当前位置: 仪器信息网 > 行业主题 > >

粒子计

仪器信息网粒子计专题为您提供2024年最新粒子计价格报价、厂家品牌的相关信息, 包括粒子计参数、型号等,不管是国产,还是进口品牌的粒子计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合粒子计相关的耗材配件、试剂标物,还有粒子计相关的最新资讯、资料,以及粒子计相关的解决方案。

粒子计相关的资讯

  • 【网络讲堂参会邀请】如何沉积纳米粒子 ——纳米粒子单层膜沉积实用指南
    如何沉积纳米粒子——纳米粒子单层膜沉积实用指南 纳米颗粒的二维致密单层膜沉积是多种技术和科学研究的基础。例如,纳米粒子单层膜可以作为传感器上的功能层,也可以用来生产用于纳米球光刻的胶体掩模。但是,怎样才能高效、可靠地得到具有三维自由度的纳米颗粒溶液,并将这些颗粒限制在横跨大基底的(二维)单层中呢?传统的纳米颗粒沉积技术纳米颗粒沉积技术种类繁多。一些相对简单和快速的方法包括溶剂蒸发、浸渍镀膜和旋涂镀膜。然而,这些技术可能会浪费大量的纳米颗粒,并且无法有效控制纳米颗粒的密度和配位结构。溶剂蒸发溶剂蒸发容易产生所谓的咖啡渍圈环效应,这种效应是由马朗戈尼流动引起的。这将导致不均匀沉积,中心的纳米粒子沉积稀疏,而边缘则形成多层纳米粒子沉积。 浸渍镀膜另一方面,如果只是用纳米粒子覆盖基底,浸渍镀膜将是一种很好的技术。然而,使用这种方法沉积纳米颗粒单分子层是非常具有挑战性的。同时,浸渍镀膜需要大量的纳米颗粒,这在处理昂贵纳米颗粒材料时将成为一个大的限制因素。 旋涂镀膜旋涂镀膜也是一种很有吸引力的方法,因为它易于规模化放大,而且在半导体工业中是一种众所周知的技术。然而,使用这种方法,薄膜的质量和多个工艺参数紧密相关,如:自旋加速度、速度、纳米颗粒的大小、基材的润湿性和所用溶剂。这使得对薄膜属性的精确控制变得非常困难。而且,一般旋涂镀膜需要大量的纳米颗粒溶液。 气液界面的单层镀膜在这里,气液界面沉积纳米颗粒单层提供了一种高度可控的沉积方法,可以将其沉积在几乎任何基底上。纳米颗粒被限制在气液界面,界面面积逐渐减小,使得纳米颗粒更加紧密地聚集在一起,从而可以实现控制沉积密度的目的,因为单位区域面积沉积的纳米颗粒的数量很容易计算,这样对纳米颗粒的需求量就会大大降低。 单层薄膜形成后,可以通过简单的上下提拉基底即可将界面上的薄膜转移到基底上。 在线网络研讨会报名如果您对如何制备纳米颗粒单分子膜感兴趣,想获取更多这方面的知识,请报名参加由伦敦大学学院的Alaric Taylor博士举办的题为“纳米颗粒单分子层薄膜沉积实用指南”的网络研讨会。报告人Alaric Taylor简介:Alaric Taylor博士是伦敦大学学院工程和物理科学研究委员会(EPSRC)研究员,他在纳米光子材料的制造,尤其是通过在气-液界面开发胶体单层自组装方面有很高的造诣。 报告内容:? 详细讲解纳米颗粒沉积的具体操作? 指出需要注意的事情? 讲述纳米颗粒沉积的技巧 报告时间:2018年9月13日下午3:00(北京时间)报名联系:如需参会,请填好下列表格中的信息发送至,邮箱:lauren.li@biolinscientific.com;姓名单位邮箱电话特别提醒:因为可能会涉及电脑、系统、耳机等调试问题,建议大家提前5-10分钟进入链接。
  • 大型强子对撞机发现新奇异五夸克粒子
    科学家们在欧洲核子研究中心的大型强子对撞机(LHC)上发现了一种新粒子,其被称为“奇异的五夸克”。研究团队表示,发现这样的奇异粒子有助他们理解夸克是如何结合形成复合粒子的。相关论文刊发于17日出版的《物理评论快报》杂志。  科学家们认为,夸克是不能再分割的基本粒子,目前已知的夸克包括上夸克、下夸克、粲夸克、奇异夸克、底夸克和顶夸克6种。夸克通常“三五成群”形成强子,比如重子(由3个夸克组成的质子和中子等)和介子。但更多夸克也能“成群结队”形成“四夸克态”和“五夸克态”。  此前,物理学家也发现了几种“四夸克态”。2022年7月,LHC上底夸克探测器(LHCb)实验合作组宣称,发现了一种“五夸克态”。  在最新研究中,科学家们通过以极高的能量让两束质子发生对撞,从而发现了这一新粒子,最新发现的五夸克粒子包含一个奇异夸克。  团队成员之一、意大利米兰大学伊莉莎贝塔斯帕达罗诺雷拉指出,质子和中子等常见的强子通常由两到三个夸克组成,他们最新发现的“五夸克态”非常奇特。  诺雷拉表示,科学家们发现了越来越多“四夸克态”和“五夸克态”,这些研究就像是粒子领域的“文艺复兴”,科学家们收集的证据越来越多,也越能研究更复杂的衰变,研究这些奇异的夸克态很重要,因为它们有助于揭示夸克在粒子内部的结合情况。
  • TSI 激光粒子计数器系列全面升级
    AEROTRAK 手持式激光粒子计数器  型号9303 3通道基本型  TSI AeroTrak 9303 手持式激光粒子计数器给客户提供一款操作更加灵活、价格更加富有吸引力的高性能手持粒子计数器方便进行粒子污染物控制。9303采用的高耐磨注塑设计更加方便手持。仪器可同时显示3个粒径尺寸。中间通道用户可以从0.5, 1.0, 2.0或2.5mm之中选择 。  标准1年保修  型号9306 6通道标准型  9306提供6个粒径通道同时显示。3.7-inch彩色触摸屏和Mirosoft WindowsCE操作界面,使操作更方便,超大的10,000数据内存可通过USB接口或可通过USB接口或可选外置打印机直接输出,同时可连接温度/湿度探头(选件),并包含内部报警功能。  保修期延长为2年  AEROTRAK 便携式激光粒子计数器  型号9310/9510和型号9350/9550  TSI AeroTrak 9310和9510便携式激光粒子计数器给客户提供更加操作灵活功能更加强大的大流量的便携式粒子计数器方便进行粒子污染物控制。它们既可作为单机工作也可以组建厂房的监测系统。该几款仪器采用一体轻型化设计使移动和操作更加容易。直读式按键使操作更加简单。10,000个数据内存可通过屏幕显示并可通过 USB和Ethernet进行下载。  仪器可同时显示6个粒径尺寸。并支持声音报警功能。  标准的2年保修外,TSI提供全套的技术服务和支持。  AEROTRAK 典型应用:  洁净厂房内的颗粒物测试 空气粒子研究 暴露性评估 室内空气质量评估。也应用于过滤器性能测试 洁净度评价及污染物迁徙研究等。
  • 表面活性剂:从分子到纳米粒子
    p  韩国科学技术信息通信部发布消息称,韩国先进软性物质研究团组利用纳米粒子研制出表面活性剂。该研究结果刊登在国际学术杂志《自然》上。/pp  表面活性剂是广泛用于肥皂、洗涤剂、洗发水等生活用品的化学物质。在一个分子中存在易粘附于水和易粘附于油两个部分,使用表面活性剂可将水、油分离,呈现水滴形态。因此,利用表面活性剂传送特定物质(药物等)可作为新一代医学材料,特别是作为调节液体水滴的技术可广泛应用于制药、疾病诊断、新药开发等领域。/pp  现有调节液体水滴的技术多采用“分子表面活性剂”,是使表面活性剂包裹的液体水滴受到外部刺激的分子结构设计方式,但想实现两种以上刺激反应难度较大。此次研究组利用纳米粒子具有杀死细菌以及运送酵素等多种功能的特点,研制出可在多种刺激下控制液体水滴的“纳米粒子表面活性剂”,比现有分子表面活性剂具有更多样的功能。通过纳米表面活性剂可对电、光、磁场全部反应,磁场和光可以调节液体水滴的位置以及移动、旋转速度,并可以与电场结合。例如,使用操纵液体水滴移动或组合的工具可将活体细胞植入液体水滴里培养或将利用液体水滴还原细胞内的酵素反应等需要特殊环境的制药、生物医学领域。/ppbr//p
  • 银纳米粒子或可用于攻击肿瘤细胞
    科学日报报道,近日美国加州大学圣塔芭芭拉分校的科学家们设计了一种具有一对独特且重要特性的纳米粒子。这种球形粒子的组成成分是银,它被包裹在一个涂满缩氨酸的壳内部,后者使得它能够攻击肿瘤细胞。此外,这个壳是蚀刻的,因此那些没有攻击到目标的纳米粒子会自行分解和消除。这项研究被发表在期刊《自然材料》(Nature Materials)上。两个单独的银纳米粒子(红色和绿色)选中前列腺癌细胞为目标  纳米粒子的核心利用了一种名为电浆子光学(plasmonics)的现象。在电浆子光学里,纳米结构的金属,例如金和银,在被光线照射时会发生共振,且集中在靠近表面的地磁场。通过这种方式,荧光染料被增强,看起来比自然状态&mdash &mdash 也即没有金属存在时&mdash &mdash 要明亮10倍。但当核心被蚀刻时,这种增强效果会消失,粒子也就变得暗淡。  加州大学圣塔芭芭拉分校鲁奥斯拉蒂研究实验室发明了一种简单的蚀刻技术,利用了生物相容的化学制品快速分解和移除活体细胞外部的银纳米粒子。这种方法只会留下完整的纳米粒子用于成像或者量化,从而揭示了那些细胞被定位攻击目标,以及每一个细胞被内在化了多少。  &ldquo 这种分解是创造针对特定刺激物做出反应的药物的一个有趣概念。&rdquo 分子,细胞和发育生物学学院(MCDB)鲁奥斯拉蒂实验室的博士后研究员、斯坦福-桑福德伯纳姆医学研究所的盖里· 博朗(Gary Braun)这样说道。&ldquo 通过分解过剩的纳米粒子并通过肾进行清理,它能最小化偏离目标的毒性。&rdquo   这种移除无法渗透目标细胞的纳米粒子的方法非常独特。&ldquo 通过关注那些真正进入细胞的纳米粒子,我们能够理解哪些细胞是目标,并从更细节的角度研究组织传输通道。&rdquo 博朗说道。  有些药物能够独自穿透细胞膜,但很多药物,尤其是RNA和DNA基因药物,是带电的分子,它们会被细胞膜所阻隔。这些药物必须通过内吞作用进入细胞,在这个过程中细胞会吞没并吸收分子。&ldquo 一般需要纳米粒子作为载体来保护药物并护送它进入细胞,&rdquo 博朗说道。&ldquo 而这正是我们所要测量的:通过内吞作用载体的内在化。&rdquo   由于纳米粒子有一个核心壳结构,研究人员可以实现不同的表面涂层并对比各自肿瘤目标选择和内在化的效率。通过使用不同的目标受体转换表面药剂从而实现不同疾病的目标选择&mdash &mdash 或者细菌的目标生物体。根据博朗表示,这一方法应该能够发展一种药物传输极大化的方法。  &ldquo 这些新的纳米粒子拥有某些了不起的特性,在朝肿瘤传输目标药物相关的研究中它已经证明是一种非常有用的工具。&rdquo 加州大学圣塔芭芭拉分校纳米医学中心和MCDB学院特聘教授埃尔基· 鲁奥斯拉蒂(Erkki Ruoslahti)这样说道。&ldquo 它们在治疗感染方面也有潜在的应用。由可抵抗所有抗生素的细菌导致的危险感染越来越常见,现在急需解决这类问题的新方法。银常被用作抗细菌药剂,而我们的目标技术或可能将利用银纳米粒子治疗体内任何地方的感染变为现实。&rdquo (
