当前位置: 仪器信息网 > 行业主题 > >

倒置研究级工业应用显微镜

仪器信息网倒置研究级工业应用显微镜专题为您提供2024年最新倒置研究级工业应用显微镜价格报价、厂家品牌的相关信息, 包括倒置研究级工业应用显微镜参数、型号等,不管是国产,还是进口品牌的倒置研究级工业应用显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合倒置研究级工业应用显微镜相关的耗材配件、试剂标物,还有倒置研究级工业应用显微镜相关的最新资讯、资料,以及倒置研究级工业应用显微镜相关的解决方案。

倒置研究级工业应用显微镜相关的资讯

  • 倒置扫描微波显微镜——生物样品的应用与展望
    Siti Nur Afifa Azman , Eleonora Pavoni , Marco Farina扫描微波显微镜(SMM)在提供亚表面结构的成像和允许样品的局部定量表征方面是突出的。一种被称为反向扫描微波显微镜(iSMM)的新技术是最近开发的,旨在扩大该应用,超出当前对表面物理和半导体技术的关注。通过一个简单的金属探针,iSMM可以从现有的原子力显微镜(AFM)或扫描隧道显微镜(STM)转换而成,从而在带宽、灵敏度和动态范围方面形成传统的SMM。iSMM主要用于分析生物样品,因为它可以在液体中工作。扫描微波显微镜(SMM)[1]是扫描探针显微镜(SPM)[2]家族中的一种仪器,该家族包括众所周知的原子力显微镜(AFM)和扫描隧道显微镜(STM)。在SMM中,用作天线的探头在表面附近进行光栅扫描,在扫描过程中,记录微波信号的局部反射系数,提供关于表面和亚表面阻抗的信息。SMM的一个基本优点是它能够通过利用纳米探针和样品本身之间的近场电磁相互作用来定量表征样品的电磁特性。在一些实施方式中,矢量网络分析仪(VNA)被用作微波信号的源和检测器,通过导电探针辐射和感测微波信号。通常,SMM与一些其他SPM技术(例如AFM或STM)协同工作,提供了一种控制和保持探针和样品之间距离恒定的机制。基于SPM的SMM显微镜的使用最近在生物和生物医学领域获得了更多的关注,这是由于该技术能够测量与生理病理条件密切相关的电磁参数。然而,在极端环境(如用于保持细胞健康的生理缓冲液)中喂养SPM探针已被证明极具挑战性。作者于2019年引入的一种称为倒置SMM(iSMM)的新设置[3]克服了原始SMM与生理环境相关的大多数限制:倒置SMM的结构成本低、易于获得,并且与生理环境兼容,这也使得SMM能够应用于生物生活系统。其想法是将进料从探头移动到样品架;在iSMM中,样品保持器是一条传输线,通过该传输线测量反射和透射,而SPM探头(交流接地)仅干扰通过样品的传输线。因此,任何现有的SPM都可以创建iSMM,只需提供适当的样本保持器,当然,还可以使用软件同步传输线上的测量和SPM扫描。需要强调的是,所提出的系统是宽带的,能够实现频谱分析、时域分析和微波层析成像。到目前为止,SMM已被用于表征活的生物细胞,尽管在生理缓冲液中操作存在挑战[4,5]。除此之外,它还被用于负责细胞呼吸和能量生产的亚细胞细胞器,如线粒体[6]。iSMM已证明能够克服液体操作的局限性,这是首次在生理缓冲液中成功地对活细胞进行微波成像[3]。仪器开发几年来,研究活动一直基于一种自制的STM辅助SMM,该SMM是通过将Imtiaz[7]的系统的一些特性与Keysight[8]开发的系统混合而构建的。在这里,特别是结合了标准隧道显微镜,其反馈电路用于将探针与样品保持在给定距离,并在反射计设置中使用微波信号。然而,与Keysight仪器和其他可用设备不同,该仪器没有谐振器;因此,显微镜可以在VNA允许的整个频率范围内记录数据。具体而言,该系统利用并控制一台商用STM显微镜、NT-MDT的Solver P47和一台Agilent矢量网络分析仪PNA E8361,其带宽为67 GHz,动态范围为120 dB。例如,该技术被应用于线粒体成像[9],以评估干燥的癌细胞,并被特意处理以确定掺入的富勒烯的存在[10]。通过利用在多个相近频率下获得的图像的相关性,并使用一种权宜之计,即时域反射法[11-13],提高了系统灵敏度,这可以通过使用尖端/样本相互作用对微波信号进行“扩频”调制来理解;在频谱上传播的信息通过傅里叶逆变换在单个时间瞬间折叠来恢复。STM辅助的SMM提供了非常高质量的图像,减少了由于地形“串扰”而产生的伪影,即由于扫描期间探针电容的变化而产生的地形副本。然而,STM在处理导电性较差的样品(如生物样品)时极具挑战性,在液体中使用时更为困难。图1A)中所示的传统SMM通常是从AFM(或STM)获得的,其中微波信号被注入并由反射测量系统感测:反射信号和注入信号之间的比率,即所谓的反射系数(S11),可用于确定样品的扩展阻抗或介电常数,经过适当的校准和分析。这种单端口反射测量通常具有40-60dB的动态范围,这受到定向耦合器的限制。在图1(B)所示的iSMM配置中,导电扫描探针(AFM或STM)始终接地,微波信号通过传输线(例如共面波导、槽线)注入,以这种方式,传输线成为样品保持器。传输线的输入和输出连接到VNA,从而可以测量反射和传输信号(分别为S11和S21)[3,14,15]。这种双端口测量通常具有120−140 dB,这使得当接地探头扫描样品时更容易感测到接地探头引起的微小扰动。图1:(A)基于AFM的传统SMM和(B)倒置SMM的示意图。图2:干燥Jurkat细胞的同时(A)AFM和(B)iSMM|S11|图像。Jurkat细胞和L6细胞的iSMM表征最初,在干燥的Jurkat细胞以及干燥的和活的L6细胞上证明了iSMM[3]。图2显示了干燥Jurkat细胞的AFM和iSMM S 11图像的比较。同时,图3比较了盐水溶液中活L6细胞的AFM和iSMM S 21图像。iSMM S 11和S 21信号分别在4 GHz和3.4 GHz下滤波。干燥Jurkat细胞的iSMM S 11图像显示出与AFM相同的质量,而活L6细胞的iSMMS 21显示出由双端口SMM在液体条件下测量的透射系数形成的最佳质量。在这项工作中,透射模式测量的校准程序[16]应用于干燥L6电池的iSMM S21。图4说明了校准的效果,显示了AFM形貌图像、被样品形貌破坏的iSMM S21电容图像以及在6.2 GHz下去除了干燥L6电池的形貌效应的iSMM S 21介电常数图像。正如预期的那样,在干燥电池的外围附近出现了脊,但整个电池的介电常数为2.8±0.7。本质上,该值与电解质溶液中脂质双层的值相当[17],但低于干燥大肠杆菌的值[18]。随后,对干燥的Jurkat细胞进行了iSMM反射模式测量的定量表征[19]。图3:盐水溶液中活L6细胞的同时(A)AFM和(B)iSMM|S21|图像。图4:干燥的L6电池的(A)AFM形貌、(B)iSMM|S21|电容和(V)iSMM| S21|介电常数图像。图5:(A)AFM形貌,(B)iSMM|S11|,(C)iSMMφ11,和(D)干燥Jurkat电池的介电常数图像。图6:(A)AFM形貌,(B)iSMM|S11|,(C)iSMM| S21|,(D)时间门控iSMM|S 11|,和(E) 葡萄糖等渗溶液中相同线粒体的时间门控iSMM|S21|图像。图5显示了AFM形貌、原始iSMM S11的大小以及在4GHz下同时获得的相位。该图显示了带样品和不带样品的区域之间的良好对比,揭示了与表面和亚表面区域中不同的电特性相关的其他特性。按照已经描述的算法校准原始iSMM S11图像[20]。图5(D)显示了干燥的Jurkat电池的提取介电常数图像,其约为2.6±0.3,并且在电池上均匀。该值与传统SMM在干燥的L6细胞上获得的先前数据一致[21]。生活环境中线粒体的iSMM表征iSMM的最新工作是在完全浸入液体中的线粒体上进行的,以非接触模式操作,最大限度地减少了对样品的损伤[22]。图6(A)、图6(B)和图6(C)显示了AFM形貌图像,其中iSMM图像S11和S21在直径约为1µm的同一线粒体上同时采集。在1.6-1.8GHz的频带上对iSMM信号进行滤波和平均。显然,|S11|和|S21|图像质量相当,并且都揭示了AFM图像中不存在的细节。由于线粒体是不导电的,所以从周围的CPW电极可以很容易地看到对比。与大多数SMM不同,iSMM能够进行宽带测量。因此,它使iSMM从1.6GHz到1.8GHz测量的S11和S21信号能够通过傅里叶逆变换变换到时域。随后,可以门控掉不需要的信号,以进一步提高SNR[13,20]。最后,图6(D)和图6(E)显示了时间门控iSMM S11和S21图像,显示了更精细的细节。iSMM探针和线粒体之间的相互作用阻抗可以从S11和S21测量中获得。反过来,可以提取线粒体介电性质的局部变化,正如SMM对活细胞所做的那样[3]。总结iSMM能够对生物样本的细胞内结构进行无创和无标记成像。iSMM可以通过任何现有的扫描探针技术轻松获得,只需使用合适的样品夹,为大多数实验室提供了利用该技术的机会。Jurkat细胞、L6细胞和线粒体的iSMM图像显示出良好的灵敏度和质量,显示了AFM形貌中无法看到的细节。通过实施为传统SMM开发的校准算法,分别对干燥的Jurkat细胞和L6细胞进行透射和反射模式测量的定量表征。Jurkat细胞的介电常数被确定为约2.6±0.3,而L6细胞显示为约2.8±0.7。时域分析定性地改进了iSMM,并提供了对样品(如线粒体)的更多了解。致谢我们要感谢我们的研究小组和所有为本报告的科学结果做出贡献的人。这项工作的一部分获得了欧洲项目“纳米材料实现下一代物联网智能能源收集”(NANO-EH)(第951761号赠款协议)(FETPROACT-EIC-05-2019)的资助。我们还要感谢来自意大利SOMACIS的Francesco Bigelli博士和Paolo Scalmati博士在实现样品架原型方面的帮助。附属机构:1 Department of Information Engineering, Marche Polytechnic University, Ancona, Italy联系;Prof. Dr. Marco Farina Department of Information Engineering Marche Polytechnic University Ancona, Italy m.farina@staff.univpm.it 参考文献:https://bit.ly/IM-Farina 原载:Imaging & Microscopy 4/2022. Inverted Scanning Microwave Microscopy—— Application and Perspective on Biological Samples供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 790.4万!蔡司中标北京生命科学研究所激光共聚焦显微镜系统和倒置荧光显微镜采购项目
    一、项目编号:HCZB2022-029(招标文件编号:HCZB2022-029)二、项目名称:北京生命科学研究所激光共聚焦显微镜系统和倒置荧光显微镜采购项目三、中标(成交)信息供应商名称:北京冠普佳科技有限公司供应商地址:北京市昌平区回龙观镇建材城西路87号2号楼10层1单元1026-2中标(成交)金额:790.4000000(万元)四、主要标的信息
  • 蔡司最新倒置式显微镜Axio Vert.A1 火爆促销中
    德国蔡司公司于2011年10月1日正式推出全新的研究级倒置式万能材料显微镜Axio Vert.A1。该款产品无论在产品设计、光学系统以及稳定性方面均采用了蔡司公司最顶级的技术,是蔡司公司各项顶尖技术的完美结合。北京普瑞赛司仪器有限公司作为蔡司材料显微镜中国区总经销商,为了让广大中国用户更好地体验蔡司的这款产品,推出如下优惠活动。凡在2010年11月1日-2012年4月30日之间订购该款设备的将享受以下增值服务:1、 保修期由一年延长到两年,在保修期内非人为损坏的部件免费更换(灯泡除外)。2、 提供免费金相应用培训(交通、食宿等费用自理)。3、 赠送显微镜维护大礼包一份。4、 赠送中国材料显微镜网论坛VIP账号一个,可免费下载各类论文、标准,专家答疑等相关服务5、 保修期内,每年一次免费光路清洗。6、 保修期内,可提供两次免费的现场显微镜操作培训 该优惠活动仅限黑龙江、吉林、辽宁、河北、天津、内蒙古、山东、上海、江苏、浙江、福建地区用户,以上增值服务最终解释权归北京普瑞赛司仪器有限公司所有。Tel:800-890-0660
  • 倒置荧光显微镜MF53-N观察牛体外受精
    解锁生命科学奥秘 | 倒置荧光显微镜MF53-N观察牛体外受精试管婴儿手术主要是将成熟的卵子和精子从人体取出,经过体外受精、胚胎移植等操作实现受孕。其中,借助显微注射法强迫受精,是试管婴儿手术的重中之重。近期,西北用户想在倒置荧光显微镜MF53-N下,将牛精子注射到卵母细胞中,实现体外受精。研究级倒置荧光显微镜MF53-N,配备6孔转盘式荧光模块和超长寿命LED荧光光源,可扩展升级实现各种观察方式,高数值孔径半复消色差物镜成像清晰,可升级高精度XYZ三轴电动平台,高精度的显微成像系统,有效提高了受精率、囊胚形成率、妊娠率,为不孕不育患者带来了福音。倒置荧光显微镜MF53-N系统以“满足苛刻实验要求”为出发点,为系统配备良好的升级扩展性。标配明场、相衬和荧光观察,可升级霍夫曼相衬,透明热台、显微操作系统等IVF相关设备都可以与该系统兼容,这为实验室的搭架、更新提供了便利。 免责声明本站无法鉴别所上传图片、字体或文字内容的版权,如无意中侵犯了哪个权利人的知识产权,请来信或来电告之,本站将立即予以删除,谢谢。来源:https://www.mshot.com/article/1813.html
  • 明美倒置荧光显微镜助力南方科技大学药物研发
    微球(microspheres)是指药物分散或被吸附在高分子聚合物基质中而形成的微小球状实体,由于微球制剂具有长效缓释或靶向作用,可以大大提升患者用药的方便性、依从性,在临床上已突显优势,近年来已成为药物研发的热点。近日,南方科技大学电子工程系针对药物研发需求对制备微球进行观察,找到我司销售工程师购置了倒置荧光显微镜MF52搭配科研级显微镜相机MSX2进行制备微球材料荧光观察,荧光下观察很清晰,成像质量得到高度认可。倒置荧光显微镜MF52是由LED落射荧光显微系统与倒置生物显微系统组成,采用优良的无限远光学系统,配置长工作距离平场物镜与大视野目镜。紧凑稳定的高刚性主体,充分体现了显微操作的防振要求。落射荧光显微系统采用模块化设计理念,可以安全、快揵地调整照明系统,切换荧光滤色片组件。多应用于细胞组织,透明液态组织的显微观察,也可用于生物制药,医学检测、疾病预防等领域内的荧光显微观察。
  • 文献速递 | ECHO荧光显微镜在脂肪产热新机制研究中的应用
    肥胖是指脂肪层的堆积,减肥不仅是为了更美,也是为了更健康,肥胖已被证明会增加多种疾病的发生风险,如心血管疾病、癌症、脂肪肝等,但对于大多数人来说,控制体重却非常困难。减肥则主要通过刺激脂肪组织产热增加全身的能量消耗,运动和节食是我们最常见的方式,但运动和节食太累和痛苦,难以坚持;因此有很多人选择使用药物来进行体重的控制。现有刺激脂肪产热药物大多以β3-肾上腺素能受体(β3-AR)为靶点,通过激活β3-AR及其下游信号通路,活化解偶联蛋白(UCP1),从而引起脂肪组织产热。但是β-AR激动剂会导致血压增加,可能诱发心血管疾病。因此需要一种更低风险和安全的药物靶点。美国加州大学旧金山分校糖尿病中心的研究人员对之前报道的一个与UCP无关的产热机制进行了进一步探索,研究者们将该机制的验证以《Wireless optogenetics protects against obesity via stimulation of non-canonical fat thermogenesis》为题发表在《Nature Communications》上。这个与UCP无关的产热机制涉及依赖于ATP的Ca2+通过肌/内质网Ca2+-ATPase2b (SERCA2b)和Ryanodine受体2 (RyR2)的无效循环(无效循环指两物质自由能始终存在差异,自由能一高一低,即该循环发生必须从循环外注入能量)。之前研究发现作用于RyR2-Calstabin复合体的化学稳定剂S107可以增强Ca2+无效循环,刺激非UCP1依赖的产热,并保护UCP1缺失的小鼠在寒冷暴露后不会降低体温。但是S107是全身性给予小鼠的,无法排除脂肪组织以外的其他组织,如骨骼肌,可能有助于UCP1非依赖性产热的可能性,因此本文采用了独特的光遗传学方法,对脂肪细胞进行特异性操作,以严格测试非典型脂肪产热治疗肥胖的可能。光遗传学是对体内神经元或细胞活动进行时间和空间操作的强大工具。传统的光遗传学研究需要光纤系绳和/或大型头戴式接收器,使其在一般代谢研究中应用受限。而无线供电的光遗传学设备使光能够高效、稳定地传递到行为自由的动物的外周神经,因此本文开发了一种可植入小鼠皮下脂肪组织的无线光遗传学装置,同时该装置刺激的细胞也与之前不同,刺激脂肪细胞而非常见的神经细胞。无线光遗传学装置可以通过光激活转入channelrhodopsin2 (ChR2,光门控的、向内整流的阳离子通道,传输质子和单价Na+,K+和二价阳离子Ca2+,Mg2+)的神经细胞,并可以驱动神经元去极化。而该研究更进一步,将ChR2转入小鼠和脂肪细胞,通过光诱导脂肪细胞激活Ca2+循环的脂肪产热,增加全身能量消耗。首先对细胞层面的可行性进行分析,确定转入ChR2的米色脂肪细胞可以被光激活膜去极化触发细胞内Ca2+内流,通过Echo Revolve正倒置一体显微镜对转入ChR2脂肪细胞在光激活下的Ca2+含量,如视频显示的,光激活后,细胞内Ca2+含量明显升高。且对耗氧量分析发现,光激活的脂肪细胞耗氧量明显增加。进一步对体内脂肪是否会被激活进行检测,通过对温度,耗氧量等的检测确定,光激活后小鼠激活部位温度升高,整体耗氧量增加,表明非UCP1依赖的产热途径在体内脂肪细胞中可以被激活并发挥作用。通过对高脂肪饮食(HFD)的分析发现,光激活小鼠其体重增加明显少于对照组,表明非UCP1依赖的产热途径足以保护小鼠免受饮食诱导的体重增加。此项研究也首次证明了脂肪特异性冷刺激模拟可以通过激活非典型产热来预防肥胖。Echo Revolve正倒置一体显微镜Echo Revolve展现了其非凡的灵活性,可以轻松地实现正置和倒置显微镜转换,创新性地把正倒置显微镜合二为一,开启了显微镜Hybrid时代。▲ Echo Revolve正倒置一体显微镜☑ 视网膜屏显示技术:比拟目镜人眼观察效果。☑ 全视野观察: 更清晰,更方便。☑ 多通道荧光:多达4个EPI荧光通道,无须暗室,就可以轻松快速地完成多色荧光显微分析。☑ 自动化操作:通过iPad Pro点触操控相机及荧光通道之间的切换,实现了完全自动化操作。☑ App应用软件:基于IOS的Echo App是与Apple团队合作研发的专业显微镜软件。☑ 精湛的工艺尽显高端品质:实现非凡的性能。|申请试用|我们的仪器可以申请试用哦!扫描下方二维码关注“深蓝云生物科技”公众号,点击“云活动”→“试用中心”即可。
