纷纷转载《现阶段关于功能性纺织品的安全问题》一文,称目前功能性纺织品开发中面临的最大问题是缺乏功能评价方法和评价标准。  文章首先以“阻燃纺织品”为例,指出目前大部分的纺织品阻燃功能仍借助传统的化学阻燃剂,而常见的化学阻燃剂主要以卤系阻燃剂和溴化阻燃剂为主,一旦消费者与这些产品接触过久,在长久的产品暴露下,极可能对身体产生严重的影响。  其次是“防辐射纺织品”的安全性,首要问题在于“防辐射功能的”不可确定性,其次是厂家可能在产品中添加汞、铅、镍、铬等重金属的材料制成涂层防辐射孕妇装,的确也起到了防辐射效果,但重金属对孕妇及胎儿造成的危害却不可估量。  据悉,功能性纺织品是指纺织品除具有自身的基本使用价值外还具有抗菌、除螨、防霉、抗病毒、防蚊虫、防蛀、阻燃、防电磁辐射、负离子保健等一种或多种功效。在对功能性纺织品进出口的监管上,原“国家质量监督检验检疫总局”于2010年12月1日开始推行实施《进出口功能性纺织品性能检验方法 第1部分:防紫外线性能》(SN/T 2558.1-2010);其后再于2011年2月25发布并于同年7月1日实施的《进出口功能性纺织品性能检验方法 第2部分:负离子含量检测》(SN/T 2558.2-2011),对该类纺织品监管做了进一步的补充;将于2012年11月16日实施的《进出口功能性纺织品性能检验方法 第3部分:免烫性能》(SN/T 2558.3-2012)代替《出口免熨烫服装检验规程》(SN/T 0779-1998)对功能性纺织品的免烫性能作出进一步要求。  目前,我国的功能性纺织品尚未形成标准化的国家或行业标准,未能实现全部功能性评价方法的标准化。结合对欧美等国的相关法规研究,常规的功能性纺织品测试项目有;●防火阻燃性能测试●抗静电测算●三防测试(防水、防油、易去污)●透湿性测试●透气性测试●抗紫外线测试  对于已形成一定规模、发展相对稳定的功能性纺织品产业而言,功能性纺织品性能评价标准亟待系统化,并据此规范生产,其安全性和市场竞争力方可得以保证。参考:《现阶段关于功能性纺织品的安全问题》

  • 发现利用碳纳米管新发电现象

    美国麻省理工学院(MIT)宣布,发现了利用碳纳米管的新发电现象——“热力波”(Thermopower Wave)(英文发布资料)。麻省理工学院在《自然—材料学》([i]Nature Materials[/i])上发表了有关详细内容。发现这一现象的麻省理工学院化学工程副教授Michael Strano称,热力波是一种当热波在碳纳米管上高速传播时,会同时搬运电子或空穴(Hole)的现象。比如用环三次甲基三硝铵(RDX,塑料炸弹的主要材料)对多层碳纳米管(MWCNT)进行涂层,并在其一端通过激光器半导体点“火”。热波就会像导火线似的在多层碳纳米管上高速移动。其移动速度在2860K温度下超过2m/s,“是普通化学反应速度的1万倍”(麻省理工学院)。Strano等人发现,在这种波传递的同时能够形成非常大的电力。论文中的输出密度为7kW/kg。麻省理工学院表示,“论文发表之后开发工作仍在继续,现在已经实现了相当于锂离子充电电池100倍的输出密度”。Strano称,这种现象无法通过在热电转换元件中广为人知的“塞贝克效应”(Seebeck Effect)进行合理解释。“虽然被称作‘燃烧波’(Combustion Wave)的现象从100多年前就已经能够从理论上加以解释,但在碳纳米管上产生燃烧波、而且燃烧波还会产生电流,却是此前一直不为人知的现象”(Strano)。虽然利用这种现象的具体应用实例尚未出现,不过Strano表示“有望用于米粒大小的超小型传感器和可嵌入体内的电子产品等,或是散布在空气中使用的环境传感器”。上述现象为不可逆反应,因此无法用于充电电池,不过Strano表示“能够制造出不漏电不放电、可半永久性保存的(一次)电池”。资料来源:[url]http://paper.sciencenet.cn//htmlpaper/20104231042214218903.shtm[/url]