  • TSI 8220型手持式激光粒子计数器8月在中国上市
    美国TSI公司经过多年精心研制,推出当今性能最为优良的手持式激光粒子计数器,使这一类的仪器性能 俄功能有了一个巨大的突破。 AEROTRAK粒子计数器是TSI公司新开发的用于粒子计数测量的产品。它是全面的仪器,包括光度测量质量浓度,浓缩粒子计数,仪器表面浓度测量,TSI公司已准备了40年。典型应用于清洁房间检测,室内环境研究,人体暴露照射,室内空气质量,过滤测试,清除测试,品质确保和污染物研究。 AEROTRAK Model 8220粒子计数器是重2.2磅(1公斤)的手持式仪器,并可使用AC电源或锂离子电池。8220有一个0.1立方英尺/分(2.83行/毫米)的流速和6个可调整的范围。仪器可连接一个热敏打印机。大于100000个数据被储存并可通过TRAKPRO™ Data数据分析软件下载到PC机进行数据分析。 这个粒子计数器还可加载温度和湿度传感器,从而可以在一台仪器上同时获得多个参数
  • 大型强子对撞机CMS合作组发现新的四夸克粒子家族
    记者10日从南京师范大学获悉,在9日举行的第41届国际高能物理大会上,欧洲核子研究中心大型强子对撞机(LHC)的紧凑介子线圈(CMS)合作组报告,他们发现了一个可能由4个粲夸克组成的奇特粒子家族。  “清华—南师”CMS组负责人、南京师范大学教授易凯代表CMS合作组介绍,这些粒子内部可能由4个同一种重味夸克组成,物理图像相对简单而利于理解。“这是中国实验团队首次在LHC上主导观测到可能的全粲四夸克粒子,也是中国首次在CMS实验上主导新粒子的发现。”易凯说。  夸克是一种基本粒子,目前已知有上夸克、下夸克、奇夸克、粲夸克、顶夸克、底夸克6种类型。“粒子一般由2—3个夸克组成,例如介子由一个夸克和一个反夸克组成,而重子由3个夸克或3个反夸克组成,它们被称为传统强子;但还有一类粒子可能由4个、5个夸克或者夸克胶子混合组成,因为比较罕见,所以也被称为奇特强子。”易凯表示。  理论学家在数十年前已预测到传统的强子和奇特强子态的存在,然而直到最近20年,科学家才在实验上观察到较为明确的四夸克态或五夸克态奇特强子。  “但此前还没有发现过全部由重味夸克组成的奇特强子家族,即粲夸克或底夸克组成的奇特粒子。”易凯说。  基于2016—2018年CMS采集的所有“质子—质子”对撞数据进行分析,CMS合作组随后在两个粲夸克偶素的不变质量谱中观测到了一个新的粒子家族。“其中的每一个粒子可能由4个同味重夸克组成,该家族中的3个共振峰依据质量被暂时命名为X(6600)、X(6900)和X(7300)。X(6600)和X(7300)粒子均是在世界上首次被观测到。”易凯说。  “这是首次在实验上观测到可能由纯重味夸克组成的奇特粒子家族。”易凯强调,“虽然近20年来,科学家们发现了几十个奇特强子,但这些奇特强子究竟是怎么形成的,还是未解之谜。而此次研究发现的奇特粒子家族,夸克的组成方式相对简单,我们就可以基于这种相对简单的组合方式,继而理解这些粒子的形成模式。”  易凯表示,CMS探测器收集的数据量大,也有很好的质量分辨率,预计将会在这个方向作出更多的贡献。  CMS合作组由50多个国家、约240个单位的4000多名成员组成,其中,中国组成员来自中国科学院高能物理研究所、北京大学、中国科学技术大学、北京航空航天大学、清华大学、南京师范大学等多个单位。近年来,中国CMS组在希格斯粒子性质测量和多玻色子研究等方面成绩突出。
  • “大气细粒子和超细粒子的快速在线监测技术”通过验收
    12月1日,由中科院合肥物质科学研究院安徽光机所承担、北京大学等单位参加的国家863重大项目课题“大气细粒子和超细粒子的快速在线监测技术”在广东鹤山通过了863资源环境技术领域办公室组织的专家验收。  验收会上,来自中科院生态环境研究中心、北京大学、北京市环境保护监测中心、广东省环境监测中心站、中科院大连化物所、上海大学和华东理工大学等单位的专家听取了课题组长刘建国研究员关于课题工作总结及技术研制报告,并在位于鹤山市桃源镇的珠江三角洲大气超级监测站进行了实地考察,查看了课题组研制的双波长三通道气溶胶探测拉曼激光雷达、细粒子谱分析仪、大气OC/EC测定仪、以及振荡天平颗粒物质量浓度监测仪(PM10/PM2.5)等系列大气细粒子监测设备的运行情况。  验收专家组认为,“该课题在宽范围粒径谱的快速分析技术、稳定的场致电离电荷源技术、超高灵敏大气分子拉曼散射信号探测技术、以及OC/EC临界温度的精确选取等关键技术方面取得了突破,关键技术指标达到国外同类产品的先进水平。课题所取得的成果在珠江三角洲大气复合污染立体监测网络构建中发挥了重要作用,并参与了北京奥运会、上海世博会和广州亚运会的空气质量保障,具有显著的社会和环境效益”。  该课题是863重大项目“重点城市群大气复合污染综合防治技术与集成示范”中第一个通过验收的课题,已通过领域办中期检查和专家评审得到滚动支持,滚动课题“重要大气复合污染物快速在线和时空分布监测技术系统开发”已于年初通过实施方案论证,目前处于实施阶段。
  • 下一代激光器可让“幽灵粒子”显形
    据英国《新科学家》杂志网站8月18日(北京时间)报道,俄罗斯国立核研究大学的亚历山大费德罗夫及其同事在即将发表于最新一期《物理评论快报》上的研究论文中说,根据他们的计算,一个强大的激光器可将制造出的首个正负电子对加速到很高的速度,从而让它们发光,这道光再与激光“合力”,产生更多的电子对。而这正是量子力学在20世纪30年代的一种预言。  量子力学的不确定性原理意味着,宇宙空间并不是真的空无一物。相反,宇宙的随机波动使之变成了“一锅热腾腾的粒子汤”,电子以及其对应的反物质正电子就在其中。通常情况下,这些粒子一碰到其反物质,彼此都会瞬间湮灭于无形,我们根本来不及一睹其真容。不过,物理学家在20世纪30年代曾经预言,一个非常强大的电场可以让这些“幽灵粒子”显露形迹。由于这些粒子带有相反的电荷,电场可以将它们推往相反的方向,使它们分开而不至于同归于尽。  而能够产生强大电场的激光器就是完成这项任务的理想“人选”。1997年,美国斯坦福直线加速器中心的物理学家们利用激光成功制造出了正负电子对,不过当时一次只能产生一个正负电子对。现在,科学家通过计算表明,下一代功能更强大的激光器可以通过启动连锁反应,捕捉到数以百万计的正负电子对。  俄研究小组的计算表明,对于一台可将大约1026瓦的能量聚焦于一平方厘米范围的激光器而言,这样的连锁反应能够有效地将其激光转变成数百万个正负电子对。  该研究论文的合作者、德国马普量子光学研究所的乔治科恩称,第一个拥有如此强大功能的激光器或许于2015年由欧洲超强激光设施项目建成,不过之后还需几年时间完成必要的升级才能达到每平方厘米聚焦1026瓦的能量。  美国普林斯顿大学的柯克麦克唐纳表示,能够产生大量正电子的能力对于粒子加速器非常有用,比如提议新建的国际直线对撞器,其能够以极高的能量使电子和正电子一起粉碎,模拟宇宙诞生瞬间的高能量场景。  目前用于大批量制造正电子的标准方法是将一块金属片上的高能电子束点火,以产生正负电子对。有专家认为,与之相比,超强激光器利用连锁反应来制造正电子的成本过于高昂。
  • TSI新型凝聚核粒子计数器(CPC)重新定义纳米粒子计数
    40多年来,TSI生产的 凝聚核粒子计数器(CPC) 为研究人员在纳米粒子计数领域提供了重要的支持。TSI第4代新型CPC整体改进了软件功能和性能,将继续成为气溶胶研究领域的基准。 TSI 新一代CPC 在可靠性和适用性上正建立起无与伦比的标准。现在,CPC数据可存储于CPC中,存储数据可随时本地访问,甚至远程访问。此外,新型CPC的所有型号和平台均使用相同的架构进行构建,操作直观,使用简单。 无论您需要校准和验证其它仪器,还是需要比较不同仪器间的性能,TSI生产的CPC都将是您参考计数器的最值得依赖的选择。长期环境监测用户可尽情享受新软件所带来的便利,新软件改善了筛选和输出大型数据集的方式。 新一代CPC能够减少停机时间和降低维修成本,不仅为您提高可靠的粒子数据,还能够优化您的研究。和研究行业的领导者携手合作,使用TSI新一代CPC,彻底变革您的粒子数据。 关于TSI公司TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。
  • 粒子对撞机内首次探测到中微子
