当前位置: 仪器信息网 > 行业主题 > >

全自动催化剂在线评价系统

仪器信息网全自动催化剂在线评价系统专题为您提供2024年最新全自动催化剂在线评价系统价格报价、厂家品牌的相关信息, 包括全自动催化剂在线评价系统参数、型号等,不管是国产,还是进口品牌的全自动催化剂在线评价系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合全自动催化剂在线评价系统相关的耗材配件、试剂标物,还有全自动催化剂在线评价系统相关的最新资讯、资料,以及全自动催化剂在线评价系统相关的解决方案。

全自动催化剂在线评价系统相关的资讯

  • 欧世盛发布欧世盛EMC-3 双通道全自动催化剂 评价装置新品
    EMC-3 双通道全自动催化剂评价装置适用于催化剂研发与筛选阶段反应,可为您节省大量时间、人力和物力。该装置以微反应技术为核心,全自动流程控制为基础,保障气液固反应效率。这款全自动、紧凑型、具有创新控制技术的系统能够提供催化剂测试所需要的各种配置与选项。通过一套交互式软件控制系统进行一系列实验,实时获取高精度、高重现性的结果。EMC-3 双通道全自动催化剂 评价装置特点:关键技术:基于清华大学微反应器技术的气液混合器,能够控制气泡达到微米级,气液混合效率更高,传质速度是普通300倍,反应效果更好。双通道同时评价:日平均评价10-20种催化剂配方,同时根据用户需求扩展4、6、8通道同时评价。交互式系统管理软件:多任务管理模式,可视化操作界面,全流程控制,数据参数可追溯,一套软件可实现多台评价装置同时运行。反应参数更改:可通过触摸屏快速更改气液流速、反应压力、温度。一机两用:催化剂筛选及催化剂寿命评价,筛选速度快,效率高。系统平衡时间:数分钟,死体积小,不易反混,副产物少。重复性:重复性好。体积小:可将仪器放入通风橱内,节省实验室空间。输送粘性反应物或纳米颗粒悬浊液:加装双注射高压恒流输液泵,适用于粘性反应物或纳米颗粒悬浊液输送。系统压力调节器:全自动背压阀。全自动气液分离器,分离罐体积5mL。预留100位样品自动采样接口,可设置采样间隔时间,自动完成样品采样。预留在线红外、在线紫外、在线液相、在线气相接口,可根据应用需求,在线实时检测评价结果。技术参数:型 号EMC-3反应单元材 质316L反应器通道数双通道(标配)反应压力≤10Mpa反应温度室温~500℃预热器温度室温~500℃液路伴热温度(选装)室温~200℃供液单元液路数量2路(可根据应用需要扩增)液体流速0.01~3ml/min液体精度±1% F.S.供气单元气路数量3路(可根据应用需要扩增)气体流速5~100sccm气体精度±1% F.S.气液分离单元气液分离器体积5mL出液滞后体积1mL检测液体体积±0.1mL创新点:基于清华大学微反应器技术;体积小可放置通风橱,节省实验空间;系统平衡时间数分钟,死体积小,不易反混,副产物少;双通道同时评价; 欧世盛EMC-3 双通道全自动催化剂 评价装置
  • 催化剂的定量和定性分析的完美组合:iChem 700全自动化学吸附仪和iMS 770全自动质谱分析联用系统
    iChem 700 和 iMS 770 联用 – 构成强大的催化剂表征/定量定性分析系统众所周知,在催化剂的研究中,定量分析以测定催化剂某一元素或化合物的量,定性分析以测定催化剂中某一元素或化合物的存在。定量和定性的组合联用对催化剂的研发过程中催化剂的表征、定量定性分析,形成完整的分析体系,对催化剂的研究起着至关重要的作用。iChem 700全自动化学吸附仪提供高质量的定量分析,iMS 770全自动在线质谱仪提供高质量的定性分析。iChem 700 全自动程序升温化学吸附仪 - 先进的催化剂表征/定量分析系统催化剂性能表征是评判催化剂性能的重要指标,其中催化剂的动力学指标最为重要。对于固体催化剂而言,同样重要的还有宏观结构和微观结构指标。催化剂性能的动力学表征衡量催化剂质量的最实用的三大指标,是由动力学方法测定的活性、选择性和稳定性,是活性催化剂提高化学反应速率的性能的一种定量表征。固体催化剂微观结构和性能表征结构固体催化剂起催化作用的部分是表面或表面若干层的原子所组成的活性中心。iChem 700 全自动程序升温化学吸附仪, 作为市场上配置优越的此类仪器,其性能卓越不言而喻。其硬件配置包括,6个高性能质量流量计,4个六通阀,2个三通阀,1个高温炉,1个蒸汽发生器,1个冷阱,1个高灵敏度TCD检测器,3个压力传感器,内部有4个温控区(分别为内部管路和阀门, TCD, 蒸汽, 高温炉)。14种规格的LOOP环可选。也许大家有兴趣了解,高配置的化学吸附仪有什么优点?其优点是显而易见的。1. 六个质量流量计:全自动化学吸附仪采用固体-气体两相反应,所以精确控制每一路气体的流量是确保分析数据质量的保障。2. 三个压力传感器:这样的设计,确保在制备,载气,分析气路的主管路上均配有压力传感器。实时检测各个主管路的压力变化,及时发现管路中可能有的堵塞。确保管路的随时通畅。进而保证分析数据的质量。3. 十四种LOOP环的选择:在不同的催化剂和催化剂不同的研发阶段,满足催化剂研发需要,并保证了低负载金属,小样品量,高负载金属,大样品量等各种情形下的需求。在有了上述高配置的仪器基础上,仪器的各项分析功能就有了强有力的保障:1. TPD分析(包括NH3-TPD):程序升温脱附,将已吸附吸附质的催化剂按预定的升温速率加热,得到吸附质的脱附量与温度的关系。主要用于研究吸附质与吸附剂之间的结合情况。 NH3-TPD分析可以提供催化剂的酸性位信息。2. TPR分析:程序升温还原,是将金属氧化物,混合金属氧化物和分散于载体上的金属的表面进行还原,从而获得金属氧化物与被还原的温度之间的关系。3. TPO分析:程序升温氧化,用于积碳催化剂的烧炭再生的考察,也用于研究气相氧与催化剂表面吸附氢和表面氧空位的反应。TPO确定催化剂在完成TPR之后重新被氧化,被氧化的部分占总共被还原部分的比例,用以反映催化剂的循环氧化还原性能。4. TPS分析:程序升温硫化,是一种研究催化剂是否容易“硫化”的有效,简单的方法。5. TPSR分析:程序升温表面反应,在一定程度上弥补了TPD的不足,将TPD和表面反应结合起来,对催化剂的研究提供了一种新的手段。6. 脉冲化学吸附分析:用以分析金属分散度和活性金属的尺寸。每一次脉冲注入的反应气体量由LOOP环的体积决定。脉冲化学吸附提供了一种分析活性金属表面积,催化剂金属分散度及活性金属颗粒大小的方法。7. 动态BET比表面分析:用以分析催化剂的比表面积,尤其是在各种化学吸附之前和化学吸附之后的BET比表面积的比较。与此同时,iChem 700的软件功能也包含了仪器控制和数据处理两个部分,同样具有强大的功能。从以上看出,iChem 700 全自动程序升温化学吸附仪,能够完成各种催化剂的表征和定量分析,成为催化剂研发和质量控制的有效手段和保障。iMS 770全自动在线质谱仪 – 催化剂定性分析系统iMS770质谱分析系统是分析大气压力下进样气体的紧凑型台式分析系统,是气体分析领域完美的解决方案,特别是在催化领域,iMS-770质谱分析系统集成了德国Pfeiffer Vacuum的核心组件。采用进口的一套进气装置,PrimaPlus质谱仪,干式膜片泵和HiPace涡轮分子泵。iMS-770质谱软件采用德国Pfeiffer Vacuum原装的分析操作软件,可对多达128种不同质量数的气体进行定性分析。其特点如下:1.采用四极质谱仪作为核心检测器,背景噪音低,检测限达到1ppm 2.高灵敏度离子源,采用镀氧化钇的铱灯丝,抗氧化能力强,寿命长。3.真空度和电流双重保护,防止系统误操作或突然漏气。4.分辨率为0.5-2.5amu,优化信号的强度,稳定性优于3%Ar。5.偏压技术和场轴技术,增强离子透过率,降低背景干扰。6.分子泵、前级泵产生干燥无油的测试环境,对不同气体有良好的抽气能力。7.高真空的分析室腔体,保温200℃。8.毛细管分流进样, 进样温度200℃,分流比例可调节。9.现场维护进样毛细管、离子源、灯丝、分子泵、前级泵等。10.分子泵,冷却类型,空气;轴承:复合轴承,使用寿命长。11.专用软件,操作简单,界面友好。iChem 700 和 iMS 770 联用 – 将质谱仪iMS 770的进气毛细管插入化学吸附仪 iChem 700的尾口,也就是经过化学吸附反应后生成的气体在流经化学吸附仪的TCD检测器后,进入质谱分析仪,在经质谱检测器的分析。这样的分析组合可以给催化剂研发人员对所研究的催化剂有一个更完整的表征。无论是在iChem 700化学吸附仪上做的TPD,TPR,TPO,脉冲化学吸附等各种实验,均可以将TCD分析后的气体,再引入到质谱检测器分析。综上所述,iChem 700对催化剂所做的定量分析和iMS 770对催化剂所做的定性分析,构成了催化剂的完整的表征系统,是催化剂研发人员必不可少的联用分析手段。
  • 麦克仪器提供全套催化剂表征仪器加速催化剂开发
    Loyola大学研究人员考察麦克仪器的气体吸附仪和催化剂评价装置。 材料表征技术全球领导者麦克仪器(micromeritics),扩展了其用于多相催化剂测试的仪器组合,因此客户现在可以很容易地选择多个高效协同工作的系统来加速催化剂开发。麦克仪器的研究级气体吸附仪ASAP2020和全自动实验室催化剂评价装置Microactivity Effi,为目前流行且强大的组合。ASAP2020用于定量活性催化剂和载体的主要物性,Effi可用于相关条件过程的催化剂评价,来自Universidad Loyola (Seville, Spain)的Dr Manuel Antonio Díaz Pérez是使用这一双仪器解决方案进行高效催化剂研究的最新客户之一。 “当谈到建立我们的新实验室时,我毫不犹豫地直接去麦克仪器公司复制了一套在以前的工作中证明对我有价值的测试设备,” Díaz Pérez博士 表示,“EFFI是非常有效和高度可靠的。硬件稳定,软件直观,如果您需要,更换部件非常容易。我对ASAP 2020的体验主要是为了物理吸附来研究表面积和孔隙率,这是任何多相催化剂都需要的性能表征。展望未来,我希望投资于Micromeritics的更多设备,以进一步增强我们的研究能力。他们提供的一系列设备可得到丰富的相关和有用的数据,可加快催化剂的开发。” Díaz Pérez博士在University of Loyola工程系内建立一个新的实验室,以开发解决特定环境问题的新材料。研究课题包括将生物燃料转化为大宗化学构件的催化剂和二氧化碳的吸附剂。ASAP2020气体吸附仪为物理吸附加化学吸附配置,采用体积法分析催化剂的表面积,孔容和孔径分布,这些参数定义了反应物和产品进出活性催化剂位点的难易程度,帮助研究者在分子级别优化反应环境。Effi催化剂评价装置可用于研究催化剂活性、选择性、产率和典型条件下的失活,可得到动力学数据和合适的催化剂再生条件。 “高质量、可靠的分析设备是一项值得投资的项目,” Díaz Pérez博士表示 “这对实验室的日常运行和生产力有很大影响。麦克仪器的产品非常好用,该公司在具体分析和应用方面提供快速有效的帮助。我相信我们购买的新仪器将对我们正在进行的研究做出重要贡献。” Micromeritics Microactivity Effi 催化剂评价装置 Micromeritics ASAP 2020 Plus 气体吸附仪关于麦克仪器麦克仪器公司是提供材料表征解决方案的全球领先厂商,在密度、比表面积及孔隙度、粒度及粒形、粉体表征、催化剂表征及工艺开发等五个核心领域拥有一流的仪器和应用技术。麦克仪器公司成立于1962年,总部位于美国佐治亚州诺克罗斯,在全球拥有400多名员工。同时具备丰富的科学知识库和一流内部生产制造, 麦克仪器公司产品覆盖了石油加工、石化产品和催化剂、食品和制药等多个行业,以及为下一代材料例如石墨烯、MOF材料、纳米催化剂和沸石等提供最前沿的表征技术。在Particulate Systems旗下,麦克仪器公司发现并商业化独特和创新的材料表征技术,对核心产品线进行补充。商业测试实验室–Particle Testing Authority (PTA)实验室可提供表征分析测试服务。战略收购富瑞曼科技有限公司(Freeman Technology Ltd)和PID公司(PID Eng & Tech),也反映公司一直致力于在粉体和催化等工业关键领域提供优化、集成的解决方案。仪器咨询:400-860-5168转0677
  • 麦克仪器推出催化剂原位表征系统ICCS为多相催化剂研究助力
    ▼点击蓝字,关注麦克▼麦克仪器推出催化剂原位表征系统ICCS为多相催化剂研究助力原位直接评估反应条件对催化剂主要性能的影响麦克仪器公司推出了新的原位催化剂表征系统(ICCS),原位直接评估反应条件对催化剂主要性能的影响。ICCS是Micromeritics公司和PID Eng&Tech公司的专业知识相结合的产物,PID Eng&Tech公司最近被Micromeritics公司收购,并以其微反应器和中试工厂技术而闻名。ICCS使研究人员能够有效地量化反应对定义催化剂参数(如活性中心数量)的影响,所得数据直接支持开发更有效的多相催化剂。 麦克仪器的化学吸附技术如程序升温分析和脉冲化学吸附在全球范围内应用逛逛。另一方面,MicroActivity Effi是一种高度自动化的催化剂筛选工具,用于测量工艺相关条件下的产率、转化率、选择性和催化剂再生。ICCS将化学吸附和程序升温技术(如TPR、TPO和TPD)与Microactivity Effi的现有功能相结合,从而可以对催化剂进行表征、测试,然后对其进行重新表征,以评估反应的影响。所有这些都是在严格控制的条件下进行的,没有受到外部环境污染的风险。 ICCS催化剂原位表征系统集成了用于全自动精确气体控制的质量流量控制器和用于去除冷凝蒸汽的冷阱。精确的热导检测器监测流入和流出样品反应器的气体浓度的变化。ICCS可以连接到任何微反应器,甚至是定制的反应器,以提供有关被测催化剂的重要信息。 当ICCS与Microactivity Effi直接相连时,ICCS可以进行原位化学吸附测试,可以对催化剂、催化剂载体和其他材料进行分析,不会有暴露在外部环境中的风险,因为不需要将样品从反应器中取出。这消除了大气气体和湿气污染的可能性,因为大气气体和湿气可能会损坏活性催化剂并损害数据完整性。程序升温实验,包括程序升温还原(TPR)、程序升温氧化(TPO)和程序升温脱附(TPD),可以在大气压或高达20bar的压力(取决于相关筛选系统的额定压力)下进行,提供有关高压下催化剂氧化还原性能的重要信息。可以使用相同的样品对相同的材料进行多种表征。 欲了解更多ICCS信息请点击查看Micromeritics原位催化表征系统 (ICCS) 与 Microactivity EFFI关于麦克仪器公司麦克仪器公司是提供材料表征解决方案的全球领先厂商,在密度、比表面积及孔隙度、粒度及粒形、粉体表征、催化剂表征及工艺开发等五个核心领域拥有一流的仪器和应用技术。麦克仪器公司成立于1962年,总部位于美国佐治亚州诺克罗斯,在全球拥有400多名员工。公司同时具备丰富的科学知识库和一流内部生产制造,为石油加工、石化产品和催化剂、食品和制药等多个行业,以及下一代材料例如石墨烯、MOF材料、纳米催化剂和沸石等表征提供高性能产品。公司设有Particle Testing Authority(PTA)实验室,可提供商业测试服务。战略收购富瑞曼科技有限公司(Freeman Technology Ltd)和PID公司(PID Eng & Tech),也反映公司一直致力于在粉体和催化等工业关键领域提供优化、集成的解决方案。设备咨询热线:400-860-5168转0677
