当前位置: 仪器信息网 > 行业主题 > >

光镊超高分辨显微操控系统

仪器信息网光镊超高分辨显微操控系统专题为您提供2024年最新光镊超高分辨显微操控系统价格报价、厂家品牌的相关信息, 包括光镊超高分辨显微操控系统参数、型号等,不管是国产,还是进口品牌的光镊超高分辨显微操控系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光镊超高分辨显微操控系统相关的耗材配件、试剂标物,还有光镊超高分辨显微操控系统相关的最新资讯、资料,以及光镊超高分辨显微操控系统相关的解决方案。

光镊超高分辨显微操控系统相关的资讯

  • Quantum Design中国合作引进 多功能高分辨率磁光克尔显微成像系统
    磁畴是铁磁体材料在自发磁化的过程中,为降低静磁能而产生分化的方向各异的小型磁化区域。它的研究可将材料的基本物理性质、宏观性质和应用联系起来。近年来,由于材料的日益完善和器件的小型化,人们对磁畴分析的兴趣与日俱增。目前市面上主要的磁畴观测设备有磁光克尔显微镜、磁力显微镜、洛伦兹电镜、以及近兴起的NV色心超分辨磁学显微镜等,其中,磁光克尔显微镜可以灵活的结合外加磁场、电流及温度环境等来对材料进行面内、面外的动态磁畴观测,成为目前常用的磁畴观测设备,可用于多种磁性材料的研究,如铁磁或亚铁磁薄膜、钕铁硼等硬磁材料、硅钢等软磁材料。 2020年11月,Quantum Design中国与致真精密仪器(青岛)有限公司签署了中国区战略合作协议,合作推出多功能高分辨率磁光克尔显微成像系统。通过此次战略合作,Quantum Design中国希望能够为磁学及自旋电子学等领域的研究提供更多的可能。图1 多功能高分辨率磁光克尔显微成像系统 多功能高分辨率磁光克尔显微成像系统由北京航空航天大学集成电路学院张学莹老师带领团队,根据多年的磁畴动力学实验技巧积累和新的磁学及自旋电子学领域的热点课题研究需求研发。它采用先进的点阵LED光源技术,能够在不切换机械结构的情况下,同时进行向和纵向克尔成像,不仅能同时检测样品垂直方向和面内方向的磁性,成像分辨率还能够达到270 nm,逼近光学衍射限。与传统的磁光克尔显微镜相比,多功能高分辨率磁光克尔显微成像系统配置了多功能磁铁探针台,能够在保证450 nm高分辨率的前提下,向被测样品同时施加面磁场、垂直磁场、电流和微波信号。 此外,多功能高分辨率磁光克尔显微成像系统拥有专门的智能控制系统,用户界面友好,无需复杂设置,一键触发既能实现多维度磁场、电学信号与克尔图像的同步操控。该系统的另一亮点是配置了反应速度高达1 μs的超快磁场,为微米器件中磁畴的产生、磁畴的高速运动捕捉等提供了可能。 张学莹老师师从北航赵巍胜教授和法国巴黎萨克雷大学Nicolas Vernier教授,从2015年开始研究磁光克尔成像技术和磁畴动力学,其有关磁性材料性质的论文获得北京航空航天大学博士学位论文。经过3年潜心研究,该团队于2018年完成了台克尔显微镜样机的集成,并创立致真精密仪器(青岛)有限公司。至2020年初,在北航青岛研究院和北航集成电路学院经过两轮迭代和打磨,已经完成了产品的稳定性验证,目前,该设备已经被清华大学、中科院物理所、北京工业大学等多家单位采购。 产品磁畴成像照片案例图2 CoFeB(1.3 nm)/W(0.2)/CoFeB(0.5)薄膜中的迷宫畴图3 斯格明子磁畴观测 多重信号的叠加,能够满足客户多种前沿课题的实验需求面内磁场和垂直磁场的叠加可以进行Dzyaloshinskii-Moriya作用(DMI)的测试[1,2]图4 样品Pt(4 nm)/Co(1 nm)/MgO(t nm)/Pt(4 nm)DMI作用测量[1] 自旋轨道矩(spin-orbit torque,简称SOT)是近年来发展起来的新一代电流驱动磁化翻转技术,如何更好的表征SOT翻转,在当今自旋电子学领域具有重要的理论和应用价值。 多功能高分辨率磁光克尔显微成像系统配置的面内磁场和电学测试系统,不但可以实现这个过程的电学测试,还可以利用相机与信号采集卡同步的功能,逐点解析翻转曲线对应的磁畴状态 [3,4]。图5 面内磁场和电流的叠加用于sot驱动的磁性变化过程研究 在某些材料中,无法观测到纯电流驱动的磁畴壁运动。这时,可以利用多功能高分辨率磁光克尔显微成像系统微秒别的超快磁场脉冲与电流同步,观测垂直磁场与电流共同驱动的畴壁运动,从而解析多种物理效应,如重金属/ 铁磁体系的自旋化率由于自旋散射降低的效应 [5]。图6 垂直磁场和电流的叠加可用于观测单磁场或者电流无法驱动的磁性动力学过程 克尔成像下磁场和微波的叠加则能够为自旋波和磁畴壁的相互作用研究提供可能 [6]。图7 自旋波驱动的磁畴壁运动[6] 多功能高分辨率磁光克尔显微成像系统还可进行多种磁性参数的微区测量局部饱和磁化强度Ms表征[7]由于偶作用,磁畴壁在靠近时会相互排斥。通过观察不同磁场下磁畴壁的距离,可以提取局部区域的饱和磁化强度Ms。此方法由巴黎- 萨克雷大学Nicolas Vernier 教授(致真技术顾问)在2014 年先提出并验证,与VSM测量结果得到良好吻合。图8 局部饱和磁化强度Ms表征及与其他测试方法Ms结果对比 海森堡交换作用刚度[8]采用系统的磁场“自定义波形”功能,将样品震荡退磁,再将得到的迷宫畴图片进行傅里叶变换,能够得知磁畴宽度,从而提取海森堡交换作用刚度Aex。图9 海森堡交换作用刚度提取 自旋电子薄膜质量的表征、自旋电子器件的损坏检测等[9]图10 磁性薄膜质量检测 除此之外,该系统还开发了性价比超高的变温系统。针对永磁材料研究的用户,开发了能够兼容克尔成像的高温强磁场模块。针对硅钢等软磁材料研究用户,开发了大视野面内克尔显微镜。 动态磁畴成像案例图11 cofeb薄膜动态磁畴图12 sot磁场+电流驱动磁畴翻转图13 钕铁硼永磁动态磁畴观测图14 磁性材料内钉扎点的观测,可与巴克豪森噪声同步匹配 产品基本参数✔ 向和纵向克尔成像分辨率可达300 nm;✔ 配置二维磁场探针台,面内磁场高达1 t,垂直磁场高达0.3 t(配置磁场增强模块后可达1.5 t);✔ 快速磁场选件磁场反应速度可达1 μs;✔ 可根据需要选配直流/ 高频探针座及探针;✔ 可选配二次谐波、铁磁共振等输运测试;✔ 配置智能控制和图像处理系统,可同时施加面内磁场、垂直磁场和电学信号同步观测磁畴翻转;✔ 4k~800k,80k~500k 变温选件可选。 小结多功能高分辨率磁光克尔显微成像系统除了拥有超高分辨的动态磁畴观测能力外,还能结合多功能磁场探针台提供的外加电流、面内/面外磁场等对多种磁学参数进行提取。 样机体验目前,致真精密仪器(青岛)有限公司可对相关领域感兴趣的科学工作者提供了测样体验,欢迎感兴趣的老师或同学拨打电话010-85120280或发送邮件至info@qd-china.com体验磁光克尔显微成像全新技术! 参考文献[1] A. Cao et al., Nanoscale 10, 12062 (2018).[2] A. Cao et al., Nanotechnology 31, 155705 (2020).[3] X. Zhao et al., Appl. Phys. Lett. 116, 242401 (2020).[4] G. Wang et al., IEEE Trans. Circuits Syst. I Regul. Pap. 66, 215 (2019).[5] X. Zhang et al., Phys. Rev. Appl. 11, 054041 (2019).[6] J. Han et al., Science (80-. ). 366, 1121 (2019).[7] N. Vernier et al., Appl. Phys. Lett. 104, 122404 (2014).[8] M. Yamanouchi et al., IEEE Magn. Lett. 2, 3000304 (2011).[9] Y. Zhang et al., Phys. Rev. Appl. 9, 064027 (2018).