    据美国加州大学欧文分校官网20日报道称,该校物理学家主导的“前向搜索实验”(FASER)首次探测到粒子对撞机产生的中微子,此前该团队曾观察到6个中微子之间的相互作用,此次新发现有望加深科学家对中微子的理解,还有助揭示行进较长距离与地球发生碰撞的宇宙中微子,为管窥遥远宇宙打开一扇窗。中微子无处不在,非常神奇,被称为宇宙的“隐形人”,是宇宙中数量最丰富的粒子。1956年,科学家首次探测到反应堆发出的中微子,确认了其存在。中微子在恒星燃烧过程中也发挥着关键作用。FASER联合发言人、欧洲核子研究中心(CERN)粒子物理学家杰米博伊德解释道,中微子对建立粒子物理学标准模型非常重要,但科学家们此前从未探测到对撞机产生的中微子。FASER位于CERN内,旨在探测CERN著名的大型强子对撞机(LHC)产生的粒子。研究人员指出,他们从一个全新的来源,也就是粒子对撞机那里发现了中微子。目前物理学家研究的大多数中微子都是低能中微子,但FASER探测到的中微子是迄今实验室制造出的最高能量的中微子,与深空粒子在地球大气层中引发剧烈粒子簇射时发现的中微子相似。博伊德称,新发现的高能中微子能向人们揭示宇宙深空的奥秘,这是用其他方法无法获得的,LHC中发现的这些高能中微子对于理解粒子天体物理学中真正令人兴奋的观测结果至关重要。除探测中微子外,FASER的另一个主要目标是识别出构成暗物质的粒子。物理学家认为,暗物质构成了宇宙中的大部分物质,但从未被直接观测到。FASER尚未发现暗物质的“蛛丝马迹”,不过,随着LHC将在几个月后开始新一轮粒子对撞,科学家们期待看到一些令人兴奋的信号。
  • 中国科学巨大跨越——超大型对撞机建成将改变粒子物理学
    p  中国国家主席习近平访美是全世界认识中国科研贡献的绝佳时机,这将进一步促进中美在科研领域,尤其是粒子物理学研究的深入合作。/pp  2012年,欧洲大型强子对撞机上发现了希格斯粒子,开启了高能物理研究的新纪元。它验证了40多年前粒子物理标准模型中关于希格斯玻色子的预言,希格斯玻色子是标准模型的关键。然而,这一发现依然留下许多悬而未决的问题。其中包括希格斯玻色子的质量和亚原子间相互作用力的统一,以及量子引力的相关问题,科学家们只有解决这些问题才能真正了解宇宙起源。/pp  大型强子对撞机(LHC)由欧洲核子研究中心(CERN)建造并运行,它将对探索这些科学未解之谜提供一些重要的线索。但是,要想解决一些更深层次的问题仍需依赖更强大的科学装置。下一个科学发现会在哪里发生?美国、欧洲和日本是传统的粒子物理研究中心,那里的科学家们在此从事着激动人心的研究项目并提出新的研究计划。不过,如今,一位新人加入了竞技,它就是——中国。/pp  1976年,邓小平推行改革开放,从此,中国步入了经济快速发展的轨道中。对此,大家并不陌生。但很多人也许并不知道,邓小平还极大地推动并支持中国粒子物理事业的发展,促使北京正负电子对撞机在1983年获批,并于1988年竣工投入运行。/pp  在过去的将近三十年里,粒子物理研究在中国有条不紊地发展着。而在近几年,中国的粒子物理研究大踏步前进。2012年3月,大亚湾中微子实验首次测量到中微子振荡几率,引起了全球科学界的强烈反响和广泛关注。大亚湾中微子核反应堆实验地址位于中国南部,是中美合作的科研项目。/pp  如今,在大亚湾实验项目的首席科学家王贻芳领导下,提出了雄心勃勃的中国下一步粒子物理研究的长远规划。规划中,包含了被称之为“超大型对撞机”的建设。这个加速器将于本世纪二十年代进行极高能量的正负电子对撞,从而能远比CERN的大型强子对撞机更细致地揭示希格斯粒子的性质。在本世纪三十年代,其目标是再次实现高能质子对撞,其能量远远高于LHC的最高能量,用以挑战人们现有的认知和探索未知。/pp  中国会建设该项目吗?我们无从知晓。在不久的将来会有初步的重要决定。/pp  这项为期三十年的项目预算为几十亿美元,但与此同时,收益也是巨大的。中国将可能因此项目一跃成为世界重要前沿基础学科的领头羊。更为实际的好处是,通过建造如此庞大的对撞机,中国将在尖端科技中取得长足进步和发展,从超导磁体到高速电子学读出的探测器,从而吸引世界顶尖级科学家和技术人员来到中国。/pp  对美国来说,参与这一项目也是极为有益的。目前,美国高能物理项目的研究重心集中在探索难以捉摸的中微子的性质,并没有建造大型对撞机的计划。但是,许多美国的高能物理领域的实验物理学家们目前正在CERN工作。大量的美国加速器物理方面的优秀人才能够参与这一项目并从中受益。/pp  中国超大型对撞机的建设吸引着美国和世界其他国家的科学家们通力合作,这又带来了另一个好处——增进理解,建立信任。中美之间寻找合作和协作之路至关重要,国际大型装置无疑是这类合作的绝佳之选。/pp  CERN成立于1954年,吸引着全世界的科学家们到此工作。二战后,CERN在促进欧洲社会和谐发展方面发挥着重要作用。美国与前苏联的物理学家在科研领域的交流与联络缓和了两个超级大国之间的紧张关系。随着中国的崛起,中美在超大型对撞机上的科研合作也会发挥类似的作用,从而避免引起商业或者军事的摩擦。/pp  我们希望看到中国能进一步推动该项目,同时,为了科学和全人类的共同利益,我们呼吁美国参与这一项目并做出贡献。/pp  编者注 戴维· 格罗斯是美国加利福尼亚大学圣巴巴拉分校物理学教授、2004年诺贝尔物理学奖获得者。爱德华· 威滕是普林斯顿高等研究院教授、美国国家科学奖章获得者。本文译者为中国科学院高能物理研究所江亚欧。/p
  • 146万!天津大学环境学院激光粒子动态分析仪等采购项目
    项目编号:TDZC2022J0267项目名称:天津大学环境学院激光粒子动态分析仪、激光粒子处理器采购方式:竞争性磋商预算金额:146.5000000 万元(人民币)采购需求:激光粒子动态分析仪、激光粒子处理器:1套。本项目接受进口产品参与磋商,具体要求详见本项目用户需求书。本项目不接受联合体磋商并不得分包转包。合同履行期限:合同签订后180天内交货及完成安装调试并具备验收条件等。(特殊情况以合同为准)。本项目( 不接受 )联合体投标。
  • 塑料粒子及PVC粉末黑点外观检测仪一体机面世
    近日,卡尔帕斯(塑料黑点缺陷扫描仪厂家)总部传来消息,用于检测塑料树脂黑点和PVC黑点杂质的产品在一台机上自由切换的技术完美解决。 塑料树脂粒子表面外观上会出现黑点、黑斑点,甚至整颗都是色粒,将粒子快速挑选出来并进行分析是几乎每个工厂质检部门都希望的事情,用人眼按照现行国标1公斤的方法,量太大,重复性差,颗粒外观仪器法国家标准在2016韵鼎公司承办至今仍在推荐,黑点缺陷扫描仪检测技术也越来越好,快速、重复性高。 PVC粉末中也经常存在黑点或杂质,很多生产厂在经过对比后,选择卡尔帕斯黑点缺陷扫描仪的产品。 有些客户两种产品都有,虽然原来的技术也是一台主机就可以测量塑料粒子和PVC粉末的黑点外观,但需要更换备件,现在两者的一体化设计让这类客户非常方便测试。 到目前为止,卡尔帕斯黑点缺陷扫描仪产品多模块化的设计可以自由组合完成客户任意对颗粒或粉末样品中黑点、黑斑点、色粒、纤维、拖尾、连粒及塑料膜上鱼眼的快速测量、评估。
  • 中国新版GMP实施要点暨在线尘埃粒子和浮游菌监控应用讲座(重庆)
    国际标准 安装实例 认证典范 完美方案 欧洲和北美的医药和生物企业在线尘埃粒子和浮游菌监控系统解析稳定的软件系统对于数据的收集的重要性GAMP 5 认证文件的特点 本次研讨会根据中国新版(2010年修订) GMP的实施细则,重点阐述在线尘埃粒子和浮游菌监控系统的实际安装准则,旨在协助中国的医药和生物企业通过中国新版GMP,EUGMP和FDA的认证。 演讲专家介绍 Tim Russell先生在生命科学领域25年的工作生涯中,共设计,安装,认证和维护了近100套在线尘埃粒子监控系统,其中包括大量无菌生产线粒子监控系统。所有这些系统均通过了美国FDA,cGMP和EUGMP的验证。 Russell先生曾参与编写了EUGMP标准。Russell先生曾成功主持了多次生命科学软件的审查。 Russell先生多次受邀在ISPE,BSI,UK PHSS上演讲EUGMP之粒子及环境监控系统议题题。 日程安排8:30-9:00 前台签到9:00-10:30 专家演讲10:30-10:45 茶歇10:45-12:00 专家演讲12:00-13:30 中餐13:30- 14:30 互动14:30- 14:45 茶歇14:45-16:30 专家演讲 时间与地点时间:2011年6月15日(周三)地点:重庆欧瑞锦江大酒店 重庆市渝北区西湖路6号我们诚挚地邀请您拨冗莅临美国TSI公司和金牌分销商北京耀泰科技有限公司联合举办
  • 中国新版GMP实施要点暨在线尘埃粒子和浮游菌监控的应用讲座(深圳)
    国际标准 安装实例 认证典范 完美方案 欧洲和北美的医药和生物企业在线尘埃粒子和浮游菌监控系统解析稳定的软件系统对于数据的收集的重要性GAMP 5 认证文件的特点 本次研讨会根据中国新版(2010年修订) GMP的实施细则,重点阐述在线尘埃粒子和浮游菌监控系统的实际安装准则,旨在协助中国的医药和生物企业通过中国新版GMP,EUGMP和FDA的认证。 演讲专家介绍 Tim Russell先生在生命科学领域25年的工作生涯中,共设计,安装,认证和维护了近100套在线尘埃粒子监控系统,其中包括大量无菌生产线粒子监控系统。所有这些系统均通过了美国FDA,cGMP和EUGMP的验证。 Russell先生曾参与编写了EUGMP标准。Russell先生曾成功主持了多次生命科学软件的审查。 Russell先生多次受邀在ISPE,BSI,UK PHSS上演讲EUGMP之粒子及环境监控系统议题题。 日程安排8:30-9:00 前台签到9:00-10:30 专家演讲10:30-10:45 茶歇10:45-12:00 专家演讲12:00-13:30 中餐13:30- 14:30 互动14:30- 14:45 茶歇14:45-16:30 专家演讲 时间与地点时间:2011年6月17日(周五)地点:深圳明华国际会议中心(蛇口) (深圳市南山区蛇口龟山路8号)我们诚挚地邀请您拨冗莅临美国TSI公司和金牌分销商北京耀泰科技有限公司联合举办
