当前位置: 仪器信息网 > 行业主题 > >

拉针仪

仪器信息网拉针仪专题为您提供2024年最新拉针仪价格报价、厂家品牌的相关信息, 包括拉针仪参数、型号等,不管是国产,还是进口品牌的拉针仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合拉针仪相关的耗材配件、试剂标物,还有拉针仪相关的最新资讯、资料,以及拉针仪相关的解决方案。

拉针仪相关的资讯

  • 大海里也能捞针 拉曼光谱显身手
    大海里也能捞针拉曼光谱显身手 众所周知,形容一件事难度很大,人们通常会说大海捞针,在苍茫的深海中寻针,目测是不可能完成的任务。这句话同样适用于低浓度物质的检出。普遍认为拉曼光谱仪很难检测低浓度样品,这是因为拉曼效应产生概率很小。如果样品越来越稀释,测得的 Raman 信号变弱,直至它在噪声中消失。虽然某种情况下可以通过增加光谱平均次数提高物理降噪能力,或延长光谱积分时间提高信号强度,亦或是降低探测器制冷下限来提高信噪比,但多数拉曼光谱仪的应用仍然会受到检测浓度的制约。嗯,听起来似乎就这样了啊难道就没有拌饭(办法)了吗?当当当隆重推出安东帕Cora5001拉曼光谱仪颜值担当安东帕的 Cora5001拉曼光谱仪可以获得高通量光谱,进而极大提高了检测灵敏度。我们的实验结果证明:Cora5001 可以检测水中超低浓度的自由基引发剂和氧化剂过硫酸铵(APS),检出浓度为 0.005 M,测量时间低于10 s。实验测量 APS 时使用 785nm 的激光波长,Cora 5001 配备了冷却到低于环境温度的 CCD 探测器和二极管激光器,可在样品位置提供高达450 mW的激光功率。准备 7 种 APS 水溶液,浓度为 1.0M,0.5M,0.2M,0.04M,0.02M,0.01M 和 0.005M,并倒入标准玻璃瓶中。曝光时间为 4000ms,并对光谱进行了背景校正。测量每个样品所需的时间仅为10 s。在相同条件下测量纯水样品并用作参考基线。结果证明使用Anton Paar Cora 5001 拉曼光谱仪,获得了超低浓度的 APS 水溶液的清晰可辨光谱特征。同时也证明了拉曼技术的优势,可以设计出具有高灵敏度和低检测限度的高性能的光谱仪。
  • OMG只打一针HPV疫苗就够啦?
    相信在之前一段时间,最困扰广大女性的问题,HPV疫苗接种必占有一席——约不到九价、怕二价四价的效果不好等等。而随着疫情新一轮爆发,问题也再度升级。我们都知道,九价一共三针,每针都有相对固定的间隔时间,但由于被长期隔离,许多女性的接种间隔时间被迫拉长——大家不禁产生担心,这样接种效果是否会变差? 很多医生也给出了解答,间隔时间可以稍微拉长,但还是建议从头再来。好不容易约上的九价自然是为了达到最好的效果,让自己和家人放心,那么之前请的假、付出的时间又将付之东流。不禁感叹一句:做女人好难! 图1:接种间隔时间过长 但是,就在最近一则新消息表明,有望解决这些问题,难道说女性福音终于来了? WHO已认可“单剂次”HPV疫苗4月11日,世界卫生组织首次认可了“单剂次”HPV疫苗接种方案,承认1剂次HPV疫苗可以和2-3剂次产生相同的免疫效果。但是!已有的针对单剂次HPV疫苗的研究虽然表明单剂次疫苗的有效性,但并未明确给出疫苗保护的持续时间,也就是说依旧需要更多的研究测试疫苗效力的持续时间。 图2:WHO首次承认单剂次HPV疫苗 为什么都想要接种HPV疫苗?宫颈癌的危害 目前接种HPV是预防宫颈癌最直接有效的方式。宫颈癌是常见的妇科恶性肿瘤之一,发病率在我国女性恶性肿瘤中占第二,在中国,每年都有近10万新的宫颈癌患者。而如果被发现的晚,生存率仅不到20%。 为了规范宫颈癌的治疗,国家卫健委发布了《宫颈癌诊疗规范2018年版》。方案指出同步放化疗较单纯的化疗提高了疗效,降低了复发风险,其中化疗药物紫衫醇的使用可参考此诊疗规范。 天然产物全合成-紫衫醇什么是紫杉醇? 紫杉醇,一种具有抗癌活性的二萜生物碱类化合物,它最早是从红豆杉的树皮中分离得到的。经临床验证,具有良好的抗癌作用,被人类未来20年间最有效的抗癌药物之一。 紫杉醇新颖复杂的化学结构、独特的生物作用机制、奇缺的自然资源使其受到科学家们的极大青睐。据悉,大约13.6kg树皮才能提出1g紫衫醇,治疗一个卵巢癌患者需3-12颗百年以上的红豆杉树。因此紫衫醇的资源非常紧缺,国内外众多学者花费大量时间和精力,一直致力于人工合成紫衫醇。 1994年人工合成紫衫醇被首次报道,之后国内外科学家陆续发现新的合成路线,但紫衫醇的化学全合成方法路径太长,合成步骤太多,反应条件难控制,产率低,不适合工业生产。 2021年南科大李闯课题组历经8年通过21步完成了紫衫醇的不对称全合成,这是目前国际上最短的紫衫醇全合成路线。 如何突破天然产物全合成的瓶颈?经过不懈的努力越来越多的天然产物被有机化学家成功制备,比如人源胰岛素、青蒿素、沙夫拉霉素等。但是天然产物全合成依旧面临不少难点,主要在于——合成路径长、浓缩步骤多、反应条件苛刻、收率低、耗费时间。 问 浓缩步骤多怎么办,怎样节省浓缩时间?答 选择高通量真空离心浓缩设备。SP Genevac真空离心浓缩仪可以助力天然产物全合成,突破瓶颈,提高工作效率。 图3:SP Genevac EZ-2 4.0真空离心浓缩仪 主要优势:1、单次最多可处理上百或上千个样品; 2、样品体积选择多,可浓缩96孔板、EP管、试管、样品瓶或圆底烧瓶等; 3、自动判断浓缩终点,无需专人值守,可过夜反应; 4、系统自带程序,即开即用。 溶剂类型比较复杂,真空离心浓缩仪也可以处理,例如——沸点在220℃以下的高溶剂,比如DMSO,NMP;低闪点的溶剂,比如乙醚、正戊烷等;强酸溶剂,比如浓硝酸、浓盐酸;易粘连的溶剂,比如15%TFA。 问 怎样提高收率?答 减少样品损失、减少样品转移次数。SG定量浓缩套装可直接将样品浓缩至GC小瓶中,减少样品转移的损失。 图4:SG定量浓缩套装(浓缩至2ml GC小瓶)
  • 斥资10亿在深圳打造垃圾处理投研总部
    2010年4月21日,绿色动力控股集团有限公司与深圳市南山区政府进行战略合作、中国农业银行向绿色动力控股集团有限公司提供综合授信签约仪式在深圳市五洲宾馆隆重举行。  根据协议,深圳市南山区人民政府将与绿色动力集团在发展循环经济、低碳经济和可再生能源产业方面进行战略合作;绿色动力的股东北京市国有资产经营有限责任公司将向绿色动力注资人民币10亿元在南山区设立垃圾处理产业投研总部基地;中国农业银行深圳分行将在2010至2012三年内向绿色动力集团提供人民币25亿元意向性综合授信,为绿色动力集团的发展提供配套融资服务。  绿色动力是北京市国有资产经营有限责任公司投资、专门从事循环经济可再生能源产业的集团公司,是中国最早从事垃圾处理产业化探索的企业之一,也是中国最早引进国际先进垃圾焚烧发电技术进行国产化改造、升级和再开发的专业企业。在十多年的发展历程中,绿色动力不仅签署了中国第一份以BOT方式进行商业化运作的垃圾处理服务特许经营权合同,完成了中国垃圾处理产业首例BOT项目融资,同时在国内中标多个垃圾处理项目。目前已经拥有江苏武进、浙江海宁、湖北武汉、山东青岛、安徽蚌埠、江苏射阳、江苏泰州、江苏金坛、浙江平阳和浙江永嘉等10个垃圾焚烧发电项目以及广东江门医疗垃圾处理项目,项目数量在国内同行业位居第一。  目前集团所拥有的项目全部竣工投产后,绿色动力每天能处理生活垃圾7900吨,每年能处理城市生活垃圾280万吨,不仅将有效地减少垃圾对城市环境的危害,改善城市生态环境,而且还将节约大量土地资源,回收垃圾的能源,实现城市的可持续发展,其社会效益十分显著。  绿色动力集团乔德卫总裁在签约仪式上表示,根据战略规划,北京国资在2010年将斥资人民币10亿元在深圳成立绿色动力投研总部,建立包括投资发展中心、技术研发中心(环保技术研究院)、资本运营中心、工程管理中心、运营管理中心、采购管理中心、财务管理中心和人力资源管理中心在内的“八大”总部职能中心以及工程技术实验室和环保工艺中试中心,并吸引垃圾处理产业的上下游企业,包括垃圾焚烧发电项目设计院、污水处理研究所、烟气处理设备研发及制造企业、飞灰及炉渣再利用企业、锅炉及汽轮发电机组设计单位等相关企业入住,形成集聚效应,最终形成循环经济产业园。未来三年内,绿色动力将发展到资产规模达40亿元人民币,市场占有率达10%-15%,成功实现集团IPO上市,成为行业领军企业和优秀品牌。到“十二五”末,公司拥有的项目将达到28个,每天能处理生活垃圾21000吨,每年处理生活垃圾将超过860万吨,集团总资产将达到80亿元,净资产将超过35亿元。  作为四大国有商业银行之一,中国农业银行一直推崇“绿色信贷”,积极倡导低碳环保的工作生活方式,力求共创新型企业文化,打造节约型银行。  此次深圳农行和绿色动力集团签署战略合作协议,为银企加深业务合作、实现双赢局面创造重要契机,深圳农行也将在新的环保业务领域为实现社会经济的可持续发展尽一份力量。  深圳市是中国改革开发的排头兵,近年来在谋求经济转型的过程中一直鼓励和扶持发展高新技术产业、循环经济产业和总部经济,南山区也正在建设大沙河创新技术走廊和新能源产业基地。  南山区王克力常务副区长在签约仪式上指出,根据深圳市和南山区的产业规划,南山区将大力支持总部和新能源企业。绿色动力属于深圳市鼓励发展的循环经济产业、低碳经济和总部企业,符合南山区的产业规划发展方向,今后区政府将会从各方面给予绿色动力大力支持,将与绿色动力在建立循环经济产业园以及如何规划和发展循环经济、低碳经济、节能环保和可再生能源产业等方面进行积极的探索和尝试。
  • 新研究展示自旋-轨道耦合的拉比振荡行为
    近日,暨南大学研究员陈振强团队揭示了自旋-轨道光学拉比振荡现象,首次在理论和实验上同时展示了自旋-轨道耦合的拉比振荡行为。相关研究论文发表于Light:Science & Applications。陈振强带领的光场调控科研团队研究无发散结构光场与人工晶体相互作用,在高阶光学体系下构建赝自旋-1/2模型,分别在强、弱耦合条件下实现自旋-轨道拉比振荡。此外,通过外场调控等效磁场,实现拓扑荷可调的角动量光场。研究结果有望在经典和量子光学中找到应用。拉比振荡是二能级量子波包在外磁场驱动下发生周期性振荡的现象,是物理学中重要的基本物理效应之一,已在诸多领域得到应用,如核磁共振成像。目前,拉比振荡已逐渐扩展到其它物理体系,包括原子分子物理、声学、凝聚态物理、光学等。在现有研究工作中,拉比振荡只涉及两种独立的振荡形式:自旋态振荡和轨道态振荡。如何在高阶物理体系实现自旋-轨道耦合的拉比振荡?针对这一基本问题,研究人员通过类比量子力学自旋1/2系统,利用左、右旋圆偏振涡旋光场构建高阶光学体系的赝自旋1/2系统,并导出相应的等效磁场模型。在等效磁场的作用下,高阶赝自旋态(结构光场模式)在两“能级”间发生周期性振荡。研究人员进一步利用外电场调控等效磁场,操控拉比振荡光场的演化行为。在电场的驱动下,实现不同拉比振荡模式的切换,这一现象为光场多维调控提供新的技术原理。上述研究得到国家自然科学基金项目、广东省重点项目、广州市科技计划项目、珠江人才计划项目等的支持。
  • 山东今年将斥资1.5亿处理城镇污水垃圾
    山东省今年将安排1.5亿元专项资金进行城镇污水垃圾处理,推进城镇污水垃圾处理设施建设,这一专项资金比上年增加1000万元。  近日,山东省财政厅会同省住房建设厅制定了城镇污水垃圾处理专项资金管理办法,采取贷款贴息和投资补助的方式,重点支持已列入山东省“十二五”污水垃圾处理规划的新建扩建城镇污水垃圾处理、再生水利用、污泥处置项目,以及城乡生活垃圾收集运输、餐厨垃圾收集处理项目。  据了解,专项资金优先支持贷款贴息项目。截至提交专项资金申请之日,上一年内已落实建设贷款的项目,最高将获得与同期贷款基准利率相同的财政贴息支持。对未落实贷款的项目,将择优给予补助。其中,对再生水利用、升级改造工程,每1万吨/日最高补助50万元 对污泥处置工程,每建设1项最高补助50万元 对餐厨垃圾处理、城乡生活垃圾转运工程,将根据建设规模给予适当支持。
