当前位置: 仪器信息网 > 行业主题 > >

量热仪

仪器信息网量热仪专题为您提供2024年最新量热仪价格报价、厂家品牌的相关信息, 包括量热仪参数、型号等,不管是国产,还是进口品牌的量热仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合量热仪相关的耗材配件、试剂标物,还有量热仪相关的最新资讯、资料,以及量热仪相关的解决方案。

量热仪相关的论坛

  • 量热仪的采购

    请问下现在有没有量热仪能够测灰分和挥发分的?量热仪买什么厂家的好?

  • 量热仪的维护方法

    量热仪的维护方法

    ZDHW-A4高精度两用全自动量热仪的维护:(1)经常人工补水。标准要求外筒水量要比内筒水量多5倍以上,由于仪器空闲时和测试中都会蒸发掉一部分水,并且试验中取出氧弹时也会带出一部分水(每次约2g),损失的水,最终都会造成务用水箱水量热仪减少,久而久之导致外筒缺水,热容量发生变化。有的量热仪还会使内筒进水量减少,会使内筒水量达不到每次保持误差小于1 g的要求。因此,需根据实验量热仪的大小不定期给量热仪补水。(2) 经常用标准煤样检查仪器准确度。当仪器准确度发生偏差时,应进行分析。如不属于试验操作问题,则应立即重新热容量。检查仪器准确度尽量不使用苯甲酸,如使用苯甲酸应尽量热仪让苯甲酸应尽量热仪让苯甲酸质量为0.7-0.8克,因1克苯甲方酸产生的温升与热容量时基本一致,其测温误差检测是出来。(3) 控制好环境温度。从理论上讲,外筒水温与环境温度差值越大,其热交换的量也越大,因而引起内筒子的热损失也越大,假设仪器的热容量为10000J/K,则校正值每偏离0.01K,发热量就会偏离100J/G,再加上其它因素影响,发热量测值会偏离更大。从经验来看,每做一个发热量,外筒温度就会上升0.1~0.2,如果连续做10个样,外筒就要上升,而环境温度每升高,绿肥据经验,发师范测试值勤就会偏高左右,所以保持好一个好的环境和环境温度,对保证发热量测试结果表明准确是很重要的(4)定期更换外筒子水。水筒子水长时间使用会混入杂质,从而使量热系热空量产生变化。一般可视试验次数多少6 个月到一年更换一产次,但如果发现水中有脏物时,就立即换水,以免水泵和阀门正常工作。(5)每次实验结束后,应将量热仪上盖打开,以便加速低筒内水温,如长时间不使用将量热仪上盖关闭,以防内筒被污染。(6)不要随意拆卸仪器;没有水的情况下不要启动水泵;间断使用的或备用的仪器应经常通电进行废样试验,以防阀门和水泵长时间停用后不灵活或生锈。(7)要保持内筒清洁。点火电极应经常擦试,以免表面结垢,造成点火失败;搅拌器扇叶应注意清洁,防止沉积上面的赃物再产次洗入内筒中。(8)注意保护感温探头,避免碰撞。探头一般由纯铂金丝在玻璃棒上绕至而成,表面覆盖一层薄的玻璃一旦玻璃碰碎就会渗水,使铂电阻阻值变化,此时温度显示值会乱跳,测温不准,此时要马上停止试验,进行维修更换。(9使用过程中注意不要将水洒在内筒边缘,防止内外筒夹层进水而导致平行样超差。(10) 使用Windows版本测控软件的,在试验时电脑不能同时运行其它程序(包括病毒实时监控程序、屏幕保护程序等),以免对测试过程产生干扰,影响测试结果。(11)氧弹应定期进行20.0MPa的水压试验。每次水压试验后,氧弹的使用时间一般不应超过2年,平时应注意观察与氧弹强度有关的结构,如弹筒和连环的螺纹、进气阀、电极与氧弹头的连接处,如发现显著磨损或松动,应进行修理,并经水压试验合格后再使用。中科三博量热仪有很多种不同型号不同特点的,要根据不同量热仪参考不同资料。还可咨询我们的技术员工了解。 http://ng1.17img.cn/bbsfiles/images/2011/09/201109070943_314782_2352722_3.jpg

  • 食品量热仪

    之前对煤炭检测的量热仪略有耳闻,今天朋友一起讨论时又提到量热仪,用于食品、乳制品检测方面,听了还是觉得很迷茫。 特希望哪位大神讲解下食品方面量热仪的大概原理、检测流程等内容,非常感谢!

  • 【求购】选购量热仪

    量热仪:● ZDHW-8000A微机全自动量热仪性能特点: ■ 采用智能制冷方式,自动调整内外筒温度,减小冷却校正系数使测量结果更准确。 ■ 满足国标GB/T213-2003的规定。 ■ 微机量热仪,保持了微机系统的全部功能,可同时运行通用软件进行其他事务处理,同时启动量热 仪测量系统可自动标定量热系统的能当量(热容量)、测量发热量。输入硫、水分、氢等数据,即可换算并打印出弹筒发热量、高位发热量、低位发热量等数据。 ■ 量热仪装置内筒采用片状桨叶的电动搅拌,外筒的搅拌采用潜水式电动搅拌,使搅拌更均匀、更方 便。仪器采用熔断式棉线点火方式。 ■ 微机量热仪运行于Winsows98及以上的操作系统,全过程汉字提示、人机交互,即学即用,按提示操作即可完成试验。 ● ZDHW-8000A微机全自动量热仪技术参数: ■ 测量精度:优于国标GB/T213-2003 ■ 使用环境:5-40℃(每次测定室温变化应≤1℃)相对湿度≤80﹪ ■ 温度分辨率:0.0001℃ ■ 电 源:AC220V±15﹪ 50Hz