  • 江苏苏美达仪器设备有限公司关于倒置显微镜等设备的招标公告
    江苏苏美达仪器设备有限公司受南通出入境检验检疫局委托,根据《中华人民共和国政府采购法》等有关规定,现对倒置显微镜等设备进行公开招标,欢迎合格的供应商前来投标。  项目名称:倒置显微镜等设备  项目编号:1749-1640SUMEC220D  项目联系方式:  项目联系人:洪玫  项目联系电话:025-84531290  采购单位联系方式:  采购单位:南通出入境检验检疫局  地址:江苏省南通市崇川区崇川路102号  联系方式:戴小程0513-68588590  代理机构联系方式:  代理机构:江苏苏美达仪器设备有限公司  代理机构联系人:崔媛媛、曹坡  代理机构地址: 025-84532581,84532535  一、采购项目的名称、数量、简要规格描述或项目基本概况介绍:分包号产 品 名 称数量简要技术要求用途预算 (人民币/万元)1倒置显微镜1符合人体工程学的可以调整角度的双目观察镜筒...机场快速检疫查验8.5数码生物体视镜1高分辨率体视光学成像系统...机场快速检疫查验16.4高灵敏度制冷CCD1冷CCD制冷系统:低于环境温度18℃或以上...实验室检疫鉴定12.82分散机1转速控制精度10rpm...农产品检测10电熔融炉1工作及加热方式:全自动样品熔融混匀、电加热...实验室设备正常更新423梯度PCR仪1加热块模式:0.2 ml专用合金...分子检测12酸纯化装置1在蒸馏至近干时,TFM? PTFE和近干的液体都不会吸收很大的红外辐射,可防止装置因过热而损坏...适用于痕量分析中超纯酸的制备,保证ICP、ICP-MS、AAS在检测中不受杂质干扰,以达到满意的检测数值。94硫酰氟残留红外分析仪1精度:± 1ppm(0-10ppm)...对熏蒸其他(硫酰氟)残留浓度检测8.8红外水份测定仪1采用第二代环形卤素灯及镀金辐射体加热单元,更快捷、均匀的加热样品...成份检测8A级化学防护服(含正压呼吸器)1防化手套:连接设计独特,无需任何工具可轻松更换...化学有害因子现场处置个人防护5手持式化学探测器1能够对探测化学制剂进行定性定量检测,配有显示屏并可实时显示探测化学战剂的详细种类、具体名称、浓度数值范围...主要用于海港或空港口岸环境中化学战剂(CWA)气体的监测,如神经性毒剂、H类糜烂性毒剂以及血液性毒性气体和其他种类的学化学物质,特别是在突发事件处置中用以化学有害因子的监测与排查,为应急处置和人员防护提供依据。20溴甲烷气体残留检测仪1软件: 报警方式:具有视觉、振动和声音(95 分贝)...熏蒸过程中,检测是否有溴甲烷、磷化氢气体泄漏;熏蒸散气后,检测溴甲烷、磷化氢的残留量。2.85多样品自动浓缩仪1单个样品的体积范围:0.5-30mL...实验室仪器设备正常更新19全自动凝胶成像系统1采用CCD摄像头实时采集图象,采集状况可在电脑屏幕上直接观察并控制...卫生检疫设备正常更新12药品柜1柜体材质 镀锌钢板,涂有抗酸碱的环氧树脂涂层...检疫鉴定3低温冰箱1无CFC聚氨酯发泡,超厚保温层,保温效果好...植检检疫样品、试剂保存46便携式溴甲烷气体检测仪(低浓度)1检测范围: 0-200/0-2000ppm...口岸核生化防护设备1.45杂草检测图像采集设备1EF 24-105mm f/4L IS USM红圈防抖镜头,EF100mm f/2.8L IS USM微距镜头...杂草检测图像采集1.95便携式磷化氢高浓度检测仪1重量:不超过250克...口岸核生化防护设备1.5便携式溴甲烷熏蒸气体检测仪(高浓度)1提供现场实时检测溴甲烷气体的浓度和温度、对数据即时保存和打印的功能...熏蒸过程中,检测是否有溴甲烷、磷化氢气体泄漏;熏蒸散气后,检测溴甲烷、磷化氢的残留量。1.98手持式磷化氢气体检测仪(低浓度)1检测气体:空气中的磷化氢检测范围:0~10ppm分辨率:0.01ppm 产品类型:扩散式电化学有毒气体检测仪,带数据存储...熏蒸过程中,检测是否有溴甲烷、磷化氢气体泄漏;熏蒸散气后,检测溴甲烷、磷化氢的残留量。1.98  二、投标人的资格要求:  1、符合《中华人民共和国政府采购法》第二十二条的规定 1)具有独立承担民事责任的能力 2)具有良好的商业信誉和健全的财务会计制度 3)具有履行合同所必需的设备和专业技术能力 4)有依法缴纳税收和社会保障资金的良好记录 5)参加政府采购活动前三年内,在经营活动中没有重大违法记录 6)法律、行政法规规定的其他条件。 2、投标人的具体资质要求: 2.1 投标人营业执照(副本复印件)。 2.2 法人代表授权书(原件)及法定代表人、投标人授权代表身份证明材料。 2.3 若投标人不是投标产品制造商的,投标人必须具有下列授权文件之一: a.制造商出具的授权函正本 b.制造商的国内全资子公司出具的授权函正本 c.制造商对授权的区域代理商出具的授权函复印件及该区域代理商出具的授权函正 本 d.投标人取得的产品代理证书复印件(正本备查)。 2.4 银行出具的资信证书(复印件)(开标前三个月内)。 2.5 参加政府采购活动近三年内,在经营活动中没有重大违法记录(提供承诺书,格 式自拟)或提供检察机关出具的行贿犯罪档案查询结果告知函。 2.6 投标人资格证明。 2.7 投标人需要提供近三个月内任意一个月的依法缴纳税收和社会保障资金的记录。 2.8 本次采购均接受进口产品投标。  三、招标文件的发售时间及地点等:  预算金额:202.16 万元(人民币)  时间:2016年07月05日 17:30 至 2016年07月12日 17:30(双休日及法定节假日除外)  地点:江苏苏美达仪器设备有限公司,南京市长江路198号5楼。  招标文件售价:¥800.0 元,本公告包含的招标文件售价总和  招标文件获取方式:当面购买或邮购,每包800元人民币,售后不退 国内邮购须另加50元人民币。  四、投标截止时间:2016年07月27日 09:00  五、开标时间:2016年07月27日 09:00  六、开标地点:  南京市长江路198号苏美达大厦二楼开标大厅  七、其它补充事宜  公告期限:自发布之日起公告期限为5个工作日  八、采购项目需要落实的政府采购政策:  本项目执行《政府采购促进中小企业发展暂行办法》(财库〔2011〕181号),工业和信息化部、国家统计局、国家发展和改革委员会、财政部《关于印发中小企业划型标准规定的通知》(工信部联企业〔2011〕300号)等政府采购文件。
  • 全新奥林巴斯GX53倒置金相显微镜闪亮登场
    更快速进行金属部件质量检测的全新奥林巴斯GX53倒置金相显微镜升级版奥林巴斯Stream图像分析软件 专为观察和检测金属部件而设计的新型奥林巴斯GX53倒置金相显微镜采用具有超长使用寿命和低功耗的LED光源。为了提升观察和报告功能,GX53显微镜还配有最新版本的奥林巴斯Stream图像分析软件(v.2.3)。 倒置金相显微镜能够从下方观察样品,可让用户不必调整样品表面朝向即可检测较厚或较重的样品。该功能让GX53显微镜成为观察汽车及其他金属部件微观结构的实用工具。 GX53具有帮助检测人员更快完成任务的先进功能: 观察细致入微:MIX观察可实现微观结构及其他表面特征的清晰成像编码硬件:保存观察设置,实现更快的检测和更高的生产率。逼真图像:采用具有均一色温的LED照明方式 MIX观察:让难以观察的部位无可遁形作为首个采用MIX观察技术的GX系列产品,GX53显微镜能够获得非常清晰的表面结构图像。MIX技术将暗场与其他观察方法(如明场、荧光或偏光)结合使用,可获得独有的观察图像。MIX观察能够让用户观察使用传统显微镜难以观察的样品。暗场观察所用的环形LED照明设备的定向暗场功能可在特定时间内照明一个或多个象限。这样可以减少样品光晕,对于显示表面纹理非常有用。同时,奥林巴斯Stream图像分析软件的升级版本利用图像合成功能提供具有最低限度光晕的清晰图像,即使观察高反射样品也没有问题。 编码硬件:更快的检测以及更高的生产力配合奥林巴斯Stream软件使用时,GX53倒置金相显微镜可保存观察设置以便后续调用。通过复制常用的观察设置或其他用户设置可提高用户的工作效率,且方便进行检测。 奥林巴斯Stream图像分析软件:更睿智,更灵活奥林巴斯Stream图像分析软件2.3版本为从准备显微镜到观察、分析和报告的每个检测步骤提供支持。最新版本包含可将聚焦整个视场的即时扩展聚焦成像(EFI)功能。软件还增加了对系统电子表格报告功能的改进。
  • 321万!江西农业大学倒置荧光显微镜等进口和国产仪器设备项目
    项目编号:JXGT2022306项目名称:江西农业大学倒置荧光显微镜等进口和国产仪器设备项目采购方式:公开招标预算金额:3216100.00 元最高限价:无采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2022B000812707气溶胶质量浓度测量仪1台20000.00元详见公告附件赣购2022B000812709倒置荧光显微镜(进口)1台1080000.00元详见公告附件赣购2022B000812705显微操作系统(进口)1台635600.00元详见公告附件赣购2022B000812706显微操作系统(进口)1台752500.00元详见公告附件赣购2022B000812703胚胎冷冻仪1台60000.00元详见公告附件赣购2022B000812708倒置荧光显微镜(进口)1台498000.00元详见公告附件赣购2022B000812704多功能台式冷冻离心机(进口)1台170000.00元详见公告附件合同履行期限:合同签订生效后 60 个日历日内交货并安装完毕本项目不接受联合体投标。
  • 全新奥林巴斯GX53倒置金相显微镜闪亮登场
    p style="text-align: center "span style="color: rgb(0, 112, 192) "strong更快速进行金属部件质量检测的全新奥林巴斯GX53倒置金相显微镜/strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong升级版奥林巴斯Stream图像分析软件 /strong/span/pp /pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/43977c59-bfc7-404b-b46e-e946878f2de8.jpg" title="1.jpg"//pp  专为观察和检测金属部件而设计的新型奥林巴斯GX53倒置金相显微镜采用具有超长使用寿命和低功耗的LED光源。为了提升观察和报告功能,GX53显微镜还配有最新版本的奥林巴斯Stream图像分析软件(v.2.3)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/333b6761-3ad4-4ac7-b62c-eba1db51cc62.jpg" title="3.jpg"//pp  倒置金相显微镜能够从下方观察样品,可让用户不必调整样品表面朝向即可检测较厚或较重的样品。该功能让GX53显微镜成为观察汽车及其他金属部件微观结构的实用工具。/pp /ppGX53具有帮助检测人员更快完成任务的先进功能:/ppstrong1.细致入微:/strongMIX观察可实现微观结构及其他表面特征的清晰成像/ppstrong2.编码硬件:/strong保存观察设置,实现更快的检测和更高的生产率。/ppstrong3.逼真图像:/strong采用具有均一色温的LED照明方式/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/e58e061d-3b22-469f-ae0a-09afa9f3917d.jpg" title="2.jpg"//ppstrongMIX观/strongstrong察:让难以观察的部位无可遁形/strong/pp  作为首个采用MIX观察技术的GX系列产品,GX53显微镜能够获得非常清晰的表面结构图像。MIX技术将暗场与其他观察方法(如明场、荧光或偏光)结合使用,可获得独有的观察图像。MIX观察能够让用户观察使用传统显微镜难以观察的样品。暗场观察所用的环形LED照明设备的定向暗场功能可在特定时间内照明一个或多个象限。这样可以减少样品光晕,对于显示表面纹理非常有用。同时,奥林巴斯Stream® 图像分析软件的升级版本利用图像合成功能提供具有最低限度光晕的清晰图像,即使观察高反射样品也没有问题。/pp /ppstrong编码硬件:更快的检测以及更高的生产力/strong/pp  配合奥林巴斯Stream软件使用时,GX53倒置金相显微镜可保存观察设置以便后续调用。通过复制常用的观察设置或其他用户设置可提高用户的工作效率,且方便进行检测。/pp /pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/b1edeaf7-2814-482c-aeee-1df4980c1cc5.jpg" title="4.jpg"//ppstrong奥林巴斯Stream图像分析软件:更睿智,更灵活/strong/pp  奥林巴斯Stream图像分析软件2.3版本为从准备显微镜到观察、分析和报告的每个检测步骤提供支持。最新版本包含可将聚焦整个视场的即时扩展聚焦成像(EFI)功能。软件还增加了对系统电子表格报告功能的改进。/ppbr//ppspan style="color: rgb(0, 112, 192) "strongGX53倒置金相显微镜(英文版产品资料):/strong/span/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201712/ueattachment/aed4c49e-d6a1-4db1-862e-b8c49fb2d32b.pdf"GX53_en.pdf/a/p
  • 电子显微镜在制药行业的应用