  • 2015激光共焦超高分辨显微学研讨会举行
    仪器信息网讯 2015年3月17日,北京理化分析测试技术学会和北京市电镜学会主办的&ldquo 北京市2015年度激光共焦超高分辨显微学学术研讨会&rdquo 在北科大厦举行。该会议旨在推动北京市及周边省市激光共焦超高分辨显微学的进步和发展,提高广大相关工作者的学术及技术水平,促进上述学科在生命科学等领域中的应用。会议得到了相关学者的热烈响应,约160余人参加了此次会议。会议现场  北京市电镜学会理事长郑维能、秘书长张德添,北大医学部何其华、北大医学部第一医院王素霞主持会议。  超高分辨显微技术进展  自荷兰博物学家、显微镜创制者列文虎克在17世纪第一次将光线通过透镜聚焦制成光学显微镜并用它观察微生物以来,显微镜就一直是生物学家从事研究工作、探寻生命奥秘必不可少的利器。正是因为有了列文虎克的这项伟大发明及其后继者对显微镜技术的不断改进和发展,人们才能够对细胞内部错综复杂的亚细胞器等结构的形态有了初步的了解。  然而为了更好地理解生命过程和疾病发生机理,生物学研究需要观察细胞内器官等细微结构的精确定位和分布,阐明蛋白等生物大分子如何组成细胞的基本结构,重要的活性因子如何调节细胞的主要生命活动等,而这些体系尺度都在纳米量级,远远超出了常规的光学显微镜的分辨极限(约为200nm)。  为了解决生命科学研究面临的一系列难题,超高分辨率显微技术应时而生,并且一经问世就得到了广泛的响应。2008年Nature Methods将这一技术列为年度之最。2014年,美国科学家Eric Betzig,德国科学家Stefan W. Hell,美国科学家William E. Moerner,因他们在超分辨率荧光显微技术领域取得的成绩,获得了该年度的诺贝尔化学奖。报告人:北京大学 席鹏  目前,超高分辨显微技术虽然能获取很高的空间分辨率,却总是以牺牲时间分辨率为代价。同时,这些方法技术复杂、系统成本较高,这给推广应用带来一定困难。如果人们希望显微镜能在生物研究领域发挥重要作用,就必须对其加以改进和提高。  北京大学席鹏课题组一直致力于超分辨显微成像技术研究。在报告中,席鹏介绍了超分辨显微技术的发展与应用,并详细介绍了课题组研究的两类超分辨技术:多色联合标记超分辨技术和多模态三维超分辨技术。其中多色联合标记超分辨研究成果发表于Nature出版的Scientific Reports期刊,多模态三维超分辨技术相关研究成果发表于Springer和清华大学出版社联合出版的Nano Research期刊上。报告人:蔡司 库玉龙  库玉龙介绍了蔡司在2014年最新推出的Airyscan技术。Airyscan技术可以应用于蔡司LSM 800和LSM880激光共聚焦显微镜,是第一款可用于正置显微镜观察的超高分辨率产品。据介绍,传统的共聚焦显微镜通过针孔来阻止非焦平面的发射光。Airyscan检测器不在针孔处限制光通量,而是直接用一个32通道的六边形平面探测器收集所有发射光,其中每个探测器元件都是有效的单个针孔。这一技术的使用,使LSM880的总体分辨率增加了1.7倍,即140 nm的横向分辨率和 400nm的轴向分辨率。报告人:徕卡 吴立君  吴立君介绍说,2014年诺贝尔化学奖获得者Stefan W. Hell与徕卡显微系统的工程师和科学家有长期良好的合作关系,从他还是博士生时,他就与徕卡共同研发超高分辨显微镜,至今双方合作超过15年。早在2004年双方合作推出了商业化4Pi超高分辨显微镜 2007年, Stefan W. Hell将STED(受激发射损耗)专利技术授权徕卡研发。  此外,吴立君介绍了徕卡推出的Leica TCS SP8 STED 3X受激发射损耗显微镜,以及即将推向市场的光谱更宽、分辨率更高、样品保护更强的受激发射损耗显微镜新产品。报告人:尼康 赵媛  赵媛介绍了尼康的N-SIM和N-STORM超分辨显微镜。据介绍,N-SIM结构照明显微技术专门为活细胞超高分辨率成像而设计,使用了全内反射结构照明(TIRF-SIM)来提高样品表面的空间分辨率,并且时间分辨率可以达到0.6秒/帧。其中结构照明显微技术(SIM)由旧金山加州大学授权。  N-STORM则将哈佛大学授权的&ldquo 随机光学重构显微术(STORM)&rdquo 与尼康的Eclipse Ti研究级倒置显微镜结合在了一起,能够显著提高分辨率,可达到传统光学显微镜分辨率的十倍或者更多,可采集纳米级的二维或三维多光谱图像。报告人:奥林巴斯 方琳  方琳介绍了奥林巴斯近年来推出的多光子扫描显微镜和超高分辨技术。2013年9月,奥林巴斯推出了FVMPE-RS多光子扫描显微镜,具有高速高灵敏度双光子成像技术、空间精确红外光刺激和可见光光刺激及更深的成像深度,更长波长光校准及透过率系统。能够有效收集动态影像,如被标记的细胞在血液中&ldquo 缓缓&rdquo 流动,斑马鱼的心脏&ldquo 慢慢&rdquo 起伏等。  2014年10月,奥林巴斯推出了独创的超高分辨技术FV-OSR,结合了众多精良的光学部件和超高灵敏度探测器,成功将传统共聚焦显微镜的分辨率提高了两倍,理想条件下XY水平分辨率可达120~150 nm。实现了简化操作和广泛兼容等新特性,将共聚焦技术与特制的超分辨光学附件相结合,可以在FV1000或FV1200共聚焦系统上升级。报告人:珀金埃尔默 卢毅  高内涵筛选(HCS)系统可以对细胞形态或生化特性所发生的改变进行高通量分析。现在,高内涵筛选系统已经成为基础科学和药物研发领域中的一个重要工具。  卢毅介绍说,PerkinElmer在2014年推出了Opera Phenix&trade 共聚焦HCS系统。这款设备的设计旨在令速度最大化,同时不牺牲系统的灵敏度。对于HCS系统来说,在获取数据的同时进行数据分析会限制检测的灵敏度,不过这样能够节省筛选的时间。有时光谱重叠会导致不同的荧光素发生相互干扰,从而限制整个系统的灵敏度。而Phenix依赖于PerkinElmer的专利技术Synchony&trade Optics,该技术可以控制荧光素的激发,从而减少荧光信号之间的干扰,提高了系统的灵敏度。  超高分辨显微技术应用  很长时间以来,人们都认为光学显微镜技术无法突破&ldquo 阿贝分辨率&rdquo ,即永远不可能获得比所用光的波长一般更高的分辨率。然而近十多年来,科学家们在此领域获得了精彩的成果,突破了光的衍射极限分辨率。其中尤其是STED(受激发射损耗)显微技术和分子定位显微技术,让科学家能在纳米水平观察到活细胞内个别分子的作用路径,可以看到分子是如何在大脑神经细胞形成突触的 也可以跟踪哪些与帕金森症、阿茨海默症等疾病有关的蛋白质分子聚集,在真正意义上扩大了科学家们的视野。而这些都将有助于人们进一步了解这些疾病的形成机理,帮助我们去克服治愈它们。报告人:清华大学 谢红  清华大学谢红在报告中介绍了双光子活体成像技术在学习记忆和阿尔兹海默病研究中的应用。双光子显微镜现在已经成为活体脑功能研究中重要的研究工具,双光子成像具有较深的穿透力、更为集中的空间聚焦、较小的组织损伤性等特征。因此,一方面利用双光子显微镜能够在细胞甚至是亚细胞水平上对活体中的神经细胞结构形态、离子浓度、细胞运动、分子相互作用等生理现象和过程进行直接的成像监测,另外还能进行光裂解、光激活、光转染和光损伤等光学操纵。报告人:中科院生物物理所 李岩  中科院生物物理所李岩目前的研究主要为:以果蝇为动物模型,探索高级脑功能的细胞分子机制,涉及的研究领域和方法包括神经发育生物学、分子遗传学、学习认知行为的神经环路等方面。并以已有的行为范式,如进食,睡眠和学习记忆为基础,深入研究单基因对细胞形态、神经网络发育、及高级脑功能的作用,并探讨环境因素,如地磁场等对生物高级脑功能的影响及其机制。在她的研究中,激光共聚焦超分辨显微学技术发挥了重要作用。报告人:阜外医院 聂宇  阜外医院聂宇则介绍了激光共聚焦超分辨显微技术在&ldquo 激活心外膜&mdash &mdash 哺乳动物心肌再生调控的新途径&rdquo 中的应用。据介绍,由于心肌梗死发生后,梗死区被纤维组织替代,心脏泵功能受损,最终导致心衰和死亡 其原因在于心肌无法实现对损伤的自我修复,心肌细胞发生凋亡或坏死后,如果有充足的心肌细胞来源,对其进行替代和补充,将可能实现心功能的重新恢复。故而,心肌再生是目前心血管科学领域的研究热点。撰稿:秦丽娟