  • 量热仪测量结果

    我想问一下做煤分析的量热仪,在用苯甲酸做标定时与标样的结果多大可以也就是说苯甲酸的标准值是26469我测量的结果是26513,这样的数据可以说是正常的吗?再有如果用用水量不是很准确,对测量结果到底有多大的影响。因为我们用的这种量热仪不是自动加水的是用天平称量的而且是二次称量,我想这样的误差就会更加的大,希望大家帮助我出一下好的主意好吗

  • 补偿式量热仪

    补偿式量热仪

    补偿式量热仪是把研究体系置于一等温量热仪中,测量体系与环境之间迸行热交换时,两者的温度始终保持恒定,并且与环境温度相等。反应过程中研究体系所放出或吸收的热量是依赖恒温环境中的某物理量的变化所引起的热流给予连续的补偿,使体系温度保持恒定。实验过程中,利用相变潜热、电-热、电-制冷效应来实现温度补偿。 (1)相变补偿量热 设将一反应体系置于冰水浴中,其热效应将使部分冰融化或使部分水凝固。已知冰的单位质量熔化焓,只要测得冰水转变妁质量,就可求得热效应的数值。反之,反应体系发生吸热反应,也同样可以通过冰增加的质量来求得热效应。这种量热仪除了冰-水为环境介质外,也采用其他类型的相变介质。这类量热仪简单易行,灵敏度和准确度都较高,热损失小,但热效应是处于相变温度这一特定条件下发生的。造类方法为确定热效应的环境温度提供了热化学数据,但也限制了量热仪的使用范围。 (2)热效应补偿量热 对于一个吸热的化学或物理变化过程,可将研究体系置于一液体介质中,利用电热效应对其补偿,使液体介质温度保持恒定。这就要求电加热时,热损失可忽略不计,这时所吸收的热量可由加热器所消耗的电压(U)、电流(I)和时间(t)的精确测量直接求得。如果不考虑研究体系的介质与外界的热交换,该变化过程所吸收的热量可用公式计算,即:http://ng1.17img.cn/bbsfiles/images/2013/05/201305180957_440560_2698790_3.jpg 在这里,介质温度可根据需要予以设定,温度变化可用高灵敏度的温差温度计测量,电压、电流、时间的测量可用精确度高的仪器测量,只要液体介质恒温良好,热量的测量值就准确可靠。介质与外界的热交换、介质搅拌及其他因素的影响所产生的热量可以通过空白实验予以校正。 对于放热效应就要使用电制冷元件,利用帕提尔(Peltier)效应来补偿。在两种不同金属组成的回路上通一定电流,双金属的接点上将分别形成冷端和热端。帕提尔功率在两端的分配比例与电流大小有关。两端功率相等时的回路电流为I0,在某一小于I0的工作电流I时,其制冷功率为 http://ng1.17img.cn/bbsfiles/images/2013/05/201305180957_440563_2698790_3.jpg ,式中,n称帕提尔系数,它与所用元件材料及工作温度有关。实际上,由于冷热端之间的导热,将使制冷效率低于计算值,这会给放热效应带来一定的测量误差。

  • 【分享】量热仪的结构及运用

    量热仪、量热器或者卡计,是一种测量突袭发生物理的或化学的过程效应的仪器,例如,用于测定物质的热容及各种反应热(如中和热,燃料与食物的燃烧值、有机化合物的燃烧热)等 量热仪适用于测量电力、煤炭、冶金、石化、质检、环保、水泥、造纸、地勘、科研院等行业部门测量煤炭、焦炭、石油、水泥生料,砖坯及其它固体或液体等可燃物的发热量  量热计结构主要可以分为外筒、内筒、温度计和搅拌器。  外筒主要起到保温作用。内筒直接充当反应容器。  温度计用来测量反应的温度变化。搅拌器用来使得反应物混合均匀,提高温度测量的准确性和反应的完全性。

  • 请教:量热仪的购买

    随着业务的拓展,本人所在的实验室欲添置一台量热仪,用于煤及其他矿种的发热量的分析.由于是新手,在这方面的经验还是空白,恳请有识之士给予采购及使用方面的指导:1.符合国家有关量热仪的标准2.价格在2万元左右3.操作简单、方便,能耗低

