当前位置: 仪器信息网 > 行业主题 > >

气相色谱火焰离子化检测法

仪器信息网气相色谱火焰离子化检测法专题为您提供2024年最新气相色谱火焰离子化检测法价格报价、厂家品牌的相关信息, 包括气相色谱火焰离子化检测法参数、型号等,不管是国产,还是进口品牌的气相色谱火焰离子化检测法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气相色谱火焰离子化检测法相关的耗材配件、试剂标物,还有气相色谱火焰离子化检测法相关的最新资讯、资料,以及气相色谱火焰离子化检测法相关的解决方案。

气相色谱火焰离子化检测法相关的论坛

  • 氢火焰离子化检测器(FID)(收集)

    [b]氢火焰离子化检测器[/b] 1958年Mewillan和Harley等分别研制成功氢火焰离子化检侧器(FID),它是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流(10[sup]-12[/sup]~10[sup]-8[/sup]A)经过高阻(10[sup]6[/sup]~10[sup]11[/sup]Ω)放大,成为与进入火焰的有机化合物量成正比的电信号,因此可以根据信号的大小对有机物进行定量分析。 氢火焰检测器由于结构简单、性能优异、稳定可靠、操作方便,所以经过40多年的发展,今天的FID结构仍无实质性的变化。其主要特点是对几乎所有挥发性的有机化合物均有响应,对所有径类化合物(碳数≥3)的相对响应值几乎相等,对含杂原子的烃类有机物中的同系物(碳数≥3)的相对响应值也几乎相等。这给化合物的定量带来很大的方便,而且具有灵敏度高(10-13~10-10g/s),基流小(10[sup]-14[/sup]~10[sup]-13[/sup]A),线性范围宽(10[sup]6[/sup]~10[sup]7[/sup]),死体积小(≤1µ L),响应快(1ms),可以和毛细管柱直接联用,对气体流速、压力和很度变化不敏感等优点,所以成为应用最广泛的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器。其主要缺点是需要三种气源及其流速控制系统,尤其是对防爆有严格的要求。氢火焰离子化检测器的结构 氢火焰离子化检测器(FID)由电离室和放大电路组成,分别如图2-9(a),(b)所示。 FID的电离室由金属圆筒作外罩,底座中心有喷嘴 喷嘴附近有环状金属圈(极化极,又称发射极),上端有一个金属圆简(收集极)。两者间加90~300V的直流电压,形成电离电场加速电离的离子。收集极捕集的离子硫经放大器的高组产生信号、放大后物送至数据采集系统;燃烧气、辅助气和色谱柱由底座引入;燃烧气及水蒸气由外罩上方小孔逸出。

  • 【分享】氢火焰离子化检测器

    氢火焰离子化检测器氢火焰离子化检测器简介  简称氢焰检测器,又称火焰离子化检测器 (FID: flame ionization detector)   (1) 典型的质量型检测器;   (2) 对有机化合物具有很高的灵敏度;   (3) 无机气体、水、四氯化碳等含氢少或不含氢的物质灵敏度低或不响应;   (4) 氢焰检测器具有结构简单、稳定性好、灵敏度高、响应迅速等特点;   (5) 比热导检测器的灵敏度高出近3个数量级,检测下限可达10-12g·g-1。   1958年Mewillan和Harley等分别研制成功氢火焰离子化检侧器(FID),它是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流(10-12~10-8A)经过高阻(106~1011Ω)放大,成为与进入火焰的有机化合物量成正比的电信号,因此可以根据信号的大小对有机物进行定量分析。 氢火焰检测器由于结构简单、性能优异、稳定可靠、操作方便,所以经过40多年的发展,今天的FID结构仍无实质性的变化。其主要特点是对几乎所有挥发性的有机化合物均有响应,对所有径类化合物(碳数≥3)的相对响应值几乎相等,对含杂原子的烃类有机物中的同系物(碳数≥3)的相对响应值也几乎相等。这给化合物的定量带来很大的方便,而且具有灵敏度高(10-13~10-10g/s),基流小(10-14~10-13A),线性范围宽(106~107),死体积小(≤1µL),响应快(1ms),可以和毛细管柱直接联用,对气体流速、压力和很度变化不敏感等优点,所以成为应用最广泛的气相色谱检测器。其主要缺点是需要三种气源及其流速控制系统,尤其是对防爆有严格的要求。氢火焰离子化检测器的结构 氢火焰离子化检测器(FID)由电离室和放大电路组成,分别如图2-9(a),(b)所示。 FID的电离室由金属圆筒作外罩,底座中心有喷嘴;喷嘴附近有环状金属圈(极化极,又称发射极),上端有一个金属圆简(收集极)。两者间加90~300V的直流电压,形成电离电场加速电离的离子。收集极捕集的离子硫经放大器的高组产生信号、放大后物送至数据采集系统;燃烧气、辅助气和色谱柱由底座引入;燃烧气及水蒸气由外罩上方小孔逸出

  • Da Vinci 型 气相色谱(氢火焰离子化检测器)

    Da Vinci 型 气相色谱(氢火焰离子化检测器)