  • 麦克仪器发布ICCS催化剂原位表征系统新品
    ICCS-催化剂原位表征系统ICCS催化剂原位表征系统是美国麦克仪器推出的新一代催化剂原位表征系统,与其它动态实验室反应器系统(如麦克仪器的微型反应器Micro-Activity Effi和Solo)不同,它在现有反应系统的基础上增加了两项关键的表征技术--程序升温分析(TPx)和脉冲化学吸附,此外还可以通过选配相应的配置进行物理吸附。用户可以使用ICCS在新鲜催化剂上进行这些重要的表征技术,且无需从反应器中取出催化剂可直接进行重复测试。对同一个样品既可进行反应研究,又可同时获得TPx和脉冲化学吸附的数据,实现了对催化剂的原位表征,为催化研究提供了新的表征工具。进行这种原位分析,可消除环境中气体或水分污染催化剂的可能,避免损坏活性催化剂和破坏反应后表征数据的相关性。ICCS催化剂原位表征系统技术ICCS常规测试流程包括:将催化剂装入ICCS的反应器系统中,接下来可选择TPx方法表征催化剂。在TPx分析中,程序升温还原(TPR)常用于负载型金属催化剂,程序升温脱附(TPD)常用于酸碱催化剂。在TPx之后通常进行脉冲化学吸附,以确定催化剂活性位点的数量。通过TPx和脉冲滴定可以获得新鲜催化剂在典型反应条件下(特别是在高压下)的信息。进行了上述表征后,用户无需额外添加或转移催化剂,可以直接继续对相同的催化剂样品进行反应研究。长时间使用后的催化剂可以采用与新鲜催化剂相同的条件进行相同的TPx和脉冲化学吸附分析。无需从反应器中取出催化剂,就可比较反应前后催化剂的关键特性,如活性位点数目。ICCS催化剂原位表征系统主要特点及优势ICCS催化剂原位表征系统可以在高温高压的反应条件下对催化剂、催化剂载体和其他材料进行原位表征,有效排除环境中的干扰。两个高精度的质量流量计可以精确、全自动地控制气体流量,保证TPx和脉冲化学吸附的精确分析。原位测试,可对同一催化剂样品进行多种表征。高精度的热导检测器(TCD)可以实时检测流经样品管前后的气体的细微浓度变化。具有直观的软件和图形界面,通过触摸屏可进行安全警报,命令,控制参数等一系列操作。控温区内不锈钢管线提供了惰性和稳定的运行环境,避免管路中的冷凝。两个内部温度控制区可以独立运行。内置可控温的冷阱,用于去除冷凝物(如氧化物还原过程中产生的水)。超小的内部管路体积,可很大程度地减少峰展宽并显著提高峰分辨率。防腐检测器灯丝,可兼容TPx和脉冲化学吸附中常用气体。交互式峰编辑软件使用户能快速方便地评估结果,编辑峰并得到报告。只需要简单的指向和点击就可调整峰边界。催化剂原位表征系统分析能力ICCS催化剂原位表征系统能够进行一系列化学吸附和程序升温反应的原位表征,可量化催化剂及载体的各项关键属性,便于研究催化剂活性、选择性、失活、中毒和再生的过程。脉冲化学吸附可获得以下信息:金属表面积金属分散度平均金属颗粒尺寸活性位点数目TPx技术应用举例:研究催化剂再生(程序升温氧化,TPO)研究吸附强度(TPD)?评估金属催化剂中助剂对金属与载体间相互作用的影响(TPR)表征物理吸附可获得材料的表面积(选项)。 图1:压力对还原温度的影响 图2:系统示意图 催化剂原位表征系统符合以下规定及标准 PED – Directive 2014/68/UE压力设备指令(PED)该设备符合欧盟和西班牙的相应压力设备标准2014/68/UE和RD 709/2015,并通过了相关设计、制造和评估的适用法规。设备出厂时将根据现行规定打上标记。EMC – Directive 2014/30/UE电磁兼容性指令(EMC)根据标准EN 61326进行EMC抗扰性测试根据标准EN 61326进行EMC排放测试LVD – Directive 2014/35/UE低压指令(LVD)根据标准EN 61010-1进行电气安全测试ATEX – Directive 2014/34/UE用于潜在爆炸性环境(ATEX)中的设备和防护系统请勿在潜在爆炸性环境中使用本设备RoHS – Directive 2011/65/UE有害物质限制 技术指标电气电压单相频率50 – 60 Hz功率单相控制模块:低要求处理器 Intel Core I3或同等配置操作系统Windows 7/8/10 (32/64 bits)内存4 GB硬盘500 GB温度系统阀箱 高可达180℃加热线高可达180℃冷阱 通过Peltier系统可控制在-15℃-70℃压力系统工作压力高可达20 bar(g)Options 配件loop环体积0.5 cc and 1.0 cc 气体流量质量流量计2进气压力30 bar流量范围MFC1 MFC2Range 1: 0 – 800 mlN/min Range: 0 – 150 mlN/minRange 2: 800 – 3000 mlN/min气体输送要求30bar压力,通风接口为1/8’’气瓶接头不包括在内,由用户提供Physical 仪器参数高445 mm (17.52 ”)宽545 mm (21.46 ”)长500 mm (19.69 ”) (不含电脑)重量40 kg (88.2 lbs.)环境要求温度10 – 35 oC operating湿度10 – 60 % without condensation其它避免阳光直射,避免靠近冷热源 创新点:1、技术创新 ICCS增加了两项关键的表征技术--程序升温分析(TPx)和脉冲化学吸附,并与Microactivity Effi的现有功能相结合,以实现催化剂的表征、测试,评估反应的影响。此外可通过选配相应的配置进行物理吸附。 2、原位表征 ICCS可实现对同一个样品进行反应研究,同时获得TPx和脉冲化学吸附的数据,无需从反应器中取出催化剂,直接进行重复测试,避免受到外部环境污染的风险,实现对催化剂的原位表征。 3、系统组件 集成了用于全自动精确气体控制的质量流量控制器和用于去除冷凝蒸汽的冷阱。精确的热导检测器监测流入和流出样品反应器的气体浓度的变化。ICCS可以连接到任何微反应器,甚至是定制的反应器,以提供有关被测催化剂的重要信息。 ICCS催化剂原位表征系统
  • 美国麦克推出全自动小型催化反应器
    美国麦克公司推出"Microactivity-Refference"全自动小型催化反应器     美国麦克仪器公司于近日发布了一款全自动小型催化反应器--Microactivity-Refference.它是一款全自动计算机控制的用于催化反应的微型反应器,温度高达1000℃,压力可达100bar。该反应器可实现诸多反应,如加氢裂化,氢化处理,异构反应,加氢反应,加氢脱硫,加氢脱氮,氧化反应,聚合反应,重整(芳构化),水蒸汽重整等等   MICROACTIVITY-Reference该装置为一体结构,包括了电路系统,控制系统和质量流量计系统及置于热箱中的六通阀和反应器。基于具有分布式控制结构的TCP/IP以太通讯技术,系统可以在线远程控制或面板控制。独立于计算机的微处理安全集成控制器。同时,该系统配置了各种选配附件供研究人员选择   如果需要了解更详细的资料,请登陆美国麦克公司中国区网站www.mic-instrument.com.cn或致电中国区各办事处
  • 实践与创新结合,催化剂评价实验装置助力学生实现突破
    在化工领域的学习和实践中,催化剂评价实验装置是不可或缺的重要工具。它不仅能帮助学生增加实际操作经验,还能深入了解催化剂的性能和反应条件对反应产物的影响。我们的催化剂评价实验装置,具备先进的功能和设计,为学生们提供了一个开放性、灵活性和安全性兼备的实践平台。 作为催化剂评价实验装置的核心部分,固定床管式反应器是模拟真实工业反应条件的理想选择。它可以根据不同的反应需求进行规格定制,使学生们能够亲身体验到实际工业生产中的复杂环境。同时,反应器的样品加热炉设计方便灵活,可以轻松更换不同的反应器,为学生提供了更多实验设计和开发的机会。 为了确保操作安全和温度控制的准确性,我们的实验装置配备了超温超压报警系统和高精度的程序控温技术。学生可以放心进行实验操作,并深入了解温度对催化反应的重要性。此外,实验装置的管式反应器设计合理,可装填不同种类的催化剂,帮助学生们理解各类催化剂对反应的影响,培养他们的实验设计和催化剂选择的能力。 除了基本实验功能外,我们的实验装置还配备了一些创新功能,以更好地帮助学生进行实践教学。通过扫描装置二维码,学生可以观看实验装置的动画演示,动画内容包括催化剂评价实验装置及模拟流体在预热器及反应器内的流动形态。配备的全流程语音讲解可以深入解读实验原理和操作步骤,从而提高学生对催化反应过程的理解。此外,动画截图展示了设备不同角度含播放进度条的截图,让学生更加直观地了解实验装置的操作过程。 为了提高教学效果和学生的学习动力,我们的装置配备了配套软件系统。该系统可进行网上题库建立、试卷制作和考试成绩统计。教师可以根据需要建立题库,自主选择题型、权重和分值,并轻松生成试卷。考试成绩能够自动统计,大大减轻了教师的工作负担,同时也为学生们提供了更好的学习反馈。 我们的实验装置采用工业一体机进行控制和数据显示,让学生提前接触工业控制相关知识。这有助于学生们更好地理解和掌握现代化工工艺控制技术。此外,我们还配备了实验辅助系统,提供操作截图和分步式操作视频指导学习。学生们可以通过装置自带的操作终端观看分步式操作视频,同时还可以通过手机端APP随时随地学习实验指导视频,进一步提高学习效果。 催化剂评价实验装置的应用不仅局限于实习实践教学,它在化工领域的研究和实际应用中也发挥着重要作用。实践中获得的经验和数据可以为催化剂开发、催化反应工艺优化等方面提供有力支撑。通过我们的实验装置,学生们不仅能够提升实践能力,还能为未来的职业发展打下坚实的基础。 总之,我们的催化剂评价实验装置通过先进的功能和创新的设计,为学生们提供了一个全面、灵活和安全的实践平台。它不仅满足了学生的知识点要求,还能帮助他们在实习实践中获得真实而深入的体验。我们相信,通过实践和探索,学生们将能够充分发挥自己的潜力,为化工领域的发展贡献自己的力量。
  • 美国麦克仪器公司参展第十届全国催化剂制备科学与技术研讨会
    2018年11月30日~12月3日,第十届全国催化剂制备科学与技术研讨会在四川大学隆重举行,此次会议为来自国内外高校、研究机构和工业界的同行提供了一个交流和合作的平台。作为材料表征仪器领域的全球领先供应商,美国麦克仪器公司也在此次会议上亮相。此次会议为期四天,全体参会代表对催化剂和催化材料的制备科学、制备技术及表征、工业催化剂的制备、工程放大及应用以及理论化学和分子模拟在催化剂制备中的应用等,展开了广泛而深入的交流和讨论。本届会议中不断涌现出催化剂制备科学与技术的新思想和新理念。会议期间还组织了包括美国麦克仪器公司在内的与催化剂行业相关厂商作相关产品展示与技术交流,美国麦克仪器公司拥有多款广泛应用于催化剂等材料表征分析的仪器,其产品在业界和客户中享有盛誉。值得一提的是,四川大学拥有多款美国麦克仪器公司的高性能材料表征分析仪器,并对产品质量和售后服务高度认可。现场的众多参会代表对美国麦克仪器公司的AutoChem II 2920系列高性能全自动化学吸附仪、ASAP 2460系列多站扩展式全自动比表面与孔隙度分析仪等高性能材料表征分析仪器颇感兴趣,我公司技术人员也为前来的来宾详细介绍了这些高性能产品与技术解决方案,受到大家高度评价。我公司今年还将积极参与第三届国际碳材料大会暨产业展览会、2018全国粉体检测与表面修饰技术创新论坛等多个重要行业会议,并期待与您在现场沟通交流。
  • 首届催化剂表征与评价主题网络研讨会取得圆满成功(含回放链接)
    p   由仪器信息网(www.instrument.com.cn) 联合面向工业催化领域创新成果产业化的公共服务平台(2020年工信部批建)主办的首届“催化剂表征与评价”主题网络研讨会于昨日圆满闭幕。此次会议邀请了业内著名催化研究学者、检测分析专家以及业界企业代表,针对催化研究应用及检测分析的前沿热点和关键技术进行探讨,为催化领域的研发应用与检测分析搭建交流平台,促进催化领域科研人员间的互动交流。本次会议报名参会人数近700人,观众反响强烈,会议取得了圆满成功。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202005/uepic/e14a20ed-81cd-4636-ba2b-0df66b586998.jpg" title=" 1125_480.jpg" alt=" 1125_480.jpg" width=" 500" height=" 213" border=" 0" vspace=" 0" style=" max-width: 100% max-height: 100% width: 500px height: 213px " / /p p   大会开始前,中国石油和化学工业联合会科技与装备部处长李文军为大会致辞,随后6位专家奉献了精彩的报告,并为现场提问的观众进行了耐心的解答。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/1d6d6704-bc2c-4795-9ccc-626827c41586.jpg" title=" 李瑛.jpg" alt=" 李瑛.jpg" / /p p style=" text-align: center " strong 浙江工业大学工业催化研究所 李瑛 /strong /p p style=" text-align: center " strong 报告题目:《表征技术在工业催化剂开发中的重要性及工业催化剂宏观物性表征》 /strong /p p   李瑛,浙江工业大学教授。2005年获中国科学院大连化学物理研究所物理化学博士学位,师从国际催化委员会主席李灿院士 2005.08-2007.08荷兰 Eindhoven University of Technology做博士后及访问学者。合作导师:荷兰皇家科学院院士Prof. Rutgers Van Santen。 /p p   目前担任浙江省石油协会理事,浙江省科协九届委员。中国化学工程学报(英文版)编委,近年来在国际知名期刊共发表SCI论文100余篇,已获得授权专利10余项,其中多项技术已经实现产业化推广。承担浙江工业大学研究生核心课程《现代催化剂表征技术》、《催化学科前沿讲座》、本科生《物理化学》上下册等教学。 /p p   主要研究方向:新型多孔碳材料及其复合材料的调控合成及催化应用 纳米金属催化剂的调控合成及工业应用 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/f09f957d-8dd1-41ee-bfa9-5a1af9e669ca.jpg" title=" 陈婧琼.png" alt=" 陈婧琼.png" / /p p style=" text-align: center " strong 安东帕(上海)商贸有限公司 陈婧琼 /strong /p p style=" text-align: center " strong 报告题目:《表征技术在工业催化剂开发中的重要性及工业催化剂宏观物性表征》 /strong /p p   陈婧琼,安东帕(上海)商贸有限公司产品应用专家,毕业于天津科技大学。