  • 探访“粒子物理王国”欧洲核子研究中心(图)
    来宾在瑞士日内瓦参观欧洲核子研究中心多媒体中心。欧洲核子研究中心位于瑞士日内瓦附近,跨瑞士和法国边境,是全球重要的粒子研究机构,重点模拟研究宇宙大爆炸之后的最初状态。  新华网日内瓦2月21日电(记者刘洋 杨京德)从瑞士日内瓦驱车进入法国,沿途宁静的田园风光令人沉醉。这是一片位于阿尔卑斯山与汝拉山雪峰间的平原,镶嵌着一座座牧场、葡萄园、古朴村镇,而就在平原地表之下100多米深处,无数粒子或许正围绕着一个周长27公里的巨大环形设备,以接近光速运行,并剧烈碰撞。  这不是科幻小说的虚构,而是欧洲核子研究中心最重要的设备——大型强子对撞机运转的情景。经过近两个月的技术维护后,按计划,对撞机21日再次开始运行。记者有幸在此之前,由研究中心的中方研究员、粒子物理学家任忠良博士带领,进入研究中心并探访这神秘的地下“粒子物理王国”。  科研“地球村”  欧洲核子研究中心建于1954年,是二战后欧洲合作的产物,但今天的研究中心早已不再局限于欧洲,而更像一个“地球村”,会聚了来自世界上80多个国家和地区、580余所大学与科研机构的近8000名科研人员,其中包括来自中国科学院高能物理研究所和山东大学等中国科研院所的近百名师生。  漫步在研究中心园区里,可以看到宽阔的草坪上和露天咖啡座上,不同肤色、不同装束的学者三五成群地坐在一起,操各种口音的英语或法语讨论问题。  除进行前沿物理试验外,研究中心还承担了为世界各国大学培养物理学人才的任务,许多物理学家的硕士或博士论文都在这里完成。  研究中心洋溢着尊重科学的气氛,就连园区的各条道路都以在科学领域有重大贡献的人士名字命名。从第一个设想物质是由原子组成的古希腊哲学家德谟克利特,到发现镭和钋等放射性元素的居里夫人,他们对人类认知的贡献,以这样的方式被铭记。  地下“粒子物理王国”  大型强子对撞机位于日内瓦附近、瑞士和法国交界地区地下的环形隧道内。为探测质子撞击试验产生的结果,研究中心在大型强子对撞机上安装了4个探测器同时进行试验,其中最大的就是位于瑞士一侧的超环面仪器。  经过两道严格安检后,记者跟随任忠良博士深入地下100多米的超环面仪器试验现场。站在坑道内高耸的钢结构探测器旁,如同站在希腊神话里的擎天巨神脚下,深感一己之渺小。  这个圆柱形庞然大物高25米,长45米,重7000吨,相当于埃菲尔铁塔或100架波音747客机的重量。任忠良博士说,超环面仪器就像一架高精度巨型数字照相机。对撞机发射的粒子束经过这个探测器时发生碰撞,产生的粒子沿着碰撞半径方向向外发散,这些肉眼难以察觉的物理现象都会在这一高性能探测器上留下影像。超环面仪器抓取碰撞影像的速度可达每秒4000万次,从而在粒子级别上记录任何细微的变化。  为处理由此产生的海量数据,3000台计算机会同时运转,从大量无效碰撞数据中选取符合研究需要的少数粒子高能对头碰撞记录并加以分析。即便如此,筛选出的有用数据量仍大得惊人。这一探测器运行一年产生的数据如用DVD光盘刻录,所有光盘铺排起来将长达7公里。  人造宇宙大爆炸  为从微观世界揭开宇宙起源的奥秘,研究宇宙产生初期的环境,物理学家设计了通过粒子对撞,模拟宇宙大爆炸的试验,大型强子对撞机就是进行这一模拟过程的“利器”。  可想而知,实现高能粒子对撞并非易事。据任忠良博士介绍,大型强子对撞机使用了超低温、超导等超越人类现有工业水平的尖端技术。  为产生偏转粒子所需要的强磁场,对撞机采用液态氦将管道温度降至零下271摄氏度的超低温,用低温超导技术产生零电阻以保障磁场强度。此外,为维持低温,减少管道内外热量交换,还使用了真空技术,对撞机周长27公里的环形管道内的真空空间相当于巴黎圣母院的大小。  低温还带来金属等材料热胀冷缩的问题,这就要求在管道连接处使用可滑动的接点,但可滑动连接点同时也带来另一个问题:上万个连接点中,任何一个点如因接触不良出现微小电阻,强大的电流通过时就会瞬时释放大量热能,毁掉超导状态。热量还会气化冷却管道用的液态氦,导致大爆炸。  2008年,对撞机调试过程中就发生了一次类似事故,使整个试验的进度延后一年。研究中心花了整整一年,投入超过5000万瑞士法郎(约合5300万美元)才将设备修复。  寻找“上帝粒子”  大型强子对撞机目前的主要工作就是寻找希格斯玻色子。它是由英国人彼得希格斯等物理学家在上世纪60年代提出的一种基本粒子,被认为是物质的质量之源,因此被称为“上帝粒子”。  这种粒子就像神话中的独角兽一样难觅影踪。在粒子物理学的标准模型中,总共预言了62种基本粒子,其中的61种都已被验证,唯独希格斯玻色子始终游离在物理学家的视野之外。找到这种粒子,就找到建筑粒子物理学经典理论大厦的最后一块基石,如证明它不存在,整座大厦就要被推倒重建。  此前,许多顶级物理研究机构曾试图通过对撞试验寻找希格斯玻色子,但都没有成功。如今,有了世界上能量级别最高的大型强子对撞机,欧洲核子研究中心的科学家对捕获这头“独角兽”充满信心。  研究中心主任、德国粒子物理学家罗尔夫霍伊尔说,对撞机在过去一年表现非常出色,因此大家普遍对试验充满信心。霍伊尔风趣地化用莎士比亚的名言说,希格斯玻色子存在还是不存在,这是一个问题,而这个问题的答案很可能在未来两年内揭晓。
  • 医用纳米粒子可为农作物输送营养
    p style="text-indent: 2em "根据英国《自然》杂志旗下《科学报告》近日发表的一项纳米科学研究,除了人体外,用于递送药物的医用纳米粒子也可以帮助治疗农作物的营养缺乏症,其将在农业生产领域帮助大幅提高作物产量。/pp style="text-indent: 2em "在过去几十年中,脂质体作为一种先进的纳米药物传递系统,其优势已经被越来越多的人所承认。实际上,脂质体是指将药物包封于类脂质双分子层内而形成的微型泡囊体,这种纳米粒子可以穿过生物屏障,将填充在其内部的药物或其他物质递送至目标组织。它们已被证明可以有效地递送用来治疗癌症等疾病的药物。/pp style="text-indent: 2em "由于这种纳米粒子的生物相容性良好,甚至可以被正常代谢,因此其作为载体的开发潜力巨大。此次,以色列理工学院研究人员艾维· 施罗德及其同事,测试了纳米粒子向幼苗和完全长成的樱桃番茄植株递送营养素的能力。研究团队分别采用两种方式对缺镁和缺铁的植株进行处理,一种是载有镁铁元素的纳米粒子,一种是不包含在纳米粒子内的工业镁和工业铁。/pp style="text-indent: 2em "实验表明,经纳米粒子处理的植株克服了无法通过标准农业营养素治疗的急性营养缺乏症;施用14天后,经纳米粒子处理的营养缺乏植株恢复了健康,而用标准农业营养素处理的植株则没有。/pp style="text-indent: 2em "研究人员表示,纳米粒子会遍布植株的叶子和根部,之后被植株细胞摄取,并在那里释放出营养物质。该研究结果表明,纳米粒子不但改变了许多疾病诊断、治疗和预防方法,将纳米技术应用于农业生产,同样有望提高作物产量。/pp style="text-indent: 2em "编辑圈点/pp style="text-indent: 2em "据估计,到2050年全球人口将达到98亿。人口在增长,耕地在减少,未来的地球如何养活如此多的人口令人担忧。对越来越多的人而言,饥饿的阴影正在远去,但它也很可能卷土重来。科学家们提出了多种多样的应对方案,比如学会食用蛋白含量丰富的昆虫或者在实验室培养人造肉。不过,这样的食物恐怕会让不少人反胃。依靠科技手段提高农作物产量,大概是最靠谱也最容易被接受的途径。/p
  • 尘埃粒子计数器在电子行业的重要应用
    尘埃粒子计数器在电子行业中的应用广泛,尤其在半导体工厂和精密机械生产加工领域。以下是具体应用的详细介绍:了解更多尘埃粒子计数器产品详情→https://www.instrument.com.cn/show/C560877.html半导体工厂1. 晶圆制造洁净室环境监测:在晶圆制造过程中,极微小的尘埃粒子可能会导致电路短路或缺陷。尘埃粒子计数器用于实时监测洁净室内的空气质量,确保粒子浓度维持在极低水平。过程控制:在光刻、蚀刻和化学机械抛光等关键工艺中,空气中的颗粒物需要严格控制。尘埃粒子计数器用于监测这些工艺中的洁净度,确保产品质量。2. 封装测试测试环境洁净度:在半导体封装测试阶段,尘埃粒子计数器用于监控测试环境的洁净度,防止颗粒物对封装过程产生影响。设备维护:定期使用尘埃粒子计数器检查封装测试设备的内部洁净度,以预防设备故障和产品污染。精密机械生产加工1. 高精度机械零件制造制造环境监测:高精度机械零件的生产要求在洁净环境中进行。尘埃粒子计数器用于监控生产车间的空气质量,确保环境洁净度达到要求。加工过程监控:在车削、铣削和磨削等加工过程中,空气中的颗粒物可能会影响加工精度。通过使用尘埃粒子计数器,可以实时监测空气中的颗粒物浓度,保证加工过程的精度。2. 光学元件制造洁净室监测:光学元件(如镜头、棱镜)的制造过程中,对空气中的颗粒物有严格要求。尘埃粒子计数器用于监测洁净室的空气质量,确保光学元件在无尘环境下生产。质量控制:在光学元件的质量检测和组装过程中,使用尘埃粒子计数器监控环境洁净度,以避免颗粒物对产品表面造成污染。尘埃粒子计数器在电子行业中的广泛应用显著提升了生产环境的洁净度,确保了产品质量和生产效率。随着技术进步,尘埃粒子计数器将继续保障电子行业的高标准洁净生产。
  • 哈希推出新型粒子计数器
    近期,哈希公司推出了一款新型在线、连续、免维护的粒子计数器。哈希ROC粒子计数器在石油分析中可提供实时的污染及条件信息以便进行更快的决策。该仪器适用于恶劣的环境,它可以分析多种类型的石油产品,并在高压和高温环境应用当中有特别的优势。哈希ROC粒子计数器  ROC粒子计数器设计采用了大流量路径最大限度地减少了在运行过程中的堵塞障碍,同时提供本地ISO代码显示每个液体粒子的计数通道和状态信息。并配备了一个长寿命的激光二极管,适用于24小时不间断的在线操作。附带的软件允许用户配置一台电脑,以适应特定的应用。  ROC粒子计数器适用于多种工业及移动应用,包括压力机和液压机、流体填充站、液压动力单元、回收站和零件测试站等。