  • 【标准解读】GB/T 4985-2021 石油蜡针入度测定法
    国家标准《石油蜡针入度测定法》由TC280(全国石油产品和润滑剂标准化技术委员会)归口上报,TC280SC3(全国石油产品和润滑剂标准化技术委员会石油蜡类产品分会)执行,主管部门为国家标准化管理委员会。本标准将于2022年5月1日正式实施,主要起草单位:中国石油化工股份有限公司大连石油化工研究院、中国石油化工股份有限公司荆门分公司、中国石油化工股份有限公司茂名分公司、中国石油天然气股份有限公司大连石化分公司、中国石油天然气股份有限公司抚顺石化分公司、辽宁省检验检测认证中心。主要起草人:郭士刚、王少军、高旭锋、凌凤香、张会成、蒋秀华、刘锦凤、于锡闻、吕申宏、段卫宇。本文由标准由中国石化大连石油化工研究院首席专家 张会成著,文章禁止任何形式的转载、摘录,违者必究。一、修订背景石油蜡针入度是在规定条件下标准针刺入蜡试样的深度,是石油蜡硬度的测量结果,影响到蜡的使用性能。GB/T 4985-2010随着形势发展已不能满足指标表征的需要:一是蜡的来源渠道增加,市场出现非天然石油蜡蜡等产品;二是GB/T 254《半精炼石蜡》、NB/SH/T 0013《微晶蜡》中含有35℃下针入度指标,而方法中未规定测定精密度,市场又出现了40℃针入度要求;三是部分石油蜡产品25℃下针入度不能充分区分产品性能;四是方法中缺乏自动化仪器操作过程,而市场用户已普遍使用;五是我国是蜡生产大国,更是蜡出口大国,但不是标准强国,执行标准需紧跟国际先进标准或严于先进标准。满足要求的修订标准已发布实施。不同试验温度针入度,1/10mm样品25℃30℃35℃40℃45℃半精炼蜡60#1523314871半精炼蜡54#183977139163全精炼蜡64#1619233244微晶蜡70#1922324968 二、修订的技术内容标准主要修订技术内容:1.增加了费托蜡、合成蜡、生物蜡等产品;2.增加了自动针入度计的试验过程;3.修订了制样试验温度;4.增加了质量控制内容;5.增加了35℃、40℃下结果精密度。标准主要技术变化GB/T 4985-2010GB/T 4985-2021适用范围石油蜡石油蜡、费托蜡、合成蜡、生物蜡仪器设备手动针入度计手动针入度计、自动针入度计制样温度23.9℃±2.2℃24.0℃±2.0℃质量控制无增加了质量控制要求精密度25℃精密度25℃、35℃、40℃下精密度三、修订过程大连石油化工研究院负责起草,组织6家单位参与,共使用5种自动和手动设备,10个样品包括全精炼蜡、半精炼蜡、粗石蜡、工业石蜡、食品添加剂石蜡、费托蜡、石蜡,测定结果使用GB/T 6683进行数据处理,获得精密度。四、试验过程注意事项1、仪器调节:水准仪保证标准针垂直,脱落无明显阻力。2、零”点调节:自动设备科自动零点调节,手动设备可以转动数字表盘达到指针指“0”,也可以记录指针位置作为相对零点,用减差法计算针入度。3、水浴控制:温度变化控制在±0.1 ℃以内,水液面高于试样上表面25mm。4、温度测量:全浸型温度计保证水液面高于水银柱,必要时需进行校正。5、精密温度计、标准针、秒表须检定校准并实验室确认。
  • 大科学工程“拉索”首个探测器阵列建成
    新年伊始,大科学工程高海拔宇宙线观测站“拉索”(LHAASO)传来喜讯。5日,记者从中国科学院高能物理研究所获悉,拉索水切伦科夫探测器阵列(WCDA)三号水池注水达到正常工作水位,这标志着WCDA探测器全部建成,全阵列投入科学运行。这是拉索四种类型的探测器阵列中最早完成的一个阵列。WCDA是拉索探测器阵列的重要组成部分之一,探测器总面积为78000平方米,由三个水池组成,内有3120个探测器单元,6240个光敏探头。WCDA水池采用了国内首创的“薄壁混凝土现浇边墙+软基土工膜防渗系统+大跨度轻钢屋面结构”设计,在没有国标可参考的情况下,满足了探测器对避光、防冻、防锈蚀和水位保持等的超高指标要求。“根据国际前沿发展动态,项目组在WCDA建设过程中进行了方案优化,在二号和三号水池中采用了我国自主研发的、具有国际上最大灵敏面积的新一代20寸光电倍增管,降低了探测器阈能,大幅增强了探测器在50-500 GeV能段的伽马射线探测能力。”拉索项目首席科学家、中科院高能物理所研究员曹臻说。曹臻表示,WCDA的有效探测面积是国际上最大同类型实验HAWC的4倍,能够对银河系内外的伽马暴、快速射电暴、引力波电磁对应体等具备瞬变特性的高能辐射信号进行探测,具备5-10年的国际领先优势,预期将获得一系列非常重要的观测与研究成果。拉索是国家重大科技基础设施项目,位于四川省稻城县海子山,由电磁粒子探测器阵列、缪子探测器阵列、水切伦科夫探测器阵列、广角切伦科夫望远镜阵列组成。
  • 我国自主研发拉曼光谱探针助力南海首次发现裸露“可燃冰”
    p  日前,我国新一代远洋综合科考船“科学”号在执行中国科学院战略性先导科技专项“热带西太平洋关键区域海洋系统物质能量交换”的航次中,船上搭载的“发现”号遥控无人潜水器携带我国自主研发的拉曼光谱探针,在我国南海海域首次发现了裸露在海底的“可燃冰”,并证实其为天然气水合物。这一成果形成的研究论文日前在国际权威学术期刊《地球化学 地球物理学 地球系统学》上在线发表。/pp  据中科院海洋研究所特聘研究员、课题负责人张鑫介绍,通过“发现”号无人潜水器携带的深海激光拉曼光谱探针,科考团队在我国南海约1100米的深海海底探测到两个站点存在裸露在海底的可燃冰。经拉曼光谱探针现场探测,证实其为标准的I型水合物。/pp style="text-align: center "img width="450" height="276" title="QQ截图20170925083353.jpg" style="width: 450px height: 276px " src="http://img1.17img.cn/17img/images/201709/noimg/90eac4cc-7b2e-4455-88be-da8921bd2583.jpg" border="0" vspace="0" hspace="0"//pp  据悉,“科学号”通过其配备的“发现”号无人潜水器携带自主研发的国际上首台可以直接插入天然气水合物的RiP拉曼光谱探针,在我国海域首次发现了裸露在海底的天然气水合物。这也是在国际上首次使用原位拉曼光谱数据证实快速生成的天然气水合物并非单一的笼型结构,其内部其实存在大量的甲烷、硫化氢等自由气体。/pp style="text-align: center "img width="450" height="421" title="QQ截图20170925084236.jpg" style="width: 450px height: 421px " src="http://img1.17img.cn/17img/images/201709/noimg/551c3e3d-f083-41df-83b4-b0f02884f980.jpg" border="0" vspace="0" hspace="0"//pp  据介绍,2014年—2015年,利用长基线水下定位技术和深海超高清视频技术,科研人员在南海圈定了裸露在海底的疑似“可燃冰”精确水下位置,但苦于没有相关的原位探测技术,无法验证此猜想。2015-2016年,科研人员自主研发了世界首台可以直接插入高温热液喷口(450 oC)进行原位探测的系列化拉曼光谱探针,可对深海热液流体、冷泉流体、“可燃冰”和沉积物孔隙水进行原位化学成分分析,成为了本次发现的主要高技术手段。原位探测技术可以避免传统取样方式由于从深海海底到海面之间巨大的温度、压力等环境因素变化导致的样品物理化学性质的变化,已成为国际深海研究的热点。/pp style="text-align: right "  (整理自央视新闻、科技日报、青岛早报等)/pp /p
  • 中央下拨43.9亿治理城镇污水垃圾处理
    近日,财政部下拨2011年中央预算内基建支出预算43.9亿元,专项用于河北、浙江、四川、青海等30个省(区、市)城镇污水垃圾处理设施及污水管网建设项目,支持环境质量改善,确保群众饮水安全,推动经济社会全面协调可持续发展。  推进城镇污水生活垃圾处理设施建设,是城镇污水生活垃圾处理的一项重要基础性工作,是治污减排的关键举措,既关系到群众的生产生活和身体健康,又关系到生态环境和经济社会发展。中央财政将大力支持城镇生活污水和垃圾处理能力建设,推动城市污水处理率和生活垃圾无害化处理率在“十二五”时期分别达到85%和80%。  欲了解更多行业动态,请查看“我要测资讯中心”
  • 【拉曼技术新突破】简智首推阵列光斑技术,拉曼进入“面测量”新时代
    摘要:拉曼光谱一直使用“点测量”的方式,简智仪器利用自身元器件级设计研发能力,率先推出“面测量”方式的便携式拉曼光谱产品,在不降低拉曼信号强度的情况下,实现厘米级检测范围。在检测区域内,激光能量均匀分布,不仅轻松实现非均匀混合物的准确检测,还彻底杜绝引燃引爆危险品、或灼烧损坏样品的风险。“点”到“面”的突破,将大幅扩大拉曼光谱技术的应用范围,助力拉曼技术更好的在应用实践中推广。拉曼光谱进入“面检测”新时代。简智仪器即将推出全球首款搭载MOEMS阵列光斑检测技术的手持式拉曼光谱仪。近年来,拉曼光谱在食品安全、公共安全、生物医药、材料化工、高价值物品鉴定等快速检测领域被广泛应用。拉曼光谱具备诸多优点,无损、便捷、快速、稳定、准确,因此拥有非常大的发展潜力和应用前景,很多厂家也先后推出了各种拉曼产品,实现了很多应用突破,但在拉曼底层原理上,一直没有太大的突破和进展。我们知道,拉曼光谱测量有一个显著特征就是“点测量”,即拉曼光谱的测量位置为一个直径在0.1毫米的“点”。这样的点测量方式可以保证最大的拉曼光谱收集效率,对于一些特定应用是非常方便的,比如需要对天然宝石中的包裹体进行研究,或者体积较小的物体(如20ct以下的钻石)。但在有些时候,高聚焦反而是一种缺陷,甚至变成阻碍拉曼光谱技术在应用中推广的障碍。 传统拉曼缺陷一:引燃引爆危险品、灼烧损坏样品由于单点聚焦方式下,激光功率过于集中,而深色样品又会吸收大部分的激光能量转化为热量,因此在测量深色样品时候,本来“无损”的拉曼光谱,反而变成了“引爆器”、“导火索”。以目前市面上常见的便携式/手持式拉曼光谱仪为例,为了保证测量效果,一般激光功率为250-500mw,焦斑直径约0.1mm。这样的功率密度,足以立刻引爆黑火药、烟火药等常见炸药,也可以引燃深色塑料、纺织品,甚至在测量贵重文物珠宝时,也会造成一些样品的损坏(如绿松石、珊瑚、字画等)。传统拉曼测量深色样品,样品灼烧冒烟3 Moems阵列光斑安全检测技术诞生我们知道,聚焦测量下拥有最高的拉曼光谱收集效率,而低功率密度和非均匀固体测量都需要有较大的检测面积,那么,在检测面积和光学效率上,是否可以二者兼得呢?简智仪器利用自身元器件级的设计研发能力,率先推出MOEMS阵列光斑检测技术,实现拉曼光谱测量方式“点”到“面”的重大突破!简智仪器研发人员的设计灵感来自于复眼昆虫,其拥有上百个“小眼睛”,每个小的眼睛均可独立成像,通过复眼结构,昆虫能获得了更高的视野和反应速度。如果像复眼一样,有无数个小透镜同时对激发光聚焦,我们就可以在透镜的焦平面将激发光平均分配为很多份。每个小的透镜都是一套独立的光学系统,光谱仪狭缝和样品激发位置构成物象共轭关系。由于小透镜位置不同,我们可以把检测点覆盖在一个很宽的范围同时检测,解决了拉曼检测实际上只能进行“点测量”的问题。 这就是简智仪器通过研究率先推出的MOEMS 阵列光斑检测技术,不止解决了拉曼光谱高聚焦容易引起样品的灼烧的问题,同时实现了拉曼检测技术从“点测量”到“面测量”的突破。简智仪器依托自身元器件级的研发设计能力,突破重重设计和工艺难点,将传统拉曼中使用的单一透镜,优化为阵列微透镜,然后再做对应的光路系统的优化,研发出来的复眼仿生的MOEMS拉曼探头,实现将检测范围扩大为厘米量级!而光点能量降低1-2个数量级,并且在检测范围内,均匀分布上百个聚焦光斑点;并且每个光斑点,保持了高数值孔径,在不显著降低接收效率的前提下,又均匀地分摊了激光照射功率,可以对样品进行大面积检测。 全球首款特别是在测量危险样品时,由于单点功率低于5mw,因此,绝 对 安 全。彻底杜绝拉曼光谱灼烧损坏样品,或者引燃引爆危险品的可能性!并且在均匀分摊激光功率的同时,保持超高拉曼接受效率,不会因为测量深色物体而导致信号恶化无法正确分辨。简智仪器有信心,MOEMS将成为下一代便携式拉曼光谱的常态性必配技术。 简智仪器在现场快检技术发展高峰论坛暨2019简智新品发布会上发布该项新科技,为拉曼光谱底层核心技术革新拉开了序幕,拉曼光谱进入“面检测”新时代。简智仪器即将推出全球首款搭载MOEMS阵列光斑检测技术的手持式拉曼光谱仪。敬请期待。全球首款MOEMS阵列光斑手持式拉曼光谱仪简智国家标准起草单位航天级产品供应商拉曼光谱技术变革推动者拉曼快检领军企业