  • 北京2015激光共焦超高分辨显微学研讨会通知
    关 于 举 办&ldquo 北京市2015年度激光共焦超高分辨显微学学术研讨会&rdquo 的通 知  为推动北京市及周边省市激光共焦超高分辨显微学的进步和发展,提高广大相关工作者的学术及技术水平,促进上述学科在生命科学等领域中的应用,北京理化分析测试技术学会和北京市电镜学会共同决定在2015年3月17日下午13:00-18:00(星期二),在北京市北科大厦举办一次&ldquo 北京市2015年度激光共焦超高分辨显微学学术研讨会&rdquo 。会期半天。届时将邀请国内专家学者和青年科技工作者作相关学科的发展前沿学术报告。同时还邀请相关的主要厂商和公司到会宣讲及展示其最新产品、仪器及其最新功能。(学术报告时间安排表附后)  具体事项通知如下:  1、会议日期及报到时间:  报到时间:2015年3月17日(星期二)。下午1:00&mdash 1:30  会议日期:2014年3月17日(星期二)。下午1:30至下午6:00。  2、会议地点:北京市海淀区西三环北路27号,北科大厦(路西,中国剧院对面)三楼报告厅。  3、乘车路线:可乘300、704、708、730、811、830、817、849、968、特5、运通103、运通201、运通206等,在万寿寺站下车便到。中国剧院对面就是北科大厦(路西)。  4、会议将根据实际报名情况准备好资料,并提供饮料、饮品等。  5、特邀请您及您的同事、学生参加。并将回执务必于2015年3月13日前,用EMAIL告知:yujing8855@126.com。  6、会议负责人的具体联系地址、联系电话、邮箱如下:  (1)北京理化分析测试技术学会:于靖琦:  EMAIL:yujing8855@126.com, 联系电话:010-68731259,13521470325,  (2)北京市首都师范大学,郑维能,  EMAIL:Cnu_zhengweineng@163.com,联系电话:13671116332。  (3)北大医学部,何其华,  EMAIL:hqh@bjmu.edu.cn,联系电话:13501058133。  (4)军事医学科学院,张德添 ,  EMAIL:Zhangdetian2008@126.com,联系电话:13366267269。  此致  敬礼!  北京理化分析测试技术学会  北京市电镜学会  2015年2月27日  回执用EMAIL发回yujing8855@126.com告知。姓名工作单位个人邮箱联系电话和手机号码 &ldquo 北京市2015年度激光共焦超高分辨显微学学术研讨会&rdquo 学术报告时间安排表(2015年3月17日下午13:00-18:00,星期二,北京北科大厦)时 间主持人报 告 人报 告 内 容 或 题 目13:10&mdash 13:30于靖琦 会议报到。资料发放等。13:30&mdash 13:55郑维能北大工学院:席 鹏。超高时空分辨率光学显微镜技术及应用。13:55&mdash 14:20何其华蔡司:库玉龙。ZEISS new generation of Confocal, with the advanced Airyscan technology。14:20&mdash 14:45张德添清华大学:谢红。双光子活体成像技术在学习记忆和阿尔兹海默病研究中的应用。14:45&mdash 15:10孙 飞徕卡:王怡净。徕卡激光共焦超高分辨显微学最新进展。15:10&mdash 15:35王素霞北航:李晓光。应用组织工程修复脊髓损伤的基础及临床试验研究。15:35--15:45 会议之间休息。 15:45&mdash 16:10张德添尼康:赵 媛。尼康超分辨显微镜的最新进展。16:10&mdash 16:35孙 飞生物物理所:李岩。Functional Imaging of a Single GABAergic Neuron during Learning in Drosophila Central Brain。16:35&mdash 17:00郑维能奥林巴斯:方 琳。奥林巴斯透明化定制技术及超分辨率共聚焦显微镜。17:00&mdash 17:25何其华阜外医院:聂 宇。激活心外膜&mdash &mdash 哺乳动物心肌再生调控的新途径。17:25--17:50王素霞PE:卢 毅。激光共聚焦高内涵系统在高通量生物学上的应用。17:50&mdash 18:00郑维能何其华、张德添。解答问题、自由交流、宣布会议圆满结束。  注:上述所有报告时间均为20分钟以内,提问答疑时间均为5分钟以内。  北京理化分析测试技术学会  北京市电镜学会  2015年2月27日
  • 科技创新: 超高分辨率显微镜行业春林初盛
    光学显微镜至今已有三百多年的历史,从观察细胞的初代显微镜发展到如今打破分辨率极限的超分辨显微镜。近年来,生命科学领域蓬勃发展,对显微成像技术不断产生新的需求,光学显微镜不断向更高分辨率、快速成像、3D成像等高端技术方向发展。 我国高端光学显微镜市场长期处于被国外产品垄断的局面,许多关键核心部件依赖进口。令人欣喜的是,近五年来,市场上涌现出多种国产高端光学显微镜,包括超分辨显微镜、双光子显微镜、共聚焦显微镜、光片显微镜等,逐渐打破当前市场格局。基于此,仪器信息网特别制作“破局:国产高端光学显微镜技术‘多点开花’” 专题,并向国产光学显微镜企业广泛征稿(投稿邮箱:lizk@instrument.com.cn),了解各企业主要高端光学显微镜产品技术特点和发展进程。本篇为宁波力显智能科技有限公司供稿,公司主要产品为INVIEW iSTORM超高分辨率显微镜,其采用的STORM技术是目前国内鲜少有的超分辨技术类型。撰稿人:宁波力显智能科技有限公司副总经理张猛博士人类的历史,也是一部工具的历史。人类发展的历程就是关于如何对世界了解的更多,将人类生活变的更好更先进的历程。从旧石器时代,原始人拿起第一块石头当作工具开始,就开启了用工具进行未知世界探索和创造性改变的历程。从古至今,人类都是工具发明和使用的种族,新工具的问世也反哺人类的成长和进步,让人类一次次突破原有认知边界看到更多的未知,解决更多的问题,取得更多的成就。显微镜,正是一项帮助人类认识微观世界从而改变世界的革命性工具,也是人类探索微观世界不可缺少的工具。显微镜问世之前,人类仅可用感官来把握世界,所能认识到最小世界就是“目所能及”的常规世界,人的肉眼仅能分辨约0.1毫米尺度的物体,因而相关科学的发展缓慢。当罗伯特胡克使用显微镜观察到软木塞上的“小室”,并将其命名为细胞时,可能还没有意识到他这次实践将为人类开启微观世界的大门。人类对未知领域无限的好奇心是推动科学技术前进的动力之一,为了解析关乎生命基本结构,回答有关物质与生命等基本问题,为此人类不断开发出更为精密、分辨率更高的显微镜来探寻这些问题的答案。经过400多年的发展,近几年国际上出现了超高分辨率显微镜这一工具,一经面世就引起了众多科学家的关注和极大兴趣。那么什么是超高分辨率显微镜,为什么它能让科学家如此感兴趣呢?我们一起往下看。超高分辨率显微镜的诞生,是生命科学史上的一座里程碑简单的讲,超高分辨率显微技术是通过应用一系列物理原理、化学机制和算法“突破”了光学衍射极限,把光学显微镜的分辨率提高了几十倍,使得人类能在200nm以下以前所未有的视角观察生物微观世界的技术,具有超高分辨成像技术和实现超高分辨率成像能力的显微镜就是“超高分辨率显微镜”。那么什么是光学衍射极限呢?所谓光学衍射极限,是1873年德国科学家恩斯特阿贝提出的,由于光是一种电磁波,存在衍射,一个被观测的点经过光学系统成像后,不可能得到理想的点,而是一个衍射像,每个物点就像一个弥散的斑,如果这两个点靠得很近(小于可见光波长大约一半,约200nm),弥散斑就叠加在一起,看到的就只能是一团模糊的图像,也就无法清晰观测到衍射极限以下物体的微观空间结构。并且光学衍射极限此前长期被认为是限制光学显微镜技术通向更微观的“拦路虎”和“绊脚石”,甚至被科学界一度认为是无法突破或绕开的。直到2000年,几位世界知名科学家先后发明了几种不同技术路线的的超高分辨率显微技术。