当前位置: 仪器信息网 > 行业主题 > >

氨氮硝氮离子选择性传感器

仪器信息网氨氮硝氮离子选择性传感器专题为您提供2024年最新氨氮硝氮离子选择性传感器价格报价、厂家品牌的相关信息, 包括氨氮硝氮离子选择性传感器参数、型号等,不管是国产,还是进口品牌的氨氮硝氮离子选择性传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氨氮硝氮离子选择性传感器相关的耗材配件、试剂标物,还有氨氮硝氮离子选择性传感器相关的最新资讯、资料,以及氨氮硝氮离子选择性传感器相关的解决方案。

氨氮硝氮离子选择性传感器相关的论坛

  • 离子选择性电极

    基本理论离子选择性电极(ISEs)是以敏感膜为基础的电化学传感器,这层膜是使电极对特定离子有选择性响应的元件。根据膜的材料不同可将离子选择性电极分为4种:• 玻璃膜(如Na+或pH)• 固态膜(如Pb2+) • 聚合体膜(如K+)• 气体渗透膜(如CO2)电极置于溶液内时膜上会形成一电势差。当样品内待测离子的浓度变化时,用离子选择性电极和一内置或外置参比电极一起使用能测出此电势差的变化。

  • 电化学生物传感器

    电化学生物传感器   传感器与通信系统和计算机共同构成现代信息处理系统。传感器相当于人的感官,是计算机与自然界及社会的接口,是为计算机提供信息的工具。   传感器通常由敏感(识别)元件、转换元件、电子线路及相应结构附件组成。生物传感器是指用固定化的生物体成分(酶、抗原、抗体、激素等)或生物体本身(细胞、细胞器、组织等)作为感元件的传感器。电化学生物传感器则是指由生物材料作为敏感元件,电极(固体电极、离子选择性电极、气敏电极等)作为转换元件,以电势或电流为特征检测信号的传感器。图1是电化学生物传感器基本构成示意图。由于使用生物材料作为传感器的敏感元件,所以电化学生物传感器具有高度选择性,是快速、直接获取复杂体系组成信息的理想分析工具。一些研究成果已在生物技术、食品工业、临床检测、医药工业、生物医学、环境分析等领域获得实际应用。   根据作为敏感元件所用生物材料的不同,电化学生物传感器分为酶电极传感器、微生物电极传感器、电化学免疫传感器、组织电极与细胞器电极传感器、电化学DNA传感器等。(1) 酶电极传感器   以葡萄糖氧化酶(GOD)电极为例简述其工作原理。在GOD的催化下,葡萄糖(C6H12O6)被氧氧化生成葡萄糖酸(C6H12O7)和过氧化氢:   根据上述反应,显然可通过氧电极(测氧的消耗)、过氧化氢电极(测H2O2的产生)和pH电极(测酸度变化)来间接测定葡萄糖的含量。因此只要将GOD固定在上述电极表面即可构成测葡萄糖的GOD传感器。这便是所谓的第一代酶电极传感器。这种传感器由于是间接测定法,故干扰因素较多。第二代酶电极传感器是采用氧化还原电子媒介体在酶的氧化还原活性中心与电极之间传递电子。第二代酶电极传感器可不受测定体系的限制,测量浓度线性范围较宽,干扰少。现在不少研究者又在努力发展第三代酶电极传感器,即酶的氧化还原活性中心直接和电极表面交换电子的酶电极传感器。  目前已有的商品酶电极传感器包括:GOD电极传感器、L 乳酸单氧化酶电极传感器、尿酸酶电极传感器等。在研究中的酶电极传感器则非常多。(2) 微生物电极传感器    由于离析酶的价格昂贵且稳定性较差,限制了其在电化学生物传感器中的应用,从而使研究者想到直接利用活的微生物来作为分子识别元件的敏感材料。这种将微生物(常用的主要是细菌和酵母菌)作为敏感材料固定在电极表面构成的电化学生物传感器称为微生物电极传感器。其工作原理大致可分为三种类型:其一,利用微生物体内含有的酶(单一酶或复合酶)系来识别分子,这种类型与酶电极类似 其二,利用微生物对有机物的同化作用,通过检测其呼吸活性(摄氧量)的提高,即通过氧电极测量体系中氧的减少间接测定有机物的浓度 其三,通过测定电极敏感的代谢产物间接测定一些能被厌氧微生物所同化的有机物。   微生物电极传感器在发酵工业、食品检验、医疗卫生等领域都有应用。例如:在食品发酵过程中测定葡萄糖的佛鲁奥森假单胞菌电极 测定甲烷的鞭毛甲基单胞菌电极 测定抗生素头孢菌素的Citrobacterfreudii菌电极等等。微生物电极传感器由于价廉、使用寿命长而具有很好的应用前景,然而它的选择性和长期稳定性等还有待进一步提高。(3) 电化学免疫传感器    抗体对相应抗原具有唯一性识别和结合功能。电化学免疫传感器就是利用这种识别和结合功能将抗体或抗原和电极组合而成的检测装置。   根据电化学免疫传感器的结构可将其分为直接型和间接型两类。直接型的特点是在抗体与其相应抗原识别结合的同时将其免疫反应的信息直接转变成电信号。这类传感器在结构上可进一步分为结合型和分离型两种。前者是将抗体或抗原直接固定在电极表面上,传感器与相应的抗体或抗原发生结合的同时产生电势改变 后者是用抗体或抗原制作抗体膜或抗原膜,当其与相应的配基反应时,膜电势发生变化,测定膜电势的电极与膜是分开的。间接型的特点是将抗原和抗体结合的信息转变成另一种中间信息,然后再把这个中间信息转变成电信号。这类传感器在结构上也可进一步分为两种类型:结合型和分离型。前者是将抗体或抗原固定在电极上 而后者抗体或抗原和电极是完全分开的。间接型电化学免疫传感器通常是采用酶或其他电活性化合物进行标记,将被测抗体或抗原的浓度信息加以化学放大,从而达到极高的灵敏度。   电化学免疫传感器的例子有:诊断早期妊娠的hCG免疫传感器 诊断原发性肝癌的甲胎蛋白(AFP或αFP)免疫传感器 测定人血清蛋白(HSA)免疫传感器 还有IgG免疫传感器、胰岛素免疫传感器等等。(4) 组织电极与细胞器电极传感器   直接采用动植物组织薄片作为敏感元件的电化学传感器称组织电极传感器,其原理是利用动植物组织中的酶,优点是酶活性及其稳定性均比离析酶高,材料易于获取,制备简单,使用寿命长等。但在选择性、灵敏度、响应时间等方面还存在不足。   动物组织电极主要有:肾组织电极、肝组织电极、肠组织电极、肌肉组织电极、胸腺组织电极等。测定对象主要有:谷氨酰胺、葡萄糖胺 6 磷酸盐、D 氨基酸、H2O2、地高辛、胰岛素、腺苷、AMP等。  植物组织电极敏感元件的选材范围很广,包括不同植物的根、茎、叶、花、果等。植物组织电极制备比动物组织电极更简单,成本更低并易于保存。   细胞器电极传感器是利用动植物细胞器作为敏感元件的传感器。细胞器是指存在于细胞内的被膜包围起来的微小“器官”,如线粒体、微粒体、溶酶体、过氧化氢体、叶绿体、氢化酶颗粒、磁粒体等等。其原理是利用细胞器内所含的酶(往往是多酶体系)。(5) 电化学DNA传感器    电化学DNA传感器是近几年迅速发展起来的一种全新思想的生物传感器。其用途是检测基因及一些能与DNA发生特殊相互作用的物质。电化学DNA传感器是利用单链DNA(ssDNA)或基因探针作为敏感元件固定在固体电极表面,加上识别杂交信息的电活性指示剂(称为杂交指示剂)共同构成的检测特定基因的装置。其工作原理是利用固定在电极表面的某一特定序列的ssDNA与溶液中的同源序列的特异识别作用(分子杂交)形成双链DNA(dsDNA)(电极表面性质改变),同时借助一能识别ssDNA和dsDNA的杂交指示剂的电流响应信号的改变来达到检测基因的目的。   已有检测灵敏度高达10-13g/mL的电化学DNA传感器的报道,Hashimoto等[8]采用一个20聚体的核苷酸探针修饰在金电极上检测了PVM623的PatⅠ片断上的致癌基因v myc。电化学DNA传感器离实用化还有相当距离,主要是传感器的稳定性、重现性、灵敏度等都还有待于提高。有关DNA修饰电极的研究除对于基因检测有重要意义外,还可将DNA修饰电极用于其它生物传感器的研究,用于DNA与外源分子间的相互作用研究[9],如抗癌药物筛选、抗癌药物作用机理研究 以及用于检测DNA结合分子。无疑,它将成为生物电化学的一个非常有生命力的前沿领域。   生物电化学所涉及的面非常广,内容很丰富。以上介绍的只是该交叉学科一些领域的概况。可以相信,随着相关学科的发展,生物电化学将进一步蓬勃发展。

