当前位置: 仪器信息网 > 行业主题 > >

镁橄榄石多太瓦放大激光器

仪器信息网镁橄榄石多太瓦放大激光器专题为您提供2024年最新镁橄榄石多太瓦放大激光器价格报价、厂家品牌的相关信息, 包括镁橄榄石多太瓦放大激光器参数、型号等,不管是国产,还是进口品牌的镁橄榄石多太瓦放大激光器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合镁橄榄石多太瓦放大激光器相关的耗材配件、试剂标物,还有镁橄榄石多太瓦放大激光器相关的最新资讯、资料,以及镁橄榄石多太瓦放大激光器相关的解决方案。

镁橄榄石多太瓦放大激光器相关的资讯

  • 首台芯片级掺钛蓝宝石激光器研制成功
    激光线宽测量。图片来源:《自然光子学》美国耶鲁大学一组研究人员开发出首台芯片级掺钛蓝宝石激光器,这项突破的应用范围涵盖从原子钟到量子计算和光谱传感器。研究结果近日发表在《自然光子学》杂志上。掺钛蓝宝石激光器在20世纪80年代问世,可谓激光领域的一大进步。它成功的关键是用作放大激光能量的材料。掺钛蓝宝石被证明十分强大,因为它提供了比传统半导体激光器更宽的激光发射带宽。这一创新引领了物理学、生物学和化学领域的基础性发现和无数应用。台式掺钛蓝宝石激光器是许多学术和工业实验室的必备设备。然而,这种激光器的大带宽是以相对较高的阈值为代价的,也就是它所需的功率较高。因此,这些激光器价格昂贵,占用大量空间,在很大程度上限制了它们在实验室研究中的使用。研究人员表示,如果不克服这一限制,掺钛蓝宝石激光器仍将仅限于小众客户。将掺钛蓝宝石激光器的性能与芯片的小尺寸相结合,可驱动受功耗或空间大小限制的应用,如原子钟、便携式传感器、可见光通信设备,甚至量子计算芯片。耶鲁大学展示了世界上第一台集成了芯片级光子电路的掺钛蓝宝石激光器,它提供了芯片上迄今看到的最宽增益谱,为许多新的应用铺平了道路。新研究的关键在于激光器的低阈值。传统掺钛蓝宝石激光器的阈值超过100毫瓦,而新系统的阈值约为6.5毫瓦,通过进一步调整,研究人员相信可将阈值降低到1毫瓦。此外,新系统还与广泛用于蓝色LED和激光的氮化镓光电子器件兼容。
  • 先进超快(飞秒、皮秒)激光器
    table width="633" cellspacing="0" cellpadding="0" border="1" align="center"tbodytr style=" height:25px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果名称/span/p/tdtd colspan="3" style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign="bottom" width="501" height="25"p style="text-align:center line-height:150%"strongspan style=" line-height:150% font-family:宋体"先进超快(飞秒、皮秒)激光器/span/strong/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"单位名称/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="501" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"中科院物理研究所/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系人/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="168" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"方少波/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="161" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系邮箱/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="172" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"Renee_zlj@126.com/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果成熟度/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="501" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□正在研发 √已有样机 □通过小试 □通过中试 √可以量产/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"合作方式/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="501" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"√技术转让 √技术入股 √合作开发 √其他/span/p/td/trtr style=" height:304px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="304"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"成果简介:/span/strong/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"激光器被广泛运用于工业、农业、精密测量和探测、通讯与/spanspan style=" font-family:宋体"a href="https://www.baidu.com/s?wd=%E4%BF%A1%E6%81%AF%E5%A4%84%E7%90%86&tn=44039180_cpr&fenlei=mv6quAkxTZn0IZRqIHckPjm4nH00T1Ykmy7WP1K-Pjf3PhRdPynv0ZwV5Hcvrjm3rH6sPfKWUMw85HfYnjn4nH6sgvPsT6KdThsqpZwYTjCEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-TLwGUv3EnHmsrjfsPjT1" target="_blank"span style=" color:windowtext text-underline:none"信息处理/span/a/spanspan style=" font-family:宋体"、医疗、军事等各方面,并在许多领域引起了革命性的突破。其中,超快激光器倍受各界追捧。它不仅可以实现加工的“超精细”,还实现了真正意义上的激光“冷”加工;由于超快特性,可以用于更精密的手术;更高的峰值功率,可引雷、放电,快速毁坏目标,导弹拦截、卫星致盲等等。/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"由于飞秒激光的前沿性,是激光产业中高利润的高端产品。国际市场每年飞秒激光相关产值约100 亿美元,国内市场为国外公司垄断,大量外汇流失(10亿美元),同时影响国家安全。/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"中国科学院物理研究所光物理重点实验室从事飞秒激光器研究多年,开发出一系列飞秒激光器及相关科研成果,包括:/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒钛宝石激光振荡器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"TW/spanspan style=" font-family:宋体"级飞秒超强激光放大器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"高重复频率飞秒激光放大器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒参量激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"光纤飞秒激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"全固态飞秒激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"全固态皮秒激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"低噪声光学频率梳/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"窄线宽及可调谐激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"同步及延时控制器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"周期量级激光及其CEP锁定/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"用户定制激光器/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"部分产品和指标达到国际领先或国内首次的程度,包括:/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"同步飞秒激光器(国际领先)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒PW超强激光(世界纪录)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"若干全固态飞秒激光(国际首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"紫外波段皮秒激光(国际领先)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"红外波段飞秒激光(国际领先)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"阿秒激光装置(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒光学频率梳(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒参量激光振荡器(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒镁橄榄石激光(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒Cr:YAG激光(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒激光压缩器(国内最短脉宽)/span/pp style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"主要技术指标:/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/ea10646a-372a-4205-8429-4a0ef2b8d87e.jpg" title="3.png"//pp style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"技术特点:/span/strong/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"超快:国内最短激光脉冲,3.8fs/可见光波段/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"超强:1.16PW峰值功率,当时的世界纪录/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"阿秒:160as/XUV极紫外波段,国内首次实现/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"光梳:稳定度~10-18 /秒,国际同类最高结果之一/span/p/td/trtr style=" height:75px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="75"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"应用前景:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"自20世纪60年代问世以来,激光已在工业、医学、军事等众多领域广泛应用。近年,超短脉冲激光即超快激光成为激光领域的先端发展趋势。脉冲越短,激光的精度越高、释放的能量越大。在实验室,a href="http://laser.ofweek.com/tag-%E6%BF%80%E5%85%89%E8%84%89%E5%86%B2.HTM" target="_blank" title="激光脉冲"span style="color:windowtext text-underline:none"激光脉冲/span/a已短到飞秒级别(1飞秒等于千万亿分之一秒)。超快激光投入应用,成为人类工具史上的又一“利器”。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"飞秒激光作为最重要的前沿方向,可以完成常规激光无法完成的工作,因此应用更为广泛,需求量巨大。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"在加工制造领域:比常规激光更高的精度、更高质量的加工效果。如发动机汽缸、太阳能电池、仿生加工…/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"在医疗领域:由于超快特性,可以用于更精密的手术,无痛、高效。近视、老花…/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"在国防领域:更高的峰值功率,快速毁坏目标,导弹拦截、卫星致盲。引雷、放电等常规激光所不能。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"在科研领域:常规激光远远不能的科学前沿:激光粒子加速、高能物理、光钟……/span/p/td/trtr style=" height:72px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="72"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"知识产权及项目获奖情况:/span/strong/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"已经申请相关发明专利23项。