  • 基于表面增强拉曼光谱的高灵敏度探针可检测癌症转移相关生物标记物
    记者4日从中科院合肥物质科学研究院了解到,该院智能所黄青研究员课题组研发出基于表面增强拉曼光谱(SERS)的超灵敏生物传感器,该生物传感器可以用于检测癌症转移相关的程序性死亡配体(PD-L1)生物标志物。研究成果日前发表在国际期刊《生物传感器和生物电子学:X》上。  PD-1全名为程序性死亡受体1,是人体的一种重要的免疫抑制分子。PD-1受体在活化的T细胞表面表达。以PD-1为靶点的免疫调节对抗肿瘤、抗感染、抗自身免疫性疾病及器官移植存活等均有重要的意义。PD-1与其配体PD-L1相互作用可确保仅在适当的时间激活免疫系统,以便将慢性自体免疫炎症的可能性降至最低。然而肿瘤细胞为了免疫逃逸会在细胞表面表达高表达PD-L1,这样就能够使肿瘤细胞逃避T细胞的作用,使肿瘤细胞得以继续生存。  为了检测PD-L1,研究人员首先制备了具有SERS活性的磁性纳米复合材料,同时又制备了SERS纳米标签。然后,科研人员用特定的适配体修饰这些纳米粒子,从而可以特异性地捕获循环外泌体PD-L1,形成三明治夹层式的SERS探针,通过分析拉曼报告信号,可以定量分析PD-L1生物标志物。该方法非常灵敏,可检测低至4.31ag/mL的PD-L1。进一步研究表明,在小鼠模型中,科研人员可以通过分析肿瘤中PD-L1随时间变化的表达水平,进而分析小鼠肿瘤发展情况。  目前循环外泌体PD-L1检测仍缺乏公认有效的手段。这项工作为检测PD-L1生物标志物提供了新的超灵敏的方法,对于以PD-L1生物标志物诊断具有重要意义和潜在临床应用价值,并可为接受PD-L1/PD-1免疫疗法的患者提供服务。
  • 皇朝遗珍古陶瓷鉴赏会 XRF、拉曼光谱唱主角
    2016年5月13日,由皇朝遗珍古陶瓷实验室主办的“科学鉴定古陶瓷鉴赏会”在深圳罗湖香格里拉大酒店三楼举办。此次“科学鉴定古陶瓷鉴赏会”是深港两地和内地收藏界以科学仪器鉴定古陶瓷的交流活动,集中展出30多件来自北京、上海、广州、深圳、香港及澳门等地,经过皇朝遗珍科学技术鉴定的古陶瓷真品。  众所周知,古陶瓷高仿品泛滥,令人防不胜防。传统的鉴定方法是通过眼观、手摸、耳听等感官方法来鉴定陶瓷,而“皇朝遗珍古陶瓷综合鉴定技术”则使用X荧光光谱和拉曼光谱分析陶瓷釉面的历史年代痕迹,使古陶瓷鉴定依据和准确性得到了重要的支撑。鉴定的结果科学和客观,并得到了香港,澳门和内地的高度认可。  以科学仪器鉴定的技术,主要包含(1)拉曼光谱检测陶瓷釉面的历史年代痕迹;(2)使用X荧光光谱检测古陶瓷釉面成分。基于上述检测数据及其它鉴定技术,综合分析古陶瓷的年份,为古陶瓷提供准确的科学鉴定依据。  皇朝遗珍古陶瓷实验室,经多年对古陶瓷的研究及与世界著名考古研究机构合作交流,全面理解古陶瓷的固有特性后,结合先进技术与权威的“历代古陶瓷综合数据库”,建立了“皇朝遗珍古陶瓷综合鉴定技术标准”。实验室经过不断坚持和努力,最终成功取得国际质量管理体系ISO 9001的认证,从而确立实验室的认受性及国际标准。  中国科学院高能物理研究所核技术考古研究院冯松林教授、中国社会科学院研究生院考古系唐恺教授、上海复旦大学物理系承焕生教授等多位国内古陶瓷专家学者出席了本次活动。对该项科鉴技术及其古陶瓷鉴定结论表示认可,并认为可为收藏界在古陶瓷鉴定方面提供重要的依据。
  • 2018年WITec拉曼技术交流会深圳专场完美收官
    2018年9月13日由广州贝拓科学技术有限公司和德国WITec共同举办的“2018年WITec拉曼技术交流会深圳专场”在深圳大学城维也纳酒店圆满举行。此次交流会受到了深圳、东莞地区各大高校、科研单位科研工作者以及大型企业技术人员的青睐,如南方科技大学、深圳大学、哈尔滨工业大学(深圳)、清华大学深圳研究生院、东莞理工学院、比亚迪、八六三计划材料表面技术研发中心等,参与人数达到60余人。图一、技术交流会场面本次技术研讨会主要以拉曼技术为主线,重点介绍了WITec共聚焦拉曼光谱及成像在材料、地质与生物等领域的应用及最新进展,同时也重点介绍了基于WITec共聚焦拉曼系统的多场联用解决方案,如Raman-AFM、Raman-SEM、Raman-SNOM、非线性光学及扫描光电流等。丁硕博士重点介绍了WITec共聚焦拉曼成像系统在材料、生物、地质等领域实现高空间分辨率快速拉曼成像的应用以及最新成果。图二、丁硕博士精彩的分享图三、丁硕博士演讲瞬间 胡海龙博士多年来一直致力于拉曼及拉曼增强方面的研究。本次胡博士给我们带来的报告是共聚焦拉曼及基于共聚焦拉曼系统的多场联用成像的应用。图四、胡海龙博士精彩的分享图五、胡海龙博士演讲瞬间 最后由衷地感谢本次参会人员对我们工作的支持与厚爱,非常感谢你们热情地报名参与。让我们明年更有信心,有信心为大家举办更好更大的技术交流会,为大家的科研工作及研发工作提供更多的资源与帮助。WITec源于德国,是一家为科研及工业应用领域提供高分辨率拉曼、近场光学以及扫描探针显微镜及多场联用解决方案的制造商。广州贝拓科学技术有限公司扎根本地,深耕本地市场,是一家致力于向高科技企业、科研机构及高校提供先进实验分析仪器、设备的供应商。
  • 拉曼光谱组织病理学诊断和术中检测取得进展
    近日, 国科温州研究院王毅研究员团队在肝肿瘤拉曼光谱病理学诊断和术中检测方面研究取得进展,相关成果以Rapid, label-free histopathological diagnosis of liver cancer based on Raman spectroscopy and deep learning为题,发表于Nature Communications 。组织病理学检查是癌症诊断的金标准。常规的组织病理学检查包括组织切片、染色等流程,步骤相对繁琐、耗时,且诊断结果依赖于病理医生的主观判断。在临床手术中如果需要对特定部位进行病理判断,则通常需要术中冰冻切片进行病理诊断,这不可避免会对手术造成中断或延迟。拉曼光谱是一种分子振动光谱,基于振动分子的光非弹性散射可以提供复杂生物样本的化学指纹谱图。组织癌变进程中的生物成分变化,可以基于拉曼光谱以便捷、无损、无标记的形式得以反馈。但是由于光谱分析的复杂性以及癌组织的异质性,需要合适的数学分析模型辅助以实现来自不同组织类型的光谱数据识别与区分。对此,研究团队基于拉曼光谱和深度学习技术提出了一套用于肝癌组织体外和术中病理学诊断的工作流程(图1)。 图1 基于拉曼光谱和智能算法的肝癌组织病理学诊断工作流程王毅研究团队与温州医科大学附属第一医院肝胆外科团队合作,通过采集得到超过12000张来自120对肝癌组织和对应癌旁组织的拉曼光谱,建立得到肝组织拉曼光谱数据库。随后构建并训练得到基于VGG-16的卷积神经网络模型,将采集得到的光谱数据输入模型,实现了肝癌组织与癌旁组织的自动区分,准确率到达92.6%。此外利用该模型还成功实现了不同亚型、分化程度和肿瘤分期的肝癌组织的鉴别。非靶标代谢组学分析验证了不同肝组织类型间的代谢产物差异,且与拉曼分析结果一致。在上述光谱差异的基础上,以无染色、无标记的方式实现亚微米分辨率的不同病理组织切片的2D/3D 拉曼成像,以及肝癌肿瘤边界成像。最后,研究团队成功将手持式拉曼光谱系统运用于临床手术中,探讨了利用拉曼光谱实时术中肝癌诊断的可行性。王毅研究员和张庆文副研究员为本文共同通讯作者,温州医科大学硕士研究生黄礼平为该论文第一作者。上述工作得到了浙江省自然科学杰出青年基金和浙江省海外引才计划等项目的支持。
  • 新法利用拉曼光谱诊断肾功能
    俄罗斯萨马拉科罗廖夫大学和萨马拉国立医科大学科研人员合作开发出一种使用拉曼光谱诊断肾功能是否受损的办法。利用新方法进行检验只需要一滴血,其优势在于速度快、易操作且结果可靠。相关研究近日发布在《生物医学光学快报》上。  萨马拉大学激光与生物技术系统系副教授伊万布拉琴科解释道,新方法使用光与被分析物分子交换能量的光学技术,借助神经网络的数学模型分析频谱指数。他称,当光与血样相互作用时,光子能量会发生变化。通过观察这些能量变化,可确定所研究样品的化学成分,这样就能高度准确地确认疾病是否存在并评估疾病的严重程度。  布拉琴科称,研发过程中使用了一种新技术,即使用贵金属纳米粒子时可观察到的等离子共振的效果放大光信号。科研人员进行了一系列研究后确认,光谱学能使常规血液测试更有用,也能发展为实用的诊断方法。与普通诊断工具相比,新方法不需要繁琐地准备样品和使用其他的化学试剂,这使得检验更准确,且成本低廉。  据悉,新方法已在慢性肾病患者的血液样本上进行了测试,高度准确地显示出肾功能受损。研究人员计划下一步开展广泛的临床试验,并计划扩大该方法的应用范围,将之用于检验心血管疾病,以及评估糖尿病和其他常见疾病的严重程度。
  • 受激拉曼散射技术可无创诊断细胞癌变程度
    p style="TEXT-ALIGN: center"img title="sss_55f7c78f7a458.jpg" src="http://img1.17img.cn/17img/images/201509/insimg/0ea9e597-6c66-4b99-a961-aadbc4690184.jpg"//pp  美国哈佛大学的科学家在最新研究中利用受激a title="" href="http://www.instrument.com.cn/news/20150918/172905.shtml" target="_self"拉曼/a散射(SRS)显微镜技术,在无需荧光标记的情况下,观察到活体皮肤癌细胞分裂过程中DNA分子动力活动机理。新技术是一种不用着色的非标记技术,可在不干扰细胞正常进程的条件下了解细胞癌变程度。/pp  现有方法中的DNA检测技术需要对其进行荧光标记,病理诊断也要对活检组织染色,这些方法均有可能改变细胞的原生环境。受激拉曼散射能在活细胞研究中实时快速获得样本数据,并可观察到化学键的振动频率。通过观察细胞内碳氢键的振动区间,并对图像进行线性分解,可观察到细胞内DNA、蛋白质和脂类及其分布,以及细胞分裂过程。/pp  研究人员发表在《美国国家科学院院刊》上的报告称,他们利用受激拉曼散射技术观察了海拉细胞的细胞分裂全过程。在有丝分裂前期,他们构建出三维DNA、脂类、蛋白质分布 在有丝分裂间期,辨别出细胞核的染色质结构。延时受激拉曼散射技术还观察到细胞分裂中期到后期过渡期的变化。/pp  研究人员对使用苯二甲酸(TPA,可促进细胞分裂)的老鼠皮肤进行了活体研究。除了同样观察到上述细胞周期的每个阶段,他们还观察到癌细胞中染色体的迁移,发现细胞有丝分裂活动高达18个小时,24小时后下降。这是首次细胞有丝分裂率在活体内以量化方式记录。/pp  他们还检测了该技术在诊断人类肿瘤中的可行性。实验采用三位鳞状细胞癌患者的皮肤癌组织作为样本。他们发现,癌变细胞的有丝分裂在不断增加,从而增加细胞分裂和细胞增殖。这表明新方法可与传统染色病理诊断相提并论。此外,新技术还能让研究人员对肿瘤细胞有丝分裂动力学进行量化研究。研究人员表示,该技术可用来计算体内有丝分裂速度,有助于皮肤癌诊断。/pp  研究人员表示,该技术提供了自然环境下细胞和细胞核的高分辨率影像,对于无创皮肤癌诊断和癌细胞快速评估具有较好的应用前景。/p