  • 低温电池量热仪

    求助论坛大虾,目前有没有 在低温下(-100℃)缓慢升温(2℃/min),同时检测电芯热量变化的仪器,因为量热腔需要放置大尺寸电芯,量热腔的尺寸也会比较大谢谢

  • 下落法量热计和差示扫描量热仪在比热容测试中的比较

    下落法量热计和差示扫描量热仪在比热容测试中的比较

    摘要:本文分别描述了下落式和差示扫描量热计式比热容测试方法的测量原理,列出了这两种技术的国内外标准测试方法,并从多个方面对这两种测试方法进行了比较,其中下落法比热容测试样品量大、操作简便入门容易,测试温度可高达3000℃,而DSC法则测试参数多应用面广。两种方法各有特点和侧重,相互互补,需根据具体使用情况进行选择。[b][color=#ff0000]1. 测量原理[/color][/b][color=#ff0000]1.1. 下落法比热容测量原理[/color] 比热容的定义为单位质量样品的温度升高1K所吸收的热量。下落法比热容测量原理则完全按照比热容定义来进行实施,如图 1-1所示,即将已知质量的样品通过加热炉加热到测试温度TS,然后样品落入具有恒定温度TC的绝热量热计中,试样将热量传递给量热计,并使得量热计温度上升并最终达到平衡温度TH。通过测量绝热量热计落入试样后的温升TH-TC可以测得试样放出的热量,即试样受热所吸收的热量,由此可以得到TC和TS温度范围内平均比热容和平均焓值。通过多个温度点下的平均比热容测量及数据处理,还可以得到某一温度点下的比热容和焓值。[align=center][img=,400,492]http://ng1.17img.cn/bbsfiles/images/2017/05/201705231031_01_3384_3.png[/img][/align][align=center][b][color=#3333ff]图 1-1 下落法比热容测定仪结构示意图[/color][/b][/align] 下落法比热容测量的核心部件是量热计,量热计为绝热式量热计的一种铜卡计,即通过测量标定过的已知质量铜块的温升来得到铜块吸收的热量(试样放出的热量),因此下落法是一种典型的绝对测量方法,测量精度只受到加热量热计的电压和电流标定精度限制。[color=#ff0000]1.2. 差示扫描量热仪比热容测量原理[/color] 差示扫描量热法(DSC)热分析方法在程序控制温度下, 测量样品和参比物的温度差和温度关系,由此测定各种热力学参数(如热焓、熵和比热等)和动力学参数。如图 1-2所示,在此基础上又发展出功率补偿型DSC和热流型DSC。[align=center][img=,619,296]http://ng1.17img.cn/bbsfiles/images/2017/05/201705231031_02_3384_3.jpg[/img][/align][align=center][b]图 1-2 各种差示扫描量热仪测量原理图[/b][/align] 热流型差示扫描量热仪DSC 是使样品和参比物同时处于一定的温度程序(升/降/恒温)控制下,观察样品和参比物之间的热流差随温度或时间的变化过程。 功率补偿型DSC是给试样和参比物分别配备独立的加热器和传感器,整个仪器由两个控制系统进行监控,其中一个控制温度,使试样和参比物在预定的速率下升温或降温;另一个用于补偿试样和参比物之间所产生的温差,这个温差是由试样的放热或吸热效应产生。通过功率补偿使试样和参比物的温度保持相同,这样就可从补偿的功率直接求算热流率。 由此可见,差示扫描量热仪都需要参比物做为基准,因此这种测试方法是一种典型的相对法,在测量过程中,要精确了解参比物的用量和相关特性。[b][color=#ff0000]2. 标准测试方法[/color][/b][color=#ff0000]2.1. 下落法比热容标准测试方法[/color] (1)GJB 330A-2000 固体材料60-2773K比热容测试方法 (2)GBT 3140-2005 纤维增强塑料平均比热容试验方法 (3)ASTM D4611-16 岩石和土壤比热标准测试方法(ASTM D4611-16 Standard Test Method for Specific Heat of Rock and Soil)[color=#ff0000]2.2. DSC比热容标准测试方法[/color] (1)ASTM E1269-11 Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry (2)ISO 11357-4 Plastics: Differential Scanning Calorimetry (DSC)- Determination of Specific Heat Capacity (3)Japanese Industrial Standard K 7123 Testing Methods for Specific Heat Capacity of Plastics (4)ASTM E2716-09 (2014) Standard Test Method for Determining Specific Heat Capacity by Sinusoidal Modulated Temperature Differential Scanning Calorimetry[color=#ff0000][b]3. 