其中,Stefan Hell、Eric Betzig和W.E. Moerner三位科学家就是因其在超高分辨率显微成像技术领域的突出贡献,获得了2014年诺贝尔化学奖。至此,人类才得以突破光学衍射极限这一横亘在前、不可逾越的“大山”,实现了200nm以下超高分辨率显微成像,以光学的方法观测到纳米尺度世界的真实样貌。超高分辨率显微镜可用来研究分子定位与空间分布、分子相互作用、分子复合物的构成,并可实现分子的计数。除具有200nm以下卓越分辨率性能外,对生命样品结构也可进行精准成像定位,还具备对活体细胞进行微观观察的可能性,对于生物、生命科学、医药、医学等的领域都有着重要意义,因此吸引了全球科学家的持续研究和关注。通常来说,超高分辨率显微镜主要有两大类技术策略,一类是通过特定模式照明对分子受激荧光差异化调制实现超高分辨率成像。代表产品有受激发射光耗损显微镜(Stimulated Emission Depletion, STED)和结构光照明显微镜(Structured Illumination Microscopy, SIM)。另一类,是利用荧光分子的“开关”特性,使其随机闪烁,从而能够对单个分子分别记录,实现超高分辨率成像。随机光学重构显微镜(Stochastic Optical Reconstruction Microscopy, STORM)就是这类技术路线的代表。第一大类中,STED及其衍生都是利用“甜甜圈”状的空心光束来修饰位于中间激发光的点扩散函数(Point Spread Function, PSF),从而达到直接超分辨成像的目的。而SIM则是利用了结构光照明,以获得包含样本的结构信息的干涉图案“摩尔条纹”,加上后期的图像重构,达到超分辨成像的目的。第二大类中,STORM是利用了荧光染料分子“光控开关”(photo-switchable)性质,达到在一个衍射极限空间内(200~300 nm)随机“点亮”单个荧光分子并进行高精度定位的目的。既然叫超高分辨率显微镜,最为重要的就是对空间分辨率的提升。其实无论哪一类技术,理论上空间分辨率都是可以实现无穷小,但是受限于样本、荧光染料特性、标记密度、激发光效率等原因,实际拍摄中能实现的空间分辨率是几十纳米。从遍地洋货到国货崛起众所周知,高端显微镜市场被“洋货”所长期垄断,不仅在国外如此,在中国也是如此,国货“芳踪难觅”,这对于我们这样一个大国来说可算是“一言难尽”。当然,也有令人感到振奋的信息,那就是在超高分辨率显微镜这个细分领域,除了“洋货”最近也已见到了国货产品的身影。宁波力显智能科技有限公司(INVIEW)的超高分辨率显微镜产品INVIEW iSTORM就是一款国产超高分辨率显微产品。宁波力显智能科技有限公司是专业从事超高分辨率显微技术和产品研发的科技企业,依托复旦大学的自动控制、新一代信息技术及香港科技大学的生物、光学、图像处理等的技术,拥有光学、生物、自控、机械、信息技术等多领域交叉学科技术团队,将2014年诺贝尔化学奖得奖技术产业化,推出了INVIEW iSTORM超高分辨率显微产品,以帮助人类以前所未有的视角观察微观世界,突破极限,见所未见。INVIEW iSTORM超高分辨率显微镜产品采用dSTORM技术路线,具有20nm超高分辨率、2-3通道同时成像、界面友好、简单易用、系统稳定性好、环境适应性高等的特点。技术先进,20nm超高分辨率,3D成像采用STORM随机光学重构技术,加入柱面镜设计,在XY轴分辨率达20nm、Z轴分辨率达50nm,具备3D成像功能。多通道同时成像光路设计,稳定性高采用专有的多通道同时成像的光路设计,提供稳定的光路。自主开发的成像分光光路,可保证通道间的光学路径相对独立,使得样品发出的荧光最大效率地被探测器接收,最大限度降低通道间的串扰。并配合以最佳染料方案和最佳成像缓冲液配方,以多通道同时成像的方式,在几秒到十几分钟的时间范围内实现20nm的超高分辨率成像。物理样品锁定设计,锁定精度1nm采用纳米级实时动态锁定技术,以实时物理补偿方式纠正样品漂移,无需预热,即开即用,操作简便,免受如气流、温度变化、噪音、机械振动等的环对样品位置的影响,在高楼层、嘈杂、震动、常温常态的环境下也能稳定成像,因而具有高效、简便、对环境适应性好的特性,友好易用。 “傻瓜式”操作,易学易用软件集成了多种成像算法,并在采集数据时实时呈现超高分辨图像重构结果和详细参数,“所见即所需”,操作流程化,简单易用。具有拍摄过程简单易用、参数优化实时透明、超分辨图像实时重构、自动化用户数据管理、图像数据后分析功能等五大特点。此外,经过优化的样本制备方案更易于实验人员的掌握和实际操作。即便是技术新手,经过简单的技术讲解,2个小时以内就可操控系统并获得理想的超分辨率成像结果。以上,INVIEW iSTORM超高分辨率显微产品所具备的综合特点和优势,使得它能够帮助到更多科学家进行衍射极限尺度以下的生物分子组织与相互作用等的尖端科学研究。另外,值得一提的是,INVIEW iSTORM产品还以优异的光路、较低强度的照明、多通道同时成像所支持的较短成像时间等的综合性能,结合合适的荧光探针及根据探针特性调整的探测器拍照频率等,实现活细胞的超高分辨率成像,这将更大程度上帮助到科学家在生物学基本问题与机制上的科学研究。随着人类对自然的认识向更加微观的时空尺度,传统的科研手段已经不能完全胜任,没有高端科研仪器,要想做出重大原始创新科研成果很困难。力显智能科技将继续立足于超高分辨率显微镜技术研究及产品开发,不断推出新技术、新品,从而推动高端显微技术在中国的产业化和应用,努力为我国生命科学、医学、药学等领域的科学研究提供强大助力。INVIEW iSTORM超高分辨率显微产品超高分辨率显微技术的未来可期作为一种新兴荧光显微成像技术,超高分辨率显微成像正受到科学家们的广泛关注,实验室中不断产生着振奋人心的数据。围绕着超高分辨率核心,主要研究方向为不断提高显微镜成像性能,使其分辨率更高,成像速度更快,成像深度更深,视野范围更大,及更低的光毒性光漂白。而我们也可以清晰的看到,由于不同的超高分辨率成像技术提升分辨率的技术路径差异,很难有“面面俱到”的技术可以满足差异化样品的全部成像需求,“精准成像”,也就是针对不同的样品特点,而选择最适合这类样品的显微成像技术,是进行生命科学等领域研究的最优解,这也促使生物,光学,算法,图像处理等领域的研究人员不断深入跨学科合作,共同探索生命的奥秘。即便有了更快、更高、更深、范围更大,更低光毒性光漂白的超高分辨率显微镜,扩展应用仍有诸多挑战。细胞内有成千上万的转录本,有数以万计的蛋白分子。超高分辨率显微镜能否用来实现组学水平的多分子检测?能够找到或开发出足够多样的荧光染料以匹配更多分子吗?或者能找到奇方妙法可以实现多重、多轮检测吗? 能否开发出新型的荧光染料,使其具有更高的光子预算,更好的光稳定性、光激活、光开关以及转换速率等特性;研制更快更灵敏的光子探测器、输出功率更高的激光器;更稳定、高效、智能的光学系统;更加高效的算法以及不同超高技术路线的联合应用;开发组学水平的多重检测方法等等,正有许多的科学家、研究者们正在进行着有益的尝试。相信未来超高分辨率技术应可应用于实现细胞内的原位测序、原位转录组与蛋白质组分析,并最终获得全景的、多组学、全时空细胞全部分子组织及相互作用图像,真正实现分子生物学与细胞生物学的新融合,让人类有更全面、更精细的视角来理解生命的基本分子组织及其运行的基本机制!超高分辨率技术和产品应用前景巨大,未来可期,令人振奋!
  • 北京2017年度激光共焦超高分辨显微学学术研讨会召开