  • 太阳能热水器性能检测系统绿光设计

    太阳能热水器性能检测系统绿光设计

    太阳能热水器性能检测系统绿光设计太阳能热水器性能检测系统在建筑设计中的应用:太阳能在建筑节能中的应用形式主要分为太阳能光热应用和太阳能光电应用。对应形式涵盖内容和特点分述如下。1.太阳能光热应用主要形式(1)被动式太阳能建筑(2)太阳能热水系统(3)太阳能采暖系统(4)太阳能空气集热采暖系统(5)太阳能空调系统2.太阳能光电应用主要形式(1)按系统形式分①独立光伏发电系统②并网光伏发电系统(2)按建筑结合形式分①附着于建筑物上的光伏系统②集成到建筑物上的光伏发电系统②集成到建筑物上的光伏发电系统。被动式太阳能建筑:不实用机械动力,仅通过太阳能的有效利用,使建筑物具备一定冬季采暖和夏季降温的功能。主要形式用:直接受益式被动太阳能建筑;集热蓄热墙式被动太阳能建筑;附加阳光间式被动太阳能建筑;组合式被动太阳能建筑。太阳能热水器性能检测系统在被动式太阳能建筑的应用中要注意冬季采暖应用应在综合考虑气候条件、建筑用途和建筑围护结构保温性能等综合因素后确定合理形式。夏季被动降温应考虑遮阳和建筑通风有效措施。设计阶段应进行综合评估,以使被动太阳能建筑即满足使用功能又建造美观、维护方便。[img=太阳能热水器性能检测系统,400,400]https://ng1.17img.cn/bbsfiles/images/2022/06/202206290919584073_5644_4136176_3.jpg!w690x690.jpg[/img]太阳能热水器性能检测系统主动式太阳光建筑:太阳能结合常规能源有效利用,满足建筑物的生活热水、采暖、空调和生活用电需求。主要应用形式有:(1)太阳能热水系统(这是太阳能光热利用最成熟的方式之一,因其技术成熟且经济效益显著,已实现大规模商业化应用);(2)太阳能采暖系统(将太阳能转化成热能,供给建筑物冬季采暖的系统,系统主要包括集热器、贮热器、供热采暖末端设备、辅助加热装置和自动控制系统等。);(3)太阳能空气集热采暖系统(由太阳能空气集热器、风机、散流器、温控器等部件组成。当太阳能辐射较好时,风机开启,循环加热室内空气,以解决建筑室内采暖问题。)(4)太阳能空调系统目前的主要形式是太阳能吸收式空调,太阳能热水器性能检测系统主要构成包括太阳集热器、吸收式制冷机和辅助热源。一般夏季空调周期,太阳集热器负责向吸收式制冷机提供所需要的热媒水,吸收式制冷机负责将吸收制冷转化后的冷水提供至建筑室内,供空调使用;冬季采暖周期,由太阳能集热系统直接向建筑供暖。[img=太阳能热水器性能检测系统,400,400]https://ng1.17img.cn/bbsfiles/images/2022/06/202206290920151363_7918_4136176_3.jpg!w690x690.jpg[/img]

  • 太阳能发电给您带来欢乐

    太阳能发电实行上网分类标杆电价,对于按照国家有关规定已纳入或符合纳入国家可再生能源电价补贴目录范围的,第I类集中式光伏电站执行0.10元/千瓦时,第I类分布式光伏电站中选择“全额上网”模式的执行0.10元/千瓦时,选择“自发自用、余量上网”模式执行0.25元/千瓦时。对符合《国家发展改革委关于2021年新能源上网电价政策有关事项的通知》(发改价格[2021]883号)精神,平价上网的新备案集中式光伏电站、工商业分布式光伏项目,执行上网电价0.25元/千瓦时。

  • 【转帖】新技术:美国科学家利用尾气发电驱动汽车

    一向令人生厌的汽车尾气现在有了新用途。美国科学家研发的一项新技术可利用尾气发电驱动汽车,从而节省燃油。  据美国媒体报道,美国能源部资助的这项研究,由通用汽车公司与俄亥俄州州立大学合作进行。研究人员将一种特殊的电镀金属装置安装在汽车排气管上,利用尾气与空气间温差导致的热电效应,形成电流,通过电动机驱动汽车。  专家解释说,在上述装置内由两种金属组成的回路中,如果两个接触点之间产生温度差,金属电子的状态会发生变化形成电流,这种热电转换现象即为热电效应。  研究人员指出,这一装置可使一辆雪佛兰越野车的燃油利用率提高5%,相当于每升燃油多跑0.43公里。小型车如果安装这种装置,节油效果会更明显。  据报道,美国能源部希望通过这项研究将汽车燃油利用率提高10%。研究人员说,如果该装置最终达到这一目标,通用汽车公司今后在美国销售的所有汽车有望每年节省燃油约1亿加仑(约3.78亿升)。