具有长达8年的粉体材料表征经验。 /p p   2012~2014从事甲醇制烯烃MTO催化剂的制备和表征,包括催化剂原料SAPO-34的合成,催化剂喷雾干燥制备、粒度测试、zeta电位测试,催化剂微反评价,酸性测试,比表面积和孔径分析等 /p p   2014~2015于兰州化学物理研究所羰基合成与氧化国家重点实验室从事光催化产氢研究,以共沉淀法制备了掺杂石墨烯的光催化剂,具有良好的产氢效应 /p p   2015至今,任职于安东帕,从事粉体表征产品气体吸附仪等的技术支持。每年于清华大学、复旦大学、石油大学、大连理工等高校进行气体吸附的技术交流和客户培训。 /p p   从业多年来,以丰富的职业经验和深入浅出、活泼的手法编写和翻译气体吸附相关行业技术文件50多篇,深受行业客户的好评。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/05114d62-4523-4231-b8ec-f70eebdd41c0.jpg" title=" 刘伟.png" alt=" 刘伟.png" / /p p style=" text-align: center " strong 中国科学院大连化学物理研究所 刘伟 /strong /p p style=" text-align: center " strong 报告题目:《电子显微技术在催化剂表征评价中的机会与挑战》 /strong /p p   刘伟,中国科学院大连化学物理研究所电子显微中心副研究员,环境透射电镜负责人,中科院青年创新促进会会员,大连市紧缺技术人才。 /p p   迄今,研制了国内首套专用于环境透射电镜的mbar级负压定量混气自动控制系统 研制“透射电镜可控气氛转移样品台” 解决敏感材料向电镜转移中的氧化相变问题 基于深度学习技术和数字滤波图像识别,实现单原子催化剂的原子精度识别与万级样本空间的分散度统计 /p p   先后主持国家自然科学基金(1项)、近3年围绕催化剂显微结构分析与支撑发表Nature Catalysis(1篇),JACS 2篇、Nano Lett. 2篇、Nature Commn. 2篇、Adv. Mater. 1篇、Adv. Sci. 1篇、Chem. Mater.1篇、ACS Catal. 1篇、Appl. Catal. B 1篇。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/4d44be02-96e2-4296-9333-ea9b61824ba1.jpg" title=" 彭路明.jpg" alt=" 彭路明.jpg" / /p p style=" text-align: center " strong 南京大学 彭路明 /strong /p p style=" text-align: center " strong 报告题目:《氧化物纳米催化材料的固体核磁共振研究进展》 /strong /p p   彭路明,博士,南京大学教授,博士生导师。在Nature Materials,Science Advances,Nature Communications,Journal of the American Chemical Society等杂志发表学术论文100多篇。入选2010年度新世纪优秀人才支持计划。2012年获得国家自然科学基金委优秀青年科学基金项目资助,同年获中国化学会催化专业委员会中国催化新秀奖。2016年起任中国物理学会波谱专业委员会委员和《波谱学杂志》编委,同年获英国皇家学会牛顿高级学者项目资助(Newton Advanced Fellowship)。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/241ab918-ba36-4070-979c-70cc80fbe37d.jpg" title=" 杨贵东.jpg" alt=" 杨贵东.jpg" / /p p style=" text-align: center " strong 西安交通大学 杨贵东 /strong /p p style=" text-align: center " strong 报告题目:《基于催化剂结构修饰的光催化反应过程强化》 /strong /p p   杨贵东,西安交通大学化工学院教授,博士生导师。主要从事光催化反应过程强化及吸附新材料开发的研究工作。在Angewandte Chemie International Edition、ACS Catalysis、Applied Catalysis B: Environmental、Nano Energy等高质量学术期刊发表论文52篇,其中IF& gt 10的论文17篇,累计被 SCI引用3000余次,个人 H 因子27。开发了一系列具有高介孔含量、强疏水、高机械强度的三维分级通孔碳质吸附材料,实现了其工业化生产与应用。入选了教育部“青年长江学者”、“王宽诚青年学者”、“陕西省青年科技新星”,兼任中国化工学会化工过程强化专业委员会青年委员会委员和中国石油和化学工业联合会工业催化联盟青年工作委员会委员等学术职务。担任国际期刊《Frontiers in Environmental Chemistry》副主编、《Chinese Journal of Catalysis》客座编辑、《Chinese Chemical Letter》青年编委和《工业催化》期刊编委。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 200px height: 293px " src=" https://img1.17img.cn/17img/images/202005/uepic/7f1b13b7-19a4-49ea-a36f-9ffc0238539a.jpg" title=" 刘家旭.jpg" alt=" 刘家旭.jpg" width=" 200" height=" 293" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 大连理工大学 刘家旭 /strong /p p style=" text-align: center " strong 报告题目:《双光束FT-IR光谱在多相催化反应中的应用与进展》 /strong /p p   刘家旭,大连理工大学副教授,主要从事分子筛催化在能源、环境及精细化学品清洁制备等领域的应用基础研究和原位分子光谱表征技术开发。作为项目负责人主持国家自然科学基金、中国石油科技创新基金和大连市高层次人才创新创业计划等12项科研项目。研制出具有自主知识产权的双光束原位红外光谱技术,并将其成功应用于多相催化反应的原位表征,已在Catalysis Science & amp Technology, Chemical Engineering Journal, ACS Applied Materials & amp Interfaces等期刊发表30余篇学术论文,申请10余项国内专利,1项国际专利。作为项目负责人开发的精细化学品清洁制备催化剂,低碳烃芳构化催化剂已实现工业应用。 /p p   会后,李文军处长介绍了面向工业催化领域创新成果产业化的公共服务平台现阶段的工作内容,并鼓励催化领域学者间的沟通与交流。会议至此圆满结束。 /p p   此次会议获得了工业催化协会的帮助以及安东帕的大力支持。 /p p    a href=" https://www.instrument.com.cn/netshow/SH101011/" target=" _self" strong 安东帕(上海)商贸有限公司 /strong /a /p p   安东帕(上海)商贸有限公司隶属于奥地利安东帕公司旗下,是其全资子公司,总部位于上海。安东帕公司作为密度、浓度、二氧化碳和流变测量的技术引领者,依托仪器领域的百年经验,为食品饮料、石油石化、制药、高校科研、质检、商检、药检和出入境检验检疫等领域提供量身定制的检测解决方案。安东帕的产品及服务涵盖实验室与过程应用中的密度、浓度和温度测量技术、旋光及折光仪等高精密光学仪器、微波消解、萃取及合成等样品前处理技术、黏度计及流变仪、闪点、馏程分析等石油石化产品测试仪器、以及研究材料特性及表面力学性能的测试仪器等。 /p p    strong 专家视频回放链接: /strong /p p   a href=" https://www.instrument.com.cn/webinar/Video/Video/Collection/10541" target=" _self"  https://www.instrument.com.cn/webinar/Video/Video/Collection/10541 /a /p p br/ /p
  • 国产仪器出海!催化剂评价装置技术交流会
    8月22日下午,由仪器信息网卓越用户服务部组织的线上仪器选型技术交流会顺利召开。本次会议由俄罗斯某公司委托仪器信息网承办。通过前期对接,卓越用户服务团队了解到,该公司需要国产高通量催化剂评价装置,用于聚烯烃,但目前对国产品牌不太熟悉,基于此,卓越用户服务团队根据用户需求快速匹配了3家厂商与买家单位展开线上深入沟通。会上,厂商就仪器技术、应用、合作的典型用户单位给买家进行了介绍。讲解后,用户就技术支持、配套服务等问题与厂商进行了沟通。会议结束后,买家单位杨总表示,本次交流会不仅让他们对目前市场上的这些优秀国产品牌有了了解,更为他们提供了直接和厂商沟通的机会,国产仪器大有可为!仪器选型技术交流会是仪采通买家定制化服务之一,旨在根据买家真实的采购需求,精准推荐优质供应商;通过线上或线下会议的形式,为供需双方搭建集中交流平台,实现仪器采购降本增效。仪器选型技术交流会扫码免费报名仪器选型技术交流会
  • 岛津XPS用户成果分享丨原位光照XPS表征共价有机骨架/NaTaO₃ S型异质结构复合光催化剂
    随着新能源产业的发展,氢能作为一种清洁可再生的能源,具有重要的研究意义,光催化分解水是一种理想的产氢手段。本期岛津XPS 用户成果分享继续介绍复旦大学化学系戴维林教授研究团队近期在光催化领域研究的一些进展及XPS测试技术在其中的应用。成果简介:共价有机骨架/NaTaO3 S型异质结构的合理设计促进光催化析氢复旦大学戴维林教授课题组通过表面氨基修饰以及原位水热过程合成了一种共轭有机框架(COF)材料TpBpy/NaTaO3复合光催化剂,并利用原位光照XPS(X射线光电子能谱)以及DFT理论计算证明其属于S型光催化反应机理,为设计合成高效稳定的光催化材料提供了新思路。岛津公司参与该项研究工作,相关合作研究成果发表于胶体与界面领域国际权威SCI期刊《Journal of Colloid and Interface Science》(IF=9.9)上。图1. N-NaTaO3与NaTaO3的(a) Ta 4f、(b) O 1s高分辨率XPS谱图,(c) 原位光照前后TpBpy/NaTaO3的Ta 4f高分辨率XPS谱图,原位光照前后TpBpy以及TpBpy/NaTaO3的(d) C 1s 、(e) N 1s、(f) O 1s高分辨率XPS谱图研究工作利用3-氨丙基-三乙氧基硅烷在NaTaO3纳米立方体表面修饰氨基,并进一步通过席夫碱反应在NaTaO3纳米立方体表面生长TpBpy-COF,从而构筑了以共价键连接的TpBpy/NaTaO3复合光催化剂。光催化产氢测试结果表明,在模拟太阳光照射下,复合光催化剂的最佳产氢活性达到了17.3 mmolg-1h-1,分别是单独NaTaO3以及TpBpy的173和2.4倍。图1给出了TpBpy/NaTaO3复合材料以及各单一材料中元素的精细XPS谱图,图a,b中Ta结合能的变化以及Ti-O-Si键的出现可以证明NaTaO3表面成功修饰了氨基。图c-f表明,无光照条件下,与纯NaTaO3相比,TpBpy/NaTaO3的Ta 4f峰的结合能降低;而与纯TpBpy相比,N 1s结合能以及O 1s结合能均升高,说明在非光照条件下,复合材料中二者紧密结合,并发生了电荷转移,电子倾向于从TpBpy转移至NaTaO3。进一步通过原位光照XPS技术研究了复合材料在光反应过程中电子的转移情况。可以看出,在光照条件下,复合材料中Ta 4f轨道XPS谱峰的结合能升高,说明在该过程中,NaTaO3失去电子,结合理论计算结果,证实了该光反应过程的S型催化反应机理。仪器介绍全新一代Kratos AXIS SUPRA+ 是基于卓越的研发与制造,兼备高分辨采谱和快速平行成像功能的多技术型 X 射线光电子能谱(图2)。&bull 卓越的便捷性:集样品全自动传输、全自动分析、智能数据采集处理于一体,体现了卓越的便捷性。&bull 优异的性能:拥有多种 X 射线源、大半径双层能量分析器,杰出的荷电中和技术,使其获得了优异的性能。&bull 丰富的扩展性:高能Ag Lα单色X射线源可有效区分光电子峰和俄歇峰并增加探测深度;搭配适应1000°C高温、3 MPa高压及模拟反应气氛的准原位催化反应池;适合不同波长和功率激光及模拟太阳光实时照射样品表面,在样品分析室进行原位光催化反应的光纤系统。&bull 图2 复旦大学化学系X射线光电子能谱仪参考文献:Huihui Zhang, Huajun Gu, Yamei Huang, Xinglin Wang, Linlin Gao, Qin Li, Yu Li, Yu Zhang, Yuanyuan Cui, Ruihua Gao*, Wei-Lin Dai*. J. Colloid Interface Sci., 2024, 664, 916-927.本文内容非商业广告,仅供专业人士参考。
  • 你距离一流的催化剂可能只差一个表征