    电子显微镜助力药品检测药品作为具有预防、治疗、诊断人的疾病,有目的地调节人的生理机能并规定有适应症或者功能主治、用法和用量的物质,区别于其他商品,具有一定的特殊性。一方面,良药能治疗疾病、减轻人们的痛苦甚至拯救人类的生命;另一方面,药物质量控制不好时,使用粗制滥造的不良产品或“假药“,可能会带来不可预知的其他疾病,不得不承受其副作用的伤害,甚至对人的生命安全造成一定威胁。电子显微镜作为一种常规的微观形貌分析工具,在制药行业发挥了重要作用,对于药物及其周边产品生产过程的品质控制、质量监督、问题追溯都能起到立竿见影的效果,涵盖了原料药、辅料、药物制剂(片剂、丸剂、悬浊液)、保健品、药包材和医疗器械等产品。2021年7月2日,由国家药品监督管理局药品评审中心组织制订的《化学药品吸入液体制剂药学研究技术要求(征求意见稿)》(以下简称“意见稿”)正式向社会公布并征求意见。其中提到,吸入液体制剂的生产工艺“应关注微粉化后原料药的相关属性,如粒度和粒度分布、晶型/无定型含量、外源性粒子等”。 “对于用于吸入混悬液的原料药,一般还应对其晶型/粒子形态、粒度和粒度分布等加以研究及控制”。“对于吸入混悬液,还应在效期末进行药物粒子的晶型、粒度和粒度分布检查,并且建议采用显微镜等分析手段观察药物粒子的形态变化、团聚等情况。如果制剂处方中含有抗氧剂等辅料,应考察这些辅料在稳定性研究过程中的含量变化“。传统的光学显微镜由于分辨率和景深的限制因素,对于5微米以下的更小粉体,难以观察到清晰形貌,需要借助于电子显微镜。原料药和辅料的晶型、粒度调控原料药和辅料本身都存在多晶型现象,而且他们在制剂工艺和存储过程中可能会发生晶型变化。例如,甘露醇常见的是α、β、δ无水晶型,乳糖为一水合物晶型和无水晶型,蔗糖有16种晶型,二氧化钛有锐钛矿、金红石和板钛矿三种晶型,羟甲基淀粉钠吸湿后晶型发生变化,硬脂酸镁在高温下不稳定、压力条件下会发生晶型改变。晶型一旦发生改变,原料药会影响药物疗效,辅料会影响制剂内部微粒的结合状态,最终也会造成不可控因素增加,影响药物的一致性评价。 三种不同晶型、粒度的原料药药物晶型的定性定量分析一般主要通过XRD(X射线粉末衍射)来进行。SEM(扫描电子显微镜)作为一种补充分析手段,能够将晶型和形貌结合起来,同时能够表征粉体粒度、掺杂、团聚情况等XRD难以直观反映的信息,从而受到广大研究人员的青睐。图1就是典型的三种原料药SEM图。肉眼看来,同为白色粉末,在电镜下的晶型差别一目了然,粒度大小也能通过测量功能精准测量。药物辅料:甘露醇、硬脂酸镁、低取代羟丙纤维素图中显示了常见辅料甘露醇、硬脂酸镁和低取代羟丙纤维素的SEM图。甘露醇在医药上是良好的利尿剂,降低颅内压、眼内压及治疗肾药、脱水剂、食糖代用品、也用作药片的赋形剂及固体、液体的稀释剂。硬脂酸镁主要用作润滑剂、抗粘剂、助流剂,低取代羟丙纤维素(L-HPC)主要作片剂崩解剂和粘合剂。原料药粒度越小,流动性越差,物料黏着性增加,混料时原料药不易混匀,从而影响到制剂外观及含量均匀度。另外,需结合药物自身特性,如刺激性药物,粒径越小,刺激性越大;稳定性差的药物,粒子越小,分解速度越快。原料药粒径减小,粒子比表面积增大,溶解性增强,药物能较好地分散溶解在肠道内,易于吸收,生物利用度高,但也并不是原料的粒径越小越好,过度微粉化可能会导致过细的粉末形成静电堆积,在颗粒周围形成一层气泡囊,阻碍水分进入颗粒,从而阻碍药物的溶出。因此,粒度、粒度分布柱状图、D10、D50、D90等数据对于仿制药体外研究具有重大价值。 扫描电镜图像法统计颗粒尺寸和粒径分布相较于传统的激光散射法测试粒度,扫描电镜图像法在粒径统计方面具有其独特的优势。例如,很多原料药和辅料很容易吸湿团聚或者分解,当粒度足够小时,单一粉粒表面能变大,分子间作用力急剧加强,导致团聚严重,而且一般的分散方法很难将其分散开来。这样一来,激光散射法给出的结果往往是团聚后二次颗粒的尺寸,并不一定能反映真实的一次颗粒尺寸信息。图3所示的扫描电子显微镜图像法则可以通过对拍得的SEM图像进行分析,得到最直观、真实的颗粒尺寸和粒径分布统计信息。即便有一些重叠或团聚颗粒,也可以通过现有的APP小程序实现特定形状颗粒的AI智能图像识别。 药物载体载药状态药物载体是指能改变药物的存在形式,控制药物的释放速度并使药物更准确地到达靶向器官,同时各种药物在载体的协助下,能够减少药物降解和流失,降低毒副作用,提高作用效力。药物主要是以治疗、预防和诊断为目的,一般药物被口服或注射后, 进入血液系统作用于全身,同时也会被机体迅速代谢后排泄出体外,此过程机体对药物的利用率低并且产生的毒副作用大,而药物载体能够提高药物的作用效率,降低药物的毒副作用,以较小的剂量达到治疗疾病的目的,所以药物载体受到了广泛关注。药物载体的种类包括多肽、凝胶、纳米微粒、多孔微粉等多种类型。 药物载体——MOFMOF(金属有机框架材料)是近十年来发展迅速的一种配位聚合物,具有三维的孔结构,一般以金属离子为连接点,有机配位体支撑构成空间3D延伸,是沸石和碳纳米管之外的又一类重要的新型多孔材料,在催化、储能和分离中都有广泛应用。图中显示了作为药物载体的MOF颗粒,在载药后表面形貌发生了变化,空白载体平滑的颗粒表面上负载了药物之后变得粗糙了,充满颗粒感,说明药物负载比较成功。 透明质酸水凝胶的SEM图片水凝胶是具有三维网状空间结构的聚合物,它含水量高,生物相容性好,是最具应用前景的可注射生物材料之一,近年来广泛应用于药物释放和组织工程领域。它作为药物载体,能够改变药物的送药方式,减少送药次数,降低药物不良反应,提高药物的生物利用度。水凝胶大量吸水之后与机体组织极其相似,柔软湿润的表面以及与组织的亲和性大大减少了刺激性,而且与疏水聚合物相比,在低PH环境里,水凝胶可以保护蛋白质不受损害,延长水凝胶中生物分子活性时间。上图是借助冷冻样品台,在低温低真空条件下日立电镜拍摄的水凝胶样品图片。纳米药物载体TEM(透射电子显微镜)形貌纳米级药物载体是一种属于纳米级微观范畴的亚微粒药物载体输送系统。将药物包封于亚微粒中,可以调节释药的速度,增加生物膜的透过性、改变在体内的分布、提高生物利用度等。它具有广泛的应用前景,例如可以解决易水解药物的给药途径,口服胰岛素、抗生素,而无需注射;延长药物的体内半衰期,无需多次给药;可实现更精准的靶向定位给药,减少药物的不良反应;消除生物屏障对药物作用的限制,直达治疗部位。如图所示,一般此类纳米药物载体尺寸在10~100nm之间,需要用TEM才能达到如此高的分辨率,图中的单个纳米胶囊的尺寸在20~50nm左右。公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 广州明慧|显微镜相机的安装、应用及使用方法
    今天广州明慧和大家分享的是关于显微镜相机的安装、应用及使用方法。作为一家专业生产与研发显微镜相机的工厂,我们深知显微镜相机在科学研究和医学领域的重要性。因此,我们致力于为客户提供最优质的显微镜相机和相关软件。首先,让我们来了解一下显微镜相机的摄像头软件安装。我们的显微镜相机摄像头软件安装非常简单,只需按照说明书上的步骤进行操作即可。显微镜数码相机MHC600我们的显微镜相机的优势在于要求出色的荧光成像应用中获得广泛认可,适用于荧光显微镜。我们的显微镜相机可以与荧光显微镜配合使用,拍摄高质量的荧光图像,具有高灵敏度和低噪声的特点,可以轻松捕捉到非常微弱的荧光信号,在黑暗的环境下也可得到高亮度的照片。除了显微镜相机,显微镜制冷相机能够在低温下观察样品,从而提高数据的准确性和可靠性。有效减少样品的热噪声,提高图像的清晰度和分辨率。三目倒置荧光显微镜接相机MHS900除了适用于荧光显微镜的相机外,我们还提供显微镜拍照软件。MingHui显微成像软件可以处理粉末、颗粒、物体表面、材料裂纹、液体成分和含量、农作物和病虫害分析、零部件尺寸测量以及组织细胞形态学等任务。此外,该软件还支持金相显微组织和晶粒度分析,以及化学工业中反应物和粒子的形态分析。MingHui显微成像软件可以支持多种操作系统,包括Windows、Mac和Linux等;支持多种语言,方便客户在不同国家和地区使用。可以让用户轻松地拍摄高质量的显微镜图像,支持多种拍摄模式,包括单张拍摄、连续拍摄和时间-lapse拍摄等。此外,也支持图像处理和分析,可以帮助用户更好地理解和研究样本。显微镜相机软件显微镜相机摄像头适配显微镜型号作为一家专业生产与研发显微镜相机的工厂,我们致力于为客户提供最优质的显微镜相机和相关软件,显微镜相机摄像头软件安装非常简单,支持多种操作系统和语言。相机适用于生物显微镜、荧光显微镜、倒置显微镜、金相显微镜、偏光显微镜和体视显微镜,具有高灵敏度和低噪声的特点。MingHui显微成像软件可以让用户轻松地拍摄高质量的显微镜图像,并支持图像处理和分析。如果您有任何关于显微镜相机的需求,随时可以联系我们。谢谢!
  • 蔡司全新一代倒置式金相显微镜Axio Vert.A1正式发布
    更加锐利的图像,更加舒适的操作,更加完善的功能:这一切来自于蔡司近日发布的全新一代倒置式万能材料显微镜——Axio Vert.A1。它的面世将为从事金相工作的人们带来全新的观察体验与便捷操作。 延续德国蔡司一贯严谨精湛的设计理念,本款显微镜在保留之前出品的倒置式显微镜的使用寿命长、光学系统优越、图像清晰等优点的同时,还在功能应用方面进行了拓展与完善,4位观察功能转盘的添加让不同观察模式之间的切换变得更加容易。同时,为了避免频繁的金相检验检测工作给观察者的身体与眼睛带来过多的伤害,Axio Vert.A1在人机工程学方面的设计也接近完美,稳固的机械设计、清晰舒适的观察视野、轻松方便的功能设置,这一切让从事金相工作的人们值得期待。 北京普瑞赛司仪器有限公司作为蔡司材料显微镜的总代理,对于本款产品的销售前景十分看好,甚至其销售部负责人称:“在Axio Vert.A1面向中国发售的消息刚刚放出,样机还未到达中国之际,便有多家单位已经开始调研此设备,准确下订单采购。”据悉,普瑞赛司还在此产品的配套服务、售前售后技术支持方面做足了准备,随时准备迎接国内客户的调研与考察。 咨询热线:800-890-0660
  • 显微镜|Revolve Generation 2正倒置一体电动荧光显微镜——带给你不一样的荧光观察体验
    最近,有不少小伙伴说使用荧光显微镜太麻烦了,需要提前开汞灯进行预热,需要手动更换滤光片,荧光特别容易淬灭,稍微厚一点的样本拍出来的效果特别不好。为什么使用荧光显微镜会如此不方便呢?今天我们就来一探究竟。说到荧光显微镜首先想到的问题就是荧光光源及滤色块。这是为什么呢?所有的一切都要从荧光观察的原理说起。不管是自发荧光还是荧光染料,它们发光的原理是一致的,都是吸收某一波段的光,提高自身的能量,然后再以特定的波段将能量以光的形式对外释放。正是因为荧光成像的特殊性,显微镜荧光成像过程中对光源要求很高,需要通过滤色块对光源进行过滤,这样势必导致光源能量的损失,因此这就对荧光光源的能量有着很高的要求。传统的光源有汞灯、氙灯,它们可以为荧光观察提供足够的能量,正是因为其高能量的特性,必然伴随着很多不可避免的缺陷:1、能量高,功率大,需要预热与预冷。这就极大的增加了使用者的时间成本,同时极高的功率降低了使用寿命,增加了使用成本。2、高能量光源需要在稳定极高电压下被激发,因此光强不能随意调节,需要通过添加挡光片进行调节。这就意味着传统荧光光源强度不能根据需求在任意强度进行调节。3、高能量的状态存在爆炸的可能性,具有一定使用风险,同时容易对观察的样品产生较强的光毒性。随着科技的发展尤其是高能LED的诞生,越来越多的荧光显微镜开始使用高能LED作为显微镜的荧光光源。因为其可以固定发射某一波段的光,所以通过滤色块损失的能量极少。这就意味着LED作为荧光光源,既可以克服传统光源的缺点,又保证了荧光观察所需强度。那么有没有操作便捷的荧光显微镜呢?答案是:必须有的啦。Revolve Generation 2正倒置一体电动荧光显微镜,带你解锁不一样的荧光观察技能。Revolve Generation 2正倒置一体电动荧光显微镜就是采用高能LED光源,开关在毫秒间,可以大大减少样品在光照下的暴露时间。光源一致性好,寿命长,即开即用,光毒性低,对活细胞样品非常友好。针对不同的荧光染料,需要使用合适的滤光片来捕捉荧光信号。在不同荧光通道的切换方面,Revolve Generation 2正倒置一体电动荧光显微镜是一键自动切换。针对需要进行多重荧光观察的样品,为了更加迅速的对脆弱的荧光样品进行捕捉,Revolve Generation 2正倒置一体电动荧光显微镜搭配自动荧光系统,多通道荧光自动切换,自动多通道图像叠加,体验感极佳。最后在图像采集方面,Revolve Generation 2正倒置一体电动荧光显微镜采取双相机模式荧光明场自动切换,荧光样品通过单色相机进行成像,确保了其最佳的采集方式。(关于荧光为何选取单色相机详见本公众号的-如何用显微镜拍出良好的照片。)以上就是Revolve Generation 2正倒置一体电动荧光显微镜对荧光观察的解决方案,简单又实用。你以为这就结束了?不!最好的要留在后面。针对成像条件复杂的样本,Revolve Generation 2正倒置一体电动荧光显微镜也给出了教科书级别的解决方案,简直亮瞎了双眼。通过Z-Stacking软件控制Z轴马达电机对样品进行Z轴层扫,获得不同聚焦平面的图像并自动整合为大景深的立体图像,获得超过二维平面效果的三维立体图像,显著提升较厚样品的图像质量。独有的DIGITAL HAZE REDUCTION实时数字化图像处理功能,增加宽场荧光显微镜图像锐度,抑制噪声减少模糊,提高荧光检测分辨率,清晰展现样本细微结构,颠覆传统成像效果。
  • 蔡司Axio Observer倒置式显微镜升级版荣耀上市
    pbr//pp style="TEXT-ALIGN: center"img style="FLOAT: none" title="Observer 3m.jpg" src="http://img1.17img.cn/17img/images/201512/uepic/c8573f28-1b28-4279-8e15-034e0721454c.jpg"//ppbr//ppbr//ppbr//ppbr//ppbr//ppbr//ppbr//ppbr//pp style="TEXT-ALIGN: justify" 近期,光学领导品牌德国蔡司公司推出了全新升级版的Axio Observer倒置式金相显微镜,系统升级后增加了全新的光强记忆功能,结合专业的光学系统与自动化设计,使系统更稳定,重复操作更简便。创新的Axio observer系统是一个开放的成像平台:按照目前的需求进行配置,无论何时分析研究需求有变化时,仅需一个简单的升级就可以满足所有材料应用。/pp /ppstrong产品优势:/strong/ppstrong金相分析中节省时间/strong/pp· 使用 Axio Observer 让样品制备和检测更省时。/pp· 倒置设计利于与物镜的平行排列。/pp· 在最短的时间内观察最多的样品:将样品放置在载物台上,一旦聚焦,无论再次改变放大倍数或更换样品都无需再次聚焦。/ppbr//pp style="TEXT-ALIGN: center"img title="图片1.jpg" src="http://img1.17img.cn/17img/images/201512/uepic/3664f3d3-2515-4ddc-a52a-503c5f911001.jpg"/ /ppbr//ppstrong值得信赖的检测结果和优异的成像质量/strong/pp style="TEXT-ALIGN: justify" 您会震惊于对Axio Observer所提供的高品质图像,尤其是在高倍工作环境下。/pp style="TEXT-ALIGN: justify" Axio Observer能够提供均匀的照明环境保证整个视野都能呈现清晰的图像,结合自动化组件的与ICCS光学系统,保证了每一次的测量结果都是可靠的并且可重复的。/pp style="TEXT-ALIGN: justify" 利用专业的分析软件模块,您可以在短时间内对金相组织结构进行分析,如夹杂物、晶粒度及多相面积含量等。/ppbr//pp style="TEXT-ALIGN: center"img title="图片2.jpg" src="http://img1.17img.cn/17img/images/201512/uepic/46a72e34-ee00-4e31-86f1-e70f9eeadb5f.jpg"/ /ppbr//ppstrong多种分析对比技术,灵活选择/strong/pp style="TEXT-ALIGN: justify" 明场和暗场,采用光陷阱技术及强大的杂散光消除技术大幅降低图像的背景噪音,获得最丰富的组织细节、最锐利的图像。/pp style="TEXT-ALIGN: justify" 偏光分析技术,利用固定式起偏器检偏器、360& #176 旋转检偏器或具有全波段补偿器的可旋转检偏器,无需旋转载物台既实现对各向异性材料的双反射性及多色性分析。/pp style="TEXT-ALIGN: justify" 圆偏光微分干涉(C-DIC),利用专利的圆偏光干涉技术可顺利实现对样品表面轮廓的全组织干涉图像分析,且无需配置旋转载物台。/pp /ppstrong应用图像/strong/pp style="TEXT-ALIGN: center" /pp style="TEXT-ALIGN: center"img style="WIDTH: 542px HEIGHT: 515px" title="图片4.jpg" src="http://img1.17img.cn/17img/images/201512/uepic/68485178-ffbf-44a4-9b52-f961b87d0fd1.jpg"//ppbr//pp style="TEXT-ALIGN: center"strong巴克蚀刻铝,反射光,偏光/strong/pp style="TEXT-ALIGN: center" /pp style="TEXT-ALIGN: center"img style="WIDTH: 541px HEIGHT: 462px" title="图片5.jpg" src="http://img1.17img.cn/17img/images/201512/uepic/ed4e37ff-0dc0-4462-8525-9157b3027deb.jpg"//ppbr//pp style="TEXT-ALIGN: center"strong球状石墨,反射光,明场/strong/pp style="TEXT-ALIGN: center"br//pp style="TEXT-ALIGN: center"img style="WIDTH: 545px HEIGHT: 503px" title="图片6.jpg" src="http://img1.17img.cn/17img/images/201512/uepic/f96bdede-de78-4fe6-851e-e6a43b891afa.jpg"/ /ppbr//pp style="TEXT-ALIGN: center"strong铸造铝硅,反射光,暗场/strong/pp style="TEXT-ALIGN: center" /pp style="TEXT-ALIGN: center"img style="WIDTH: 541px HEIGHT: 499px" title="图片7.jpg" src="http://img1.17img.cn/17img/images/201512/uepic/e3967ef9-3330-4168-a7ed-5c5a8a3a2efc.jpg"//ppbr//pp style="TEXT-ALIGN: center"strong巴克蚀刻铝,反射光,C-DIC/strong/pp style="TEXT-ALIGN: center" /pp style="TEXT-ALIGN: center"img style="WIDTH: 539px HEIGHT: 461px" title="图片8.jpg" src="http://img1.17img.cn/17img/images/201512/uepic/4340e6fa-e814-4050-bcac-2f924c67a40e.jpg"//ppbr//pp style="TEXT-ALIGN: center"strong锌,反射光,带& #955 板偏光/strong/pp style="TEXT-ALIGN: center"br//pp style="TEXT-ALIGN: center"img style="WIDTH: 543px HEIGHT: 467px" title="图片9.jpg" src="http://img1.17img.cn/17img/images/201512/uepic/dd977ca9-9f5a-455c-8ead-ab22ce824700.jpg"/ /ppbr//pp style="TEXT-ALIGN: center"strong红砷镍矿,反射光,带& #955 板偏光/strong/pp /ppbr//ppbr//p