两种测试方法比较[/b]3.1. 测量精度比较[/color] 下落式比热容测试方法是一种下落式量热计法,这是一种绝对测量方法。所谓绝对测量方法即材料性能的测量不依赖于任何其它物质的性质,所以目前国内外计量机构普遍采用下落式量热计或绝热量热计做为计量级别的测试方法。差示扫描量热测试方法则是一种典型的相对法,即材料性能的测量还要依赖其它物质的性质,测量过程中要始终与参考材料进行对比,测量精度受到参考材料性质和精度的限制。差示扫描量热仪中常用的参考材料蓝宝石和纯三氧化二铝粉末都是采用下落式量热计或绝热量热计进行校准后才能使用,从原理上讲,下落法就比差示扫描量热法测量精度要高。[color=#ff0000]3.2. 测试操作复杂度比较[/color] 在比热容测试操作复杂程度方面,下落式比热容测试方法与差示扫描量热仪相比具有巨大优势。做为一种绝对测试方法,下落法测试仪器的内部结构比较复杂,但整个操作过程非常简单以避免各种因素对测量精度的影响,测试操作中只需安装好被测试样,试样达到设定温度后进行自动落样,就可以对试样比热容进行全自动准确测量,无需进行其它各种试验参数的设定。而在使用差示扫描量热仪测量比热容过程中,要考虑到多种因素的影响,并对试验参数进行正确的设定,操作复杂程度要远大于下落法,对操作人员的技术要求很高,否则测量结果会出现较大偏差。 差示扫描量热仪比热容测试必须考虑的主要影响因素大致有下列几方面: (1)实验条件:程序升温速率和所通气体的性质。气体性质涉及气体的氧化还原性、惰性、热导性和气体处于静态还是动态。 (2)试样特性:试样用量、粒度、装填情况、试样的稀释和试样的热历史条件等。 (3)参比物特性:参比物用量、参比物的热历史条件。 从以下ISO和ASTM差示扫描量热仪比热容标准测试方法中的相关规定就可以看出DSC操作的复杂程度。以下同时列出采用DSC测量比热容时的操作注意事项。3.2.1. DSC蓝宝石法比热容测试ISO标准方法细节 (1)三次测试:空白测试、蓝宝石测试、样品测试。 (2)两个坩埚的质量差不要超过0.1mg,材料相同。如果仪器足够稳定,且坩埚质量差小于0.1mg,空白曲线和蓝宝石曲线可以使用多次。 (3)当需要在更宽的温度范围内获得更准确的结果时,温度范围可以被分为2个或多个的小段温度范围,每一段50到100K宽,第二段的开始温度应该比第一段的结束温度低30K。 (4)实验的开始温度要比数据获取点的温度低30K。 (5)两个等温段的时间一般为2到10min。3.2.2. DSC蓝宝石法测试ASTM标准方法细节 (1)与ISO和JIS标准测试方法相似。 (2)因为毫克级的样品,所以样品要均一并有代表性。 (3)化学反应和失重会导致测试无效,所以要仔细选择坩埚和温度范围。 (4)合成蓝宝石最好是片状,实验室间的偏差小,推荐合成的蓝宝石(α-氧化铝)标样为热流校准标样。 (5)必须要进行温度和热流校准。因为比热随温度的变化不大,所以温度不用经常校准,但热流校准则非常关键。 (6)样品的形态与标样最好一致(粉末——粉末)(片——片)。 (7)推荐至少每天做热流校准。 (8)蓝宝石测试和样品测试使用同一坩埚。如果使用不同重量的坩埚,要考虑坩埚重量差别。 (9)恒温段至少4min,加热速率不能超过20K/min。 (10)如果样品质量变化大于等于0.3%,则测试无效。3.2.3. DSC比热容测试注意事项 (1)炉体清洁 对炉体通氧气空烧,空烧后一定要将炉体及传感器上的灰尘及灰分吹走。如果使用自动进样器,则一定要保证放置坩埚的转盘上无灰尘。 (2)温度校准 因为比热是温度的函数,所以一定要对测试范围内的温度进行校准。加热速率包含在各种测试方法中,如果温度不准,升温速率也不准,这将影响比热测量精度。 (3)坩埚及类型 根据测试温度范围选择坩埚,并最好将样品压倒坩埚底部,坩埚底部要非常平整,提高热接触效果。坩埚最好有定位针,保证位置固定。每一个比热容测试使用质量相同的坩埚。 (4)气体 静态空气或50ml/min氮气。 (5)样品及制备 样品要与坩埚底部接触良好,可以用聚四氟乙烯棒将粉末样品压实。 特别细的粉末样品可能还有比较多的水分,要先进行除水处理。 样品最好是薄片状以减小接触热阻,粉末样品最好采用中等尺寸(约0.1mm)以下的粉末颗粒。 样品必须是热稳定的固体、纤维、粉体和液体。因为样品为毫克级,所以样品的不均匀性会导致严重误差。化学反应或质量损失可能使测试无效。 导热性较差的样品通常会比比热容真值低5%。 (6)样品量 测试信号与样品量成正比,这意味着样品量越大越好,DSC信号在5mW至10mW之间较好。但样品量大的同时会使得样品的导热性差,同时容易造成样品受热不均匀。 (7)称重精度 重量准确度对比热测定非常重要,最好用百万分之一的天平称重样品。ASTM标准要求至少是十万分之一的天平。 (8)空白曲线 准确的比热容测试一定要减空白曲线,最好测试前能多做几遍空白曲线,前两遍用于调节仪器,第三遍曲线用于计算。 (9)加热速率 经典的比热容测试的加热速率通常为10K/min,如果想节省时间,20K/min的加热速率也可以得到测试结果,但比热容测试的原则是加热速率越慢越好,以使得试样温度受热均匀。 (10)参考材料 实际操作中参考材料可以采用蓝宝石,形状为片状。理论上最好是参考材料的比热容与样品越接近越好。