包括——/span/pp style="text-indent:28px line-height:24px"a title="高对比度飞秒激光脉冲产生装置"span style=" font-family:宋体 color:windowtext text-underline:none"高对比度飞秒激光脉冲产生装置/span/aspan style=" font-family:宋体"(申请号CN201210037173.1)/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"一种全固态皮秒激光再生放大器(申请号CN201210360026.8)/span/pp style="text-indent:28px line-height:24px"a title="飞秒锁模激光器"span style=" font-family: 宋体 color:windowtext text-underline:none"飞秒锁模激光器/span/aspan style=" font-family:宋体"(申请号CN201410251367.0)/span/pp style="text-indent:28px line-height:24px"a title="基于全固态飞秒激光器的天文光学频率梳装置"span style=" font-family:宋体 color:windowtext text-underline:none"基于全固态飞秒激光器的天文光学频率梳装置/span/aspan style=" font-family:宋体"(申请号CN201410004852.8)/span/pp style="text-indent:28px line-height:24px"a title="全固态陶瓷锁模激光器"span style=" font-family:宋体 color:windowtext text-underline:none"全固态陶瓷锁模激光器/span/aspan style=" font-family:宋体"(申请号CN201310349408.5)等/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"曾获得国家自然科学二等奖/span/p/td/tr/tbody/tablepbr//p
  • 我国首台万瓦光纤激光器问世 年内产值1.6亿元
    经由一根绣花针粗细的光纤,释放出的激光能量可焊接飞机、轮船。记者22日从武汉市获悉,我国首台万瓦连续光纤激光器在光谷问世,中国成为继美国后第二个掌握此技术的国家。  记者在武汉锐科研发中心看到,这台激光器虽然只有约两台冰柜叠加大小,它肚子里却藏着10块“能量方”,每块1100瓦,各产生一条激光束,10条激光束再汇聚到一根光纤,形成合力,最终产生1万瓦的强大能量。这项激光功率合束技术,被美国视为万瓦激光器的核心机密。  据悉,为打破垄断,两位国家“千人计划”专家闫大鹏、李成率队,历时一年研发攻关,终于掌握该技术的自主知识产权。  据了解,在国际上,光纤激光器越来越广泛应用于工业造船、汽车制造、航空航天、军事设备等领域。与传统二氧化碳激光器相比,它的耗电仅为其1/5,体积只有其1/10,但速度快4倍,转换效率高20%,还没有污染。  中国光学学会理事长、中国科学院院士周炳琨认为,过去,我国核心激光器件主要依赖进口,如今取得这一技术国际领先,对我国工业发展将产生巨大推动。  据透露,该技术已纳入明年的国家863计划。闫大鹏表示,年内有信心冲刺2万瓦技术,实现产值1.6亿元。
  • 世界最大激光器:192束激光点燃人造太阳
    经过10余年设计制造、35亿美元投资,美国建成世界最大激光器  新浪科技讯 北京时间5月7日消息,据美国《连线》杂志网站报道,在劳伦斯利弗莫尔国家实验室(LLNL)国家点火设施(NIF)的科学家,希望利用192个激光器和一个由400英尺长的放大器及滤光器阵列构成的装置,制造出一个像太阳或者爆炸的核弹一样的自维持聚变反应堆(self-sustaining fusion reaction)。最后一批激光器安装完毕后,《连线》网站记者参观了这个点火设施。观看看世界上最先进的科学设备。  1.美国“国家点火装置”  这个大部头看起来可能很像迈克尔贝执导的《变形金刚》中的人物,但是这个大型机器很快就会成为地球上的恒星诞生地。  美国“国家点火装置” 位于加州,投资约合24亿英镑,占地约一个足球场大小。科学家希望该激光器能模仿太阳中心的热和压力。“国家点火装置”由192个激光束组成,产生的激光能量将是世界第二大激光器、罗切斯特大学的激光器的60倍。2010年,192束激光将被汇聚于一个氢燃料小球上,创造核聚变反应,打造出微型“人造太阳”,产生亿度高温。  2.庞大的靶室  庞大的靶室  在庞大的靶室里,192束激光束进入直径是33英尺的蓝色真空室,在那里跟一个胡椒瓶大小的目标物相撞。然后这些光束会以动力较低的红外线的形式,从该仪器的不同部位出来,这个部位跟DVD播放器的内部结构类似。接着激光经过一系列复杂的放大器、过滤器和镜子,以便变得足够强大和精确,可以产生自维持聚变反应堆。  3.包含放射性氢同位素、氘和氚的铍球  包含放射性氢同位素、氘和氚的铍球  这个铍球包含放射性氢同位素、氘和氚。科学家将利用这个系统的192个激光器产生的X射线轰击它。核子熔合的关键是有足够的能量把两个核子熔合在一起,在这项实验中用的是氢核子。由于把两个核子分开的斥力非常强,因此这项任务需要利用极其复杂的工程学和特别多的能量。  例如,在光束进入真空室(包含图片上方的目标物)之前,激光必须通过巨大的合成水晶,转变成紫外线。发射到真空室里的光束会进入一个被称作黑体辐射空腔(hohlraum)的豆形软糖大小的反射壳(reflective shell)里,光束的能量在这里产生高能X射线。从理论上来说,X射线的能量应该足以产生可以克服电磁力的热和压力,这样核子就能熔合在一起了。电磁力促使同位素的核子分开。  4.靶室顶部的起重机和气闸盖  靶室顶部的起重机和气闸盖  在第一张照片的靶室顶上,是用来把底部仪器放入真空室的起重机和气闸盖。如果这个仪器产生作用,它将成为未来发电厂的前身,将提高科学家对宇宙里的力的理解。当常规核试验被禁止的时候,它还有助于我们了解核武器内部的工作方式。  5.精密诊断系统  精密诊断系统  激光束将被发射到精密诊断系统里,以在它进入靶室以前,确定它能正常工作。  6.激光间  激光间  在激光间(laser bay)里眺望,会看到国家点火设施的激光间2号向远处延伸超过400英尺,激光在从这里到达靶室的过程中,会被放大和过滤。过去35年间,科学家在劳伦斯利弗莫尔国家实验室建设了另外3个激光熔合系统,然而它们都不能生成足够达到核子熔合的能量。第一个激光熔合系统——Janus在1974年开始运行,它产生了10焦耳能量。第二项试验在1977年实施,这个激光熔合系统被称作Shiva,它产生了10000焦耳能量。  最后一项实验在1984年实施,这个被称作Nova的激光熔合项目产生了30000焦耳能量,这也是它的制造者第一次相信通过这种方法可以实现核子熔合。国家点火设施科研组制造的这个最新系统有望产生180万焦耳紫外线能量,科学家认为这些能量已经足以在劳伦斯利弗莫尔国家实验室里产生一个小恒星。  7.磷酸盐放大玻璃  磷酸盐放大玻璃  国家点火设施包含3000多块混合着钕的磷酸盐放大玻璃,这是在熔合试验中用来增加激光束的能量的一种基本材料。这些放大玻璃板隐藏在密封的激光间周围的围墙里。  8.技术人员在激光间里安装光束管  技术人员在激光间里安装光束管  技术人员在激光间里安装光束管,激光通过这些管会进入调试间。激光在调试间里会被重新改变运行路线,并重新排列,然后被输送到靶室里。  9.紧急停运盘  紧急停运盘  在整个国家点火设施里,标明激光位置的紧急停运盘(emergency shutdown panels),可在激光发射时,为那些在错误的时间站在错误的地方的科学家和技术人员提供安全保障。  10.光导纤维  光导纤维  光导纤维(黄色电缆部分)把低能激光传输到能量放大器里。然后在通过混有钕的合成磷酸盐的过程中,利用强大的频闪放电管放大。  11.能量放大器  能量放大器  能量放大器隐藏在天花板上的金属覆盖物下面,它含有可增大激光能量的玻璃板。在激光刚刚进入放大玻璃前,灯管把能量吸入玻璃里,接着激光束会获得这些能量。  12.可变形的镜子  可变形的镜子  可变形的镜子隐藏在天花板上覆盖的银膜下面,这种镜子是被用来塑造光束的波阵面,并弥补它在进入调试间前出现的任何缺陷。每个镜子利用39个调节器改变镜子表面的形状,纠正出现错误的光束。你在照片中看到的电线是用来控制镜子的调节器的。  13.激光放大器  激光放大器  激光束在进入主放大器和能量放大器前,较低前置放大器会放大激光束,并给它们塑形,让它们变得更加流畅。  14.便携式洁净室  便携式洁净室  科学家利用一个独立的便携式洁净室(CleanRoom)运输和安置能量放大器和其他元件,这个洁净室就像用来装配微芯片的小室。  15.能量放大器  能量放大器  每个能量放大器都被安装在洁净室附近,然后利用遥控运输机把它们运输到梁线所在处。  16.技术人员校对能量放大器  技术人员校对能量放大器  从照片中可以看到,能量放大器在被放入梁线以前,技术人员正在对它进行校对。  17.模仿NASA的主控室  模仿NASA的主控室  照片中的主控室看起来跟美国宇航局的任务控制中心很相似,这是因为前者是模仿后者建造的。国家点火设施并不是利用这个主控室把火箭发射到外太空,而是设法通过激光,利用它把恒星的能量(核子熔合)带回地球。  18.光束源控制中心  光束源控制中心  光束源控制中心即已知的主控振荡器室,看起来跟数据中心(Server Farm)很像,但是这个控制中心不是利用电脑,而是安装了一排排架子。光束通过光纤前往能量放大器的过程中,看起来就像网络供应商使用的网络。  19.国家点火设施的激光源  国家点火设施的激光源  国家点火设施的激光是从一个相对较小、能量较低,并且比较呆板的盒子里发射出来的。这个激光器呈固体状态,跟传统激光指示器没有多大区别,不过它们发射的光波波长不一样,前者是红外线,后者是可见光。  20.高能灯管  高能灯管  高能灯管(flashlamps)跟照相机里的灯管一样,但是前者的体积超大,它可以用来激发激光。每束光束刚产生时,强度仅跟你的激光指示器发出的激光强度一样,但是它们在二十亿分之一秒内,强度就能曾大到500太拉瓦,大约是美国能量输出峰值时功率的500倍。  这一结果是能实现的,因为该实验室里拥有巨大的电容器,里面储存了大量能量。这个电容器非常危险,当它充电后,这个房间将被封闭,禁止任何人靠近,以免出现高压放电现象,伤着来访的人。  国家点火设施的外面看起来很像《半条命(Half-Life)》的拍摄现场,这种普通的外观掩饰了在里面进行的历史性科学研究。(孝文) 英刊揭秘世界最强激光产生过程(组图)  导读:2009年4月,耗资达35亿美元的美国“国家点火装置”(NIF)正式开始进行相关实验,并计划于2010年最终实现聚变反应。届时会将192束激光同时照射在一个微小的目标上,是迄今世界上性能最强大的激光装置。英国《新科学家》杂志网站13日撰文揭秘世界最强激光产生过程。以下为全文:  “国家点火装置”是美国国家核安全管理局(NNSA)的库存管理计划的关键环节。在受控实验室条件下,“国家点火装置”将进行聚变点火和热核燃烧实验,实验结果将为NNSA提供相关武器生产条件的实验手段。这些条件对NNSA在不开展地下核试验的条件下评估并验证核武库的工作至关重要。“国家点火装置”实验将研究武器效应、辐射输运、二次内爆和点火相关的物理学机理,并支持库存管理计划继续取得成功。“国家点火装置”是目前世界上最大和最复杂的激光光学系统,用于在实验室条件下实现人类历史上的第一次聚变点火。192束矩形激光束将在30英尺的靶室中实现会聚,其中靶室内含有直径为0.44厘米的氢同位素靶丸。发生聚变反应时,温度可达到1亿度,压力超过1000亿个大气压。  以下是“国家点火装置”产生最强激光的几大步骤:  1、安装球形外壳     安装球形外壳  为了产生聚变所必须的高温和高压,“国家点火装置”将汇聚其所有192束激光束同时射向一个氢燃料目标之上。“国家点火装置”呈球形(如图所示),直径约为10米,重约130吨。装置内有一个目标聚变舱,点火实验就发生于目标聚变舱内。整个球体由18块铝材外壳拼接而成,每块外壳均约10厘米厚。球体外壳上正方形窗口就是激光束的入口,而圆形窗口则是用来安装和调节诊断装置,诊断装置共有近100个分片。  2、用调节器调整靶位     用调节器调整靶位  这是目标聚变舱内部的照片。激光束通过外壳上的入口进入目标舱,把将近500万亿瓦特的能量瞄准于位置调节器的尖端。图中右侧的长形带有尖端的物体就是位置调节器,每次实验的目标氢燃料球就置放于尖端之上。当所有激光束全部投入时,“国家点火装置”将能够把大约200万焦耳的紫外线激光能量聚焦到小小的目标氢燃料球之上,它比此前任何激光系统所携带能量的60倍还要多。当激光束的热和压力达到足以熔化小圆柱目标中氢原子的时候,所释能量要比激光本身产生的能量更多。氢弹爆炸和太阳核心会发生这类反应。科学家相信,总有一天通过核聚变而不是核裂变会产生一种清洁安全的能源。  3、将燃料放入燃料舱(圆柱体)     将燃料放入燃料舱(圆柱体)  进入“国家点火装置”的所有192束激光束都将被引向图中这个铰笔刀大小的圆柱体。该圆柱体中将装有聚变实验所使用的目标燃料,目标燃料就是约为豌豆大小的球状冰冻氢燃料。实验时,激光束将通过各自窗口进入目标舱内,从各个方向压缩和加热氢燃料球,希望能够产生自给能量的聚变反应。曾经有不少科学家认为可控核聚变反应是不可能实现的。近年来,科学家找到了一些点燃热聚变反应的方法,美国研究人员找到的方法是利用高能激光。虽然科学家们也尝试了其他种核聚变发生技术,但从已完成的实验效果看,激光技术是目前最有效的手段。除激光外,利用超高温微波加热法,也可达到点燃核聚变的温度。  4、压缩并加热燃料     压缩并加热燃料  所有激光束进入这个金属舱内部时,他们将产生强烈的X光线。这些X光线不仅仅可以把豌豆大小的氢燃料球压缩成一个直径只有人类头发丝截面直径大小的小点,它还能够将其加热到大约300万摄氏度的高温。尽管激光的爆发只能持续大约十亿分之一秒,但物理学家们仍然希望这种强烈的脉冲可以迫使氢原子相互结合形成氦,同时释放出足够的能量以激活周围其他氢原子的聚变,直到燃料用尽为止。在激光点火装置内,一束红外线激光经过许多面透镜和凹面镜的折射和反射之后,将变成一束功率巨大的激光束。然后,研究人员再将该激光束转变为192束单独的紫外线激光束,照向目标反应室的聚变舱中心。当激光束照射到聚变舱内部时,瞬间产生高能X射线,压缩燃料球芯块直至其外壳发生爆裂,直到引起燃料内部的核聚变,从而产生巨大能量。  5、用磷酸二氢钾晶体转换激光束     用磷酸二氢钾晶体转换激光束  激光束在进入目标舱内之前,必须要先由红外线转换成紫外线,因为紫外线对加热目标燃料更为有效。激光转换过程必须要使用磷酸二氢钾晶体。图中的这块磷酸二氢钾晶体重约360公斤。首先将一粒籽晶放入一个高约2米的溶液桶中,经过两个月的培养才可形成如此巨型的晶体。然后将晶体切割成一个个截面积约为40平方厘米的小块。“国家点火装置”共需要大约600多块这样的晶体小块。“国家点火装置”将被用于一系列天体物理实验,但是,它的首要目的是帮助政府科学家确保美国“老年”核武器的可靠性。“国家点火装置”项目的建造计划于上世纪90年代早期提出,1997年正式开始建设。(刘妍)