    [b][font=方正兰亭细黑简体][size=18px]概述:[/size][/font][/b][font=方正兰亭细黑简体][/font][font=方正兰亭细黑简体][size=18px]Da Vinci 利用较高的集成度优势,提升了色谱工作 站能力,优化了气体制备与纯化方式。解决了在实验室 条[/size][/font][font=方正兰亭细黑简体][size=18px]件简陋时建立 HJ 38 分析能力的苦难。实现了色谱 两栖化,既可在实验室进行固定分析,也可以在防爆场 景采样后就近分析。目前郑州市、南大环境等单位均使 用该方案实现 NMHC 的实验室监测与固定连续性监测。 同时江苏省碳中和研究院也使用该方案实现稻田中甲烷 减排与固碳通量的监测研究。[/size][/font][b][font=方正兰亭细黑简体][size=18px]标准:[/size][/font][/b][font=方正兰亭细黑简体][size=18px]?《废气无组织排放 总烃、甲烷、非甲烷总烃的测定 便携式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]——氢火焰离子化检测器法》 ?《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法》(HJ 38-2017) ?《环境空气和废气 总烃、甲烷和非甲烷总烃便携式 监测仪器技术要求及检测方法》(HJ 1012-2018) ? [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法本底大气二氧化碳和甲烷浓度在线观测 方法(GB/ T31705-2015) ? [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]检定规程 (JJG 700-2016) ? 非甲烷总烃测定仪校准规范 (JJF( 苏 )225-2019 )[/size][/font][b][font=方正兰亭细黑简体][size=18px]特点:[/size][/font][/b][font=方正兰亭细黑简体][size=18px]?即开即用 ?人机分离 ?自动进样[/size][/font][img=,429,318]https://ng1.17img.cn/bbsfiles/images/2022/06/202206201718379553_4552_5034170_3.png!w429x318.jpg[/img]

  • 【分享】氢火焰离子化检测器灵敏度单位

    【分享】氢火焰离子化检测器灵敏度单位

    氢火焰离子化检测器的响应值取决于组分质量流量,是质量型检测器。其检测限单位是g/s,此单位来源于气相色谱测定(按标准规定条件)后的计算,其计算式为:http://ng1.17img.cn/bbsfiles/images/2010/09/201009221108_246091_1620630_3.jpg式中: D —— 检测限,g/s; N —— 基线噪音,mV; SF ——火焰离子化检测器灵敏度,mV·s/g; As —— 试样色谱峰面积,cm2; C1 —— 记录仪灵敏度,mV/cm; C2 —— 记录纸走速倒数,min/cm; m —— 试样质量,mg。从上两式单位看:http://ng1.17img.cn/bbsfiles/images/2010/09/201009221109_246094_1620630_3.jpg

  • 【分享】安捷伦技术贴示:火焰离子化检测器 (FID)—检测器知识

    【分享】安捷伦技术贴示:火焰离子化检测器 (FID)—检测器知识

    安捷伦技术贴示:火焰离子化检测器 (FID)—检测器知识 N. Reuter*, I. van der Meer, E. de Witte, L. Flipse, Technical Helpdesk Europe, Middelburg, The Netherlands 前言火焰离子化检测器是气相色谱的标准检测器,几乎可以检测所有的有机组分。所得到色谱图的峰面积与样品中该组分的含量成正比。FID的灵敏度极高,具有9个数量级的宽动态范围,它唯一的缺点是需要破坏样品组分。示意图http://ng1.17img.cn/bbsfiles/images/2010/12/201012231940_269431_1615838_3.jpg图1: FID示意图说明FID包含一个氢气/空气火焰和一个集电片,从GC色谱柱出来的流出物通过火焰,有机物分子在火焰中电离产生离子,这些离子被收集到极化的集电极上,产生电信号。集电极带负电荷,火焰喷口带正电荷。

  • 【原创大赛】气相色谱请火焰离子化检测器(FID)的维护要点

    [b][b][font=宋体][font=宋体] [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]请火焰离子化检测器([/font]FID)的维护要点[/font][/b][/b][align=center][b][font=宋体]概述[/font][/b][/align][font=宋体]氢火焰离子化检测器长时间使用后,会因污染造成灵敏度下降、噪声增大、本底输出电平变高等故障,污染的来源主要是色谱柱柱流失、样品的燃烧和气源污染物的积累。[/font][font=宋体]来自样品的高沸点杂质、来自环境空气的杂质和灰尘或者来自色谱柱安装不良产生的密封材料碎屑,会逐渐积累在检测器腔体内部,最终造成基线噪声的增大。[/font][font=宋体][font=宋体]某些物质[/font]——尤其是大量使用的溶剂——燃烧之后会产生沉积性固体颗粒或者腐蚀性物质,对检测器产生损害。例如二氯甲烷、二硫化碳、氯仿、DMF、DMSO等物质燃烧后会产生腐蚀性气体或者高导电率的沉积物质;芳烃类物质容易不完全燃烧产生积碳;甲基硅氧烷类色谱柱的流失产物燃烧后容易产生二氧化硅的沉积。这些有害杂质存在较大的几率沉积在喷嘴表面。[/font][font=宋体]这些有害杂质可能会导致喷嘴堵塞、收集极金属腐蚀或者收集极电气绝缘性能下降。最终会造成检测器输出本底电平抬升和基线噪声增大。较高的基线本底电平和噪声都会损害分析方法的检出限。[/font][font=宋体] [/font][align=center][b][font=宋体]FID检测器的维护步骤:[/font][/b][/align][font=宋体]1. [/font][font=宋体]外观的清洁。[/font][font=宋体]充分清洗和吹扫检测器基座,将检测器基座内肉眼可见的灰尘、锈蚀或其他固体颗粒去除,也可以用含有丙酮等溶剂的棉棒擦拭检测器内部。[/font][font=宋体]2. [/font][font=宋体]色谱柱适配器部分的清洁。[/font][font=宋体]色谱柱安装不良可能会造成色谱柱密封材料碎屑积累到检测器内部,需要充分吹扫和清洗。[/font][font=宋体]3. [/font][font=宋体]喷嘴的清洗和疏通。[/font][font=宋体]喷嘴内部附着的高沸点有机污染物可以用溶剂来清洗,使用合适的金属针可以疏通喷嘴积累的固体杂质。[/font][font=宋体]4. [/font][font=宋体]高温灼烧[/font][font=宋体]升高检测器温度,提高检测器的氢气和空气流量,长时间吹扫可以祛除检测器内部的杂质。[/font][font=宋体]5. [/font][font=宋体]收集极拆解清洗[/font][font=宋体]如果检查到系统硬件本底,如果基线水平较高或者熄火噪声较大,可以实验拆解收集极进行清洗,但是如果对仪器硬件不太熟悉,不建议用户自行操作。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font]