[color=#ff0000]3.3. 样品大小和材料代表性比较[/color] 按照比热容的定义可知,无论是下落法还是差示扫描量热计法,被测样品尺寸和质量越大,样品吸收或放出的热量就越多,也就越便于得到准确的测试信号。无论是那种测试方法,样品的大小主要取决于加热方式、温度和热流检测方式。 下落法比热容测试中,样品是整体加热方式以及大面积接触放热方式,所以被测样品可以在很大(是DSC样品的几十倍)的同时还能保证样品的温度均匀性和放热准确性。大样品恰恰是下落法比热容测试的重要特点,这非常有利于非均质材料的比热容测试,如各种内部多结构形式的复合材料和各种低密度的轻质材料等。而大试样同时也是下落法测量精度高的重要保证。 差示扫描量热仪比热容测试中,原则上样品也是越大越好。但由于受到仪器结构的限制,样品大多数是底部加热和测量形式。为保证样品具有良好的热接触性能、传热性能以及温度均匀性,要求样品和参考材料最好是片状,且还要是毫克量级的微量样品。这就使得差示扫描量热法测试中要在测量准确性和样品代表性之间进行妥协和权衡,样品量大代表性好但测量精度差,测量精度高则需要样品量小代表性差,因此差示扫描量热仪多用于均质材料的比热容测试。[color=#ff0000]3.4. 测试温度范围比较[/color] 下落式比热容测试方法由于采用了绝热式量热计技术,可以轻松的实现上千度以上的高温测试,这也是国内外高温比热容测试多采用下落法的原因。 由于受到温差和热流信号探测技术的限制,一般标准的差示扫描量热仪最高温度不超过800℃。也有特制的上千度以上的差示扫描量热仪,但由于技术复杂度明显提高,使得仪器价格远高于普通差示扫描量热仪。[color=#ff0000]3.5. 测试效率比较[/color] 下落式比热容测试方法是一种单点温度测试方法,即测试样品在某个温度下的焓值和平均比热容,然后通过多个温度点焓值和平均比热容测试得到样品比热容随温度变化曲线。下落法看似不像差示扫描量热仪那样在样品温度连续变化过程中进行测量,但可以在设定温度下快速进行多个样品的连续测量。具体测试中,当第一个样品温度达到稳定后开始下落到绝热量热计中,在量热计热平衡过程中,可以导入第二个样品进行加热。当第一个样品在量热计达到热平衡并得到测试结果后,取出第一个样品后就可以下落第二个样品。如此连续操作方式可以极大提高下落法的测试效率,得到一条比热容温度变化曲线的效率基本与差示扫描量热计相同。而如果是测量多个试样的比热容温度变化曲线,则可以在一个温度点下把所有被测样品测量一遍,然后在升温至下一个温度点进行另一轮的测量,这种多个试样的测试效率要远比差示扫描量热仪快很多。 差示扫描量热仪的测试过程则是一个典型的升降温过程,升降温必须按照设定的速率进行,而且为了保证测量精度,升降温速率还不能太快,因此差示扫描量热仪这种程序式的测试流程大大限制了测试效率。[b][color=#ff0000]4. 测试设备校准[/color][/b] 下落式比热容测试方法是一种绝对测量方法,除了相应的温度传感器进行定期校准外,不再需要其它方式的校准。为了评价测试设备的测量准确度,可以采用NIST标准参考材料SRM 720(蓝宝石)或高纯度蓝宝石做为被测样品进行考核或定期自检。 对于差示扫描量热计法测量比热容而言,则需要经常采用蓝宝石参考材料进行测量和校准,ASTM标准测试方法甚至要求在每次比热容测试前都要进行校准。 另一方面,从理论上讲,差示扫描量热计法测量比热容过程中,要求参考材料的热容与样品热容越接近越好,也就是说对于不同比热容样品测量最好采用已知的近似比热容参考材料才能最大限度的保证测量精度。在这方面,文献"Reference materials for calorimetry and differential thermal analysis." Thermochimica Acta 331 (1999): 93-204给出了详细的描述。[color=#ff0000][b]5. 下落式比热容测试仪器的应用情况[/b][/color] 下落式比热容测试技术由于测量精度高而普遍应用于国内外的各个计量机构,相关文献可以参考中国计量院的研究论文:温丽梅, et al. "下落法测量材料比热的装置研究." 计量学报 z1 (2007): 300-304。 采用下落法测试材料比热容的文献报道也非常多,可以参考上海依阳实业有限公司官网上的大量文献报道:http://www.eyoungindustry.com/2013/1024/47.html。 下落法比热容测试方法和差示扫描量热计测试方法在国内基本是同步发展,由于航天部门大量采用各种复合材料和高温材料,要求测量精度高和测试温度范围广。同时,由于材料研制和生产中的工艺和质量需求,往往要求大批量的对材料比热容进行测试。因此,综合考虑下落法和差示扫描量热计法这两种方法的特点,国内航天系统几乎都选择了下落法做为材料工艺中的指定测试方法,并编制了相应的国军标测试方法。[b][color=#ff0000]6. 总结[/color][/b] 综上所述,下落法和差示扫描量热计法比热容测试技术各有特点,下落法具有测量精度更高,测试样品大更具有代表性,操作上手容易,测试效率快,测试温度范围宽等特点。差示扫描量热计则具有微量样品和应用面更广的特点。两种方法各有千秋,相互互补,需根据具体使用情况进行选择。