  • 【资料】气体传感器的基础知识

    目前按照气敏特性来分,气体传感器主要分为:半导体型、电化学型、固体电解质型、接触燃烧型、光化学型等气体传感器,又以前两种最为普遍。 一、半导体型气体传感器的优缺点自从1962年半导体金属氧化物陶瓷气体传感器问世以来,半导体气体传感器已经成为当今应用最普遍、最实用的一类气体传感器。它具有成本低廉、制造简单、灵敏度高、响应速度快、寿命长、对湿度敏感低和电路简单等优点。不足之处是必须在高温下工作、对气体或气味的选择性差、元件参数分散、稳定性不理想、功率高等方面。 二、半导体传感器需要加热的原因半导体传感器是利用一种金属氧化物薄膜制成的阻抗器件,其电阻随着气体含量不同而变化。气体分子在薄膜表面进行还原反应以引起传感器电导率的变化。为了消除气体分子达到初始状态就必须发生一次氧化反应。传感器内的加热器可以加速氧化过程,这也是为什么有些低端传感器总是不稳定,其原因就是没有加热或加热电压过低导致温度太低反应不充分。 三、电化学气体传感器的工作原理 电化学气体传感器是通过检测电流来检测气体的浓度,分为不需供电的原电池式以及需要供电的可控电位电解式,目前可以检测许多有毒气体和氧气,后者还能检测血液中的氧浓度。电化学传感器的主要优点是气体的高灵敏度以及良好的选择性。不足之处是有寿命的限制一般为两年。 四、半导体传感器和电化学传感器的区别 半导体传感器因其简单低价已经得到广泛应用,但是又因为它的选择性差和稳定性不理想目前还只是在民用级别使用。而电化学传感器因其良好的选择性和高灵敏度被广泛应用在几乎所有工业场合。 五、固态电解质气体传感器 顾名思义,固态电解质就是以固体离子导电为电解质的化学电池。它介于半导体和电化学之间。选择性,灵敏度高于半导体而寿命又长于电化学,所以也得到了很多的应用,不足之处就是响应时间过长。 六、接触燃烧式气体传感器 接触燃烧式气体传感器只能测量可燃气体。又分为直接接触燃烧式和催化接触燃烧式,原理是气敏材料在通电状态下,可燃气体在表面或者在催化剂作用下燃烧,由于燃烧使气敏材料温度升高从而电阻发生变化。后者因为催化剂的关系具有广普特性应用更广。 七、光学式气体传感器光学式气体传感器主要包括红外吸收型、光谱吸收型、荧光型等等,主要以红外吸收型为主。由于不同气体对红外波吸收程度不同,通过测量红外吸收波长来检测气体。目前因为它的结构关系一般造价颇高。

  • 七大类常用气体传感器优缺点对比

    一、半导体传感器和电化学传感器的区别 半导体传感器因其简单低价已经得到广泛应用,但是又因为它的选择性差和稳定性不理想目前还只是在民用级别使用气体探测器。而电化学传感器因其良好的选择性和高灵敏度被广泛应用在几乎所有工业场合。 二、半导体型气体传感器的优缺点 自从1962年半导体金属氧化物陶瓷气体传感器问世以来,半导体气体传感器已经成为当今应用最普遍、最实用的一类气体传感器。它具有成本低廉、制造简单、 灵敏度高、响应速度快、寿命长、对湿度敏感低和电路简单等优点。不足之处是必须在高温下工作、对气体或气味的选择性差、元件参数分散、稳定性不理想、功率 高等方面。 三、接触燃烧式气体传感器 接触燃烧式气体传感器只能测量可燃气体。又分为直接接触燃烧式和催化接触燃烧式,原理是气敏材料在通电状态下,可燃气体在表面或者在催化剂作用下燃烧,由于燃烧使气敏材料温度升高从而电阻发生变化。后者因为催化剂的关系具有广普特性应用更广。 四、固态电解质气体传感器 顾名思义,固态电解质就是以固体离子导电为电解质的化学电池。它介于半导体和电化学之间。选择性,灵敏度高于半导体而寿命又长于电化学,所以也得到了很多的应用,不足之处就是响应时间过长。 五、电化学气体传感器的工作原理 电化学气体传感器是通过检测电流来检测气体的浓度,分为不需供电的原电池式以及需要供电的可控电位电解式,目前可以检测许多有毒气体和氧气,后者还能检测 血液中的氧浓度。电化学传感器的主要优点是气体的高灵敏度以及良好的选择性。不足之处是有寿命的限制一般为两年。 六、光学式气体传感器 光学式气体传感器主要包括红外吸收型、光谱吸收型、荧光型等等,主要以红外吸收型为主。由于不同气体对红外波吸收程度不同,通过测量红外吸收波长来检测气体。目前因为它的结构关系一般造价颇高。 七、半导体传感器需要加热的原因 半导体传感器是利用一种金属氧化物薄膜制成的阻抗器件气体探测器, 其电阻随着气体含量不同而变化。气体分子在薄膜表面进行还原反应以引起传感器电导率的变化。为了消除气体分子达到初始状态就必须发生一次氧化反应。传感器 内的加热器可以加速氧化过程,这也是为什么有些低端传感器总是不稳定,其原因就是没有加热或加热电压过低导致温度太低反应不充分。

  • 生物芯片之电化学生物传感器

    前面已经讲过生物芯片是生物传感器的延伸,所以生物传感器的研究就是生物芯片的研究基础中的重要部分了!下面对电化学生物传感器方面的研究进行简单的介绍。须指出的是,生物芯片中用到的生物传感器与传统的电化学传感器有一些不同,但这并不妨碍我们将传统电化学传感器的认识应用到生物芯片的研究中去。电化学生物传感器   传感器与通信系统和计算机共同构成现代信息处理系统。传感器相当于人的感官,是计算机与自然界及社会的接口,是为计算机提供信息的工具。   传感器通常由敏感(识别)元件、转换元件、电子线路及相应结构附件组成。生物传感器是指用固定化的生物体成分(酶、抗原、抗体、激素等)或生物体本身(细胞、细胞器、组织等)作为感元件的传感器。电化学生物传感器则是指由生物材料作为敏感元件,电极(固体电极、离子选择性电极、气敏电极等)作为转换元件,以电势或电流为特征检测信号的传感器。图1是电化学生物传感器基本构成示意图。由于使用生物材料作为传感器的敏感元件,所以电化学生物传感器具有高度选择性,是快速、直接获取复杂体系组成信息的理想分析工具。一些研究成果已在生物技术、食品工业、临床检测、医药工业、生物医学、环境分析等领域获得实际应用。   根据作为敏感元件所用生物材料的不同,电化学生物传感器分为酶电极传感器、微生物电极传感器、电化学免疫传感器、组织电极与细胞器电极传感器、电化学DNA传感器等。(1) 酶电极传感器   以葡萄糖氧化酶(GOD)电极为例简述其工作原理。在GOD的催化下,葡萄糖(C6H12O6)被氧氧化生成葡萄糖酸(C6H12O7)和过氧化氢:   根据上述反应,显然可通过氧电极(测氧的消耗)、过氧化氢电极(测H2O2的产生)和pH电极(测酸度变化)来间接测定葡萄糖的含量。因此只要将GOD固定在上述电极表面即可构成测葡萄糖的GOD传感器。这便是所谓的第一代酶电极传感器。这种传感器由于是间接测定法,故干扰因素较多。第二代酶电极传感器是采用氧化还原电子媒介体在酶的氧化还原活性中心与电极之间传递电子。第二代酶电极传感器可不受测定体系的限制,测量浓度线性范围较宽,干扰少。现在不少研究者又在努力发展第三代酶电极传感器,即酶的氧化还原活性中心直接和电极表面交换电子的酶电极传感器。  目前已有的商品酶电极传感器包括:GOD电极传感器、L 乳酸单氧化酶电极传感器、尿酸酶电极传感器等。在研究中的酶电极传感器则非常多。(2) 微生物电极传感器    由于离析酶的价格昂贵且稳定性较差,限制了其在电化学生物传感器中的应用,从而使研究者想到直接利用活的微生物来作为分子识别元件的敏感材料。这种将微生物(常用的主要是细菌和酵母菌)作为敏感材料固定在电极表面构成的电化学生物传感器称为微生物电极传感器。其工作原理大致可分为三种类型:其一,利用微生物体内含有的酶(单一酶或复合酶)系来识别分子,这种类型与酶电极类似 其二,利用微生物对有机物的同化作用,通过检测其呼吸活性(摄氧量)的提高,即通过氧电极测量体系中氧的减少间接测定有机物的浓度 其三,通过测定电极敏感的代谢产物间接测定一些能被厌氧微生物所同化的有机物。   微生物电极传感器在发酵工业、食品检验、医疗卫生等领域都有应用。例如:在食品发酵过程中测定葡萄糖的佛鲁奥森假单胞菌电极 测定甲烷的鞭毛甲基单胞菌电极 测定抗生素头孢菌素的Citrobacterfreudii菌电极等等。微生物电极传感器由于价廉、使用寿命长而具有很好的应用前景,然而它的选择性和长期稳定性等还有待进一步提高。(3) 电化学免疫传感器    抗体对相应抗原具有唯一性识别和结合功能。电化学免疫传感器就是利用这种识别和结合功能将抗体或抗原和电极组合而成的检测装置。   根据电化学免疫传感器的结构可将其分为直接型和间接型两类。直接型的特点是在抗体与其相应抗原识别结合的同时将其免疫反应的信息直接转变成电信号。这类传感器在结构上可进一步分为结合型和分离型两种。前者是将抗体或抗原直接固定在电极表面上,传感器与相应的抗体或抗原发生结合的同时产生电势改变 后者是用抗体或抗原制作抗体膜或抗原膜,当其与相应的配基反应时,膜电势发生变化,测定膜电势的电极与膜是分开的。间接型的特点是将抗原和抗体结合的信息转变成另一种中间信息,然后再把这个中间信息转变成电信号。这类传感器在结构上也可进一步分为两种类型:结合型和分离型。前者是将抗体或抗原固定在电极上 而后者抗体或抗原和电极是完全分开的。间接型电化学免疫传感器通常是采用酶或其他电活性化合物进行标记,将被测抗体或抗原的浓度信息加以化学放大,从而达到极高的灵敏度。   电化学免疫传感器的例子有:诊断早期妊娠的hCG免疫传感器 诊断原发性肝癌的甲胎蛋白(AFP或αFP)免疫传感器 测定人血清蛋白(HSA)免疫传感器 还有IgG免疫传感器、胰岛素免疫传感器等等。(4) 组织电极与细胞器电极传感器   直接采用动植物组织薄片作为敏感元件的电化学传感器称组织电极传感器,其原理是利用动植物组织中的酶,优点是酶活性及其稳定性均比离析酶高,材料易于获取,制备简单,使用寿命长等。但在选择性、灵敏度、响应时间等方面还存在不足。   动物组织电极主要有:肾组织电极、肝组织电极、肠组织电极、肌肉组织电极、胸腺组织电极等。测定对象主要有:谷氨酰胺、葡萄糖胺 6 磷酸盐、D 氨基酸、H2O2、地高辛、胰岛素、腺苷、AMP等。  植物组织电极敏感元件的选材范围很广,包括不同植物的根、茎、叶、花、果等。植物组织电极制备比动物组织电极更简单,成本更低并易于保存。   细胞器电极传感器是利用动植物细胞器作为敏感元件的传感器。细胞器是指存在于细胞内的被膜包围起来的微小“器官”,如线粒体、微粒体、溶酶体、过氧化氢体、叶绿体、氢化酶颗粒、磁粒体等等。其原理是利用细胞器内所含的酶(往往是多酶体系)。(5) 电化学DNA传感器    电化学DNA传感器是近几年迅速发展起来的一种全新思想的生物传感器。其用途是检测基因及一些能与DNA发生特殊相互作用的物质。电化学DNA传感器是利用单链DNA(ssDNA)或基因探针作为敏感元件固定在固体电极表面,加上识别杂交信息的电活性指示剂(称为杂交指示剂)共同构成的检测特定基因的装置。其工作原理是利用固定在电极表面的某一特定序列的ssDNA与溶液中的同源序列的特异识别作用(分子杂交)形成双链DNA(dsDNA)(电极表面性质改变),同时借助一能识别ssDNA和dsDNA的杂交指示剂的电流响应信号的改变来达到检测基因的目的。   已有检测灵敏度高达10-13g/mL的电化学DNA传感器的报道,Hashimoto等[8]采用一个20聚体的核苷酸探针修饰在金电极上检测了PVM623的PatⅠ片断上的致癌基因v myc。电化学DNA传感器离实用化还有相当距离,主要是传感器的稳定性、重现性、灵敏度等都还有待于提高。有关DNA修饰电极的研究除对于基因检测有重要意义外,还可将DNA修饰电极用于其它生物传感器的研究,用于DNA与外源分子间的相互作用研究[9],如抗癌药物筛选、抗癌药物作用机理研究 以及用于检测DNA结合分子。无疑,它将成为生物电化学的一个非常有生命力的前沿领域。   生物电化学所涉及的面非常广,内容很丰富。以上介绍的只是该交叉学科一些领域的概况。可以相信,随着相关学科的发展,生物电化学将进一步蓬勃发展。