  • 我国研制成功5千瓦级全固态激光器 打破国际禁运
    美国“百夫长”激光炮就是将数个8千瓦级工业激光器并联。  林学春研究员(左一)与国外同行开展学术交流(科学报图片)  工欲善其事,必先利其器。  激光就是先进制造领域的一把利器,对一个国家的先进制造业发展有着至关重要的作用,而先进制造业的水平,体现着综合国力的强弱。  29岁就成为中国科学院半导体所最年轻的研究员,他最感谢的是他的导师、中国工程院院士许祖彦,导师不仅教给他扎实的基础知识,同时也教会他如何做人。  跨越鸿沟,就是一个全新的自己  2005年,博士毕业后来到半导体所科技处工作刚刚一年的林学春接到了一项艰巨的任务——筹建全固态光源实验室。  从无到有,往往要付出常人难以想象的努力。创建初期,林学春白天被科技处各种事务性工作填得满满当当,研究只能放在晚上做。大功率激光器实验危险性很强,水、电、光都集中到一个很小的区域,稍不留神,水溅出来会有灾难性的后果,看不见的激光射出来会把钢板烧个窟窿。而那时,实验室里只有林学春一个人在同时面对这些可能发生的危险。  危险,林学春不怕,但让他苦恼的是,如何才能得到理想的实验结果。很长一段时间内,他觉得自己离成功很远,想到研究所为实验室投入的那么多经费可能要付诸东流,他不免心急如焚。  一个能取得成功的人总是一个善于调节自己情绪的人。很快,他就豁然开朗了,要作出成绩必须先平静下来,有无所畏惧的决心和勇气。他把激光器部件一个个拆开,反复对比每一个参数,认真设计每一个步骤,经常在不知不觉中,发现窗外天已大亮。  尽管很累,但是他说,要感谢那段时间,因为在每天的坚持中,他不光看到了自己的进步,还锻炼了自己的意志,“现在我无论碰到什么困难都不怕,跟过去遇到的困难比起来小多了”。  跨越了鸿沟,成果接踵而至。实验室相继突破3kW、4kW、6kW和8kW激光输出,缩短了与国际上该领域的差距。2008年,以林学春作为项目负责人承担的“863”重点项目“高功率5千瓦全固态激光器”的课题“高功率全固态激光器研究”通过了科技部专家组严格评估,这是我国首次研制成功的满足工业需求的5千瓦级全固态激光器,并具有完全自主知识产权。这项成果对打破国际禁运、实现激光先进制造装备工程化具有重要意义。  进军“激光革命”  人类的文明史就是一部人类利用光的历史,激光则是迄今为止“最亮的光”,“激光革命”在改变着世界。让自己所制造的激光器服务于社会,在这场“革命”中取得一点小小的成绩,是林学春最大的心愿。  近年来,为加快科技成果转化,林学春及其科研团队以“工业应用需求”为导向,研制出一系列工业化高稳定性、高可靠性激光器及其装备,广泛应用于激光焊接、表面处理、精细加工和激光医疗等领域并取得了显著的成效。  他们研制的高稳定性全固态激光器被中国计量院作为标准光源,对国内的功率计进行标定。他们还开发出国内领先的1000W准连续(90ns)全固态激光器,用于船舶的除漆除锈等行业,目前应用于新加坡IDI激光有限公司。  林学春及其科研团队研发出的全固态高能量脉冲(12J/脉冲)激光器可以对金属表面进行毛化,使载货重轨能在雨雪等恶劣天气下正常行驶,技术将有望应用到高速铁路上,这将大大提高我国高铁在恶劣天气中的运营能力。  林学春团队研制出的工业用1~5kW高性能系列化全固态激光器于2010年成功与江苏省丹阳市天坤集团签订成果转化协议,直接为研究所带来了2000万元的现金收益。这项技术将广泛应用于汽车、船舶、航空、铁路等对国民经济起举足轻重作用的材料加工领域,对尽快扭转我国在先进制造领域关键成套装备基本依靠进口的局面,提高技术创新能力具有重要意义。  尽管如此,年轻的林学春一贯地谦逊:“我们只是在老一辈科学家引领下做了一些可供借鉴的工作而已,将来还有很多事情等着我们去做。”对于卓有成绩的青年科学家来说,这是难能可贵的。
  • 《自然》:世界最小纳米激光器在美问世
    研究人员最近展示了一种有史以来最小的激光器,其包含一个直径仅为44纳米的纳米粒子。该器件因能产生一种称为表面等离子的辐射而被命名为“spaser”。这项新技术可允许光子局限在非常小的空间内,一些物理学家据此认为,就像晶体管之于现今的电子产品,spaser也许将成为未来光学计算机的基础。 美国诺福克大学材料研究中心物理学教授米哈伊尔诺基诺夫表示,现今最好的消费电子产品可在大约10吉赫兹的速度上运行,但未来的光学器件的运行速度可达到几百太赫兹范围。一般来说,光学器件难以实现小型化,是因为光子无法限定在比其一半波长更小的区域内。但以表面等离子形式与光作用的器件就能将光限定在非常紧密的位点上。 诺基诺夫说,目前科学家们正在基于等离子的新一代纳米电子设备的理论研究上努力探索。与以前的其他等离子器件不同的是,spaser能有效地产生和放大这些光波。诺基诺夫及同事在近期的《自然》杂志上发表了此项研究成果。 spaser包含一个直径仅为44纳米的单纳米粒子,激光器的其他不同部分的功能则与常规激光器无异。在普通激光器中,光子通过可放大光线的增益介质在两个镜面间反弹。而spaser中的光则围绕一个等离子形式的纳米粒子核中的金球表面进行反弹。 此中的挑战是确保这种能量不会快速从金属表面消散。诺基诺夫及其团队通过在金球上喷涂嵌有染料的硅层来实现这一要求。硅层可作为增益媒介。来自spaser的光可作为等离子体保持在限定区域,亦可作为可见光范围的光子离开粒子表面。像一个激光器一样,spaser必须“泵”入必要的能量,研究人员利用光脉冲轰击粒子来达到这个目的。 常规激光器的大小取决于其使用的光波长,反射面间的距离不能小于光波长的一半,在可见光范围大约为200纳米。spaser则是利用等离子体解决了此局限。诺基诺夫说,spaser也许将能做到一个纳米大小,但任何小于这一尺寸的纳米粒子,其功能就会丧失。 美国乔治亚州大学物理学教授马克斯托克曼称,和目前最快的晶体管相比,spaser虽具有同等的纳米尺度,但其速度要快上1000倍,这为制造速度超快的放大器、逻辑元件和微处理器提供了可能。 诺基诺夫则表示,spaser不仅能在光子计算机领域找到用武之地,也能在现今使用常规激光器的领域得到应用。更为现实的应用领域就是磁性数据存储业。现今用于硬盘的磁性数据存储介质已达到其物理极限,扩展其存储能力的方法之一就是在其记录过程中用非常小的光点对介质进行加热,而这必须使用纳米激光器才能做到。
  • 量子级联激光器促进生命科学研究
    中红外QCL成像有助于光谱学家分析组织切片和进行药物分析,它还能进行呼气分析实现早期疾病诊断,并支持实时无创血糖监测。”昕虹光电为山西大学研究组呼气氨气检测项目,提供了来自瑞士Alpes Lasers的QCL光源以及配套的专用激光发射头、温控+电流驱动器。我们的应用科学家在QCL应用于医疗呼气检测方面,有丰富的学术研究经验。若您有相关需求,欢迎与我们联系!原文标题:Quantum Cascade Lasers Boost Life Science Research作者:PANAGIOTIS GEORGIADIS, OLIVIER LANDRY, ALEX KENIC, and MILTIADIS VASILEIADIS (Alpes Lasers)来源:Photonics.com编译:昕甬智测实验室1971 年 10 月,Rudolf F. Kazarinov和Robert A. Suris 提出了“在具有超晶格的半导体中放大电磁波的可能性”[1]。科学界花了20多年的时间来构建利用这一原理的器件。1994年,贝尔实验室的Jérôme Faist及其同事发表了基于子带间跃迁(量子阱之间导带中的激发态)的激光源工作原型和相关研究结果[2]。Faist后来与同事在瑞士共同创立了Alpes Lasers。图一 量子级联激光器 (QCL) 的典型光束轮廓(来源:Alpes Lasers)自量子级联激光(QCL)光源商业化以来,已经过去了20 多年。使用热电冷却在室温下运行的QCL现在已无处不在。这些激光器开创了中远红外光谱的新时代。近年来,QCL在稳定性、功率、光谱范围、可调性和整体性能方面取得了许多进步,其成本也逐渐被工业界所接受。此外,带间级联激光器(ICL)是另一种中红外激光器,与QCL一样,ICL中的每个注入载流子都会产生多个光子。ICL 的工作原理是基于II型异质结和级联带间跃迁(电子带之间的转移),不同于QCL的子带间跃迁。ICL在较短波长上是QCL的有效补充,通常在3.5 µm波长范围内,ICL的性能优于QCL。中远红外光谱的发展为光谱学领域创造了各种各样的应用场景,一些利用相干中红外光源的新应用得以在医学和工业中开展,并获得许多研究成果。就像1970年代初期傅里叶变换红外(FTIR)光谱设备取代色散光谱仪一样,QCL可以预见地正在逐渐取代笨重的FTIR设备。在QCL的相关研究中受益匪浅的几个关键领域,包括生命科学中的生物学、病理学和毒理学,以及医疗保健和制药行业。随着其激光功率的增加(允许穿透更厚的样品)、稳定性和紧凑性(允许它们部署在临床环境中),基于QCL的光谱分析,正迅速成为医学研究的先进技术。中远红外激光用于生命科学和医学领域的几个例子,像是薄组织切片的中红外成像、基于激光光谱学的液体或气体样品分析、生物标志物监测、病原体检测、药物开发分析等应用。QCL 使各种各样的医疗应用得到了改进,从样本的实验室分析到改变游戏规则的常规医疗程序,例如无创血糖监测。尽管取得了很大进展,目前生物医学界尚未充分发挥QCL技术的潜力。医学影像红外成像已经为医学领域带来重大进步。多光谱和高光谱成像技术已被证明对生物分子研究和组织病理学非常有效,并且在测试时间和准确性方面,使用成像来促进医疗干预变得越来越重要。 目前,我们已经有了成熟的无创红外成像技术,利用红外光谱分析组织和细胞。这些技术当中的一部分使用背反射光(主动)构建图像,其他的方法依赖检测组织由于其温度而发射的红外辐射(被动),由红外探测器感测热发射并产生组织中发射分布的热图。此外,在红外中使用标记成像(labeled imaging)[3]已经被视为一种成熟的常规技术存在[4]。电磁频谱中红外波段的使用在临床诊断中的应用范围广泛,从高分辨率和深度分辨的组织可视化,到温度变化(热成像)评估。此外,中红外光谱体外映射在组织和细胞分类的应用取得了显着进展——例如,用于识别癌细胞[5]。然而,在使用中红外光子学进行此类分析,尤其是无标记细胞和组织分类方面,还存在巨大的潜力[6]。大多数商用中红外成像设备通常受限于有限的波长能力(使用单模激光源),或是低功率导致较低的信噪比(如FTIR显微镜)。每种设备通常都是为特定的医学成像应用量身定制的,因此只针对某特定光谱范围做开发。相较之下,来自维也纳工业大学的Andreas Schwaighofer及团队在2017的一篇论文《Quantum cascade lasers (QCLs) in biomedical spectroscopy》证明QCL具有明显的优势:QCL可以针对特定目的进行定制,或者同时满足多种需求。最近的研究计划旨在通过进一步扩展QCL的能力,以开发功能更全面的中红外成像设备。研发人员希望同时达到FTIR设备的光谱可调性和基于多激光器外腔(External-Cavity)配置的更强信号激光源,在外腔配置中,组合使用了多达六个宽增益激光器。这些器件在可调谐性、精度和功率方面为中红外激光源提供了前所未有的能力。呼气分析分析呼出空气的科学,也称为呼吸组学(breathomics)或呼气组学(exhalomics),正在迅速成为医生和研究人员的主流应用。中红外激光特别适合这一新兴领域,因为人呼吸中存在的大多数挥发性有机分子在中红外光谱中具有明显的吸收指纹。针对呼气中的挥发性有机化合物(VOCs)以及特定气体(例如甲烷、丙酮、CO2 和其他受关注的化合物),可以使用激光光谱分析技术对其进行浓度检测。这些物质是生物标志物,可以向医生传达有关个人健康的大量信息。例如:VOC成分可以揭示炎症,丙酮水平可以提供关于一个人的代谢活动的信息(常用于肥胖研究和监测代谢紊乱),高水平的一氧化氮可能表明哮喘,而一氧化碳水平可以作为一种氧化应激或呼吸系统疾病的生物标志物。在过去的10年中,几个研究小组一直在探索呼吸组学,某些医疗初创公司正在利用QCL和 ICL分布式反馈(DFB)激光源,对人或动物呼吸进行气体传感。新的激光源例如QCL阵列和光束合并的DFB QCL等技术,将使多组分的呼吸分析成为可能,为医生提供更强大的诊疗工具。图二 基于QCL的呼气检测仪器液体生物标志物分析尽管QCL光谱通常与气体传感有关,但QCL也是分析液体的重要工具。由于拥有更高的激光功率,QCL允许分析更厚的样品和更复杂的基质,使其适用于生命科学中的许多应用。此类应用之一是基于激光的血液分析,它最近受到了很多媒体的关注,特别是在实时无创监测血糖水平方面。这种开创性的方法使用中红外激光源,可以实时经过皮肤透过光谱来监测葡萄糖。这种方法可以减轻糖尿病患者因使用针头定期检查血糖水平而带来的压力。此外,中红外集成光子学进一步改进了现有的小型化、可穿戴设备,能够执行连续测量,为医生提供可用于个性化治疗的数据。中红外激光在血液分析中的一项新用途是检测神经退行性疾病,例如阿尔茨海默氏症和帕金森氏症。通过专注于可在中红外光谱中检测到的一些特定生物标志物[8],医生可以使用 QCL光谱分析技术,远在可识别的症状出现之前,提前8年预测疾病的未来发作。起始于疾病早期的药物治疗会更有效,因此这些信息很有价值,甚至可能促进疾病的预防。尿液是另一种可以分析生物标志物的液体生物样本(图三)。因为样本易于获取且相关检测的实验室技术丰富,尿液分析被广泛使用,最重要的是,尿液中存在的细胞成分、蛋白质和各种分泌物反映了一个人的代谢和病理生理状态(图四)。医生要求进行尿液分析的原因有很多,包括进行常规医学评估、评估特定症状、诊断医疗状况(例如尿路感染和未控制的糖尿病)以及监测疾病进展和对治疗的反应(例如肾脏疾病和糖尿病)。图三 QuantaRed Technologies基于QCL的尿液分析仪,具有两个由Alpes Lasers开发的组合DFB QCL。该分析仪是在NUTRISHIELD项目中开发的,获得了欧盟地平线2020研究和创新计划的资助(来源:QuantaRed Technologies GmbH)图四 Alpes Lasers开发的DFB QCL合路器。该组件已成功集成到尿液分析仪和基于光子学的检测模块中,用于分析水质,特别是用于检测细菌。该模块是在WaterSpy项目中开发,获得了欧盟地平线2020研究和创新计划的资助(来源:Alpes Lasers)使用QCL的分析设备能够根据中红外光谱分析结果直接量化尿液中的主要成分,如尿素和肌酐。QCL技术还可以检测酮类、葡萄糖和蛋白质。这些生物标志物的浓度升高可以作为各种疾病和病症的早期指标(图五)。图五 多激光系统中光束组合器的各种元件,包括高热负荷外壳中的 QCL(L和R)、反射镜 (M)、窗口 (W)、二向色分束器 (P) 和调节螺钉(x) 和 (y)(来源:Alpes Lasers)结语随着QCL领域的高速发展,包括多激光器外腔、超宽谱可调设备,或者在不久的将来,新开发的QCL频率梳的应用,可以期待的是,QCL将为生命科学领域带来更大规模的进展。