  • 【参数解读】氢火焰离子化检测器(FID)的技术参数解读与使用

    【参数解读】氢火焰离子化检测器(FID)的技术参数解读与使用

    氢火焰离子化检测器 1958年Mewillan和Harley等分别研制成功氢火焰离子化检侧器(FID),它是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流(10-12~10-8A)经过高阻(106~1011Ω)放大,成为与进入火焰的有机化合物量成正比的电信号,因此可以根据信号的大小对有机物进行定量分析。 氢火焰检测器由于结构简单、性能优异、稳定可靠、操作方便,所以经过40多年的发展,今天的FID结构仍无实质性的变化。其主要特点是对几乎所有挥发性的有机化合物均有响应,对所有径类化合物(碳数≥3)的相对响应值几乎相等,对含杂原子的烃类有机物中的同系物(碳数≥3)的相对响应值也几乎相等。这给化合物的定量带来很大的方便,而且具有灵敏度高(10-13~10-10g/s),基流小(10-14~10-13A),线性范围宽(106~107),死体积小(≤1uL),响应快(1ms),可以和毛细管柱直接联用,对气体流速、压力和很度变化不敏感等优点,所以成为应用最广泛的气相色谱检测器。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_646876_1608710_3.jpg◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆列举部分仪器的个别参数,供参考:技术参数:最高使用温度:450℃自动点火装置,自动调节点火气流,具有自动灭火检测功能基线噪声:≤1*10-12A基线漂移(30min):≤1*10-11A检测限:5*10-10g/s重复性:≤3%〓〓〓〓〓〓〓〓〓〓〓〓〓〓分割线〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓请您来解析:1、为什么FID的检定对载气流速稳定性无要求,而TCD、ECD却有要求1%。2、你采购FID都是用来检测什么样品?灵敏度是否满足?3、FID的优缺点都有哪些?4、FID存在什么局限性,如何互补?5、FID哪些参数可以调整色谱出峰效果?欢迎大家参与讨论,补充自己想交流的参数,说说自己的认识或者提出自己的疑问!!!往期回顾:【参数解读】COD测定仪的技术参数解读与使用

  • 火焰离子化检测器(FID)用高纯气体

    火焰离子化检测器(FID)用高纯气体

    [font=Arial][size=12pt][back=transparent]火焰离子化检测器(FID)是最常用的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]器之一,主要用于检测有机化合物。FID的工作原理是在火焰中离子化烃类,如下图。[/back][/size][/font][img=,254,372]https://ng1.17img.cn/bbsfiles/images/2020/01/202001151708225511_8120_3471557_3.jpg!w254x372.jpg[/img][font=Arial][size=12pt][back=transparent]和其他类型的检测仪器一样,在使用FID进行检测时需要将样品带着载气一起进入仪器。一般,FID使用的载气有氦气或氮气(根据实际情况)。基于FID的工作原理,该仪器还需要通入氢气和空气进行燃烧。下表以我们法液空的Alphagaz为例,列出了每种高纯气体对应的Alphagaz类型。[/back][/size][/font][font=Arial][size=12pt][back=transparent][img=,541,148]https://ng1.17img.cn/bbsfiles/images/2020/01/202001151709160831_8615_3471557_3.jpg!w541x148.jpg[/img][/back][/size][/font]

  • 氢火焰离子化检测器(FID

    氢火焰离子化检测器(FID) 氢火焰离子化检测器(flame ionization detector,FID)简称氢焰检测器,是使用最广泛的检测器。系利用H2在O2中燃烧生成火焰,当样品成分在火焰中产生离子(离子化)时,于电场作用下形成离子流,收集于电极成为电流而加以检测。电流的大小与离子数成正比,可用于检测绝大多数有机化合物,并可检测ng/mL级痕量物质,易于进行痕量有机物的分析。它具有结构简单、灵敏度高(约克分析物/秒)、响应快、线性范围宽(约)、选择性好、低干扰性、坚固易于使用等优点。

  • 氢火焰离子化检测器(FID)

    氢火焰离子化检测器(FID) 氢火焰离子化检测器(flame ionization detector,FID)简称氢焰检测器,是使用最广泛的检测器。系利用H2在O2中燃烧生成火焰,当样品成分在火焰中产生离子(离子化)时,于电场作用下形成离子流,收集于电极成为电流而加以检测。电流的大小与离子数成正比,可用于检测绝大多数有机化合物,并可检测ng/mL级痕量物质,易于进行痕量有机物的分析。它具有结构简单、灵敏度高(约克分析物/秒)、响应快、线性范围宽(约)、选择性好、低干扰性、坚固易于使用等优点。