  • 水位传感器优点有哪些,应如何选择合适的型号

    [font=&][font=等线]水位传感器是一种用于检测液体水位的重要设备,在各种工业和民用场景中起着至关重要的作用。其中,光学液位传感器作为一种先进的水位检测技术,在市场上备受青睐,其优点主要包括以下几个方面。[/font][/font][font=&][/font][font=&][font=等线]光学液位传感器内部所有元器件均经过树脂胶封处理,且无机械活动部件,因此具有免调试、免检验、免维护的特点。这意味着在安装和使用过程中无需额外的维护成本和工作量,大大减轻了用户的操作负担。[/font][/font][font=&][/font][font=&][font=等线]光电液位传感器采用了先进的光学电子元件,具有体积小、功耗低、寿命长的特点。由于无机械运动,因此在长期使用过程中不易产生磨损,保证了其稳定的性能表现。同时,其采用的[/font]IP68[font=等线]防水等级设计使得在恶劣环境下也能够正常工作,具有较高的适应性。[/font][/font][font=&][font=等线][url=https://www.eptsz.com]光电液位传感器[/url]支持个性化机型定制,用户可以根据实际需求选择适合的型号和规格,满足不同场景的应用需求。内置红外发射管和光敏接收器的设计,以及采用棱镜结构的检测部位,使得传感器能够准确、稳定地检测液体水位变化,提供可靠的信号输出。[/font][/font][font=&][/font][font=&][font=等线]针对不同的使用场景和需求,选择合适的光学液位传感器型号至关重要。一般来说,需要考虑液体的性质、工作环境的温度、湿度等因素,以及传感器的检测范围、精度和安装方式等因素。同时,还需考虑传感器的稳定性、可靠性和成本等因素,综合权衡选择最适合的型号和规格,以确保系统的正常运行和性能优化。[/font][/font][font=&][/font][font=&][font=等线]光学液位传感器具有免维护、低功耗、高精度、稳定可靠等优点,在水位检测领域具有广泛的应用前景和市场需求。通过合理选择型号和规格,能够更好地满足不同场景的需求,提高系统的运行效率和性能表现。[/font][/font][font=&][/font]

  • 液氮罐压力控制装置故障:压力传感器失灵的修复方法

    液氮罐压力控制装置故障:压力传感器失灵的修复方法

    液氮罐在现代科技中扮演着重要的角色,被广泛应用于许多领域,如冷冻、医疗和科学实验等。而在这些应用中,一个关键的组成部分就是液氮罐的压力控制装置。然而,压力传感器失灵可能导致罐内压力无法正常监测,从而可能带来一系列问题。本文将探讨液氮罐压力传感器失灵的原因,并提供解决方案和修复措施。一、压力传感器失灵的原因1. 电路故障压力传感器的失灵很可能是由于电路故障引起的。电路故障可能包括电线断裂、焊接点松动或老化、电源供应问题等。当电路故障发生时,压力传感器无法准确地向控制装置发送信号,导致压力无法正常监测。2. 传感器损坏压力传感器可能会受到外界物理力或不合适的使用环境影响而损坏。例如,摔落、挤压或过度震动可能导致传感器内部元件的损坏。此外,如果传感器长时间处于高温或低温环境中,也可能影响其性能。二、修复压力传感器失灵的方法1. 检查电路连接当发现压力传感器失灵时,首先应检查电路连接是否正常。仔细检查电源线、信号线和地线是否有断裂或松动的情况。如果发现问题,应立即修复或更换损坏的电线。2. 更换传感器如果电路连接正常,但压力传感器仍然失灵,那么可能需要考虑更换传感器。首先,检查压力传感器周围是否有损坏的迹象,如裂纹或变形。如果发现传感器有损坏,应及时更换新的传感器。同时,确保新传感器与原传感器的规格相匹配,并按照制造商的指示进行安装。[img=液氮罐,690,517]https://ng1.17img.cn/bbsfiles/images/2023/12/202312130935077943_3504_3312634_3.jpg!w690x517.jpg[/img]3. 调试和校准传感器一旦更换了新的传感器,还需要调试和校准传感器以确保其正常工作。这包括使用专业设备对传感器进行校准,并调整传感器的灵敏度和响应时间。校准后,应使用合适的工具和方法测试传感器的工作状态,以确保其准确地监测罐内压力。[url=http://www.mvecryoge.com/]金凤液氮罐[/url]三、预防措施除了修复压力传感器失灵之外,还可以采取一些预防措施,以延长传感器的寿命并减少故障的可能性。1. 定期检查定期检查液氮罐的压力传感器,确保其连接牢固并没有损坏。定期检查可以发现潜在问题,并及时采取措施修复或更换传感器。2. 控制温度维持合适的温度范围也是保护压力传感器的关键。避免将液氮罐暴露在过高或过低的温度环境中,这样可以减少传感器受损的风险。[url=http://www.yedanguan365.com/]液氮罐[/url]正确使用[url=http://www.yedanguan1688.com/]液氮罐[/url]和相应的压力控制装置是保护压力传感器不被损坏的重要措施。严禁摔落、挤压或强烈震动罐身,同时避免使用液氮罐处于超出规定温度的环境中。液氮罐压力控制装置是确保液氮罐正常工作的重要组成部分。当压力传感器失灵时,可能会导致一系列问题。本文讨论了压力传感器失灵的原因,并提供了修复方法和预防措施。通过及时检查、更换传感器以及正确使用液氮罐可以确保压力传感器的正常运行,并延长其寿命,从而提高液氮罐的性能和安全性。

  • 【原创】如何选择适当的传感器

    我们在提供解决方案的时候,选择合适的产品是很重要的一个环节,就传感器而言,种类就有很多,一旦选的不好,就会给后期工作带来很多的麻烦,下面总结几种选择传感器的简单方法.   1、根据测量对象与测量环境确定传感器的类型   要进行—个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量.在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。   2、灵敏度的选择   通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。   3、频率响应特性   传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过火的误差。   4、线性范围   传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给测量带来极大的方便。   5、稳定性   传感器使用一段时间后,其性能保持不变化的能力称为稳定性。影响传感器长期稳定性的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减小环境的影响。传感器的稳定性有定量指标,在超过使用期后,在使用前应重新进行标定,以确定传感器的性能是否发生变化。在某些要求传感器能长期使用而又不能轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。   6、精度   精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高。这样就可以在满足同一测量目的的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器。对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器。自制传感器的性能应满足使用要求。   在一般情况下,如果考虑到了上面几点,就可以选择到合适的传感器了.