参考文献1. R.F. Kazarinov and R.A. Suris (1971). Possible amplification of electromagnetic waves in a semiconductor with a superlattice. Sov Phys — Semicond, Vol. 5. pp. 707-709.2. J. Faist et al. (1994). Quantum cascade laser. Science, Vol. 264, Issue 5158, pp. 553-556.3. D.M. Gilmore et al. (2013). Effective low-dose escalation of indocyanine green for near-infrared fluorescent sentinel lymph node mapping in melanoma. Ann Surg Oncol, Vol. 20, Issue 7, pp. 2357-2363.4. Quest Medical Imaging (2021). Applications of the Quest Spectrum fluorescence imaging system, www.quest-mi.com/promising-applications.5. S. Pahlow et al. (2020). Application of vibrational spectroscopy and imaging to point-of-care medicine: a review. Appl Spectrosc, Vol. 72, pp. 52-84.6. S. Mittal and R. Bhargava (2019). A comparison of mid-infrared spectral regions on accuracy of tissue classification. Analyst, Vol. 144, Issue 8, pp. 2635-2642, www.doi.org/10.1039/c8an01782d.7. A. Schwaighofer et al. (2017). Quantum cascade lasers (QCLs) in biomedical spectroscopy. Chem Soc Rev, Vol. 46, Issue 7, pp. 5903-5924.8. A. Nabers et al. (2018). Amyloid blood biomarker detects Alzheimer’s disease. EMBO Mol Med, Vol. 10, Issue 5, p. e8763, www.doi.org/10.15252/emmm.201708763.昕甬智测实验室隶属于宁波海尔欣光电科技有限公司,专注于中远红外激光光谱检测技术(QCL/ICL+TDLAS),致力推动激光光谱技术的产业化应用,以激光之精,见世界之美。
  • 我国高功率拉曼光纤激光器研究取得进展
    近期,中国科学院上海光学精密机械研究所空间激光信息技术研究中心冯衍研究员领衔的课题组,在高功率拉曼光纤激光器研究中取得新进展。提出了一种镱-拉曼集成的光纤放大器结构,有效地解决了拉曼光纤激光器功率提升的主要技术瓶颈问题,在1120nm波长,首次获得580W的单横模线偏振拉曼光纤激光和1.3kW的近单模拉曼光纤激光输出。  近年来,高功率光纤激光器发展迅速。1&mu m波段的掺镱光纤激光器,近衍射极限输出功率可达20kW,多横模输出功率可达100kW。尽管如此,稀土掺杂光纤激光器的输出波长,因稀土离子能级跃迁的限制,仅能覆盖有限的光谱范围,限制了其应用领域。基于光纤中受激拉曼散射效应的拉曼光纤激光器是拓展光纤激光器波长范围的有效手段。  该项研究中,在一般的高功率掺镱光纤放大器中注入两个或多个波长的种子激光,波长间隔对应光纤的拉曼频移量。处于镱离子增益带宽中心的种子激光率先获得放大后,在后续光纤中作为泵浦激光对拉曼斯托克斯激光进行逐级放大。初步的演示实验获得了300 W的1120nm拉曼光纤激光输出 接着采用较大包层(400&mu m)的光纤,获得了580W的单横模线偏振拉曼光纤激光和1.3kW的近单模拉曼光纤激光输出。结果发表于《光学快报》(Optics Letters)和《光学快讯》(Optics Express) [Opt. Lett. 39, 1933-1936 (2014) Opt. Express 22, 18483 (2014)]。鉴于目前高功率掺镱光纤激光器均采用主振放大结构,新提出的光纤放大器结构可用于进一步提升拉曼光纤激光的输出功率。初步的数值计算也表明,该技术方法有望在1~2&mu m范围内任意波长获得千瓦级激光输出。  该项研究得到了中国科学院百人计划、国家&ldquo 863&rdquo 计划、国家自然科学基金等项目的支持。   千瓦级掺镱-拉曼集成的光纤放大器结构示意图  输出功率随976 nm二极管泵浦功率的变化曲线,其中的插图为最高输出时的光谱。
  • 活力激光获千万级A轮融资,专注研发千瓦级半导体激光器系列产品
    近日活力激光科技有限公司(以下简称“活力激光”)宣布完成数千万人民币A轮融资,由亦庄资本独家投资。本轮资金将主要用于研发和生产千瓦级半导体激光器(1千瓦至1万瓦)系列产品,在激光焊接和激光表面处理领域进行推广应用。  活力激光成立于2019年12月,主要专注于高功率半导体激光器的研发、生产和销售,整体技术及生产能力覆盖各种功率、波长和封装形式的半导体激光器,核心产品包括固体激光器泵浦源、千瓦级半导体激光器、以及应用于医疗美容等领域的小功率半导体激光器。公司在深圳宝安设有一处工厂,面积达3500平方米,其中无尘车间2000平米。  目前,活力激光团队规模超70人,核心成员曾任职于JDSU等头部激光器公司。公司创始人兼CEO蔡万绍拥有二十余年半导体激光器研发与生产经验,先后任职于JDSU/Lumentum、Oclaro、西安炬光等公司。  据Emergent Research相关报告数据,2021年全球半导体激光器市场规模为81.9亿美元(约551.9亿人民币),预计2022-2030年间年复合增长率为6.7%。值得一提的是,半导体激光器在医疗保健领域的应用价值高,目前已广泛用于医疗诊断、美容手术和治疗,这一方向也将成为半导体激光器市场增长的重要驱动力,而随着技术的突破,半导体激光器在工业加工领域的直接应用也将被打开,想象空间极大。  全球激光器市场核心玩家包括起步较早的通快、朗美通、恩耐、相干、业纳等国外公司,也有起步较晚但发展较快的锐科、英诺、炬光、长光华芯等国内公司。在成熟的光纤激光器领域,市场竞争相当激烈,从各大上市光纤激光器公司的财报中,可明显看到竞争激烈导致的价格下跌。  蔡万绍告诉36氪,为了避开同质化竞争激烈的细分市场,活力激光以产品创新作为突破口,采用国产芯片,率先在国内开发出878.6nm锁波长窄光谱的半导体激光器,以及1440nm二维点阵激光器,在固体激光器泵浦和激光嫩肤美容领域,打破了国外玩家的垄断,实现国产替代,目前该产品已逐渐放量增长。  “未来3-5年是激光芯片国产替代的重要时间窗口,也是半导体激光器创新发展的关键机遇。”蔡万绍提到,活力激光已经和国内多家激光芯片供应商展开合作,定制开发波长多样化的半导体激光器,包括1550nm(照明应用)、1470nm(医美应用)、780/766nm(碱金属气体激光器泵浦)、405nm/450nm/650nm(加工及照明应用)、以及常见的976nm和808nm激光波长,并同步研发千瓦级半导体激光器,覆盖1千瓦至1万瓦功率,取得了巨大进展。  相对来说,固体激光器的优势应用领域是非金属材料及合金材料的精细加工,光纤激光器的优势应用领域是钢铁材料的大功率激光切割,而半导体激光器凭借高功率、低能耗、高性价比、体积小、重量轻、波长多样性等优势,将在铁、铜、铝等金属材料的激光焊接和激光表面处理领域得到举足轻重的应用。  在蔡万绍看来,如果充分利用半导体激光器的优势展开产品研发布局,有望让半导体激光器在工业加工、医疗美容、照明显示、激光雷达等领域的总体应用量,提升至与光纤激光器、固体激光器同等的水平,逐步构建出三种激光器三分天下的格局。“我们的中期目标是成为国内领先的半导体激光器供应商。”他说。  目前,活力激光客户已覆盖多家激光器、机器视觉、医疗美容等领域上市公司,并在公司成立以来,保持了100%以上的年营收增长率,预计2023年收入将突破亿元关口。
  • 中科院长春光机所有机激光器研究获进展
    p  近日,中国科学院长春光学精密机械与物理研究所发光学及应用国家重点实验室有机激光课题组的电泵浦有机激光器的研究成果,以Light gain amplification in microcavity organic semiconductor laser diodes under electrical pumping为题,发表在Science Bulletin上。光学和光电子方面的权威媒体Laser Focus World, Photonics Media和美国科学促进会EurekAlert! Scince News报道了该项研究工作。/pp  有机半导体激光器由于其材料丰富、低成本、柔性、可溶液加工等优点,是有机光电子领域的核心器件,在柔性可穿戴设备、智能互连、生物医疗等领域具有广阔的应用前景,并引起国内外科学家及产业界的极大关注。然而,绝大多数有机半导体激光器只能在光泵浦下工作,如何实现电泵浦有机半导体激光器成为有机光电领域的重大挑战。其关键难点在于复杂的激发态过程和不合理的器件结构会引起巨大的光学损耗,而有机半导体薄膜的载流子迁移率偏低,因此普遍认为要实现激射(净增益)往往需要极大的阈值电流密度(KA cm-2量级)。/pp  针对上述难题,长春光机所有机激光团队根据腔量子电动力学原理、设计研制了高品质的平面光学微腔,有效调控有机半导体材料的自发发射和受激发射特性,成功克服了器件光学损耗大的难题,从而在低阈值电流密度下实现了电泵浦有机半导体激光器。该器件以经典有机小分子掺杂体系(Alq:DCJTI)为增益介质,激光峰位于621.7nm,随着电流的增加激光峰位保持不变,表明该器件具有优异的稳定性。该激光器的阈值电流密度约为1.8mA/cm2,最小线宽约为0.835nm 在电流密度为16mA/cm2时的光增益达到最大,达到5.25dB。/pp  Laser Focus World的高级主编John Wallace评价该工作,“该低阈值激光器的实现意味着室温、连续激射的可行性,是有机半导体激光器获得实际应用的重要一步。”此外,该激光器极低阈值电流密度颠覆了人们对有机半导体激光的认识,表明高品质因子微腔中的有机Frankel激子的激发态性质以及相关的受激发射过程发生很大变化。开展上述物理过程的基础研究将使人们对有机半导体材料的激发态过程有更深入的理解和认识,有助于推动有机半导体的发展,催促全新型有机光电子器件的产生和广泛应用。/pp  研究工作得到中科院知识创新工程项目、国家自然科学基金、发光学及应用国家重点实验室的支持。/pp style="text-align: center "img title="001.png" src="http://img1.17img.cn/17img/images/201802/noimg/b010f5ab-c140-4f73-982f-1035b85305f0.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong图1.研究结果被Laser Focus World报道/strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "img title="002.png" src="http://img1.17img.cn/17img/images/201802/noimg/090d988e-9977-444a-845e-f8f2009c3eb3.jpg"//span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong图2.电泵浦有机激光器件的阈值及光放大特性/strong/span/p
  • 美建成世界最大激光器
    美建成世界最大激光器 所释能量将震撼世界    经过10余年设计制造、35亿美元投资,美国建成世界最大激光器。   新装置将于6月投入实验。能否借助新装置实现核聚变成为科学家现阶段关注焦点。他们希望,这一装置能把可控核聚变变为“工程现实”。   建成完工   美联社报道,美国能源部定于3月31日宣布,位于加利福尼亚州利弗莫尔劳伦斯国家实验所的“国家点火装置”(National Ignition Facility)已建成合格。   “国家点火装置”激光器占地约一个足球场般大小,由192个激光束组成。每个光束能在千分之一秒的时间内前行1000英尺(合304.8米),同时汇聚到一处橡皮擦般大小的目标上。   “国家点火装置”项目的建造计划于上世纪90年代早期提出,当时预计投资7亿美元,工程1997年正式开工。   项目负责人爱德华摩西说,“国家点火装置”192个激光束产生的能量将是世界第二大激光器的60至70倍,后者位于美国罗切斯特大学。   “这是一个重要里程碑,”摩西说。   美联社说,“国家点火装置”的设计初衷是帮助确保美国“年老”核武器的可靠性。   国家核安全管理局负责人托马斯达戈斯蒂诺说,激光器的建成将确保美国在无需地下核试验的情况下保证核武库的持续可靠性。  开发核能   “国家点火装置”投入科学实验后,预计将于2010年至2012年间收获首批重大实验成果。   利用“国家点火装置”实现可控核聚变是科学家眼下关注焦点。   与核裂变依靠原子核分裂释放能量不同,聚变由较轻原子核聚合成较重原子核释放能量,常见的是由氢的同位素氘与氚聚合成氦释放能量。与核裂变相比,核聚变能储量更丰富,几乎用之不竭,且干净安全。不过,操作难度巨大。   英国广播公司说,当星体内部存在巨大压力,核聚变能在约1000万摄氏度的高温下完成,然而,在压力小很多的地球,核聚变所需温度达到1亿摄氏度。   “国家点火装置”将寄望通过汇聚大功率激光束实现这一高温。   摩西说:“当‘国家点火装置’的所有激光束全力发射,它们将对目标产生1.8兆焦的紫外光能。”   由于激光脉冲持续时间只有数纳秒,这相当于对准滚珠大小般的氢“燃料球”瞬间发电500万亿瓦,比全美用电高峰时期消耗的电能还多。   摩西说,整个过程将创造出1亿摄氏度的高温和数十亿个大气压,使氢同位素的原子核聚变,产生比触发反应所需能量多出数倍的核能。   “能量收益”   能否在核聚变过程中实现“能量收益”是问题的关键。英国广播公司说,此前有实验实现过核聚变,但未能使核聚变释放的能量超过触发实验所需能量。   对此,摩西充满信心。他说:“我们正在实现目标的路上——首次在实验室环境中实现可控、持续的核聚变和能量收益。”   英国广播公司说,“国家点火装置”如果成功,核聚变释放出的能量将达到触发反应所需能量的10倍至100倍。   英国牵头的高能激光项目(Hiper)同样致力于核聚变能量的开发与利用。其项目负责人迈克邓恩说,“国家点火装置”一旦成功,将“震撼世界”,这将标志着激光核聚变从物理学进入“工程现实”。   “这将解决基本物理学问题,”他说,“让整个社会集中致力于利用这类能量。”   邓恩指出,“国家点火装置”每发射一次激光束需间隔数小时,仅能证明核聚变操作的科学性,却不能满足建造“激光核聚变动力工厂的需求”,后者可能每秒钟需完成数次发射。   “这意味着(需要)一种完全不同的激光技术,”他说。
  • 千瓦级全光纤激光器研制成功并实现小批量生产