  • 耶拿收购分子诊断公司SIRS-Lab
    2013年5月6日,耶拿分析宣布,它已经收购了SIRS-Lab的所有资产,具体收购金额没有披露。SIRS-Lab是传染病分子诊断开发者。去年12月SIRS-Lab宣布破产,并寻求投资者将其领先的败血症测试产品商品化。  这家德国公司成立于2000年,从弗里德里希· 席勒大学耶拿败血症中心分拆出来,专注于研发诊断样品中的细菌和真菌的DNA。  该技术被整合入基于PCR和阵列的败血症测试(Vyoo)中。在2012年年底,Vyoo已经完成临床试验。SIRS-Lab还开发一个称为Signature的基因表达测试,该测试可以解释人体对于感染的免疫响应,耶拿分析表示,&ldquo 相关测试已经准备投放市场,它将继续SIRS-Lab的研发工作。&rdquo   耶拿分析首席执行官Klaus Berka 在一份声明中表示,&ldquo SIRS-Lab研发了相当有竞争力的败血症测试方法,并发现了其初步的成功。从初次应用研究的结果来看,该方法非常有前途。其目的是迅速或早期鉴定危及生命的感染。尤其是耶拿大学医院和各种研究机构为我们提供良好的条件,让我们能够服务这个大市场。&rdquo   作为该交易的一部分,耶拿分析将获得整个系列产品的专业知识,其中包括超过50项的专利和10名在德国耶拿的员工。交易结束后,耶拿将首次进入败血症市场。(编译:杨娟)
  • 上海交大开发新型探针:小至70nm 依然可实现超强拉曼信号 | 前沿用户报道
    供稿:张雨晴编辑:Chen导读:近日,上海交通大学叶坚教授团队开发了一种新型拉曼探针(P-GERTs),尺寸仅为70nm左右,依然可实现拉曼信号的整体增强和成像速度的大幅提高,为突破SERS生物成像发展瓶颈,实现快速超灵敏生物成像开辟新机。SERS生物成像技术的发展前景与瓶颈得益于表面增强拉曼散射(SERS)技术灵敏度高、分辨率高、稳定性好等优点及其“探针”所特有的指纹图谱(高特异性)和超窄线宽(多指标检测)优势,SERS技术在生物体内成像方面表现出广阔的前景,目前临床肿瘤的治疗手术中,利用拉曼成像检测肿瘤边缘和残留微小肿瘤就是重要应用之一。然而,现有的SERS成像速度远远落后于临床需要,通常需要几十分钟甚至几小时才能获得一个大范围的拉曼活体图像。其中影响SERS成像速度的重要因素之一便是SERS探针的整体拉曼信号不够强。Tips: SERS探针的信号强度和成像速度很大程度上取决于探针电磁场热点区域(hot spots)的信号分子数量。常用增强信号强度的策略是通过控制探针的形貌,使其具有一些尖端或者粗糙表面来形成电磁场热点区域;或者通过在金属纳米结构表面或内部引入纳米缝隙来有效地构建电磁场热点。但大多数都不能产生均匀且稳定的SERS信号增强。研究人员一般通过改变探针形貌来提高SERS探针信号强度,但大多数都不能产生均匀且稳定的SERS信号增强。而且这类探针尺寸相对较大,通常在100-200 nm之间,应用于生物成像领域,会降低探针在体内的血液循环时间,影响探针的体内分布情况和代谢动力学,不利于体内的靶向识别、成像和检测等应用的实现。因此,如何获得尺寸较小、且可实现信号强度和成像速度大幅提高的探针,成为研究人员面临的重要课题。 新型探针突破SERS生物成像发展瓶颈近日,上海交通大学叶坚教授团队便开发出了这样一款强大探针——新型的、外壳为花瓣状结构的“多热点”缝隙增强拉曼探针(P-GERTs),尺寸仅为70 nm左右,且同时实现了拉曼信号的整体增强和成像速度的大幅提高,为突破目前SERS生物成像发展瓶颈,实现快速超灵敏生物成像开辟了新机。叶坚教授团队采用将拉曼信号分子同时嵌入核壳颗粒内部和外部花瓣状结构之间的亚纳米缝隙这一方法制得探针,表征发现该探针能够大程度地提高单颗粒上报告分子的吸附量,实现超强的拉曼信号。此外,研究人员还可以通过调节内嵌的拉曼信号分子数量,来调节探针的形貌和SERS性能;或通过改变外部拉曼信号分子的种类,获得多种信号探针以实现多重检测和成像。实验结果验证为了进一步验证P-GERTs探针的信号强度和成像速度,研究人员对实验结果进行了进一步表征。研究人员使用HORIBAXploRA INV拉曼成像光谱仪和NanoRaman系统对P-GERTs探针的拉曼增强效果进行表征,发现:P-GERTs拉曼信号增强因子高达5 × 109,相较于常见的拉曼探针提高了1-3个数量级,实现了超强的拉曼信号。结合HORIBA拉曼成像技术(Duoscan成像模式和Swift数据处理方式),研究人员进一步发现成像单点采集时间仅为0.7 ms /像素,成像速度大幅提升。在低至370 uW功率时6秒内就获得高分辨单细胞拉曼成像(2500个像素),52秒内获得高对比度大范围(3.2 × 2.8 cm2)的小鼠活体前哨淋巴结拉曼成像,表现出良好的信号均一性和光稳定性。 “多热点”缝隙增强拉曼探针结果图a) 示意图;b) 单细胞透射电镜图;c) 明场图d) 高分辨快速拉曼成像图 (50×50像素)e) 高对比度大范围 (3.2×2.8cm2) 的小鼠活体前哨淋巴结拉曼成像上海交通大学叶坚教授团队的这项研究结果表明:P-GERTs作为超亮和超稳定的SERS探针,为克服目前SERS生物成像发展瓶颈,实现高速、高对比度超灵敏的细胞和生物组织成像提供了新机会。文章作者&论文直达文章作者:Yuqing Zhang, Yuqing Gu, Jing He, Benjamin D. Thackray, Jian Ye*题目&杂志:Ultrabright gap-enhanced Raman tagsfor high-speed bioimaging. Nature Communications, 2019, 10, 3509.DOI:https://doi.org/10.1038/s41467-019-11829-y课题组网页:http://www.yelab.sjtu.edu.cn/致谢:叶坚课题组提供论文注:如果您对本报道的研究方法感兴趣,希望联系作者,或者想对本研究拉曼光谱测试方法一探究竟,欢迎点击“阅读原文”留言,我们的拉曼应用专家将乐于为您提供解答服务。今日话题表面增强拉曼散射(SERS)技术应用广泛,那么具体应用有哪些呢?欢迎您分享科研过程中与SERS技术相关的内容。我们会在下次前沿应用专栏中分享给大家,本文发出后3个工作日内留言获赞多的读者我们还将送出星巴克咖啡券一份哦。? 点击查看更多往期精彩文章 拉曼与统计分析神助攻,复旦破译PM2.5重要成分 | 前沿用户报道清华大学魏飞团队实现一步法制备纯度99.9999%半导体碳纳米管阵列严峻环境下的自救——探寻端气候下的生命存续 | 前沿应用【上篇】发现生命的轨迹——化石中的碳元素分析 | 前沿应用地底深处的生命探索——矿物中的化学反应分析 | 前沿应用【下篇】瞪你一眼,就能“看透”你 | 用户动态青岛能源所实现毫秒级单细胞拉曼分选,"后液滴"设计功不可没|前沿用户报道表面增强共振拉曼光谱探究细胞色素c在活性界面上的电子转移新型荧光探针——细胞膜脂变化无所遁形!复旦巧用增强拉曼“识”雾霾 | 前沿用户报道1+1≥3,AFM-Raman 材料表征新技术!——附新相关论文 免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载,文章版权、数据及所述观点归原作者原出处所有。HORIBA Scientific 发布及转载目的在于传递更多信息,以供读者阅读、自行参考及评述,并不代表本网赞同其观点和对其真实性负责。如果您认为本文存在侵权之处,请与我们取得联系,我们会及时进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的选择,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。
  • 上海交大团队基于表面增强拉曼的纳米探针技术为分子检测和生物成像提供新材料
    近日,上海交通大学生物医学工程学院“青年千人计划”获得者叶坚特别研究员和古宏晨教授共同指导博士生林俐等人组成的研究团队在新型表面增强拉曼纳米探针的制备与机理研究方面连续取得突破性进展,研究成果先后发表在材料学领域权威期刊《Nano Letters》(SCI IF = 13.592)和化学领域权威期刊《Chemical Communications》(SCI IF = 6.834)上。荧光探针是一类在紫外-可见-近红外区有特征荧光的分子,它们就像黑夜中的灯塔为科研工作者照亮了从微观到宏观各个层次上丰富多彩的生命现象,例如细胞凋亡。目前荧光探针已被广泛应用于分子检测和生物成像。然而传统的荧光探针存在稳定性差、容易发生荧光漂白、谱峰宽容易重叠、容易受到背景荧光的干扰等缺陷。与之相比,基于表面增强拉曼光谱的纳米探针具有信号强且稳定、谱峰窄、不易漂白、特异性好等优点。因此,越来越多的研究者将目光投向这一领域。拉曼光谱是一种散射光谱,与分子键的振动和转动有关,因此它可以作为分子鉴别的手段。传统的拉曼散射光信号较弱,但如果将分子吸附在纳米材料上,其拉曼光谱信号可以获得高达一百万倍以上的增强,这一现象称为表面增强拉曼效应。制备一个合适的纳米材料是获得高性能表面增强拉曼纳米探针的关键,也是材料领域研究人员的关注点之一。 该团队通过实验和理论上对核壳纳米探针的等离激元耦合效应的研究,发现传统的理论模型已经无法预测具有亚纳米缝隙核壳探针的近场和远场光学属性,需要引入量子效应和电荷转移效应来修正。此外,亚纳米缝隙核壳探针的表面增强拉曼光谱结果也表明在这种窄缝隙中有较强的电荷转移作用。该研究表明亚纳米尺度下材料的光学属性可能与传统理论所预期的完全不同,因此将可能进一步引导产生适用于该尺度的新理论,推动新型的量子等离激元纳米结构和表面增强拉曼纳米探针的发展。这项工作与美国莱斯大学的Peter Nordlander教授、西班牙国家材料物理中心的Javier Aizpurua教授和法国巴黎南大学的Andrei G. Borisov教授进行了合作。相关研究成果以林俐为共同第一作者,叶坚为共同通讯作者近期发表于《Nano Letters》(2015, 15, 6419-6428)。 另外,该团队还进一步制备出具有亚纳米缝隙多层核壳结构的表面增强拉曼纳米探针,通过调节外壳的数量,实现纳米探针拉曼光谱强度的调控 通过替换缝隙中的拉曼分子,实现纳米探针拉曼光谱峰位的调控。这项技术使得表面增强拉曼纳米探针的性能得到大幅度的提高,有望在高灵敏度的多指标分子检测和快速的多组分生物成像领域得到广泛应用。相关研究成果以林俐为第一作者,古宏晨和叶坚为共同通讯作者近期发表于《Chemical Communications》(DOI: 10.1039/C5CC06599B)。 该项研究工作得到了国家青年千人资助计划、国家自然科学基金和上海市自然科学基金的支持。
  • HORIBA前沿用户报道∣上交大最新拉曼探针有望精准定位肿瘤君,助力攻克医学难题