  • 【分享】阴离子荧光化学传感器新进展

    [size=3]随着超分子化学的发展,分子识别在合成化学、生命科学、信息科学及材料科学中起着愈来愈重要的作用。分子识别是指分子之间(主体与客体或称之为受体与底物) 靠非共价键力的选择性结合并产生某种特定功能的过程。为了使分子识别所包含的信息简单而有效地向外界传递,可通过巧妙设计的分子器件所发出的光学信号来表达这种信息。由于荧光检测技术具有方便快捷、灵敏度高、选择性好等优点,大量的工作集中于设计并合成能够将分子识别事件通过分子的荧光信号有效表达的复杂荧光分子, 这些分子也就是所谓的荧光化学传感器。[/size]

  • 【分享】如何选择光电传感器?

    光电传感器一般至少有9种以上传感模式,使用两个光源,有三种封装 尺寸,5种以上的检测范围,并可以使用各种安装方式、输出与工作电压的组合购买。这产生了令人困扰的种类繁多的候选传感器可能性,使人难以选择。 光电传感器主要参数 ■尺寸 ■传感模式 ■传感范围 ■安装方式 ■输出 ■工作模式 ■工作电压 ■光源 ■连接方式 ■封装材料 ■特殊功能包括: ·可处理高速和/或高温 ·逻辑控制 ·可计算机编程 ·网络兼容性 这种过剩的选择可以采用以下两种方式来缩小范围:首先需要考虑检测对象;其次是传感器的工作环境。 装箱 我们要问的第一个问题是:你究竟想让传感器检测什么?“我们是在检测瓶子,还是检测纸箱?”传感器厂商—Banner工程公司传感器应用工程师GregKnutson表示。 光学性质与物理距离将决定采用何种传感模式与哪种光源最合适。例如,在检测单色纸箱的情况下,也许可以采用廉价的、从纸箱上反射光束的散射传感器。 但当纸箱为彩色从而使反射率不同时,就不能采用以上解决方案。在这种情况下,最好的解决方案也许是采用相反或反射模式传感器。在此方案中,系统是通过屏蔽光束来工作。当纸箱到位时,光束被遮挡,从而使纸箱检测。如果没有透明的箱子,此技术应该能获得可靠的结果。目前已有好几种传感器能检测不同高度的纸箱。 距离在选择光源,例如LED或激光时起重要作用。LED虽比较便宜,但由于它是一种散射度较高的光源,因此适合短距离使用。激光可聚焦在一个点上,因此能获得传播距离更远的光束。当需要检测细微特征时,良好的聚焦也很重要。如果需要从几英尺外对准细微特征,则必须使用激光。 激光传感器要比LED要贵很多倍,不过这种差别已经被激光二极管价格的下降缩小了。虽然目前使用的激光仍然较贵,但比起过去的花销已经降低了很多。 环境挑战 选择传感器时的另一项决定因素是工作环境。一些行业(如食品与汽车行业等)的工作环境可能会很脏或很危险,或二者都有。在处理食品时,湿度可能会较高以及有很多液体。处理引擎或其他零件的汽车制造厂车间,也可能会有沙子、润滑剂和冷却剂等。在这种情况下,必须考虑传感器的环境适应性,如果传感器不能适应污垢环境就不能被使用。这种考虑还会影响所需的检测范围,因为可能需要将传感器放在恶劣环境外一个更远的位置上(而不是放在所需的位置)。如果指示灯被弄脏或信号减弱,那么能够主动告警和通知是很有帮助的。 类似的环境问题也会影响传感器的尺寸,尺寸的变化可以从比一个手指还小到比张开的手掌还大。小尺寸传感器比大尺寸传感器要贵,因为将所有部件都装入一个小空间内的成本更高。小尺寸传感器收集光线的面积更小,一次检测范围更小,光学性能更低。这些缺点必须克服,以便小尺寸传感器能更好地可用物理空间相匹配。 再如,在半导体洁净室设备中所使用的传感器虽然工作环境不恶劣,但必须在狭窄的空间内工作。其检测距离通常为数英寸,因此传感器一般都较小。这些传感器还常常使用光纤来将光线导入(或导出)检测区。 安装与价格 另一项考虑的因素是安装系统。传感器通常需要用盒子或其他方法来进行机械保护。这种机械与光学保护的成本可能要比传感器本身的成本还高,因此是购买时需考虑的一项重要因素。如果厂商拥有灵活的安装系统,以及针对传感器的保护性安装安排,则产品更容易实现,寿命也更长。 激光与专用光电传感器的价格约为150~500美元。像低级封装、标准光学性能以及有限的(或完全没有)外部调整等,都是每种传感器低端产品所具有的特征。而高端产品则拥有高级封装(如不锈钢或铝等),高光学性能以及可调增益、定时或其它选项。低端产品适合普通应用,而高端产品则可以在高速、高温或易爆等特殊环境下使用。 最后请记住,一种传感技术不可能满足应用的所有需求,如果需要改动,那么可能需要一种完全不同的传感器技术。传感器厂商—Pepperl+Fuchs公司产品经理EdMyers表示,如果厂商在同一封装与安装尺寸内提供了多种传感器技术,则转向一种新的方法并不难。如果真是这样,那么随着需求的改变,很容易从一种传感器技术转向另一种传感器技术。

  • 电流传感器原理_如何选择电流传感器

    电流传感器原理_如何选择电流传感器

    [align=center][/align]电流传感器具体的工作原理是:当主电路有大电流Ip流动时,导体周围会产生强磁场。该磁场由多磁环收集并作用于电流传感器器件以使其具有信号输出。该信号由放大器A放大并输入到功率放大器。此时,功率管的相应电压降变化以获得补偿电流Is。由于Is电流流过太多,绕组产生磁场Hs。 Hs与由主电流Ip产生的磁场Hp相反,由此补偿原始磁场,逐渐减小从霍尔器件输出的信号,最后乘以Is和匝数以产生磁场和磁场由Ip生成的字段。当它相等时,Is不再增加。此时,电流传感器达到零磁通量检测。如何选择当前电流传感器:霍尔电流传感器基于磁平衡霍尔原理。根据霍尔效应原理,从霍尔元件的控制电流端施加电流Ic,并且在霍尔元件平面的法线方向上施加具有B的磁场强度的磁场。然后,在垂直于电流和磁场的方向上(即,在霍尔输出端子之间),将产生电势VH,其被称为霍尔电势,其与控制电流I成比例。产品。即,其中K是霍尔系数,其由霍尔元件的材料确定 一,控制电流 B是磁场强度 VH是霍尔的潜力。电流传感器应用:电流传感器在许多领域都有应用,如电池监测,汽车,工业,铁路,机车,车载电力测试,能源和自动化等。电流传感器的主要特性参数:1、线性线性决定了电流传感器输出信号(次级电流IS)和输入信号(初级电流IP)与测量范围成正比的程度。2、温度漂移偏移电流ISO在25°C时计算。当霍尔电极周围的环境温度变化时,ISO会改变。因此,考虑偏移电流ISO的最大变化很重要,其中IOT指的是当前电流传感器性能表中的温度漂移值。3,偏移电流ISO偏移电流也被称为剩余电流或剩余电流。这主要是由霍尔元件或电子电路中的运算放大器不稳定造成的。当电流传感器在25°C和IP = 0下制造时,偏移电流会最小化,但传感器在离开生产线时会产生一定量的偏移电流。4、标准额定值IPN和额定输出电流ISNIPN是指电流传感器可以测试的标准额定值。它由有效值(A.r.m.s)表示。 IPN的大小与传感器产品的型号有关。 ISN是指电流传感器的额定输出电流,一般为10〜 400mA。当然,这可能会因型号而异。5、准确性霍尔效应电流传感器的精度取决于标准额定电流IPN。在+ 25°C时,传感器的测量精度对初级电流有一定的影响。同时,在评估电流传感器精度时,还必须考虑偏移电流,线性度和温度漂移的影响。电流传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨超声波风速传感器[/color][color=#333333]丨氧气传感器丨电流传感器丨风速传感器丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨[url=http://mall.ofweek.com/category_63.html]电流传感器[/url]丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨位置传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨压电薄膜传感器丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • PID光离子气体传感器在VOCs检测中的优势