    p  strong仪器信息网讯/strong 2017年3月21日,一年一度由北京理化分析测试技术学会和北京市电镜学会共同主办的“北京市2017年度激光共焦及超高分辨显微学学术研讨会”在北京理工大学国际教育交流大厦举行。大会旨在推动北京市及周边省市激光共焦超高分辨显微学的进步和发展,提高广大相关工作者的学术及技术水平,促进上述学科在生命科学等领域中的应用。/pp  据悉,此次研讨会已是北京理化分析测试技术学会携手北京市电镜学会共同主办的第八届,与往届不同的是,应广大参会者的需求和呼声,大会日程首次由过去的半天增至一天,报告数增至17个,参会人数也达到历届新高,近200名专家、学者和厂商技术人员等参加了本次研讨会。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/bac3ce0b-e65e-4ec2-9d82-ae98af194d67.jpg" title="1.jpg"//pp style="text-align: center "  strong会议现场/strong/pp  北京市电镜学会秘书长张德添、北大医学部何其华、北大医学部第一医院王素霞等多位业内专家主持会议。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/39ee371c-54a4-4541-bfbc-a394978d72bd.jpg" title="2.jpg"//pp style="text-align: center "  strong报告人:北京大学神科所 张勇/strong/pp style="text-align: center "strong  报告题目:Visualizing AMPA receptor synaptic plasticity in vivo/strong/pp  人类大脑是世界上最复杂的器官之一,据统计,人类大脑中神经元数量约达1000亿个,如此庞大数量的神经元是如何协同工作,如何在大脑中“对话”呢?张勇研究员以“在活体动物样本上观测AMPA受体突触的可塑性”为题,介绍了其在国外期间的一项相关研究,通过运用双光子活体成像的技术,研究了神经元表面AMPA型谷氨酸受体动态变化、神经元活性,以及神经元内多种信号通路的活性对动物行为的影响。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/adb7a5a7-39e1-47dc-8377-609523fee294.jpg" title="3.jpg"//pp style="text-align: center "  strong报告人:JPK公司 郭云昌/strong/pp style="text-align: center "strong  报告题目:原子力显微镜与超高分辨光学最新联用技术/strong/pp  从1999年成立以来,德国JPK公司成立历史虽然不足20年,但JPK近来的发展却不可小觑,其原子力显微镜产品不仅在生命科学领域获得广泛好评,2016年还推出了世界首台光镊-原子力显微镜联用仪OT-AFM。作为JPK中国区总经理,郭云昌博士在报告中介绍了JPK的发展历史,同时还详细讲解了JPK的产品系列、JPK原子力显微镜的全针扫描技术,以及AFM-Raman、AFM-光镊等联用技术。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/0331fee5-a95e-4678-827c-e098f021ee05.jpg" title="4.jpg"//pp style="text-align: center "  strong报告人:中国科学院过程所 魏炜/strong/pp style="text-align: center "strong  报告题目:基于材料设计高效的疫苗佐剂/strong/pp  针对胞内病毒感染需要增强细胞免疫的关键问题,魏炜研究员团队构建和设计了具有pH敏感特性的薄皮大腔PLGA纳微球,并将其进行了模式抗原OVA的装载,体外考察表明其具有良好的pH敏感释放行为。同时,DC细胞实验表明所构建的纳微球被摄取后,能够有一部分抗原成功逃逸至胞质中,循MHCⅠ途径递呈,增强细胞免疫,而未逃逸的抗原则可以循MHCⅡ途径提呈,活化B细胞分泌抗体,动物实验结果也证实,所构建的薄皮大腔PLGA纳微球与传统实心颗粒相比,能够获得更好的细胞与体液免疫水平。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/2fc57a5b-1131-41c2-9c25-7337ed390de0.jpg" title="5.jpg"//pp style="text-align: center "  strong报告人:蔡司 傅利琴/strong/pp style="text-align: center "strong  报告题目:蔡司共聚焦超高分辨快速成像的新方法/strong/pp  来自蔡司的傅利琴重点介绍了蔡司革新共聚焦LSM8系列产品:搭载Airyscan技术的LSM800和LSM880。据蔡司针对250多位专业共聚焦用户调研结果显示,用户更加关注的需求包括:兼具更优异的图像质量、清晰(更多细节)、活细胞快速成像、组织或活体深度成像等,而LSM8系列产品的优良性能则正是满足了客户上述的需求。另外傅利琴还介绍了蔡司的光电联用解决方案,包括关联显微镜样品台、一体化软件解决方案、光电图像半自动化重叠等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/649a113c-0ef6-44c9-81bd-80812a4ca0de.jpg" title="6.jpg"//pp style="text-align: center "  strong报告人:中国科学院生物物理所 候冰/strong/pp style="text-align: center "strong  报告题目:组织透明技术研究进展/strong/pp  作为一种与传统切片技术互补的新兴组织学技术,组织透明技术因目前最先用于、也最常用于脑组织而又被称为透明脑技术。候冰老师在报告中为大家介绍了组织透明技术的产生背景、技术原理,以及该技术在发展演化历史长河中的教条及突破。最后,候冰老师还分享了时下流行组织透明技术的比较以及该技术的选择原则。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/256e9493-9919-46d5-adf5-3e01c4c42a9f.jpg" title="7.jpg"//pp style="text-align: center "  strong报告人:FEI公司 于洋br//strong/pp style="text-align: center "strong  报告题目:FEI光电关联技术的应用/strong/pp  2016年,赛默飞世尔科技完成对电子显微镜制造商FEI的收购,来自FEI的于洋首先介绍了光学显微镜与电子显微镜的应用区别以及光电联用的技术背景,接着重点讲解了FEI电镜与其他光学显微镜联用的桥梁软件MAPS,搭载这款软件的光电联用设备的多图片拼接技术,可以实现电子显微镜高精度和光学显微镜大视野图像的完美拟合。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/73de4795-ef8e-40e7-9b61-d2cde516cff6.jpg" title="8.jpg"//pp style="text-align: center "  strong报告人:安道尔公司 王刚/strong/pp style="text-align: center "strong  报告题目:多模式高速共聚焦成像平台-Dragonfly/strong/pp  隶属于牛津仪器的安道尔科技有限公司的王刚向大家介绍了多模式高速共聚焦成像平台-Dragonfly,Dragonfly 核心功能是多点高速,高灵敏度共聚焦成像,其采集速度比普通点扫描共聚焦技术快至20倍。另外采用高分辨,高灵敏的探测器,有效减少活细胞成像的光毒性及光漂白,同时也适合于固定样品的高分辨快速三维成像。Dragonfly 配制的Fusion软件简化了Dragonfly的控制系统,用它的多种成像模式,荧光基团和成像模式的选择可通过鼠标三次点击切换。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/c495d354-4d31-43a1-a7e7-119c4b8d531a.jpg" title="9.jpg"//pp style="text-align: center "  strong报告人:中国医科大学 赵伟东/strong/pp style="text-align: center "strong  报告题目:活细胞中的半融合与半分裂现象/strong/pp  真核细胞中动态的膜融合与膜分离对维持细胞的生命活动至关重要,赵伟东在研究半融合与半分裂现象过程中,利用活细胞显微成像结合膜片钳技术来检测单个囊泡的分泌及胞吞。