    在&ldquo 十二五&rdquo 863计划新材料领域&ldquo 先进激光材料及全固态激光技术&rdquo 主题项目支持下,中国科学院上海光学精密机械研究所承担的&ldquo 千瓦级光纤材料及全光纤激光器&rdquo 课题取得重大进展,在近期通过了课题技术验收。  课题解决了低光子暗化掺镱光纤、高功率光纤光栅、高功率泵浦合束器的国产化制备技术,开发出双包层光纤、光纤光栅和泵浦合束器系列产品或样品,形成了一套拥有自主知识产权的高功率光纤材料与核心部件的制备工艺技术,所开发的掺镱光纤与核心部件应用在千瓦级光纤激光器产品中。  掌握了千瓦级全光纤激光器的整机集成及规模化生产的关键技术和相关工艺,实现了数百瓦到千瓦级单模全光纤激光器的批量化生产,打破了国外垄断。所开发的系列高功率全光纤激光器已在金属薄板切割、焊接等领域获得重要应用。  课题实施期间,成立了2家专业从事高功率光纤激光器研发生产的高科技公司,组建了专业化的生产示范线,实现了数百瓦到千瓦级光纤激光器的产业化。2012年,形成了小规模生产销售能力。  作为目前先进的工业加工用高功率激光器,单模千瓦级以上全光纤激光器我国还大量依赖进口。高功率全光纤激光器与智能机器手技术相结合,使得实现高功率激光加工(如焊接、切割、融覆、3D打印等)的柔性化和智能化成为可能,是目前国内外激光加工装备的重要发展趋势。作为制造业大国,我国对该类高效率全光纤激光器有较为广泛的应用需求,市场前景广阔。
  • 美研究人员研制成功一种用于光谱学的新型太赫兹激光器
    从左至右:利哈伊大学(Lehigh University)电气和计算机工程研究生Ji Chen、Liang Gao和Yuan Jin在利哈伊大学Sinclair大楼Sushil Kumar的太赫兹光电子(Terahertz Photonics)实验室  美国研究人员展示了一种具有破记录输出功率的太赫兹半导体激光器,可用于各种形式的光谱学和其他应用。  以强烈的单色辐射光束形式提供的光束是众所周知的技术,可以追溯到1960年推出的第一台激光器。依靠激光器来实现超快速和高容量的数据通信、制造、手术以及商业应用,例如条形码扫描仪、打印机,诸如CD和DVD的光盘,自动驾驶车辆,激光显示表演和动态艺术装置,当然还有光谱学。  从红外到紫外的激光器被广泛使用,然而,利哈伊大学的Sushil Kumar团队研究了太赫兹激光器。太赫兹辐射位于微波和红外区域之间的电磁波谱区域。它们可穿透塑料、织物、纸板和其他材料,可用于检测各种化学品。太赫兹激光有可能用于非破坏性、非侵入性筛查和检测爆炸物,非法药物,检测药物化合物,筛查皮肤癌。  为了真正有用,激光必须以非常精确的波长发射,这通常通过单模激光器中的“分布式反馈”来完成。太赫兹激光器必须是单模的。随着太赫兹辐射的传播,其中一部分会被大气湿度吸收,这是非常不利的。因此,一个用于光学传感和分析的太赫兹激光,不管距离多远,即使几米,也必须避免这个问题。现在,Kumar的团队一直致力于通过提高光功率输出来提高强度和亮度。  他们研究了“表面发射”(而不是“边缘发射”)的单模激光器。已经找到了一种将周期性引入激光器光学腔的方法,使其能够从根本上辐射高质量的光束并提高辐射效率。该团队将这种方法称为“混合二阶和四阶布拉格光栅”。他们建议,他们的混合光栅不一定限于太赫兹激光器,而是可以用于增强几乎任何表面发射半导体激光器。  该团队报告了单模太赫兹激光器的功率输出为170毫瓦的实验结果。这是迄今为止这种激光器中功能最强大的。因此他们证明,它们的混合光栅可以通过简单地改变激光腔内压印光栅的周期来精确控制发射波长。库马尔表示,1000毫瓦的设备应该很快成为可能,这可能会吸引制造商的眼球。  原文请查阅:  Power up: New lasers for spectroscopy  SpectroscopyNOW.com  Channels: Atomic  Published: May 15, 2018 符斌供稿
  • 400um光纤耦合千瓦半导体激光器
    成果名称400um光纤耦合千瓦半导体激光器单位名称北京工业大学联系人李强联系邮箱ncltlq@bjut.edu.cn成果成熟度□研发阶段 &radic 已有样机 □通过小试 □通过中试 □可以量产合作方式&radic 技术转让 &radic 技术入股 &radic 合作开发 □其他成果简介:  400&mu m光纤耦合千瓦半导体激光头实物图 400&mu m光纤耦合千瓦半导体激光器整机实物图本项目研发的光纤耦合半导体激光器光纤耦合输出功率大于1000W,光束质量好,耦合光纤芯径400&mu m,光纤耦合效率大于96%,总的电光效率42.99%。样机集成激光模块、电源、冷却、控制等为一体,通过触摸屏实现激光器开关、输出功率设置、状态监测显示。激光器可以放置于机柜上方,也可以与机柜分离放置,适应科研应用及工业加工配合机床或者机械手的应用需求。产品化样机配备了用于激光焊接、激光熔覆的加工头,已进行了不锈钢等材料的激光焊接、激光熔覆加工应用。本项目研发的高光束质量光纤耦合输出半导体激光器,采用标准的半导体阵列(10mm bar),避免采用特殊的半导体激光器所带来的器件成本增加;采用微光学元件对半导体阵列的发光单元重构、变换,单阵列输出功率高,组合阵列数减少,装配工艺相对简单,降低了制作成本;耦合传输光纤采用高功率石英传输光纤,提高激光器的传输效率和可靠性,满足推广应用的要求。本项目创新点是采用标准的半导体阵列(10mm bar),通过微光学元件将阵列发光单元重构、变换的新方法,极大提高阵列的光束质量。本项目所研制的400&mu m光纤耦合千瓦激光器中,所使用的每一个半导体阵列都采用了该技术提高了光束质量,使得每个空间合束模块能够获得高功率、高光束质量的激光输出。该项技术不仅可以应用于半导体激光器的直接应用,而且在用于泵浦源应用时,可以提高泵浦激光的功率密度,可以为提高输出激光的功率和光束质量。可以预期的是,利用该项技术,在现有的400&mu m光纤耦合千瓦激光器的技术基础上,通过合束更多的激光波长,获得2000W,甚至更高的激光输出功率,为工业应用提供更高功率的激光源。而且该项技术应用于泵浦固体激光器、光纤激光器等方面,提高了泵浦光的功率密度,也为实现高性能的固体激光器、光纤激光器等提供更好的技术支持。应用前景:输出激光光强分布图半导体激光器与其他传统的材料加工用大功率激光器如 CO2 激光器、YAG 激光器相比,具有体积小巧,结构紧凑,是灯泵 Nd:YAG 激光器的1/3,光电转化效率高,节省能源,无污染,系统稳定性高,寿命长,维护费用低的特点。目前大功率光纤耦合半导体激光器用于激光熔覆、激光焊接在中国处于启动阶段,国产光纤耦合半导体激光器,只能将标准半导体阵列激光耦合入大芯径光纤(芯径600&mu m以上光纤),由于激光亮度低,只能用于金属材料的激光熔覆。而本项目研制的400um光纤耦合千瓦半导体激光器,由于光束质量好,可直接用于激光熔覆、激光焊接、切割等领域,代替国外产品。本项目开发的千瓦级光纤耦合半导体激光器除了具有国内外的半导体激光亮度的基础指标外,还具有其它优点:1. 自主开发,具有完全的自主知识产权;2.采用标准半导体阵列,使整体原材料成本降低20%-25%;3.空间合束组合模块后,进行偏振、波长合束的方法组合,使产业化中方便进行模块化工艺设计,适于大批量生产;4.采用微光学元件对光束进行整形,使装配难度及后端光纤耦合难度降低,从而降低生产成本;可附加多种功能,如指示光、光电探测器等,更灵活适应用于各种行业;5.多个半导体阵列模块可灵活组合,可方便为用户提供多种解决方案。知识产权及项目获奖情况:本项目开发的千瓦级光纤耦合半导体激光器受到北京市科学技术委员会首都科技条件平台资助,是自主开发产品,具有完全的自主知识产权。专利情况:(1)大功率固体激光高效率光纤耦合方法,专利号:CN101122659A(2)激光二极管电极连接装置,专利号:CN100527532C
  • 美利用超材料制成高定向太赫兹激光器
    美国哈佛大学和英国利兹大学的一个联合研究小组最近演示了一种新型太赫兹半导体激光器,其发射的太赫兹光波准直性能与传统太赫兹光源相比显著改善。该激光器的研发成功,为太赫兹科技的应用打开了更广阔的领域。哈佛已经为此提交了一系列专利申请。这一进展发布在8月8日的《自然材料》杂志上。  新型太赫兹激光器突破了传统材料的限制,研究人员刻了一组亚波长光栅,直接加倍了超材料晶面的光流量,设备以3太赫兹(百亿赫兹)的频率发射光线(波长为100微米,在可见光谱中属于远红外线),大大降低了这些半导体激光器的散射角度,同时保持了光能的高输出功率。  这种超材料被直接嵌入光学设备的高吸收性砷化镓晶面上,在演示中能看到,人造光显示出深浅不同的微米光栅,各具不同的功能。浅蓝色的狭缝能将输出的激光功率加倍,导向并限定在晶体表面。  太赫兹射线(T—rays)能穿透纸张、衣物、塑料和其他一些材料,在探测隐匿武器和生物制剂方面非常理想,在做肿瘤成像检测时对人体无伤害和副作用,还能探测材料内部诸如断裂之类的缺陷,也可用于星际稀薄化学物质的高灵敏探测。  研究人员卡帕索表示,新的人造光学设备,从晶面上发出的激光器非常紧密,瞄准度非常高,高度凝聚使光能有效聚集,这是昂贵且笨重的传统透镜达不到的。  另一位研究人员林菲尔德说,新的太赫兹激光器还能用于海关探测非法药品,并能检验生产和存储的药物是否合格。这种超材料还能用作一种演示的工具,同时还具有一些神奇的潜在功能,如用来研发隐身斗篷、负折射和高解析图像。  研究的另一项重要意义就是这种超材料的光导作用。该设备产生的极强太赫兹光线,以直线光束导向激光晶面,这种超强的限定导向作用,还可应用于传感器和太赫兹光路。
  • “万瓦级半导体激光器综合测试系统研制”通过测试验收
    近日,中国科学院空天信息创新研究院牵头承担的中科院科研仪器设备研制项目“万瓦级半导体激光器综合测试系统研制”通过测试验收。 会上,介绍了空天院承研中科院条件保障与财务局科研仪器设备研制的总体情况及该项目的基本情况。项目负责人、空天院正高级工程师麻云凤汇报了项目总体情况,并与与会专家讨论交流。验收专家组现场考核仪器设备总体研制情况并现场测试,肯定了研制核心器件积分球的技术水平,一致同意通过测试验收。“万瓦级半导体激光器综合测试系统研制”项目瞄准我国半导体激光器、光纤激光器等高功率激光综合测试需求,解决激光功率、光谱、发散角等核心参数的综合测试难题,开发可承载万瓦级激光功率的1.2米口径积分球、发散角测试仪,并集成高功率多参数测试功能。项目组通过两年的技术攻关,掌握了各类积分球涂层制备核心技术,申请了6项发明专利,转化了若干小型积分球产品。可承载万瓦级激光功率1.2米直径积分球
  • 上海光机所在孤子锁模光纤激光器研究方面取得进展
    近期,中国科学院上海光学精密机械研究所强场激光物理国家重点实验室与激光技术新体系融合创新中心在孤子锁模光纤激光器研究方面取得进展。研究团队报道了锁模光纤激光器中色散波辐射的物理机制及其时域表征。相关研究成果以“Characterization and Manipulation of Temporal Structures of Dispersive Waves in a Soliton Fiber Laser”为题发表于IEEE光学期刊《光波技术杂志》(Journal of Lightwave Technology)。孤子激光器中的色散波在频域上以凯利边带(Kelly sideband)的形式与孤子一同产生,由S. M. Kelly在1992年首次发现并解释,由孤子脉冲在锁模激光器内的周期性放大和衰减所产生,体现在孤子光谱上为一系列关于中心波长对称分布的光谱边带,是与孤子稳定性密切相关的光波成分。在锁模激光器中,凯利边带的产生是限制孤子脉冲能量的重要因素,往往需要通过一些技术方法加以压制;同时,色散波也可以成为孤子之间长距离相互作用的媒介,影响孤子序列的稳定性。之前绝大多数对于孤子激光器中色散波的实验研究集中在对于其频域特性(即凯利边带)的研究,而对色散波时域结构的研究却十分缺乏,不同激光器参数条件对色散波时域结构的影响尚无完整的理论与实验研究。针对这一问题,研究团队建立了孤子光纤激光器中色散波时域结构的动力学模型,用以分析两个重要因素:一是腔内群速度延迟导致的相位匹配关系变化,二是腔内的增益滤波效应;从而推导出了具有双边指数衰减形式的色散波包络形态。在实验上,团队搭建了单向环形锁模光纤激光器,并通过调节腔内色散(改变腔长 30~110 m)以及腔损耗(0~7 dB),在一定程度上实现了对色散波时频波形的调控与测量。实验结果与理论模型的预测一致。此外,团队也研究了色散波和孤子的响应时间延迟,色散波结构的对称性等色散波特征。这项研究可加深对孤子光纤激光器动力学过程的理解,也为超快光纤激光、光孤子信息处理等应用技术发展提供了一定的参考。相关工作得到了张江实验室建设与运行项目、2021年度博士后创新人才支持计划、中国博后科学基金、上海市2021年度“科技创新行动计划”原创探索项目、国家青年高层次人才项目的支持。图1 色散波产生原理图2 腔色散对色散波衰减速率影响图3 腔损耗对色散波衰减速率影响
  • 滨松成功研发只有桌子尺寸大小的高功率、高重复频率激光器
    滨松光子学株式会社(静冈县滨松市,董事长:昼马 明 ,以下简称“滨松光子学(株)”)将传统泵浦用半导体激光器的功率提高了三倍,并优化了放大器的设计 ,成功开发了只有桌面尺寸大小,可以产生1焦耳(以下,j)的高能量、300赫兹(以下,hz)高重复频率的功率激光器。一般的激光器的输出功率与设备的尺寸、重复频率成正相关关系,而该课题实现了小型却高功率、高重复频率的激光器。本产品的诞生,通过去除细小的污垢的激光清洁来提高了传统加工的生产效率,同时,期待它在金属材料的激光成形、延长金属器件的使用寿命的激光喷丸等方面的新应用。该产品的开发是内阁办公室主导的综合科学技术与创新研发推进项目(impact)的一部分,是佐野雄二负责的“普及功率激光器以实现安全、安心、长寿社会”研发项目的一环,由滨松光子学(株)中央研究所产业开发研究中心副所长川嶋利幸等人开发,而且今后我们也将继续推进研究成果的产品化。此外,该新研发的产品将于11月1日(星期四)起连续3天在actcity滨松(滨松市中町区)举行的滨松光子综合展“2018photon fair”上展出。<关于功率激光器>功率激光器主要由振荡器和放大器组成。 振荡器由泵浦用半导体激光器、激光介质、全反射镜、输出镜和光开关组成,放大器由泵浦用半导体激光器和激光介质组成。 由振荡器发出的激光通过放大器时,从三种高能量状态(激发状态)的三段激光介质接收能量实现高功率输出。功率激光器的结构<新产品概述>该产品搭载了最新研发的泵浦用半导体激光器,虽然只有桌子尺寸大小,但却是可以产生1j的高脉冲能量且300hz的高重复频率的功率激光器。滨松光子学(株)已经开始制造并销售300hz的重复频率下输出功率为100w的泵浦用半导体激光器。此次,结合公司独有的晶体生长技术和镀膜技术,将传统泵浦用半导体激光的功率提高到世界最高水平300w,同时放大器在激光介质的长度和横截面积上下功夫,并采用具有提高冷却效率的放大器,解决了由于热问题导致激光介质损坏或破坏的问题,成功输出了传统放大器的3倍能量。这是因为放大器采用了新的散热设计,提高了激光的放大效率。此外,由于采用半导体激光器作为泵浦光源,具有高于市面上销售的氙灯泵浦脉冲激光器约10倍的光电转换效率,约100倍的泵浦光源的寿命。通过控制零部件的数量,成功实现了器件的稳定输出、小型以及低成本。一般激光器的功率与设备的尺寸、重复频率成正相关关系,但本产品却实现了小型而又高功率和高重复频率的特性。利用该产品,可以对附着于材料上的小污垢进行激光清洁,以提高传统加工的生产效率。此外,我们也期待脉冲激光器在工业领域的新应用,如飞机的金属材料等可以在不使用模具的情况下进行变形加工完成激光成形,以及通过激光喷丸来提高金属器件的使用寿命等。<研发背景>激光在金属材料的钻孔、焊接、切割等方面有着广泛地加工用途,为了提高生产效率,光纤激光器和co2激光器等各种各样的激光都在朝着高功率的方向发展。激光分连续输出一定强度激光的cw(continuous wave)激光和短时间内重复输出激光的脉冲激光,目前cw激光是激光加工领域的主流。另一方面,脉冲激光不同于cw激光,它正在朝着新型激光加工的应用方向发展。采用半导体激光器作为泵浦光源的功率激光器,它具有高功率、高重复频率的特性,但因为半导体激光器价格昂贵很难推向产品的实用化,而市场上销售的j级脉冲激光器上使用的泵浦光源多采用氙灯光源,对激光器内部有严重地热影响,因此重复频率只能限制在10hz左右。像这样,为了进一步提高生产效率,同时扩大用途,对小型且可以发出高功率、高重复频率脉冲激光的激光器的需求日益增加。主要规格<委托研究信息>此研究成果,是通过以下的科研课题项目得到的。内阁办公室创新研发推进项目(impact)项目负责人:佐野雄二研发项目:普及功率激光器以实现安全、安心、长寿社会研发课题:开发高功率小型功率激光器研究负责人:川鸠利幸(滨松光子学株式会社 中研研究所 产业开发研究中心 中心副主任)研发时间:2015年~2018年本研究开发课题是致力于开发桌子大小、高功率、高重复且稳定性高的脉冲输出的功率激光器。<项目负责人佐野熊二的评论>“普及功率激光器以实现安全、安心和长寿的社会”的impact计划,推动了大功率脉冲激光器的小型化、简化和高性能的发展,这对于探索最先进的科学和工业是不可缺的,同时,我们也正在推进相关基础技术和应用技术的开发,旨在提供可以随时随地使用,具有高稳定性的廉价激光器,向工业领域的创新努力。此次,滨松光子学(株)的开发团队采用了自有的先进半导体激光器作为泵浦高能脉冲激光器的光源,通过优化激光器件,以低价格实现前所未有的小型、高功率、高重复的激光设备。从限制成本和生产效率的角度来看,在我们之前放弃引入激光设备的领域,也期待会有更多的应用。功率激光器设备的结构 功率激光器设备外观