    撰文 ∣ 张雨晴中国的恶性肿瘤发病率和死亡率逐年上升,2010年开始已成为致死率高的疾病。传统的手术治疗很多情况下无法将肿瘤全部切除,因此术中需要精确定位肿瘤,医生才能精准切除肿瘤。遗憾的是,尚未有合适的影像方法来辅助实现。随着研究的深入,近年来,表面增强拉曼(SERS)成像技术在这方面被寄予厚望。(图片来源于网络)近,上海交通大学“青年千人计划”、“国家优秀青年基金”获得者叶坚研究员与“青年千人计划”、“东方学者”获得者肖泽宇教授等人组成的研究团队传来喜讯,他们通过制备新型的介孔硅包被的缝隙增强拉曼探针,可以实现超稳定快速的拉曼成像,这种技术将有望被应用于术中肿瘤精准定位。01拉曼光谱成像清晰识别肿瘤组织因肿瘤部位血管的高滞留通透(EPR)效应,SERS探针被动地富集在肿瘤组织中。拉曼光谱仪可以检测到这些SERS探针,并迅速成像,医生利用该成像图可以清晰识别肿瘤组织。与荧光成像技术相比,上海交大研发的“新型的介孔硅包被的缝隙增强拉曼探针”,不仅能够实现超快速、超清晰的生物医学成像,而且具有超高的光稳定性。下图发光的位置是肿瘤组织所在的区域,图c是SERS探针富集在肿瘤组织,被激光照射10分钟、20分钟和30分钟后的拉曼光谱成像。从中可以发现,肿瘤区域的边界清晰可见,这为进一步的术中肿瘤精准切除提供可靠影像保障。SERS探针在组织层面的超稳定及超快速成像,发光位置是肿瘤组织02增强拉曼探针的制备及稳定性表现那么,神奇的SERS探针是如何制备的?其超高的稳定性又是如何实现的?原来,该团队是通过种子生长法制备出SERS探针(如下图a),结构包括核壳结构的金纳米颗粒、亚纳米缝隙区域内嵌的拉曼信号分子对二巯基苯硫醇以及外层的介孔硅。通过下面的实验图(图b, c),我们来看一下该探针的稳定性的表现:图a:探针的透射电镜照片。图b和c:经长时间激光照射后,探针分子的拉曼光谱通过上图b和c,我们可以看到探针分子经30分钟照射后,拉曼信号仍没有衰减。值得一提的是,在本次研究过程中,该团队使用HORIBA XploRA显微共聚焦拉曼光谱仪作为主要分析工具采集样品的拉曼信号,同时配备Labspec-6软件直接进行数据处理分析,终简单快速地得到了不同结构探针被激光持续照射30分钟后的光稳定性比较数据。其中Labspec-6软件自带的A峰/B峰的显示方式,可以让研究人员直接看到参照硅峰进行数据校准后的结果,这让研究数据处理非常直观、方便,大大提高了工作效率。此项工作得到了国家青年千人计划、国家自然科学基金、上海高校特聘教授(东方学者)项目和上海市自然科学基金的支持。相关研究成果以“Ultraphotostable Mesoporous Silica-Coated Gap-Enhanced Raman Tags (GERTs) for High-Speed Bioimaging”为题发表在国际著名期刊《ACS Applied Materials & Interfaces》上。团队介绍叶坚,中组部“青年千人”计划获得者,国家自然科学基金优秀青年基金项目获得者,理学博士,上海交通大学研究员,博士生导师。主要研究领域:(1)等离激元纳米材料的模拟设计、合成制备、光学属性及其生物医学应用;(2)表面增强拉曼光谱及其生物医学应用。如果您对同类拉曼研究感兴趣,或者希望与作者取得联系,欢迎您手机扫描下方二维码留下信息,我们的应用专家将乐于协助您。 点击标题,查看往期精华文章【优惠报名倒计时】光学光谱小白入门,打造光谱知识体系——中山大学|11月29-30日用户动态 | 表面增强拉曼光谱探究银@碳点核壳纳米粒子的催化性能用户动态 | 表面增强共振拉曼光谱探究细胞色素c在活性界面上的电子转移HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • Nat. Commun. 复旦大学季敏标教授合作研究:设计出光敏特性的拉曼探针,实现可控开关的受激拉曼散射成像 | 前沿用户报道
    供稿:敖建鹏成果简介2021年5月,复旦大学季敏标课题组与南方科技大学吴长锋课题组合作,在国际期刊 Nature Communications 发表了题为 Switchable stimulated Raman scattering microscopy with photochromic vibrational probes 的论文,通过在二芳基乙烯母体分子中引入炔基,设计出一类具有光敏特性的拉曼探针,实现了可控开关的受激拉曼散射成像。背景介绍在生命科学研究中,直接可视化细胞内大量不同的分子种类对于理解复杂的系统和过程愈渐重要。而对于荧光显微技术而言,由于荧光分子本质上的宽光谱特性,限制了其可分辨标记对象的能力,常称为“多色复用壁垒”。与荧光分子电子跃迁相对,拉曼散射表征的是振动跃迁,谱线宽度较窄,具有优越的化学特异性,目前基于炔基、氰基等拉曼信源开发出的拉曼探针已经实现了超多色复用成像,但成像分辨率依旧受到光学衍射极限的限制。在此研究背景下, 复旦大学季敏标课题组与南方科技大学吴长锋课题组合作通过赋予拉曼信号光敏活性,实现可逆光开关的拉曼振动光学成像,探索具有光敏活性的拉曼探针及其显微技术的应用可行性,为开发具备超多色复用的远场超分辨显微技术突破了关键一环。图文导读受激拉曼散射(SRS)以快速、免标记和本征三维化学组分分析的优点在显微成像领域备受青睐。为了提高成像灵敏度与特异性,基于炔基、氰基的拉曼探针被开发并用于SRS,打破了荧光显微成像中难以逾越的“多色复用壁垒”,展现了这些生物正交拉曼探针对比荧光标记分子所具备的窄峰宽、无漂白、信源尺寸小而对目标分子干扰小等优势。基于化学键振动的拉曼信号具有很好的光稳定性,早期开发的拉曼探针几乎都是“always-on”类型,意味着信号不受外界调控,失去了随机发光、光开关性等性质,直接通过外界光刺激改变拉曼信号几乎是不可能的。为了解决这一难题,课题组将炔基通过化学合成的手段连接到光异构母体分子(二芳基乙烯)上,通过光异构分子对外界光刺激的响应来调控拉曼信号,从而实现对光敏感的拉曼光谱响应。1. 通过化学合成将拉曼探针(炔基,拉曼信号强且峰位处于生物静默区,有利于后续推进至生物体系)引入二芳基乙烯母体分子中;2. 通过自发拉曼及受激拉曼散射技术对紫外与可见光照射下的分子的炔基伸缩振动模式峰位表征;左:自发拉曼;右:受激拉曼3. 将分子匀涂成膜,通过光在薄膜上自由书写/擦除文字信息并以受激拉曼散射显微读出信息;通过紫外光在薄膜上手写的“复旦”字样,并通过SRS对其成像4. 将分子进一步修饰以靶向线粒体,在细胞层面展示光开关性质的受激拉曼散射成像。光控可逆点亮/擦除喂食过光活性分子的HeLa细胞,并通过SRS对其成像受激拉曼散射作为相干模式下的拉曼散射,虽然极大的提高了拉曼信号,使得快速化学成像成为可能,但由于两束光的共振激励(ωp-ωs=Ω)局限在某一个拉曼峰位,相比于自发拉曼而言损失了全光谱信息,因此在对未知物质检测时自发拉曼光谱的测定依旧不可或缺。HORIBA LabRAM HR Evolution的1064nm激发模式很大程度上解决了常用可见光光源激发自身对光敏分子的影响,对我们的实验可靠性论证起到了极大的帮助。HORIBA LabRAM HR Evolution如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。总结展望“山重水复疑无路,柳暗花明又一村。”实验过程中课题组抛开固有实验套路,另辟蹊径,最终实现了可控开关的受激拉曼散射成像,不仅为开发具有光开关性质的振动光谱探针提供了新思路,同时为光开关受激拉曼散射显微成像技术的提供可行性基础,拓展了SRS的应用范围,将有望推动超多色复用拉曼显微跨入超分辨时代。文献信息Switchable stimulated Raman scattering microscopy with photochromic vibrational probes文章署名作者:Jianpeng Ao, Xiaofeng Fang, Xianchong Miao, Jiwei Ling, Hyunchul Kang, Sungnam Park, Changfeng Wu & Minbiao Ji文章链接:https://doi.org/10.1038/s41467-021-23407-2扫码查看文献季敏标教授课题组简介季敏标教授课题组主要从事非线性光谱学和显微成像技术研发,并将它们用于生物医学光子学应用研究和新型材料的光电性质基础研究。在生物医学光子学领域主要发展用于肿瘤组织的快速无标记病理检测方法和脂质代谢等生物医学问题;在材料学领域主要研究新型二维材料的超快载流子和声子动力学问题等。
  • 基于拉曼光谱的口腔鳞状细胞癌早期实时诊断研究
    在当前的临床表现中,口腔的粘膜病变需要初次保守治疗和监控。如果病变持续存在,就会用活组织手术检查来进行诊断。一项新的研究表明,可以通过激光拉曼光谱进行早期口腔鳞状细胞癌的实时诊断。作为常见的癌症,口腔鳞状细胞癌不容易被探测到,通常是癌症晚期才被发现。根据汉堡埃彭多夫大学医学中心的研究结果表明,拉曼光谱可以用来实时揭示一个损伤的器官或皮肤是否癌变,这一技术可以减少检测时间和大量的侵入性手术。该研究使用的是位移差分拉曼光谱,科学家使用这一仪器来分析未标记活检样本,该样本有37个患者,共180个检测位置。根据最终的数据模型,从恶性病变区分出口腔鳞状细胞癌,准确率超过88%,并且从健康的组织中进行区分,其准确率超过89%。经过进一步的发展,研究人员说这一办法可以拓展到癌前疾病的分类、不良组织畸变的严重程度分级和区分不同的口腔病变亚型。什么是位移差分拉曼?位移差分拉曼光谱(SERDS),这种技术基于在两个有轻微偏移的激发波长中收集两张不同的光谱,理想情况下对两张谱图进行差分处理,所获得的差分谱中,受激发射谱和噪声背景会完全抵消,剩下的是拉曼光谱与自身平移光谱的差分图像,再通过去噪解卷积算法将拉曼光谱还原出来。奥谱天成ATR3020采用国际领 先的差分拉曼光谱技术,它内置两个相邻波长的激光器,分时产生激发光,对样品进行激发,拉曼信号对激发光波长非常敏感,而荧光信号则不敏感,运用差分技术,从而可以抑制荧光,可直接测量高荧光物质,抗干扰、抗噪声、大幅提高系统整体的检测灵敏度和信噪比,达到滤除干扰峰(如环境光峰、荧光峰等),只保留纯净的拉曼峰,捕捉微小信号差。由于可以较好地去除荧光等各种干扰,ATR3020便携式拉曼光谱仪,在保证对准确性的前提下,还可以降低光源功率的要求,提高整机可靠性和光谱容错纠错能力,通过与SERS技术结合,可以达到PPB级检测能力适合户外作业。
  • 历史回眸 | 纵览KLA科磊探针式轮廓仪的创新发展史
    KLA探针式轮廓仪的过去,现在,与未来。KLA Instruments&trade 探针式轮廓仪(也称台阶仪)提供高精度2D和3D表面量测,测量台阶高度、表面粗糙度、翘曲度和应力以及优秀的稳定性和可靠性,满足客户的研发和生产要求。目前,KLA Instruments&trade 台阶仪包括专为研发助力的Alpha-Step系列D-500/D600桌面式台阶仪,工厂生产用Tencor P-系列P-7,P-17,P-17 OF量产型台阶仪,还有自动化产线上的 HRP系列P-170和HRP-260全自动台阶仪。自1977年KLA首款商用探针式轮廓仪问世,经过四十多年的不断探索和技术创新,KLA取得了一个又一个突破,不断稳固自身在行业中的领导地位。1977Alpha-Step100 是Tencor 推出的首款台阶仪产品。其在台阶高度测量的准确性和重复性方面表现优异。凭借价格实惠、外形小巧和功能强大,很快就成为大多数半导体制造厂或晶圆厂重要的工具。1983Alpha-Step 200 发布,扫描速度比竞品快 2 倍,配备 CRT 显示器,能够自动测量、调平和计算。1987Alpha-Step 250 问世,灵敏度增强至 1 &angst ,增加了隔声外壳。1988Tencor P系列的P-1探针式轮廓仪实现了单次长度 200mm 扫描,且无需任何拼接。P-1 轮廓仪采用革 命性的全新设计,在扫描平台、光学和传感器技术方面进行了行业创新,提供无可匹敌的稳定性、灵敏度和重复性。该系统具有超平面扫描平台,能够单次扫描实现高达 200mm 的高分辨率,确定表面粗糙度、波纹度和薄膜应力特征。新平台也是 3D 扫描平台,增加了第三维度来表现表面形貌。该系统的特色是采用顶视光学系统来提供清晰的样品视图,不受传统倾斜侧视的扭曲影响。此外,该系统的传感器技术采用业界先进的线性可变差分电容器 (LVDC),从而使电子分辨率达到亚埃级,并且转动惯量小,可实现低作用力控制并降低对噪声的敏感性。1991Tencor P2H 支持自动晶圆和磁盘机械手臂, 减少接触样品带来的污染。