  • 关于做好2023—2025年发电行业企业温室气体排放报告管理有关工作的通知

    各省、自治区、直辖市生态环境厅(局),新疆生产建设兵团生态环境局:  为加强企业温室气体排放数据管理工作,建立健全数据质量管理长效工作机制,现将2023—2025年发电行业企业温室气体排放报告管理有关工作要求通知如下。  [b]一、工作任务[/b]  各省级生态环境部门要依据《碳排放权交易管理办法(试行)》有关规定,组织开展发电行业企业温室气体排放报告管理有关工作。石化、化工、建材、钢铁、有色、造纸、民航等行业企业温室气体排放报告管理有关工作安排另行通知。  [b](一)确定并公开年度名录[/b]  发电行业纳入全国碳排放权交易市场的年度重点排放单位名录(以下简称名录),包括经最近一次核查结果确认以及上年度新投产预计年度排放量达到2.6万吨二氧化碳当量(综合能源消费量达到1万吨标准煤)的发电行业(分类代码见附件,自备电厂视同发电行业)企业或其他经济组织。  对因停业、关闭或者其他原因不再从事生产经营活动而停止排放温室气体,或经核查上两年度温室气体排放均未达到2.6万吨二氧化碳当量的排放单位,省级生态环境部门要组织现场核实确认,向其书面告知应履行的碳排放配额清缴义务、完成时限等事项,并在确认其完成相应义务后从名录中移出。  各地应于每年12月31日前确定下一年度名录(2023年度名录需在2023年3月10日前确定),通过全国碳市场管理平台(以下简称管理平台,网址为www.cets.org.cn)向我部报告,并通过管理平台向社会公开。  [b](二)组织制订2023年度数据质量控制计划[/b]  组织重点排放单位,按照《企业温室气体排放核算与报告指南 发电设施》(环办气候函〔2022〕485号,以下简称《核算报告指南》)要求,于每年12月31日前通过管理平台完成下一年度数据质量控制计划制订工作(2023年度数据质量控制计划需在3月10日前完成)。  [b](三)组织开展月度信息化存证[/b]  组织重点排放单位,按照《核算报告指南》等要求,在每月结束后的40个自然日内,通过管理平台上传燃料的消耗量、低位发热量、元素碳含量、购入使用电量、发电量、供热量、运行小时数和负荷(出力)系数以及排放报告辅助参数等数据及其支撑材料。  [b](四)组织报送年度温室气体排放报告[/b]  组织重点排放单位于每年3月31日前通过管理平台报送上一年度温室气体排放报告。其中,2022年度温室气体排放报告,按照《企业温室气体排放核算方法与报告指南 发电设施(2022年修订版)》(环办气候〔2022〕111号)要求编制;2023和2024年度温室气体排放报告,按照《核算报告指南》要求编制。  2022年度全国电网平均排放因子为0.5703t CO2/MWh。后续年度全国电网平均排放因子如有更新,将由我部在当年年底前另行发布。  [b](五)组织开展年度排放报告核查[/b]  组织有关技术支撑单位或委托第三方技术服务机构,按照《企业温室气体排放报告核查指南(试行)》(环办气候函〔2021〕130号)和《企业温室气体排放核查技术指南 发电设施》(环办气候函〔2022〕485号)要求,通过管理平台进行文件评审,开展现场核查并线上填报核查信息、编制核查报告,确保核查全过程电子化留痕,于每年6月30日前完成对重点排放单位上一年度温室气体排放报告的核查及管理平台填报工作。核查结束后,省级生态环境部门应将管理平台生成的核查结果数据汇总表、配额分配相关数据汇总表书面报送我部,抄送全国碳排放权注册登记机构。  [b](六)强化数据质量日常监管[/b]  按照《核算报告指南》等要求,组织有关技术支撑单位或委托第三方技术服务机构对重点排放单位月度信息化存证的数据及信息进行技术审核,识别异常数据,及时将有关问题线索移交设区的市级生态环境部门进一步查实和处理。我部将对各地碳排放数据质量开展评估。  组织和指导设区的市级生态环境部门,对重点排放单位数据质量控制计划编制与实施情况进行监督检查,督促重点排放单位及时、规范开展存证,对煤样采集、制备、留存的规范性、真实性进行现场抽查,对投诉举报和上级生态环境部门转办交办有关问题线索逐一进行核实处理。对于存证材料不及时、不规范、不完整及不清晰等情况,设区的市级生态环境部门应在3个工作日内组织重点排放单位完成查实整改。对于存在异常数据等问题线索的,设区的市级生态环境部门应及时组织重点排放单位提交相关证明材料,并将查实意见通过管理平台报省级生态环境部门。  [b](七)开展对核查技术服务机构的评估[/b]  根据《企业温室气体排放报告核查指南(试行)》要求,对核查技术服务机构的工作质量、合规性、及时性等进行评估,于每年7月31日前通过管理平台向社会公开评估结果。  [b]二、保障措施  (一)加强组织领导[/b]  各地应高度重视温室气体排放报告管理相关工作,加强组织领导,建立定期检查与随机抽查相结合的常态化监管执法工作机制,通过加强日常监管等手段切实提高碳排放数据质量。我部将对各地落实本通知重点工作任务情况进行监督指导和调研帮扶,对年度核查完成进展、信息化存证及时性和规范性以及数据质量存在的突出问题等进行通报。  [b](二)落实工作经费保障[/b]  各地应落实温室气体排放核查、数据质量日常监管以及相关能力建设培训等碳排放数据质量管理相关工作所需经费。通过政府购买服务委托技术服务机构开展核查的,应尽早在每年的核查经费中提前安排下一年度核查技术服务机构所需经费,并在年底前完成下一年度核查技术服务机构招投标有关程序,按期保质保量完成相关工作。鼓励省级生态环境部门委托下属单位开展有关核查工作。  [b](三)加强能力建设[/b]  各地应尽快组建一支高水平、专业化的碳市场监管队伍,充实碳排放监督执法人员,提升执法能力水平。加大培训力度,定期组织对设区的市级生态环境部门、重点排放单位、核查技术服务机构的专题培训,提升从业人员、管理人员的技术水平和专业能力。  [b](四)启用全国碳市场管理平台[/b]  省级生态环境部门根据确定的名录,向管理平台申请开立重点排放单位账户,并将登录名及初始密码告知重点排放单位。省级生态环境部门负责开立设区的市级生态环境部门和核查技术服务机构的管理平台账户,并组织核查技术服务机构在管理平台维护机构和人员的账户信息。设区的市级以上地方生态环境部门可通过管理平台进行碳排放数据质量监管和审核。  工作中遇到相关问题,及时向我部反馈。  特此通知。  联系人:  应对气候变化司张保留、杨乐亮  (010)65645679、65645665  国家气候战略中心(技术咨询)王中航、于胜民  (010)82268486、82268461  信息中心(管理平台咨询)吴海东 (010)84665799   附件:发电行业分类代码  生态环境部办公厅  2023年2月4日  (此件社会公开)  抄送:环境发展中心、环境规划院、气候战略中心、信息中心。  [b]附件发电行业分类代码[/b][table=800][tr][td][align=center][b]国民经济行业分类代码(GB/T 4754-2017)[/b][/align][/td][td][align=center][b]类别名称[/b][/align][/td][/tr][tr][td][align=center]4411[/align][/td][td][align=center]火力发电[/align][/td][/tr][tr][td][align=center]4412[/align][/td][td][align=center]热电联产[/align][/td][/tr][tr][td][align=center]4417[/align][/td][td][align=center]生物质能发电[/align][/td][/tr][/table]注:类别“生物质能发电”中,掺烧化石燃料燃烧的生物质发电企业需报送,纯使用生物质发电的企业无需报送。