  • Advanced Materials | 理化所在蓝相液晶超200℃宽温域激光器方面取得新进展
    蓝相液晶(BPLCs)以其独特的周期结构、多刺激响应及实时可重构性等特点而具有优异的光学性能,在传感、显示及防伪等方面有着巨大的应用前景。蓝相液晶由于其带隙窄,光学性能优异可用于低阈值激光器。目前蓝相液晶激光器的研究主要聚焦在外界刺激下(如光、电、热、力等)激光波长的可调节性,而对蓝相激光器工作温度的研究尚且不足。由于BPLCs窄的温度窗口,其相应激光器的工作温域大概在3-4℃。聚合物稳定蓝相(PSBP)体系的采用已经极大拓宽了蓝相液晶的温度窗口至500度,但目前所报道的蓝相激光器的最宽工作温域不超过36 ℃。“蓝相液晶温域”与“蓝相激光工作温域”的大差异可能与所用聚合物稳定蓝相体系不合适的聚合程度(通常大部分体系可聚合液晶组分 10 wt%)有关,导致其差的结构稳定性;而对BPLCs带隙与荧光信号之间匹配性的不充分理解也限制了新颖蓝相宽温域激光器的发展。 为解决上述问题,中科院理化所仿生材料与界面科学中心江雷院士、王京霞研究员团队在前期工作中制备得到了具有宽温域(-190℃~360℃)的聚合物稳定蓝相液晶 (Nat. Commun. 2021, 12 (1), 3477.);通过调节所制备的蓝相液晶带隙中心、染料有序度参数、谐振腔质量以及泵浦光能量,在染料掺杂蓝相液晶(C6-BPLCs)谐振腔中实现了可控的单模、双模、三模及四模面发射激光(Adv. Mater. 2022, 34 (9), 2108330.);并且利用所制备的蓝相液晶为模板,制备得到了高分辨的多色彩蓝相液晶活图案(Adv. Funct. Mater. 2022, 32 (15), 2110985.)。 近日,该研究团队通过调控所制备聚合物稳定蓝相液晶的可聚合液晶单体含量(30 wt% C6M),形成了稳定的蓝相聚合物支架,将该聚合物稳定蓝相体系掺杂染料(DD-PSBPLCs)后,获得宽工作温域的蓝相液晶激光器(25-230 ℃)。该研究表明,宽的BP激光温域源于所用稳定的聚合支架体系,在整个激光温域范围内提供了稳定的反射信号和荧光信号,且在整个过程中始终保持了反射带隙与荧光信号的匹配性;而体系中的非聚合组分在温度变化过程中产生相变,使得组成的多组分性(25.0-67.5 ℃:蓝相与微量胆甾共存;67.5-72.2 ℃:蓝相体系;72.2-230. 0 ℃:蓝相与微量各向同性共存)又赋予了该蓝相激光器可重构的性能,实现了激光阈值随温度呈现U型变化、可逆的激光波长及在相变点(约70 ℃)明显的激光增强效应。此外,该工作还对比了单畴蓝相与多畴蓝相激光器的工作温域,原位表征了变温过程中反射信号、荧光信号、量子效率、荧光寿命、POM及Kossel结构的变化,对其宽温域激光发射做出了合理的解释。这项工作不仅为宽温域蓝相激光器的设计提供了新思路,而且在创新性微观结构变化方面为新型多功能有机光学器件提出了重要见解。 相关研究结果以Over 200 ℃ Broad Temperature Lasers Reconstructed from Blue Phase Polymer Scaffold为题发表在Advanced Materials上。 该文章通讯作者为中科院理化所王京霞研究员和金峰副研究员。中科院理化所博士生陈雨洁和郑成林为文章共同第一作者。工作中相关蓝相液晶晶格结构的表征是由上海高能所李秀宏研究员协助完成,中科院理化所江雷院士为本研究提供了专业指导和帮助。 该研究得到了中华人民共和国科学技术部、国家自然科学基金和中国科学院荷兰研究项目的支持。 图1.含30 wt%可聚合液晶单体DD-PSBPLCs的光学表征。(A)所制备单畴样品在宽激光温域范围微结构的变化图示;(A1)相应的单畴样品光学照片。聚合后单畴DD-PSBPLCs (110)晶面的(B)TEM图,(C)Kossel图及(D)Syn-SAXS图。样品在25-230 ℃的(E)反射光谱,(F)荧光光谱,(G)染料的光致发光衰减曲线及(H)染料不同温度下的发射激光。(I)本工作与文献中蓝相液晶激光器工作温域的比较。 图2.DD-PSBPLCs宽的激光温域及在不同温度下的光学表征。(A,B,C,E)单畴样品,25-230 ℃;(D)多畴样品;25-160 ℃。(A)发射光谱,泵浦能量:1.00 μJ/pulse, 插图:POM 照片。(B)荧光光谱。(C)不同温度下,反射光谱与荧光光谱的相对位置关系。(D)发射光谱,泵浦能量:1.20 μJ/pulse, 插图:POM 照片。(E)R-POM图。DD-PSBPLCs 宽的激光温域源于稳定的聚合物支架体系,在宽的温度范围内提供了稳定的反射带隙及荧光信号。 图3.升降温过程中DD-PSBPLCs的激光阈值及相转化。(A,D,E)单畴样品,温域:25 - 230 °C,(B,F)多畴样品,温域:25 - 160 °C,升降温速率:12 °C/min。(A)单畴样品和(B)多畴样品不同温度下的激光阈值。(C)单畴样品的DSC测试,插图:放大图,氮气氛围下,10 °C/min。(D)单畴样品原位升降温过程中带隙(插图:反射强度)与温度的关系。(E,F)原位降温过程中样品的T-POM图,红色圈:放大图。单/多畴样品均在65 ℃析出,表明未聚合物组分的相变是影响DD-PSBPLCs激光性能的主要原因之一。 图4. DD-PSBPLCs温度变化过程中激光行为可能的解释及原位可逆的激光行为。(A)DD-PSBPLCs激光行为的机理图示,(A1)大部分的BPI晶格牢牢的被聚合物网络锁住且规则分布,除少量未被聚合物网络稳定的胆甾相(Ch相);(A2)在相变前(约70 ℃)体系略微膨胀,且Ch相在达到相变点时消失,转化为BP相;(A3)温度进一步升高,超过相变点(72.5 ℃)时,BPI晶格中的一些LC分子就会跑出来,并以各向同性相(ISO)存在,导致BPI晶格的连续收缩。(B)-(E)单畴DD-PSBPLCs在30-100 ℃过程中原位可逆的激光性能及增强效应。(B)加热过程;(C)冷却过程;(D)激光波长或(E)发射强度与温度的关系,激发功率:1.17 μJ/pulse,升降温速率: 12 °C/min, ΔT=10 °C。(F)x,y,z三个正交方向的发射光谱。(G)单畴样品右/左圆偏振(R/LCP)激射光谱测试。 图5.单畴DD-PSBPLCs加热过程中的原位Kossel表征。(A)原位Kossel图(A1)及其相应的图示(A2),加热速率:12 ℃/min。(B)BPI晶格尺寸及Kossel随温度变化的图示,其中R表示Kossel图中(110)晶面中心圆的半径,红色虚线圆圈表示视野范围。(C)原位升温过程中R及反射中心波长(λ)与温度(T)的关系,实线表示拟合的直线。  原文链接 https://onlinelibrary.wiley.com/doi/10.1002/adma.202206580
  • 应用案例 | 基于4.5 μm量子级联激光器的开放光路 N2O气体检测系统研究
    近日,来自山东师范大学的研究团队发表了《基于4.5 μm量子级联激光器的开放光路N2O气体检测系统研究》的研究成果。项目背景温室气体(Greenhouse Gas,GHG)的温室效应引发全球变暖和气候变化,这使得全球生态环境面临着很大的威胁。一氧化二氮(N2O)是全球六大GHG之一,相较于人们熟知的二氧化碳(CO2),N2O含量相对较低,但其全球变暖潜能值(Global Warming Potential, GWP)却是CO2的310倍左右,此外,它对臭氧(O3)也有一定的破坏作用。因此,有效探测大气中的N2O含量及其浓度变化趋势是至关重要的。N2O气体分子的吸收谱带主要集中在中红外区域,需要选用中红外光源对N2O气体进行探测。近年来,随着波长可调谐、可室温工作的量子级联激光器(Quantum Cascade Laser, QCL)的研发技术日益成熟,将其与激光吸收光谱技术相结合,可以实现对气体的高分辨率、高灵敏度探测,被广泛应用于气体遥感探测领域。目前,结合激光吸收光谱技术及紧凑型多通道气室(MGC),可实现对气体分子的快速响应,并达到较低的检测限,但系统为封闭式光学路径,限制了在户外环境中持续检测的便携性、实际适用性和空间覆盖范围。因此,开放式光学路径的设计,对于户外大范围环境中气体浓度的实时检测是十分必要的。系统搭建宁波海尔欣光电科技有限公司为该项目提供了HPQCL-Q&trade 标准量子级联激光发射头、QC750-Touch&trade 量子级联激光屏显驱动器、HPPD-M-B 前置放大制冷一体型碲镉汞(MCT)光电探测器。HPQCL-Q&trade 标准量子级联激光发射头其波数的可调谐范围是 2203.7 cm-1~2204.1 cm-1,最大输出光功率可达 50 mW。 为了充分发挥 QCL 的波长可调谐特性,结合激光器驱动,对 QCL 的工作温度以及电流进行设置,进而得到系统中所需要的激光器发射中心波长。QC750-Touch&trade 量子级联激光屏显驱动器结合触摸屏的显示功能,极大的方便了用户进行操作。 通过激光驱动器对注入激光器的电流进行更改,分析发射波数与驱动电流的相关性,调节驱动电流大小,分析在300 mA至360 mA的电流变化范围内,激光器波数随驱动电流变化的响应曲线。可以得到,随着电流逐渐增大,激光器的波数是逐渐减小的,对应的输出波长是逐渐增大的,其响应曲线可以表示为:y = -0.0271x + 2212.972。 同理,对激光器发射波数与温度的相关性进行分析,对温度进行调节,使激光器在30 °C至45 °C之间工作,分析激光器中心波数随温度变化的响应曲线。可以得到,随着温度逐渐升高,激光器的波数是逐渐减小的,对应的输出波长是逐渐增大的,其响应曲线可以表示为:y = -0.1716x + 2210.216。 综上所述,根据所选用的N2O吸收谱线波数为2203.7333cm-1,因此,所对应的QCL 中心电流和工作温度应分别设置为330 mA和36.0 °C。 HPPD-M-B 前置放大制冷一体型碲镉汞(MCT)光电探测器的感光面积为1×1 mm2,探测范围较为广泛,可达到 2μm-14μm,完全满足本系统探测的需求。由于探测器接收到的回波信号较为微弱,在对数据进行处理前,需要对信号进行放大,而该型号的探测器内部设计有前置放大器,以便后续可直接进行谐波解调和浓度反演等数据处理,同时也对系统的设计进行了简化。结论与创新点:使用该检测系统对大气中 N2O 浓度进行实时检测是可行的。(1) 选用QCL作为发射光源。QCL 具有波长调谐范围广、输出功率较高、并且可以在室温条件下工作的卓越性能。选取最优谱线位置为 2203.73 cm-1,能有效避免其他气体的干扰,实现对N2O气体分子的高灵敏度检测。(2) 为了避免MGC在远程或户外的大范围环境检测研究中的限制性,选用离轴抛物面反射镜和角反射镜,搭建了开放式光学路径的N2O气体检测系统。将大部分光学元件安装在一个光学平台上,实现了系统的紧凑、便携特性,并满足开放式、大范围环境监测的需求。(3) 经验证,当积分时间为1s时,N2O检测限为1.1 ppb,当积分时间延长至95 s时,系统达到最低检测限为0.14 ppb。结合实验结果,表征了系统的高精确度、高灵敏度、低检测限的性能,并且完全满足对大气环境中N2O浓度测量的标准。参考文献:张玉容,赵曰峰《基于4.5 μm量子级联激光器的开放光路 N2O气体检测系统研究》
  • 显微FTIR光谱仪助力嫦娥五号月壤样品研究
    嫦娥五号任务成功从月球正面返回了1.73 kg表面与钻取样品,其采样区域比以往的Apollo及Luna任务的采样区域都要年轻。目前已经报道的样品分析结果表明,着陆区的物质组成是比较复杂的,因此对大尺度遥感探测数据的解译要格外慎重。准确的物质组成信息对行星地质演化历史的解译十分关键,而遥测光谱技术是目前获取这些信息最有效的手段之一。可见-近红外或中红外波段的一些独特的吸收特征可以用来识别行星表面矿物组成。其中可见-近红外光谱的吸收特征主要是由矿物中过渡性金属离子(Fe2+)如外层电子跃迁产生,而中红外光谱中的吸收则主要是由矿物晶体晶格振动(如硅酸盐矿物中Si-O的伸缩振动等)产生。在中红外谱段,光谱特征更为丰富,可以对可见-近红外光谱无法区分的物质类型进行有效判别。由于月球等地外样品比较珍贵,以往的行星光谱学研究大多是基于地球矿物或模拟物开展的,科学家通过在地面实验室开展控制性实验测量,分析不同类型物质的光谱特征变化规律,然后应用到行星遥测数据的反演分析中。地球上的模拟物虽然丰富,但是真实月壤的很多性质依然无法完美复制。尤其是发生于月表的太空风化作用,会对月表物质的光学特性产生显著影响。嫦娥五号采样任务的成功为利用真实月壤样品开展光谱分析提供了重要机遇。中国科学院国家空间科学中心太阳活动与空间天气重点实验室副研究员杨亚洲、研究员刘洋等从嫦娥五号返回的表层月壤样品中挑选出了一些粒径在200-500 μm之间的颗粒,其中包含了典型的月球矿物(橄榄石、辉石、斜长石)与玻璃球粒等(图1),并利用显微FTIR光谱仪测量了这些颗粒的中红外反射光谱。在中红外光谱中,Christiansen特征(CF)、剩余射线带(RB)、透明特征(TF)是硅酸盐矿物中最为显著的几个特征,借助这些特征可以对矿物的类型及具体成分进行判别。在反射光谱中,CF表现为反射率的最小值,硅酸盐矿物的主CF通常出现在7.5-9.0 μm波段范围内,主要与晶体中Si-O伸缩振动有关。月球主要矿物中,斜长石的CF峰位一般在波长较短位置(~8 μm),而橄榄石的CF峰位则出现在波长较长位置(~9 μm),辉石的CF峰位则在前两者之间。基于CF峰位与RB特征,以及显微镜下的矿物形貌特征,研究人员对挑选出的月壤颗粒类型进行初步判别(图2),然后对不同矿物与玻璃端元的显微红外光谱特征进行对比分析。图1(a)立体显微镜下月壤颗粒影像;(b)显微红外光谱仪获取的影像拼接图;(c)典型月壤矿物与玻璃颗粒影像放大图。图2 所测颗粒样品的CF峰位分布图通过与Apollo返样及月球陨石中不同矿物及玻璃端元的红外光谱进行对比(图3a),研究人员发现与常规FTIR测量相比,利用显微FTIR技术测量的红外反射光谱中没有透明特征(TF)。