  • 光学显微镜技术和应用简介
    自然界中一些最基本的过程发生在微观尺度上,远远超出了我们肉眼所能看到的极限,这推动了技术的发展,使我们能够超越这个极限。早在公元4世纪,人们发现了光学透镜的基本概念,并在13世纪,人们已经在使用玻璃镜片,以提高他们的视力和放大植物和昆虫等对象以便更好地了解他们。随着时间的推移,这些简单的放大镜发展成为先进的光学系统,被称为光学显微镜,使我们能够看到和理解超越我们感知极限的微观世界。今天,光学显微镜是许多科学和技术领域的核心技术,包括生命科学、生物学、材料科学、纳米技术、工业检测、法医学等等。在这篇文章中,我们将首先探讨光学显微镜的基本工作原理。在此基础上,我们将讨论当今常用的一些更高级的光学显微镜形式,并比较它们在不同应用中的优缺点。    什么是光学显微镜?  光学显微镜用于通过提供它们如何与可见光相互作用(例如,它们的吸收、反射和散射)的放大图像来使小结构样品可见。这有助于了解样品的外观和组成,但也使我们能够看到微观世界的过程,例如物质如何跨细胞膜扩散。  显微镜的部件以及光学显微镜的工作原理  从根本上说,显微镜包括两个子系统:一个用于照亮样品的照明系统和一个成像系统,该系统产生与样品相互作用的光的放大图像,然后可以通过眼睛或使用相机系统进行观察。  早期的显微镜使用包含阳光的照明系统,阳光通过镜子收集并反射到样品上。今天,大多数显微镜使用人造光源,如灯泡、发光二极管(LED)或激光器来制造更可靠和可控的照明系统,可以根据给定的应用进行定制。在这些系统中,通常使用聚光透镜收集来自光源的光,然后在聚焦到样品上之前对其进行整形和光学过滤。塑造光线对于实现高分辨率和对比度至关重要,通常包括控制被照亮的样品区域和光线照射到它的角度。照明光的光学过滤,使用修改其光谱和偏振的光学过滤器,可用于突出样品的某些特征。图1:复合显微镜的基本构造:来自光源的光使用镜子和聚光镜聚焦到样品(物体)上。来自样品的光被物镜收集,形成中间图像,该图像由目镜再次成像并传递到眼睛,眼睛看到样品的放大图像。  成像系统收集与样品相互作用的照明光,并产生可以查看的放大图像(如上图1)。这是使用两组主要的光学元件来实现的:首先,物镜从样品中收集尽可能多的光,其次,目镜将收集的光中传递到观察者的眼睛或相机系统。成像系统还可包括诸如选择来自样品的光的某些部分的孔和滤光器之类的元件,例如仅看到已从样品散射的光,或仅看到特定颜色或波长的光。与照明系统的情况一样,这种类型的过滤对于挑出某些感兴趣的特征非常有用,这些特征在对来自样本的所有光进行成像时会保持隐藏。  总的来说,照明和成像系统在光学显微镜的性能方面起着关键作用。为了在您的应用中充分利用光学显微镜,必须充分了解基本光学显微镜的工作原理以及当今存在的变化。  简单复合显微镜  单个镜头可以用作放大镜,当它靠近镜头时,它会增加物体的外观尺寸。透过放大镜看物体,我们看到物体的放大和虚像。这种效果用于简单的显微镜,它由单个镜头组成,该镜头对夹在框架中并从下方照明的样品进行成像,如下图2所示。这种类型的显微镜通常可以实现2-6倍的放大倍率,这足以研究相对较大的样本。然而,实现更高的放大倍率和更好的图像质量需要使用更多的光学元件,这导致了复合显微镜的发展(如下图3)。图2:通过创建靠近它的物体的放大虚拟图像,将单个镜头用作放大镜。图3:左:简单显微镜。右:复合显微镜。  在复合显微镜中,从底部照射样品以观察透射光,或从顶部照射样品以观察反射光。来自样品的光由一个由两个主要透镜组组成的光学系统收集:物镜和目镜,它们各自的功率倍增,以实现比简单显微镜更高的放大倍率。物镜收集来自样品的光,通常放大倍数为40-100倍。一些复合显微镜在称为“换镜转盘(nose piece)”的旋转转台上配备多个物镜,允许用户在不同的放大倍数之间进行选择。来自物镜的图像被目镜拾取,它再次放大图像并将其传递给用户的眼睛,典型的目镜放大率为10倍。  可以用标准光学显微镜观察到的最小特征尺寸由所使用的光学波长(λ)和显微镜物镜的分辨率决定,由其孔径数值(NA)定义,最大值为NA =1空中目标。定义可区分的最小特征尺寸(r)的分辨率极限由瑞利准则给出:  r=0.61×(λ/NA)  例如,使用波长为550nm的绿光和典型NA为0.7的物镜,标准光学显微镜可以分辨低至0.61×(550nm)/0.7≈480nm的特征,这足以观察细胞(通常为10µm大小),但不足以观察较小生物的细节,例如病毒(通常为250-400nm)。要对更小的特征成像,可以使用具有更高NA和更短波长的更先进和更昂贵的物镜,但这可能不适用于所有应用。  在标准复合显微镜(如下图4a)中,样品(通常在载玻片上)被固定在一个可以手动或电子移动以获得更高精度的载物台上,照明系统位于显微镜的下部,而成像系统高于样本。然而,显微镜主体通常也可以适应特定用途。例如,立体显微镜(如下图4b)的特点是两个目镜相互成一个小角度,让用户可以看到一个略有立体感的图像。在许多生物学应用中,使用倒置显微镜设计(如下图4c),其中照明系统和成像光学器件都在样品台下方,以便于将细胞培养容器等放置在样品台上。最后,比较显微镜(如下图4d)常用于法医。图4:复合显微镜。a)标准直立显微镜指示(1)目镜,(2)物镜转台、左轮手枪或旋转鼻镜(用于固定多个物镜),(3)物镜、调焦旋钮(用于移动载物台)(4)粗调,(5)微调,(6)载物台(固定样品),(7)光源(灯或镜子),(8)光阑和聚光镜,(9)机械载物台。b)立体显微镜。c)倒置显微镜。  光学显微镜的类型  下面,我们将介绍一些当今可用的不同类型的光学显微镜技术,讨论它们的主要操作原理以及每种技术的优缺点。  亮视野显微镜  亮视野显微镜(Brightfield microscopy,BFM)是最简单的光学显微镜形式,从上方或下方照射样品,收集透射或反射的光以形成可以查看的图像。图像中的对比度和颜色是因为吸收和反射在样品区域内变化而形成的。BFM是第一种开发的光学显微镜,它使用相对简单的光学装置,使早期科学家能够研究传输中的微生物和细胞。今天,它对于相同的目的仍然非常有用,并且还广泛用于研究其他部分透明的样品,例如透射模式下的薄材料(如下图5),或反射模式下的微电子和其他小结构。图5:亮视野显微镜。左图:透射模式-在显微镜下看到的石墨(深灰色)和石墨烯(最浅灰色)薄片。在这里,图像上看到的亮度差异与石墨层的厚度成正比。右图:反射模式-SiO2表面上的石墨烯和石墨薄片,小的表面污染物也是可见的。  暗视野显微镜  暗视野显微镜是一种仅收集被样品散射的光的技术。这是通过添加阻挡照明光直接成像的孔来实现的,这样只能看到被样品散射的照明光。通过这种方式,暗场显微镜突出显示散射光的小结构(如下图6),并且对于揭示BFM中不可见的特征非常有用,而无需以任何方式修改样品。然而,由于在最终图像中看到的唯一光是被散射的光,因此暗场图像可能非常暗并且需要高照明功率,这可能会损坏样品。  图6:亮视野和暗视野成像。a)亮视野照明下的聚合物微结构。b)与a)中结构相同的暗视野图像,突出显示边缘散射和表面污染。c)与a)和b)相似的结构,被直径为100-300nm的纳米晶体覆盖。仅观察到纳米晶体散射的光,而背景光被强烈抑制。  相差显微镜  相差显微技术(Brightfield microscopy,PCM)是一种可视化由样品光路长度变化引起的光学相位变化的技术.这可以对在BFM中产生很少或没有对比度的透明样品进行成像,例如细胞(如下图7)。由于肉眼不易观察到光学相移,因此相差显微镜需要额外的光学组件,将样品引起的相移转换为最终图像中可见的亮度变化。这需要使用孔径和滤光片来操纵照明系统和成像系统。这些形状和选择性地相移来自样品的光(携带感兴趣的相位信息)和照明光,以便它们建设性地干涉眼睛或检测器以创建可见图像。图7:人类胚胎干细胞群落的相差显微图像。  微分干涉显微镜  与PCM类似,微分干涉显微镜(differential interference contrast microscopy,DICM)通过将由于样品光路长度变化引起的光学相位转换为可见对比度,从而使透明样品(例如活的未染色细胞)可视化。然而,与PCM相比,DICM可以实现更高分辨率的图像,并且减少了由PCM所需的光学器件引入的清晰度和图像伪影。在DICM ,照明光束被线性偏振器偏振,其偏振旋转,使其分裂成两个偏振光束,它们具有垂直偏振和小(通常低于1µm)间隔。穿过样品后,两束光束重新组合,从而相互干扰。这将创建一个对比度与图像成正比的图像差在两个偏振光束之间的光相位,因此命名为“差”干涉显微镜。DICM产生的图像出现与采样光束之间的位移方向相关的三维图像,这导致样品边缘具有亮区或暗区,具体取决于两者之间的光学相位差的符号(如下图8)。图8:微分干涉对比显微镜。左:DICM的原理图。右图:通过DICM成像的活体成年秀丽隐杆线虫(C.elegans)。  偏光显微镜  在偏振光显微镜中,样品用偏振光照射,光的检测也对偏振敏感。为了实现这一点,偏振器用于控制照明光偏振并将成像系统检测到的偏振限制为仅一种特定的偏振。通常,照明和检测偏振设置为垂直,以便强烈抑制不与样品相互作用的不需要的背景照明光。这种配置需要一个双折射样品,它引入了照明光偏振角的旋转,以便它可以被成像系统检测到,例如,观察晶体的双折射以及它们的厚度和折射率的变化(如下图9)。图9:偏光显微镜。橄榄石堆积物的显微照片,由具有不同双折射的晶体堆积而成。整个样品的厚度和折射率的变化会导致不同的颜色。  荧光显微镜  荧光显微镜用于对发出荧光的样品进行成像,也就是说,当用较短波长的光照射时,它们会发出长波长的光。示例包括固有荧光或已用荧光标记物标记的生物样品,以及单分子和其他纳米级荧光团。该技术采用了滤光片的组合,可阻挡短波长照明光,但让较长波长的样品荧光通过,因此最终图像仅显示样品的荧光部分(如下图10)。这允许从由许多其他非荧光颗粒组成的样品中挑出和可视化荧光颗粒或已被染料染色的感兴趣细胞的分布。同时,荧光显微镜还可以通过标记小于此限制的粒子来克服传统光学显微镜的分辨率限制。例如,可以用荧光标记标记病毒以显示其位置在生物样品的情况下,可以表达荧光蛋白,例如绿色荧光蛋白。结合各种新颖形式的样品照明,荧光显微镜的这一优势实现了“超分辨率”显微镜技术,打破了传统光学显微镜的分辨率限制。荧光显微镜的主要限制之一是光漂白,其中标记物或颗粒停止发出荧光,因为吸收照明光的过程最终会改变它们的结构,使它们不再发光。图10:荧光显微镜。左:工作原理-照明光由短通激发滤光片过滤,并由二向色镜反射到样品。来自样品的荧光通过二向色镜,并被发射滤光片额外过滤以去除图像中残留的激发光。右图:有机晶体中分子的荧光图像(晶体轮廓显示为黄色虚线)。由于来自其他分子和晶体材料的荧光,背景并不完全黑暗。  免疫荧光显微镜  免疫荧光显微镜是主要用于在微生物的细胞内的生物分子可视化的位置荧光显微镜的具体变化。在这里,用荧光标记物标记或固有荧光的抗体与感兴趣的生物分子结合,揭示它们的位置。(如下图11)图11:免疫荧光显微镜。肌动蛋白丝(紫色)、微管(黄色)和细胞核(绿色)的免疫荧光标记的两个间期细胞。  共聚焦显微镜  共聚焦显微镜是一种显微镜技术,它可以逐点成像来自样品的散射或荧光。不是一次对整个样品进行照明和成像,而是在样品区域上扫描源自点状光源的照明点,敏感检测器仅检测来自该点的光,从而产生2D图像。这种方法允许以高分辨率对弱信号样本进行成像,因为来自采样点之外的不需要的背景信号被有效抑制。在这里,所使用的波长和物镜在所有三个维度上都限制了成像光斑的大小。这允许通过将物镜移动到距样品不同的距离,在样品内的不同深度处制作2D图像。然后可以组合这些2D图像“切片”以创建样本的3D图像,这是所讨论的其他宽视场显微镜技术无法实现的,并且还允许以3D方式测量样品尺寸。这些优势的代价是无法一次性拍摄图像,而是必须逐点构建图像,这可能非常耗时并阻碍样本的实时成像(如下图12)。图12:单分子荧光的共聚焦荧光图像。小点对应于单个分子的荧光,而较大的点对应于分子簇。此处的荧光背景比简单的荧光显微镜图像弱得多,如亮点之间的暗区所见。  双光子显微镜  双光子显微镜(Two-photonmicroscopy,TPM)是荧光显微镜的一种变体,它使用双光子吸收来激发荧光,而不是单光子激发。在这里,通过吸收两个光子的组合来激发荧光,其能量大约是单个光子激发所需能量的一半。例如,在该方案中,通常由单个蓝色光子激发的荧光团可以被两个近红外光子激发。在TPM中,图像是逐点建立的,就像在共聚焦显微镜中一样,也就是说,双光子激发点在样品上扫描,样品荧光由灵敏的检测器检测。与传统荧光显微镜相比,激发和荧光能量的巨大差异导致了多重优势:首先,它允许使用更长的激发波长,在样品内散射较少,因此穿透更深,以允许在其表面下方对样品进行成像并创建3D样品图像。同时,由于激发能量低得多,光漂白大大减少,这对易碎样品很有用。激发点周围的荧光背景也大大减少,因为有效的双光子吸收仅发生在激发光束的焦点处,因此可以观察到来自样品小部分的荧光(如下图13)。  TPM的一个缺点是双光子吸收的概率远低于单光子吸收,因此需要高强度照明,如脉冲激光,才能达到实用的荧光信号强度。图13:双光子显微镜。花粉的薄光学切片,显示荧光主要来自外层。  光片显微镜  光片显微技术是荧光显微术的一种形式,其中样品被垂直于观察方向的薄“片”光照射,从而仅对样品的薄切片(通常为几微米)进行成像。通过在样品在光片中旋转的同时拍摄一系列图像,可以形成3D图像。这要求样品大部分是透明的,这就是为什么这种技术通常用于形成小型透明生物结构的3D图像,例如细胞、胚胎和生物体。(如下图14)图14:光片显微镜。左:工作原理。右:通过荧光成像用光片显微镜拍摄的小鼠大脑的荧光图像。  全内反射荧光显微镜  全内反射荧光(Totalinternal reflection fluorescence microscopy ,TIRF)是一种荧光显微技术,可通过极薄(约100nm厚)的样品切片制作2D荧光图像。这是通过照明光的渐逝场激发样品的荧光来实现的,当它在两种不同折射率(n)的材料之间的边界处经历全内反射时就会发生这种情况。消逝场具有与照明光相同的波长,但与界面紧密结合。在TIRF显微镜中,激发光通常在载玻片(n=1.52)和样品分散的水介质(n=1.35)之间的界面处发生全内反射。渐逝场的强度随距离呈指数下降来自界面,这样在最终图像中只能观察到靠近界面的荧光团。这也导致来自切片外区域的荧光背景的强烈抑制,这允许拾取微弱的荧光信号,例如在定位单个分子时。这使得TIRF非常适用于观察参与细胞间相互作用的荧光蛋白(如下图15)的微弱信号,但也需要将样品分散在水性介质中,这可能会限制可以测量的样品类型。图15:TIRF图像显示培养的视网膜色素上皮细胞中的蛋白质荧光。每个像素对应67nm。  膨胀显微镜  膨胀显微镜背后的基本概念是增加通常需要高分辨率显微镜的样品尺寸,以便可以使用标准显微镜技术(尤其是荧光显微镜)对其进行成像。