同年的Tencor P2 采用开放式框架,支持尺寸达 430mm x 430mm 的样品,同时Tencor FP2可扫描尺寸达 630mm x 630mm 的样品,用于平板行业。1994Tencor P-20 全自动探针式轮廓仪发布,增加了图案识别和 SECS/GEM,并且与现有的机械手臂相结合,实现了全自动化。Alpha-Step 500增加垂直量程至 1mm,并配备了全新高倍率光学器件和彩色摄像头。1996Tencor P-10、 P-11、 P-12 和 P-22 相继发布,产品采用最新的低作用力控制技术,延长垂直量程至1000µ m并增强环境隔离功能。Microhead II 增强线性可变差分电容器 (LVDC),并增加低至 0.05mg的程式控制低作用力。它增加了通过动态调整枢轴上的作用力,确保在任何台阶高度下,样品表面都能够施加相同的力。此外,新传感器可支持高达 1000µ m 台阶高度。P-12 新增隔声罩和主动隔离台,不仅增强对环境噪声的隔离,还能够测量超光滑硬盘的粗糙度。P-22 在现有 P-20 机械手臂的基础上新增一个隔离台,实现自动晶圆传送、图案识别和 SECS/GEM 等全自动测量,从而为半导体行业提供整体解决方案, 提高其生产效率。1997Tencor P-30 将开放式晶圆盒机械臂替换为 SMIF 机械臂和系统的内置微环境, 以支持半导体行业新的洁净度要求。HRP-220 是在线表面量测的一大突破,配备了 P-22 的长扫描平台以及高分辨率压电平台,DuraSharp 探针可实现精细的特征测量和分析。同年,Tencor Instruments 和 KLA Instruments 两家公司合并成立了 KLA-Tencor, Inc.,成为世界领先的半导体制造和相关行业的良率管理及工艺控制解决方案供应商之一。1998HRP-320 在HRP-220 的测量能力基础上扩展到 300mm 晶圆,是能够单次扫描测量 300mm 晶圆全直径的系统。1999HRP-240 和 HRP-340 在使用的便利性、产出和精度上有了重大改进。新增压电挠性平台设计,以尽量减少平面外的运动,扫描平面度 2x 在保持 90µ m x 90µ m 扫描区域和 1nm 分辨率的同时,比以前的设计有了很大的进步。该系统增加在线高倍和低倍光学器件,并利用距离传感器实现无接触自动聚焦,从而可允许快速、精确对焦,并通过减少探针的表面接触次数来延长其使用寿命。长扫描平台通过增加线性编码器来提高样品定位的准确性,而更细螺距的丝杠可实现更高的分辨率。通过增加数字信号处理器来管理所有平台控制,将计算机处理能力留给用户接口,从而改善系统的整体性能。新增浸渍模式(Dipping Mode&trade )能够测量高深宽比的蚀刻深度特征。2001Tencor P-15 结合了 P-10 和 P-11 系统的功能,技术更加成熟,为单一平台上的研发和生产提供支持。2003Alpha-Step IQ 在 Alpha-Step 500 基础上新增 USB 电子器件和全新设计的软件,可以显著提供增强的扫描排序和数据分析能力。2007Tencor P-16+ 在-15 的基础上进行了改进:新的 USB 电子器件、更强大的软件以及 Apex 高级数据分析和报告撰写软件功能。2008Tencor P-6 是一台高性能探针式轮廓仪,在较小的平台上沿用了 P-16+ LVDC 传感器技术和扫描平台技术。HRP-250 和 HRP-350 仪器采用噪音更低的 LVDC 传感器技术、新的隔离系统(仅 HRP-350)和第二代 DuraSharp II 探针。可实现更小特征的测量和接近 2 倍的吞吐量。2009Ambios Technology 加入KLA-Tencor并发布 XP100 和 XP200,采用光学杠杆传感器技术,垂直量程1200µ m 并支持200mm晶圆样品。2010KLA-Tencor 发布了基于 Ambios Technology 平台的 Alpha-Step D-100 和 D-120,采用增强光学杠杆传感器技术, 显著改善了测量的稳定性。2013Tencor P-7 和 P-17 配备了新高分辨率彩色相机,并增强了对翘曲度和应力的测量。2014Alpha-Step D-500 和 D-600 仪器采用了与 P系列相同的高分辨率相机。增加了侧视图的梯形校正功能,并且进一步改善了测量的重复性。2016Tencor P-170结合了 P-17 与 HRP 机械手臂,是一款新的全自动探针式轮廓仪。同年,HRP系列的新机型HRP-260 也随后发布。新仪器在自动化晶圆处理方面有了重大的改进。增加了几何图案识别,提高了倾斜校正算法的准确性,并采用新方法进行自动灯光控制。机械手臂包含新电子器件,可支持碳化硅 (SiC) 和蓝宝石等透明样品以及硅、砷化镓 (GaAs) 和 AlTiC 等不透明样品的预对准。也支持卡盒内wafer探测和读取wafer ID.2019KLA Instruments&trade 全系列探针式轮廓仪Alpha-Step、Tencor P- 和 HRP,移植软件平台至最新的Windows 10 OS。同时,新的测量和数据分析功能发布在新的软件平台中。2023KLA将继续探索的脚步,而探针式轮廓仪全线产品也将持续发展,为满足客户的需求不断努力创新。Keep Looking Ahead!
  • HORIBA | 平时使用仪器遇到这些困惑,你怎么办?——拉曼/荧光/椭圆偏振光谱仪
    使用光谱仪器时,如何巧妙制样?针对不同的样品,测试方法有哪些区别?仪器测试结果如何分析解读…11月13日,HORIBA的资深工程师们,就拉曼、荧光、椭圆偏正光谱仪器日常使用技巧,为大家分享了自己多年的宝贵(xue)经(lei)验(shi)。分享过程中,同学们也纷纷提出自己的问题,不知道是否也有你的困惑,我们一起看看吧:荧光光谱1.为什么样品信号之前的背景光平台不是平的?在进行磷光寿命测试时,前端的小段曲线是由光源产生的,即激发光还没有完全消失,就开始了样品信号采集,后边部分属于光源消失后磷光衰减的信号,进行寿命拟合的时候只要选择后边尾部即可。2.问水拉曼峰怎么测?1)开启仪器;2)将标准盛有三重去离子水的比色皿放入样品仓;3)打开软件,选择Spectra——emmission功能;4)点击Run进行信号采集即可。参数详见如下:激发波长350nm,水拉曼峰值,峰值波长397nm。实验条件:激发波长350nm,带宽5nm,0.5nm步进,发射波长扫描范围365~450nm,带宽5nm,积分时间1s;样品要求:必须是超纯水,三重蒸馏水或去离子水,HPLC级(18.2 MΩ,10ppb 溶解有机碳)或相同水质的水样。用4mL石英荧光比色皿3.ms量级荧光寿命如何测量?配置SpectrLED、Delta-HUB和相应的探测器,使用磷光寿命测试功能即可进行ms级的磷光寿命测量。具体测量及拟合方法可以联系我们应用工程师。4.薄膜样品怎么测量?将薄膜及其载玻片固定在固体样品支架上,即可进行稳瞬态荧光测试,但是有的薄膜样品散射较强,为了避免杂散光的干扰,一般需要使用相应的滤光片,另外Horiba提供前置测量附件,可以有效避免杂散光的干扰。5.用HORIBA的荧光光谱仪测荧光寿命,是用上升沿还是下降沿拟合寿命的?对于荧光寿命,拟合时上升下降沿的信号都要用到,对于磷光寿命,仅用下降沿部分拟合即可。具体拟合步骤及要点可与工程师联系。椭圆偏振1.请问老师,这个可以测量颗粒物表层吸附物质的厚度吗?纳米级别,烟尘颗粒由于椭偏光斑在微米至毫米尺度,无法分析离散态的纳米级别颗粒表层2.老师您好,请问衬底是石英片,可以测膜的厚度吗?可以,只要薄膜光学透明即可使用椭偏测试拉曼光谱1.CLS那个没看懂?简单的来说,CLS是数据统计的分析方法。夹峰法是以单个谱峰的峰强、峰面积、峰位的特性为拉曼成像依据。而CLS是以整张光谱或者某段光谱为依据,赋予不同的颜色。适用于已知混合物的拉曼成像。2.细胞的那个是这么做的呀?详细请见文章ACS Appl. Mater. Interfaces, 2017, 9 (7), pp 5828–5837,文章的拉曼部分在北京DEMO实验中心完成的,欢迎讨论。3.用JobinYvonLabRam HR800仪器,325 nm 的激光测薄膜光致发光,有时PL谱的曲线有波动,就是线一抖一抖的,请问能怎么改善呢?能测到发光峰,但是曲线上有很多小的正弦波。两个方面:一个需要标准样品测试,检验仪器本身是否有问题。另一个方面,考虑薄膜的厚度问题,是否刚好发生多次反射。之前有经历,特定的玻璃片上测样品,也有小正弦波,更换玻璃片之后就没有了。4.那请问如果是贴壁细胞呢 直接光斑扫描?贴壁细胞,做完封片,可以直接通过平台移动实现细胞成像。5.指甲油有要求吗?指甲油不要涂到样品上?指甲油本身有很好的拉曼信号,不能直接涂到样品上,建议选择亮色,这样能够看清楚指甲油的本身分布。若样品量比较大,建议选择大号的盖玻片,操作相对简单。6.请问G/D的物理意义G峰为石墨烯的特征峰,归属于sp2碳原子的面内振动,出现在1580 cm-1附近,该峰能够表征石墨烯的层数。D峰为石墨烯的无序振动峰,出现在1350 cm-1附近处,表征石墨烯中的结构缺陷或边缘。所以G/D峰,可以反映石墨烯的层数和缺陷分布。7.测细胞必须要涂指甲油吗?不是必须,封片的好处是减缓水份蒸发。8.老师,做矿物的话激光波长用多少合适大多数矿物532 nm激光比较合适,对于有荧光背景的,考虑红光激发。9.半導體異物量測方式?測試過532,633,785 laser量測都只有螢光訊號,異物大小約1~3um若异物在表层,可以考虑325 nm尝试下。若还是不行是否可以考虑用PL成像来区别异物。10.如何衡量石墨烯条带的边缘质量?见问题6,G/D比值成像及D峰成像都是不错的选择。11.鲁老师,请问罗丹明溶液633直接测拉曼,如何计算光斑内有效分子数?影响影子的计算方法我们在上一次的报告中有提到。详细可参见Phys. Chem. Chem. Phys., 2015,17, 21149-21157。文章是用XploRA仪器实现的,欢迎讨论。12.样品中有水,可以用3D得到水分布吗样品若是半透明的,可以实现水的分布的3D. 常见的地质样品,包裹体中的水分可以用3D表征。这是一篇文章,里面用拉曼证明了油水凝胶中的水分分布,你可以参考下。Nature Communications 8, Article number: 15911 (2017) doi:10.1038/ncomms15911。文章的拉曼部分在北京DEMO实验室完成的,欢迎讨论。13.请问测拉曼时荧光效应太强,背底太高可以怎么改善?一般是某些样品会出现,跟样品有关系,可是又需要样品的拉曼数据抑制荧光背景的方法:更换不同的激发波长;长时间激光照射光漂白;数值处理等。目前有效的是更换不同的激发波长测试。14.请介绍一下实时在线原位拉曼技术?在线原位技术是一个比较宽泛的命题,常见的有有机化学合成在线检测,高温高压在线检测,锂电池在线检测,电化学在线检测。若大家都有兴趣,我们可以专门利用一次讲座交流。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 【国内首发】通过复眼仿生的MOEMS拉曼探头了解简智仪器MOEMS 阵列光斑检测技术