  • 粒子束成像设备的分辨能力测试原理和测试方式
    一、测试原理粒子束成像设备如SEM、FIB等,成像介质为被聚焦后的高能粒子束(电子束或离子束)。以扫描电镜(SEM)为例,通过光学系统内布置的偏转器控制这些被聚焦的高能电子束在样品表面做阵列扫描动作,电子束与样品相互作用激发出信号电子,信号电子经过探测器收集处理后,即可得到由电子束激发的显微图像。图1:偏转器的结构示意(左);电镜图像(右)基于以上原理,一台粒子束设备在进行显微成像时,其分辨能力与下落至样品表面的粒子束的束斑尺寸相关,束斑的尺寸越小,扫描过程中每个像元之间的有效间距即可越小,设备的分辨本领越高。当相邻的两个等强度束斑其中一个束斑的中心恰好与另一个束斑的边界重合时,设备达到分辨能力极限(图2)。图2:分辨能力极限示意图不考虑粒子衍射效应时,经聚焦后的粒子束截面可视为圆形(高斯斑),其束流强度沿中心向边缘呈高斯分布(图3)。以扫描电镜为例,在光学设计和实验阶段,通常使用直接电子束跟踪和波光计算(direct ray-tracing and wave-optical calculations)方法,来获得聚焦电子束的束斑轮廓。该过程是将电子束的束流分布采用波像差近似算法来计算图像平面上的点展宽函数PSF(Point Spread Function),基于PSF即可估算出包含总探针电流的某一部分(如50%或80%)的圆的直径,从而得到设备的分辨能力水平。图3:高斯斑的截面形状和强度分布示意图但是在设备出厂后,由于粒子束斑尺寸在纳米量级,无法直接测量,因此行业通常使用基于成像的测试方法,测试粒子束设备的分辨能力。 锐利物体边界的边界变化率法是行业目前达到共识的测试粒子束斑尺寸的方法,即使用粒子束成像设备对锐利物体(通常是纳米级金颗粒)进行成像,沿图像中锐利物体的边缘绘制亮度垂直边缘方向的变化曲线,并选取曲线上明暗变化位置一定比例对应的物理距离,来表示设备的分辨率(图4)。为了保证测试准确性,可以在计算机帮助下取数百、数千个锐利边界的亮度变化率曲线求取均值,以获知设备的整体分辨能力。 图4:金颗粒边界测量线(上图红线);测量线上的亮度变化(下左);取多条测量线后得到的设备分辨率示意(下右)边界变化率曲线上亮度25%-75%位置之间的物理距离d,可以近似认为是粒子探针束流50%时所对应的粒子束斑直径,在粒子束成像设备行业通常用此距离d来最终标识设备的分辨能力。图5:边界变化曲线与高斯斑直径对应示意图二、测试方式「 样品的选择 」金颗粒通常采用CVD或者PVD等沉积生长的方法获得,由于颗粒形核长大的过程可以人工调控,因而最终得到的金颗粒直径的大小可以被人工控制,所以视不同用途,金颗粒的规格也不同。以Ted Pella品牌分辨率测试金颗粒为例,用于SEM分辨率测试的标准金颗粒有五种规格,其中颗粒尺寸较小的高分辨、超高分辨金颗粒(如617-2/617-3)通常用于测试场发射电镜的分辨能力;颗粒尺寸较大的金颗粒(如617/623)通常用于测试钨灯丝或小型化电镜的分辨能力,详细的颗粒尺寸和适用设备见图6。测试时,不合适的金颗粒选择无法准确反映一台电镜的分辨能力。图6:Ted Pella品牌金颗粒规格及适用机型「 SEM光学参数的设置 」分辨率的测试旨在测试设备在不同落点电压下的各个探测器的极限分辨能力,因此,与电子光学相关的成像参数设置需要注意以下内容:(1)视场校准:保证放大倍数、视场尺寸的准确;(2)目标电压:这里特指落点电压,即电子束作用在样品上的真实撞击电压;(3)探测器:不同探测器收取信号的能力不同,因此获得图像的极限分辨能力不同,因此都要测试,通常镜筒内探测器ETBSE;(4)光阑/束斑:通常在每个电压下使用可以正常获得图像的最小光阑(以获得极限分辨能力);(5)工作距离:通常在每个电压下使用可以正常获得图像的最小工作距离(以获得极限分辨能力)。「 SEM图像采集条件 」(1)合理的测试视野/放大倍数测试时,所选用的测试视野(放大倍数)需要根据设备的分辨能力做出调整,一般放大倍数取每个像素的pixel size恰好与真实束斑尺寸接近即可。比如:对于真实分辨能力约1.5nm的设备,调整放大倍数使屏幕上每个像素对应样品上的真实物理尺寸为1.5nm,即在采集1024*1024像素数的图像进行测试的前提下,选择不大于1024*1.5nm≈1.5um的视野进行测试即可。表1:分辨率测试的FOV及放大倍数估算表(2)合理的亮度、对比度采集金颗粒图像时,亮度和对比度的选择也需要合理,也就是通常所讲的不要丢失信息。在不丢失信息的前提下,图像亮度对比度稍微偏高或偏低,只要边缘变化曲线的高线和低线均未超出电子探测器采集能力的上限或者下限,曲线虽然在强度方向(Y方向)出现的位置和差值有所变化,但距离方向(X方向)及变化趋势均不改变,因此使用25%-75%变化率对测量出来的分辨率数值d基本没有影响(图7)。然而,当使用过大的亮度、对比度设定后,当边缘变化曲线的高线和低线至少一边超出电子探测器采集能力的上限或者下限,再使用25%-75%变化率对测量出来的分辨率数值d就不再准确,这时测出的分辨率数值无效(图8)。图7:合理的亮度对比度及边界变化率的曲线图8:不合理的亮度对比度及边界变化率的曲线三、总结基于上述图像学进行的分辨率测试,是反映粒子束设备整体光学、机械、电路、真空等全面综合性能的关键手段。该测试在设备出厂交付时用于验证设备的性能指标,在设备运行期间不定期运行该测试以关注分辨率指标,可以快速帮助使用人员和厂商工程师快速发现设备风险,从而及时制定维护、维修方案,以延长设备的稳定服役时间。 钢研纳克是专业的仪器设备制造商,同时提供完善可靠的第三方材料检测服务、仪器设备校准服务,力求在仪器设备产品的开发、生产、交付、运行全流程阶段遵循行业标准和规范,采用统一的品质监控手段,保证所交付产品品质的稳定可靠。参考文献[1] J Kolo&scaron ová, T Hrn&ccaron í&rcaron , J Jiru&scaron e, et al. On the calculation of SEM and FIB beam profiles[J]. Microscopy and Microanalysis, 2015, 21(4): 206-211.[2] JJF 1916-2021, 扫描电子显微镜校准规范[S].本技术文章中扫描电镜图像由钢研纳克FE-2050T产品拍摄。
  • 光伏纳米粒子可用作量子光源
    研究人员发现新型光伏纳米粒子可以发射相同的光子流。图片来源:美国《每日科学》网站据最新一期《自然光子学》杂志报道,美国麻省理工学院研究人员证明,新型光伏纳米粒子可发出单一的、相同的光子流,这可能为研发新的量子计算技术和量子隐形传态设备铺平道路。量子计算的大多数路线使用超冷原子或单个电子的自旋作为量子比特,以构成此类设备的基础。大约20年前,一些研究人员提出使用光作为基本量子比特单位的想法。这样做的好处在于无需再使用控制量子比特的昂贵而复杂的设备,只需要普通的镜子和光学探测器。研究人员表示,有了这些类似量子比特的光子,就可用家用线性光学系统建造一台量子计算机。因此,这些光子的准备是关键,他们最终选择了铅-盐类钙钛矿纳米颗粒。纳米颗粒形式的卤化铅钙钛矿有着极快的低温辐射速率,光发射得越快,输出就越有可能具有定义明确的波函数,因此,快速的辐射速率使卤化铅钙钛矿纳米颗粒能够发射量子光。为了测试它们产生的光子是否真的具有这种特性,研究人员采用了标准测试,即检测两个光子之间的洪-欧-曼德尔干涉。在没有任何辐射增强或光子结构的情况下,结果显示出高达0.56±0.12的校正可见度。这些结果证明了钙钛矿纳米晶体作为不可区分的单光子的可扩展胶体源的独特潜力。
  • 尘埃粒子计数器电话调研奖励已发送~
    p  为了解尘埃粒子计数器(悬浮粒子测定仪)的使用情况,仪器信息网特组织了“尘埃粒子计数器(悬浮粒子测定仪)有奖调研”,以便给更多的尘埃粒子计数器用户在使用和选购仪器过程中做出指导。/pp  目前,在各位网友的支持下,尘埃粒子计数器调研已经结束,电话调研的最终奖励已经发放,请各位网友注意查收!/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201712/insimg/be0082b7-d11d-4d1a-8c7d-757ff476113a.jpg" title="QQ截图20171214180839.jpg"//p
  • 原位电镜观察双金属纳米粒子的结构形貌演变