    VOCs作为PM2.5和O3形成的关键前体物,是复合型大气污染的重要诱因。除此之外,其本身具有的刺激性和毒性,也会导致各种生物体产生癌变、畸形。 据有效数据显示,VOCs的种类多,目前能监测到的已达200多种;活性差异大,不同的VOCs组分的毒性和致癌性也各不相同。[img=20190225155321,419,300]http://news.isweek.cn/wp-content/uploads/2019/02/20190225155321-419x300.jpg[/img]国家对挥发性有机物的监测日益完善。2013年的《大气污染防治行动计划》、2014年7月环保部等六部委的《大气污染防治行动计划实施情况考核办法(实行)实施细则》、2014年12月环保部公布的《石化行业挥发性有机物综合整治方案》均对挥发性有机物的治理和排放做了详细规定。2017年,由环保部施行的《“十三五”挥发性有机物污染防治工作方案》中再次规定,将全面加强挥发性有机物的污染防治工作并加强基础能力建设。政策的支持,是推动VOCs监测工作全面展开的有力保障。我国现已建立国家大气光化学监测网,通过大气颗粒物组分监测网和光化学监测网结合,实现对挥发性有机物的层层监控。目前针对VOCs的监测需求主要分为以下几种:一是污染源VOCs排放谱监测,用以识别重点行业控制的VOCs组分,构建VOCs排放成分谱库和排放因子库,建立专门的VOCs排放清单;二是污染源VOCs排放监督监测,针对此类监测的标准有大气污染物综合排放标准GB 16297-1996、电池工业污染物排放标准GB 30484-2013、合成树脂工业污染物排放标准 GB 31572-2015等;三是环境空气VOCs监测,通过监测实现对挥发性有机物的来源识别。效应分析以及臭氧污染成因的诊断等;四是工业园区的监督监测、溯源分析,要求实施监测工业园区厂界VOCs浓度,获取排放状况和规律,提供监管依据,预防突发环境污染事、降低潜在环境风险。此外还有VOCs的应急监测,包括大气超级站、工业区和交通站的监测车建设等。现有的VOCs监测技术主要有传感器技术、色谱/质谱技术、选择性离子转移质谱技术以及光谱技术等,根据这些技术研发出了一批具有代表性的仪器:在线VOCs监测仪、便携式傅立叶红外仪、固定污染源废弃VOCs连续监测系统等。我国的VOCs监测虽然已经初具规模,但仍需漫长的时间来加以完善。相关科研人员除了要提升监测技术和设备水平外,还需完善VOCs评价及监测技术标准体系,提高VOCs监测质保质控水平和挥发性有机物的在线监测信息化水平。通过实现现有技术与监测需求的匹配,来为我国的环境监管及防治措施的制定提供技术支撑。光离子气体传感器PID是一种具有极高灵敏度,用途广泛的检测器,可以检测从极低浓度的1ppb到较高浓度的6000ppm的VOC气体。与传统检测方法相比,它具有便携式、体积小、精度高、高分辨、响应快、可以连续测试、实时性、安全性高等重要优点,可以为工作人员提供实时的信息反馈,这种反馈可以使检测人员确认他们处于没有暴露于危险化学品之中的安全状态,确保工作人员的安全,对于潜在的泄漏事故的防范自动监控报警,事故区域确认方面也有广阔的应用前景。[b]PID传感器的优点精度高[/b]高精度的光离子化传感器可以检测到ppb级别的有机气体,一般的光离子化气体传感器可以检测到ppm级的VOC气体,精度超过红外传感器等大多数常用传感器;[b]对检测气体无破坏性[/b]光离子传感器在将气体吸入后将其电离,而气体分子形成的离子在放电后又形成了原先的气体分子,对原气体分子无破坏性。[b]响应速度快[/b]除了在气体检测系统在开机后预热的一段时间,在正常工作状态下,光离子气体传感器几乎可以实时做出反应,可以连续测试。在这检测危险气体时,对保障检测人员健康有重要意义。

  • 纳米气敏传感器研究进展

    转载一篇文章[url=http://www.instrument.com.cn/download/search.asp?sel=admin_name&keywords=quanbaogang]欢迎到我的资料库下载[/url][color=blue][b]纳米气敏传感器研究进展[/b][/color]1引言纳米技术是研究尺寸在01~100nm的物质组成体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术[1]。纳米技术的发展,不仅为传感器提供了优良的敏感材料,例如纳米粒子、纳米管、纳米线、纳米薄膜等,而且为传感器制作提供了许多新型的方法,例如纳米技术中的关键技术STM,研究对象向纳米尺度过渡的MEMS技术等。与传统的传感器相比,纳米传感器尺寸减小、精度提高等性能大大改善,更重要的是利用纳米技术制作传感器,是站在原子尺度上,从而极大地丰富了传感器的理论,推动了传感器的制作水平,拓宽了传感器的应用领域。纳米传感器现已在生物、化学、机械、航空、军事等方面获得广泛的发展。湖南长沙索普测控技术有限公司研制成功电阻应变式纳米压力传感器,这种电阻应变式纳米膜压力传感器,测量精度和灵敏度高、体积小、重量轻、安装维护方便,是一种稳定和可靠的测量压力参数的科技创新产品。利用一些纳米材料的巨磁阻效应,科学家们已经研制出了各种纳米磁敏传感器[2]。在生物传感器中,用纳米颗粒、多孔纳米结构和纳米器件都获得了令人满意的应用[3]。在光纤传感器基础上发展起来的纳米光纤生物传感器,不但具有光纤传感器的优点,而且由于这种传感器的尺寸只取决于探针的大小,大大减小了测微传感器的体积,响应时间大大缩短,满足了单细胞内测量要求实现的微创实时动态测量[4]。 2纳米气敏传感器的研究现状随着工业生产和环境检测的迫切需要,纳米气敏传感器已获得长足的进展。用零维的金属氧化物半导体纳米颗粒、碳纳米管及二维纳米薄膜等都可以作为敏感材料构成气敏传感器。这是因为纳米气敏传感器具有常规传感器不可替代的优点:一是纳米固体材料具有庞大的界面,提供了大量气体通道,从而大大提高了灵敏度;二是工作温度大大降低;三是大大缩小了传感器的尺寸[5]。2.1基于金属氧化物半导体纳米颗粒的纳米气敏传感器 在气敏传感器的研究中,主要方向之一是在气体环境中依靠敏感材料(例如金属氧化物半导体气敏材料以SnO2,ZnO,TiO2,Fe2O3为代表)的电导发生变化来制作气敏传感器。目前已实用化的气敏传感器由纳米SnO2膜制成,用作可燃性气体泄漏报警器和湿度传感器。在这些纳米敏感材料中加入贵重金属纳米颗粒(例如Pt和Pd),大大增强了选择性,提高了灵敏度,降低了工作温度。其性能的具体改善程度与加入贵重金属纳米颗粒的晶粒尺寸、化学状态及分布有关。北京大学王远等人[6]制成一种TiO2/PtOPt双层纳米膜作为敏感材料探测氢气的气敏传感器。其敏感材料的制备方法是先在玻璃衬底上覆盖上一层由Pt纳米颗粒构成的表面氧化的多孔连续膜,其中Pt的纳米颗粒直径大约13 nm,膜厚大约100 nm,然后在PtOPt膜上覆盖TiO2膜,其中TiO2纳米颗粒的直径尺寸从34 nm到54 nm,平均直径41 nm。传感器的工作温度在180~200 ℃,PtOPt多孔膜作为催化剂使TiO2纳米膜对氢气产生部分还原作用,从而使传感器在空气中,甚至在CO、NH3、CH4等还原性气体存在的情况下,对氢气都表现出很高的灵敏度和选择性,比较以前的钛基探测氢气的传感器有显著的提高。Raül Dìaz等人[7]用非电镀金属沉积法沉积Pt在SnO2纳米颗粒的表面,结果证明这种方法对改善气敏传感器催化剂的性能有很大帮助。Pt和Pd作为两种主要的贵重金属添加物,它们与衬底有不同的相互作用,Pd倾向于嵌入纳米SnO2晶粒中,而Pt倾向于形成大的金属颗粒团簇。与传统方法相比,用非电镀沉积法形成的催化剂的不同化学状态,为研究催化剂对气体探测机制的影响提供了一种新的方法。2.2用单壁碳纳米管制作气敏传感器碳纳米管具有一定的吸附特性,由于吸附的气体分子与碳纳米管发生相互作用,改变其费米能级引起其宏观电阻发生较大改变,通过检测其电阻变化来检测气体成分,因此单壁碳纳米管可用作气敏传感器。J.kong等人[8]用化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积法在分散有催化剂的SiO2/Si基片上可制得单个的单壁碳纳米管,如图1(a)所示,两种金属被用来连接一SSWNT时,形成金属/SSWNT/金属结构,呈现出p型晶体管的性质。气体探测试验是把SSWNT样品放在一个带着电引线的密封的500 mL的玻璃瓶中,通入在空气或者氩气中稀释的NO2((2~200)×10-6)或者NH3(01%~1%),流速700 mL/min。检测SSWNT的电阻变化,得到的I/V关系曲线如图1(b)和(c)所示,在NH3气氛中其电导可减小两个数量级,而在NO2气氛中电导可增加3个数量级。其工作机理是半导体单壁碳纳米管在置于NH3气氛中时,使价带偏离费米能级,结果使空穴损耗导致其电导变小;而在NO2气氛中时,使价带向费米能级靠近,结果使空穴载流子增加从而使其电导增加。由于金属/SSWNT/金属结构类似于空穴作为主要载流子的场效应管,所以在源极和漏极之间的电压一定时,电流随着栅极电压增大而减小(如图2所示)。图2中,b曲线是未通入任何气体的栅电压电流关系曲线,曲线a和c的栅电压电流关系曲线分别是NH3和NO2气氛中测得的。未通入任何气体时,在栅电压为0 V时,电流是15 μA,若通入有NH3的气氛中时,电流则几乎变为0 A。那么,如果测NH3气,我们就将初始栅电压设置在0 V,则由上图可知样品的电导将减小两个数量级。若测NO2气体,先将栅电压设置在+4 V,未通入NO2气体前则电流几乎为零,NO2通入后,电流大大增加,则其电导增加了3个数量级。这样可以使传感器在复杂的气体环境中具有选择性。

  • 【求助】(已应助)求助几篇关于氨氮测定方面的论文

    1.应用离子选择性电极法测定生活污水中的氨氮2.电极法测定废水中氨氮3.氨气敏电极测定水中氨氮的方法改进4.应用离子选择性电极法测定废水中氨氮方法的研究5.用氨气敏电极直接测定工业废水中的总氮、氨氮及凯氏总氮多谢帮忙!!!!纳氏试剂法太不让人喜欢了,想试着用电极法测定,可手边资料太少,两次感谢热心人帮忙。