  • 【参数解读总结篇】氢火焰离子化检测器(FID)的技术参数解读与使用

    【参数解读】氢火焰离子化检测器(FID)的技术参数解读与使用http://bbs.instrument.com.cn/shtml/20140211/5183802/氢火焰离子化检测器简称氢焰检测器,又称火焰离子化检测器 (FID: flame ionization detector)。(1) 典型的质量型检测器;(2) 对有机化合物具有很高的灵敏度;(3) 无机气体、水、四氯化碳等含氢少或不含氢的物质灵敏度低或不响应;(4) 氢焰检测器具有结构简单、稳定性好、灵敏度高、响应迅速等特点;(5) 比热导检测器的灵敏度高出近3个数量级。〓〓〓〓〓〓〓〓〓〓〓〓〓〓分割线〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓请您来解析:1、为什么FID的检定对载气流速稳定性无要求,而TCD、ECD却有要求1%。对载气流速没要求的都是质量型检测器,有要求的是浓度型检测器。是针对峰面积定量而定的:质量型检测器载气流速增大峰面积不变;浓度型检测器载气流速增大峰面积减少。FID是质量型检测器,柱流速变化,不影响峰面积。ECD和TCD是浓度型检测器,对流速和温度敏感。TCD和ECD是整体性能检测器,响应信号不仅仅和目标物质有关系,还与流动相有关。 FID的响应不受流动相影响。2、你采购FID都是用来检测什么样品?灵敏度是否满足?有机挥发物检测、农药、天然气、检测白酒成分等等,灵敏度高。3、FID的优缺点都有哪些?FID检测器适用面很广,能够胜任大多数的分析,在色谱分析中它不需要过多的要求,属于分析里的主要选择检测器。总感到其他检测器不如FID操作简单、直观、皮实。FID具有常规检测器中最宽的线性范围,也是其使用广泛的重要原因。FID的特点是灵敏度高,比TCD的灵敏度高约1000倍;检出限低,可达到10~12g/s;线性范围宽,可达10~7;FID结构简单,死体积一般小于1uL,响应时间仅为1ms,既可以与填充柱联用,也可以直接与毛细管柱联用;FID对能在火焰中燃烧电离的有机化合物都有响应,可以直接进行定量分析,是目前应用最为广泛的气相色谱检测器之一。FID的主要缺点是不能检测永久性气体、水、一氧化碳、二氧化碳、氮的氧化物、硫化氢等物质。4、FID存在什么局限性,如何互补?对大部分有机物有响应既是FID的优势也是劣势,在检测物质时经常会遇到干扰物质,影响定性和定量的结果。它对有些物质分析差,这就成为它的不足之处吧。5、FID哪些参数可以调整色谱出峰效果?喷嘴大小、极化极大小、空气和氢气流量比影响出峰效果。喷嘴内径小,灵敏度高,但线性范围窄。内径大,相反。极化电压增大,灵敏度增大。但是电压增加到一定程度,灵敏度基本稳定。极化极一般要求是高压就可以,越高收集效率越高,但安全系数降低;空气与氢气流量比,对不同的仪器来说,有不同的最佳匹配值,我们使用的一般是10:1。气体流量包括载气,氢气和空气的流量。1、载气流量:一般使用N2作为载气,载气流量的选择主要考虑分离效能。对于一定的色谱柱和试样,要找到一个最佳的载气流速,使得柱的分离效果最好。2、氢气流量:氢气流量与载气流量的比值影响氢火焰的温度以及火焰当中的电离过程。火焰温度太低,组分分子电离数目低,产生电流信号就小,灵敏度就低。氢气流量低,不但灵敏度低,而且易熄火。氢气流量高,火噪声就大。故氢气流量必须保持足够。3、当氮气作为载气时,一般氢气与氮气流量比值是1:1~1:1.5,在最佳比值时,不但灵敏度高,而且稳定性好。欢迎大家参与讨论,补充自己想交流的参数,说说自己的认识或者提出自己的疑问!!!

  • 【资料】-气相色谱/光离子化检测器(PID)简介及光离子检测器

    [b][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]/光离子化检测器简介[/b][i]刘星等;环境监测管理与技术;第9卷,第4期[/i]1 概述60年代以来,人们对[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]光离子化检测器进行了较多的研究和报道。光离子化检测器是一种通用性兼选择性的检测器,对大多数有机物都有响应信号,美国EPA己将其用于水、废水和土壤中数十种有机污染物的检测。1.1光离子化检测器类型光离子化检测器从结构上可分为光窗型和无光窗型两种。(1) 无光窗离子化检测器这是一种利用微波能量激发常压惰性气体产生的等离子体,作为光源的光离子化检测器(Microwave Photo-ionization detector),以石英或硬质玻璃管材料制作。当样品的组分进入光离子化检测器离子化室后,分子组分被高能量的等离子体激发为正离子和自由电子,在强电场的作用下作定向运动形成离子流并输出信号 当分子的电离能高于光子能量时则不会发生离子化效应。如选用氦气作为放电气体,在理论上可检测一切气化的物质。(2)光窗式光离子化检测器它克服了无窗口式光离子化检测器的许多缺陷,主要由紫外光源和电离室组成,中间由可透紫外光的光窗相隔,窗材料采用碱金属或碱土金属的氟化物制成。在电离室内待测组分的分子吸收紫外光能量发生电离,选用不同能量的灯和不同的晶体光窗,可选择性地测定各种类型的化合物,其过程如下:R+hv-R++eR-R+hv-R1++R2-(离解)当用N2作载气时N2+hv-N2*N2+R-N2+R++e不同的紫外灯光有不同的放电气体。不同能量的光子,使用11.7ev的高能灯和氟化锂(LiF)光窗时,光离子化检测器可作为通用型检测器 当使用低能量灯时,待测组分的范围变窄,此时光离子化检测器为选择性检测器。影响光离子化检测器的因素(1)光离子化检测器的响应与待测组分的碳数、烃的不饱和度以及功能团类型有关。(2)选用气体的电离势要高于所用灯的光子能量。氩通常认为是最佳响应的理想气体。

  • 安捷伦的7820配氢火焰离子化检测器测试邻苯二甲酸酯的方法

    用安捷伦的7820配氢火焰离子化检测器测试邻苯二甲酸酯,色谱柱HP-5和DB-5MS(都试过),程序升温190℃(1min)至300℃(9min),速率20℃/min,色谱柱流速1ml/min,进样口300℃,检测器310℃,溶剂峰(三氯甲烷)信号值达到7-8万,目标物只有10-50,后用偶氮运行,目标物信号值依然很低,查找各方面原因未果,请问7820+FID能测试此类物质吗?还是说能测试,方法或其他有问题?有朋友做过吗?