    最近几年,随着基于贵金属(如Pt、Pd、Au等)的纳米催化剂被深入研究,人们开始把注意力转移到非贵金属催化剂(Fe、Co、Ni、Cu等)的可控合成和催化性质研究上。如果能够开发出替代贵金属的非贵金属催化剂,无论是从基础研究还是工业应用上来说都是非常有价值的。不过,从物理和化学性质来说,贵金属和非贵金属的区别还是非常大的。  考虑到金属催化材料一般是用来催化氧化还原反应,因此我们这里做一些简单的对比。对于贵金属来说,它们的纳米粒子一般来说性质比较稳定,经过还原后不太容易被氧化。即使在催化反应过程中,虽然位于表面的原子会发生价态的变化,但是对于纳米粒子的整体来说,这种价态的变化并不是那么的显著。相比之下,非贵金属的性质就更加难以控制和琢磨。对于Fe和Co来说,被还原后的金属纳米粒子非常不稳定,一旦接触空气就会被氧化。如果没有一些保护的配体或者载体,那么完全变成氧化物可能就是几秒钟的事。相对来说,Ni和Cu的金属态纳米粒子相对来说稳定一些。但是如果尺寸比较小(小于5 nm),也非常容易被空气氧化。在绝大部分加氢反应中,非贵金属的催化剂都需要经过一个预先的还原过程来进行活化。而我们在对催化剂进行表征的过程中,很多时候催化剂已经接触了空气,和实际反应条件下的样品有区别了。这种差异在非贵金属催化剂上体现的特别明显。图1. 通过Kirkendall效应,实心的Co纳米粒子被氧化形成空心的CoO结构。图片来源:Science  在氧化和还原的过程中,不仅仅是发生化学价态的变化,很多时候还会伴随着纳米粒子形貌的变化。十多年前,材料科学家们在制备Fe、Co纳米粒子的时候就发现这些实心的纳米粒子暴露空气后会逐渐被氧化,然后形成空心结构的CoO(Science, 2004, 304, 711)。这种现象可以用Kirkendall效应来解释。同时这也说明在化学态变化的同时,物质也在纳米尺度发生迁移。上述现象目前在非贵金属体系中比较普遍 而在贵金属体系则比较少见。考虑到在催化反应中,不光是催化剂的表面性质对反应性能影响很大,催化剂活性组分的几何结构也有至关重要的影响。因此,对于在氧化-还原过程中形貌会有显著变化的非贵金属催化剂,借助一些原位表征手段研究纳米粒子在氧化-还原过程中的结构演变就是很有意义的课题。  在2012年,来自美国Brookhaven国家实验室和Lawrence-Berkeley国家实验室的电镜科学家就借助环境透射电镜研究了CoOx纳米粒子被H2还原到金属Co纳米粒子的过程(ACS Nano, 2012, 6, 4241)。如图2所示,小颗粒的CoOx粒子在逐步还原的过程中会发生团聚,然后得到大颗粒的金属Co纳米粒子。图2. 通过原位电镜来观察CoOx还原到金属Co的过程。图片来源:ACS Nano  对于单组份的Co纳米粒子,情况可能还相对简单一些。对于双金属甚至更多组分的非贵金属纳米粒子,在氧化-还原条件下他们的结构演变就会变得更加复杂和有趣。最近,在2012年工作基础上,美国Brookhaven国家实验室的Huolin L. Xin博士和天津大学的杜希文教授等科学家用原位透射电镜研究了CoNi双金属纳米粒子在氧化的过程中形貌的变化(Nat. Commun., 2016, 7, 13335)。图3. CoNi合金纳米粒子逐渐被氧化为多孔的CoOx-NiOx结构。图片来源:Nat. Commun.  首先,作者考察了单个的CoNi合金纳米粒子在400 ℃下被氧化的过程。如图3a所示,实心的具有规则几何外形的纳米粒子是初始的材料。经过61秒后,在这个纳米粒子的棱角处可以观察到形貌的变化。随着时间的延长,可以明显的观察到表面形成了一层衬度较低一些的氧化层。经过了大概十分钟后,整个纳米粒子的形貌已经发生了显著的变化,说明Co和Ni在氧化的过程中不是静止的,而是在运动。再经过一段时间,实心的纳米粒子就会呈现一种核壳结构出现了氧化层和金属内核之间的明显界限。如果延长粒子在氧气气氛中的时间,金属态的内核会进一步的被氧化,直到变成一个具有多孔性质的氧化物结构(如图3b和图3c所示)。为了考察在氧化过程中Co和Ni两种元素的分布情况,作者对中间形成的结构进行了EELS elemental mapping。如图3所示,本来是充分混合的CoNi合金粒子经过氧化后,发生了部分的分离。在氧化后的粒子上,可以看到在表面形成了一个富含Co的薄层。在原文中,作者对这个氧化过程进行了三维的元素分析,确认了Co和Ni发生了空间上的部分分离。  为了解释在原位电镜实验中观察到的现象,作者对这个氧化过程进行了理论上的计算和分析。通过经典的固体物理和物理化学的理论,作者比较了Co和Ni的氧化趋势的强弱,发现Co更容易被氧化。同时,作者还考察了Co和Ni在氧化过程中的速率,发现Co具有更前的结合O的能力,也更容易在氧化的过程中发生迁移。这样结合起来就解释了在原位电镜实验中观察到了Co和Ni发生部分的分离的现象。  总的来说,这项工作发现了非贵金属纳米粒子中一些有趣的现象。而这些现象其实和催化过程都是有紧密的关系,可以帮助我们更好的理解非贵金属催化剂在氧化-还原条件下的一些行为。
  • 复旦揭示沪大气污染粒子形成化学机制
    p  污染城市大气中的纳米微细粒子是怎样从不可胜数的空气分子形成的?最近,这件听起来无异于大海捞针的事情被复旦大学环境科学与工程系教授王琳和他的科研团队做成了。四年筹备,三年半实验与数据分析,两年持续观测,他们首次发现并证实了我国典型城市上海大气中的硫酸-二甲胺-水三元成核现象,揭示了我国典型城市上海大气污染纳米微细粒子形成,也就是所谓大气新粒子形成的化学机制,为我国大气颗粒物污染防治政策的制定提供了新的科学证据。/pp  在此之前,污染城市大气中的大气新粒子形成事件的化学与物理机制一直是一个未解之谜。对于他们的发现,王琳给出了一个比喻:“这相当于我们从133倍于地球人口数的气体分子中找出了最关键的那2个,一个是硫酸分子,另一个是二甲胺分子,他们碰到一起,就可能发生大气新粒子形成事件了。”7月20日,研究结果以《中国典型超大城市的硫酸-二甲胺大气新粒子形成事件》(“Atmospheric New Particle Formation from Sulfuric Acid and Amines in a Chinese Megacity”)为题发表于国际顶级学术期刊《科学》(Science)。复旦大学环境科学与工程系博士生姚磊、芬兰赫尔辛基大学博士生奥尔加· 加尔马什(Olga Garmash)为共同第一作者,王琳为通讯作者。/pp  攻坚克难:挑战大气新粒子形成事件的“世界未解之谜”/pp  大气PM2.5污染是关系国计民生的重要议题。在大众观念中,工厂和汽车的尾气排放是造成PM2.5颗粒物污染的主要原因之一,“这是由人类活动或者自然活动所带来的大气颗粒物直接排放,我们的‘术语’称之为‘一次排放’。”王琳介绍说,除了“一次排放”,在空气当中,时常发生着的,还有颗粒物的“二次形成”。/pp  相较于“一次排放”,“二次形成”过程较为复杂。其形成过程大致分为两种:第一种过程指空气中的挥发性气体可通过化学反应生成饱和蒸气压较低的反应产物,这类物种会凝降在已有颗粒物的表面上,增加颗粒物的质量浓度 而另一种过程则会大幅增加颗粒物的数量浓度,大气中部分气体分子随机碰撞,通过分子间作用力或化学键而生成分子团簇,分子团簇的进一步生长则形成了纳米微细粒子,也就是大气新粒子,期间发生从气体到凝聚态的相变 这些纳米微细粒子的继续生长,则可以造成大气PM2.5污染。“‘二次形成’让大气中的颗粒物变得更‘重’、更‘多’,我们课题组目前主要关注变‘多’的过程,研究城市空气中的大气新粒子是怎么形成的。”王琳说。/pp  近年来,相对洁净大气中的大气新粒子形成事件的大气化学机制被逐渐建立。然而,城市大气因其成分的复杂性和多样性,其中的大气新粒子形成事件的特征与洁净大气中的该类事件有着显著区别。在大气新粒子的形成过程中,从小于1纳米的气态前体物分子到1-2纳米左右的分子团簇再到几个纳米的纳米微细粒子,质量和粒径都十分微小,其大气混合比更是在兆分之一以下,这给科研人员开展原位、实时的测量提出了极大的实验挑战。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201807/noimg/d331b5ae-e3db-4a6d-a4d9-06b481330ee8.jpg" title="图1.webp.jpg"//pp style="text-align: center "  图1.应用硝酸根试剂离子化学电离-飞行时间质谱技术所识别的大气痕量物种的质量亏损图。/pp  “通过测量3纳米以下颗粒物的浓度来判断大气新粒子形成事件是否发生已经很难了,还要想办法把与这一过程相关的气态前体物和分子团簇的化学组分测出来,再识别其中哪些分子和分子团簇对这一事件有着比较直接相关的贡献。”从测量到识别再到形成机制的推导,每一个步骤的推进都是一次“难上加难”的“拓荒”,因此城市大气中的大气新粒子形成事件的化学与物理机制一直是一个未解之谜,是大气化学研究领域的难点之一。/pp  利用国际上最新发展的纳米颗粒物粒径放大技术,从2014年3月到2016年2月,王琳团队针对这一难题在上海开展了长达两年的连续大气观测。“我们就在复旦大学邯郸校区第四教学楼的楼顶做(实验),那里有一个环境系的大气超级观测站。”但这一技术还远远未发展到高度自动化的“黑箱”阶段,只有使用者对仪器有深入了解并积累了丰富的使用经验,才能在一定程度上保障测量数据的准确性和真实性。/pp  进行大气外场观测、成功捕获信息是研究“攻坚克难”的关键性“播种”环节,要想让种子“生根”“发芽”到最终“结果”,还需要持续不断的“浇灌”。/pp  “我们做了两年观测,其中在2015-2016年冬季还使用了包括飞行时间质谱在内的更多仪器设备,进行了加强观测,积累下来的数据少说也有几百个G了。”王琳说,数据分析、现象识别和信息甄别也是一项大工程。从2016年3月到2017年7月,他们和来自芬兰赫尔辛基大学的合作者一起,花了一年半的时间,才完成了对收集来的海量数据的系统整理和深入分析。/pp  功夫不负有心人,三年半的时间,王琳团队终于收获累累硕果:他们测得了上海城市大气中1-700 纳米区间大气颗粒物的粒径分布浓度,获得了大气新粒子的形成速率和成长速率 并应用大气常压界面-飞行时间质谱和硝酸根试剂离子化学电离-飞行时间质谱技术,测量了大气新粒子形成事件期间大气中性和带电分子团簇的化学组分。/pp  研究结果表明在我国典型城市上海大气新粒子的形成过程中,一个气体硫酸分子和一个二甲胺分子随机碰撞,通过氢键形成稳定的分子簇,分子簇通过与其他硫酸分子、二甲胺分子或其他硫酸-二甲胺团簇的碰撞继续生长 一定尺寸以后,其他物种(例如极低挥发性有机化合物)开始加入这个过程,并最终形成大气新粒子。