    p   催化在化工、能源、环境、材料、生物、制药、分析等领域被广泛应用。催化研究涵盖的领域更是包括了能源催化、催化材料、催化机理、环境催化、工业催化、电化学催化、化学合成催化、光催化、单原子催化等领域。90%以上的化学化工工程都是催化反应过程,因此,催化剂的表征与评价研究与应用具有重大的意义。 /p p   基于此,仪器信息网(www.instrument.com.cn) 联合面向工业催化领域创新成果产业化的公共服务平台(2020年工信部批建),将于2020年5月12日组织召开 a href=" https://www.instrument.com.cn/webinar/meetings/catalyst/" target=" _self" 首届“催化剂表征与评价”主题网络研讨会 /a ,邀请业内著名催化研究学者、检测分析专家以及业界企业代表,针对催化研究应用及检测分析的前沿热点和关键技术进行探讨,为催化领域的研发应用与检测分析搭建交流平台,促进催化领域科研人员间的互动交流,促进我国催化领域的研究发展。 /p p    strong 会议日程(以报名页面为准): /strong /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 389px " src=" https://img1.17img.cn/17img/images/202004/uepic/2d2b81b9-37c4-4310-b824-24a0dde5bb40.jpg" title=" 会议日程.png" alt=" 会议日程.png" width=" 600" height=" 389" border=" 0" vspace=" 0" / /p p    strong 报告嘉宾简介: /strong /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 200px height: 280px " src=" https://img1.17img.cn/17img/images/202004/uepic/f0ffda9a-a79b-46b2-b962-61852b503735.jpg" title=" 李瑛.jpg" alt=" 李瑛.jpg" width=" 200" height=" 280" border=" 0" vspace=" 0" / /p p style=" text-align: center " 浙江工业大学工业催化研究所 李瑛 /p p   李瑛,浙江工业大学教授,主要研究方向:新型多孔碳材料及其复合材料的调控合成及催化应用 纳米金属催化剂的调控合成及工业应用。2005年获中国科学院大连化学物理研究所物理化学博士学位。师从国际催化委员会主席李灿院士。2005.08-2007.08荷兰 Eindhoven University of Technology做博士后及访问学者。合作导师:荷兰皇家科学院院士Prof. Rutgers Van Santen。2007.10-至今,浙江工业大学参加工作,目前担任浙江省石油协会理事,浙江省科协九届委员。中国化学工程学报(英文版)编委,近年来在国际知名期刊共发表SCI论文100余篇,已获得授权专利10余项,其中多项技术已经实现产业化推广。承担浙江工业大学研究生核心课程《现代催化剂表征技术》、《催化学科前沿讲座》、本科生《物理化学》上下册等教学。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/8eb4aed1-d4cb-4371-87f4-5a95d4f8985f.jpg" title=" 陈婧琼.png" alt=" 陈婧琼.png" / /p p style=" text-align: center " 安东帕(上海)商贸有限公司 陈婧琼 /p p   陈婧琼,安东帕(上海)商贸有限公司产品应用专家,毕业于天津科技大学。具有长达8年的粉体材料表征经验。 /p p   2012~2014从事甲醇制烯烃MTO催化剂的制备和表征,包括催化剂原料SAPO-34的合成,催化剂喷雾干燥制备、粒度测试、zeta电位测试,催化剂微反评价,酸性测试,比表面积和孔径分析等 2014~2015于兰州化学物理研究所羰基合成与氧化国家重点实验室从事光催化产氢研究,以共沉淀法制备了掺杂石墨烯的光催化剂,具有良好的产氢效应 2015至今,任职于安东帕,从事粉体表征产品气体吸附仪等的技术支持。每年于清华大学、复旦大学、石油大学、大连理工等高校进行气体吸附的技术交流和客户培训。 /p p   从业多年来,以丰富的职业经验和深入浅出、活泼的手法编写和翻译气体吸附相关行业技术文件50多篇,深受行业客户的好评。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 300px height: 359px " src=" https://img1.17img.cn/17img/images/202004/uepic/b3624259-0e1f-46c8-96f6-617867a5f51a.jpg" title=" 刘伟.png" alt=" 刘伟.png" width=" 300" height=" 359" border=" 0" vspace=" 0" / /p p style=" text-align: center "   中国科学院大连化学物理研究所 刘伟 /p p   刘伟,中国科学院大连化学物理研究所电子显微中心副研究员,环境透射电镜负责人,中科院青年创新促进会会员,大连市紧缺技术人才,2013年度北京航空航天大学优秀博士论文。2003.07~2012.06 北京航空航天大学应用物理学士,凝聚态物理博士 2012.06~2013.10,四川大学物理系 讲师 2013.11~2017.03,电子科技大学物理系副教授 2011.07~12、2015.08~2016.08,美国密西根大学电子显微分析中心访问学者。 /p p   迄今,研制了国内首套专用于环境透射电镜的mbar级负压定量混气自动控制系统 研制“透射电镜可控气氛转移样品台” 解决敏感材料向电镜转移中的氧化相变问题 基于深度学习技术和数字滤波图像识别,实现单原子催化剂的原子精度识别与万级样本空间的分散度统计 /p p   先后主持国家自然科学基金(1项)、近3年围绕催化剂显微结构分析与支撑发表Nature Catalysis(1篇),JACS 2篇、Nano Lett. 2篇、Nature Commn. 2篇、Adv. Mater. 1篇、Adv. Sci. 1篇、Chem. Mater.1篇、ACS Catal. 1篇、Appl. Catal. B 1篇。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/c2152725-0f04-4b8e-ad99-d0c80dbd4ec5.jpg" title=" 彭路明.jpg" alt=" 彭路明.jpg" / /p p style=" text-align: center "   南京大学 彭路明 /p p   彭路明,博士,教授,博士生导师。1997-2001,南京大学化学化工学院化学系,学士(2001) 2001-2006,美国纽约州立大学石溪分校化学系,博士(2006) 2006-2008,美国斯坦福大学地质和环境科学系,博士后;2008- 至今,南京大学化学化工学院,副教授(2008-2013),研究员(2013-2017),教授(2017-至今)。 /p p   在Nature Materials,Science Advances,Nature Communications,Journal of the American Chemical Society等杂志发表学术论文100多篇。入选2010年度新世纪优秀人才支持计划。2012年获得国家自然科学基金委优秀青年科学基金项目资助,同年获中国化学会催化专业委员会中国催化新秀奖。2016年起任中国物理学会波谱专业委员会委员和《波谱学杂志》编委,同年获英国皇家学会牛顿高级学者项目资助(Newton Advanced Fellowship)。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 200px height: 300px " src=" https://img1.17img.cn/17img/images/202004/uepic/c9d9165c-5824-45a4-84f4-ef47d8320e90.jpg" title=" 杨贵东.jpg" alt=" 杨贵东.jpg" width=" 200" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center " 西安交通大学 杨贵东 /p p style=" text-align: left "   杨贵东,西安交通大学化工学院教授,博士生导师。主要从事光催化反应过程强化及吸附新材料开发的研究工作。在Angewandte Chemie International Edition、ACS Catalysis、Applied Catalysis B: Environmental、Nano Energy等高质量学术期刊发表论文52篇,其中IF& gt 10的论文17篇,累计被 SCI引用3000余次,个人 H 因子27。开发了一系列具有高介孔含量、强疏水、高机械强度的三维分级通孔碳质吸附材料,实现了其工业化生产与应用。入选了教育部“青年长江学者”、“王宽诚青年学者”、“陕西省青年科技新星”,兼任中国化工学会化工过程强化专业委员会青年委员会委员和中国石油和化学工业联合会工业催化联盟青年工作委员会委员等学术职务。担任国际期刊《Frontiers in Environmental Chemistry》副主编、《Chinese Journal of Catalysis》客座编辑、《Chinese Chemical Letter》青年编委和《工业催化》期刊编委。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 200px height: 293px " src=" https://img1.17img.cn/17img/images/202004/uepic/330e9a1d-1016-4fa5-af51-cd6ed2420c2b.jpg" title=" 刘家旭.jpg" alt=" 刘家旭.jpg" width=" 200" height=" 293" border=" 0" vspace=" 0" / /p p style=" text-align: center " 大连理工大学 刘家旭 /p p   刘家旭,大连理工大学副教授,主要从事分子筛催化在能源、环境及精细化学品清洁制备等领域的应用基础研究和原位分子光谱表征技术开发。作为项目负责人主持国家自然科学基金、中国石油科技创新基金和大连市高层次人才创新创业计划等12项科研项目。研制出具有自主知识产权的双光束原位红外光谱技术,并将其成功应用于多相催化反应的原位表征,已在Catalysis Science & amp Technology, Chemical Engineering Journal, ACS Applied Materials & amp Interfaces等期刊发表30余篇学术论文,申请10余项国内专利,1项国际专利。作为项目负责人开发的精细化学品清洁制备催化剂,低碳烃芳构化催化剂已实现工业应用。 /p p    strong 参与方式: /strong /p p   免费报名链接: a href=" https://www.instrument.com.cn/webinar/meetings/catalyst/" target=" _self" & nbsp /a /p p a href=" https://www.instrument.com.cn/webinar/meetings/catalyst/" target=" _self"   https://www.instrument.com.cn/webinar/meetings/catalyst/ /a /p p   或扫描下方二维码报名: /p p style=" text-align: center " a href=" https://www.instrument.com.cn/webinar/meetings/catalyst/" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/7f447697-bd90-47df-8213-b3370e6155a6.jpg" title=" 报名二维码.png" alt=" 报名二维码.png" / /a /p p   扫下方二维码进入催化剂表征与评价交流群: /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/810a8756-4206-4f04-a26c-8134245d0576.jpg" title=" 催化剂表征与评价交流群.jpg" alt=" 催化剂表征与评价交流群.jpg" / /p
  • 第二届催化剂表征与评价主题网络研讨会再度来袭 强大专家阵容先睹为快
    催化剂在全球各行各业广泛使用,未来无论在催化剂的科学理论研究、清洁能源的开发与利用,环境保护与提高经济效益以及人类的生存环境的治理与保护都有极大的发展前景。简言之,人类的生存发展,吃穿住行离不开催化剂及其发展。催化剂广泛应用于石油化工、能源、环境等多个当前最热门、最重要的领域,从国家工业生产到日常生活的节能环保,催化都在无形中的发挥着“四两拨千斤”的重要作用。催化剂的表征与评价对于催化剂的设计和性能调控起到重要的媒介作用,因此对于催化剂的研究有着至关重要的意义。由仪器信息网联合面向工业催化领域创新成果产业化的公共服务平台(2020年工信部批建)共同主办的第二届催化剂表征与评价主题网络研讨会将于今年6月16日举办。本次会议邀请到来自中国科学院大连化学物理研究所、浙江大学、天津大学、北京化工大学、华东理工大学、中国科学院山西煤炭化学研究所等多位国内催化领域的知名专家学者,共同分享催化领域的研究成果,促进催化领域研究人员间的互动交流。本次会议同时也得到知名科学仪器厂商——东京理化的大力支持。东京理化器械株式会社报告嘉宾简介(以报告时间为序):华东理工大学教授 戴升戴升,博士,华东理工大学教授,博导。2009年本科毕业于清华大学, 2014年于清华大学获得博士学位,师从我国著名电子显微学专家朱静院士。2014年至2019年,先后在美国密歇根大学与加州大学尔湾分校进行博士后研究,合作导师为Xiaoqing Pan教授。2019年,全职回国加入华东理工大学,担任电镜中心负责人、课题组组长。 主要研究方向为催化剂原位电镜表征方法的开发与应用研究。运用先进的原位电子显微学技术,于原子尺度探究催化剂在真实催化反应条件下的动态演化行为,从而辨识其活性位点,建立催化剂的构效关系。近五年内,在Nature、Nat. Mater.、Nat. Catal. 等期刊发表论文50余篇;其中,以第一作者与通讯作者身份发表论文20余篇,包括Nat. Mater.、Nat. Commun.、J. Am. Chem. Soc、Nano Lett.、 ACS Catal.等。入选国家高层次人才引进计划、上海市高校特聘教授等项目资助。浙江大学研究员 姚思宇姚思宇,博士毕业于北京大学化学院物化专业。2015-19年在美国布鲁克海文国家实验室开展博士后研究工作。19年9月入职浙江大学化工学院,任百人计划研究员。获国家海外高层次人次引进计划青年项目、浙江省杰出青年基金项目资助。姚思宇博士致力于研究能源环境相关的小分子活化转化催化剂的开发,Mo 基催化剂体相、表面结构调控及贵金属替代催化剂的设计策略。具有多年同步辐射光源研究经历,对应用原位表征手段探究微纳尺度催化剂的构效关系和催化材料合成调控机制等基础问题具有深入理解。目前共发表SCI论文 85篇。以第一作者、共同第一作者或通讯作者在 Science, Nature Nanotechnology. JACS等学术期刊发表论文十余篇,他引4000余次,H-index 36。东京理化器械株式会社应用工程师 王超王超,硕士,毕业于中国日化所。现任东京理化器械株式会社产品在中国市场的应用工程师,主要负责EYELA实验室前处理设备的培训及应用推广。中国科学院大连化学物理研究所研究员 侯广进侯广进研究员于2007年在中国科学院武汉物理与数学研究所获得理学博士学位。2007至2011年先后在德国马普高分子研究所和美国特拉华大学从事博士后研究工作;2011年被特拉华大学聘为二级副研究员;2012年晋升为磁共振谱学研究员。2016年入选中科院大连化学物理研究所“百人计划”,2017年入选国家青年海外高层次人才引进计划,入职于中科院大连化学物理研究所催化基础国家重点实验室,聘为研究员、任固体核磁共振与催化化学研究组组长。