  • 新型表征参数——根据密度和导热系数关系评价材料的隔热性能

    新型表征参数——根据密度和导热系数关系评价材料的隔热性能

    [color=#990000]摘要:针对低密度隔热材料在实际工程中的应用,介绍了两个新型表征参数,分别在固定厚度和固定热阻情况下,对低密度隔热材料进行评价、选材和优化。同时,还推荐采用瞬态法测量隔热材料的热扩散系数,可以在准确表征隔热性能的同时,还能简化测试设备及其造价。[/color][hr/][b][color=#990000]1. 问题的提出[/color][/b] 在低密度隔热材料的实际工程应用中,往往存在着以下两方面的问题: (1)普遍认为隔热材料的密度越低,隔热性能越好,从而在保温板等行业内将密度视为影响保温板隔热性能的唯一因素和产品指标,但实际情况并非如此。 (2)在隔热系统设计中,往往需要根据事先明确的隔热层热阻指标,来选择合理的隔热材料并进行优化。但根据热物理性能参数(如导热系数和密度)如何对隔热材料进行正确的优化选择,并没有一个简便和有效的方法。 本文将针对以上问题,介绍了两个新型表征参数,以便更直观、更具有物理意义和更简便的对隔热材料进行评价,来满足实际工程应用中隔热材料的选择和优化需要。[color=#990000][b]2. 新表征方式的提出[/b]2.1. 密度因子(λ/ρ)[/color] 隔热材料的导热系数与材料密度有很强的相关性,大多数隔热材料都为多孔材料,随着隔热材料孔隙率的提高或密度的降低,其导热系数变小,但导热系数并不是随着密度的减小而无限降低,如图2-1所示,当密度小于某个临界值后,由于孔隙率太高,空隙中的气体开始产生对流,辐射传热也相应加强,这时隔热材料的导热系数反而增大[1]。因此对于多孔材料隔热性能的评价,不仅只采用导热系数这个参数,还要同时考虑密度的影响。[align=center][img=,618,884]https://ng1.17img.cn/bbsfiles/images/2020/02/202002172009301230_3093_3384_3.png!w618x884.jpg[/img][/align][align=center][color=#990000]图2-1 不同温度下采用不同稳态热流计法设备(PMA2和PMA4)测试不同密度氧化铝纤维毡导热系数的结果[/color][/align] 在隔热材料的各个热物理性能参数之间,有以下关系存在:[align=center][img=,690,193]https://ng1.17img.cn/bbsfiles/images/2020/02/202002172009580845_1756_3384_3.png!w690x193.jpg[/img][/align] 由上式可以看出,密度因子的大小决定了材料的隔热能力,密度因子越小代表隔热能力越强。其物理意义在于:在材料厚度固定情况下,密度与热阻乘积表征了材料的隔热能力,乘积越大,隔热能力越强。 密度因子应用的典型案例是评价不同类型膨胀聚苯乙烯(EPS)板[2],四种牌号的EPS板热物理性能如图2-2所示。从图中可以看出,四种牌号EPS板的导热系数随着蜜豆的增大而单调降低,密度越大反而导热系数越大。[align=center][img=,690,207]https://ng1.17img.cn/bbsfiles/images/2020/02/202002172010225882_6318_3384_3.png!w690x207.jpg[/img][/align][align=center][color=#990000]图2-2 四种牌号EPS板的热物理性能[/color][/align] 将四种牌号EPS板的密度因子绘制成直方图,如图2-3所示,由此可见,密度更高的EPS 150和200板具有最好的隔热能力。[align=center][img=,690,476]https://ng1.17img.cn/bbsfiles/images/2020/02/202002172010432515_6258_3384_3.png!w690x476.jpg[/img][/align][align=center][color=#990000]图2-3 密度因子的直方图[/color][/align] 另外,从上式中还可以看出,材料的隔热性能还可以通过直接测量热扩散系数进行表征,这在实际测试中有着十分重要的意义。因为导热系数的直接测量往往十分复杂,通常必须检测量热流量。此外在这种导热系数直接测试实验中,通常情况下,加热器产生的一些热量不会流过样品,而是通过辐射损失掉。而在直接测量热扩散系数的方法中,大多采用瞬态法,只需测量温度随时间的变化,往往无需考虑辐射热损带来的影响,由此可以使得测试装置大大简化,这在高温下的测试中效果尤为明显。[color=#990000]2.2. 