这适用于保存的标本,例如生物分子、细胞、细菌和组织切片,可以使用下图16中所示的化学过程在所有维度(各向同性)均匀扩展多达50倍。扩展样本可以隔离感兴趣的个别特征通常是隐藏的,可以使它们透明,从而可以对它们的内部进行成像。图16:膨胀显微镜的样品制备。细胞首先被染色,然后连接到聚合物凝胶基质上。然后细胞结构本身被溶解(消化),使染色的部分随着凝胶各向同性地膨胀,从而使染色的结构更详细地成像。  光学显微镜中的卷积  除了使光学系统适应特定用例之外,现代光学显微镜还利用了数字图像处理,例如图像去卷积。该技术通过补偿光学系统本身固有的模糊,可以提高空间分辨率以及光学显微镜拍摄图像的定位精度。这种模糊可以在校准步骤中测量,然后可以用于对图像进行去卷积,从而减少模糊。通过将高性能光学元件与先进的图像处理相结合,数字显微镜可以突破分辨率的极限,以更深入地观察微观世界。(如下图17)图17:图像解卷积。左:原始荧光图像。右:解卷积后的图像,显示细节增加。  光学显微镜与电子显微镜  光学显微术通常使用可见光谱中的光波长,由于瑞利准则,其空间分辨率固有地限制为所用波长的大约一半(最多约为200nm)。然而,即使使用具有高NA和高级图像处理的物镜,也无法克服这一基本限制。相反,观察较小的结构需要使用较短波长的电磁辐射。这是电子显微镜的基本原理,其中使用电子而不是可见光照亮样品。电子具有比可见光短得多的相关波长,因此可以实现高达10000000倍的放大倍数,甚至可以分辨单个原子。(如下图18)  图18:同心聚合物结构中纳米晶体放大15000倍的扫描电子显微镜图像,即使是细微的细节,例如基材的孔隙,也能分辨出来。  总结与结论  光学显微镜是一种强大的工具,可用于检查各种应用中的小样本。通过调整用于特定用例的照明和成像技术,可以获得高分辨率图像,从而深入了解样品中的微观结构和过程。文中,我们讨论了各种光学显微镜技术的特点、优势和劣势,这些技术在光线照射和收集方式上有所不同。显微镜种类优点技术限制典型应用亮视野显微镜结构相对简单,光学元件很少低对比度、完全透明的物体不能直接成像,可能需要染色对彩色或染色样品和部分透明材料进行成像暗视野显微镜显示小结构和表面粗糙度,允许对未染色样品进行成像所需的高照明功率会损坏样品,只能看到散射图像特征细胞内颗粒成像,表面检测相差显微镜实现透明样品的成像复杂的光学设置,需要的高照明功率会损坏样品,通常图像较暗跟踪细胞运动,成像幼虫微分干涉对比显微镜比PCM更高的分辨率复杂的光学设置,需要的高照明功率会损坏样品,通常图像较暗活的、未染色的细胞和纳米颗粒的高分辨率成像偏光显微镜来自样品非双折射区域的强背景抑制,允许测量样品厚度和双折射需要双折射样品成像胶原蛋白,揭示晶体中的晶界荧光显微镜允许挑出样品中的单个荧光团和特定的感兴趣区域,可以克服分辨率限制需要荧光样品和灵敏的检测器,光漂白会减弱信号成像细胞成分、单分子、蛋白质免疫荧光显微镜使用抗体靶向可视化特定的生物分子大量样品制备,需要荧光样品,光漂白识别和跟踪细胞和蛋白质共聚焦显微镜低背景信号,可以创建3D图像成像速度慢,需要复杂的光学系统3D细胞成像,荧光信号较弱的成像样品,表面分析双光子显微镜样品穿透深度、背景信号低、光漂白少成像速度慢,需要复杂的光学系统和大功率照明神经科学,深层组织成像光片显微镜图像仅样品的极薄切片,可通过旋转样品创建3D图像成像速度慢,需要复杂的光学系统细胞和生物体的3D成像全内反射荧光显微镜强大的背景抑制,极精细的垂直切片成像仅限于样品的薄区域,需要复杂的光学系统,样品需要在水介质中单分子成像,成像分子运输膨胀显微镜提高标准荧光显微镜的有效分辨率需要对样品进行化学处理,不适用于活体样品生物样品的高分辨率成像  参考:  1. Rochow TG, Tucker PA. A Brief History of Microscopy. In: Introduction to Microscopy by Means of Light, Electrons, X Rays, or Acoustics. Springer US 1994:1-21. doi:10.1007/978-1-4899-1513-9_1  2. Smith WJ. Modern Optical Engineering: The Design of Optical Systems. McGraw-Hill 1990. ISBN: 0070591741  3. Shribak M, Inoué S. Orientation-independent differential interference contrast microscopy. Collected Works of Shinya Inoue: Microscopes, Living Cells, and Dynamic Molecules. 2008 (Dic):953-962. doi:10.1142/9789812790866_0074  4. Gao G, Jiang YW, Sun W, Wu FG. Fluorescent quantum dots for microbial imaging. Chinese Chem Lett. 2018 29(10):1475-1485. doi:10.1016/j.cclet.2018.07.004  5. Chalfie M, Tu Y, Euskirchen G, Ward W, Prasher D. Green fluorescent protein as a marker for gene expression. Science. 1994 263(5148):802-805. doi:10.1126/science.8303295  6. Baranov M V., Olea RA, van den Bogaart G. Chasing Uptake: Super-Resolution Microscopy in Endocytosis and Phagocytosis. Trends Cell Biol. 2019 29(9):727-739. doi:10.1016/j.tcb.2019.05.006  7. Miller DM, Shakes DC. Chapter 16 Immunofluorescence Microscopy. In: Current Protocols Essential Laboratory Techniques. Vol 10. 1995:365-394. doi:10.1016/S0091-679X(08)61396-5
  • 《岛津AIM-9000红外显微镜应用数据集册》发布啦!
    您知道吗?日常生活中,洗面奶中的微小塑料颗粒检测;海洋环境中,微塑料种类检测;刑侦案件中,微量物证成分检测;药物生产中,杂质异物成分检测等等,都离不开红外显微镜。红外显微镜是指傅立叶变换红外光谱仪和显微镜联用系统,该技术灵敏度高,可以实现微区、微量样品分析,对于常规无法检测的μm级别样品,也可方便快捷地进行检测。 岛津公司全新推出《岛津AIM-9000红外显微镜应用数据集册》,一起来看看吧! 岛津AIM-9000红外显微镜特点高灵敏度:拥有30000:1信噪比指标。全自动红外显微分析系统:观察、定义测量位置、测量、鉴别结果自动执行。装载:装载样品非常简单,轻轻一按“取出样品”按钮,自动降低样品台。观察:大视野相机和显微镜相机实现从目视尺寸(10x13mm)到显微异物尺寸(30x40μm)的连续放大。分析:异物自动分析程序,自动确认异物成分。丰富的附件:可以选配多种附件。 岛津AIM-9000红外显微镜应用数据集册特色案例抢先看 案例一 (环境) 海洋生物体中微塑料成分检测海洋微塑料一旦被海鸟、鱼类等生物摄入,是无法被消化的,极易导致海洋生物死亡。英国的纽卡斯尔大学和荷兰的瓦赫宁根海洋研究所从海洋生物北极鳕鱼的胃内分离出了微米级别的微塑料,使用岛津AIM-9000对北极鳕鱼胃内分离出的微塑料进行分析。 测试发现北极鳕鱼中采集的微塑料主要成分是PMMA(聚甲基丙烯酸甲酯),含有添加剂KAOLIN(硅酸铝)。 案例二 (医药) 注射剂中异物成分定性分析注射剂生产工艺或生产环境等原因,一些灌装药液产品中可能含有玻璃碎屑、纤维、橡胶、毛发、烟雾、白点等异物,对病人身体造成极大的危害。过滤某品牌注射液,在光学显微镜下挑出异物(红色框内),然后使用岛津AIM-9000对异物进行成分测试。 谱图分析结果结合显微镜下异物图片状态可知,该异物可能是毛发。 案例三 (公安司法) 车祸现场油漆碎片分析汽车车身油漆由底漆层、中涂层、面漆层、清漆层等组成,不同厂家和车型对应不同的车身油漆。因此汽车油漆隐含着汽车车型的重要信息,是道路交通事故逃逸案中重要的物证信息之一。了解汽车油漆的光谱特征,对于进行同一性认定,缩小嫌疑车辆范围,查找逃逸车辆有重要指导意义。油漆图片及红外谱图 谱图分析结果嫌疑车油漆样本与事故现场油漆碎片红外谱图差异性比较明显,排除该车是肇事车的可能。 案例四 (电子电气) 镜头上异物成分定性分析在电子电气行业,生产工艺流程复杂,过程中使用的物料众多,操作流水线上的稍微疏漏,都会导致产品中出现不明异物。这不仅影响产品外观,影响产品质量,甚至会导致生产停滞,给企业带来不可估量的经济损失。由于异物样品较小,显微红外法在微小异物分析中的显著优势得以体现。 谱图分析结果结合显微镜下异物图片状态推断,该异物可能是皮屑。 数据集册内容 (一)工业制造1.红外显微镜法在电子产品异物分析中的应用2.岛津红外显微镜对印刷电路板进行缺陷分析3.红外显微镜在焊锡电路板助焊剂残留分析中的应用4.红外显微镜ATR法对锂离子电池用隔离膜进行定性分析5.红外显微镜Mapping功能研究物质组分分布的均匀性6.红外显微镜系统Mapping功能测试锂电池用铝箔表面的油污7.红外显微镜法测定玻璃板上聚亚胺薄膜的环化率8.岛津EDX和红外显微镜AIM测试人工晶体上的异物9.岛津红外显微镜AIM-9000和EDX-8100联用鉴定树脂材料中的异物 (二)医药1.岛津红外显微镜定性分析医药包材的多层膜2.岛津红外显微镜可视观察的同步测定对多层薄膜进行分析3.岛津红外显微镜AIM-9000对药物片剂表面的异物进行分析4.岛津红外显微镜对注射液中异物进行成分分析 (三)环境1.岛津红外显微镜快速鉴定长江水中的微塑料成分2.使用岛津红外显微镜AIM-9000分析从海洋生物中采集的微塑料3.岛津红外显微镜检测磨砂洗面奶中的微小塑料颗粒4.岛津红外显微镜检测食盐中的微小塑料颗粒 (四)公安司法1.岛津显微光谱法分析车辆碰撞现场微量油漆物证2.岛津AIM-9000红外显微镜系统在打印字迹鉴别中应用3.岛津红外显微镜对口红物证样品进行成分对比分析4.使用红外显微镜AIM-9000进行毛发截面分析 (五)食品安全1.岛津AIM-9000和EDX对食品工序中异物进行定性分析2.岛津红外显微镜AIM和EDX测试水管异物 撰稿人:王娟娟 *本文内容非商业广告,仅供专业人士参考。
  • 广州明美携智能型倒置荧光显微镜闯入创新创业大赛的复赛阶段
    广州市明美光电技术有限公司(以下简称“明美”)携智能型倒置荧光显微镜参加第六届中国创新创业大赛暨第二届“羊城”科创杯创新创业大赛,获得评审专家的高度认可,顺利通过预赛,进入到复赛阶段。中国创新创业大赛由科技部火炬高技术产业开发中心、科技部科技型中小企业技术创新基金管理中心、科技日报社、陕西省现代科技创业基金会、北京国科中小企业科技创新发展基金会承办,旨在扶持具有重大意义的创新创业项目,是各行各业的公司展示成果,吸引投资的一次绝佳的机会。此次大赛上,明美展示了一款最新研制的智能型倒置荧光显微镜。该显微镜采用led荧光照明系统,提升了本产品的使用寿命和稳定性;采用微扫描技术,可以把原来的图像分辨率提升9倍;采用红外传感器,自动感应控制荧光模块的自动切换;光源自动适应调整,人体离开后自动待机等功能;集成计算机处理模块,图像显示模块,无需借助电脑,即可观察和保存图像。这款智能型倒置荧光显微镜具有多种人性化的功能,代表了未来智能型显微镜的发展方向。答辩会上,评审组的专家对这款智能型倒置荧光显微镜表示了极大的兴趣,提出了许多有建设意义的问题;同时也对这款产品给予了高度的赞扬和肯定,明美也顺利的进入到了此次大赛的复赛阶段。在复赛阶段,明美势必会遇到更多有竞争力的产品,但相信这款不断改进和完善的智能型倒置荧光显微镜能够击败对手,并取得最终的胜利。
  • 电子显微镜在制药行业的应用之包装材料篇
    电子显微镜助力药品检测包装材料的可靠性药包材是药品的重要组成部分,它伴随着药品生产、流通及使用全过程。药包材有可能与药品中的某些组分发生迁移、渗透、腐蚀、吸附等诸多情况,从而影响药品质量,甚至某些有害物质可能侵入药品,成为临床用药的隐患。而相容性实验正是为了考察药包材与药物之间是否发生这些现象,其目的在于保证药物的安全性、有效性和均一性。药品包装材料“意见稿”明确提出:“应根据药品的特性和临床使用情况选择能保证药品质量的包装材料和容器,提供包装材料的选择依据。吸入溶液/吸入混悬液/吸入用溶液常见的包装系统为半渗透性塑料包装(例如低密度聚乙烯安瓿),并采用保护性材料进行外包装(例如铝箔袋);吸入用粉末常见的包装形式为西林瓶+胶塞铝盖。对于仿制药,包材质量和性能原则上不得低于参比制剂,以保证药品质量与参比制剂一致。直接接触药品的包装材料和容器应符合国家药监局颁布的包材标准,或 USP、EP、JP 的要求。可参照《化学药品注射剂与塑料包装材料相容性研究技术指导原则(试行)》《化学药品注射剂与药用玻璃包装容器相容性研究技术指导原则(试行)》《化学药品与弹性体密封件相容性研究技术指导原则(试行)》等相关技术指导原则开展包装材料和容器的相容性研究。”安瓿瓶内壁脱片位置形貌上图显示了常用作药品包装的容器——安瓿瓶的脱片形貌。可以看出,图中的两个位置都出现了数十微米宽,数百微米长的脱片情况,在一般的研究中,往往采用加速实验对包装瓶进行强力腐蚀,以推测实际使用中的表现。较大的脱片如存在于注射针剂的玻璃瓶内,很有可能在对病人进行注射时,随着针管注入人体静脉血管,造成血管堵塞或损伤,甚至引发其他疾病。由于脱片研究中主要关注的是微米级以上的目标物直径,因此用常规的钨灯丝SEM即可满足大部分使用要求。由于玻璃制品的导电性较差,所以一般都要喷镀导电膜进行表面导电处理,以便拍摄到更清晰、无荷电的照片。日立的钨灯丝电镜一般都标配低真空功能,无需镀膜,即可拍摄理想分辨率的无荷电图片。安瓿瓶内壁腐蚀坑和铝包材的多层结构如上图中左图就是采用了不喷金直接拍照的方法拍得的玻璃瓶内壁腐蚀坑,清晰地反映了实验中溶液对玻璃瓶身地腐蚀严重程度。有些需要避光、防潮保存的药物,常用铝制包装材料,一般由PVC塑料和泡罩铝箔构成。泡罩铝箔的截面形貌如右图所示,离子研磨处理之后,在扫描电镜下看到并非只有一层铝箔,还有很多层高分子材料,每一层的厚度都清晰可见。而铝箔的厚度影响了透光性,如果太薄,虽然可以节省生产成本,但是暴露于更多光照,可能导致药物提早失效。铝箔外表面的高分子材料有效避免了铝箔的腐蚀,增强了耐磨、抗皱性能,起到了保护层的作用。在药品的研发过程中,日立扫描电镜助力研究人员解决研究过程中出现的难题,找到新的研究方向。公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 冷冻显微镜:制药研究中最酷的技术