/pp  研究中还观测到了世界各地大气外场观测中最高的硫酸二聚体质谱信号,并识别了多个关键硫酸-二甲胺分子团簇,所得的上海大气中新粒子形成速率与实验室中硫酸-二甲胺-水三元成核模拟实验所得的新粒子形成速率具有一致性。这是首次在外场观测中发现并证实硫酸-二甲胺-水三元成核机制可以用于解释我国典型城市大气中的大气新粒子形成事件。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201807/noimg/fb72a874-82a6-4501-aedb-5e1a5ec581db.jpg" title="图2.webp.jpg"//pp style="text-align: center "  图2. 外场观测所测得的大气新粒子形成速率与实验室模拟的对比。/pp  七年磨剑:坚守孕育大气污染防治的新希望/pp  据介绍,这一研究由复旦大学环境科学与工程系上海市大气颗粒物污染防治重点实验室、复旦大学大气科学研究院教授王琳团队与芬兰赫尔辛基大学教授马库· 库马拉(Markku Kulmala)团队、南京信息工程大学、上海市环境监测中心、上海市气象局、上海市环境科学研究院、美国飞行器公司(Aerodyne)合作完成。研究成果有望解释高污染城市大气中的大气新粒子形成事件,从而为我国的大气颗粒物污染尤其是大气颗粒物的二次形成提供潜在的防治措施,也有助于更好地理解我国的雾霾污染和更大尺度上的全球气候变化。/pp  “对我们的研究来说,环境相关性是至关重要的,自然环境中不可控的因素太多了,往往需要很长时间只能做一件事情。”从2014年3月项目正式启动,到2017年7月成果初显,王琳和他的团队一个项目做了三年半,实际上,这个项目花的时间远不止这么多。/pp  “我在美国做博士后的时候已经开始开展相关的课题了,那时候也预感到仪器设备的发展可能在近期会有一次突破,所以一直在等待机会。”2011年1月,王琳作为第一批“青年千人”扎根复旦,但在回复旦以前,他就开始为了这个项目四处忙碌。联系厂家、购置仪器、熟悉仪器的性能、熟练相关操作等准备工作并不简单,王琳说,相较于直接花在做实验上的时间,前期准备时间更长。/pp  在复旦的前七年时间里,王琳把一大半的精力都投在了这个项目上,但前几年的研究几乎看不到任何回报,很少有直接可见的文章产出。“我心里着急的很,但幸好复旦的科研环境还是比较宽松的,系里的前辈也都很支持我做这件事情,没有人掰着手指头数我发了几篇文章,催着我一定要出成果。”王琳很感激这种理解和支持:国家青年千人计划的启动资金资助、国家自然科学基金委的连续滚动支持、上海市各方同仁的通力合作、依托复旦大学而建的上海市大气颗粒物污染防治重点实验室五十多位同事共同打造的研究平台,让他做成了这件“拖得很久”又“很难做”的事情。/pp  “我们做环境研究的,讲究做出来的科研成果在真实环境中有应用,是在真正的环境中发生的过程,而不是一个只会在实验室中发生的科学实验。”这也是王琳及其团队坚持在成分复杂多样的城市大气中开展此项研究的原因。“我们的研究成果和每个人的日常生活息息相关。”/pp  王琳认为,在中国典型的城市环境中,除了加强对污染物一次排放的监测和管理,对污染物的二次形成也应予以同样程度的关注和重视。得益于此项研究中提出的化学机制,参与大气新粒子形成过程中的关键化学物种将得到更有针对性的控制,从而有望有效地降低空气中颗粒物的数量浓度,减轻我国的大气颗粒物污染。另外,从更大的维度来看,将这一机制运用于全球气候模式中,能够更好地模拟全球大气颗粒物乃至云凝结核的数目,更好地理解整个地球的气候变化趋势。/pp  谈及项目之后的发展,王琳说:“我们的研究还有很多值得进一步探索的地方,这个项目之后还会继续。”他希望,在现有的硫酸-二甲胺-水三元成核化学机制框架下,能进一步明确我国城市大气新粒子形成事件中的前体物主控因素,理解城市大气新粒子形成事件与雾霾形成的关系,从而助力国家推出更有针对性的污染防控措施。/p
  • 兼具核磁共振和荧光成像功能的健康信号粒子
    据报道,麻省理工学院(MIT)化学家们最近开发出了一种神奇的纳米粒子。其神奇之处在于植入到活体动物体内后,该粒子不但可以核磁共振成像(MRI)还可以完成荧光成像。结合这两种成像技术科学家们可以轻易追踪体内的特异分子,监控肿瘤周围状况,更能直接观察到药物是否成功抵达靶细胞。 在自然通讯11月18号发表的文章中,研究者揭示了这种粒子的作用机理。以小白鼠体内的维生素C追踪为例,实验前将同时携带有MRI和荧光传感器的纳米粒子注入到小白鼠体内。在维C高的地方,荧光信号强烈而核磁共振信号较弱,反之则较强。 Johnson表示未来这种粒子的应用将更加广泛,性能也将更加多样化。不但可以一次检测多种分子还可以专门用来检测某种特定分子比如和疾病息息相关的厌氧分子浓度。借助成像探测器,人们就可以进一步剖析病发过程。 这种由Johnson和他的同事们一起发明的纳米粒子其组装过程就像搭积木。不同的是,此处积木是由携带有传感器的高分子链组成。一部分分子链上携带有硝基氧(MRI造影剂)而另一部分则会携带一种叫做Cy5.5的荧光分子。 当这两种分子链按比例混合时,就可以形成一种特殊的纳米结构,这种结构被他们称作毛刷状枝型高分子。在该研究中,硝基氧和Cy5.5的比例分别是99%和1%。 硝基氧中的一个氮原子通过一个孤对电子与氧原子结合,这种结合很不稳定,所以正常情况下硝基氧表现出很大的化学活性。而这种活性正好抑制了Cy5.5的荧光效应。但是当遇到某些像维生素C这种特殊分子,硝基氧就会捕获电子失活,此时Cy5.5的荧光效应就得以体现。 普通硝基氧的半衰期很短,但是最近Andrzej Rajca教授发现在硝基氧上连入两个巨体结构,其半衰期可以延长。另外,将Rajca发现的硝基氧与Johnson合成的毛刷状枝型高分子结构相结合,其半衰期又会大大延长到几个小时,这段时间足以获得有效的MRI图像。 研究者发现成像粒子在肝处聚积,缘于小白鼠体内的维C由肝脏制造,所以一旦硝基氧分子到达肝脏部位从维生素C中捕获电子失活后,MRI信号就会消失而荧光信号则会加强。除此之外,研究者还发现在大脑(维C循环的终点站)只有少量的荧光信号。相反在血液和肾脏处(维C含量低)MRI信号最强。 下阶段,这些研究者的工作将围绕如何扩大遇到靶分子时不同传感器的信号差异展开。而目前他们已经能够创造可携带三种不同药物的荧光分子,这项技术使得他们能够追踪纳米粒子是否到达了目标位。 Johnson 在论文中指出:如果解决了这些粒子到达靶细胞的问题,那么我们将可以获得肿瘤的生长信息。未来的某一天人们只需要直接注射这些粒子到病人体内,就可以直接观察病灶和健康组织。 Steven Bottle教授说:这项研究最成功的地方在于将两种有效的成像技术合二为一。这种多功能、多组合的显像模式必然会发展成为一种检测活体动物体内疾病系数的有效工具。
  • 美国TSI公司网上讲座:粒子图像测速仪系统
    粒子图像测速仪系统  演讲人: 许荣川博士高级应用工程师  KHOO Yong Chuan Mike PhD  Senior Applications Engineer  网上讲座: 2011年1月12日上午10点  美国TSI公司非常荣幸的为您提供有关流体力学的网上讲座, 讲座将由来自TSI的技术专家用中文讲解。讲授涵盖广泛,包括初级,中级和高级水平的流体力学研究,有助您提高测试技术的水平,与此同时提供解决方案 寻求如何优化系统得到更可靠数据。  这次的讲座也包括更多关于TSI精准仪器在流体研究中的应用(包括所有从基础流体研究到环境和生物医学), 请踊跃参加网上讲座以得到更多相关讯息。  讲座将会进行40分钟及预留15分钟答疑环节。  这是TSI公司首次推出PIV系列中文网上讲座,以帮助您提高利用PIV系统测量流体速度的技术水平。 我们将于2011年1月12日上午10点开始第一个讲座,介绍PIV系统基本原理与利用Insight3G软件进行数据采集与分析的基本技巧。  具体内容:PIV原理及PIV实验基本原则 Insight3G中PIV系统软硬件设置、图像校准、图像优化、示踪粒子浓度调整与△T参数优化。  网上讲座是免费为您提供,如果您有兴趣参加, 请点击链接www.tsi.com/FMwebinars(英文注册)或http://www.instrument.com.cn/netshow/SH100732/guestbook.asp(中文注册)简单填写表格,并点击“发送”。我们将在一两天内发给您相关讲座的链接,以便您在方便的时间参加。  讲师简介: 许荣川博士是TSI新加坡的高级应用工程师,他为东南亚包括澳大利亚,台湾及韩国等地的流体及粒子仪器用户提供应用解决方案和技术支持。他于1997年在英国拉夫伯勒大学获得机械工程学位并获全额奖学金完成其博士学位
  • 中科院粒子加速物理与技术重点实验室成立