  • 【资料】传感器的定义和分类

    一、传感器的定义  信息处理技术取得的进展以及微处理器和计算机技术的高速发展,都需要在传感器的开发方面有相应的进展。微处理器现在已经在测量和控制系统中得到了广泛的应用。随着这些系统能力的增强,作为信息采集系统的前端单元,传感器的作用越来越重要。传感器已成为自动化系统和机器人技术中的关键部件,作为系统中的一个结构组成,其重要性变得越来越明显。  最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的传感器”。传感器是传感器系统的一个组成部分,它是被测量信号输入的第一道关口。   传感器系统的原则框图示于图1-1,进入传感器的信号幅度是很小的,而且混杂有干扰信号和噪声。为了方便随后的处理过程,首先要将信号整形成具有最佳特性的波形,有时还需要将信号线性化,该工作是由放大器、滤波器以及其他一些模拟电路完成的。在某些情况下,这些电路的一部分是和传感器部件直接相邻的。成形后的信号随后转换成数字信号,并输入到微处理器。  德国和俄罗斯学者认为传感器应是由二部分组成的,即直接感知被测量信号的敏感元件部分和初始处理信号的电路部分。按这种理解,传感器还包含了信号成形器的电路部分。   传感器系统的性能主要取决于传感器,传感器把某种形式的能量转换成另一种形式的能量。有两类传感器:有源的和无源的。有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源(参阅图1-2(a))。 有源(a)和无源(b)传感器的信号流程  无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能传感器承担将某个对象或过程的特定特性转换成数量的工作。其“对象”可以是固体、液体或气体,而它们的状态可以是静态的,也可以是动态(即过程)的。对象特性被转换量化后可以通过多种方式检测。对象的特性可以是物理性质的,也可以是化学性质的。按照其工作原理,传感器将对象特性或状态参数转换成可测定的电学量,然后将此电信号分离出来,送入传感器系统加以评测或标示。   各种物理效应和工作机理被用于制作不同功能的传感器。传感器可以直接接触被测量对象,也可以不接触。用于传感器的工作机制和效应类型不断增加,其包含的处理过程日益完善。  常将传感器的功能与人类5大感觉器官相比拟:   光敏传感器——视觉? 声敏传感器——听觉  气敏传感器——嗅觉 ?化学传感器——味觉   压敏、温敏、流体传感器——触觉  与当代的传感器相比,人类的感觉能力好得多,但也有一些传感器比人的感觉功能优越,例如人类没有能力感知紫外或红外线辐射,感觉不到电磁场、无色无味的气体等。  对传感器设定了许多技术要求,有一些是对所有类型传感器都适用的,也有只对特定类型传感器适用的特殊要求。针对传感器的工作原理和结构在不同场合均需要的基本要求是:   高灵敏度  抗干扰的稳定性(对噪声不敏感)   线性  容易调节(校准简易)   高精度  高可*性   无迟滞性  工作寿命长(耐用性)   可重复性  抗老化   高响应速率  抗环境影响(热、振动、酸、碱、空气、水、尘埃)的能力   选择性  安全性(传感器应是无污染的)   互换性  低成本   宽测量范围  小尺寸、重量轻和高强度   宽工作温度范围

  • 【分享】生物芯片之电化学生物传感器

    电化学生物传感器   传感器与通信系统和计算机共同构成现代信息处理系统。传感器相当于人的感官,是计算机与自然界及社会的接口,是为计算机提供信息的工具。   传感器通常由敏感(识别)元件、转换元件、电子线路及相应结构附件组成。生物传感器是指用固定化的生物体成分(酶、抗原、抗体、激素等)或生物体本身(细胞、细胞器、组织等)作为感元件的传感器。电化学生物传感器则是指由生物材料作为敏感元件,电极(固体电极、离子选择性电极、气敏电极等)作为转换元件,以电势或电流为特征检测信号的传感器。图1是电化学生物传感器基本构成示意图。由于使用生物材料作为传感器的敏感元件,所以电化学生物传感器具有高度选择性,是快速、直接获取复杂体系组成信息的理想分析工具。一些研究成果已在生物技术、食品工业、临床检测、医药工业、生物医学、环境分析等领域获得实际应用。   根据作为敏感元件所用生物材料的不同,电化学生物传感器分为酶电极传感器、微生物电极传感器、电化学免疫传感器、组织电极与细胞器电极传感器、电化学DNA传感器等。(1) 酶电极传感器   以葡萄糖氧化酶(GOD)电极为例简述其工作原理。在GOD的催化下,葡萄糖(C6H12O6)被氧氧化生成葡萄糖酸(C6H12O7)和过氧化氢:   根据上述反应,显然可通过氧电极(测氧的消耗)、过氧化氢电极(测H2O2的产生)和pH电极(测酸度变化)来间接测定葡萄糖的含量。因此只要将GOD固定在上述电极表面即可构成测葡萄糖的GOD传感器。这便是所谓的第一代酶电极传感器。这种传感器由于是间接测定法,故干扰因素较多。第二代酶电极传感器是采用氧化还原电子媒介体在酶的氧化还原活性中心与电极之间传递电子。第二代酶电极传感器可不受测定体系的限制,测量浓度线性范围较宽,干扰少。现在不少研究者又在努力发展第三代酶电极传感器,即酶的氧化还原活性中心直接和电极表面交换电子的酶电极传感器。  目前已有的商品酶电极传感器包括:GOD电极传感器、L 乳酸单氧化酶电极传感器、尿酸酶电极传感器等。在研究中的酶电极传感器则非常多。

  • 【分享】气体传感器在气体泄漏事故处置中的应用

    随着石油化学工业的发展,易燃、易爆、有毒气体的种类和应用范围都得到了增加。这些气体在生产、运输、使用过程中一旦发生泄漏,将会引发中毒、火灾甚至爆炸事故,严重危害人民的生命和财产安全。由于气体本身存在的扩散性,发生泄漏之后,在外部风力和内部浓度梯度的作用下,气体会沿地表面扩散,在事故现场形成燃烧爆炸或毒害危险区,扩大危害区域。例如,1995年7月,四川省成都市化工总厂液氯车间发生氯气泄漏,当场造成3人死亡,6人受伤,仅约一小时左右,市区范围数十平方公里范围内都能闻到刺激性的氯气味。因此,这类事故具有突发性强、扩散迅速、救援难度大、危害范围广等特点。一旦发生气体泄漏事故,必须尽快采取相应措施进行处置,才能将事故损失降低到最低水平。及时可靠地探测空气中某些气体的含量,及时采取有效措施进行补救,采取正确的处置方法,减少泄漏引发的事故,是避免造成重大财产和人员伤亡的必要条件。这就对气体的检测和监测设备提出了较高的要求。作为一种重要的气体探测器,气体传感器近年来得到了很大的发展。气体传感器的发展使得其应用越来越广泛。本文介绍了气体传感器的发展情况及在气体泄漏事故处置中的应用前景。 1 气体传感器   国外从30年代开始研究开发气体传感器。过去气体传感器主要用于煤气、液化石油气、天然气及矿井中的瓦斯气体的检测与报警,目前需要检测的气体种类由原来的还原性气体(H2,C4H10,CH4)等扩展到毒性气体(CO,NO2,H2S,NO,NH3,PH3)等。   气体传感器种类繁多。按所用气敏材料及气敏特性不同,可分为半导体式、固体电解质式、电化学式、接触燃烧式、高分子式等。 1.1 半导体气体传感器   这种传感器主要使用半导体气敏材料。自从1962年半导体金属氧化物气体传感器问世以来,由于具有灵敏度高、响应快等优点,得到了广泛的应用,目前已成为世界上产量最大、使用最广的传感器之一。按照检测气敏特征量方式不同分为电阻式和非电阻式两种。   电阻式半导体气体传感器是通过检测气敏元件随气体含量的变化情况而工作的。主要使用金属氧化物陶瓷气敏材料。随着近年来复合金属氧化物、混合金属氧化物等新型材料的研究和开发,大大提高了这种气体传感器的特性和应用范围。例如:WO3气体传感器可检测NH3的浓度范围为5 ppm~50 ppm,ZnO-CuO气体传感器对200 ppm的CO非常敏感。   非电阻式半导体气体传感器是利用气敏元件的电流或电压随气体含量而变化的原理工作的。主要有MOS二极管式和结型二极管式,以及场效应管式气体传感器。检测气体大多为氢气、硅烷等可燃气体。 1.2固体电解质气体传感器   固体电解质气体传感器使用固体电解质气敏材料做气敏元件。其原理是气敏材料在通过气体时产生离子,从而形成电动势,测量电动势从而测量气体浓度。由于这种传感器电导率高,灵敏度和选择性好,得到了广泛的应用,几乎打入了石化、环保、矿业等各个领域,仅次于金属氧化物半导体气体传感器。如测量H2S的YST-Au-WO3、测量NH3的NH+4CaCO3等。 1.3接触燃烧式气体传感器   可分为直接接触燃烧式和催化接触燃烧式两种。其工作原理是:气敏材料在通电状态下,可燃性气体氧化燃烧或在催化剂作用下氧化燃烧,产生的热量使电热丝升温,从而使其电阻值发生变化,测量电阻变化从而测量气体浓度。这种传感器只能测量可燃气体,对不燃性气体不敏感。例如,在Pt丝上涂敷活性催化剂Rh和Pd等制成的传感器,具有广谱特性,即可以检测各种可燃气体。接触燃烧式气体传感器在环境温度下非常稳定,并能对爆炸下限的绝大多数可燃性气体进行检测,普遍应用于石油化工厂、造船厂、矿井隧道、浴室、厨房等处的可燃性气体的监测和报警。 1.4 高分子气体传感器   利用高分子气敏材料的气体传感器近年来得到了很大的发展。高分子气敏材料在遇到特定气体时,其电阻、介电常数、材料表面声波传播速度和频率、材料重量等物理性能发生变化。主要有酞菁聚合物、LB膜、苯菁基乙炔、聚乙烯醇-磷酸、聚异丁烯、氨基十一烷基硅烷等。高分子气敏材料由于具有易*作性、工艺简单、常温选择性好、价格低廉、易与微结构传感器和声表面波器件相结合,在毒性气体和食品鲜度等方面的检测中具有重要作用。根据所用材料的气敏特性,这类传感器可分为:通过测量气敏材料的电阻来测量气体浓度的高分子电阻式气体传感器;根据气敏材料吸收气体时形成浓差电池,测量电动势来确定气体浓度的浓差电池式气体传感器;根据高分子气敏材料吸收气体后声波在材料表面传播速度或频率发生变化的原理制成的声表面波气体传感器;以及根据高分子气敏材料吸收气体后重量变化而制成的石英振子式气体传感器等。高分子气体传感器具有对特定气体分子灵敏度高,选择性好,且结构简单,能在常温下使用,可以补充其它气体传感器的不足。