隔热效率(ρλ)[/color] 隔热的主要功能是限制热流,当热流密度为q的热流通过厚度为d 、具有有效导热系数λ (有效热阻R )的隔热层,那么贯穿整个厚度的温差为△T ,它们之间的关系由傅里叶传热定律给出:[align=center][img=,690,259]https://ng1.17img.cn/bbsfiles/images/2020/02/202002172011074275_944_3384_3.png!w690x259.jpg[/img][/align] 因此,上式的物理意义在于:对于给定的所需热阻R,单位面积所需的隔热质量与密度和导热系数的乘积成正比。即对于任何设计要求的热阻,最小化隔热效率参数ρλ可以最小化稳态传热中每单位面积所需的隔热质量。 隔热效率参数应用的典型案例是评价航天飞行器金属热防护系统用不同类型隔热材料的评价[3,4],在0.1Pa的高真空下,测试研究了多种纤维隔热材料样品隔热效率参数作为温度的函数,如所示图2-4。所提供的数据包括密度分别为96、96、107、267和202.4 kg/m3的Q-Fiber、Saffil、APA、ZYF和OFI五种纤维类隔热材料。从图中可以看出,OFI的隔热效率参数最低,对于特定的应用,其单位面积的质量要求更低。Q-Fiber和Saffil有相似的性能。在高达1000 K的温度下,APA的性能类似于Saffil和Q-Fiber,但在较高温度下性能稍差。ZYF在整个温度范围内具有最高的隔热效率参数,但具有更高的使用温度。Q-Fiber、Saffil、APA、ZYF和OFI五种纤维类隔热材料长期使用的极限温度分别为1370、1760、1760、2200和1600 K。[align=center][img=,690,476]https://ng1.17img.cn/bbsfiles/images/2020/02/202002172011243545_7239_3384_3.png!w690x476.jpg[/img][/align][align=center][color=#990000]图2-4 空气中0.1Pa压力下多种隔热材料隔热效率参数岁温度变化的比较。[/color][/align][color=#990000][b]3. 结论[/b][/color] 综上所述,针对低密度隔热材料在不同工程应用中的评价,引入了物理意义明确的两个实用参数,即: (1)在材料厚度固定情况下对材料隔热能力进行评价时,可以选择隔热因子参数,隔热因子越小,隔热能力越强。 (2)在材料热阻固定情况下对材料隔热能力进行评价时,可以选择隔热效率参数,隔热效率参数越小,隔热效率越高。 (3)采用直接测试隔热材料热扩散系数的瞬态法,可以忽略传热边界条件对测量的影响,简化测量装置,在高温下可以采用结构非常简单的设备来完成隔热材料热扩散系数的准确测量。 总之,上述介绍两个新型表征参数对于初步比较十分有用,但隔热材料在实际使用中会经历热流、气压和周围材料温度的变化,因此它们很少达到稳定状态,这使得在复杂的瞬态环境中很难建立一个简单参数来精确比较材料的隔热性能。确定特定热系统中使用最有效的隔热材料是一项复杂的任务,不仅需要考虑隔热材料本身的瞬态热性能,还必须考虑与其他部件的相互热作用,以及在不降低性能情况下抵抗其他环境影响。然而,上述两个表征参数,至少可以在实际工程应用中粗略比较稳态条件下现有的各种隔热材料。[b][color=#990000]4. 参考文献[/color][/b](1) Wulf R, Barth G, Gross U. Intercomparison of insulation thermal conductivities measured by various methods[J]. International journal of thermophysics, 2007, 28(5): 1679-1692.(2)Lakatos á. Thermal conductivity of insulations approached from a new aspect[J]. Journal of Thermal Analysis and Calorimetry, 2018, 133(1): 329-335.(3)Daryabeigi K, Cunnington G R, Knutson J R. Combined heat transfer in high-porosity high-temperature fibrous insulation: Theory and experimental validation[J]. Journal of thermophysics and heat transfer, 2011, 25(4): 536-546.(4)Daryabeigi,K., "Effective Thermal Conductivity of High Temperature Insulations for Reusable Launch Vehicles," NASA TM-1999-208972, February 1999.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 浅谈核聚变发电