侯广进研究员长期从事固体核磁共振方法学的发展和多种材料体系结构及动力学的应用研究,截止目前已在Science, Proc. Natl. Acad. Sci., J. Am. Chem. Soc., Angrew. Chem. Int. Ed., Adv. Energy. Mater., Nat. Commun., Acc. Chem. Res., Environ. Sci. Technol.等学术期刊上发表论文80余篇。侯广进研究员目前主要从事固体核磁共振波谱学与催化化学相关的研究工作,发展高分辨固体NMR方法学,并应用于实际固体材料体系,包括催化能源材料、高分子材料及生物材料等,在原子和分子水平上探测材料的微观结构和动力学特征,解决与实际研究体系相关的基础科学问题。中国科学院大连化学物理研究所研究员 刘健刘健,博士,中国科学院大连化学物理研究所研究员,博士生导师。长期致力于纳米多孔材料的设计合成及在能源、催化相关领域的基础应用研究,在催化纳米功能材料的设计合成与应用,及纳米反应器构筑等方面取得了一系列重要的成果。迄今在包括 Angew. Chem. Int. Ed., Adv. Mater., JACS, Mater. Today, Matter, Nature Commun., Nature Mater., NSR等刊物发表正式论文220余篇。所发表论文已被 SCI 引用超过 17000余次,H 因子为 59,2018到2020年连续三年入选科睿唯安高引作者。受邀为CRC Press编写 “Mesoporous Materials for Energy Storage and Conversion” 专著一本。任期刊“Materials Today Sustainability” 主编(Editor-in-Chief)。曾获得 “第 14 届国际催化大会青年科学家奖”(2008),“UQ Foundation Research Excellence Award”(澳大利亚昆士兰大学基础研究最高奖,2011),英国皇家化学会旗下杂志Journal of Materials Chemistry A 2017杰出研究者等多项奖励。并于2011年获得澳大利亚基金委博士后特别研究员资助 (AustralianPostdoctoral Fellowship),2013年入选日本学术振兴会特邀研究员 (JSPS Invitation Fellow),2016年获大连化学物理研究所“百人计划”支持。2017年入选国家青年海外高层次人才引进计划,2018年入选辽宁省“兴辽英才计划”青年拔尖人才,2020年获得辽宁省自然科学基金优秀青年基金。中国科学院山西煤炭化学研究所研究员 吕宝亮吕宝亮,现任中国科学院山西煤炭化学研究所研究员,课题组长,中国科学院青年创新促进会会员,山西省“三晋英才”拔尖骨干人才,太原市高端创新型人才,主要研究方向为纳米催化材料的结构设计、合成及应用研究。先后主持研究了包括国家自然科学基金、山西省优秀青年基金在内的20余项国家及省部级科研项目。在ACS Catalysis、 Journal of Catalysis、Advanced Functional Materials等期刊上发表论文80余篇,曾获山西省自然科学一等奖(排名1/4)、中国颗粒学会自然科学二等奖(排名1/6)等奖项,应邀担任40余个国际学术期刊审稿人、国家自然科学基金函评专家、国家自然科学奖函评专家。天津大学教授 李新刚天津大学长聘教授、工业催化学科带头人,天津市131创新团队负责人,自2019年对口支援兰州交通大学。入选教育部新世纪人才、天津市中青年科技创新领军人才、天津市131创新人才第一层次。担任J. Chem. Technol. Biotechnol.期刊副主编、Catal. Today和《化工学报》期刊客座编辑、中国化工学会稀土催化与过程专业委员会副主任、中国化学会分子筛专业委员会委员、中国稀土学会催化专业委员会委员、中国能源学会能源与环境专业委员会委员等职务。长期从事低碳分子催化转化及大气污染物催化消除等方面的研究工作,在Nat. Commun.、Chem、EES、CES等期刊发表SCI论文120余篇,荣获国际催化理事会“青年科学家奖”。北京化工大学教授 冯俊婷冯俊婷,教授,博士生导师。2005年和2010年分别毕业于北京化工大学,获理学学士和工学博士学位; 2012年-2013年在英国卡迪夫大学访问,合作教授Graham Hutchings院士。以通讯/第一作者在Chem. Soc. Rev.(1 篇)、 ACS Catal.(6 篇)、 J.Catal.(15 篇)、Appl. Catal. B: Enviorn.(2篇)、Chem. Sci.(1 篇)等发表SCI论文40余篇;作为主要完成人授权专利10件,含美国专利1件。2020年获国家优秀青年科学基金资助。现任北京市多级结构催化材料工程技术研究中心学术秘书,全国工业催化联盟青年委员。会议日程:报告时间报告主题报告专家09:30--10:00常压扫描透射电子显微术在原位催化表征中的应用戴升(华东理工大学 教授)10:00--10:30XAFS 表征方法在催化剂结构解析中的应用姚思宇(浙江大学 研究员)10:30--11:00柱型连续流动反应装置在催化剂评价中的应用王超(东京理化 应用工程师)11:00--11:30固体核磁共振技术及在多相催化研究中的应用侯广进(中国科学院大连化学物理研究所 研究员)13:30--14:00纳米反应器与纳米多孔催化剂的构筑及表征刘健(中国科学院大连化学物理研究所 创新特区组组长 / 研究员)14:00--14:30过渡金属氧化物晶面结构调控及其催化应用吕宝亮(中国科学院山西煤炭化学研究所 研究员)14:30--15:00低碳分子高效转化催化剂的设计、表征和机理研究李新刚(天津大学 催化科学与工程系主任/教授)15:00-15:30界面活性催化剂设计、表征与性能强化机制研究冯俊婷(北京化工大学 教授)注:会议日程可能根据实时情况有所调整,以会议页面展示为准。本次会议报名完全免费,只需扫描下方会议报名二维码或点击下方报名链接,即可进入会议页面,在会议页面可以实时查看会议日程,点击下方“立即报名”按钮,填写报名信息即可报名参会:会议报名二维码报名链接:https://www.instrument.com.cn/webinar/meetings/catalysts2021/
  • 粉体测试促进催化剂生产
    测试结果有助于设计方案和原料的选择。工业催化剂作为一种复杂材料,需要不断精制提高加工效率同时减少对环境产生的影响。催化剂能够提高原料灵活性,降低能耗,增加选择性和延长使用寿命,对石油化工可持续性的提升发挥了重要的作用。对于商业化非均相催化剂,添加粘合剂、填料、致孔剂和增塑剂等,将活性相和载体转化为特定几何形状和性能稳定的产品。由于大多数催化剂成分为粉料,因此有效的粉体加工是催化剂高效生产的先决条件。托普索公司位于丹麦灵比,作为化工、炼油行业中高性能催化剂和专利技术的全球领导者,提供超过150种催化剂。该公司应用粉体表征技术,如ft4粉体流变仪,对催化剂生产设备的设计方案进行优化,改进原料的选择。确定与粉体传输过程密切相关的特性,从而制定设备选型的标准,最大限度降低新工厂的运行成本。此外,辅助筛选原料,降低意外停工的风险,有助于加快粉体加工效率。催化剂生产非均相催化剂加工简单,生产高效,在炼油和化工行业中尤为普遍。这种催化剂是多元络合物,结构为毫米尺度,化学性能和机械性能优异[1]。化学性能取决于活性相的有效分散和传质、传热的精确控制。催化剂寿命,即维持反应和选择性的时间,是关键的商业因素。控制机械性确保整个催化剂床层产生的压力降可控,维持稳定、长效反应所需的机械强度。机械摩擦也会破坏催化剂性能。从活性相和载体的结合开始,配方开发人员通过一系列添加剂的组合,实现催化剂工业化并满足工艺需求。添加剂包括炭黑或淀粉等致孔剂——热处理分解,形成颗粒内孔隙,以及增强机械成型的增塑剂和润滑剂[2]。催化剂的生产取决于这些成分的有效组合和重现。作为一个复杂、多步骤过程,主要涉及[2,3]:• 粉料原料的准备;• 通过喷雾干燥、球化、压实、湿法造粒、挤出等过程形成的预混物和团聚“中间体”;• 硬化和精制,例如还原,洗涤涂层或离子交换。粉体传输和可控定量,作为众多加工过程的基本要素,要求设计方案和操作实践的效率最大化。除了特定的单元操作,还需表征粉体,理解、解释并控制催化剂整个生产过程的表现。托普索公司通常使用激光衍射法测试粒径分布,振实密度评价原料和中间体。但凭这些数据去选择和确定加工设备仍不可靠。此外,这些测试并未充分评估原料的替代品是否匹配特定工艺。单凭这些测量技术,工艺方法的开发无法达到最优,包含一定程度的错误,引入新物料或更换供应商时停机的风险增大。托普索公司还加入了罗格斯大学催化剂制造联盟。这一小组汇集了不同学科的研究学者,从事催化剂生产改进项目。成果之一是基于动态、剪切和整体粉体特性的测试[4],开发出更好的方法选择催化剂组分的失重(liw)进料器。托普索公司运用此项工作的成果来设计、选择和优化liw进料器;现有粉体测试在实践过程中极具潜力,同时也提高了公司对这一收益的认知。托普索公司使用ft4粉体流变仪进行内部评估,获得75种原料的动态、剪切和整体特性数据(总计超过25个特性)。在此成功试验的基础上,公司于2012年购买仪器成为用户。确定设计方案为了优化新仪器的应用,托普索公司进行深入评估,包括运用主成分分析(pca),建立原料特性数据库,确定能否减少常规测量的次数,最大程度地减少成本,这也是一个重要的商业考虑。公司还进行了不同粉体传输设备性能与特定粉体特性相关性的研究。这项工作确定了粉体传输应用中三个关键的属性:可压性,透气性和粘结应力。可压性量化粉体受到固结应力时的体积变化,通过测量整体密度与所施加正应力的函数(图1左、中)得到。虽然粘性较强的粉体相比自由流动的材料更可压,pca分析说明可压性是独立变量,与其他参数无关。关键粉体整体特性图1.测量可压性(左、中)和透气性(右)有助于理解粉体行为。透气性测量了粉体对于气流的阻力,通过测量特定固结压力下粉床压力降与气流速度的函数(图1右)得到。空气不易夹带,能够轻松穿过透气性较好的粉体,与之相比,透气性较差的粉体容易滞留空气。透气性与传输过程极其相关,例如气动传输和料斗下料。粘结应力由剪切盒确定,该测试测量了固结粉层相对另一粉层剪切所需的应力。剪切盒主要量化固结粉体从静止到流动变化的难易程度。因此,粘结应力与固结的粉体、低流速工艺操作最为相关,尤其是料斗下料过程。通过评估这三个特性,托普索公司能够选择最佳的传输方式,使用气动传输或者流体隔膜泵。由于气动传输设备的造价较高,需要适合的排气系统来清除粉体夹带的空气,因此这一决定具有重大的成本影响。通常流体隔膜泵的安装成本仅为气动传输系统的10-30%。已有的设计方案,需要大约一年的时间开发并获得批准,原则如下:• 如果可压性小于36%,适合流体隔膜泵。• 如果可压性大于38%,需要气动传输系统。• 如果可压性介于36-38%,选择取决于透气性和粘结应力的值。由此确定两种方式的抉择标准。作为可压性测试的结果之一,粉体的松装密度也很重要,由此决定所选系统的传输能力。量化选用这一方式累积节省的成本也非常容易。一套全新气动传输系统成本约为80000美元,而流体隔膜泵系统通常少花费约55000美元。根据现有的设计标准确定传输系统,托普索公司自2012年底起成功安装了六套流体隔膜泵系统,并且从2015年起更换了两个现有的气动传输系统。假设每个流体隔膜泵系统的成本为气动传输系统的30%,仅根据新安装系统的保守估计,对于整体造价约34万美元的项目而言,使用粉体流变仪进行成本缩减也很可观。这说明对仪器的明智投资获得了巨大回报。优化原料的选择此外,深入的粉体表征也优化了原料选择。这项工作的目的是筛选粉体特性,可靠预测催化剂生产过程中新材料的性能,也无需投入实际工厂试验,更具体地说,确认新材料与现有材料的性能可比。这种评估在更换供应商或使用替代原料时十分关键,特别是选用价格较低的替代材料缩减成本。粉体测试仪器可以获得:• 剪切特性,包括壁面摩擦角,尤其是研究料斗性能,与连续粉体流动相关的料斗倾角和下料口尺寸;• 可压性和松装密度;• 动态特性包括基本流动能(bfe)和稳定性指数(si)用于评估粉体动态流动性。动态粉体性能通过测量桨叶旋转穿过样品时阻力和扭矩(图2)得到[5]。向下行径穿过预处理后的样品产生bfe值,这是一个高度灵敏的流动性参数,量化了低应力条件下受约束流动的行为。重复bfe测试还可以量化粉体的稳定性,结果为si,该值的定义是多次测试前后bfe值的比值。si接近于1说明粉体物理性能稳定;该值高于或低于1通常与分层、摩擦或团聚等现象有关,这些都可能导致性能变差。动态粉体特性图2.动态特性非常敏感,与不同工艺性能相关。这一测试可以确定粉料在投入工厂前,不同供应商或原料替代品的表现是否良好。粉体加工过程是否会发生间歇传输或堵塞,导致意外停机,从而影响生产效率。因此,能够在不中断工厂生产的情况下找出潜在问题是一大收获。公司现在定期参考上述指标筛选材料,同时全面分析新材料,增补原始数据库,逐步优化实践并扩展粉体测试仪器所提供的价值。强力工具设计和运行粉体处理设备,对工艺工程师来说是一场持久挑战,优化和测试替代设备仍然重要。幸运的是,理解不同工艺与原料之间的相容性,以及选用合适的粉体测试确定这一相关性,近年来已有长足进步。托普索公司的经验验证了粉体测试在催化剂生产中的可行性,其实相关工艺对于大多数生产部门也很常见。通过测量动态、剪切和整体性能,托普索公司强化了liw进料器选型的过程。基于粉体的可压性、透气性和粘结应力数据,为粉体传输确定了可靠的设计方案,确定选用经济型设备的条件。此外,现在公司也能无需工厂试验,可靠评估是否选用新料或更换供应商。粉体测试仪器都提供了关键的数据和丰厚的投资回报。参考文献1.“catalysts for optimal performance,” haldor topsøe, lyngby, denmark, viewable via: www.topsoe.com/products/catalysts2.mitchell, s., et al., “from powder to technical body: the undervalued science of catalyst scale-up,” chem. soc. rev. (feb. 2013).3.catalyst manufacturing center, rutgers university, homepage, https://cbe.rutgers.edu/catalyst-manufacturing-center.4.wang, y., et al., “predicting feeder performance based on material flow properties,” powder tech. (dec. 2016).5.freeman, r., “measuring the flow properties of consolidated, conditioned and aerated powders — a comparative study using a powder rheometer and a rotational shear cell,” powder tech (oct. 2006).