  • 量热仪需要补水你知道吗

    大家了解量热仪的都知道量热仪一般都有内筒和外筒,氧弹通过传递热量到内筒的水中,造成水温的变化,通过对水温变化的量采集计算出发热量,可见内外筒和水的重要性,首先我们注意的就是量热仪的水必须使用纯净水,如果有条件的尽量使用比纯净水还要纯的蒸馏水。如果水不干净,里面有杂质,或微生物会直接影响实验精准度和机器寿命。 经常人工补水,标准要求外筒水量要比内筒水量多5倍以上,由于仪器空闲时和测试中都会蒸发掉一部分水,并且试验中取出氧弹时也会带出一部分水,最终都会造成水箱水量减少,久而久之导致外筒缺水,热容量发生变化,有的量热仪会使内筒进水量减少,会使内筒水量达不到每次保持误差小于1g的要求。因此,需根据实验量热仪的大小不定期给量热仪补水。 关于给量热仪定期补水一般公司和技术人员都不会注意到,最容易被忽视的问题,但往往是这些小问题会照成实验数据误差偏大,影响实验室运作,化验室对化验员应定期培训,规定好化验室日常工作行为规范和养成定期维护仪器的良好习惯。

  • 量热仪为什么要标定及标定方法

    以下量热仪标定与反标定操作以ZNLRY—2005型智能汉字量热仪为例:一克煤碳燃烧后其热值传到量热仪内筒温度探头的过程中,其传导途径中的氧弹,内桶,水,等多种因素必然会产生热消耗,而这一系列热消耗必然会给量热仪最终测量结果带来较大的误差,所以,我们必须要求出在某一恒定水温下这些热消耗的值,量热仪表示单位为 E,A,K, 输入到量热仪中进行一个温度补偿才行,这就是量热仪做标定的目的。有一点还需特别注意,即不同室温必然会给外筒水温带来不同变化,而不同水温下的氧弹,内桶,等多种因素所产生的热消耗也是不同的,所以,看似较宽松的标定环境温度实际是非常严格的,比方说,做标定,任意选择一个室温都可以,首先保证外筒的水是满的,而且是恒定 24 小时以上与室温保持恒定即可,假设今天室温是 32 度,单求出准确的标定值(即热消耗值 E , A , K )输入到量热仪中,再反标定确定量热仪达到国标要求后,量热仪即调试完成,那么,标定所求出的热消耗值 E , A , K 是室温是 32 度热消耗值,如果,环境温度进而导致外同水温产生了变化,在室温是 32 度环境温度下求出热消耗值也将产生误差,环境温度导致外筒水温产生的变化越大,结果误差也就愈大,一般,环境温度变化不超过三度作出的结果较好,但是季节性缓慢的室温变化,室内如空调,热源导致的瞬间室度波动即便一度也不允许。一,首先将苯甲酸的热值看清楚,比如说它标注的是 26470J ,按一下仪器的 “ 设定 ” 键进入量热仪设定界面,会看到第一项 “ 系统 ” 中有 E,A,K,Q 四个参数,前面的 E,A,K, 是原始参数保持原样不用动它,移动光标键只需将 Q 改成 26470 按一下 “ 确认 ” 键存入即可,然后再将 “ 煤炭 ”“ 生料 ” 项内的所有参数修改成 0.000 分别按 “ 确认 ” 键存入即可,因为,现在要做的是标定,标定与反标定都是用苯甲酸,苯甲酸内是不含硫氢水的,所以,它们都应修正为 0.000 ,其它,点火热 150J 与包纸热 0.000 保持不变,至此, “ 设定 ” 界面内所有参数已全部输入完毕,再按一下 “ 确认 ” 键退出量热仪 “ 设定 ” 界面。二,按量热仪 “ 标定 ” 键,包纸重输入 0.000 ,如果本身就是 0.000 直接按一下有 “ 效键 ” 即可,再输入刚称量过放入氧弹内苯甲酸的重量即样重,称量时一定要注意,称量精度必须要精确到小数点后四位,比如说 0.9998 ,误差范围为万分之二即 0.9997-0.9999 ,称量范围 09-1.1 克 之间都能用;输完样重就是输入加水时间,比如你想输28 秒,直接按数字键 28 再按 “ 确认 ” 键即可,至此你的工作已全部做完,剩下的就是等待量热仪的打印结果了。标定的打印结果很简单,即 E,A,K, 三个英文数字,就是前面提到我们要求出的当前室温及水温下的热消耗值,要注意的是,在你平时做煤样或反标定时(用的是 “ 测定 ” 键),点火时间是 5 分钟,而做标定时你按的是 “ 标定 ” 键,点火时间是 15 分钟,不要认为是量热仪坏了,因为,标定目的是为校正量热仪求出精确热消耗值,搅拌时间要长些内筒水温才会非常稳定。一个标定结果是没有对比的,所以,在至少要做两个以上的标定才行,一般二至三个标定就可找出满意结果,将两个以上标定结果中的 E 做对比,比如说第一个与第三个标定结果中的 E 相差不超过 40J ,就将这两个结果中的 E 相加除以 2 ,即求出平均值,再将这两个结果中的 A, 与 K 平均值求出。再按量热仪“ 设定 ” 键,进入设定界面,在第一项 “ 系统 ” 中有 E,A,K,Q 四个参数,将你刚才求出的 E,A,K, 平均值分别输入,按 “ 确认键 ” 存入即可,其他一概不动,然后,再按一下 “ 确认 ” 键退出 “ 设定 ” 界面,至此,量热仪标定工作全部完成。量热仪反标定简称反标,我们知道,对于量热仪来讲,苯甲酸就相当于校正量热仪的砝码,热值的热值瓶子上面标的非常清楚是已知的,也是国标指定的唯一标准,比如说上面标的是 26470 焦耳,无论何时何地,当我怀疑量热仪出现偏差时,我随时可以烧 一克 左右的苯甲酸来看看量热仪所做出的结果与我的苯甲酸(唯一标准嘛)误差值有多少?从而决定我是否需要重新标定量热仪,所以,简单地说,反标定并不是要求你什么时间可以做什么时间不可以做,而是你随时可以做。当然,上面我们刚做过标定且求出热消耗平均值输入到量热仪内部,但是,并不能保证你所求出的热消耗值就是可以用的,因为,你并不知道你所求出的值给量热仪作出补偿后,是否不超出国标允许的误差范围 120J ,所以,仍必须用反标定手段来对你的标定工作是否满足国标要求做出一个最终的定性。量热仪反标具体操作如下:首先按一下量热仪的 “ 设定 ” 键进入设定界面,第一项 “ 系统 ” 中有 E,A,K,Q 四个参数,是你刚做完标定输入过的数据,不要动它,直接移动光标键将 “ 煤炭 ”“ 生料 ” 项内的所有参数修改成 0.000 分别按 “ 确认 ” 键存入即可,(其实,前面刚才做标定时你已改成 0.0000 了,你也不用动,告诉你这一步是为让你明白,苯甲酸内是不含硫氢水的,因为,平时你做煤炭时肯定要输入这些数据,其任何一间隙中你若想做反标定就必须要将煤炭中的硫氢水数据全部消掉该做 0.000 才行), 量热仪“ 设定 ” 界面内所有参数已全部输入完毕后,再按一下 “ 确认 ” 键退出 “ 设定 ” 界面。再按一下量热仪“ 测定 ”键,注意了,反标定与平时做煤炭一样,都是用 “ 测定 ” 键,与煤炭唯一的区别是 “ 设定 ” 键界面内的硫氢水是 0.000 ,然后按 ”1“ 选择煤炭项,输入编号,包纸重 0.000 ,(不愿改动编号直接按确认键就过了),片状苯甲酸样重即可,至此,全部输入完毕只等打印结果即可。。。。。最后,将打印结果中的 Qb 与苯甲酸对比,两者误差不超过120J即达国标,量热仪可以正常使用。如果误差过大需重新标定。标定时应注意的事项:1、标定时使用的苯甲酸应是同一批次(热值)的。国家一类以上的标准物质。2、按实验标准,应对煤样标准测量五次,五个热容量的极差≤40J/K时,则以五次的平均值作为该仪器的热容量。3、第一个最好做废样处理,因为整个体系尚未平衡。4、测试结果一次比一次大或一次比一次小均应找到原因后重标。5、不允许四次(甚至二次或三次)热容量的极差很小,就不做第五次了,也不允许热容量的极差≥40J/K。6、环境温度与外桶水温尽可能一致,极差1℃为宜。

  • 【原创】差示扫描量热仪的量热灵敏度问题

    最近,我们在考察差示扫描量热仪仪器,发现各家厂商的指标很乱,有的厂商说是灵敏度达到0.04uW,有些说达到0.01uW,然后,每家的定义又不太一样,不知道关于灵敏度有没有明确的定义?如何测试验证?大家知道的每家的实际测试灵敏度的情况如何?