    一、核聚变的原理  核聚变,又称核融合,是指由质量小的原子,比方说氘和氚,在一定条件下(如超高温和高压),发生原子弹互相聚合作用,生成中子和氦,并伴随着巨大的能量释放的一种核反应形式。原子核中蕴藏巨大的能量。由较轻的原子核变化为较重的原子核,称为核聚变,就像我们每天见到的发光发热的太阳。二、核聚变发电的优势  我们目前所使用的常规能源都存在着种种缺陷,如环境的污染、资源不可再生而面临的枯竭,而风能和太阳能所能提供的电力也是有限的,利用核裂变原理而建成的核电站所产生的核废料都要严格监测,不然就会贻害千年。  核聚变发电的优势则相当明显了,就海洋中的氘资源几乎是取之不尽用之不竭,核聚变最理想的氦3虽然在地球上找不到,但在月球上却是应有尽有,所以不用担心面临能源枯竭的问题。  相比核裂变,核聚变所释放出来的能量就要强得多,而且不会产生放射性的核废料,所产生的核辐射也要小得多,因此,核聚变是一种清洁高效的能源。可以这样认为:核聚变电站可以一劳永逸地解决全球变暖问题。  核能是一种令人生畏的能量,原子核虽然小,但微小的质量亏损在乘以光速的平方后将会获得巨大的能量(质能方程E=mc2),只要我们能够控制住它,将这股能量缓缓放出,将会获得比核裂变更加巨大的能量。三、核聚变发电的难点  核聚变有着我们现有能源没有的优点,但是直到目前为止,人类还没有完全掌握到控制它的技术,要想获得核聚变装置必须突破非常多的瓶颈。  核聚变的反应需要近亿摄氏度的高温才能进行,原子弹爆炸可以达到这个温度,所以第一颗氢弹爆炸的时候是首先利用原子弹爆炸的高温来触发核聚变的起燃器。不过到目前,激光技术的发展使得核聚变“点火”的问题得到了解决的可能,除此以外,超高额的微波加热也可以达到这个温度。  其次,核聚变进行的高温下具有很高的内能,也就意味着将会出现各种各样的能量丧失机制。聚变的方式也存在着各种各样的不稳定性。这些基本科学问题没有解决,核聚变发电就实现不了。  而且,装置材料问题是核聚变发电必须要解决的问题,聚变产生的中子撞击、核聚变原料的沉积也会对装置材料产生破坏,如果解决不了,即使建成了核聚变反应堆也不知道能够运行多久。  还有就是它的辐射问题,即使相对核裂变的辐射要小,也还是存在着,这也给核聚变制造了一个大障碍。四、未来核聚变发电的走向  当我们的常规能源枯竭,风能、太阳能不能满足我们的需要,核聚变发电就是我们的明日之星。如今不少国家都在研究受控热核反应的理论和技术,美国、俄罗斯、日本和西欧国家都取得了进展。中国也在积极发展核聚变技术,并且称为世界上第一个建成并正真运行的全超导非圆截面的核聚变试验装置,已经处于世界领先水平。  也许在未来的二十年内,我们可以看到核聚变发电的曙光。在更远一点的时间,我们会获得可以真正有价值的核聚变电站。

  • 新能源汽车电机测试系统以及电机发展说明

    随着新能源汽车推出,新能源电机的发展速度也加快不小,同时冠亚新能源汽车电机测试系统也不断推出,专业测试新能源汽车电机驱动部分,与新能源汽车共同发展。  目前,国内驱动电机产业发展较快,整体水平达到国际水平,国内整车匹配电机基本为本土生产,国内外的差距主要表现在零部件和整车的同步开发。在国内的商用车,还有乘用车、专用车应用方面,当前国内已经完全具备了满足这些新能源汽车要求的驱动电机和电机控制器的研发和制造能力,而且从产能来讲的话,也是完全可以满足需求。在驱动电机方功率密度、效率等指标,和国外水平基本相当,从电机本身角度来看,我国同国外企业在正向设计水平基本处于同一水平,同时也在向高密度和小型轻量化这方向不断拓展。但从生产装备和工艺来说,国内由于单一产品的规模仍然较小,在工艺水平和规模上同国外存在一定差距。  驱动电机的特性和电安全性能等也是测试评价的重要环节,所以还是需要冠亚新能源汽车电机测试系统进行测试的。从电驱动总成测试评价方面来讲,主要分为电驱动系统层面和关键材料与器件层面。在电驱动系统层面,包括系统总成评价、功率标定评价、带载EMC评价、NVH评价和电安全性评价。其中,对于功率标定评价来说,功率密度的评价维度很多,需要对各种边界条件进行界定,保证测试方法的客观性。在电磁兼容方面,目前带载测试的应用仍然较少,空载状态与驱动电机的实际运行工况差异较大,将会导致测试结果的巨大差距。  国内的电力电子技术起步相对较晚,差距主要体现在功率器件技术,功率器件技术也不单单指模块,也包含芯片的研发技术、封装材料和封装工艺技术,还涉及到电机控制器的集成技术。因为这些技术的时间差,使得国内电机控制器的功率密度水平和国外量产的产品比较存在有些差距。2014年这种差距是一半,国内控制器是国外同类控制器的两倍体积。经过这两年的快速发展,国内电机控制器功率密度比2014年提高了不少,在这一领域和国外这个差距缩小了很多。  由于新能源汽车产业的门槛较高,所以,电机作为其中主要的配件之一,其性能还是需要经过无锡冠亚新能源汽车电机测试系统进行准确的测试为好。