  • 预防催化剂中毒,元素分析不用愁
    岛津ICP光谱测试尿素水溶液多种金属元素 GB17691-2018《重型柴油车污染物排放限值及测量方法(中国第六阶段)》(以下称国六)已经正式实施,继燃气汽车之后,城市车辆将于2020年7月1日进入国六a排放阶段。与国五排放标准相比,国六排放标准中氮氧化物(NOx)和颗粒物(PM)排放限值分别加严了77%和67%,并新增了粒子数量(PN)的限值要求。 为了达到国六排放标准,尾气后处理系统都会设置选择性催化还原(SCR)系统,以便有效降低尾气中氮氧化物含量。尿素水溶液是SCR 系统主要消耗品,在催化剂作用下,将氮氧化物还原成氮气和水。SCR催化剂通常以TiO2为载体,负载W、Mo、V、Mn 等活性金属。如果尿素水溶液金属离子浓度过高,特别是钾离子和钙离子,会减少催化剂表面的活性位,造成催化剂中毒,从而降低NOx的转化率,缩短SCR催化剂的寿命,所以在GB 29518-2013《柴油发动机氮氧化物还原剂 尿素水溶液(AUS 32)》中对各种金属离子杂质含量有明确的限量要求。 表1 分析参数 岛津ICPE-9820全谱发射光谱仪测试尿素水溶液多种金属元素 ICPE-Solution独特的“自动确定最佳波长”功能,可以从全部波长范围的测定数据中,在数据库中自动检索提取可能存在的光谱干扰信息,自动确定最佳波长。 精确称取20±0.01g车用尿素溶液样品于100 mL容量瓶中,加入50 mL去离子水,再加入5 mL硝酸,去离子水定容至刻度并摇匀,使用ICPE-9820上机测试。 图1 Ca元素标准曲线图2 Ca元素谱峰轮廓图 表2 车用尿素样品分析结果注:N.D.表示未检出。 采用ICPE-9820高盐进样系统和直接进样(标准加入法)测定了柴油发动机氮氧化物还原剂尿素水溶液(AUS 32)中的10种杂质元素,结果表明所测市售尿素水溶液金属含量符合GB 29518-2013《柴油发动机氮氧化物还原剂 尿素水溶液(AUS 32)》要求,该方法无需分离基体、无需样品前处理、不加内标,测定结果准确,方法操作简便,可满足柴油发动机氮氧化物还原剂尿素水溶液(AUS 32)中杂质元素的检测技术需求。 撰写人:段伟亚、孙友宝
  • 创新智造|全自动离在线固相萃取联用多维色谱分析系统
    艾迪迈科技成立于2019年2月,由具有丰富的自动化色谱检测与纯化材料技术研发、生产及市场经验的国内外知名专家团队领衔,秉持“让检测纯化更简单”的企业愿景,为客户提供全自动一体化多功能色谱检测解决方案。最新推出的离在线固相萃取联用多维色谱分析系统,为样品离线在线前处理与色谱分析检测的瓶颈问题提供了整体解决方案,且性价比远高于进口产品,且满足国标行标要求。打破传统样本前处理瓶颈传统离线固相萃取流程需要手工操作或者借助萃取仪来实现样本的前处理,包括经过萃取柱的平衡,待测样品上样后,用不同的淋洗液将杂质淋洗掉,再使用洗脱剂将目标物洗脱出后放入色谱检测系统中,而艾迪迈科技推出的离在线固相萃取联用多维色谱分析系统,即可以全自动化进行常规的离线固相萃取(配套各类型的高效SPE小柱),且可选择采用独特的Pureflow在线萃取柱技术,实现了在线固相萃取与色谱分析的无缝全自动连接,极大提高了萃取和富集的效率。全参数控制体系保证了样品的净化及高度重现性,极大地提升工作效率,用更短时间做更多的方法开发与检测工作。检测流程对比图多维色谱分析模式全自动离在线固相萃取联用多维色谱分析系统,集合了自动化离线、在线样品前处理多功能的平台及二维液相色谱切割技术,可实现各类样本的在线前处理及分析一体化流程,操作简单,仅需将样品管放置到指定位置,一键操作,系统可自动执行从样品前处理(多模式选择)、自动导入样品到色谱检测的全程自动化操作,减少人员操作误差。可联用任意品牌色谱质谱同时,艾迪迈在线固相萃取系统,可以联用匹配市场任意品牌的色谱、质谱仪,完全可实现在线联用,处理好的样本直接自动导入色谱或者质谱系统中进行分析检测,为用户使用提供最大的方便性和集成性。核心技术优势:技术应用中心目前企业在江苏、重庆、湖南、南京等地设有研发中心与生产基地,致力于为客户打造一体化的整体检测服务方案,艾迪迈拥有完善的售后服务团队,能为用户提供现场安装、调试与培训等服务,确保售后无忧。
  • 领先与首创 | 谱育科技 全自动超级微波消解系统 与 工业过程成分智能在线分析系统 成果评价会成功举办
    近日,中国分析测试协会牵头举办的成果评价会在杭州青山湖召开,对谱育科技研制的“全自动超级微波消解系统”与“工业过程成分智能在线分析系统”进行成果评价。评价委员会由清华大学 张新荣教授、浙江省分析测试协会理事长 莫卫民 、浙江省地质矿产研究所教授级高工 郑存江、北矿检测技术有限公司 正高级工程师 冯先进、浙江省食品药品检验研究院主任药师 王建5位专家组成,中国分析测试协会研究员吴淑琪、薛莉,谱育科技副总经理 俞晓峰、胡建坤及项目相关负责人参加会议。会议由中国分析测试协会 吴淑琪研究员主持,采用线上线下相结合的方式,对项目科学技术成果进行评价。专家们听取了两个项目组的成果介绍,查阅了查新报告、检测报告和相关证明材料,现场考察了全自动超级微波消解系统与工业过程成分智能在线分析系统,经质询和充分讨论,认为全自动超级微波消解系统达到国内先进水平,工业过程成分智能在线分析系统属于国内首创,形成如下评价意见。国内领先 全自动超级微波消解系统1具有首创性首创了同时多腔体独立控制消解模式,通过负载动态自适应的调节算法,提升微波传输效率;自锁式高压微波消解容器的设计,提高了微波消解仪器的安全性;单反应腔多样品消解模式设计,实现了复杂样品的全自动消解。该系统将超级微波消解技术和自动化技术相结合,实现了样品消解全流程自动化,可与ICP-OES/ ICP-MS 等仪器进行联用,实现元素分析全流程自动化。2已达国内领先水平“全自动超级微波消解系统”可达20MPa、300℃的消解条件,实现了复杂样品的有效消解;温度、压力稳定性,升温速率、冷却效率等指标与国际同类产品相当,达到国内领先水平。3实现产业化发展该系统建立了完善的生产线,批量进行生产,实现了产业化。已在国内20多个省市实现了销售,实现了进口仪器的国产替代。国内首创工业过程成分智能在线分析系统1认定国内首创“工业过程成分智能在线分析系统”是由液体和气体在线前处理系统及多种分析检测系统组成,具备在线多点采样、过滤、稀释、远距离样品传输、气体吸收富集等前处理功能,实现工业现场数百米范围内多点位样品的同时自动采集、处理与传输;通过中央控制系统将在线前处理系统与电感耦合等离子体质谱仪、电感耦合等离子体光谱仪、离子色谱仪、滴定仪等分析仪器智能结合,实现90余种痕量到常量元素及其它组分的在线监测。该系统属于国内首创。2产业应用多样化系统已应用于有色、稀土、新能源、半导体、核工业、核电等行业。已建立了生产线,实现了批量销售。该系统能有效避免人工引入的检测误差,提高工作效率,为生产提供可靠的质量保障。谱育科技两项技术成果均已通过成果评价,具有首创性也代表了国内领先水平。一步一个脚印,谱育科技努力把握科技创新与高质量发展的机遇,实现进口仪器的国产替代,为中国工业高质量发展保驾护航。
  • 卡博莱特· 盖罗回访中石化催化剂(北京)有限公司
    前言乙烯工业是石油化工业的龙头,国内现有的乙烯装置全部采用催化加氢除乙炔工艺来制备聚合级乙烯。碳二加氢催化剂技术是整个乙烯技术中的关键技术之一。卡博莱特盖罗来到中石化催化剂(北京)有限公司对高温箱式炉RHF1400进行安装并回访生产运行一部,探访卡博莱特盖罗马弗炉在石化催化剂行业的应用。 中国石化催化剂有限公司作为中国石油化工股份有限公司的全资子公司,是全球知名的炼油化工催化剂生产商、供应商、服务商。中国石化催化剂(北京)有限公司是中国石化催化剂有限公司的分公司,坐落在美丽的燕山石化,始建于1993年6月,企业已通过GB/T 19001、GB/T 24001、GB/T 28001和Q/SHS0001.1管理体系的认证。公司于2015年5月获得中关村高新技术企业认定。中石化催化剂(北京)有限公司现有4套主要生产装置。主要产品为:银催化剂、碳二碳三选择性加氢催化剂、聚烯烃助剂、芳烃溶剂。 中国石化催化剂(北京)有限公司生产运行一部于2008年和2012年分别购买了两台卡博莱特的高温箱式炉RHF1400,十年间使用状况良好,设备稳定,并于2018年底再次采购了一台卡博莱特盖罗的高温箱式炉RHF1400,6月17日销售经理叶上游先生与高级维修工程师袁石峰先生来到中石化催化剂(北京)有限公司生产运行一部,对新购买的RHF1400进行安装和培训使用。据了解,生产运行一部主要是生产碳二选择性加氢催化剂的部门,马弗炉是用于催化剂的产品检验。碳二选择加氢催化剂的载体性质非常广,马弗炉烧完之后主要检测四项指标,吸水率,强度,密度和比表面积。崔工对卡博莱特盖罗的产品质量及售后服务安装都给予了高度评价。卡博莱特盖罗的马弗炉控温精度比较高,比其他一些品牌精度高一些,样品烧结的差别比较明显。 2008年及2012年采购的卡博莱特盖罗高温箱式炉RHF1400 生产运行一部的崔工(右)与卡博莱特盖罗销售经理叶上游先生(左)合影 合成各种聚合物的乙烯单体,通常是由烃类蒸汽裂解制得。在裂解气中除了乙烯单体以外常常含有少量的乙炔等杂质,为了提高聚合物的性能,通常需要对裂解气进行精制,以使乙炔含量降至10ppm以下,最好小于5ppm。工业上一般采用催化选择性加氢的方法将乙烯原料中的乙炔除去。近年来,由于乙烯需求量的增加,大多数厂家通过改扩建装置来提高乙烯产量,导致碳二加氢单元的负荷增加,因此对乙炔加氢催化剂性能也提出了更高的要求。拥有自主知识产权的碳二选择加氢催化剂的开发并在工业装置上的成功应用,可大大减轻国内乙烯装置对国外技术的依赖,对保证我国能源与经济安全、提高乙烯工业的竞争地位有重要意义。CarboliteGero(卡博莱特盖罗)是弗尔德集团建立的专业马弗炉品牌,拥有了全系列炉类产品,加热温度从室温至3000°C,容积从3L至14000L,应用领域覆盖实验室至工业,包括各类气氛炉类产品。CarboliteGero有着灵活的方案,能为用户提供个性化的解决方案,如:航空航天领域、工程领域、材料科学、热处理、医药、生物及实验室检测等领域。卡博莱特盖罗以满足用户需求为中心,提供设备选型指导,有专业领域的工程师为全球的用户提供现场安装和调试服务。RHF系列高温箱式炉采用硅碳棒加热,有4种炉腔尺寸,每种都有3种不同最高工作温度可选(1400°C, 1500°C和1600°C)。坚固的结构和高品质加热元件保证加热速率(通常40分钟内升到1400°C)和长久的使用寿命。RHF系列高温箱式炉特点:◆ 最高工作温度1400°C,1500°C或1600°C◆ Carbolite Gero301控制器,单段程序控温,计时器功能◆ 炉腔体积3,8,15或35L◆ 阻尼式上开门(仅3L,8L型号)◆ 硅碳棒加热元件使用寿命长,能够承受间歇操作产生的应力◆ RHF系列3L和8L采用一体成型的炉底板,15L和35L采用碳化◆ 硅炉底板◆ 低蓄热量的保温材料,升温和降温迅速
  • 色谱法化学吸附仪在催化剂行业中的应用
    摘自石油化工科学研究院《色谱法多功能催化研究装置》 在以往工作的基础上,提出了用气象色谱(GC)对催化反应、化学吸附和气体扩散进行联合研究的设计,建立了相应的装置,并拟投入定型化仪器生产。根据要求,可以使用脉冲法、连续流动法、迎头法,以及程序升温脱附技术,在一套设备上逐个测定催化剂的反应速度、金属分散性或其它活性中心、表面酸碱度和质量传递性能等,以便参照催化全过程的多种原位数据,有效地改进催化剂的活性、选择性及寿命。一、序言 在多相催化中,由于反应体系的复杂性,使得再解释催化活性及其机理上遇到了困难,因而妨碍了对特定化学过程最佳催化剂的选择。在近代,虽然有着各种能谱,光谱,磁学方法,场发射技术等应用于催化精细结构的研究,但由于各自在仪器和理论方面的限制,它们存在以下主要缺点:1、由于价格昂贵,不是所有的研究者都能得到所希望的仪器设备;2、由于催化材料的多样性,不是每种仪器都能获得所希望的数据;3、多数物理方法在“非原位“条件下所得到的数据,很难与催化行为直接关联。 近十多年来,随着色谱理论和技术的日臻成熟,并且由于它没有以上缺点和具有简便、快速、定量准确等优点,因而在催化研究中得到了广泛的应用。则是在接近于反应的条件下,研究固体催化剂的大多数表面化学性质,并在同时测定他们的催化性能,以便关联这些数据,加深对某特定过程催化作用本质的了解,并控制它的最佳催化剂的选择。为此,在综合以前工作的基础上,笔者提出了利用气相色谱技术,对催化行为进行联合研究的设计,并建立了可以作为定型化仪器的示范装置。现将该方法的基本原理和操作要点介绍如下。二、在催化研究中的应用GC技术通常按两种方式用在催化研究中,一种是将催化剂直接填充在色谱柱中,另一种是附加一个微型反应器与GC。用此可以测定物理表面积,传递参数,化学吸附和表面行为,反应速度等催化过程所需要的几乎全部数据。由于使用物理吸附法进行总表面积和孔分布的测定熟为人知,因而将不予涉及。在此,仅介绍笔者及其同事曾经进行和较感兴趣的几个方面。应用GC技术研制的程序升温化学吸附仪PCA-1000系列可进行以下催化剂性能分析:1. 催化剂活性表面积或金属分散性 催化剂的活性表面积仅占物理总表面积的一小部分。这一数据对于考虑催化反应的结构敏感性行为和计算转换数是不必可少的。通常,它也可以用在催化剂上的活性中心数目来表示。并且,通过用用脉冲色谱技术测定不可逆化学吸附,能够获得这一结果。金属和负载的金属催化剂,是研究的最多的对象。我们曾对重整过程中的各种催化剂和双金属催化剂进行研究。吸附质可以使用氢气、氧气、一氧化碳等。最优越的是化学吸附氧的氢脉冲滴定法。吸附体积的测量,按催化剂上消耗的吸附质数量来计算2. 程序升温脱附(TPD)技术 当吸附的质点被提供的热能活化,以至能够克服为了它的逸出所需越过的势垒时,便产生脱附。由于脱附速度随着温度的升高而指数地增加,同时,又因覆盖度的减小而减小,因此,正比于脱附物质浓度的信号,即脱附速度曲线呈TPD谱。 我们曾用氢气的TPD法,对国内外工业和实验室重整催化剂,发现在以Pt为主要组分,以氧化铝为载体的单、多金属催化剂上,存在着两类主要的活性中心。其低能中心是Pt的某种结构所特有的,它主要与加氢-脱氢反应活性有关;而第二或第三组元的引入,则只改变了高能中心的结构特征,它主要与异构化和环化反应有关。两类中心的相对数量和谱图的形状,决定着各基元反应的选择性;而催化剂的稳定性,则可由谱图的值估价。由此向我们提供了改进催化剂活性、选择性,以及使用寿命的方向。3. 固体材料表面酸碱性能的研究 在多相酸碱催化或双功能催化反应中,催化剂或者在体表面的酸碱度、酸碱中心类型,以及强度,对其活性、选择性、甚至寿命,都有着十分重要的作用。田部浩三曾系统的介绍了这一催化现象和对其进行实验测定的各种方法。特别是应用GC技术的气相酸碱物质的化学吸附法,在快速、准确、简便等方面,具有明显的优越性。 例如,当气体碱在酸性中心上吸附时,与强酸的结合将较在弱酸中心上更稳定,因此,随着温度的上升,吸附在后者上的碱性物质将优先的因热能激发而逸出。于是,在各种温度下逸出的吸附碱的份数,能够作为酸强度的量度;而从气相中所吸附的碱量,则作为表面酸度的量度;如果选择适当的吸附质,也有可能对表面Bronsted酸和 Lewis酸中心加以区分。4. 微型催化反应器技术 将微型催化反应器与GC相结合,提供了一个节省催化反应性能、动力学参数。特别是研究起始速度。中毒效应、催化剂失活等缓慢现象的手段。而且,它也容许方便地获得有关反应机律的情报。 笔者所给出的这种实验设计,可以按两种方式操作:一种是所谓的尾气技术,它与一般的连续流动法没有什么区别;一种是脉冲技术,它更能体现出GC法的优点。特别适合于在各种条件之下快速筛选和评价催化剂的情形。结合选择加氢催化剂的研制,我们曾有效地使用了环己烯、噻吩、异戊二烯模型化合物的微型脉冲催化反应研究法。考察了在许多催化剂上的活性、选择性,以及在某些工业催化剂上的吸附竞争性、反应机理,并计算了主要过程的反应活化能。在本文报道的装置上,还用类似方法研究了环戊二烯在各种类型催化剂上的选择加氢行为。 在非稳态脉冲条件下反应动力学的理论研究指出,只有在一级反应的情形中,或者在脉冲宽度远大于床层高度的条件之下,才能得到与连续流动法反应一致的结果。因此在进行动力学测量时,仔细的把握这一条件是十分重要的。5. 催化剂有效扩散系数的测定 质量传递作用,即扩散效应在使用多孔固体催化剂的工业过程中,对于产品的生产率有着巨大的影响。因此关于催化剂有效扩散性的测定是十分重要的。利用我们给出的装置,还可以按照另外一种途径进行这方面的研究。方法的基本点是在各种流速上,用测定非化学作用气体脉冲加宽的办法,来计算有效扩散系数。
  • 相约青年催化会,关注麦克领奖品