  • 你见过哪些常用的微型传感器呢

    [align=left]微型传感器是一种高科技传感器。与以前的传感器相比,该微型传感器在使用时具有非常好的效果。对人们的帮助可以说是非常大的。目前,市场上可以看到许多微型传感器,它们可以适应不同的需求领域。、的耐用性也很强。[/align](1)微型传感器的概念微型传感器指的是经过精密加工的传感器。它具有非常好的灵敏度和处理能力,可以在芯片上形成一个相对强大的集成传感器。它可以在使用时独立工作,有效地实现传感器网络的组成。(二)微型传感器的特点与其他传感器相比,微型传感器在体积和质量上有很大提高,重量轻,重量轻,便于日常使用。由于其高质量配置,其功耗相对较低。它对制造商来说也非常方便,因为它具有低成本、以便于存储。、适合批量生产。最特别的是这种微型传感器的智能性相对较强,在市场上具有很好的竞争优势。(三)常见的微型传感器1化学微型传感器:最常见的传感器类型是离子传感器。它主要依赖于溶液的离子活性转化为电信号。使用时具有良好的识别性和选择性,可以很好地适应化学。、医疗和食品行业的要求。2生物微型传感器:生物微型传感器更常用于基因传感器。它们主要依靠传感器上形成的双链DNA来分辨和传输信号。实际上,对于诸如、光、和声音之类的物理信号来说,它是快速的。反应。3物理微型传感器:物理微型传感器的主要代表是表面声波传感器,它使用声学表面技术和MEMS技术快速处理非电信息。它的变换能力也很强。微型传感器在开发过程中得到了极大的改进,结合了许多新技术和使用了许多新材料,因此其适用性和使用范围也在不断扩大,而且应用程序也大大提高了员工的工作效率。微型传感器包含范围:[color=#333333]气体流量传感器丨绝对压力变送器丨微量氧传感器丨ph传感器丨水管温度传感器丨[/color]气体压力传感器[color=#333333]丨气压感应器丨[/color][color=#333333]电化学传感器丨数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨h2传感器丨风速传感器丨超声波液位传感器[/color][color=#333333]丨[/color][color=#333333]压电薄膜传感器丨[/color][color=#333333]氧气传感器丨[/color][color=#333333]微型压力传感器丨[/color]湿度传感器[color=#333333]丨[/color]微型传感器https://mall.ofweek.com/2071.html[color=#333333]丨[/color]气体传感器[color=#333333]丨[/color][color=#333333]光纤传感器丨超声波传感器丨[/color][color=#333333]超声波风速传感器丨[/color][color=#333333]压阻式压力变送器丨[/color][color=#333333]voc传感器丨称重传感[/color][color=#333333]器[/color][color=#333333]丨[/color][color=#333333]传感器https://mall.ofweek.com/category_5.html丨[/color][color=#333333]气压传感器丨[/color][color=#333333]硫化氢传感器丨一氧化碳传感器丨光离子传感器丨[/color][color=#333333]流量传感器[/color][color=#333333]丨ph3传感器丨二[/color][color=#333333]氧化碳传感器丨百分氧传感器丨[/color][color=#333333]co2气体传感器丨[/color][color=#333333]bm传感器丨电流传感器丨[/color][color=#333333]位置传感器丨[/color][color=#333333]风速传感器丨电流传感器[/color][color=#333333]丨[/color][color=#333333]气压传感器丨压力传感器丨meas压力[/color][color=#333333]传感器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨一氧化氮传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 氮氧传感器

    氮氧传感器[img]https://ng1.17img.cn/bbsfiles/images/2019/03/201903220343486843_6825_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2019/03/201903220343487063_6161_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2019/03/201903220343494715_9615_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2019/03/201903220343494715_9615_1602049_3.png[/img]

  • 水位传感器的选择,你需要考虑什么?

    这些年来,科技飞速发展,我们的生活发生了很大的变化。各类用品都变得更加简单,使用更便捷。水位传感器也是一样,之前水位传感器大多数都是浮球式水位传感器,体积大,安装工艺复杂,且精测精度差,浮球极易卡死无法动作寿命短。随着科技的发展,诞生了超声波式、光电式、电容式等类型的水位传感器。液位控制精度更高,寿命更长。那么在这么多类型中选择水位传感器,我们需要考虑哪些因素呢?水位传感器是用于检测液位的变化以及控制液位,那么水位传感器与检测液体是我们的考虑因素之一。比如黏稠、腐蚀性、高温、含杂质的液体哪些水位传感器可以使用,哪些水位传感器可以排除。在侦测液位中,液位检测精度是极为重要的,特别是一些需要液位控制精度高的电器设备,如医疗设备等。那么我们需要了解哪一类水位传感器液位控制精度更高,液位控制精度可以达到多少,比如光电式水位传感器液位控制可以在±0.5mm之内,就属于液位检测精度高的一类水位传感器。超声波式的也是。在使用的过程中,有一个极为重要的点就是产品寿命。一个再好的产品寿命短那也只是昙花一现,所以我们还要考虑到产品寿命的问题。还需考虑的是[url=http://www.eptsz.com/Introduction.aspx][color=black]水位传感器[/color][/url]的优点与缺点方面。比如超声波式是[color=#191919]非接触式测量,可以检测腐蚀性很高的液体[/color],测试容易有盲区但温度、粉尘环境等会影响检测;光电式水位传感器可靠性高,稳定性强,但不可用于长期被阳光直射的电器设备中;电容式体积小,价格便宜,但是不可以检测纯金属的容器中的液体。除了上面举例的因素外我们还要考虑到安装方面的问题——安装方式与安装工艺。比如光电式可以上置、下置、侧置、斜向安装,而浮球式只能上置、下置安装,电容式只能侧置、下置安装,超声波式可以上置安装。安装方式倒不是很重要,关键是安装工艺的问题,安装工艺简单的水位传感器更能节约安装时间,更能减少人工成本。

  • 【转帖】PID与FID传感器的区别

    PID 和 FID 的区别 光离子化检测器(简称 PID)和火焰离子化检测器(简称 FID)是对低浓度气体和有机蒸汽具有很好灵敏度的检测器,优化的配置可以检测不同的气体和有机蒸汽。这两种技术都能检测到 ppm 水平的浓度,但是它们所采用的是不同的检测方法。每种检测技术都有它的优点和不足,针对特殊的应用就要选用最适合的检测技 术来检测。总的来说,PID 体积小巧、重量轻、使用简单,因此它具有很好的便携性能。PID 和 FID 的工作方式 PID 是采用一个紫外灯来离子化样品气体,从而检测其浓度。当样品分子吸收到高紫外线能量时,分子被电离成带正负电荷的离子,这些离子被电荷传感器感受到,形成电流信号。紫外线电离的只是小部分 VOC 分子,因此在电离后它们还能结合成完整的分子,以便对样品做进一步的分析。FID 是采用氢火焰的办法将样品气体进行电离,这些电离的离子可以很容易的被电极检测到,这些样气被完全的烧尽。因此 FID 的检测对样品是有破坏性的, 检测完毕后排出的样品是不能在用来做进一步分析。为何 PID 和 FID 的读数不一样? 因为 PID 和 FID 有不同的灵敏度,且是用不同的气体来标定的。PID 对不同气体的灵敏度排列 芳香族化合物和碘化物 石蜡、酮、醚、胺、硫化物 酯、醛、醇、脂肪 卤化脂、乙烷 甲烷(没响应)。FID 对不同气体的灵敏度排列 芳香族化合物和长链化合物 短链化合物(甲烷等) 氯、溴和碘及其化合物。 因此在同样的气流情况下,我们同时用 PID 和 FID 来检测会得到不同的数据。总的来讲,PID 是对官能团的一个响应,FID 是对碳链的响应。只有像丙烷、异丁烯、丙酮这样的分子,PID 和 FID 对它们的响应灵敏度十分相近,另外,使用不同的 PID 灯还会有不同的灵敏度。例如丁醇在 9.8、10.6 和 11.6eV 的灯下灵敏度分别为 1、15、50。此外,多数现场使用的便携式 FID 有一个火焰隔绝装置,控制火焰,使传感器具有防爆性能。 当有大分子缓慢扩散到 FID 的传感器时往往补偿了响应的不足,而 PID 可通过选择不同能量的灯来避免一些化合物的干扰,或者选择最高能量的灯来检测最广谱的化合物,因此可以说 FID 与 PID 相比是一个更广谱的检测器它没有任何选择性。