    2月27日至28日,中国科学院粒子加速物理与技术重点实验室成立大会暨2015学术年会在中科院高能物理研究所成功召开。来自北京大学、清华大学、中国工程物理研究院、美国劳伦兹伯克利实验室,中科院近代物理研究所、上海应用物理研究所、高能物理研究所的9位实验室学术委员会专家,及中科院前沿科学与教育局重点实验室处处长侯宏飞,高能所所长王贻芳,党委书记潘卫民,副所长陈刚等及实验室成员140余人参加了年会。潘卫民主持成立大会。  侯宏飞首先宣读了成立院级重点实验室的文件,陈刚宣布实验室室务委员会主任及学术委员会聘任名单,王贻芳为学术委员会委员颁发聘书,并邀请侯宏飞共同为实验室揭牌。侯宏飞代表中科院对实验室成立表示祝贺,高度肯定了近几年实验室建设与申请工作的成效,对实验室的建设与发展提出了期望与建议。王贻芳指出实验室成立的重要性,做好重点实验室工作将对加速器物理与技术的发展起到很好的推动作用,强调实验室发展要瞄准本领域国际前沿、依托学科建设,多出学术成果,更好地服务于未来基于加速器的大科学装置及先进技术转化。  重点实验室主任秦庆对实验室近几年的建设和发展历程进行了简要回顾,提出了实验室的管理方针与规划目标。重点实验室学术委员会委员、上海应用物理研究所研究员冷用斌作年会特邀学术报告,介绍了逐束团诊断技术研究方面的前沿进展,引发与会人员热烈讨论。实验室粒子加速物理、超导高频、低温技术、束流测控技术、功率源与电源技术、微波技术等重点学科方向的报告人也分别介绍了各自领域2014年度的研究进展以及2015年的科研计划。  2月28日,重点实验室学术委员会主任陈森玉主持召开了实验室第一届学术委员会第一次会议。大家首先对各重点学科的报告进行了总结和讨论,认为各个学科目前都有不错的发展,特别是有些学科跻身于国际前沿,取得了不俗成绩。但各个重点学科未来的发展要有清晰的规划,或跻身国际前沿,或进行成熟产品的产业化,要有所侧重。针对重点实验室未来的发展规划,委员们进行了热烈的讨论。委员们一致认为,实验室未来的发展方向需要排出优先级,突出重点,争取培养出能够在本领域内引领世界前沿发展的重点学科。
  • 科学家最新实验或将发现暗物质粒子(图)
    科学家希望检测到暗物质粒子撞击普通物质。  凤凰科技讯 北京时间2月16日消息,英国广播公司报道,近日科学家在高山底下深处的人造洞穴里进行研究,希望能够找到宇宙中最神秘的物质之一:暗物质。深埋在意大利格兰萨索山脉顶峰的格兰萨索国家实验室看起来更像007电影里反派的巢穴:入口隐蔽在一个巨大的钢门之后,钢门位于切断山脉的一个隧道中央。建立这样隐秘的通道不是没有原因的。上方1400米厚的岩石意味着它能很好的躲避持续到达地球表面的宇宙射线。它为科学家们提供了一个安静的场所,用于思考物理学里已知最奇怪的现象。  内部三个广阔的大厅里正在进行大量实验——但最新开始的阴暗面50(DarkSide50)项目旨在研究暗物质。  我们所看到的宇宙物质其实只组成了整个宇宙的4%,科学家认为剩下的96%来自两种神秘的形式。他们预测宇宙73%的部分是由暗能量组成——一种无处不在的能量场,它作为某种反引力能够阻止宇宙自我收缩。  剩余的23%则来自暗物质。现在面临的挑战便是,没有任何人亲眼看到过暗物质的存在。伦敦大学学院粒子物理学家ChamkaurGhag博士解释道:“我们认为它极可能是一种粒子形式。”  “我们发现了光子、中子和电子以及所有能够建造物质的基本粒子。我们认为暗物质也是一种粒子,只不过以非常奇特的形式存在,因此我们可能还没有感知到它。这主要是因为它不会感受到电磁力——光不会反射它,因此我们和它的接触并不多。”  物理学家也将暗物质粒子称为大质量弱相互作用粒子(WIMPs)。他们认为每秒大约有几百万颗暗物质粒子经过我们身边,而我们浑然不知。但很可能偶尔的机会它们会与正常的物质碰撞,这就是我们希望借助阴暗面50探测的现象。   实验位于地下的一个人造洞穴里。  在房子大小的水槽里,一个巨大的金属球里盛装了一个名为闪烁基数器的粒子探测器。这个容器里装满了50千克的液氩以及氩元素气体形式组成的厚厚一层。“如果暗物质粒子出现并撞击氩,那么反冲原子将获得能量,并迅速的试图摆脱这种能量。”Ghag博士说道。“氩元素摆脱能量的方式便是释放出光,它会投射光子。”  “但它也同时会放电:相互作用过程中会释放某些电子。这些电子将会漂移至气体层,当它们撞击气体,就会发出闪光。”  直到现在搜寻暗物质的行动一直一无所获。有的实验声称在年度调制时目击到暗物质发出的信号。这是基于暗物质粒子的数量会随着季节变化而发生改变的观点。随着地球环绕太阳运动,它将进入一个暗物质的固定场——其中半年它将随着暗物质的潮汐力而移动——就像行驶在雨中一样。但另一半时间里它将与这种潮汐力背道而驰,因此撞击到的暗物质也更少。然而,其它研究人员却对这种用于检测暗物质的季节性变量表示质疑。  其它实验进行了相当长的时间,但仍没有什么特别的收获。其中一个名为XENON100的实验也在格兰萨索实验室进行,它已经持续了1年之久,却只发现了两次“事件”——这还无法排除可能存在某些残余背景辐射。但是利用DarkSide50项目,我们可能能够找到一些答案。  除了这个实验,另一个巨大探测器、位于美国南达科塔金矿的LUX也将很快投入使用。在未来几年,科学家计划利用更强大的探测器,例如XENON1T和LUX-Zeplin,希望能够找到这些粒子存在的第一批实验证据。  DarkSide50项目小组的奥尔多伊阿尼(Aldo Ianni)说道:“暗物质是目前主要的科研目标。它将帮助我们理解宇宙中的一个我们尚未了解的重大部分。我们知道存在暗物质,只是不确定它究竟是由什么组成的。”  徒劳的搜寻?  格兰萨索国家实验室的总监斯特凡诺莱格兹(Stefano Ragazzi)教授希望在他的实验设备里能够首次观测到暗物质。“这是不同实验之间的竞争——你想要成为第一个发现的人,而非第二个或者第三个。大家都预感暗物质的发现指日可待,因此每人都迫切希望自己能够成为第一个发现者。”  但莱格兹教授也承认,他们可能一无所获——暗物质可能并不是以WIMPs的形式存在。“到头来我们可能发现最初提出的假设其实是错误的…(暗物质)可能是完全不同的东西。但没有找到暗物质可能收获会更大。”  未来几周DarkSide50项目将全面启动,周围的水箱将充满纯净水,科学家只需要耐心的观察和等待。Ghag博士表示,虽然存在不确定性,但找到暗物质的潜在回报将难以估量。“这将成为革命性的发现——它会改变我们对宇宙以及它的形成和进化方式的理解。”
  • 飞行时间质谱探测到高空冰云内生物粒子
    据物理学家组织网报道,一支由美国加利福尼亚州大学圣地亚哥分校挂帅的大气化学研究员小组向被视为的气候变化学的“圣杯”又迈进了一步:在研究过程中,他们首次直接探测到了冰云内部的生物粒子。  研究小组由大气化学教授金姆普拉瑟(Kim Prather)的博士生克里普拉特(Kerri Pratt)领导,普拉瑟任职于斯克里普斯海洋学研究所以及加州大学圣地亚哥分校的化学与生物化学系。2007年秋季,研究小组搭乘一架飞机穿过怀俄明州上空的云层,在高速飞行的情况下,提取了水滴和冰晶残余样本。  对冰晶进行的分析显示,它们几乎完全由尘埃或包括细菌、真菌孢子和植物材料在内的生物粒子构成。长久以来科学家便知道,微生物或微生物的某些部分可进入空中并借助空气传播这种方式进行长途旅行。但在直接获得有关其参与云冰形成过程的现场数据方面,这项研究还是第一次。  普拉特领导的研究小组进行的层状云内冰实验(以下简称ICE-L)获得美国国家科学基金会以及国家大气研究中心的资助。实验结果刊登在5月17日的在线版《自然地球科学》杂志上。普拉特说:“如果我们了解使云集结的粒子来源及其丰富程度,我们便能确定不同来源对气候的影响。”  当时,研究人员搭乘由国家大气研究中心操作的一架装有特殊仪器的C-130飞机飞越怀俄明州上空,并在飞行过程中对研究对象进行观测。借助这架飞机,斯克里普斯海洋学研究所领导的研究人员第一次直接探测到了云中靠空气传播的细菌,探测结果同样刊登在5月17日的在线版《自然地球科学》杂志上。  靠空气传播的微小粒子——浮质对云形成的影响是有关天气和气候问题中科学家最难理解的部分。在气候变化学领域,很多预测均来源于有关气候现象的电脑模拟,而在通过建模对未来气候进行预测时,浮质对云形成的影响则是科学家眼中最不确定的因素。  国家科学基金会大气学分部的安妮-玛丽娜斯库莫尔特纳(Anne-Marine Schmoltner)表示:“通过从飞机上对云进行实时取样,这些研究人员能够获得有关云中冰粒子细节空前的信息。通过确定单个冰粒子核心的化学成分,他们得出惊人发现——矿物质尘埃和生物粒子在云形成过程中扮演了重要角色。”  浮质包括尘埃、烟灰、海盐以及有机材料,其中一些的传播距离可达到数千英里。浮质形成了云的“骨架”。在这些凝结核周围,大气中的水和冰不断液化和成长,最后形成降水。科学家一直试图了解这一过程,原因很简单:云在冷却空气和影响地区性降水过程中扮演了至关重要的因素。  ICE-L第一次利用飞机部署飞行器浮质飞行时间质谱仪(A-ATOFMS),这个昵称“雪莉”的仪器是最近由加州大学圣地亚哥分校研制的,研制过程获得国家科学基金会资助。ICE-L小组将“雪莉”以及一个由科罗拉多州大学研究员保罗德莫特(Paul DeMott)负责的冰库安装在C-130上,而后进行了一系列穿越波状云的飞行。在此过程中,研究人员对云冰晶残余进行了现场测量,结果发现一半由矿物质尘埃构成,大约三分之一含有氮、磷以及碳——构成生物物质的主要元素。  以秒计算的分析速度允许研究人员实时区分水滴与冰核残余之间的差异。冰核较水滴核相比更为罕见,同时更有可能形成降水。“雪莉”则允许研究人员对云冰内的生物粒子进行准确测量。此前,科学家曾根据在实验室进行的模拟以及对降水的测量得出结论——生物粒子扮演了冰核的角色。根据模型以及经过测量的尘埃化学成分,ICE-L小组得以确定尘埃来自亚洲还是非洲。  普拉瑟说:“对于我们来说,能够进行这种测量如同找到了基督教的‘圣杯’。了解哪些粒子形成冰核,哪些粒子在浓度极低时出现同时又极难进行测量,意味着我们可以进一步了解导致降水的过程。我们获取的任何新信息都具有非常重要的意义。”  研究发现显示,在尘暴中被卷走的生物粒子可帮助促进云冰的形成。普拉瑟表示,初步证据显示来自亚洲的尘埃可以影响北美的降水。研究人员希望利用ICE-L获取的数据设计未来的研究。在以后的日子里,类似这样的粒子可能在引起降雨或降雪中扮演越来越重要的角色。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制