    2016年10月21-25日,全国青年催化会议将在湖南长沙举行,本届会议将围绕“助力经济结构快速转型的催化科技”的主题进行深入交流, 来自国内外高校和科研院所以及工业部门的900多位青年催化工作者将参加会议并就催化反应化学/工业催化、领域的最新研究成果与发展动向进行学术交流与研讨。美国麦克仪器公司作为赞助商参加了此次会议。会议期间,麦克仪器同期举行“关注麦克领奖品“活动”,只需扫扫二维码,即可领取麦克精美礼品一份,另有麦克专著《Analytical methods in fine particle technology》以及wifi移动电源等礼品送出,欢迎各地朋友莅临参观!高性能全自动化学吸附仪Autochem系列 Autochem为采用动态技术(流动气体)的全自动程序升温和化学吸附分析仪,能进行全自动脉冲化学吸附和程序升温技术,如tpr、tpd、tpo和tprx等。 标配高精度的质量流量计 抗腐蚀性检测器灯丝可分析大多数腐蚀性气体,减少灯丝氧化 可选Kwikcool冷却炉,可快速降温 可选低温Cryocooler ii 配件,可进行低温吸附 可选蒸汽发生器,进行蒸汽吸附 质谱仪端口和集成软件可同时在TCD和质谱仪上进行检测 强大的峰编辑和数据处理软件 Microactivity effi系列-催化剂评价整体方案 Microactivity effi系列是一款可定制的高端实验室反应器,适用于催化剂表征及活性、选择性的测试。这款全自动、紧凑型、具备创新控制技术的系统能够提供催化测试所需的多种配置与选项。并通过电脑控制进行一系列的实验,实现全自动无需看管的实验状态。 近零死体积,真正的实时获取气体/液体产物200℃封闭控温热箱系统,避免冷凝 专利电容式测微液面传感器,自动测试液体产物体积 专利高精度测微伺服阀,精确控制压力和液面 高达1050℃的低热惯性效应陶瓷纤维反应炉 具备远程自动控制与程序化的反应系统 可升级为双站、8站或16站独立反应系统 可进行各种催化反应及催化剂表征(程序升温技术、脉冲技术等) 配备专用接口,可外接GC、MS 、HPLC等设备,并实现软件统一控制 美国麦克仪器成立于1962年,是材料特性实验室分析仪器和服务的领导者。公司致力于生产分析粉末/固体材料物理化学性质的全自动化仪器,能够进行比表面积、孔容、孔径、孔径分布、密度、催化剂性质表征、催化剂活性测试以及粒度粒形分析,可广泛用于基础研究、产品开发及质量控制等各个阶段。 美国麦克仪器公司早在1979年就进入中国市场,是中美建交后最早进入中国市场的分析仪器。在为中国用户服务30多年后,于2011年3月在上海成立了麦克默瑞提克(上海)仪器有限公司.,专业为中国市场提供美国麦克仪器公司的产品和服务。2014年8月,公司在上海成立大型分析服务中心,提供全面的分析测试服务。 更多详情欢迎访问美国麦克仪器公司中国官方网站:http://www.micromeritics.com.cn
  • 化物所宽光谱响应光催化剂分解水研究获进展
    近日,中国科学院大连化学物理研究所催化基础国家重点实验室及洁净能源国家实验室中科院院士李灿和&ldquo 百人计划&rdquo 学者章福祥研究员负责的宽光谱响应半导体光催化分解水研究取得新进展:通过对宽光谱捕光材料Ta3N5 (Eg: 2.1 eV,吸收带边可至600 nm)与高效氧化助催化剂CoOx之间的界面进行MgO纳米层修饰,不仅改善了CoOx与其界面接触和分散状态,而且还对半导体Ta3N5表面起到钝化保护作用,使光催化体系在可见光长波段500&minus 600 nm激发条件下的分解水放氧量子效率(AQE),由文献最高值5.2%提升至目前的11.3%。相关研究结果在线发表在《德国应用化学》期刊上。   太阳能光催化分解水制氢是实现太阳能光-化学转化的重要反应,被认为是化学领域的一个&ldquo 圣杯&rdquo 式的反应。光催化水分解反应主要涉及质子还原和水氧化两个半反应,其中水氧化是涉及多电子转移、热力学爬坡的反应,被认为是实现上述太阳能光化学转化的速控步。太阳能光催化转化涉及如何实现太阳能宽光谱利用、如何实现高效的光生电荷分离以及表面的催化转化等关键科学问题,然而随着半导体催化剂吸收带边的红移,其驱动光生电荷分离以及水分解(还原、氧化)的能力就随之变弱。因此,太阳光的充分利用与光生电荷的高效分离常常不易兼得,要实现宽光谱响应的光催化剂高效水氧化过程是一个非常具有挑战性的难题。   助催化剂可有效促进光生电荷分离和催化转化,李灿研究团队在国际上明确提出了双助催化剂策略(Acc. Chem. Res. 2013, 46, 2355)。最近几年,为了攻克宽光谱响应光催化剂上水氧化这一科学难题,他们发展了高温负载廉价助催化剂CoOx的策略,在LaTiO2N (Eg: 2.1 eV)上取得了比传统贵金属IrO2和RuO2助催化剂更高的放氧性能(J. Am. Chem. Soc. 2012, 134, 8348-8351.),随后又成功地将这种CoOx负载策略拓展到了新开发的宽光谱响应的氮掺杂氧化物Sr5Ta4O15-xNx 和MgTa2O6&minus xNx材料体系上(J. Mater. Chem. 2013, 12, 5651 Chem. Commun. 2014, 50, 14415)。   该研究进一步利用MgO纳米层调变宽光谱响应半导体Ta3N5与助催化剂CoOx之间的界面性质,通过改变半导体材料表面的亲疏水性,改善了助催化剂的纳米分散以及界面间电荷的转移,取得了目前宽光谱响应光催化剂上分解水放氧反应的最高量子效率,为发展高效的光催化体系提供了新策略。   该研究工作获得基金委重大基金、科技部&ldquo 973&rdquo 项目以及中科院&ldquo 百人计划&rdquo 人才项目资助。 宽光谱响应光催化剂分解水研究取得新进展
  • 科学家研制出含铁燃料电池催化剂
    新材料不含贵金属 成本不再高企   近日,中科院大连化学物理研究所催化基础国家重点实验室博士邓德会、研究员潘秀莲、院士包信和等与洁净能源国家实验室燃料电池研究部合作,首次完成用铁替代燃料电池催化剂中贵金属的实验。相关研究成果日前在线发表于《德国应用化学》。   据了解,利用氢气发电是未来先进可持续能源体系发展的重要目标。为了实现这一目标,作为重要能量转换装置的质子交换膜燃料电池将会发挥不可替代的作用。然而,该类燃料电池需要大量的贵金属,如铂、钯、钌等作为催化剂,进而影响了其大规模应用。因此,大幅降低燃料电池电极材料中的贵金属含量,并最终采用地球上丰富的“廉”金属元素完全替代贵金属已成为该领域的重大机遇和挑战。   为此,该研究团队创造性地将铁基金属纳米粒子限域到具有豆荚状结构的碳纳米管的管腔中,采用该研究组新近研制成功的深紫外光发射电子显微镜,并借助上海光源先进的X射线吸收谱,结合理论计算,首次观察到金属铁的活性d电子通过与组成碳管壁的碳原子相互作用而“穿过”碳管管壁,使富集在碳管外表面的电子直接催化分子氧的还原反应。   该实验和理论研究进一步证实,在这一体系中,包裹纳米金属铁的碳壁阻断了反应气体与铁纳米粒子的直接接触,从原理上避免了反应过程中活性金属铁纳米粒子的深度氧化以及反应气氛中其他有害组分对催化剂的毒害,从而在根本上解决了纳米金属铁作为燃料电池阴极催化剂的稳定性难题。   业内专家认为,该项研究不仅为燃料电池催化剂的贵金属替代研究提供了行之有效的途径,而且,由此发展出来的概念为在苛刻条件下运行的催化剂的设计和制备开辟了新方向。   以上研究得到了国家自然科学基金委和科技部等相关项目的资助。
  • 模拟光合作用的光动力催化剂问世
    美国麻省理工学院研究人员通过模拟光合作用,即植物用来生产糖分的光驱动过程,设计了一种可以吸收光并用光来驱动各种化学反应的新型光催化剂。该研究成果15日发表在《化学》杂志上。  这种新型催化剂被称为生物混合光催化剂,其含有一种采光蛋白,可吸收光并将能量转移到含金属的催化剂上。然后,这种催化剂利用能量进行反应,这些反应可用于合成药物或将废物转化为生物燃料及其他有用的化合物。  研究资深作者、麻省理工学院化学副教授加布里埃拉施劳-科恩表示,光催化可使药物、农用化学品和燃料合成更加高效和环保。研究表明,新型光催化剂可显著提高他们尝试的化学反应的产量,且与现有的光催化剂不同,新催化剂可吸收所有波长的光。  在之前进行的关于光催化剂的工作中,研究人员使用一种分子来进行光吸收和催化。该方法有局限性,因为大多数使用的催化剂只能吸收某些波长的光。为了创建新催化剂,研究人员模拟光合作用并将两种不同的元素结合起来:一种用于采集光,另一种用于催化化学反应。对于光采集部分,他们使用了一种在红藻中发现的被称为R-植物红素的蛋白质。他们将这种蛋白质连接到含钌催化剂上,该催化剂以前曾被单独用于光催化。  联合展开研究的普林斯顿大学团队测试了催化剂在两种不同类型的化学反应中的性能。一种是硫醇—烯偶联,将硫醇和烯烃连接起来形成硫醚,另一种是肽偶联后用甲基取代剩余的硫醇基团。  普林斯顿团队的研究表明,与单独的钌光催化剂相比,新的生物混合催化剂可将这些反应产量提高十倍。他们还发现,这些反应可在红光照射下发生,这是现有光催化剂难以实现的,其对组织的破坏更小,因此有可能用于生物系统。  研究人员说,这种改进的光催化剂可被纳入上述两种反应的化学过程中。硫醇—烯偶联可用于创建蛋白质成像、传感、药物输送和生物分子稳定性所需的化合物。例如,它可用于合成脂肽,使新设计的抗原疫苗更容易被吸收。研究人员测试的另一种反应是西苯脱硫,它在肽合成中有许多应用,包括可用于生产艾滋病治疗药物恩夫韦地。  这种类型的光催化剂还可用于驱动一种被称为木质素解聚的反应,有助于从木材或其他难以分解的植物材料中产生生物燃料。
  • 麦克仪器给力科学研究-用于脂化生物柴油合成中游离酸的超高交联聚苯乙烯磺酸催化剂
    随着美国麦克仪器的市场份额的逐步壮大,美国麦克仪器已经成为行业科学研究必备仪器,日前英国哈德斯菲尔德大学教授发表了一篇题为&ldquo 用于脂化生物柴油合成中游离脂肪酸的超高交联聚苯乙烯磺酸催化剂 &rdquo 学术文章,已经被Applied Catalysis B: Environmental(115&ndash 116 (2012) 261&ndash 268)收录,在该项研究中,美国麦克仪器ASAP 2020与DVS Advantage仪器成为表征催化剂最强有力的工具,为其研究提供了最具可信度的分析结果。以下列举该文章的摘要以及链接供参考: 链接:http://www.sciencedirect.com/science/article/pii/S0926337311006102 标题:Hypercrosslinked polystyrene sulphonic acid catalysts for the esterification of free fatty acids in biodiesel synthesis 摘要: New sulphonic acid catalysts supported on hypercrosslinked polystyrene have been studied in the esterification of oleic acid with methanol and in the rearrangement of &alpha -pinene to camphene and limonenes. The catalysts have been characterised in terms of specific surface areas and porosities, affinities for water and for cylcohexane vapours, and both concentrations and strengths of acid sites. They have been compared with conventional macroporous polystyrene sulphonic acids (Amberlysts 15 and 35) and SAC-13, a composite between Nafion and silica. The results show that the hypercrosslinked polystyrene sulphonic acids, despite exhibiting relatively low concentrations of acid sites and acid site strengths below those of Amberlysts 15 and 35, are very much more catalytically active than conventional resins in reactions such as the esterification in which high acid site strengths are not required. It is thought that this is due to the highly accessible acid sites throughout the catalyst particles. Reusability studies are reported and it appears that the temperature at which the catalyst is used is important in controlling and minimising catalyst deactivation. 美国麦克仪器公司是世界上第一家将自动表面积分析仪、压汞仪以及沉降式粒度分析仪投放市场的公司。公司主营产品为研究级全自动比表面积与孔隙度分析仪、多站比表面积与孔隙度分析仪、快速比表面积与孔隙度分析仪、流动气体法比表面分析仪、程序升温化学吸附仪、化学吸附仪、压汞仪、高压吸附气体吸附仪、蒸汽吸附仪、密度测量、颗粒技术和颗粒形态分析仪等各种材料表征仪器。 美国麦克仪器产品在1979年进入中国市场,成为中美建交后最早进入中国市场的分析仪器。在为中国用户服务30多年后,于2011年3月在上海成立了麦克默瑞提克(上海)仪器有限公司,专业为中国市场提供美国麦克仪器公司的产品。公司总部设在上海,并在北京、广州、西安分别设有办公室,并设有应用实验室提供各类仪器的演示与操作培训并提供对外做样服务,为广大用户提供完整的实验室解决方案与疑难样品的分析。
  • 催化剂表征更快、更简单的5种方法
    2022年6月,全球专业的材料表征技术公司 Micromeritics 宣布新品 AutoChem III 的上市。AutoChem III 的动态化学吸附和程序升温分析在开发新催化剂材料至关重要的性能指标中发挥着极其重要的作用,助力碳捕获和利用、氢清洁能源以及其他净零等技术的发展。新升级的 AutoChem III 能够显著提高实验效率和灵敏度。Micromeritics AutoChem III 的全新设计旨在简化关键实验步骤,每天能够为用户节省几个小时,减少测试时间,提高实验效率。全新产品带来让催化剂表征更快、更简单五种方法!● 冷却更快全新 AutoCool 比压缩空气冷却时间快 30 分钟,无需液体或外部帮助。● TPR 无需另外准备水蒸汽捕获冷却浴全新 AutoTrap 为 TPR 实验提供高效的蒸汽捕获,无需制备冷却浴。● 自动 TCD 校准 专利的 (美国专利号:#10487954 B2) 气体混合阀和智能程序使 TCD 校准更简单更准确。● 样品管安装便捷全新专利(美国专利号:#11105825 B2)保护的 KwikConnect 样品管安装比传统设计更快、更容易、更可靠。独立组件数量是传统设计的一半,没有螺纹接头。● 直观可视化的实验方法开发通过流程图实现个性化编程和程序可视化。想要了解更多关于 AutoChem III 的技术与资料内容,欢迎访问 Micromeritics 官方网站相关页面,并免费索取产品资料册。关于麦克默瑞提克Micromeritics 是提供表征颗粒、粉体和多孔材料的物理性能、化学活性和流动性的全球高性能设备生产商。我们能够提供一系列行业前沿的技术,包括比重密度法、吸附、动态化学吸附、压汞技术、粉末流变技术、催化剂活性检测和粒径测定。公司在美国、英国和西班牙均设立了研发和生产基地,并在美洲、欧洲和亚洲设有直销和服务业务。Micromeritics 的产品是全球具有创新力的知名企业、政府和学术机构旗下 10,000 多个实验室的优选仪器。我们拥有专业的科学家队伍和响应迅速的支持团队,他们能够将 Micromeritics 技术应用于各种要求严苛的应用中,助力客户取得成功。
  • 新型钼基催化剂实现高效CO2转化!