  • 【讨论】氧气传感器

    在网上查了一下目前市场上氧气传感器的测试原理,主要有以下几种:电化学氧气分析仪—— 采用完全密封的燃料电池氧传感器是当前国际上最先进的测氧方法之一。燃料池氧传感器是由高活性的氧电极和铅电极构成,浸没在KOH的溶液中。在阴极氧被还原成氢氧根离子,而在阳极铅被氧化。 O2+2H2O+4e=4OH- 2Pb+4OH=2Pb(OH)2+4e KOH溶液与外界有一层高分子薄膜隔开,样气不直接进入传感器,因而溶液与铅电极不需定期清洗或更换。样气中的氧分子通过高分子薄膜扩散到氧电极中进行电化学反应,电化学反应中产生的电流决定于扩散到氧电极的氧分子数,而氧的扩散速率又正比于样气中的氧含量,这样,该传感器输出信号大小只与样气中的氧含量相关,而与通过传感器的气体总量无关。通过外部电路的连接,反应中的电荷转移即电流的大小与参加反应的氧成正比例关系。 采用此方法进行测氧,可以不受被测气体中还原性气体的影响,免去了许多的样气处理系统。它比老式“金网-铅”原电池测氧更快速,不需要漫长的开机吹除过程,“金网-铅”原电池样气直接进入溶液中,导致仪器的维护量很大,而燃料电池法样气不直接进入溶液中,传感器可以非常稳定可靠的工作很长时间。事实上, 燃料电池氧传感器是完全免维护的。磁氧分析仪—— 是利用常温下,氧气分子的顺磁性的原理,也就是可以被磁场吸引的原理制作的,这种仪器对氧气有独特的选择性,其他气体几乎没有干扰(NOx干扰,但不严重),它分为:1、热磁式,2、磁机械式--两种基本结构。热磁式是利用被加热的氧气会失去顺磁性的原理制造的,由于冷的顺磁的氧气不断被吸引到磁场里,而热的反磁的氧气不断被挤出磁场,形成所谓的“氧风”,测定这个氧风的强度,就可以换算出氧的浓度。热磁式氧分析仪虽然具有结构简单、便于制造和调整等优点,但也具有反应速度慢、测量误差大、容易发生测量环室堵塞和热敏元件腐蚀严重等缺点。磁机械式的也是利用相似的原理制造的,空心的不含氧气的石英泡在强磁场附近,不会受到磁场的吸引,而当环境中有氧气存在时,氧被磁场吸引,它必然将石英泡向磁场外排挤,测定这个排挤的力的大小,就可以换算出氧的浓度。磁机械式的氧气分析仪的精度更高一些,它甚至可以测定PPM级的氧浓度,功耗小,耐腐蚀,但是怕震动,价格贵。 二氧化锆式氧传感器—— 多孔体固体电解质内。温度较高时,氧气发生电离。只要锆管内外侧氧含量不一样,存在氧浓度差,则在固体电解质内部氧离子从大气一侧向排气一侧扩散,使锆管形成微电池,在锆管铂极间产生电压。 当混合气体稀时,排气中氧含量多,两侧氧浓度差小,产生的电压小;当混合气体浓时,排气中氧含量少,CO、HC、H2的含量较多,这些成分在锆管外表面的铂的催化作用下,与氧发生反应,消耗废气中残余的氧,使锆管外表面氧浓度变成零,这样使得锆管内、外两侧的氧浓度差突然增大,两极间产生的电压也增大。二氧化钛式氧传感器—— 电控单元ECU将一个恒定的IV电压加在二氧化钛氧传感器的正极,并将传感器负极上的电压降与电控单元控制程序中设定的参考电压相比较。发动机混合气浓度变化时,排出的废气中的氧分子含量也发生变化,氧传感器的电阻也随之改变,使得与电控单元连接的氧传感器负极上的电压降也产生变化。 当发动机的可燃混合气浓(A/F14.7)时,排气中氧含量高,氧化钛管外表面氧浓度大,二氧化钛呈现高电阻。电阻在混合气空燃比理论空燃比14.7(过量空气系数约为1)时产生突变。通过这样的反馈控制,使混合器的浓度保持在理论空燃比附近的狭小范围内。铅氧电池的测试精度与铅的纯度关系密切,之前用过这种传感器,他们做标线的时候用两条直线近似替代对数曲线,其测量值与实际值差别比较大。[color=#DC143C]请教大家:这些传感器有没有特定的适用范围?哪些牌子和型号的传感器测试精度比较高,使用寿命比较长?[/color]

  • S型拉力传感器的工作原理及安装形式

    S型拉力传感器是传感器中最为常见的一种传感器,主要用于测固体间的拉力和压力,通用也人们也称之为拉压力传感器,因为它的外形像S形状,所以习惯上也称S型拉力传感器,此传感器采用合金钢材质,胶密封防护处理,安装容易,使用方便,适用于吊秤,配料秤,机改秤等电子测力称重系统。 传感器基于这样一个原理:弹性体(弹性元件,敏感梁)在外力作用下产生弹性变形,使粘贴在他表面的电阻应变片(转换元件)也随同产生变形,电阻应变片变形后,它的阻值将发生变化(增大或减小),再经相应的测量电路把这一电阻变化转换为电信号(电压或电流),从而完成了将外力变换为电信号的过程。  这种形式的拉力传感器的安装形式为固定式底座传感器的安装形式,安装时将传感器放置在无线吊钩秤三颗固定档柱内。因此要求使用在温度变化范围不大的场合,其优点是能提高秤体的稳定性,而且安装调试方便。在称重传感器安装时还应注意:  1、为防止大电流流经传感器,应在传感器之间加装短路片,以防偶然的大电流流过而将其烧坏。即使如此,在需要进行大从焊接时最好还电子检重秤是将压式传感器卸下,待几作结束后再将称重传感器安装好。  2、滚珠等移动部件应保持滑动自如,不应有卡死、锈蚀等现象。 3、压头应由20mm厚的铬钢制成,压头的底面应加工成圆弧,其半径应为传感器圆顶半径的3倍以上,并应进行热处理以增加压头的硬度。固定板应用45号钢制成,其厚度不得小于20mm,安装时的水平度不应超出±0.5°。

  • 银离子选择性电极

    我想使用银离子选择性电极,可是我的PH计只能插一枝电极,没地方插参比电极,怎么办?测定银离子能像测定PH值那样,只使用一枝电极么,直接把银离子选择性电极插在原来氢离子选择性电极的位置,然后得出结果。

  • 甲烷传感器的参数有哪些?

    甲烷传感器的功能特点  具有自动调零功能;  标校可靠性更高,性能更稳定,使用更简单方便;   采用高分辨率的单片机,测量的数值均准确可靠;  开机并具有自动稳零功能;   可选择的调试菜单结构,方便调试,操作简单。甲烷传感器的工作原理  一般采用载体催化元件为检测元件。  产生一个与甲烷的含量成比例的微弱信号,经过多级放大电路放大后产生一个输出信号,送入单片机片内a/d转换输入口,将此模拟量信号转换为数字信号。然后单片机对此信号进行处理,并实现显示,报警等功能。

  • 【分享】电化学传感器

    最早的电化学传感器可以追溯到20世纪50年代,当时用于氧气监测。到了20世纪80年代中期,小型电化学传感器开始用于检测PEL范围内的多种不同有毒气体,并显示出了良好的敏感性与选择性。目前,为保护人身安全起见,各种电化学传感器广泛应用于许多静态与移动应用场合。电化学传感器经过这么多年的发展,技术上已经取得了不少进步。那么它现在主要应用在哪些领域呢?

  • 液位传感器常闭常开如何选择

    液位传感器常闭常开如何选择

    在工业自动化领域,液位传感器是常见的测量设备,用于监测液体介质的液位、流量、温度等参数。而液位传感器的常闭与常开型选择,对于整个系统的稳定运行至关重要。本文将探讨如何合理选择液位传感器的常闭与常开型配置。我们需要明确常闭与常开型液位传感器的定义及工作原理。常闭型液位传感器在无液状态下处于关闭状态,当液位上升时,传感器打开。而常开型则相反,它在无液状态下处于开启状态,液位上升时关闭。选择哪种类型的传感器,需根据实际应用需求来定。对于需要避免误操作或确保安全的生产环境,如高温、高压或有毒液体,常闭型传感器更为适用。因为常闭型传感器在无液时处于关闭状态,可以有效避免因电路误接、误操作或其他未知因素导致的安全事故。而对于需要精确测量、低功耗或长期监测的应用场景,如水库、水塔等液位监测,常开型传感器则更具优势。首先,常开型传感器在无液状态下处于开启状态,可以减少电能消耗,降低运营成本。其次,由于其工作原理,常开型传感器在液位下降时也能提供液位下降的信号,这对于精确测量和及时预警非常关键。[align=center][img=液位传感器,601,371]https://ng1.17img.cn/bbsfiles/images/2024/01/202401081715571657_3849_4008598_3.jpg!w601x371.jpg[/img][/align]我们还需要考虑传感器的安装环境。例如,在液体粘度较高或含有杂质的情况下,选择常闭型传感器更为合适。因为常闭型传感器在无液状态下关闭,可以有效避免杂质进入传感器内部,延长其使用寿命。在选择[url=https://www.eptsz.com]液位传感器[/url]的常闭与常开型配置时,我们需要综合考虑实际应用需求、安全因素、能耗、精确测量以及安装环境等多个方面。正确选择合适的液位传感器类型,有助于提高生产效率、保障人员安全并降低运营成本。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制