    在过去的二十年中,冷冻显微镜方法已经成为生命科学家、制药研究人员等广泛使用的有效工具,用于检查接近其原生状态的生物结构1。冷冻显微镜能够可视化蛋白质和蛋白质复合物等物质的生物分子结构,是对现有的方法如x射线晶体学和核磁共振(NMR)等的有价值的补充。确定蛋白质和蛋白质复合物的结构是药物发现的一个重要部分,这对研究药物靶点非常有意义,也是深入了解疾病机制的重要课题。在这篇文章中,我们将阐述冷冻显微镜技术的使用,包括冷冻光学电子显微镜(cryo-CLEM),冷冻干燥显微镜(FDM),药物研究中的低温保存,以及温度控制显微镜如何使研究人员能够在低温下推进药物发现和开发研究。冷冻光学电子显微镜(Cryo-CLEM)电子显微镜(EM)使用微量材料,具备接近原子的分辨率,可以研究不同功能状态下的分子。冷冻电镜(Cryo-EM)使用极低温度,克服了真空条件下使用电子束测量高含水量生物标本的难题。在20世纪80年代冷冻电镜商业化之前,生物标本是通过化学固定或染色等方法制备的,但这些方法存在保存伪影,会影响图像分辨率。快速冷冻通常用于将样品保持在与自然生理环境相似的冷冻状态,在临床前阶段取得的结果必须在临床研究中可复制,这在药物研究中尤其重要。Cryo-CLEM结合低温荧光技术和冷冻电镜技术,提高了活检细胞内生物、化学和遗传过程的灵敏度。Cryo-CLEM能够对冷冻固定样品中的分子或分子组件(如细胞内膜、DNA或细胞结构元件)进行直接荧光标记和靶向,精确定位区域,以便后续使用EM进行高分辨率成像。为了使生物样品与EM中发现的真空条件兼容并保存结构细节,样品被嵌入玻璃状的冰中,需要保持在-140°C以下。必须避免与空气中水分接触,因为一旦接触会形成冰晶并污染样品。在低温条件下,荧光信号的结构细节被保留,光漂白显著减少。冷冻光学电子显微镜技术的进步体现在它包含了创新的冷冻荧光级,如Linkam CMS196,它能够自动获取整个电镜网格的高分辨率荧光图。这也用于样品导航,并将cryo-CLEM的案例情况与EM或与x射线显微镜等其他技术相关联。西班牙巴塞罗那的一组研究人员和临床医生使用荧光显微镜、透射电子显微镜(TEM)和低温软x射线断层扫描(cryo-SXT),可以观察到抗癌药物顺铂在极低浓度下的有效性,确定产生效果所需的最低剂量,以最大限度地降低毒性2。该小组在荧光显微镜上对低温冷冻的细胞样本进行成像,使用CMS196冷冻荧光台在液氮温度下将它们玻璃化,然后使用cryo-SXT对样本进行分析,这使得在纳米尺度上进行3D研究成为可能。得益于现有的低温成像技术,研究结果表明,三甲碱(研究的两种佐剂之一)促进了顺铂在较低剂量下的有效治疗,这可能为化疗治疗的发展铺平了道路,减少了对患者的副作用。冻干显微镜许多药物生产为冻干或冻干配方,以增加稳定性和延长保质期。药物开发人员必须为新的药物化合物创建一个优化的冷冻干燥过程,这可能是一项复杂而昂贵的工作。为了简化流程和开发更高效的冷冻干燥循环,了解三个主要冷冻干燥步骤的温度和压力要求是很重要的。使用冷冻干燥显微镜(FDM),研究人员可以直接可视化每个步骤,并确定药物产品在不同热条件下的行为。FDM包括一个专用的光学显微镜和一个专用的热工作台,它可以准确地控制样品的温度和压力,并允许实时进行热测量。冷冻干燥的一个关键参数是塌陷温度(Tc),即产品失去结构完整性并导致加工缺陷的温度。FDM使药物开发人员能够密切监测样品并快速有效地调整冷冻干燥方案。英国国家生物标准与控制研究所(NIBSC)的一个研究小组正在利用先进的FDM技术研究冷冻干燥药物的复杂性。该小组由Paul Matejtschuk博士领导,正专注于研究优化冻干脂质体药物的配方。由于冻干脂质体药物物理和化学性质不稳定,这对开发提出了挑战。Matejtschuk博士和他的团队使用安装在光学显微镜上的专用冷冻台(FDCS196, Linkam科学仪器)(图1),通过估计冻结、塌陷和融化温度,预测脂质体-冷冻保护剂混合物的理想的冷冻干燥条件3。图1:NIBSC实验室的仪器配置。Linkam FDCS196冷冻干燥冷冻台,T94控制器和液氮泵,真空泵,奥林巴斯BX51光学显微镜。图像显示FDM系统的旧版本图2: Linkam FDCS196冻干显微镜系统的最新版本这样的实验对于继续努力开发快速、可转移和可扩展的冷冻干燥方法来稳定脂质体等药物化合物至关重要。低温贮藏储存用于研究的生物标本有赖于有效的保存技术,以保持细胞的物理和生物完整性。冷冻或冷冻样品可能会导致冰晶的积聚,导致终端细胞损伤。冷冻保护剂是在冷冻过程中通过降低水的熔点来防止细胞损伤的重要物质。许多生物,如极地昆虫、鱼类和两栖动物,会产生自己的冷冻保护剂或防冻化合物。科学家们正在研究这些化合物,以开发新的冷冻保护剂来保存研究用的细胞。例如,由Matthew Gibson博士领导的英国华威大学的研究人员,正在研究防冻剂(糖)蛋白(AFP),目的是开发新的合成AFP模拟化合物。该实验室使用低温生物学工作台(BCS196,Linkam Scientific Instruments)来测量细胞中的冰晶生长,依靠该仪器的温度控制能力来观察AFP。Gibson博士研究了使用金纳米颗粒作为探针来测量冰再结晶抑制活性现象,使用低温生物学工作台来改变温度,并开发出一种高通量方法来筛选类似AFP具有结构特征的材料。4诸如此类的发现为开发新型冷冻保护剂提供了潜力,这种保护剂可以防止冷冻保存细胞中冰的生长,从而保持细胞的完整性,因此在生物医学和药学研究中具有潜在用途。未来药物研究本文中描述的技术强调了目前已有的各种冷冻显微镜方法的选择,这些方法有助于推进药物研究。Cryo-CLEM结合了cryo-EM和低温荧光的力量,作为一种相对较新的技术,它的成功依赖于专用冷冻工作台的发展,从而促进了Cryo-CLEM工作流程。这种工作台能够在液氮温度下保持玻璃化样品,使它们在从荧光显微镜移动到冷冻电镜成像时保持无污染。其他专用的冷冻台可与广泛的显微镜技术兼容,如FDM,可在成像过程中精确控制样品的温度,低至-196°C。这些创新为制药研究人员新疗法和生产工艺评估,以及生物样本保存以供未来研究等大量应用提供了工具。 作者:Linkam Scientific Instruments销售及市场部经理Clara Ko参考文献:1. Booy, F. and Orlova, E.V. Cryomicroscopy, in: Chemical Biology: Applications and Techniques (eds Larijani, B., Rosser, C.A., and Woscholski, R.) 2007.2. Gil, S., Solano, E., Martinez-Trucharte, F., et al. Multiparametric analysis of the3. effectiveness of cisplatin on cutaneous squamous carcinoma cells using two different types of adjuvants. PLoS ONE. 2020 15(3): e0230022.4. Hussain M.T., Forbes N., Perrie Y., Malik K.P., Duru C. and Matejtschuk P. Freeze-drying cycle optimization for the rapid preservation of protein-loaded liposomal formulations. International Journal of Pharmaceutics 573, 2020 118722.5. Mitchell, D. E., Congdon, T., Rodger, A., and Gibson, M. I. Gold Nanoparticle Aggregation as a Probe of Antifreeze (Glyco) Protein-Inspired Ice Recrystallization Inhibition and Identification of New IRI Active Macromolecules. Scientific Reports, 2015 5: 15716.
  • Science: 扫描探针显微镜控制器在二维磁性材料研究中的突破性应用进展
    导读:自2017年来,二维磁性在单层材料中的实现使得二维磁性材料受到了大的关注。范德瓦尔斯磁体让我们对二维限下的磁性有了更进一步的了解,不同磁结构的范德瓦尔斯磁体使得实验上探究二维下的磁学模型成为可能。例如,在单层CrI3中发现Ising铁磁,而XY模型的NiPS3在单层限下的磁性会被抑制。除了这些,有着变磁行为的范德瓦尔斯磁体更为有趣,比如在少层CrCl3中由于奇数层存在着未补偿磁矩,使得奇数层存在着spin-flop转变,而偶数层则没有。目前,现存的二维磁性材料非常稀少,这意味着新范德瓦尔斯磁体的发现,不仅仅有助于二维磁性的研究,更是为二维自旋电子学器件的应用提供了材料基础[1]。相比于传统的三维空间结构,二维层状磁性材料因其原子层间较弱的范德华尔斯作用力,能够人为操控其层间堆叠方式,进而有可能影响其磁耦合特性,为新型二维自旋器件的研制提供新思路。然而,堆叠方式与磁耦合间的关联机制仍不甚明晰,需要借助先进的扫描探针技术才能实现在原子层面的直接实验观测。美国RHK公司所提供的先进R9plus扫描探针显微镜控制器可以有效结合课题组自主研发的扫描探针设备,同时给予高效率的扫描控制,从而可以针对二维磁性材料应用领域展开更为深入的研究。本文重点介绍国内课题组灵活运用RHK公司扫描探针控制器,配合自主研发设计的扫描探针设备所开展的一系列国际前沿性二维材料领域的研究工作,其中各研究工作当前已在国际SCI核心学术期刊发表。科学成果的突破,离不开实验技术的不断攻坚克难。复旦大学物理学系教授高春雷、吴施伟团队通过团队自主研发搭建的扫描探针设备创造性地将原位化合物分子束外延生长技术和自旋化扫描隧道显微镜相结合,在原子层面彻底厘清了双层二维磁性半导体溴化铬(CrBr3)的层间堆叠和磁耦合间的关联,为二维磁性的调控指出了新的维度。相关研究成果以 《范德华尔斯堆叠依赖的层间磁耦合的直接观测》(“Direct observation of van der Waals stacking dependent interlayer magnetism”)为题发表于《科学》(Science)主刊,其中复旦大学物理学系博士后陈维炯为作者[2]。图中所示为陈博士与RHK技术总监进行深入的技术探讨,现场摸索优化测试信号,并详细沟通具体的测量细节,为后续高效率提取高质量大数据做准备。 课题组运用自主研制的自旋化扫描隧道显微镜测量技术,结合RHK公司先进的扫描探针显微镜控制器对自主研发实验设备实现测量调控,团队进一步在原子分辨下获取了样品磁化方向的相对变化,从而实现了实验突破,揭秘材料堆叠方式与磁耦合之间的直接关联性。团队以CrBr3双层膜作为主要研究对象和潜在突破口。双层CrBr3间较弱的范德瓦尔斯力赋予层间发生相对转动和平移的“自由”,从而使堆叠方式多样化成为可能。确实,在实验中获得的CrBr3双层膜具有两种不同的转动堆叠结构(H型和R型),分别对应迥异的结构对称性。其中,R型堆叠结构中,双层膜上下两层间同向平行排列,且沿晶体镜面方向作一定平移;H型堆叠结构中,双层膜上下两层之间旋转了180度,反向平行交错排列。这两种结构均是在相应的体材料中从未发现过的全新堆叠结构。至此,团队率先在原子尺度阐明了CrBr3堆叠结构与层间铁磁、反铁磁耦合的直接关联,为理解三卤化铬家族CrX3中不同成员的迥异磁耦合提供了指导。H型和R型堆叠的CrBr3双层膜自旋化扫描隧道显微镜测量 更多精彩案例: 《Nature》子刊:中国科大扭转双层石墨烯重要进展! 范德瓦尔斯堆叠的双层石墨烯具有一系列新奇的电学性质(例如,电场可调控的能隙、随扭转转角变化的范霍夫奇点以及一维拓扑边界态等)。当双层石墨烯的扭转转角减小到一系列特定的值(魔角)时,体系的费米面附近出现平带,电子在能量空间高度局域,电子-电子相互作用显著增强,出现莫特缘体和反常超导量子物态。另一方面,这些新奇的性质与双层石墨烯体系的扭转角度有着严格的依赖关系,体系层间相互作用随着转角减小会逐渐增强,因此探寻和研究这种层间耦合对理解扭转双层石墨烯的电子结构和物理性质至关重要。中国科学技术大学合肥微尺度物质科学研究中心国际功能材料量子设计中心(ICQD)物理系秦胜勇教授与武汉大学袁声军教授及其他国内外同行合作,利用扫描隧道显微镜和扫描隧道谱,次在双层转角石墨烯体系中发现了本征赝磁场存在的重要证据,结合大尺度理论计算指出该赝磁场来源于层间相互作用导致的非均匀晶格重构。相关研究成果以“Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene”为题,于2020年发表于《自然通讯》(Nature Communications 2020,11,371)上[3]。图:小角度双层石墨烯中本征赝磁场的发现。对于转角为0.48度的双层石墨烯,在不加外磁场情况下,实验发现了贋朗道能(图b),理论计算进一步验证了这种贋磁场行为(图c),并估算出贋磁场值大约为6特斯拉(图e)。 该团队系统研究了小角度下(1°)双层石墨烯的电学性质,次证实了由晶格重构导致的本征赝磁场。先,研究人员发现体系中赝磁场导致了低能载流子的能量量子化,并计算出这种本征赝磁场在实空间的分布。研究发现赝磁场的分布并不是均匀的,而是以AA堆叠为中心呈涡旋状,且在AA堆叠边界区域达到大值;另外,该赝磁场的大小随着转角的减小而增大,其分布和大小受到外加应力的调控。该项研究证实,在小角度扭转双层石墨烯中晶格重构导致的赝磁场和强关联电子态存在着内在的关联,层间相互作用对体系的结构重构和性质变化有着非常重要的影响。这一现象可以推广到其他范德瓦尔斯堆叠的二维材料体系中。这项工作同时表明,具有本征赝磁场的小角度扭转双层石墨烯是实现量子反常霍尔效应的一个可能平台,为研究二维材料的性质和应用提供了新的思路。RHK公司提供的R9plus扫描探针显微镜强有力的为国内自主研发技术提供有力保障,除了在科研领域内重点关注的二维材料发挥重要作用以外,也对国内其它相关扫描探针设备研发领域课题组提供技术支持。中国科学技术大学陆轻铀教授团队与中国科学院强磁场科学中心、新加坡国立大学等单位合作,利用扫描探针控制器实现了高精度的磁力显微镜观察表征,报告了在超薄BaTiO3/SrRuO3 (BTO/SRO)双层异质结构中发现铁电体(FE)驱动的、高度可调谐的磁性斯格明子。在BTO中,FE驱动的离子位移可以穿过异质界面,并继续为多个单元进入SRO。这种所谓的FE邻近效应已经在不同的FE/金属氧化物异质界面中得到了预测和证实。在BTO/SRO异质结构中,这种效应可以诱导相当大的DMI,从而稳定强大的磁性物质。此外,通过利用BTO覆盖层的FE化,可以实现对斯格明子性质的局部、可逆和非易失性控制。这种铁电可调的斯格明子系统为设计具有高集成性和可寻址性的基于斯格明子的功能设备提供了一个潜在的方向。相关成果以题为“Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures”发表在了Nat. Mater.上[4]。B20S5样品中磁性斯格明子的磁力显微镜表征 除此之外该课题组也对二维过渡金属硫化物材料MoTe2温度依赖的表面STM图像、电子结构、晶格动力学和拓扑性质进行了研究。研究结果以Uniaxial negative thermal expansion and band renormalization in monolayer Td-MoTe2 at low temperature为题,发表在美国物理学会杂志《物理评论B》上。该工作为二维过渡金属硫化物材料MX2的低温研究、实验制备和器件开发提供了直接的理论支持,其揭示的MoTe2低温下反常物性的内在物理机制对其它具有内在MX2八面体结构畸变的二维材料同样具有参考价值[5]。学术工作之外,该课题组在仪器设备研发方面也取得了优异的成果,课题组在国际上次研制成功混合磁体端条件下原子分辨扫描隧道显微镜(STM),相关研究成果发表在显微镜领域著名期刊Ultramicroscopy和著名仪器刊物Review of Scientific Instruments上。此工作利用混合磁体搭配RHK公司扫描探针设备开展原子分辨成像研究,对于突破当前超强磁场下只能开展输运等宏观平均效果测量的瓶颈,进入到广阔的物性微观起源探索领域,具有标志性意义。同时,课题组又针对超强磁场下的生物分子高分辨成像,搭建了一套室温大气环境下的分体式STM。该系统将一段螺纹密封式胶囊腔体通过一根长弹簧悬吊于混合磁体中心,并将STM核心镜体悬吊于胶囊腔体内用以减弱声音振动干扰。经测试,该STM在27.5特斯拉超强磁场下依然保持原子分辨。由于没有真空、低温环境的保护,搭建混合磁体超强磁场、超强振动和声音环境下的室温大气STM难度更大。此前,国际上还未曾报道过水冷磁体或混合磁体中的室温大气STM[6]。混合磁体STM系统:(a)混合磁体照片;(b)混合磁体STM系统简图;(c)STM镜体;(i-iv)分别为0T、21.3T、28.3T、30.1T磁场强度下石墨的原子分辨STM图像。 参考文献:1. Peng, Y., et al., A Quaternary van der Waals Ferromagnetic Semiconductor AgVP2Se6. Advanced Functional Materials, 2020. 30(34): p. 1910036.2. Chen, W., et al., Direct observation of van der Waals stacking-dependent interlayer magnetism. Science, 2019. 366(6468): p. 983-987.3. Shi, H., et al., Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene. Nat Commun, 2020. 11(1): p. 371.4. Wang, L., et al., Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures. Nat Mater, 2018. 17(12): p. 1087-1094.5. Ge, Y., et al., Uniaxial negative thermal expansion and band renormalization in monolayer Td?MoTe2 at low temperature. Physical Review B, 2020. 101(10).6. Meng, W., et al., 30 T scanning tunnelling microscope in a hybrid magnet with essentially non-metallic design. Ultramicroscopy, 2020. 212: p. 112975.