    【研究背景】钼碳化物(Mo carbides)作为催化剂在二氧化碳(CO2)转化中的应用引起了广泛关注。由于全球气候变化的压力,开发高效、经济的CO2转化技术变得尤为重要。钼碳化物因其在逆水气转化(RWGS)反应中的优异表现而受到关注。然而,传统的钼碳化物合成方法通常需要高能耗的碳化预处理,且其稳定性问题仍然存在,这在实际应用中带来了挑战。为了解决这些问题,中国科学院大连化学物理研究所孙剑研究员、俞佳枫副研究员团队携手提出了一种新策略,通过在反应过程中直接从Ir修饰的MoO3生成钼碳化物,避免了高能耗的碳化预处理。具体而言,这项研究利用火焰喷射热解(FSP)方法合成了未饱和的钼氧化物(Mo17O47),并通过微量铱(0.02 wt%)促进了在反应条件下的还原和碳化过程。最终,形成了具有丰富缺陷的MoOxCy结构,该结构在600°C下的RWGS反应中展现出优异的催化性能和长期稳定性。这一策略不仅显著提高了钼碳化物催化剂的效率,还提供了一种低能耗的催化剂合成方法,为钼基催化剂在CO2利用中的应用开辟了新途径。该研究成果为高温应用中的CO2转化提供了新思路,并推动了Mo基催化剂系统的工业应用。【表征亮点】(1) 实验首次采用无碳化预处理策略,通过在RWGS反应过程中生成Mo碳化物,成功从铱修饰的MoO3中制备了Mo17O47氧缺位氧化物,并在600°C条件下实现了稳定的催化性能。(2) 实验通过一键火焰喷雾热解法(FSP)合成了Ir-MoO3催化剂,在反应过程中形成了MoOxCy结构,表面富含缺陷的未饱和MoOxCy结构在α-MoC上生成。铱作为促进剂,极大加速了MoO3的还原和碳化过程,显著提高了催化剂的活性与稳定性。(3) 实验结果表明,该催化剂在2,000小时的RWGS反应中表现出优异的稳定性,CO产率达到17.4 molCO gcat&minus 1 h&minus 1。通过STEM、XPS和XAS表征及中子衍射图谱定量分析,确认了表面含缺陷的MoOxCy结构的生成。(4) 同位素交换实验显示,CO2中的碳被插入到MoOxCy缺陷中,CO释放则从MoOxCy中带走碳原子,完成了碳循环。DFT计算表明,这种反应路径相比传统氧化还原路径更具热力学优势,有效促进了H2解离,从而进一步提高了CO2的转化效率。【图文解读】图1:RWGS反应中的催化性能。图2:Mo物种的相和结构分析。图3:RWGS反应后MoO3和Ir-MoO3催化剂的结构表征。图4: 反应物活化和活性位点研究。图5: 通过DFT计算得出的RWGS反应机理。【科学启迪】这项研究通过开发一种简便的策略,实现了在反应过程中生成Mo碳化物,避免了传统碳化预处理的高能耗步骤。这表明,通过控制氧缺位Mo氧化物的形成,并利用铱促进原位碳化,可以显著提升催化性能和稳定性。其次,研究揭示了MoOxCy结构表面的碳循环机制,展示了在CO2转化中碳原子的插入与释放过程,这一新的反应路径比传统的氧化还原路径更加有利于氢气的解离与CO2的高效转化。该发现不仅为开发高效Mo基催化剂提供了理论依据,也为未来在CO2利用、可持续能源转换和环境治理领域的应用开辟了新的可能性。这种低能耗、可持续的催化剂设计理念或将推动相关领域的进一步发展。参考文献:Zhao, Z., Li, T., Zhang, C. et al. Air-stable naphthalene derivative-based electrolytes for sustainable aqueous flow batteries. Nat Sustain (2024). https://doi.org/10.1038/s41893-024-01415-6
  • 微反实验太繁复?麦克仪器推出全自动高端微型反应器
    仪器信息网讯 2016年7月3-8日,被学术界誉为“催化领域奥运会”的第十六届国际催化大会(ICC 16)在北京国家会议中心举行。这是国际催化大会首次在我国举办,来自50多个国家的近3000人出席了本次会议。麦克仪器亮相ICC 16  作为全球催化剂表征与催化剂评价仪器的知名专业供应商,美国麦克仪器公司携Particular Systems Microactivity Effi高端实验室反应器积极亮相,为全球催化领域打造了崭新的催化剂评价整体方案,深度诠释了台式反应器自动化、智能化的发展方向。  据了解,Microactivity Effi是一款全自动的紧凑型台式反应器,可通过电脑控制进行一系列的实验,实时获取高精度、高重现性的数据结果,适用于催化剂研发与筛选阶段的各种反应。与市场中的其他微型反应器不同的是,Microactivity Effi配备了专为此系统研发的专利高精度测微伺服阀,可精确控制压力和液面并提供微量级的测试。Particular Systems Microactivity Effi亮相ICC 16  麦克默瑞提克(上海)仪器有限公司总经理许人良介绍说,使用Microactivity Effi,用户可在催化剂活性测试前进行表征以预测催化剂性质 在活性测试后再进行表征,可帮助用户确定催化剂失活的原因。整个表征-测试-表征的实验过程均可在一台设备中自动完成,Microactivity Effi可以说是全球首款全自动的催化剂评价微反装置,可实时控制反应过程。  在积极参展之余,美国麦克仪器公司本次还倾情赞助了ICC 16晚宴,该公司英国区域经理Steve Coulson出席晚宴,并对美国麦克仪器公司的全球概况、产品架构及技术应用优势作了简短介绍。
  • 岛津XPS用户成果分享丨原位光照XPS表征CdSe纳米棒@Ti₃C₂ MXene纳米片复合光催化剂
    太阳能以其取之不尽、用之不竭、清洁可再生等特点,有望成为化石燃料的替代能源之一,半导体光催化因其成功将太阳能转化为所需的化学能而引起了研究者极大的兴趣。光催化制氢是将太阳能转化为化学能的最重要途径之一,而其关键技术在于开发高效、高稳定性、低成本的光催化剂。本期岛津XPS 用户成果分享主要介绍复旦大学化学系戴维林教授研究团队近期在光催化领域研究的一些进展及XPS测试技术在其中的应用。团队介绍---戴维林教授团队复旦大学化学系教授,博士生导师。主要研究领域为新型催化材料的构筑及其在能源、环境、精细化学品合成及太阳能光催化等领域的应用。曾获上海市曙光学者称号。以第一或通讯作者在化学及材料领域著名期刊ACS Catal., Chem. Eng. J., J. Mater. Chem. A., Appl. Catal. B: Environ., Green. Chem., J. Catal., ACS Sustain. Chem. Eng., Chem. Commun., J. Hazard. Mater.等发表SCI论文170余篇,多篇论文入选全球1% ESI 高被引用论文,总引用次数10890余次,H-index 56,获中国发明专利33项。2014-2023连续入选Elsevier公布的化学领域中国大陆高被引学者榜单,2023 年度入选斯坦福大学及 Elsevier 发布全球化学学科 2%顶尖科学家榜单,在国际上产生了一定的影响。目前担任多个学术刊物的编委。课题组网站:https://Daigroup.fudan.edu.cn 成果简介: CdSe@Ti3C2 MXene复合材料实现高效光解水产氢复旦大学戴维林教授课题组设计了一种CdSe纳米棒@Ti3C2 MXene纳米片复合光催化剂,并结合SPM(扫描探针显微镜)及原位光照XPS(X射线光电子能谱)结果进行相关机理探讨,为进一步开发高效稳定的光催化体系提供了研究思路。岛津公司参与该项研究工作,相关合作成果发表于光催化领域国际知名SCI期刊《Applied Catalysis B: Environmental》(IF=22.1)上。 研究工作利用原位水热技术构建了由Ti3C2 MXene纳米片和CdSe纳米棒组成的二元异质结,通过光催化产氢活性测试发现,在可见光下,CdSe-Ti3C2 MXene(以下简称CdSe-MX)的最佳氢生成活性比原始CdSe高近6倍。图1给出了CdSe-MX复合材料与纯CdSe的各元素高分辨XPS谱图,相较于纯物质,复合后各组分结合能的移动可反映出复合材料之间存在电子转移作用,一般失去电子的一方结合能升高,反之则降低。图1(a、d)中,与纯MXene相比,CdSe-MX的C 1s中归属于C-Ti峰的结合能以及Ti 2p中Ti-C 2p3/2的结合能位置均降低;相应地,与纯CdSe相比,CdSe-MX的Se 3d5/2结合能以及Cd 3d5/2结合能位置均升高。以上结果表明CdSe-MX复合材料中电子由CdSe转移至Ti3C2 MXene表面。图1.CdSe-MX复合材料与纯CdSe的(a) C 1s、(b) Cd 3d、(c) Se 3d、(d) Ti 2p高分辨率XPS谱图由于真实反应体系在光照下进行,故进一步采用原位光照XPS用于探索CdSe和Ti3C2 MXene之间的电荷转移,结果见图2。与黑暗条件相比,Cd 3d5/2的结合能在光照条件下正向移动0.4 eV,Se 3d 峰的结合能在光照条件下也正向移动0.3 eV。同时,Ti 2p3/2峰的结合能在可见光照射下负向移动0.2 eV。这一发现证明了在原位光照条件下,电子进一步从CdSe转移到MXene。这些XPS结果有力的证明了反应条件下的电子转移方向,验证了催化反应机理。图2. 原位光照前后CdSe-MX的Cd 3d (a)、Se 3d (b) 和Ti 2p (c)的高分辨率XPS谱图仪器介绍全新一代Kratos AXIS SUPRA+ 是基于卓越的研发与制造,兼备高分辨采谱和快速平行成像功能的多技术型 X 射线光电子能谱(图3)。&bull 卓越的便捷性:集样品全自动传输、全自动分析、智能数据采集处理于一体,体现了卓越的便捷性。&bull 优异的性能:拥有多种 X 射线源、大半径双层能量分析器,杰出的荷电中和技术,使其获得了优异的性能。&bull 丰富的扩展性:高能Ag Lα单色X射线源可有效区分光电子峰和俄歇峰并增加探测深度;搭配适应1000°C高温、3 MPa高压及模拟反应气氛的准原位催化反应池;适合不同波长和功率激光及模拟太阳光实时照射样品表面,在样品分析室进行原位光催化反应的光纤系统。&bull 图3 复旦大学化学系X射线光电子能谱仪参考文献:Huajun Gu, Huihui Zhang, Xinglin Wang, Qin Li, Shengyuan Chang, Yamei Huang, Linlin Gao, Yuanyuan Cui, Renwei Liu, Wei-Lin Dai*. Appl. Catal. B: Environ., 2023, 328, 122537.本文内容非商业广告,仅供专业人士参考。
  • 晶泰科技亮相NCPSTC研讨会,AI+Automation赋能催化剂创新研究
    中国化学会第十二届全国催化剂制备科学与技术研讨会于 10 月 11 日-13 日在杭州成功举办。本次研讨会围绕石油及煤化工催化剂、能源环境催化剂、光电催化剂、生物与均相催化剂的制备、表征、理论计算及工业应用等主题展开,旨在交流最新研究成果,深入探讨催化剂制备科学与技术面临的共性难题及发展机遇。 晶泰科技自动化业务应用工程师叶杨陟在本次研讨会上作为演讲嘉宾,分享了 “晶泰科技 AI+Automation 赋能催化剂研发创新” 的主题演讲,介绍了 AI 和自动化技术助力催化剂研究的前沿进展,以及晶泰科技在石油化工、新材料、新能源领域已交付自动化应用案例。 人工智能+机器人催化剂研发的创新方式在催化剂研究领域,催化剂的研发过程大体可以分为设计、合成、表征及评价的四个过程,在设计阶段人工智能(AI)可以通过文献信息总结设计生成潜在候选催化剂,减少了研究人员的实验量。再利用高通量合成、表征自动化设备,精准操作实验任务,减少人为误差。实时监控记录催化剂制备过程中的各项参数,如温度、压力、流量等。实验结果反馈进而优化算法,提高预测准确性,提升催化剂研发效率。● 晶泰科技AI + Automation解决方案, 助力催化剂研究晶泰科技自研的底层能力包括仪器控制、视觉算法、自然语言处理、科学计算、图像识别等技术,在这些技术上,晶泰科技构建了自己的数据引擎和行业模型,包括领域知识模型和化学领域垂类模型。利用自动化技术(晶泰科技机器人工作站)为 AI 模型产生了大量高质量的实验数据,AI 模型为自动化实验指明了迭代方向,相辅相成。晶泰科技AI+Automation:助力催化剂研究● 晶泰科技机器人工作站人工智能+机器人赋能石油化工、新材料、新能源等领域研发创新● AI + Robotic 智慧实验室一站式建设服务AI+Automation 技术的进步,推动着自动化实验室的构建已经从最初重复耗时的 “手动实验” 模式升级为通量和自动化程度都显著提高的 “多实验阶段”。晶泰科技作为一家世界前沿的以人工智能(AI)和机器人驱动创新的科技公司,在 “智慧实验室” 领域也是新质生产力的代表。晶泰科技持续高密度地投入研发能力建设,现有智能自动化实验室 5000㎡,自动化工作站 200 余台,软硬件研发工程师 150 余人,相关领域科学家 300 余人,已具备多场景、全流程自动化能力。晶泰科技的 “AI+Automation” 自动化解决方案可广泛应用在石油化工、新能源、新材料、生物医药等行业领域,提供的自动化产品与服务包含:智慧实验室一站式建设服务、机器人工作站等,已为客户落地构建了药物研发智慧实验室、催化剂研究智慧实验室、无机材料研究智慧实验室以及电解液配方研究智慧实验室等。
  • 北化院BHL催化剂完成首次工业应用试验
    近日,北京化工研究院自主研发的新型BHL催化剂在中科炼化道达尔ADL环管聚乙烯工艺装置成功完成首次工业应用试验,综合性能全面超越进口同类催化剂。道达尔ADL工艺对催化剂性能要求高,此前均使用进口专利商催化剂。北化院针对道达尔ADL工艺,历时多年开发新型高性能钛系催化剂——BHL催化剂。试验过程中,中科炼化和北化院团队紧密合作,催化剂切换顺畅,生产过程平稳,以创纪录的16.5小时将各项产品参数调整合格。相对于进口催化剂,BHL催化剂活性提高10%~20%,氢调性能平稳,共聚性能提升10%以上,制得的聚合物颗粒形态良好、细粉更少,树脂产品达到优级标准。BHL催化剂工业应用试验的成功,标志着北化院研发的催化剂技术在国内淤浆聚乙烯工艺领域实现全覆盖。下一步,北化院将与中科炼化进一步深化产销研用合作,提升树脂产品质量,开发新型树脂产品,助力中科炼化降本增效,实现高质量发展。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制