最终证实了半融合假说,提供了实验模型,为探讨活细胞中膜性细胞器的膜融合及分裂机制提供了理论基础及实验模型。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/e4ff8a3f-3e0d-41e7-9ea6-b0d95d440ff1.jpg" title="10.jpg"//pp style="text-align: center "  strong报告人:蒂姆温特 齐冬/strong/pp style="text-align: center "strong  报告题目:最方便易用的光电联用技术介绍/strong/pp  蒂姆温特的齐冬向大家介绍了一种方便易用的光电联用技术:光电融合成像显微镜(CLEM),该技术具有的优势包括:解析光镜未见结构、实现电镜多色标记、准确区分小目标物、长距离结构关联性等。另外,齐冬还表示,他们已经做了一些光电融合成像设备的简单尝试,结果显示,该产品具有高速、易用、高效、简洁、高NA成像、自动图像叠加、开源软件等特点。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/382a1df1-bf69-45af-b2e9-a8c5e52c999e.jpg" title="11.jpg"//pp style="text-align: center "  strong报告人:中国科学院生物物理所 李硕果/strong/pp style="text-align: center "strong  报告题目:3D-SIM超高分辨荧光显微镜使用经验分享/strong/pp  李硕果向大家分享了自己多年在科学研究平台生物成像中心使用超高分辨荧光显微镜Delta Vision OMX V3的使用经验。从样品制备、设备保养、注意事项等多角度与大家进行了交流。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/1647a981-19d0-4959-8a21-f1ff481cd4ef.jpg" title="13.jpg"//pp style="text-align: center " strong 报告人:GE公司 宁丰收/strong/pp style="text-align: center "strong  报告题目:SIM用于活细胞超高分辨成像/strong/pp  超高分辨技术主要包括:SIM技术、STED技术、单分子定位超高技术(STORM/PALM),来自GE公司的宁丰收主要介绍了SIM技术的原理及应用,同时详解了GE产品在SIM技术方面的优势以及诸多广大客户的成功应用案例。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/54ba275a-866f-4c4d-84ca-0b4f889a4af3.jpg" title="14.jpg"//pp style="text-align: center "  strong报告人:北京大学 席鹏/strong/pp style="text-align: center "strong  报告题目:超分辨显微成像:更清晰,更丰富/strong/pp  超分辨显微成像技术的进一步发展受到如下方面的制约:分辨率仍需进一步提高,以及从超分辨图像中提取更多的生物信息。席鹏研究员在报告中介绍他们团队的一些相关工作:第一,通过引入镜面反射实现干涉,将STED超分辨的轴向分辨率提高了6倍,水平分辨率提高了2倍。首次观察到了细胞核孔中心孔的环状结构,分辨率达到了19nm,刷新了STED分辨率在生物样品上的世界纪录 第二,成功实现了在30mW的低功率连续光照射下,28nm的超分辨显微 第三,实现了一种全新的超分辨技术---荧光偶极子方位角超分辨(SDOM)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/b7d9574d-b1dc-4a6b-b8d2-84142395d25b.jpg" title="15.jpg"//pp style="text-align: center "  strong报告人:奥林巴斯 戚少玲/strong/pp style="text-align: center "strong  报告题目:OLYMPUS最新共聚焦成像技术:FV3000/strong/pp  来自奥林巴斯的戚少玲向大家分享了去年发布的新一代激光扫描共聚焦显微镜新品——FV3000,据介绍FV3000引入了两套扫描振镜,其中一套是高分辨率扫描振镜,具有先进显微镜特有的高分辨率成像能力 另一套是共振式扫描振镜,在保持大视野成像基础上兼顾了高速成像的表现。在全视野成像标准下,FV3000能够实现一秒钟内在屏幕上连续投射出 438张静止画面的采集速度,创下了业内扫描速度的新记录,可实时观察测钙、血流、心肌收缩等活细胞反应。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/3bf43132-90ed-4d76-874f-27b8898baa1e.jpg" title="16.jpg"//pp style="text-align: center " strong 报告人:中国科学院植物所 张辉/strong/pp style="text-align: center "strong  报告题目:植物根样品钙火花来源的基础方法学研究/strong/pp  与其他报告不同,张辉研究员报告内容的主题不是动物,而是植物。张辉研究员首先为大家科普了动物与植物细胞在超微结构上的巨大区别。最后介绍了自己团队进行植物根样品钙火花来源的基础方法学研究的研究背景以及前期设计的静态观察技术路线(高压冷冻和冷冻替代制备叶组织)。/pp style="text-align:center"img src="http://img1.17img.cn/17img/images/201703/insimg/b0407962-b620-48ab-829a-1bc28841e144.jpg" title="17.jpg"//pp style="text-align: center "  strong报告人:尼康仪器 李勋/strong/pp style="text-align: center "strong  报告题目:超高分辨系统最新进展——N-STORM/strong/pp  来自尼康仪的李勋向大家介绍了尼康新一代N-STORM超分辨显微成像系统,与N-STORM相比,N-STORM 4.0的图像采集速度提高了10倍,使得活细胞纳米级分辨率图像的拍摄成为了可能。N-STORM 4.0 实现了激光激发设计和sCMOS相机的升级,单张图像的采集速率从分钟级提高到秒极。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/6415041d-a54c-43c6-b54c-116eb46b0a0c.jpg" title="18.jpg"//pp style="text-align: center "  strong报告人:军事医学科学院 周涛/strong/pp style="text-align: center "strong  报告题目:高分辨显微技术在细胞周期研究中的应用/strong/pp  细胞周期异常与疾病密切相关,有丝分裂异常可能导致发育缺陷、心血管疾病、肿瘤等。周涛博士在报告中介绍其在细胞周期研究中应用到的两种显微成像技术,借助传统共聚焦成像技术考察了蛋白质有丝分裂时相中的定位、染色体中期排列状态、微管光强等 而利用超高分辨成像技术,则可以进一步研究微管与着丝粒的连接、着丝粒在微管上的运动状态,以及后期染色体滞后表型。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/870a1693-ef06-471c-86a5-be2958f37169.jpg" title="19.jpg"//pp style="text-align: center "  strong报告人:徕卡 王怡净/strong/pp style="text-align: center "strong  报告题目:徕卡超高分技术的最新应用/strong/ppstrong /strong 据来自徕卡的王怡净介绍,2014年诺贝尔化学奖获得者Stefan W. Hell与徕卡显微系统的工程师和科学家有长期良好的合作关系,早在2004年双方合作推出了商业化4Pi超高分辨显微镜,2007年, Stefan W. Hell将STED(受激发射损耗)专利技术授权徕卡研发。徕卡激光共聚焦平台——Hyvolution,可以帮助研究人员在140nm的分辨率下研究活细胞的快速动态过程,并同时采集多荧光标记的图像,或捕捉细胞内的细节信息。  /p