  • 使用Echo Revolve Gen2正倒置荧光显微镜拍荧光片,秀秀真功夫
    实验室的小师妹,天天一脸崇拜的的跟着师兄学实验,“师兄,实时定量PCR曲线好完美啊”“师兄,Western Blot条带好漂亮啊,都没有杂带”… … ,这样下去,我师姐的威信如何立得住,师姐在实验室这么多年,也不是白学的,必须在小朋友面前秀秀我高大上的组织免疫荧光的片子,怎么也得让他们崇拜一下,接下来就和大家分享下免疫荧光相关的经验!什么是免疫荧光免疫荧光是在免疫学,生物化学和显微技术的基础上建立的一项技术,再用荧光抗体(或者)抗原作为探针检测细胞或组织内相应的抗原(或抗体)。利用荧光显微镜可以看见荧光在细胞或者组织的表达,从而确认抗原或抗体的性质和定位。常用的方法有直接法和间接法。间接法实验步骤说明冰冻切片为例:1.切片固定:冰冻切片从冰箱拿出来复温,晾干水分,冷丙酮固定10min,待丙酮完全干后于PBS(PH7.4)中在脱色摇床上晃动洗涤3次,每次5min。2.抗原修复:组织切片置于盛满EDTA抗原修复缓冲液(PH8.0)的修复盒中,于微波炉内中低火5min进行抗原修复。自然冷却后将玻片置于PBS(PH7.4)中在摇床上晃动洗涤3次,每次5min。3.封闭:切片稍甩干后用组化笔在组织周围画圈(防止抗体流走),在圈内滴加3%BSA均匀覆盖组织,室温封闭30min。4.加一抗:甩掉封闭液,在切片上滴加配好的一抗,平放于湿盒内4°C孵育过夜(湿盒内加少量水防止抗体蒸发)。5.加二抗:玻片置于PBS(PH7.4)中在摇床上晃动洗涤3次,每次5min。切片稍甩干后在圈内滴加与一抗相应种属的荧光二抗覆盖组织,避光室温孵育50min。6.DAPI复染细胞核:玻片置于PBS(PH7.4)中在摇床上晃动洗涤3次,每次5min。切片稍甩干后在圈内滴加DAPI染液,避光室温孵育10min。7.封片:玻片置于PBS(PH7.4)中在脱色摇床上晃动洗涤3次,每次5min。切片稍甩干后用抗荧光淬灭封片剂封片。8.镜检拍照:切片于Echo Revolve Gen2正倒置荧光显微镜下观察并采集图像。显微镜在最后结果的呈现中发挥重要作用,我用的Echo Revolve Gen2正倒置荧光显微镜那是其他小伙伴羡慕的对象。第一:高颜值,2021缪斯(MUSE)国际设计奖铂金奖 。第二:独有的实时DHR数字处理技术,通过数字化图像处理,在镜下实时显示高分辨图像,清晰展现样本细微结构,颠覆传统成像效果。第三:Z轴高精度自动层扫,配合实时DHR数字降噪技术,在保持高分辨率的同时,对较厚样本进行全景深扫描合成,实现全景深观察。下面秀一秀师姐的荧光图部分图源:网络,侵删
  • 显微镜|Echo Revolve显微镜在血脑屏障功能研究中的应用
    血脑屏障 (BBB) 是哺乳动物的一种特殊结构,通过调节血液和血液之间离子、氧气和营养物质的流入和流出,将大脑与血液分开,并维持中枢神经系统 (CNS) 的稳态。该屏障主要由脑微血管内皮细胞 (BMEC)、星形胶质细胞和周细胞组成。转化生长因子β1 (TGFβ1) 是转化生长因子β (TGFβ) 家族成员之一,是一种多效性细胞因子,在多种病理和生理过程中发挥重要作用。Hedgehog信号通路是重要的信号传导通路,在多个物种中是保守的,并且在生理和病理过程的许多方面发挥着重要作用。典型Hedgehog信号由三种分泌配体Shh、Ihh和Dhh激活,细胞间信号由转录因子Gli1、Gli2和Gli3转导。在中枢神经系统中,Hedgehog信号通路决定了神经管的形成和发育。目前,已有研究表明Hedgehog信号与TGFβ1级联反应在癌症发展和转移中的相互作用。那么Hedgehog信号和TGFβ1级联反应之间的串扰是否会影响血脑屏障的功能呢,目前还尚不清晰。华中农业大学兽医学院农业微生物学国家重点实验室和湖北省预防兽医学重点实验室联合在Brain Sciences杂志上发表了一篇名为《Astrocyte-Derived TGFβ1 Facilitates Blood–Brain Barrier Function via Non-Canonical Hedgehog Signaling in Brain Microvascular Endothelial Cells》,该文阐明了TGFβ1 介导的星形胶质细胞和大脑内皮细胞之间的细胞间交流,这一发现将拓宽关于血脑屏障内稳态的现有知识,也可能有助于进一步改善血脑屏障功能障碍的治疗策略。作者通过构建人脑微血管内皮细胞 (hBMECs) 与U251的单培养和共培养模型,证实了星形胶质细胞衍生的TGFβ1增强了BMECs的屏障功能。实时荧光定量PCR、免疫印迹和酶联免疫吸附试验等多种实验表明TGFβ1在BMECs中触发Smad2/3的激活增加了Gli2的表达,Gli2是Hedgehog信号转导的关键转录因子。Gli2与ZO-1启动子结合,增强ZO-1的表达,从而维持血脑屏障。星形胶质细胞来源的TGFβ1触发BMECs中的TGFβ1-TGFBRII-Smad2/3-Gli1/2-ZO-1轴并维持正常的BBB功能。文中作者通过免疫荧光技术,利用Echo Revolve正倒置一体显微镜进行免疫荧光观察。使用50ng/mL的重组TGFβ1 (rTGFβ1) 来刺激单层hBMECs,BMECs用绿色CD31标记,结果表明与对照组相比,ZO-1表达显著增加。用4mg/kg的TGFβ/Smads信号抑制剂SD208处理小鼠,图中虚线环表示BMECs中的Gli1或Gli2的表达量,结果表明与对照组相比,ZO-1、 Gli1和Gli2表达量均减少。内皮屏障功能方面发挥重要作用,提高了对血脑屏障功能的研究。这一发现也可能表明未来有可能使用TGFβ1和Hedgehog信号级联来辅助治疗血脑屏障功能障碍。参考文献:Fu J, Li L, Huo D, et al. Astrocyte-Derived TGFβ1 Facilitates Blood-Brain Barrier Function via Non-Canonical Hedgehog Signaling in Brain Microvascular Endothelial Cells. Brain Sci. 2021 11(1):77. Published 2021 Jan 8. doi:10.3390/brainsci11010077
  • ECHO REVOLVE显微镜在环境镉、细菌和宿主相互作用研究中的应用
    前言环境镉的膳食摄入量高,生物半衰期长,直接或通过肠道微生物群损害生理功能,是一种严重的健康风险。然而,环境镉对微生物和宿主系统的毒性机制尚不清楚。中科院营养代谢与食品安全重点实验室和上海交通大学医学院的科学家在《Hazardous Materials》杂志联合发表了一篇名为《Cadmium accelerates bacterial oleic acid production to promote fat accumulation in Caenorhabditis elegans》的文章,本研究建立了三个线虫和大肠杆菌培养系统,以研究微生物在镉诱导的脂质毒性中的重要作用,阐明了镉通过细菌代谢物在体内诱导脂质积累的机制,并揭示了环境镉、微生物和宿主之间的相互作用。本研究使用ECHO REVOLVE正倒置一体荧光显微镜(RVL-100-G,Discover ECHO,US)检测VS29蠕虫的GFP荧光。激发和检测波长分别为470–495 nm和510–550 nm。使用图像处理和分析软件对荧光图像进行分析,计算其平均荧光密度。图A ECHO REVOLVE正倒置一体荧光显微镜拍摄转基因VS29蠕虫中GFP:dgat-2表达的代表性图像(左图)和相对定量(右图)(n≥ 15) 在成年期的第1、3、5和7天。比例尺:210µm。研究表明,镉暴露导致细菌代谢物的组成存在显著差异。油酸被确定为表达差异最大的代谢物。镉暴露显著增加了油酸的含量,表明镉具有特定的诱导效应。通过在正常和代谢失活系统中直接添加到秀丽隐杆线虫,进一步证实了油酸对体脂积累的影响。因此,研究发现镉诱导的复合差异(尤其是油酸的增加)而不是数量变化介导了镉对宿主的影响。除了油酸的产生外,还发现低剂量镉暴露可提高细菌中油酸合成相关基因(fabA、fabB、fabD、fabG、fabH、fabI、fabZ和accA)的表达。并且添加油酸增加了秀丽隐杆线虫的脂质合成和代谢相关基因(fat-5、fat-7、acs-11和sbp-1)的表达,这与镉暴露线虫中的现象相似。值得注意的是,与镉暴露不同,油酸对秀丽隐杆线虫体内脂质积累的影响是直接且独立于培养系统的,这表明升高的细菌油酸是环境镉促进宿主体内脂质积累的效应器。综上所述,本研究提出了一个模型来说明环境镉、细菌和线虫之间的相互作用。本研究首先集中于环境中低剂量镉引起的细菌代谢产物改变及其对镉暴露与宿主毒性之间关系的影响。本研究还探究了维生素D3在镉诱导的脂肪积累中的作用。补充维生素D3可显著降低低剂量镉加速的秀丽隐杆线虫体内的脂肪含量,表明补充维生素D3有可能防止环境镉暴露引起的脂肪异常积累。研究亮点:▶ 本研究发现在有活细菌系统中的线虫,镉提高了细菌代谢产物油酸的产生,并提高了其合成基因的表达。从而进一步促进了线虫脂肪代谢相关基因的表达和脂肪沉积。▶ 本研究发现了维生素D3的潜在保护作用,可以显著防止镉或油酸诱导的脂肪沉积,可以降低环境镉的脂质毒性,这些发现为镉引起的健康风险和毒理学机制提供了深入的见解。原文:https://doi.org/10.1016/j.jhazmat.2021.126723Revolve Gen 2正倒置一体电动荧光显微镜新一代Revolve Gen 2正倒置一体电动荧光显微镜,拥有流行的触屏操控方式,配备智能荧光成像系统,将Z-Stacking全景深成像和DHR数字处理功能有机联合,提升分辨率告别照片模糊,为您打造全新的成像体验。
  • 热烈祝贺Echo Revolve正倒置一体电动荧光显微镜获得欧洲产品设计最高荣誉白金奖
    2021年度欧洲产品设计奖近日揭晓,美国ECHO Revolve正倒置一体电动荧光显微镜凭借出色的外观设计、功能设计荣获欧洲产品设计工业/生命科学/医疗/科学机械类的最高荣誉白金奖。Revolve颠覆了大家对显微镜的认知,是对传统显微镜设计的重新思考,在工作流程、易用性和功能方面做了很大的创新,使显微镜变得更时尚,功能更强大 。Revolve 是世界上第一款多功能显微镜,将四台显微镜合二为一,可轻松在正置和倒置之间进行转换。使用户不再因为所拍摄样品的不同而分别购置正置和倒置两类显微设备,一机满足多种样品成像,具备眀场、暗场、相衬、荧光和偏光等功能,是真正的多面手。同时显著降低了设备成本,节省实验空间。传统显微镜操作繁琐,很难上手。Revolve打破传统,采用12.9英寸Retina显微屏,触控操作,智能控制,成像更便捷,给您带来前所未有的使用体验。使枯燥的实验变得简单有趣,轻松获得您想要的图片。欧洲产品设计奖(European Product Design Award)是由法玛尼集团主办的国际设计大奖,是唯一与欧洲议会联合颁发的设计奖,也是欧洲最有影响力的设计奖项之一。EPDA旨在表彰有才华的国际产品和工业设计师的努力,鼓励他们通过实用的、深思熟虑的创作来改善我们的日常生活。将工业/生命科学/医疗/科学机械类的最高荣誉白金奖颁给Echo Revovle,说明Echo Revolve在设计理念,仪器功能上得到大家的认可和肯定,Echo必将在自己的领域发挥极致,大放异彩,敬请期待。|申请试用|我们的仪器可以申请试用哦!扫描下方二维码关注“深蓝云生物科技”公众号,点击“云活动”→“试用中心”即可。
  • 150万!赣南医学院倒置荧光显微镜等生物平台省部共建进口设备采购项目
    项目编号:HHZX22-058项目名称:赣南医学院倒置荧光显微镜等生物平台省部共建进口设备采购项目采购方式:公开招标预算金额:1500000.00 元最高限价:无采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2022B000646361自动细胞计数仪1台95000.00元详见公告附件赣购2022B000646359全能型蛋白快速转印系统3套165000.00元详见公告附件赣购2022B000646356Western Blot 制胶、电泳、转膜系统4套120000.00元详见公告附件赣购2022B000646365倒置荧光显微镜1套430000.00元详见公告附件赣购2022B000646357磁力细胞分选器(大号)1台36000.00元详见公告附件赣购2022B000646360真空泵3台105000.00元详见公告附件赣购2022B000646364高温灭菌CO2细胞培养箱1台68000.00元详见公告附件赣购2022B000646358磁力细胞分选器(小号)1台32000.00元详见公告附件赣购2022B000646363高性能台式离心机1台149000.00元详见公告附件赣购2022B000646362实时PCR扩增仪1台300000.00元详见公告附件合同履行期限:自签订合同之日起120日内(日历日)交付使用;本项目不接受联合体投标。
  • 专题推荐|低压透射电子显微镜LVEM在病毒学研究中的应用
    病毒作为一种病原体一直受到学术界的广泛关注。然而由于病毒通常尺寸较小,传统的光学显微镜往往难以满足其形态观测的需求,这使得高分辨率的透射电子显微镜成为了当前病毒学研究的一个重要手段(图1),可以用来研究病毒的结构和成分。目前使用的透射电子显微镜进行病毒颗粒的检测和识别仍面临着巨大的挑战。这是因为病毒的主要组成部分多为含碳的轻元素有机物,这类样品很容易被高能电子束穿过,造成其光学衬度较低,且由于共价键化合物的低稳定性使得其在传统电子显微镜的高加速电压 (一般为80-200 kV) 下非常不稳定,不适合直接进行观察。因此病毒的形态学观察一般采用负染色成像技术,需要在观测前对样品进行复杂的负染操作,占有大量的时间,且可能会掩盖掉一些病毒的形貌特征,造成使用透射电子显微镜观测病毒的门槛较高。图1. (A)80 kV 和 (B)5 kV加速电压下透射电子显微镜下观测到的SV40感染的小鼠胰腺切片(Microscopy Research and Technology, DOI:10.1002/jemt.20603)为了解决这一难题,低压透射电子显微镜(Low Voltage Electron Microscope, LVEM)应运而生。LVEM突破了传统透射电子显微镜的80 kV加速电压的低限,研究人员可在低压下观察轻质生物样品,无需染色,简化了样品制备流程;同时该设备可在保证高图像对比度的前提下,使用温和的加速电压进行病毒形态学的检测和识别,能够识别以往可能被污渍和负染的瑕疵所掩盖的病毒特征。Delong Instruments公司的LVEM 5&25是一类专门针对低电压设计研发出的透射电子显微镜。LVEM使用特殊设计的倒置式肖特基(Schottky)场发射电子枪,提供高亮度高相干性的电子束,这种低能电子束与样品的相互作用比传统透射电子显微镜中的高能电子要强得多,使得电子被轻质有机材料强烈散射,导致了特征的异常分化(Microscopy Research and Technology, DOI: 10.1002/jemt.22428)。在病毒学研究方面,该设备大放大倍数高于通常观测病毒所需要的大约50,000倍的放大率,且依然保持不错的分辨率(2 nm),可满足病毒形态和结构研究的需求。相比于高电压,5kV 的加速电压提供的电子束与样品的作用更强,对密度和原子序数有更高的灵敏度,对低至0.005 g/cm3的密度差别仍能得到很好的样品图像对比度,有效提高了轻元素样品的成像质量,适合针对病毒学的研究。