  • 【分享】芬兰研发天然气燃料电池系统 多层结构提高效率

    1月10日报道,芬兰国家技术研究中心日前发布的公报说,该中心研发出独特的燃料电池系统,能够以天然气为燃料并网发电。其独特性在于利用10千瓦级的单个平板式固体氧化物燃料电池堆来生产电能。  单个燃料电池功率有限,为增强其实用性,研究人员将若干燃料电池以串联、并联等方式组装成燃料电池堆,平板式固体氧化物燃料电池堆是一种形似“多层夹心饼干”的组装结构。  芬兰国家技术研究中心的专家介绍说,他们在两个月前首次将10千瓦级的单个平板式固体氧化物燃料电池堆组装成系统,并在实际运行条件下进行测试。  该中心指出,提高单个燃料电池堆的功率,可为将来建造大规模固体氧化物电池发电厂创造条件。目前市场上单个平板式燃料电池堆的功率多为0.5千瓦到数千瓦,如果要用燃料电池技术建造一座发电厂,就需要很多燃料电池堆,加上组装、维护和管理,成本很高。提高单个平板式燃料电池堆的功率可减少这种新型发电厂的建设和维护成本。

  • 巴西一家发电厂因噪音污染被罚760万美元

    巴西环境和再生自然资源局2013年7月向一污染发电企业开出760万美元罚单,惩罚该企业生产产生噪音。 被罚企业为巴蒂斯塔热电厂,位于巴西东北部的塞阿拉州。该厂发电输煤线传送带产生巨大噪音遭投诉。 巴西环境和可再生自然资源局有可能对该电厂出开更多的罚单,因除噪音外,该电力企业还排放大量粉尘。 巴蒂斯塔电厂于2012年底建成投产,首台机组设计生产能力为360MW,总设计装机容量为720MW。 塞阿拉州为巴西东北部地区相对贫困州,长期缺少电力供应。但巴西环境局对治理污染企业并不手软。

  • 【转帖】日本NTT发明“发电鞋”,可为手机供电

    手机真正成为不受电池困扰的全球通啦!日本电信巨头NTT称,利用它发明的技术,用户通过走路就可以为便携式电子产品充电。据称,NTT正在开发用户穿着走路就能发电的鞋。在充满水的鞋垫上安装有一个小型发电机,用户走路时会对鞋垫产生压力,水会推动一个小型涡轮机,从而产生电流。NTT的发言人Hideomi Tenma表示,目前这种鞋子的发电功率为1.2瓦,只要用户在走路,足以为iPod音乐播放机供电。他说,“我们计划将这种鞋子的发电功率提高到3瓦,这是为手机供电所需要的水平。”Tenma指出,这种鞋子不具备存储电能的功能,但可以为手机充电,用户只要不停地走动,也可以用手机通话。NTT希望这一新技术能够在2010年初进入实用阶段。