  • 【原创】有关:在线氢火焰离子化检测器

    [size=4][font=楷体_GB2312]在氢火焰离子化检测器中有一种特殊的装置,即甲烷化转化器。对于气体样品中的微量CO、CO[sub]2[/sub],氢焰检测器需要利用甲烷化转化器来进行转化。其工作原理如下:通过加氢催化反应,将CO、CO[sub]2[/sub]转化成甲烷和水,再送往FID检测器,通过测量甲烷,间接计算出CO、CO[sub]2[/sub]含量。甲烷化转化器中使用镍催化剂,转化炉的温度一般为350-380摄氏度。镍催化剂必须密封保存,防止与空气接触,降低催化剂活性。[/font][/size]

  • 氢火焰离子化检测器(FID)使用注意事项

    1、FID虽然是通用型检测器,但是有些物质在此检测器上的响应值很小或无响应。这些物质包括永久气体、卤代硅烷、甲醛、H2O、NH3、CO、CO2、CS2、CCl4等等。所以,检测这些物质时不应使用FID。 2、FID是用氢气和空气燃烧所产生的火焰使被测物质离子化的,故应注意安全问题。在未接色谱柱时,不要打开氢气阀门,以免氢气进入柱箱。测定流量时,一定不能让氢气和空气混合,即测氢气时,要关闭空气,反之亦然。无论什么原因导致火焰熄灭时,应尽快关闭氢气阀门,直到排除了故障,重新点火时,再打开氢气阀门。高档仪器有自动检测和保护功能,火焰熄灭时可自动关闭氢气。 3、FID的灵敏度与氢气、空气和氮气的比例有直接的关系,因此要注意优化。一般三者的比例接近或等于1:10:1,如氢气30~40ml/min ,空气300~400ml/min ,氮气30~40ml/min 。另外,有些仪器设计有不同的喷嘴分别用于填充柱和毛细柱,使用时要查看说明书。 4、为防止检测器被污染,检测器温度设置不应底于色谱柱实际工作的最高温度。一旦检测器被污染,轻则灵敏度下降或噪声增大,重则点不着火。消除污染的办法是清洗,主要是清洗喷嘴表面和气路管道。具体办法是拆下喷嘴,依次用不同的溶剂(丙酮、氯仿和乙醇)浸泡,并在超声波水浴中超声10min以上。还可用细不锈钢丝穿过喷嘴中间的孔,或用酒精灯烧掉喷嘴内的油状物,以达到彻底清洗的目的。有时使用时间长了,喷嘴表面会积碳(一层黑色的沉积物),这会影响灵敏度。可用细纱纸轻轻打磨表面除去。清洗之后将喷嘴烘干,再装在检测器是进行测定。

  • 【原创大赛】氢火焰离子化检测器(FID)点火困难的原因和解决方法

    [b][font='Times New Roman'][font=宋体] 氢火焰离子化检测器(FID)点火困难的原因和解决方法[/font][/font][font='Times New Roman'][font=宋体][/font][/font][font='Times New Roman'][font=宋体][/font][/font][font='Times New Roman'][font=宋体]概述[/font][/font][/b][font=宋体][font=宋体]点火困难是氢火焰离子化检测器([/font]FID[font=宋体]),最常见的故障。[/font][/font][font=宋体]一般需要在硬件、工作站配置、色谱系统安装、检测器、气源等多个方面予以检查和处理。[/font][font='Times New Roman'][font=宋体][b]简介[/b]:[/font][/font][font=宋体][font=宋体]色谱工作者在使用[/font]FID[font=宋体]检测器时,最常见的问题就是[/font][font=Times New Roman]FID[/font][font=宋体]的点火困难。尤其是使用时间较长、分析环境较差的仪器。[/font][/font][font=宋体]诊断和处理点火困难问题的大体步骤:[/font][font=宋体]1. [/font][font=宋体]硬件问题[/font][font=宋体]首先需要确认点火线圈状态正常,启动点火的时候,点火线圈可以被点亮。如果线圈已经折断,需要更换新品,或者存在其他控制硬件的问题。[/font][font=宋体]其次需要确认点火线圈外观没有发生严重的变形,否则会影响点火成功率。可以实验在检测器出口轻轻吹气,如果点火会变得容易,建议更换掉点火线圈,即使其并未折断。[/font][font=宋体]再次需要确认氢气空气流量控制的稳定,某些型号的仪器,如果氢气空气流量在点火之前不能稳定,系统不会启动点火。[/font][font=宋体][font=宋体]最后,点火动作时,需要仔细观察[/font]FID[font=宋体]输出信号是否有正方向、较大幅度的跃变。如果输出信号跃变不正常,系统也存在硬件故障,需要求助厂家。[/font][/font][font=宋体]2. [/font][font=宋体]色谱数据工作站的配置问题[/font][font=宋体]某些型号的色谱仪,需要正确的配置检测器的极性,如果工作站中极性配置错误,点火就不会成功。[/font][font=宋体]3. [/font][font=宋体]色谱系统安装问题[/font][font=宋体]如果色谱柱的检测器部分安装不良,伸入检测器内过长会堵塞喷嘴造成点火困难。如果色谱柱的检测器安装部分严重漏气,也会造成不能点火。[/font][font=宋体]4. [/font][font=宋体]气源不良[/font][font=宋体]气源纯度低(氢气和空气),气体未重复置换管路,气体管路上的净化器严重的污染,都会造成点火不良。[/font][font=宋体]一般的解决方法,可以增加氢气流量,使气体加速彻底置换,点火成功之后,再缓慢降低流量至正常值。[/font][font=宋体]5. [/font][font=宋体]喷嘴堵塞[/font][font=宋体]喷嘴堵塞是最常见的故障来源,样品燃烧残渣,气源污染物,色谱柱流出物,环境污染物都是造成喷嘴堵塞的原因。[/font][font=宋体]喷嘴堵塞的特征是火焰点燃时会有较大的爆鸣声。[/font][font=宋体]6. [/font][font=宋体]系统严重污染[/font][font=宋体]这个原因相对便较少见,系统的严重污染会影响色谱系统对基线跃变的判断。点火操作之间,建议充分老化和清洁色谱系统。[/font][font=宋体] [/font][font=宋体] [/font]