    【新一代小型拉曼必配技术】 近年来,拉曼光谱快检技术在食品安全、生物医药、分子结构研究、化工过程、生物化学、考古及文物鉴定、公安与法学样品分析、反恐技术等各行各业得到广泛应用,被称为“分子指纹”的拉曼光谱技术因其无损、便捷、速度快、稳定性高的优良特性,在光学快检领域受到大力推崇。但是实际使用过拉曼光谱检测方法的都知道,由于采用聚焦测量的方式,在对有些目标物检测时,必须很小心。由物像共轭关系可以知道,只有在光谱仪接收狭缝的像点发出的所有光信号才能被光谱仪所接收。因此当激发激光的聚焦点正好处于这个位置的时候,拉曼信号才有最高的收集效率。为了获得更高的分辨力,色散光谱仪的狭缝,通常只有几十个微米,所以在进行拉曼检测的时候我们需要对激光进行聚焦。对于一些应用这是非常方便的,比如需要对天然宝石中的胞体进行研究。但在很多时候,高聚焦也带来了其它的问题。比如:深色物质,由于深色物质会吸收大部分激光功率,因此容易引起样品的灼烧。在测量文物字画时有损害样品的可能,而测量黑火药、烟火药等炸药时,甚至有直接引爆的危险。如下图此外,由于拉曼的聚焦特性,因此实际上只能进行“点测量”,对于一些非均匀样品的分析,高聚焦很可能导致对检测谱图代表性的质疑。如果被测物为非均匀混合物,很可能测量的那个点上,并没有目标物。比如测一个注胶的翡翠手镯,但测量点上没有胶,可能就会被误认为A货翡翠。测量多组分混合的固体违禁品时,可能测量点上只有食用辅材而不包含违禁品。 如下图针对这种情况,出现了一些针对性技术:首先是ORS移动光斑技术,这种技术通过降低单个位置激光照射时间来避免引燃物体。但由于微机械传动结构很难保证光斑运动轨迹在某个平面范围上均匀分布,因此实际效果只是光斑在某个小范围内呈线性“抖动”,并且由于单点功率密度并没有下降,因此很多情况下仍旧会灼烧甚至引爆物品,而且对设备光机结构要求非常高,导致可靠性下降。 第二种是TRS透射技术。该技术对样品要求很高,需要是薄片状样品,而且受数值孔径的限制,这种方式的光学效率不高,测量范围更小。 第三种是采用非聚焦方式的“大光斑”技术,由于不在物镜聚焦点上测量,使得照射光斑扩大,但由于违背了前面所说的聚焦测量的原则,因此导致收光效率大幅损失,即使在周围加上反射腔做弥补,也至少损失一个数量级以上的光学效率。 并且,以上三种技术都只能将光斑范围扩大到毫米级,在实际应用中仍然太小了。而且后两种技术还会大幅的损失光学收集效率,导致信号恶化,无法有效分辨样品。 如何才能获得一个较大面积的拉曼特征并且实现激光功率的均匀分布,而又不以牺牲光学效率为代价呢?复眼昆虫眼部分解成无数的复眼,每个小的眼睛均可独立成像,通过复眼结构昆虫获得了更高的视野和反应速度。从昆虫的复眼,我们获得了很好的启示。通过对复眼的仿生,科学家发明了“蝇眼相机”,具有160度的视野,能够同时聚焦物体的不同深度。 如果像复眼一样,有无数个小透镜同时对激发光聚焦,我们就可以在透镜的焦平面将激发光平均分配为很多份。每个小的透镜都是一套独立的光学系统,光谱仪狭缝和样品激发位置构成物象共轭关系。由于小透镜位置不同,我们可以把检测点覆盖在一个很宽的范围同时检测,解决了拉曼检测实际上只能进行“点测量”的问题。 这就是简智仪器通过研究率先推出的MOEMS 阵列光斑检测技术,不止解决了拉曼光谱高聚焦容易引起样品的灼烧的问题,同时实现了拉曼检测技术从“点测量”到“面测量”的突破。简智仪器依托自身元器件级的研发设计能力,突破重重设计和工艺难点,将传统拉曼中使用的单一透镜,优化为阵列微透镜,然后再做对应的光路系统的优化,研发出来的复眼仿生的MOEMS拉曼探头,实现将检测范围扩大为厘米量级!而光点能量降低1-2个数量级,并且在检测范围内,均匀分布上百个聚焦光斑点;并且每个光斑点,保持了高数值孔径,在不显著降低接收效率的前提下,又均匀地分摊了激光照射功率,可以对样品进行大面积检测。特别是在测量危险样品时,由于单点功率低于5mw,因此,绝对安全。彻底杜绝拉曼光谱灼烧损坏样品,或者引燃引爆危险品的可能性!并且在均匀分摊激光功率的同时,保持超高拉曼接受效率,不会因为测量深色物体而导致信号恶化无法正确分辨。MOEMS 阵列光斑检测技术可以解决目前对于违禁品等混合样品在拉曼检测中出现的代表性问题,避免了对高吸收率物质(如黑火药、ABS材料等)进行拉曼光谱检测时出现的烧蚀损毁现象,解决了易燃目标目前无法用拉曼技术直接检测的问题,同时创新性地实现了低能量密度下的大面积拉曼检测,是对传统拉曼检测技术的革新性变化。简智仪器有信心,MOEMS将成为下一代便携式拉曼光谱的常态性必配技术。绝对安全的保证,将大幅扩大拉曼光谱技术的适用范围。简智仪器在现场快检技术发展高峰论坛暨2019简智新品发布会上发布该项新科技,为拉曼快检底层技术革新拉开了序幕。2019年简智仪器即将推出的Easy-Raman EV系列新款手持式拉曼光谱产品也将搭载MOEMS阵列光斑检测技术,敬请期待。
  • 赛默飞9.25亿美元收购移植诊断公司One Lambda
    2012年7月16日,赛默飞世尔科技公司宣布,公司日前已签署最终协议,将以9.25亿美元现金(该价格可能在收购后进行调整)收购全球移植诊断领域先驱One Lambda公司。该交易预计将于2012年第四季度完成。交易完成后,赛默飞世尔2013年调整后每股收益预计将增加0.09-0.11美元。  One Lambda由器官移植领域的杰出研究员Paul Terasaki于1984年成立,One Lambda是移植诊断领域的先驱。One Lambda的诊断测试被移植中心使用用于组织配型,主要是为了确定捐献者和接受者移植前的相容性,并检测是否存在可导致移植排斥反应的抗体。One Lambda由私人持有,拥有约320名员工,总部位于加利福尼亚州,为全球1400多家实验室服务。公司2011年收入1.82亿美元。并购完成后,One Lambda将并入赛默飞专业诊断业务。    “我们很高兴One Lambda加入到赛默飞专业诊断业务中。One Lambda是移植测试领域的研究先驱,其开发的测试在整个移植测试过程中有着广泛的运用,能够有效帮助病人提高移植手术效果。凭借其强大的技术平台、先进的产品和良好的发展前景,我相信该业务将与我们的专业体外诊断战略实现完美整合。”赛默飞全球总裁兼首席执行官Marc N. Casper表示,“收购One Lambda后,我们将涉足前景可观的移植诊断学市场,这将成为我们目前免疫抑制剂监控测试的重要补充。此外,我们也将凭借强大的全球商业网络,更好地满足全球日益增长的移植技术需求。”  对此,One Lambda公司共同创办人、总裁兼首席执行官George M. Ayoub说道:“我们十分高兴看到One Lambda成为赛默飞的一员。我相信,在双方的共同努力下,我们将在移植诊断市场中进一步普及人类白细胞抗原(HLA)分类及抗体测试的应用,同时推动市场增长,提高移植手术的成功率。更重要的是,我们将继续为肩负的使命而奋斗,努力提高移植病人及其家庭的生活质量。”  Casper补充道:“我们很期待One Lambda团队加入到赛默飞大家庭中。此外,我也很荣幸将与Terasaki博士和Terasaki基金会实验室合作,继续支持移植后排异预防项目的突破性研究。”  强强联手,优势互补  加强赛默飞在专业体外诊断领域的优势地位:随着移植手术和移植后病人监测需求的日益增加,带动全球移植诊断市场蓬勃发展,从而为一系列高利润的反应试剂产品提供了发展空间,主要包括两大类移植测试:HLA分类测试及抗体检测试验。  提高移植领域全面测试能力:One Lambda在移植前后HLA分类测试及抗体检测领域的尖端诊断测试产品将成为赛默飞现有免疫抑制剂监控测试的重要补充。目前,赛默飞的免疫抑制剂监控测试主要用于监控移植手术后药物治疗的效用,从而防止出现排异现象。  借助赛默飞的商业网络,推动新兴市场发展:赛默飞计划利用其在新兴市场强大的商业网络,为One Lambda现有产品系列开拓更广阔的市场。目前这些产品主要面向美国的医院和实验室。  创造丰厚的财务效益:交易完成后赛默飞每股收益将出现涨幅,估计2013年每股收益提升0.09-0.11美元。并购还将带来营收和成本方面的协同效应,预计2015年净利润增加约1500万美元。此外,完成收购后,公司税收效益也将得到提高。  关于One Lambda  One Lambda公司是全球领先的人类白细胞抗原(HLA)分类和抗体检测测试的供应商研发机构,以品质、服务和创新能力而闻名。该公司开发并销售一系列HLA分类和抗体检测测试,涉及血清学、分子、酶联接免疫吸附剂试验(ELISA)、流体流式及Luminex xMAP等尖端技术。此外,One Lambda还生产相关实验室设备和计算机软件,用于测试流程及最终测试结果评估的简化及自动化。更多信息,敬请访问 www.onelambda.com  关于赛默飞世尔科技  赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity™ Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com  关于赛默飞中国  赛默飞世尔科技进入中国发展已有30年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳等地设立了分公司,目前已有超过1900名员工、6家生产工厂、5个应用开发中心、2个客户体验中心以及1个技术中心,成为中国分析科学领域最大的外资企业。赛默飞的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,目前国内已有6家工厂运营,苏州在建的大规模工厂2012年也将投产。赛默飞在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务 位于上海的中国技术中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品 遍布全国的维修服务网点和特别成立的维修服务中心,旨在提高售后服务的质量和效率。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • HORIBA网络讲座 | 11月13日,光谱仪器使用技巧(荧光、椭圆偏振、拉曼光谱)
    对于光谱仪的功能还一知半解?想提高使用效率?有没有一些小技巧可以改善分析方法?您可以通过这次在线培训与我们的工程师进行直接沟通。本次在线讲座汇集了三种常用光谱技术中常见的使用问题,11月13日工程师将通过实例教会您如何更好地驾驭您手中的“利器”。11月13日14:00 PM只要准备电脑和网络,即可参与谁应该参加相关光谱仪使用者讲座日程14:00~14:30 荧光光谱14:35~15:05 椭圆偏振15:10~15:40 拉曼光谱主讲老师王红静,应用工程师文豪博士,应用工程师研究方向:椭圆偏振光谱毕业于上海硅酸盐研究所,擅长光谱椭偏建模、薄膜分析,长期为用户提供椭偏技术培训等工作。鲁逸林博士,应用工程师研究方向:SPRi、拉曼等从事拉曼光谱、AFM和表面等离子共振成像的技术支持,负责样品分析、数据解析、应用方案设计、用户培训等,在材料、生物、锂电池等领域积累了丰富的经验。报名手机扫描识别二维码报名即可 扫描 识别 报名 HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,其旗下的Jobin Yvon有着近200年的光学、光谱经验,我们非常乐意与大家分享这些经验,为此特创立 Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。我们希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。
  • HORIBA 用户动态|中科院半导体所关于角分辨偏振拉曼光谱配置的研究