这主要是因为显微FTIR通常测的是单个颗粒,所测反射信号中没有颗粒之间的多重散射的贡献。但是CF峰位等特征不会受到这两种不同测量技术的影响。对于用常规FTIR方式测量的粉末样品光谱,其近红外波段的反射率通常要比中红外波段高很多,但是随着样品尺寸的增加,两个谱段之间的差异逐渐变小(图3a)。除了颗粒尺寸外,太空风化作用也会降低近红外与中红外谱段的光谱对比度,因为风化作用会使近红外谱段的反射率显著降低,但是对中红外谱段的影响很有限,这主要是因为两个谱段的光谱吸收特征的产生机制完全不同。月表的太空风化作用机制主要有太阳风注入与微陨石撞击等,在人们以往的研究中曾利用脉冲激光照射的方式来模拟微陨石撞击过程,以制备具有不同风化程度的模拟样品。通过对比嫦娥五号橄榄石颗粒与经过不同程度脉冲激光照射的地球橄榄石样品的光谱(图3b),可以看到,随着风化程度的增加,橄榄石近红外波段与中红外波段的反射率差异逐渐减小。在后续研究中,若能对更多具有不同风化程度的月壤矿物颗粒样品进行显微红外光谱分析,则有可能构建一个近红外-中红外光谱对比度与风化成熟度的关系模型,从而应用到更多样品的分析上。橄榄石是岩浆冷却过程中结晶最早的矿物之一,其晶体中Mg与Fe的相对含量(Fo,镁值)对于指示原始岩浆的成分具有重要意义。橄榄石RB特征中的几个反射峰的峰位会随着镁值的变化而发生系统的偏移。基于嫦娥五号橄榄石显微光谱中的RB峰位,研究人员反演得到了这些橄榄石的镁值,结果与先前报道的实验室测量结果相一致(图3d),表明该方法虽然是基于常规FTIR测量的红外光谱建立的,但是在显微红外光谱分析中也是可行的。除了矿物颗粒外,月壤中通常还含有丰富的玻璃质物质,这些玻璃物质主要有撞击与火山活动两种成因。该研究分析结果表明,这些玻璃大多属于月海撞击成因玻璃,但有少数可能具备火山成因。图3 (a)CE-5橄榄石颗粒显微红外光谱与Apollo返样中橄榄石粉末样品红外光谱对比图;(b)CE-5橄榄石颗粒与经过不同脉冲激光照射的地球橄榄石样品的光谱对比;(c)利用5.6-μm与6.0-μm波段峰位反演的橄榄石样品Fo值结果;(d)利用RB波段发峰位反演橄榄石Fo值结果。在行星光谱学研究中一直存在一个难题,就是实验室测量的光谱与遥测光谱之间往往存在较大差异,因为即使有了月壤样品,在实验室内也无法完全复制月表原始的堆积状态。因此实验室测量光谱往往无法直接应用于遥测数据的解译上,尤其是显微光谱分析结果。而通过反演光学常数(或折射率)的方式,可以将实验室测量结果与遥测分析很好的衔接起来。光学常数是光谱模型的重要输入量,有了不同矿物端元的光学常数,再结合给定的颗粒尺寸、孔隙度及各端元的含量等参数,就可以生成模型光谱。利用该模型对实际遥测月表光谱进行拟合,就可以实现对观测区域矿物组成的定量反演。目前的光学常数库中,基于真实地外样品的光学常数还比较匮乏。虽然地球上的矿物种类非常丰富,但是与地外样品相比,即使是同种类的矿物,其在具体成分上也存在一定差别。比如地球上的橄榄石大多Mg含量比较高,而月球上的橄榄石通常Mg含量比较低。因此,尽可能的扩充基于真实地外样品分析得到的光学常数库是很有必要的。该研究中,研究人员基于显微红外反射光谱,对挑选出的一些典型橄榄石、斜长石、辉石及玻璃端元的光学常数进行了反演(图4),这些结果将对现有的或将来的月球及其他小行星的光谱分析产生很大帮助。图4 基于反射光谱反演得到的典型矿物与玻璃端元的光学常数论文链接:https://doi.org/10.1029/2022JE007453
  • 美制成首个活细胞激光器
    据美国物理学家组织网6月13日(北京时间)报道,美国马萨诸塞州综合医院研究人员成功利用表达了绿色荧光蛋白(GFP)的肾脏细胞产生了一种纳秒级的激光脉冲,首次用单个活细胞作为增益介质产生了激光。相关论文将于近日发表在《自然光子学》杂志上。  产生激光通常要有3个要素,第一是光源,第二是受激产生激光的“增益介质”,第三是将所产生的光聚拢到一起的“光学共振腔”。哈佛医学院皮肤病学副教授、论文作者尹淑贤(韩国名)博士说,激光发明50年来,通常都是用合成材料如晶体、染料、纯净气体作为光学增益介质,光脉冲在两面镜子间来回反射,在这些介质中被放大。而我们选择了能表达绿色荧光蛋白(GFP)的肾脏细胞作为增益介质。  GFP蛋白最初是在水母中发现,可在不添加其他酶的情况下诱导发光。研究人员给一个直径约20微米宽、1英寸(2.5厘米)长的圆筒两边装上镜子作为光学共振腔,共振腔内装满GFP水溶液,再向其中放入肾脏细胞。结果发现,肾脏细胞不仅能产生激光脉冲,而且能像透镜一样将光回聚并诱导激光发射。  更重要的是,该激光设备中的细胞在发光过程中仍然存活,能持续产生数百次激光脉冲。尽管单个激光脉冲比较微弱,仅持续几纳秒,但却很明亮,很容易探测到。  论文主要作者、马萨诸塞州综合医院马尔特加特说,这一成果源于好奇心。由于此前激光均由各种机械装置生成,他和同事就想,“为什么自然界中没有生物能制造激光”,产生了用细胞组织试试看的念头,结果显示这是有可能实现的。  对于这项成果的运用前景,研究人员提出了几种可能。首先,由于不同的细胞结构所产生的激光在光学性质上有差异,可以通过分析最后得到的光,来研究细胞和机体组织 第二,目前医学上有一种光动力疗法,可把对光敏感的药物送到要医治的机体部位,然后用光照来激发药效,如果在这种疗法中能用上“细胞激光器”,也许可以增进疗效。  但要在机体组织内产生激光,还要解决一个问题,即如何在机体组织内形成一个光学共振腔,而不是像本次研究那样利用外部的两面小镜子。“下一步,我们希望能在细胞里植入一种类似于镜盒的结构作为光学共振腔。而我们的长期目标是找到一种方法,将无生命的光通讯和计算机拓展到生物技术领域,这在一些涉及电子与生物组织转换界面的项目上尤其重要。”马尔特加特补充说。
  • 细胞激光器标记人体所有细胞
    激光拥有许多普通光不同的特征,使激光在许多领域被作为工具使用。但一般激光都需要复杂的技术和设备制造,让细胞发射出激光的想法似乎比较疯狂。科学家有时候看起来就是这么疯狂,最近有科学家真的制造出能发射激光的活细胞。这一新技术成为《自然》网站的最近头条新闻。科学家将含有荧光染料的油滴注射到单细胞内,用短脉冲光线激发细胞内染料产生激光。  这一新技术发表在7月27日《自然光子》杂志上,该技术不仅能开发为医学诊断的方法,也具有形成治疗疾病新技术的可能。  这一技术的设计者是Seok Hyun Yun和Matja? Humar,哈佛大学医学院的这两位光物理学家,利用油滴反射和放大光线使单细胞产生激光。Yun在2011年曾经报道过一种能产生激光的细胞,先利用基因工程技术让细胞表达荧光蛋白,然后将表达荧光蛋白的细胞放置于一对镜子中间,或者是细胞借助镜子的反射制造激光。最新这一技术更进一步,是让细胞自己独立产生激光。  在未来,这种“生物激光器”将能被进一步开发,植入活的动物体内,这能将大大提高显微镜扫描的精确度。将这种激光细胞植入身体内,可以制造出体内激光光源,帮助科学家观察组织结构和诊断疾病。  生物技术常用的荧光探针包括荧光染料和荧光蛋白,这些荧光的特点是发射比较宽的波长。这一特点导致荧光探针无法同时使用许多类型。例如我们可以选择绿色、红色和蓝色的荧光,其实同样是红色,其波长有非常多的类型。因为每个探针都是多种波长组成的混合光线,因此我们只能选择很少几类荧光作为工具。例如我们比较常用的荧光免疫组织化学,你一次用三种颜色标记三种不同蛋白就非常不错了。  激光能解决这个尴尬的问题,因为激光的特点就是非常窄的波长,这样理论上,我们可以同时追踪非常大量不同的目标分子。而且也能大大提高检测的灵敏度。波士顿布里格姆妇女医院生物工程学家Jeffrey Karp对该技术大加赞赏,认为是解决了用一种技术同时示踪数千种目标分子的伟大发明。  最新报道的这一技术核心是将含有荧光的聚苯乙烯滴注射到细胞内,可通过改变聚苯乙烯滴直径获得不同发射波长的激光。理论上组合不同的聚苯乙烯滴和不同波长的染料,能用不同波长光线标记人体所有的细胞。
  • 我国光纤激光器实现新突破 优于国际同行
    中国科学院上海光学精密机械研究所先进激光技术与应用系统实验室李建郎研究员课题组“径向偏振光纤激光器”研究工作近日取得突破性进展。该研究组从掺镱光纤激光器中获得2.42瓦高效率、高偏振纯度和高轴对称性的径向偏振激光输出,创造了目前径向偏振光纤激光器研究的最高纪录。  径向偏振光束在离子捕获、生物光镊、高分辨率显微镜技术、电子加速以及高效率高精度金属材料加工等领域有着非常重要的应用,通过固体、气体激光器的输出来直接产生该种光束已经成为国际研究热点领域之一。2006年李建郎等人首次提出利用稀土掺杂的多模光纤作为增益介质来直接输出径向偏振激光的概念,并在掺镱光纤激光器实验中获得了近40毫瓦的径向偏振激光输出(Opt. Lett., 31, 2969, 2006 Opt. Lett., 32, 1360, 2007 Laser Phys. Lett., 4, 814 2007)。继该研究领域被开拓后,以色列魏兹曼研究所(Weizmann Institute of Science, Israel)、美国代顿大学(Dayton University, USA)等研究机构的科学家相继通过努力在掺铒光纤激光器中实现了140毫瓦(斜坡效率约为3%) 的径向偏振激光输出(Appl. Phys. Lett., 93, 191104, 2008 Appl. Phys. Lett., 95, 191111, 2009)。在这些前期研究中,由于寄生振荡等因素的干扰,激光器效率和功率很低,并且存在偏振纯度低以及光束轴对称性差等关键性缺陷,限制了径向偏振光纤激光器技术的进一步实用化。  该课题组李建郎、林迪等经过约一年时间的奋斗摸索,在实验中采用光纤耦合的976nm二极管激光器从端面泵浦1.8米长的多模掺镱双包层光纤。该增益光纤具有低V参量,仅支持光纤基模以及其邻阶模(其中包括TM01模,即径向偏振模)传输。同时增益光纤的一个端面被切成8o斜角以抑制光纤端面之间的寄生振荡。实验采用具有径向偏振选择性的光子晶体光栅镜做为激光器的输出耦合器。实验测得激光器阈值泵浦功率为0.9W,在最大泵浦功率7W 时输出功率达到2.42W,光—光效率为35%(对应的斜坡效率43.8%),激光器波长为1050nm。激光器输出圆环形光斑,且为径向偏振,偏振纯度为96%。  此结果目前已远优于其他国际同行的工作。该研究首次实验证明了径向偏振光纤激光器完全可以达到与同类的固体激光器相比拟的性能指标,从而基本消除了困扰径向偏振光纤激光器发展及应用的技术障碍。
  • 遇见“Prima”——德国PicoQuant全新推出多色激光器
    近日,在德国柏林最近的一次网络研讨会上,PicoQuant向大家展示了其最新的激光创新良心之作:独立的、全电脑控制的激光模块Prima。PicoQuant公司的产品经理Guillaume Delpont阐述了这款激光器的设计初衷:“许多科研人员在工作中都面临着同样的困难,那就是他们需要多个激发波长来研究他们的待测样品,而购买多个激光器又会变得非常昂贵。PicoQuant公司为了给科研人员面临的共同挑战提供解决方案,最终依托自身在激光开发方面长达25年的专业背景和研发实力,创造了Prima—— 一种经济实惠、紧凑的激光模块,可以发出红色、绿色和蓝色的脉冲激光。”Prima——三色皮秒脉冲激光器Prima是一款独立、紧凑、价格合理的激光模块,提供3个独立的发射波长,可以在皮秒脉冲和连续波(CW)模式下工作。皮秒脉冲可以由Prima模块的内部时钟触发,也支持高达200MHz的外部触发。该模块采用全电脑控制,操作非常简单:通过USB端口将Prima连接到PC端,所有操作参数的更改都可以通过一个方便的软件接口完成。 红、绿、蓝:三种最有用的波长Prima可以提供三种波长的激光:640nm、515nm和450 nm。每种颜色都可以单独输出,每次输出一个波长。 这三种颜色是材料科学、化学和生命科学中最常用的3种波长,广泛应用于光谱学或显微镜应用的常规激发,进行种类多样待测样品的研究,其中包括新型纳米材料、量子点、分子和荧光团。 Prima是一款几近完美的工具:当涉及到日常实验室任务时,能够满足您的大多数需求,如寿命或量子产率测量,光致发光和荧光测量等。 灵活多样的工作模式:脉冲、连续和快速开关模式在进行时间分辨或稳态测量的时候,无论您需要哪种类型的操作模式,Prima的灵活性都可以轻松实现。Prima同时也支持快速连续开关功能。脉冲模式支持内触发和外触发,内触发的重频率范围从100 Hz至200 MHz可调,外触发支持的重复频率范围从单次脉冲至200 MHz。 每个波长的平均输出功率高达5mW。在CW工作模式下,每个波长可以达到更高的平均输出功率(高达50 mW)。在CW工作模式下,进行ON和OFF状态切换的上升/下降时间小于3 ns。 恒定的重复频率可以通过内部触发来进行设置,Burst工作模式也可以由合适的外部触发源实现触发(例如,PicoQuant的Sepia PDL 828的振荡器模块)。您甚至可以将Prima与其他激光模块组合使用,从而实现更为复杂的激发模式,不仅包括Burst模式,还包括脉冲交替激发(PIE)或交替激光激发(ALEX)。 这使得Prima成为一个通用的工具,可以在许多环境中使用。 易于使用作为一个独立的激光模块,Prima不需要任何其他外部激光驱动对齐进行控制。其参数设置和操作通过一个基于成熟的Sepia的图形用户界面软件进行全电脑控制。
  • 上海光机所实现用于单周期艾瓦激光的超宽带脉冲压缩光栅
    近期,中国科学院上海光学精密机械研究所邵建达研究员、晋云霞研究员团队和张江实验室李朝阳研究员在超宽带脉冲压缩光栅领域取得突破性进展。研究团队针对单周期脉冲压缩需求,成功研制超400 nm宽带金光栅,其在750-1150 nm 的波长范围内衍射效率大于90%,比现役金光栅带宽提升近一倍,并且其研制口径可进一步推向米量级。相关成果以“400nm ultra-broadband gratings for near-single-cycle 100 Petawatt lasers”为题发表于《自然-通讯》。  拍瓦激光器的脉冲宽度从目前10-20个周期压缩到单周期(3.3 fs)结合大能量的载入被认为是实现艾瓦激光的未来。研究团队长期深耕于宽带高阈值脉冲压缩光栅领域。在本项工作进展中,超宽带金光栅的仿真设计取得突破,引入方位角扩展了设计和应用自由度 实验上掌握了光栅槽形演化规律,发明了大底宽小尖角金光栅技术(专利号:CN114879293B),成功研制1443 g/mm和1527 g/mm超400 nm宽带金光栅。如此宽带和高阈值(优于0.3J/cm2)的超宽带光栅将在宽角非共线光参量啁啾脉冲放大系统【WNOPCPA,Laser Photonics Rev 17, 2100705(2022). https://doi.org/10.1002/lpor.202100705】中发挥关键性作用,理论计算证明其足以支撑 4 fs 脉冲压缩,可将实现百拍瓦需要的光栅口径从米级缩减至半米级。  啁啾脉冲放大(CPA)及其衍生技术推动激光峰值功率从太瓦推向10PW量级,脉冲压缩器已成为高功率超强超短激光装置的核心模块。受限于大口径、宽光谱、高阈值压缩光栅的单路负载能力,中、欧、美、俄、韩等国均已部署多路相干合成100 PW乃至艾瓦量级的激光设施建设。除此外,单周期(3.3fs)脉冲也是产生艾瓦级激光的重要策略之一。近些年来,WNOPCPA等技术能够在工程上支撑增益介质的带宽拓展至 400 nm,从而支撑 3-6 fs的傅里叶变换极限脉冲。支持单周期脉冲展宽和压缩的超宽带光栅是实现单周期艾瓦激光的一个核心技术难题。目前,团队正将超宽带光栅的口径推向米级,并将其应用于单周期艾瓦激光的原理样机。  研究工作得到了国家重点研发计划、国家自然科学基金、科技部、上海市战略新兴产业项目的支持。