  • 350万!清华大学高稳定超高分辨显微成像系统采购项目
    项目编号:清设招第2022118号项目名称:清华大学高稳定超高分辨显微成像系统采购项目预算金额:350.0000000 万元(人民币)采购需求:包号名称数量是否允许进口产品投标01高稳定超高分辨显微成像系统1套是设备用途介绍:观察固定/活细胞或组织内部超微结构和形态变化(包括但不限于各种细胞的亚细胞器、分泌囊泡、突触、染色体以及包括蛋白质在内的大分子等)的超高分辨率水平(≤50nm)图像;研究亚细胞和分子水平定性,定量和定位分布检测;并在细胞及分子生物学,神经科学,组织及病理学、病毒及微生物学,免疫及肿瘤学等领域具有广泛用途。简要技术指标:1)高稳定超高分辨显微成像模块,生物分子可实现XY方向分辨率≤50nm;2)点扫描激光共聚焦显微成像模块,生物分子可实现XY方向分辨率≤200nm;3)科研级全电动倒置荧光显微镜,超高分辨专用100X油镜,数值孔径NA≥1.45。合同履行期限:合同签订后90日内交货本项目( 不接受 )联合体投标。
  • 1176万!中国科学院化学研究所STED超高分辨显微镜系统和纳秒时间分辨拉曼光谱仪采购项目
    一、项目基本情况1.项目编号:OITC-G230582632项目名称:中国科学院化学研究所STED超高分辨显微镜系统采购项目预算金额:770.000000 万元(人民币)最高限价(如有):770.000000 万元(人民币)采购需求:包号货物名称数量(台/套)是否允许采购进口产品采购预算(人民币)1STED超高分辨显微镜系统1套是770万元合同履行期限:详见采购需求本项目( 不接受 )联合体投标。2.项目编号:TC23080CG项目名称:中国科学院化学研究所纳秒时间分辨拉曼光谱仪采购项目预算金额:406.000000 万元(人民币)最高限价(如有):406.000000 万元(人民币)采购需求:包号货物名称数量 简要规格描述交货期交货地点保修期是否允许采购进口产品是否专门面向中小企业采购采购预算(万元)最高限价(万元)1纳秒时间分辨拉曼光谱仪1套2.1.3 *532nm皮秒脉冲激光,平均功率不低于300mW,脉宽小于85ps,TEM00模式。2.2.7#光谱分辨率:0.4cm-12.2.9 *光谱重复性:≤ ±0.03cm-1。检验标准:使用表面抛光的单晶硅做样品,采用50×物镜,≥1800刻线/毫米光栅,光栅转动,扫描范围100~4000cm-1,532nm激光激发重复20次,测量硅拉曼峰(520cm-1),520峰中心位置重复性 ≤ ±0.03cm-1。2.2.11*ICCD探测器,最短门限脉宽≤500ps,像素 ≥1024*255,波长范围280-760nm;最小光学门控宽度,超快模式≤500ps;最小读出噪音<7e-;光谱采集时间最短500ps。2.4.1# 采用新型数字化全自动针孔共聚焦技术(三维空间滤波)国产产品:合同生效后6个月;进口产品:收到出口许可后6个月 国产产品:招标人指定地点;进口产品:DDP用户指定地点仪器保修期应自安装验收通过之日起一年。在保修期内,任何由制造商选材和制造不当引起的质量问题,厂家负责免费维修。是非专门406406合同履行期限:交货期:国产产品:合同生效后6个月;进口产品:收到出口许可后6个月。本项目( 不接受 )联合体投标。二、获取招标文件1.时间:2023年11月16日 至 2023年11月23日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.oitccas.com方式:登录东方招标www.oitccas.com注册并购买。售价:¥600.0 元,本公告包含的招标文件售价总和2.时间:2023年11月17日 至 2023年11月24日,每天上午9:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外)地点:中招联合招标采购平台(http://www.365trade.com.cn)方式:(1)首次注册供应商:登录“中招联合招标采购平台(http://www.365trade.com.cn)”(以下简称“平台”),点击“供应商/投标人入口”进行免费注册。 (2)已在平台注册过的潜在供应商,登录后点击“寻找招标项目”,进行项目名称或项目编号查询,找到项目点击“立即投标”,选中需要投标的标包点击“提交报名”。 (3)在“我参与的项目”选择相应项目后的“立即购标”按钮,选择相应标包“提交支付”并下单缴费。支付完成后,可直接下载招标文件。 (4)支付完成后,点击页面上方“我的工作台”下拉菜单中的 “我参与的项目”进行招标文件下载。 (5)如有平台操作方面的疑问请按以下方式与技术支持联系: 客服电话:010-86397110、010-62108037(客服工作时间:周一至周五上午9时00分-11时30分,下午13时30分-17时00分)。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院化学研究所     地址:北京市海淀区中关村北一街2号        联系方式:010-68290511/0551/0509      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:赵倩 任伟松 焦怡泽,010-68290511/0551/0509,yzjiao@oitc.com.cn            3.项目联系方式项目联系人:赵倩 任伟松 焦怡泽电 话:  010-68290511/0551/05094.采购人信息名 称:中国科学院化学研究所     地址:北京市海淀区中关村北一街2号        联系方式:联系人:贾老师 电话:010-62658184 电子邮箱:jiahy@iccas.ac.cn      5.采购代理机构信息名 称:中招国际招标有限公司            地 址:北京市海淀区学院南路62号中关村资本大厦611A室            联系方式:联系人:徐润斌 郭文星 徐子玲 电话:010-62108155 62108156 电子邮箱:xurunbin@cntcitc.com.cn            6.项目联系方式项目联系人:郭文星 徐子玲 徐润斌电 话:  010-62108156 62108155
  • 未发布的新技术、新仪器抢先看 北京激光共聚焦超高分辨显微学年会不容错过