  • 长沙友欣量热仪

    量热仪内桶始终有水排不出,外桶水满后溢水口溢水,内桶液位达到固定位置后就不溢水了,啥原因呢?

  • 长沙友欣量热仪

    量热仪内桶始终有水排不出,外桶水满后溢水口溢水,内桶液位达到固定位置后就不溢水了,啥原因呢?

  • 量热仪实验时间过长的原因与解决办法

    量热仪实验时间过长原因: 1.量热仪内桶水位不够 解决办法: (1)放水阀漏水,清洗或更换放水阀 (2)外桶未泵满水手动将外桶水泵满 2.量热仪主机搅拌有问题 原因:搅拌效率不够 解决办法: (1搅拌)电机无力,更换电机 (2)搅拌电机与搅拌杆连接不好,接好搅拌杆 (3)搅拌杆位置不正,调正固定套 (4)搅拌叶片角度不对,叶片调成45度角 (5)试样热值太低,加添加物 3.使用添加物应注意的问题:量热仪 1)已知热值的苯甲酸、标煤、擦镜纸均可作为添加物。 2)被测煤样与添加物要混合均匀。 3)被测煤样与添加物各取的重量之和应在1克左右为宜,其总热值不要低于18000J,也不要高于30000J。 4)量热仪实验之前应在系统设置的添加物热值一栏中将添加物的热值(J/g)输入其中,测试时,再将添加物的重量输入对应栏目中。试验结束,微机会自动从结果中减去添加物的热值。 4.探头不在正确位置,调整到正确位置。 5.探头周围结垢,拆下清洗。 以上是量热仪实验时间过长的简要原因及解决办法,具体问题还得具体分析

  • 量热议

    量热议内筒温度稳定性好长时间才稳定,怎么解决

  • 求量热仪安装程序

    谁有BYTRL-5000V微机量热仪安装程序急用,原程序打不开,提示找不到打印口软件锁,知道怎么解决的说下也可以,邮箱w121019205@163.com

  • 锥形量热仪的应用

    锥形量热仪的应用

    [align=center][font='宋体'][size=16px]锥形量热仪的应用[/size][/font][/align][font='宋体'][size=16px]中广测配备了锥形量热仪,该仪器具有灵敏度高、准确性好、分析速度快等优势,能够检测材料的释热速率、有效燃烧热、烟及毒性参数、质量变化参数等多项性能,在建筑材料、高分子聚合物、化工材料、工程材料、新材料等领域应用广泛。[/size][/font][align=center][font='宋体'][size=16px][color=#000000] [/color][/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271143295351_2240_2862401_3.jpeg[/img][/align][font='宋体'][size=16px]一、仪器信息[/size][/font][font='宋体'][size=16px]1.仪器名称:锥形量热仪 [/size][/font][font='宋体'][size=16px]2.英文名称:CONE[/size][/font][font='宋体'][size=16px]3.生产制造商:英国FIRE TESTING TECHNOLOGY[/size][/font][font='宋体'][size=16px]4.型号:FTT0402 ICONE PACK[/size][/font][font='宋体'][size=16px]二、主要技术参数[/size][/font][font='宋体'][size=16px]1.圆锥形加热器:5kW电热元件,输出热量可达100kw/m[/size][/font][font='宋体'][sup][size=16px]2[/size][/sup][/font][font='宋体'][size=16px],可测试水平或垂直方向的试样;[/size][/font][font='宋体'][size=16px]2.温度控制器:等速加热或分步控制热流量;[/size][/font][font='宋体'][size=16px]3.火花点火:10kV火花点火器;[/size][/font][font='宋体'][size=16px]4.测压元件质量准确度:0.01g。[/size][/font][font='宋体'][size=16px]三、应用领域[/size][/font][font='宋体'][size=16px]建筑材料、高分子聚合物、化工材料、工程材料、新材料等领域。[/size][/font][font='宋体'][size=16px]四、服务范围[/size][/font][font='宋体'][size=16px]1.建筑材料、高分子聚合物材料、化工材料、工程材料、新材料火灾安全评估;[/size][/font][font='宋体'][size=16px]2.燃烧性能研究:[/size][/font][font='宋体'][size=16px](1)材料燃烧释热性能:燃烧热速率(HRR)、总释放热(THR)、有效燃烧热(EHC)等;[/size][/font][font='宋体'][size=16px](2)材料燃烧时间分析:点燃时间(TTI);[/size][/font][font='宋体'][size=16px](3)材料燃烧烟气分析:烟气毒性、一氧化碳释放量、二氧化碳释放量等。[/size][/font][font='宋体'][size=16px]五、应用案例[/size][/font][font='宋体'][size=16px]1[/size][/font][font='宋体'][size=16px].材料燃烧热性能及燃烧烟气分析[/size][/font][font='宋体'][size=16px]材料燃烧及阻燃一直是高分子材料行业关注的热点,特别是高分子材料在燃烧时的热和烟气释放情况是材料燃烧及阻燃的难点。采用锥形量热仪能够对材料进行实际火灾下的燃烧模拟测试分析,实时监测材料的热及烟气的释放情况。该方法对总体评价材料燃烧性能具有重要意义。[/size][/font][align=center][font='宋体'][size=16px][color=#000000] [/color][/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271143298343_3206_2862401_3.png[/img][/align][align=center][font='宋体'][size=16px](图片来源:Pengjie Liu, J. APPL. POLYM., 2019, app.48490)[/size][/font][/align][font='宋体'][size=16px]2[/size][/font][font='宋体'][size=16px].阻燃材料阻燃机理的研究[/size][/font][font='宋体'][size=16px]通过燃烧过程来分析材料的阻燃机理是高分子材料研究的重点。通过锥形量热仪,对材料的燃烧热释放的情况、烟气释放情况、一氧化碳、二氧化碳、点燃时间、有效热释放、质量损失等参数的检测分析,从而推断材料的阻燃机理。该测试分析方法对总体评价阻燃材料的发展具有重要意义。[/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271143299968_2617_2862401_3.png[/img][/align][font='宋体'][size=16px](图片来源:Yue, X. P. Li, J. Liu, P. J. J. Mater. Sci. 2018, 53, 5004.)[/size][/font][font='宋体'][size=16px]六、样品要求[/size][/font][font='宋体'][size=16px]1.块状样品;[/size][/font][font='宋体'][size=16px]2.样品尺寸:仪器进样尺寸为10×10cm,送检要求样品不小于该尺寸。[/size][/font]