  • 国家重大科学仪器专项高功率窄线宽光纤激光器研发取得重要进展
    p  由山东海富光子科技股份有限公司牵头承担的国家重点研发计划重大科学仪器设备开发重点专项“高功率窄线宽光纤激光器”项目经过近两年的努力,突破了半导体增益芯片设计制备与高效封装耦合、玻璃光纤制备中新型热熔键合及高浓度均匀掺杂、窄线宽光纤激光放大器非线性效应抑制等关键技术,开发出高功率窄线宽光纤激光器样机。近日,项目通过了科技部高技术中心组织的中期检查。/pp  高功率窄线宽光纤激光器兼备高峰值功率及窄线宽特性,同时采用全光纤结构,是激光精密测量、激光测距和遥测等重大科学仪器的关键核心部件之一。目前国内高功率窄线宽光纤激光器主要依赖国外进口,国内还不能实现产品级整机供货。项目通过采用非对称光栅的脊波导和大光腔的锥形增益结构,优化光栅结构参数减少激光器的线宽值,开发出高可靠性窄线宽脉冲激光种子源 研究了高倍率低噪声光放大、窄线宽光纤激光器中的SBS抑制、SPM补偿和模式控制等关键技术,获得高功率窄线宽光纤激光输出 开发了可工程化应用的高功率窄线宽光纤激光器 开展了激光雷达遥感的应用示范研究和产业化推广。/pp  该项目下一步将加强仪器可靠性的整体设计,加快可靠性试验验证,提高产品稳定性 进一步加快应用示范的进度及工程化实施。/p
  • 10月1日起啤酒饮用水橄榄油“国标”实施
    从10月1日起,关于啤酒、饮用水、橄榄油的3条重要国家标准将实施,其中,《啤酒》国家标准和《饮用天然矿泉水》国家标准为代替原有国标的新国标,而《橄榄油、油橄榄果渣油》国家标准为酝酿多年首次实施。  酒精度小于0.5度为“无醇”  新《啤酒》国家标准由中国酿酒工业协会修订。  与原国标相比,新标准修改了干啤酒、冰啤酒、低醇啤酒、小麦啤酒、浑浊啤酒的定义,并增加了无醇啤酒和果蔬类啤酒的定义。新国标中无醇啤酒的定义为:酒精度小于等于0.5%vol(升),原麦汁浓度大于等于3.0°P(原麦汁浓度)的啤酒,又称脱醇啤酒。  资料显示,英、美等国也将“0.5%”作为无醇门槛。  专家提醒消费者,“无醇啤酒”依然是啤酒,也含有低浓度酒精。无论酒精度数多低,还是不要酒后驾驶。  溴酸盐限量0.01毫克  新《饮用天然矿泉水》国家标准最显著的特点是:取消菌落总数指标,新增溴酸盐指标限量。此外还规定,饮用天然矿泉水须在标志中标示水源点名称,除非经国家有关部门审批认可,否则不得标“医疗作用”。  新国标规定每L(升)饮用天然矿泉水中的溴酸盐含量须小于0.01mg(毫克)。同时,新国标还取消了在我国饮用水指标中居重要位置的“菌落总数”指标。在取消菌落总数指标的同时,新国标增加了3项微生物的指标限量,规定取样250毫升饮用天然矿泉水中,粪链球菌、铜绿假单胞菌和产气荚膜梭菌等 3项致病菌含量均为“0”。  果渣油不算橄榄油  橄榄油国标此番是首度实施,之前已酝酿多年。  《橄榄油、油橄榄果渣油》国家标准首次明确油橄榄果渣油不能算是橄榄油。国标也对包括反式脂肪酸、油橄榄果实年份的标注作了规定。  据悉,果渣油是一种从油橄榄果渣中获得的油脂。果渣油和初榨橄榄油的进口差价很大,前者离岸价不到30元/公斤,后者超过60元/公斤。  另外,在我国市场上曾出现商家将进口分装日期(二次灌装日期)标为生产日期的情况,损害了消费者利益。针对这一现象,国标规定,进口分装产品在标注分装日期的同时必须标注原产国生产日期,生产日期是指用各种加工工艺从油橄榄鲜果中提取油脂的时间。
  • 激光器光束质量分析检测技术介绍
    如今,激光器已经广泛应用于通信、焊接和切割、增材制造、分析仪器、航空航天、军事国防以 及医疗等领域。激光的光束质量无论对于激光器制造客户还是激光器使用客户都是重要的核心指标之 一。许多客户依赖激光器的出厂报告,从而忽略了对于激光器光束质量测试的重要性,往往在后面激 光器使用过程中达不到理想的效果。通过下方的对比图可以看出,同样的功率情况下(100W),如果焦点产生微小的漂移,对于材 料加工处的功率密度足足变化了 72 倍!所以,激光器仅仅测试功率或能量是远远不够的。对于激光光束质量的定期检测,如激光光斑尺寸大小、能量分布、发散角、激光光束的峰值中心、几何中心、高斯拟合度、指向稳定性等等,都是非常必要的。我公司对于激光光束质量的测试有着丰富且**的经验,对于不同波长、不同功率、不同光斑大小的激光器都可以提供具有针对性的测试系统和方案。相机式光束分析仪相机式光束分析仪采用二维阵列光电传感器,直接将辐照在传感器上的光斑分布转换成图像,传输至电脑并进行分析。相机式光斑分析仪是目前使用*多的光斑分析仪,可以测试连续激光、脉冲激光、单个脉冲激光,可实时监控激光光斑的变化。完整的光束分析系统由三部分构成:(1)相机针对用户激光波长以及光斑大小不同的测量需求,SPIRICON 公司推出了如下几类面阵相机:● 硅基 CMOS 相机通常为 190nm ~ 1100nm;● InGaAs 面阵相机通常为 900 ~ 1700nm;● 热释电面阵相机则可覆盖13 ~ 355nm 及 1.06 ~ 3000μm。相机的芯片尺寸决定了能够测量的光斑的*大尺寸,而像素尺寸则决定了能够测量的*小光斑尺寸;通常需要 10 个像素体现一个光斑完整的信息。相机型号SP932ULT665SP504S波长范围190-1100nm340-1100nm芯片尺寸7.1×5.3mm12.5×10mm23×23mm像.大.3.45x3.45μm4.54×4.54μm4.5x4.5μm分.率2048x15362752×21925120×5120相机型号 XC-130 Pyrocam III HR Pyrocam IV波长范围900-1700nm13-355nm&1.06-3000µ m13-355nm&1.06-3000µ m芯片尺寸9.6*7.6mm12.8mm×12.8mm25.6mm×25.6mm像元大小30*30um75µ m×75µ m75µ m×75µ m分辨率320*256160×160320×320灵敏度64nw/pixel(CW)0.5nJ/pixel(Pulsed)64nw/pixel(CW) 0.5nJ/pixel(Pulsed)饱和度 1.3 μW/cm2 @ 1550 nm3.0W/cm2 (25Hz)4.5W/cm2(50Hz))3.0W/cm2 (25Hz)4.5W/cm2(50Hz)) (2)光束分析软件Spiricon 光斑分析软件BeamGage 界面人性化,操作便捷, 功能强大,其Ultra CAL**逐点背景扣除技术,可将测量环境中的杂散背景光完全扣除掉,使得测量结果真实,得到更精准的ISO 认证标准的光斑数据(详情见 ISO 11146-3-2004)。(3)附件针对用户的特殊要求或者激光的特殊参数设定,SPIRICON 公司推出了一系列光束分析仪的附件,如:分光器、衰减器、衰减器组、扩/缩束镜、宽光束成像仪、紫外转换模块等等。对于微米量级的光斑,传统面阵相机受到像素的制约,无法成像或者无法显示完整的光斑信息。我们有两类光束分析仪可供选择。狭缝扫描光束分析仪NanoScan 2s 系列狭缝扫描式光束分析仪,源自2010 年加入OPHIR 集团的PHOTON INC。PHOTON INC 自 1984 年开始研发生产扫描式光束分析仪,在光通讯、LD/LED 测试等领域享有盛名。扫描式与相机式光斑分析仪的互补联合使得OPHIR 可提供完备的光束分析解决方案。扫描式光束分析是一种经典的光斑测量技术,通过狭缝 / 小孔取样激光光束的一部分,将取样部分通过单点光电探测器测量强度,再通过扫描狭缝 / 小孔的位置,复原整个光斑的分布。扫描式光束分析仪的优点 :● 取样尺度可以到微米量级,远小于 CCD 像素,可获得较高的空间分辨率而无需放大;● 采用单点探测器,适应紫外 ~ 中远红外宽范围波段;● 适应弱光和强光分析;扫描式光束分析仪的缺点 :● 多次扫描重构光束分布,不适合输出不稳定的激光;● 不适合非典型分布的激光,近场光斑有热斑、有条纹等的状况。扫描式光束分析仪与相机式光束分析仪是互补关系而非替代关系;在很多应用,如小光斑测量(焦点测量)、红外高分辨率光束分析等方面,扫描式光束分析仪具备独特的优势。自研自产的焦斑分析仪系统及附件STD 型焦斑分析系统● 功率密度 / 能量密度较大,NA 小于 0.05(约 3°),且焦点之前可利用距离大于 100mm,应当考虑使用本型号。● L 型焦班分析系统的标准版,采用双楔,镜头在双楔之间。● 综合考虑了整体空间利用率、对镜头的保护等因素。● 可进一步升级成为双楔在前的型号,以应对特别大的功率密度 /● 能量密度。● 合适用户 : 科研和工业的传统激光用户,高功率高能量激光用户, 超长焦透镜用户,小 NA 客户。02 型焦班分析系统● 功率密度 / 能量密度较小,或 / 和 NA 大于 0.05(约 3°),或 / 和焦点之前可利用距离小于100mm,应当考虑使用本型号。● 比 STD 更好调节;物镜更容易打坏。● L 型焦班分析系统,采用双楔,镜头在双楔之前。如遇弱光,可定制将双楔换为双反射镜。● 02 型机架不用匹配镜头尺寸,通用,可按需选择镜头。● 非常方便对焦。● 合适用户 : 使用小于 100mm 透镜甚至显微镜头做物镜的用户(表面精密加工);LD/ LED+ 微透镜的生产线做质检附件STA-C 系列 可堆叠 C 口衰减器&bull 18mm 大通光孔径。&bull 输入端为 C-Mount 内螺纹,输出端为 C-Mount 外螺纹。&bull 镜片有 1°倾角,因而可以堆叠使用。&bull 标称使用波段 350-1100nm。VAM-C-BB VAM-C-UV1 可切换式衰减模组&bull 18mm 通光孔径。&bull 标准品提供两组四片可推拉式切换的中性密度滤光片。&bull 用于需要快速改变衰减率的测量过程。&bull BB 表示宽波段,即 400-1100nm,提供 1+2、3+4 两组四片中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350-400nm,提供 0.1+0.2、0.3+0.7 两组四片中性密度滤光片镜组。LS-V1 单楔激光采样模组&bull 20mm 大通光孔径。&bull 内置单片 JGS1 熔石英楔形镜采样片,易于拆卸和更换的楔形镜架。&bull 标称使用波段 190-1100nm。其他波段可定制。&bull 633nm 处 P 光采样率 0.6701%;S 光采样率 8.1858%。&bull 355nm 处 P 光采样率 0.7433%;S 光采样率 8.6216%。&bull 前端配模组母接口;后端配模组公接口及 C-Mount 外螺纹接口。DLS-BB 双楔激光采样模组&bull 15mm 通光孔径,体积紧凑。&bull 内置两片互相垂直的 JGS1 熔石英楔形镜采样片,无需考虑偏振方向。&bull 标称使用波段 190-1100nm,其他波段可定制。&bull 633nm 处采样率 0.05485%。&bull 355nm 处采样率 0.06408%。&bull 后端可配 C-Mount 外螺纹接口。SAM-BB-V1 SAM-UV1-V1 采样衰减模组&bull 20mm 大通光孔径。&bull BB 表示宽波段,即 400-1100nm,提供四个插槽和 0.3、0.7、1、2、3、4 六组中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350-400nm,提供四个插槽和 0.1、0.2、0.3、0.7、1、2 六组中性密度滤光片镜组。&bull 前端配模组母接口;后端配 C-Mount 外螺纹接口。DSAM-BB DSAM-UV1 双楔采样衰减模组&bull 15mm 通光孔径,体积紧凑。&bull 内置两片互相垂直的 JGS1 熔石英楔形镜采样片,633nm 处采样率 0.05485%;无需考虑偏振方向。&bull BB 表示宽波段,即 400——1100nm,提供四个插槽和 0.3、0.7、1、2、3、4 六组中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350——400nm,提供四个插槽和 0.1、0.2、0.3、0.7、1、2 六组中性密度滤光片镜组。&bull 后端配 C-Mount 外螺纹接口对于大功率激光器客户,如增材制造应用以及光纤激光器客户,我们还有专门的光束分析仪系统BeamCheck 和 BeamPeek 集成 CCD 光束分析仪直接探测高功率激光的光斑,以及一台功率计用于实时监测测量激光的功率。特殊的分束系统使其可以直接用于高功率激光,极小部分功率被分配给光束分析仪进行光斑分析,而大部分功率由功率计直接探测激光功率。可在近场或焦点处测量。BeamCheck 可持续测量不大于600W 的增材加工激光,BeamPeek 体积更为小巧,可测量*大1000W 的增材加工激光不大于2 分钟,然后自然冷却后进行下一轮测试。 型号BeamCheck BeamPeek波长范围1060-1080nm532nm 1030-1080nm功率测试范围0.1-600W10-1000W可持续测试性持续测试2min at 1000W光斑大小37µ m-3.5mm34.5µ m-2mm焦长范围200-400mm150-800mm OPHIR 的 BeamWatch 非接触式轮廓分析仪通过测量瑞利散射,捕获和分析波长范围为 980nm - 1080nm 的高功率工业激光。该分析仪包括全穿透光束测量技术、无运动部件、轻便紧凑型设计等特征,非常适合于高功率工业激光进行分析。主要参数 BeamWatch波长范围980-1080nm最小功率密度2MW/cm2最小焦斑大小55µ m最大入射口径12.5mm束腰宽度准确度±5%束腰位置准确度±125µ m焦点漂移准确度±50µ m接口方式GigE Ethernet仪器尺寸406.4mm×76.2mm×79.4mm
  • 超材料制成高定向太赫兹激光器
    美国哈佛大学和英国利兹大学的一个联合研究小组最近演示了一种新型太赫兹半导体激光器,其发射的太赫兹光波准直性能与传统太赫兹光源相比显著改善。该激光器的研发成功,为太赫兹科技的应用打开了更广阔的领域。哈佛已经为此提交了一系列专利申请。这一进展发布在8月8日的《自然材料》杂志上。  新型太赫兹激光器突破了传统材料的限制,研究人员刻了一组亚波长光栅,直接加倍了超材料晶面的光流量,设备以3太赫兹(百亿赫兹)的频率发射光线(波长为100微米,在可见光谱中属于远红外线),大大降低了这些半导体激光器的散射角度,同时保持了光能的高输出功率。  这种超材料被直接嵌入光学设备的高吸收性砷化镓晶面上,在演示中能看到,人造光显示出深浅不同的微米光栅,各具不同的功能。浅蓝色的狭缝能将输出的激光功率加倍,导向并限定在晶体表面。  太赫兹射线(T—rays)能穿透纸张、衣物、塑料和其他一些材料,在探测隐匿武器和生物制剂方面非常理想,在做肿瘤成像检测时对人体无伤害和副作用,还能探测材料内部诸如断裂之类的缺陷,也可用于星际稀薄化学物质的高灵敏探测。  研究人员卡帕索表示,新的人造光学设备,从晶面上发出的激光器非常紧密,瞄准度非常高,高度凝聚使光能有效聚集,这是昂贵且笨重的传统透镜达不到的。  另一位研究人员林菲尔德说,新的太赫兹激光器还能用于海关探测非法药品,并能检验生产和存储的药物是否合格。这种超材料还能用作一种演示的工具,同时还具有一些神奇的潜在功能,如用来研发隐身斗篷、负折射和高解析图像。  研究的另一项重要意义就是这种超材料的光导作用。该设备产生的极强太赫兹光线,以直线光束导向激光晶面,这种超强的限定导向作用,还可应用于传感器和太赫兹光路。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制