需要指出的是,LVEM 25与LVEM 5建立在相同的平台之上,前者在一个稍高的加速电压下工作,在满足轻元素样品观测的要求下可进一步提高终的图像分辨率。图2. LVEM 5的结构示意图(A)和小鼠心脏超微结构成像 (B) 。(Microscopy Research and Technology, DOI:10.1002/jemt.22659)LVEM 5&25显微镜可用于检测腺病毒(图3A)、HIV(图3B)、轮状病毒(图3C)、球状病毒(图3F)、棒状病毒(图3 G-H)、星形病毒、杯状病毒、诺瓦克样病毒、疱疹病毒和乳头瘤病毒等。另外对于类病毒载体的研究,LVEM 5&25也是一项利器。它能够在不负染的情况下直接观测类病毒载体的形态,帮助研究者快速筛选载体,解决传统电镜制样难,机时紧张等问题(Journal of Nanobiotechnology, DOI: 10.1186/s12951-016-0241-6)。图3. (A-C) LVEM 5观察多种非负染的病毒样品 (D-E) LVEM 5&25 实物图 (F-H) LVEM 25观察多种负染后的病毒样品。 (图片来源于Delong Instruments官网)LVEM的高对比度成像技术匹配快速的时间-图像周期、高通量研究,可作为一种快速诊断方法,用于识别病毒感染源和辅助病理研究,是快速检测具有公共卫生重要性病原体的有力工具。LVEM 5&25 更是一台多种功能集成的电子显微镜,具有四种不同的成像模式——透射电镜(TEM)、扫描电镜(SEM)、扫描透射电镜(STEM)和电子衍射(ED),能够为病毒学研究工作者同时提供多种表征所需的成像模式,全面的对病毒样品的结构和成分进行分析(图4)。图4. 使用LVEM 5 对HIV膜蛋白结构同时进行(A)TEM和(B)ED分析。(Journal of Virology,DOI:10.1128/JVI.01526-19.)除了拥有高质量成像和多功能集成的特点外,LVEM 5&25的体积小 (无需专业实验室),维护费用低廉(无需冷却水和专用电源),在使用期间基本不会产生任何额外的费用,大大降低了研究所需的成本。另外它采用了真空自闭锁技术,换样仅需3分钟,降低了仪器操作难度,对广大的非专业用户变得更加友善。我们相信随着低压透射电镜的不断发展,LVEM 5&25将成为一个强有力的工具,使得病毒形态的观测变得越来越简单,更多以往被传统电镜所忽略的细节结构信息将被挖掘出来,大的提高研究人员对病毒结构和成分的认知,为人们的科研和生活服务。
  • 电子显微镜在制药行业的应用
    电子显微镜助力药品检测制剂的表面和内部形貌观察药物制剂的种类非常多,按照物态分为固体剂型、半固体剂型、液体剂型、气体剂型。固体剂型(包括片剂、丸剂等)、半固体剂型和少数气雾剂的观察一般适合用SEM,液体剂型和纳米固态剂型的观察一般用TEM。固态药粉的放大形貌图药粉的导电性一般都比较差,因此在SEM的拍摄中一般采取喷镀金属膜层的方法提升导电性。但是由于镀膜过程带来的热效应可能会对脆弱的药物样品造成一定损伤,造成形貌失真,所以优先采用不喷金直接观察,这时,对SEM的性能就提出了更高的要求。上图中的两种不同的药物采用了不同的拍摄条件,左图采用无镀膜的方式直接UVD探头拍摄低真空下的SE图像,有效避免了荷电和热损伤;右图的药粉耐热性较好,不容易出现损伤,采用了喷镀金属膜的前处理方式,使用高真空SE探头低加速电压拍摄高分辨率形貌。片剂、冲剂、针剂、丸剂、气雾剂等常规剂型,需要每日用药多次,不仅使用不便,而且血液中的药物浓度起伏很大,会出现“峰谷”现象:当血药浓度处于高峰时,超过了最合适的治疗浓度,容易引起副作用;反之,药物浓度降到低谷时,又远在所需浓度之下,难以发挥治疗作用。于是,人们迫不及待地需要新型制剂来解决这个问题。在这个背景下,新的药物剂型———缓释制剂与控释制剂就应运而生了。a.丸剂和片剂的表面和截面形貌图(含局部放大图)缓释和控释技术在药物中应用后,能在较长时间内持续释放药物。与普通制剂相比,这种给药方式有三大优势:延长药效、减少服药次数,尤其适用于需要长期服药的慢性病患者;提供平稳、持久的有效血药浓度,避免或减小峰谷现象,有利于提高药物使用的安全性,减少不良反应,对胃肠道具有保护作用;药物作用时间较长、化学稳定性较好,减少了在贮存时易变质失效或口服后经胃酸作用被破坏的几率。已压制成型的缓释丸剂和片剂肉眼或外表面看起来差别并不大,但心部可能存在较大差别。上图显示了部分丸剂和片剂的表面和截面形貌。可以看出,对于某些片剂或丸剂,刀片切割已经能够几乎完全反映内部的形貌特征,分层情况和多孔的分布情况可以清楚地被看到。正是由于这些像“3D滤网”一样的分层或多孔的镂空结构,研究人员通过模拟人体内的肠胃微环境,控制这些细微结构在人体内对药物有效成分的透过率,缓释药才能真正发挥疗效。然而,如果想要分析每一层截面上局部的成分和含量,可能还要借助其他样品前处理设备完成。b.丸剂的截面(Hitachi IM4000plus离子研磨仪处理)图b所示,相对于图a,丸剂的剖面被更清晰地观察到。从低倍到高倍、从全貌到局部充分展现了丸心、内层、中层、外层的形貌特征。背散射电子的成分衬度,使图像衬度更加明显,甚至单一分层内部的片状微粒组合方式也得到完美呈现。从外观上说,很明显,图b比图a中的样品截面看起来更加平整、杂质附着也更少。这主要是由于使用Hitachi IM4000plus离子研磨仪进行了样品前处理,样品更为干净,完美避免了手动切开或者机械抛磨带来的刮擦、变形、外来污染物引入等问题,使得此样品更适合做EDS成分分析。药品的研发过程中,日立扫描电镜助力研究人员解决研究过程中出现的难题,找到新的研究方向。公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 45.72万!南昌大学化学学院振荡培养箱及倒置荧光显微镜等仪器设备采购
    项目概况南昌大学化学学院振荡培养箱及倒置荧光显微镜等仪器设备采购项目 招标项目的潜在投标人应在 江西省公共资源交易网(网址:http://jxsggzy.cn/web/) 获取招标文件,并于 2022年01月04日 14点30分 (北京时间)前递交投标文件。一、项目基本情况:项目编号:JXGT2021208项目名称:南昌大学化学学院振荡培养箱及倒置荧光显微镜等仪器设备采购项目采购方式:竞争性磋商预算金额:457200.00 元最高限价:无采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2021B000543882化学学院 倒置荧光显微镜(李东平)1套172000.00元详见公告附件赣购2021B000508816化学学院振荡培养箱等仪器设备采购(李东平)1批285200.00元详见公告附件合同履行期限:国产设备:签订合同后30天内交货、验收完毕。进口设备:签订合同后60天内交货、验收完毕。本项目不接受联合体投标。二、申请人的资格要求(1)具有独立承担民事责任的能力; (2)具有良好的商业信誉和健全的财务会计制度; (3)具有履行合同所必需的设备和专业技术能力; (4)有依法缴纳税收和社会保障资金的良好记录; (5)参加政府采购活动前三年内,在经营活动中没有重大违法记录; (6)法律、行政法规规定的其他条件: 2.落实政府采购政策需满足的资格要求:本项目采购的产品属于政府强制采购节能产品的,必须提供《节能产品政府采购品目清单》的产品。3.本项目的特定资格要求:本项目非专门面向中小企业采购。本项目非专门面向监狱企业。(说明:监狱企业、残疾人福利性单位视同小型、微型企业)三、获取采购文件:时间:2021年12月22日 至 2021年12月30日,每天上午0:00至12:00,下午13:00至23:30(北京时间,法定节假日除外 )(磋商文件的发售期限自开始之日起不得少于5个工作日)地点:江西省公共资源交易网(网址:http://jxsggzy.cn/web/)方式:网上报名和下载磋商文件。售价:0.00元四、响应文件提交:2022年01月04日 14点30分 (北京时间)(从磋商文件开始发出之日起至供应商提交首次响应文件截止之日止不得少于10日;从谈判文件开始发出之日起至供应商提交首次响应文件截止之日止不得少于3个工作日;从询价通知书开始发出之日起至供应商提交响应文件截止之日止不得少于3个工作日)地点:南昌市红谷滩新区凤凰中大道926号中洋大厦10楼1003室五、开启:2022年01月04日 14点30分 (北京时间)地点:南昌市红谷滩新区凤凰中大道926号中洋大厦10楼1003室六、公告期限:自本公告发布之日起3个工作日。七、其他补充事宜:1.供应商必须在江西省公共资源交易网(网址:http://jxsggzy.cn/web/下同)注册并办理江西省CA数字证书和电子签章。具体要求详见“江西省政府采购网”(网址:http://www.ccgp-jiangxi.gov.cn/web/) 。2. 供应商如遇到江西省公共资源交易网操作或投标文件制作软件问题可拨打江苏国泰新点软件有限公司技术支持电话 400-998-0000。3.本项目非专门面向中小企业采购。4. 本项目非专门面向监狱企业。5.其他事项(1)需落实的政府采购政策:促进中小企业发展政策、监狱企业扶持政策、政府采购节约能源政策、政府采购环境保护政策、促进残疾人就业政策。详见供应商须知。(2)本项目磋商保证金缴纳形式、缴纳金额、缴纳期限、收款账户等信息详见磋商文件第二章“供应商须知前附表”。6.采购代理服务费本项目采购代理服务费:向成交供应商收取, 收费标准详见磋商文件。7.本次竞争性磋商采购公告发布于“江西省公共资源交易网”,有 关本次采购事项若存在变动或修改,敬请关注上述网址。八、凡对本次采购提出询问,请按以下方式联系:1.采购人信息名称:南昌大学主管单位地址:南昌市学府大道 999 号联系方式:0791-839692902.采购代理机构信息名称:江西省国投招标代理有限公司地址:南昌市红谷滩新区凤凰中大道926号中洋大厦10楼1003室联系方式:0791-863915793.项目联系方式项目联系人:王丽霞、熊丽瑶电话:0791-86391579
  • 浅谈 | 激光共聚焦显微镜特点及应用
    激光扫描共聚焦显微镜(LSCM)是基于共轭焦点技术设计的显微镜类型,即为使激光光源、被测样品和探测器都处于彼此的共轭位置上。基本原理在一般的显微镜中通过将物镜的焦平面与探测器重合使得观测的像平面与相邻的轴平面隔离开来,而在共聚焦显微镜中通过使用衍射受限的光点照亮样品,并在该光点共轭焦点处的收集光路径中使用针孔来过滤杂散光达到产生这种隔离效果从而提高分辨率。激光共聚焦显微镜原理图成像特点—不同的焦平面上生成“z叠层”图像—上图所示结构中,只有在共轭的样品层反射回的光可以通过收集光路径中的小孔,其余无关的样品层反射被小孔阻隔。这可以得到显著的分辨率的提升。如下图所示的是同一厚样品的多维荧光显微镜和共聚焦显微镜的并排比较。当在不同的焦平面上拍摄一系列图像时,可以生成通常被称为“z叠层”的图像,这一图像显示了共聚焦显微镜提供的分辨率和对比度增益以及这些增益的根本原因。可以看到在成像平面位于组织上方的堆栈顶部检查图像可以发现荧光图像中带有大量的散射光,而共聚焦显微镜的图像则显示为黑色。这种轴向上的PSF的减少直接导致了z叠层中间光学界面上观察到的分辨率差异。同一厚样品多维荧光显微镜和共聚焦显微镜成像比较成像特点—光学切片扫描成像—激光扫描共聚焦显微镜的另一个特点是它是一种扫描成像技术,传统的宽场照明技术是将整个样品都照亮,因此可以图像可以直接被肉眼或探测器捕捉,但是LSCM采用一束或多束聚焦光束穿过样品扫描成像,这样得到的图像被称为光学切片,下所示即为传统的宽场照明方式与激光扫描共聚焦照明方式的区别。传统宽场显微镜和激光扫描共聚焦显微镜照明方式区别因此现代共聚焦显微镜的一种实际的工作方式如下图所示,激光发出的激发光通过二向色镜,通过一对振镜在样品x方向和y方向进行扫描,样品激发(或反射)的光通过针孔进入PMT检测器被记录,记录下的扫描图像通过计算机重构出实际的样品图像。一种实际的激光扫描共聚焦显微镜示意图成像特点—分辨率对比宽场照明大幅提升—在荧光显微镜中,单点发射的光强度由点扩散函数(PSF)描述,其图案就是一个艾里斑,荧光系统的分辨率可以由艾里斑的半径来描述,艾里斑的半径可以由物镜的数值孔径和激发光的波长决定:另一种荧光系统分辨率测量方式是半高宽最大值,即强度下降到峰值50%的值,此时宽场荧光照明的横向分辨率为:激光扫描共聚焦显微镜的分辨率为:这表明,共聚焦显微镜的理论最大分辨率比宽场照明提高了倍。下图表示了宽场显微镜与共聚焦显微镜的对比,左图为宽场显微镜得到的图像,右图为共聚焦显微镜得到的图像。宽场显微镜与共聚焦显微镜成像对比主要应用领域—医疗领域—Li 等人通过LSCM技术对31位虹膜粘连但角膜透明的病人进行了检查,观察到类树干状结构、树枝/灌木状结构、果实特征结构、上皮状结构等一些可能的结构变异,同时发现颜料粒子的减少可能会导致廷德尔积极现象[1]。主要应用领域—生物学领域—L. Cortes等人通过将抗钙结合蛋白(Alexa-568)和抗胶质纤维酸性蛋白(Alexa-488)对小鼠的小脑进行标记得到的图像。并且通过快速获取小鼠大脑的室管膜组织块上荧光标记的运动纤毛的概览,记录下了运动纤毛的确切位置,揭示了运动纤毛的作用机制。小鼠大脑图像小鼠大脑运动纤毛图像德国马克斯普朗克生物物理化学研究所的A. Politi、J. Jakobi以及P. Lenart等人通过Hoechst 44432对海拉细胞的DNA染色,使用微管蛋白抗体Alexa 488对微管染色以及鬼笔环肽Abberior STAR Red对F-肌动蛋白染色,使用LSCM得到了高效、超高分辨率的大视察视野的海拉细胞图像,帮助更好的了解了海拉细胞的结构以及发展变化。Dr. Gerry Apodaca等人通过用iDISCO对透明化的小鼠膀胱进行成像,获得了清晰且完整的小鼠膀胱图,有助于揭示小鼠膀胱内部运动的机理。小鼠膀胱主要应用领域—高分子化学领域—Deng等通过两种 N-硫代羧基内酸酐(MeSPG-NTA和Sar-NTA)的顺序分段投料聚合合成两亲性嵌段共聚物。通过纳米沉淀法、双乳液法等自组装方法,PMeSPG-b-PSar能分别形成纳米和微米尺度的聚类肽囊泡。在LSCM的表征下,由双乳液法获得的微米囊泡在 H2O2刺激下随时间逐渐崩解的过程被完整记录下来。将一种疏水的光敏剂四苯基卟啉(TPP)引入到 PMeSPG-b-PSar囊泡体系中,TPP可通过疏水相互作用附着在囊泡膜上,在光刺激下会引起囊泡崩解[2]。主要应用领域—表面粗糙度领域—Ibáñez等人通过LSCM对收割不同谷物在镰刀上产生的光泽进行测量,并测试了八种不同的加工材料(骨头、鹿角、木材、新鲜皮、干皮、野生谷物、驯化谷物和芦苇)产生的光泽,并通过分析软件建立预测模型数据库,首次证明了基于LSCM对使用磨损光泽的定量分析可以有效地识别用于加工不同接触材料的工具[3]。NCF950激光共聚焦显微镜配置更加灵活,售后通道更加方便,不输于进口成像的国产激光共聚焦显微系统。无级变速小孔控制单层图像景深,获取更佳图像质量。四荧光通道同时或分时成像,提高效率&消除串色。Z序列层扫,定量分析更轻松准确。20nm步进精度,还原厚样本空间结构。4096×4096图像一键生成,支持大图拼接,软件操作便捷。光强度只有汞灯1/1000,长时间实验观察不损伤样本。Nexcope 激光共聚焦成像图展示更多 Nexcope NCF950 成像图请访问:47.114.153.52:8080/novel.html
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制