  • 【资料】石英微量天平/ 热传导量热仪

    石英微量天平/ 热传导量热仪Allan L. Smith摘要 : 石英微量天平是一种新型高效的薄膜热分析和热量测定仪器。薄膜的物理和化学性质均可以在此仪器上得到研究。水的吸附,药物薄膜的软化行为,富勒稀碳分子膜中溶剂的提取是其典型的应用。也可用于油漆和喷釉的烘干和加工以及通过监控质量的变化和新陈代谢的放热进行营养环境中生长细菌的检测。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=71165]石英微量天平/ 热传导量热仪[/url]

  • 【原创】量热仪的技术发展探析1

    [量热仪[/URL]是用来测定固态、液态可燃物质的热值的仪器,广泛运用于煤矿、电力、冶金、化工、建材、食品、质检、教学、科研等行业测试煤炭、石油等物质的热值。   经过100多年的变革,量热仪的外观、结构、功能、操作模式等方面都进行了比较大的改进,但仍有一些地方需要进一步进行改进和完善:      一、[]量热仪[/URL]的原理及发展      1.[]量热仪[/URL]的原理   量热仪的测试原理是先用一种已知热值的物质(通常用标准物质苯甲酸)测得整个量热体系温度升高一度所需的热值,即测得该量热仪[/URL]的热容量。如,已知苯甲酸的热值为26500J/g,燃烧1g的苯甲酸可使量热体系升高2.65℃,则测得量热仪的热容量为10000J/℃;若将1g未知热值的煤燃烧可使量热体系升高2℃,则被测煤样的热值为20000J/g,若升高2.5℃,则被测煤样的热值为25000J/g。      2.量热仪[/URL]的发展   目前国内使用的量热仪除国产的外,还有美国LECO公司和德国IKA公司生产的,其型号也有恒温式、绝热式和双干式。但不论是哪种型号、哪个厂家生产的,都还没有脱离自1881年第一台量热仪诞生以来的基本模式,即包括水套(通常叫作外筒)、内筒、燃烧室(通常叫作氧弹)等基本部件组成的体系。一百多年来,特别是近20年来,随着计算机技术的飞速发展,量热仪在结构和操作模式方面都进行了很大的改进,自动化程度大大提高,测试速度更快,精密度、准确度更高。   绝热式量热仪由于对温度的自动跟踪技术要求很高,这种型号的量热仪在市场上比较少见,双干式由于氧弹结构非常复杂,且对环境条件要求也很苛刻,所以基本上不生产了,故本文所谈的主要是恒温式量热仪。   从最早的量热仪到现代的量热仪[/URL]在以下方面进行了比较大的改进:   20世纪70年代以前,量热仪用的测温工具是一种类似普通水银温度计的贝克曼温度计,也是通过水银在玻璃管中的热胀冷缩来反映温度的变化,所不同的是为了读温更准确,故将其刻度分得更细(实际上是将玻璃管中的毛细管做得更细),但这样就要求将温度计做得很长,使用起来不方便且容易损坏。同时考虑到测试过程中只需要测得起点与终点的温差,并不需要实际温度值,而一般实际测试过程的温差都在4℃以下,所以温度计刻度量程5~6℃即可,但是当实际水温低时,可能读不到温度,即水银收缩到下方的储藏室中,而当水温高时,也可能读不到温度,即水银膨胀到超过最大量程。为了解决这个问题,在温度计的上方增加一个储藏室,用来储藏备用水银。当水温太低时,从上方储藏室中倒回一部分水银到毛细管中来,当水温太高时,则将毛细管中的水银倒回一部分到上方储藏室中,这样就保证在任何水温条件下,贝克曼温度计都能读温。   贝克曼温度计尽管比普通水银温度计读温更准,但也只能读到0.001℃(且要借助放大镜来读),操作也很麻烦,而且由于制造技术上的原因,温度计毛细管内径和刻度都不可能十分均匀,因此必须进行毛细孔径校正和平均分度值校正,这些工作也是相当繁琐的。   量热仪[/URL]的第二个改进就是将内筒水量的人工称量改为自动称量,内筒水量的多少及其重复性好坏是影响量热仪的精密度和准确度的重要因素。目前国内市场的量热仪内筒水量,主要是2000g左右和3000g左右的两种,根据国家标准的要求,任何一种型号的量热仪其内筒水量的重复性应小于1g。由人工使用电子台秤来称量内筒水,既麻烦又容易带来人为操作不规范所产生的误差,改为自动称量以后提高了工作效率又避免了人为因素的影响,提高了量热仪的重复性,使测得的结果更加准确。内筒水量自动称取的方式到目前为止有下列三种:量杯式、自动平衡式和电子量杯。

  • 【分享】量热仪操作使用注意事项

    第一 量热仪测定仪器要识别内筒里边的温度第二 还要注意量热仪测定仪里边要尽量保持内筒里边的温度流失尽量降到最小第三 煤炭量热仪测定仪器最主要的还是温度识别转化程序第四 量热仪测定仪器注意装配工艺(好的安装工艺往往会起到不一样的效果 )

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制