  • 【新品早知道】上海精科气相色谱光离子化检测器通过评定

    上海精密科学仪器有限公司自主研发的GC126━PID 气相色谱仪光离子化检测器,于2011年7月通过了上海市计量院的型式评定。该产品具有自主知识产权,获国家专利局发明专利授权,研发论文已刊登在《分析化学》杂志上,目前装备在公司生产的GC126气相色谱仪上。  精科公司由“质谱开发团队”开发的GC126━PID 气相色谱仪光离子化检测对苯类、含羰基类化合物等有较高的选择性与分析灵敏度;灵敏度比FID高50-100倍,可与毛细管连接,克服了传统填充柱易流失、柱效低等弊端。具有线性范围宽、可检测环境中0.5ppb-500ppm的苯系物等。其主要性能指标达到了国际同类检测器的标准。该产品配套使用相应的仪器,一可以监测大气中苯、甲苯、乙苯、二甲苯、苯乙烯、甲醛和乙醛;二可以监测汽车尾气(一氧化氮);三可以检测食品中有机溶剂的残留(6号溶剂)和对食品进行保鲜度分析(硫醇、硫醚、硫化氢等);四可以检测航空航天推进剂生产中产生的有毒气体(苯、苯乙烯、丙酮、肼等)。  该产品如与FID、质谱、 红外检测器等实行联用,可获取更多的信息,它无辐射,无需氢气、助燃气体,可用高纯氮气或空气作载气,无需复杂的化学前处理(如热解析等),安全可靠,有直接进样分析的优点。http://www.instrument.com.cn/news/20110913/067761.shtml各位有没有安装使用过这种检测器,上来分享一下经验。

  • 【讨论】气相色谱仪中氢火焰离子检测器的常见故障---你遇到过哪些?

    氢火焰离子化检测器(FID)是目前使用最广泛的检测器,它能检测大多数有机物,灵敏度高,响应速度快,线性范围宽,恒温要求不高,结构简单,操作方便。在其使用过程中,由于使用不当或者一些意外因素,也经常会出现故障。如果你的仪器使用的是氢火焰离子化检测器(FID),都出现了那些故障呢??

  • 【讨论】气相色谱仪的检测器有哪些?

    [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的检测器包括:TCD热导池检测器,FID氢火焰离子化检测器,PID光离子化检测器,ECD电子捕获检测器,FPD火焰光度检测器,NPD氮磷检测器,AID氩离子化检测器,SAW表面声波检测器,HID氦离子化检测器等还有哪些请大家讨论

  • 【分享】甲基环戊二烯三羰基锰(MMT)气相色谱法检测方法

    甲基环戊二烯三羰基锰(MMT)气相色谱法检测方法本标准规定了甲基环戊二烯三羰基锰的分类、要求、试验方法、检验规则、标志、包装、运输、贮 存和安全。本标准适用于用作汽油抗爆剂的甲基环戊二烯三羰基锰。 分子式:C9H7MnO3 相对分子质量:218.09(根据2007年国际相对原子质量) 甲基环戊二烯三羰基锰含量的测定:在选定的工作条件下,样品经气化通过毛细管色谱柱,使其中各组分得到分离,用氢火焰离子化检 测器检测,用面积归一化法或内标法计算甲基环戊二烯三羰基锰的含量。 试剂:二乙二醇二甲醚。 无水乙醇。氢气:体积分数不低于 99.99%。 空气:经活性炭和分子筛净化。氦气:体积分数不低于 99.999%。仪器设备 :GC5890气相色谱仪,配氢火焰离子化检测器(FID),灵敏度和稳定性符合 GB/T9722 中的有关规定, 可进行毛细管色谱分析。N2000色谱工作站。色谱仪器型号GC5890型色谱仪 配有FID检测器毛细管色谱柱HP-5 30*0.32*0.25专用毛细管柱色谱工作站N2000 (电脑1台自备)气体装置氮氢空发生器 HGT300E1台或高纯氮、氢气、空气钢瓶各一瓶分析天平:感量 0.0001g。 5.8.3.4 进样器:5μL [font=