    撰文:刘雪璐等众所周知,实验上已经有多种手段可以实现角分辨偏振拉曼光谱(arpr)测试,但是不同配置往往会呈现出不同的结果。常用的arpr实验配置是固定入射激光和散射信号的偏振方向,旋转样品。但是,随着低维材料的兴起,样品尺寸往往只有微米量级,而旋转样品会导致样品点移动,很难实现对微米级样品的原位角分辨拉曼光谱测试。所以重新系统地研究各种arpr配置的优缺点并且找到对于微米级晶体材料优的实验方法显得十分必要。近,中国科学院半导体研究所谭平恒研究组系统全面地分析了三种测量arpr光谱的实验配置,给出了一般形式的拉曼张量在不同配置下拉曼强度的计算方法,并具体地以高定向热解石墨(hopg)的基平面和边界面为例,研究了这些arpr配置在二维材料拉曼光谱方面的应用。该工作使用了horiba公司labram hr evolution型全自动高分辨拉曼光谱仪,分析软件为labspec 6.0。全自动拉曼光谱仪快速的数据采集和强大的数据处理功能,为本工作的顺利完成提供了技术保障。今天在本文中,你将读到: 三种测量arpr光谱的实验配置及优缺点分析 高定向热解石墨的基平面和边界面arpr光谱测量及结果分析三种测量arpr光谱实验配置及优缺点分析图1. 三种测量arpr光谱的实验配置示意图:(a)αlvr和αlhr,(b)vlvr和vlhr以及(c)θlvr和θlhr。其中光路中偏振镜(polarizer)的使用是为了保证入射激光保持竖直偏振。单色仪入口的检偏镜(analyzer)用于选择沿竖直或水平偏振的拉曼信号。半波片用于改变入射激光或者散射光的偏振态。实验室坐标系(xyz)用黑色的箭头表示,而晶体坐标系(x’y’z’)用灰色的箭头表示。红色的双向箭头代表了照射到样品上的入射激光的偏振方向,蓝色的双向箭头代表了由竖直或水平检偏镜选择出的拉曼散射光的偏振方向。测量arpr光谱的实验配置如图1,三种配置的优缺点分别为:(a)αlvr和αlhr:改变入射激光的偏振方向,固定散射信号的偏振方向,而样品固定不动。这种偏振配置在测试过程中只需要通过旋转入射光路上半波片的快轴方向来改变入射激光的偏振方向。其优点在于便于操作,且保证了arpr光谱的原位测试。目前商业化的拉曼光谱仪,如labram hr evolution型拉曼光谱仪集成了自动化控制的半波片,这相比于手动旋转入射光路上半波片快轴方向的操作更为方便,测量结果更准确。(b)vlvr和vlhr:固定入射激光和散射信号的偏振方向,旋转样品。这种偏振配置被广泛应用于研究晶体材料拉曼光谱的各向异性,分别对应于常说的平行偏振(通常记为vv或yy)和交叉偏振(通常记为vh或yx)。其优点在于光路简单,而缺点为在旋转样品过程中不可避免地会导致样品点的移动,很难实现对微米级样品的原位角分辨拉曼光谱测试,使得测试技术难度增加。(c)θlvr和θlhr:在入射激光和散射信号的共同光路上设置半波片,通过旋转半波片的快轴-方向,同时改变入射激光及散射信号的偏振方向,而样品固定不动。这种偏振配置的优点同样是保证了arpr光谱的原位测试,但在低维材料的arpr光谱测量中尚未得到广泛的应用。上述三种arpr光谱的实验配置中,种配置(a)αlvr和αlhr可以借助自动化控制的半波片实现快速测量,是一种快速有效地测量arpr光谱的实验配置。第二种(b)vlvr和vlhr和第三种配置(c)θlvr和θlhr是等价的,这可以通过计算一般形式的拉曼张量在这两种配置下拉曼强度证实, 而后一种配置以其简便性和准确性等优势可以作为前一种的替代,从而可以更为高效地测量诸多微米级样品的arpr光谱。高定向热解石墨的基平面 & 边界面arpr光谱测量及结果分析二维层状晶体材料以其独特的物理、机械、化学和电学特性等迅速成为过去十余年国际科学研究的热点。近报道的一些垂直排列的二维层状晶体材料以及它们的异质结构,它们在边界面上能呈现出某些优于基平面的性质。这些各向异性材料的诸多性能随晶向而变,使其在纳米器件方面有着非常广阔的应用前景。hopg是石墨烯的母体材料,其由单层碳原子层即石墨烯依靠层间范德华力有序地堆垛而成,所以hopg可以作为二维层状晶体材料的代表。为了展示了不同arpr光谱的实验配置在二维层状晶体材料拉曼光谱测量以及各向异性研究方面的应用,研究人员对高定向热解石墨hopg的基平面(如图2)和边界面(如图3)分别进行了arpr光谱的测量。通过研究hopg基平面以及边界面上g模的拉曼强度对不同arpr光谱实验配置的依赖性,进一步证实了旋转样品的偏振测试技术(图1(b)vlvr和vlhr)和在入射激光及散射信号共同光路上放置半波片的偏振测试技术(图1(c)θlvr和θlhr)的等价性。后一种偏振测试技术可以作为前一种的替代,使得平面内各向异性材料的arpr光谱测量更为简便和准确。图2.(a)hopg基平面上的拉曼光谱。插图为晶体坐标系相对于激光入射方向的示意图。(b)偏振配置αlvr和αlhr,hopg基平面的g模拉曼强度igb(g)随α变化的坐标图。(c)偏振配置vlvr和vlhr下,hopg基平面的g模拉曼强度igb(g)随变化的坐标图。(d)偏振配置θlvr和θlhr下,hopg基平面的g模拉曼强度igb(g)随θ变化的坐标图。图3.(a)hopg边界面上的拉曼光谱。插图为晶体坐标系相对于激光入射方向的示意图。(b)偏振配置αlvr和αlhr下,hopg边界面的g模拉曼强度ige(g)随α变化的坐标图。(c)偏振配置vlvr和vlhr下,hopg边界面的g模拉曼强度ige(g)随β变化的坐标图。(d) 偏振配置θlvr和θlhr下,hopg边界面的g模拉曼强度ige(g)随θ变化的坐标图。对于垂直排列的二维层状晶体材料,单层厚度仅有亚纳米的级别,无法用光学显微镜对它们的晶向进行准确判断,目前急需一种快速、无损的鉴别方法。中国科学院半导体研究所谭平恒研究组进一步发现,当入射激光偏振方向与hopg碳平面取向平行时,其g模强度达到大值。基于这一特征,研究人员利用arpr光谱对hopg的边界面进行了晶向指认。这种方法还将有望推广到其他垂直排列的层状材料晶向的无损快速鉴别。图4. (a)hopg的边界面的光学图像,hopg边界面碳平面的方向y’与实验室坐标系y轴的夹角为β0=0o,20o和40o。(b)偏振配置αlvr下,β0=0o,20o和40o时hopg 边界面的g模拉曼强度ige(g)随α变化的坐标图。(c)偏振配置αlhr下,β0=0o,20o和40o时hopg边界面的g模拉曼强度ige(g)随α变化的坐标图。以上工作得到了国家重点研发计划和国家自然科学基金委的大力支持,并于近期以highlights文章发表于中国物理b《chinese physics b》上:liu xue-lu, zhang xin, lin miao-ling, tan ping-heng. different angle-resolved polarization configurations of raman spectroscopy: a case on the basal and edge plane of two-dimensional materials. chinese physics b, 2017, 26(6): 067802horiba科学仪器事业部结合旗下具有近 200 多年发展历史的 jobin yvon 光学光谱技术,horiba scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天horiba 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • Think-lab超纯水系统进入北京大学深圳研究院
    2014年08月15日,中国深圳,来自德国的顶级实验室超纯水系统制造商Think-lab近日完成了北京大学深圳研究院超纯水系统的装机测试工作,Think-lab再添重磅用户,安装由Think-lab广东总代理商广州德菲科学仪器有限公司完成。 蓝天白云下、青山绿水间的北京大学深圳研究院 作为国内最顶级的科研机构之一,北京大学深圳研究院既秉承了北大的文化传统,又兼具深圳的创新精神,广大科研人员在进行研究和实验的过程中,大量使用精密分析仪器进行分析检测,如果超纯水指标过低,会关系到结果的准确性和数据的可靠性,购买的瓶装水或桶装水由于运输、存储、时间、温度各个环节的影响经常不达标,产品也无法溯源,不符合未来分析检测的需要。 Think-lab的Labonova Direct一体机,自来水进水、生产纯水/超纯水,很好地规避掉了以上问题,电导率可达0.055us/cm,电阻率可达18.2 MΩ.cm,可以为科研人员的工作提供更好的支持,成为中国广大高端用户新选择。北京大学深圳研究院最终选用Think-lab,既是对Think-lab高品质的一种肯定,也是对Think-lab“创新、专注、分享,帮助客户取得成功!”核心价值观的认可。 Labonova Direct 超纯水界面,0.055us/cm(us/cm为国际通用电导率单位,与电阻率成倒数关系,0.055us/cm对应电阻率为18.2MΩ.cm。) Think-lab秉持专注于高端市场的市场策略,过去的一年取得了非常可喜的成绩,包括:中科院、中国中医科学院、北京大学、上海交通大学、同济大学、吉林大学、第二军医大学、上海科技大学、上海中医药大学、上海海洋大学、华南理工大学、同济医院、长征医院、龙华医院、北京亦庄生物医药园、上海绿谷药业等大学、医院、药物研发机构。 关于Think-lab: Think-lab是一家来自美国的公司,专注于生命科学研究相关的实验室设备及实验室信息系统领域的研发与销售服务。Labonova是Think-lab旗下专注于高端实验室纯水/超纯水业务的品牌,产品全部来自于德国,工厂拥有超过30年的实验室纯水/超纯水生产经验,以工艺精湛、品质稳定著称,拥有业内最精准的技术,为广大科研工作者提供新选择。2014年Think-lab投入极大的资源与全国合作伙伴一起推广Labonova纯水/超纯水, 9月24日到26日将参加业内最大的慕尼黑上海分析生化展,在1号馆生命科学馆核心位置设有45平米的独立展台,与业内众多一线品牌共同为广大客户和经销商提供支持和服务。
  • 深圳查获大量假冒名牌化妆品!拉曼光谱帮您分辨别真伪!
    爱美的你,如果知道你用的那些“大牌”化妆品都是发霉的、外漏的会不会瞬间脸就开始发痒感觉快烂掉的节奏想想都觉得毛骨悚然但现实可能就是这么可怕日前,深圳警方打掉一个销售假冒品牌化妆品的犯罪团伙,该团伙隐藏于深圳龙岗一出租房内。警方发现整个三居室的住宅都被用来当做仓库,每个房间都放着不同种类的化妆品,客厅则放着打包快递所需要的包装纸盒。 民警在现场发现,有多台电脑在进行交易,其中名为“ds香港代购”的某宝店铺竟有三个皇冠,另外一个名为“小黑日韩美肤代购”的店铺也有一个皇冠。 深圳市公安局治安巡警支队食药环侦大队副队长蒋瑞介绍,近期,阿里巴巴专业团队主动向警方推送一条涉假线索,称深圳原关外某出租房内疑似销售假冒化妆品。警方经侦查发现线索属实,随即立案调查。与此同时,品牌权利人对该化妆品进行鉴定,确认为假货。 化妆品是人们日常生活中密不可分的重要部分,与人们的健康密切相关,其种类繁多,消费群体庞大。尤其是随着网络营销的迅速发展,网购已成为人们购买化妆品的主要途径之一。某些商家为了获得更多的利润,以伪劣化妆品充当高档品牌的产品,侵害消费者的利益和身心健康。因此,快速鉴别化妆品的真伪是非常必要的。目前用于化妆品检测的方法如色谱法、原子光谱法、激光诱导断裂光谱等,主要用于分析重金属含量、有机酯类、激素、抗生素等,并未涉及化妆品真伪的鉴定。并且这些方法在检测过程中多数需要使用化学试剂,不易操作,灵活性较差。 拉曼光谱可以实现无损检测、快速检测,非接触检测。适用于有机、无机、生物分子和固体、液体、气体、以及透明、非透明物质的检测。适宜于含水微区的测试,是研究水溶液体系中化学化合物的理想工具。目前,拉曼光谱在化妆品检测中的研究主要包括针对化妆品中某一特定成分的分析,化妆品抗氧化稳定性的检测,古代化妆品未知成分的定性分析,区分不同的唇膏、追踪带有污染物的唇膏等。 ExR610激光拉曼光谱仪可获得高质量拉曼光谱,是化妆品分析的有力工具!ExR610智能曼光谱仪ExR610激光拉曼光谱仪获取防晒霜拉曼光谱防晒霜拉曼光谱图 (激发光源532nm 积分时间10s)ExR610激光拉曼光谱仪分析不同渠道购买的DHC橄榄卸妆油DHC卸妆油拉曼光谱图(激发光源532nm 积分时间10s)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制