  • 【原创】最新导电陶瓷材料的耐温2300度以上抗氧化测温热电偶及发热体,坩埚,炉管等产品

    我们刚开发与生产的热电偶,可以在氧化气氛测温2300度。导电陶瓷的发热体,蒸发舟,坩埚,电极,烧嘴,炉管炉衬,喷管喷嘴等这些产品是目前国内外领先的产品,材料的当前最先进的陶瓷,是铪的化合物的复合陶瓷,抗热震,耐腐蚀,有良好的导电与导热性能。这些陶瓷产品可以在氧化气氛耐温2300度,最高达3000度。 材料的突破往往带来一系列设备与产品进步与突破。 我们刚开发与生产的超高温、抗氧化、抗热震,耐腐蚀 ,长寿命导电导热性良好的陶瓷应用就很广,是一个重大利好消息。以此可以提高现有产品质量及开发新的设备,使以前所不能完成的研究与产品生产变为现实。 这种陶瓷是锆的化合物的复合陶瓷。经过复杂的工序制作经等静压后热压2100度烧结。是目前国内外(美、日、俄、欧等)投巨资正在热门研究的材料。这种产品首先是航空航天所急需。如火箭,导弹的鼻锥,翼前缘,发动机内衬,喷管等,所以我国也不例外,如上海硅所,哈工大,西北工大等已研究数年。是863计划。但多年并没有见走出实验室的社会应用报道。 目前我们将这种陶瓷制作于超高温热电偶保护管。利用我们自己的两项专利技术,生产的热电偶可以在氧化气氛及其它气氛准确测温达2300度,在航空航天发动机燃烧室测温,冶金连铸连续测温,高温窑炉,铝电解业连续温,阳极焙烧,燃烧炉,真空炉等以前所不能完成的测温变成现实或使用寿命短的热电偶温情况得到改善。而目前国内外氧化气氛热电偶测温小于1800度,影响了科研与生产的进步。大于1800度往往使用光学等法,由于光亮反射及气氛的影响,测温误差较大。在大于1800度的氧化气氛温度也通常凭经验进行估计。这对于温度要求严格的科研与生产是很不科学的。所以可以在氧化气氛测温超过1800度的热电偶是很有意义的产品。 同样这种陶瓷还可以应用于; 如这种导电陶瓷管以组成超高温氧化气氛感应电炉,可以在氧化气氛长期2300度使用,冲击使用温度最高可达3000度,比现在国内外氧化气氛电炉2000度,提高500度以上。是世界上氧化气氛使用温度最高的电炉。目前国内外最高氧化气氛使用电炉如氧化锆炉,铬酸镧炉等,由于其抗热震差容易炸裂,升降温很慢,浪费能源。并且氧化锆炉需要热启动,热电偶测温在1750度时要慢慢退出,另加光学测温。铬酸镧有严重挥发物影响。(最高使用温度小于1900度)。 以前的氧化气氛超高温炉中多使用碳化硅,硅钼,氧化锆,铬酸镧等,在保护气氛炉中多使用钨,钼,钽,石墨等这些炉管炉衬在超高温时往往不能很好满足研究与生产的特种需求。如高温氧化气氛下材料性能实验根本不能完成。我们这种导电陶瓷套管可以在空气中稳定使用,不需要气体保护。如在真空炉,保护气氛炉中使用该炉管制作的电炉可以一炉多用。大大节省设备投资。应用广泛。 如在石英拉丝炉中使用避免了保护气体的干扰影响产品质量及保护气体的密闭麻烦,并且没有石墨高温挥发造成的产品污染等等。对于开发更高熔点的新光纤产品提供了条件。尤其氧化物加工在氧化气氛是适当的。使拉丝机使用简单方便实用。也可以使得拉丝一机多用。 另外可以在高温光纤予制棒加热设备中得到应用。对于予制棒的研究也将发挥很大的作用。 同样在高温电炉业可以有升级换代的作用,对于氧化物的宝石及激光晶体生长炉也特别适宜,是宝石及晶体生产行业重要的新设备,是以前所绝无仅有的。对于容易氧化的材料加工也可以使用气氛保护,可以一炉两用。 陶瓷件的应用更加广泛,如导电蒸发舟的使用,可以直接接入电源,其效果及寿命远远好于现有产品及进口产品(如硼化钛,氮化硼陶瓷蒸发舟)。 导电陶瓷可以应用于磁流体发电的电极,通道。由于之前没有可以满足磁流体发电所需要的耐高温、抗氧化、耐腐蚀及有良好的导电与导热性能的材料,我国自从60年代在中科院电工所制作样机使用时间短,一直不能得到实际应用。而磁流体发电是一个没有机械传动直接由热能变电能的高效能低污染的发电方式。有很大的发展前途。 有其它如坩埚、蒸发舟,匝钵、电极、烧嘴、水口、铸模、等等在冶金,化工,航空航天,国防,军工等领域都是 前所未有的高档产品。也将发挥前所未有的作用。 这些产品是目前国内外领先的产品 ,在社会上是第一次推出。 导电陶瓷性能;熔点 : 3200度电阻率 : 9.2-11.5微欧.CM密度 : 4.8-6G.CM致密化 : 96%抗弯强度: 330Pa洛氏硬度: 92烧蚀率或抗氧化 : 氧-乙炔焰1950度3.2X10-5MM/S热胀系数: 25-1500;7.2X10-6/DEG导热率 : 0.07CAL/CM.SEC.DEG蒸汽压 : 4.3X10-3(1800度)抗热震 : 1200度放水中反复5次不炸裂耐腐蚀 : 耐金属铁、铝、铜、铅,硅,镁等熔体及冰晶石,氟化物,酸碱、气体等腐蚀可用气氛: O,V,R,N生产方法: 200MP等静压2100度热压烧结 热电偶参数;测温范围: 0-2300度(超过2300度须特别设计与制作)测温气氛: O,V,R,N分度号 : WRe5/26偏差 : 0-500;+ -5; 500-2300+ -1%;2300以上+ -2%丝径 : 0.1-0.5MM;超过1800度非标0.8特制抗热震 : 良好耐腐蚀 : 良好规格 : 直径10,12,14,16,18,20,22 ,24, 26,28,30,35MM;长度陶瓷部分小于200MM价格 : 高 导电陶瓷炉管发热体;感应加热:需要根据炉管尺寸及形状确定其电阻设计电源电阻加热:设计电源及引线体,引线体也可以是发热体材料加大横截面等方法。规格 :外径14,18,22,26,30...100MM;长度小于200MM。性能同上。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制