  • 气相色谱仪各种检测器的真实使用情况揭秘

    气相色谱仪各种检测器的真实使用情况揭秘

    【讨论】气相色谱仪的8种检测器---你用的是哪种?http://bbs.instrument.com.cn/shtml/20100627/2634459这个帖子你还有印象吗,帖子调查总共大约有180个版友参与,可以说基本体现了目前气相色谱仪的检测器的使用情况。其实目前使用的最多的检测器,就是六种,其他有很几个特殊的、专属性强的检测器,都使用者较少,或者行业专用,下面简单介绍下几个常用检测器。1、热导检测器  热导检测器(TCD)属于浓度型检测器,即检测器的响应值与组分在载气中的浓度成正比。它的基本原理是基于不同物质具有不同的热导系数,几乎对所有的物质都有响应,是目前应用最广泛的通用型检测器。由于在检测过程中样品不被破坏,因此可用于制备和其他联用鉴定技术。2、氢火焰离子化检测器  氢火焰离子化检测器(FID)利用有机物在氢火焰的作用下化学电离而形成离子流,借测定离子流强度进行检测。该检测器灵敏度高、线性范围宽、操作条件不苛刻、噪声小、死体积小,是有机化合物检测常用的检测器。但是检测时样品被破坏,一般只能检测那些在氢火焰中燃烧产生大量碳正离子的有机化合物。3、电子捕获检测器  电子捕获检测器(ECD)是利用电负性物质捕获电子的能力,通过测定电子流进行检测的。ECD具有灵敏度高、选择性好的特点。它是一种专属型检测器,是目前分析痕量电负性有机化合物最有效的检测器,元素的电负性越强,检测器灵敏度越高,对含卤素、硫、氧、羰基、氨基等的化合物有很高的响应。电子捕获检测器已广泛应用于有机氯和有机磷农药残留量、金属配合物、金属有机多卤或多硫化合物等的分析测定。它可用氮气或氩气作载气,最常用的是高纯氮。4、火焰光度检测器  火焰光度检测器(FPD)对含硫和含磷的化合物有比较高的灵敏度和选择性。其检测原理是,当含磷和含硫物质在富氢火焰中燃烧时,分别发射具有特征的光谱,透过干涉滤光片,用光电倍增管测量特征光的强度。5、氮磷检测器 氮磷检测器(NPD)是一种质量检测器,适用于分析氮,磷化合物的高灵敏度、高选择性检测器。它具有与FID相似的结构,只是将一种涂有碱金属盐如Na2SiO3,Rb2SiO3类化合物的陶瓷珠,放置在燃烧的氢火焰和收集极之间,当试样蒸气和氢气流通过碱金属盐表面时,含氮、磷的化合物便会从被还原的碱金属蒸气上获得电子,失去电子的碱金属形成盐再沉积到陶瓷珠的表面上。氮磷检测器的使用寿命长、灵敏度极高,对氮、磷化合物有较高的响应,氮磷检测器被广泛应用于农药、石油、食品、药物、香料及临床医学等多个领域。6、质谱检测器  质谱检测器(MSD)是一种质量型、通用型检测器,其原理与质谱相同。它不仅能给出一般GC检测器所能获得的色谱图(总离子流色谱图或重建离子流色谱图),而且能够给出每个色谱峰所对应的质谱图。通过计算机对标准谱库的自动检索,可提供化合物分析结构的信息,故是GC定性分析的有效工具。常被称为色谱 -质谱联用(GC-MS)分析,是将色谱的高分离能力与MS的结构鉴定能力结合在一起。而这些检测器的原理和检测特性,造成了很多版友再采购仪器时,都是根据自己所需检测的样品而定。约180个版友的气相色谱仪各种检测器的真实使用情况,统计后如下图所示。http://ng1.17img.cn/bbsfiles/images/2014/01/201401042146_486668_1608710_3.jpg图中所示的其他检测器,包括表面声波检测器,ASD电化学硫检测器及SCD硫化物化学发光检测器,催化燃烧检测器(CCD),光离子化检测器(PID)等,这些检测器的使用人较少。而版友在讨论的时候,还说到了碱火焰电离检测器 (AFID)等很少见的检测器,其实NPD就是由碱火焰电离检测器 (AFID) 发展而来。1964年Karman和Giuffrida首次报道了钠火焰电离检测器, 对含磷和卤素化合物有选择性的响应, 以后又有多种形式。它们均是用氢火焰加热挥发性的碱金属盐, 产生碱金属蒸汽, 表现出对含磷、 卤素和氮化合物均有极高的灵敏度和选择性。遗憾的是其背景信号和样品信号均不稳定, 噪声大、 热离子源寿命短, 难以实用。1974年Kolb和Bischoff提出了一种新的碱源改造方案, 使检测器稳定性显著改善, 灵敏度明显提高。它对含卤素化合物不敏感, 而对氮、 磷化合物的响应比烃类大10000倍, 达专一性响应, 故以后通称氮磷检测器。实际上, 由于碱源的差异, 有些对含卤、 含氧化合物也有较高的灵敏度。所以现有的文献仍称AFID, 或热离子检测器 (TID) 、 热离子电离检测器 (TID) 或热离子专一 (灵敏) 检测器 (TSD) , 或无火焰热离子检测器 (FTD) 、 无火焰碱敏化检测器 (FASD) 等。从图已经很明显可以看的出,约180个人中,有150个人用过氢火焰离子化检测器、74个人用过热导检测器、74个人用过电子捕获检测器、55个人用过火焰光度检测器、36个人用过氮磷检测器、49个人用过质谱检测器,5个人用过氦放电离子化检测器,14个人用过其他的检测器。可见,气相色谱仪的常用检测器定位是氢火焰离子化检测器、热导检测器、电子捕获检测器、火焰光度检测器、氮磷检测器、质谱检测器。

  • 【资料】-用于气相色谱的微波等离子体原子发射光谱检测器的发展

    [size=4][B]用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的微波等离子体原子发射光谱检测器的发展[/B][/size][I]袁懋,师宇华[/I]摘要:分别介绍和评价了用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的微波诱导等离子体、电容耦合微波等离子体和微波等离子体炬等3种微波等离子体原子发射光谱检测器的发展、应用以及局限性。对用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的微波等离子体原子发射光谱检测器的发展作了展望。关键词:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url];微波等离子体;原子发射光谱;检测器自[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析法(GC)问世以来,色谱分离分析方法得到了迅速发展,已成为生命科学、石油化工、环境科学等学科必不可少的检测手段和工具。色谱法的发展在很大程度上取决于检测器的发展,每种新型检测器的提出和完善都在一定程度上提高了色谱仪器的性能,促进了色谱法更加广泛和深入的应用。如果没有合乎需要的检测器的诞生,再好的色谱分离方法也难满足社会的需求。迄今为止,已报道过的色谱检测器有100种之多。色谱分析的实践对检测器提出了更高的要求,理想的色谱检测器应具备的特点是灵敏度高、精密度好、线性范围宽、通用性或选择性强、具有形态分析的能力、操作特性优良等。传统的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器已不能满足上述要求。近30年来,由于新型光源和电子技术的发展,等离子体光源部分代替了电弧、火花和火焰等传统光源的主导地位, 为原子发射光谱分析增添了新的活力,且在作为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器方面越来越显示出它的优越性。[B]1 概述[/B][I]1. 1 等离子体和微波等离子体[/I]  在物理学上,“等离子体”是指由大量自由电子和离子组成且在整体上表现出近似为电中性的电离气体;在光谱学上,“等离子体”指的是用电学方法获得的类似于火焰的发光气体。因此,微波等离子体(MWP)包括微波诱导等离子体(MIP)、电容耦合微波等离子体(CMP)和微波等离子体炬(MPT) 。[I]1. 2 微波等离子体原子发射光谱检测器的特性[/I]  微波等离子体原子发射光谱检测器(MWP-AED)的检测原理是将微波等离子体作为激发光源,样品进入检测器(激发光源)后被原子化,然后被激发至高能态,再跃迁回到低能态,发射出原子光谱。根据这些发射光谱线的波长和强度即可对待测物进行定性和定量分析。原子发射光谱检测器有许多独特的性能和应用。选用某一特定波长通道时,它只对某一特定元素有响应,此时的检测器为选择性检测器, 并且其选择性比其他[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器(如电子俘获检测器(ECD)、火焰光度检测器(FPD)等)更好;如果选择碳或氢的波长作为通道,它就会对一系列含有这两种元素的化合物有响应而成为通用性检测器, 且对某些化合物的灵敏度高于火焰离子化检测器(FID )。  AED 对元素周期表中除了He以外的任何一种元素均可检测,属多元素检测器,并可用于测定未知化合物的经验式和分子式。对未知化合物的鉴定,AED是质谱(MS)、傅里叶变换红外光谱(FT-IR)的有力补充手段。20世纪60年代以来,随着环境科学、生物化学、农业科学、无机和有机化学等领域的发展,越来越多的检测要求得到样品中每个组分每个元素的信息。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]具有极强的分离能力,恰能满足单组分信息测定的要求。近年来AED与GC联用的应用领域更是不断扩大,成为一种十分有发展前景的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器。[B]2 微波诱导等离子体2原子发射光谱检测器的发展[/B]  由于MIP系统简单,操作方便,又是灵敏特效的元素选择性检测器,因而最受欢迎。微波耦合给等离子体工作气体的常用器件是微波谐振腔。它是一种空心的金属容器, 其形状和大小正好使微波可在其中形成一个电磁驻波。等离子体工作气体一般以连续流动方式通过谐振腔,并在谐振腔轴向插入的石英管中形成等离子体。用来获得MIP 的耦合器件的种类很多,常见的有TM010、3/4λ谐振腔和同轴表面波激励器件Surfatron等。[color=#DC143C]全文附件在5楼[/color]

  • 气相色谱仪各种检测器的介绍

    [align=center][b][size=24px]气相色谱仪各种检测器的介绍[/size][/b][/align][size=18px] 气相色谱仪或高效液相色谱仪是专供实验室对液体或溶于液体的固体样品进行常量和微量分析和检测,特别适用于农药、化肥、医药、防疫、环保、商检、食品、饮料、酒类、饲料、石化、煤炭、染料、精细化工等敏感行业中质量监督检测与控制;在氨基酸分析有机化工、有机合成、分析化学、生物化学、生物工程、国防教学等研究领域广泛应用。以下由仪器色谱技术人员介绍气相色谱仪的各种检测器。 1、热导检测器(TCD)属于浓度型检测器,即检测器的响应值与组分在载气中的浓度成正比。它的基本原理是基于不同物质具有不同的热导系数,几乎对所有的物质都有响应,是目前应用蕞广泛的通用型检测器。由于在检测过程中样品不被破坏,因此可用于制备和其他联用鉴定技术。[font=&] 2、氢火焰离子化检测器(FID)利用有机物在氢火焰的作用下化学电离而形成离子流,借测定离子流强度而进行检测。该检测器灵敏度高、线性范围宽、操作条件不苛刻、噪声小、死体积小,是有机化合物检测常用的检测器。但是检测时样品被破坏,一般只能检测那些在氢火焰中燃烧产生大量碳正离子的有机化合物。[/font] 3、电子捕获检测器(ECD)是利用电负性物质捕获电子的能力,通过测定电子流进行检测的。ECD具有灵敏度高、选择性好的特点。它是一种专属型检测器,是目前分析衡量电负性有机化合物蕞有效的检测器,元素的电负性越强,检测器灵敏度越高,对含卤素、硫、氧、羰、基、氨基等的化合物有很高的响应。电子捕获检测器已广泛应用于有机氯和有机磷农药残留量、金属配合物、金属有机多卤或多硫化合物等的分析测定。它可用氮气或氩气作载气,蕞常用的是高纯氮。 4、火焰光度检测器(FPD)对含硫和含磷的化合物有比较高的灵敏度和选择性。其检测原理是,当含磷和含硫物质在富氢火焰中燃烧时,分别发射具有特征的光谱,透过干涉滤光片,用光电倍增管测量特征光的强度。 5、氮磷检测器(NPD)是一种质量检测器,适用于分析氮,磷化合物的高灵敏度、高选择性检测器。它具有与FID相似的结构,只是将一种涂有碱金属盐如Na2SiO3,Rb2SiO3类化合物的陶瓷珠,放置在燃烧的氢火焰和收集极之间,当试样蒸气和氢气流通过碱金属盐表面时,含氮、磷的化合物便会从被还原的碱金属蒸气上获得电子,失去电子的碱金属形成盐再沉积到陶瓷珠的表面上。氮磷检测器的使用寿命长、灵敏度极高,对氮、磷化合物有较高的响应,氮磷检测器被广泛应用于农药、石油、食品、药物、香料及临床医学等多个领域。 6、质谱检测器(MSD)是一种质量型、通用型检测器,其原理与质谱相同。它不仅能给出一般GC检测器所能获得的色谱图(总离子流色谱图或重建离子流色谱图),而且能够给出每个色谱峰所对应的质谱图。通过计算机对标准谱库的自动检索,可提供化合物分析结构的信息,故是GC定性分析的有效工具。常被称为色谱-质谱联用(GC-MS)分析,是将色谱的高分离能力与MS的结构鉴定能力结合在一起。 7、光离子化检测器(PID)是通用型的非放射性检测器。它使用高能紫外线作为能源将分子电离,检测限为10-12~10-9数量级。它对大多数有机物都有响应信号,美国EPA己将其用于水、废水和土壤中数十种有机污染物的检测。被测物质经色谱柱分离后,进入离子化池,离子化池的上盖为真空紫外无极放电灯的窗口,两侧是电极。电极收集在真空紫外辐射下产生的离子,并产生离子电流,电离电流经放大后,由色谱工作站进行数据处理、记录、显示和存储。本检测器使用一只具有10.6eV能量的真空紫外无极气体放电灯作为光源。[/size]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制