    p  strong仪器信息网讯/strong 2018年3月20日,一年一度由北京理化分析测试技术学会和北京市电镜学会共同主办的“北京市2018年度激光共焦及超高分辨显微学学术研讨会”在北京天文馆举行。大会旨在推动北京市及周边省市激光共焦超高分辨显微学的进步和发展,提高广大相关工作者的学术及技术水平,促进上述学科在生命科学等领域中的应用。北京市理化分析测试技术学会秘书长 桂三刚作简短致辞,北京市电镜学会秘书长张德添及何其华、王素霞、张丽娜等多位业内专家主持会议。大会共安排16个报告, 李建奇、孙异临、邓平晔、孙飞、周涛、宋敬东、高鹏、席鹏等200多名专家、学者和厂商技术人员等参加了本次研讨会。热门的超高分辨显微技术——单分子荧光检测成为会议的热点,精彩的专家报告、多款新品新技术的首次“剧透”,成就了本次会议的饕餮盛宴。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/c7a83414-e443-4da8-85a1-e2a3d2b0f1fb.jpg" title="会场.jpg"//pp style="text-align: center "会议现场/pp  单分子荧光检测技术是一种在单分子层次上揭示组装基元/生物分子间相互作用的精妙方法,能够提供隐藏在系综实验中的分子结构与功能之间的丰富信息,如何保证在衍射极限范围内只有1个分子发光,以及荧光标记选择、光漂白、光毒性等许多问题困扰单分子荧光检测技术及应用发展。针对这几年非常热门的超高分辨技术——单分子荧光检测,会议特别安排了专家报告:北京大学工学院生物医学工程系教授陈匡时作《单分子成像技术在RNA研究中的应用》、北京大学陈良怡作《Ultrasensitive Hessian structured illumination microscopy enables ultrafast and long-term super-resolution imaging》、中国科学院生物物理研究所研究员徐平勇作《基于单分子定位的超高分辨成像探针与技术》。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/e71cb6e9-db40-4d33-ad43-185852804c7b.jpg" title="秘书长.jpg" style="width: 400px height: 267px " width="400" vspace="0" hspace="0" height="267" border="0"//pp style="text-align: center "秘书长张德添与报告专家的学术交流互动/pp  陈匡时在报告中讲到,传统的MB容易被细胞核吸收,并被核内的核酸酶降解或与蛋白结合,此类非特异性作用可造成报告荧光基团和淬灭基团分离从而引起假阳性信号,因而在单分子成像单一RNA方面能力有限。为此,从2007年考虑把分子信标存留在细胞质中(QD-MB)以提高其稳定性以避免假阳性信号出现开始,介绍了10年来自己在单分子成像技术的研究历程,期间分子信标历经2010年优化MB直接让分子信标(SIRNA-MBs)更稳定的尝试,直到2016年开发出2Me/PS loop MBs,与MS2比较,具有强荧光信号、低背景、质量数小、MB标签更短的优势。/pp  SR技术追求更高的分辨率就需要更多的光子,更多的光子需求导致更多的光损伤,更多的光子需要更多的时间。为此陈良怡团队研发了PALM/STROM SR技术。这项技术拥有85 nm的空间分辨率,而光照度少于点扫描共聚焦显微镜1~3个数量级 10分钟连续成像可以获得18万张超高分辨率图像 拥有最长时间的超高分辨率成像 能够观察活细胞内的新结构动态 定量活细胞动态过程。徐平勇在报告讲到,mEos3.2在光活化荧光蛋白(PAFPs)中具有最高的光子数,是PALM成像中最好的FPs SIMBA技术适用于TIRFM、PALM和STORM显微镜的live SR技术成像中。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/cd2c49cb-1b26-4dda-acdc-d2b9be90ea0c.jpg" title="专家.jpg"//pp style="text-align: center "报告专家/pp  此外,会议还安排了清华大学生命科学学院教授欧光朔作《线虫神经前体细胞发育机制的成像和遗传学研究》、中国科学院生物物理研究所研究员李岩作《神经分子机制研究中显微成像技术的应用与需求》、中国科学院微生物研究所研究员孔照胜作《解码微管精准切割机制》报告、北京大学生物动态光学成像中心蒿慧文作《高尔基关联微管为E-cadherin囊泡运输提供特化轨道且参与细胞定向迁移的维持》、中国医学院阜外医院心血管疾病国家重点实验室副教授聂宇作《急性炎症在心机再生中的作用与机制》。这些报告带来了激光共聚焦超高分辨显微学在各研究前沿的应用,得到现场观众的高度关注 同时,作为毕业仅仅几年就找到了自己科研方向的年轻学者,聂宇详细分享了自己在“急性炎症在心机再生中的作用与机制”研究中的选题、研究思路确定等科学研究经验,精彩内容同样不容错过。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/fdcd8ced-5f9f-4e36-bea2-b71b3fb86f75.jpg" title="茶歇.jpg"//pp style="text-align: center "学术交流不仅在三尺讲坛/pp  作为激光共聚焦超高分辨显微学仪器设备的供应方,相关生产企业同样是本次会议的主角 生产企业带来多款从未公开发布的产品和技术,本次会议也成为不少企业发布新品、新技术的第一平台。徕卡显微系统(上海)贸易有限公司王怡净女士作《光谱式共聚焦的最新进展》,第一次在公开场合介绍了即将在4月发布的新品——SP8 FALCON。尼康仪器(上海)有限公司北京分公司应用工程师周建春女士作《To See To Believe——尼康活细胞成像解决方案》,介绍了新型倒置显微镜(Ti2,H-TIRF)、转盘共聚焦显微镜(CSU)和快速高分辨率共聚焦显微镜(A1+),其中一款是尚处于用户试用阶段、未正式上市的产品,据透露正处于等待新产品进关、布置展馆的阶段。东方科捷代表、ISS公司孙元胜先生作《时间超分辨显微技术》,带来了ISS最新单分子检测STED显微镜——ISS Alba。奥林巴斯(中国)有限公司戚少玲女士作《SpinSR10:活细胞超高分辨成像系统》。卡尔蔡司(上海)管理有限公司张然女士作《激光片层扫描显微系统(Lightsheet Z1)在组织透明化样品成像中的应用》。德国JPK Instruments AG樊友杰作《原子力及其与光学技术联用》。蒂姆温特远东有限公司李小煜先生作《高灵敏低损伤光片显微镜技术探讨》。新加坡GE公司席鹏(Jaron Liu)作《n OMX SR Blaze-SIM made it a reality for live-cell imaging at super resolution》。北京世纪桑尼科技在展位上展示了国内具有自主核心知识产权的SUNNY ASM。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/6b868369-c432-40b6-ba94-637dbacd1a03.jpg" title="会场-展位.jpg"//pp style="text-align: center "厂商展位一览/p
  • “超高时空分辨微型化双光子在体显微成像系统”专项取得重要成果
    p  在国家自然科学基金国家重大科研仪器研制专项“超高时空分辨微型化双光子在体显微成像系统”(项目编号:31327901)的支持下,北京大学分子医学研究所、信息科学技术学院、动态成像中心、生命科学学院、工学院联合中国人民解放军军事医学科学院组成跨学科团队,历经三年多的协同奋战,成功研制新一代高速高分辨微型化双光子荧光显微镜,并获取了小鼠在自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。相关研究成果以“Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice”(高速高分辨微型化双光子显微镜在小鼠自由行为中获取大脑图像)为题于5月29日在线发表在Nature Method上。相关技术文档同步发表在Protocol Exchange上,并已申请多项专利。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201706/insimg/9523a7f7-b0b6-4b67-981d-b74805580c21.jpg" title="2017-06-14_094040.jpg"//pp style="text-align: center "2.2g可佩戴式微型双光子显微镜/pp  目前,各国脑科学计划的一个核心方向就是打造用于全景式解析脑连接图谱和功能动态图谱的研究工具。其中,如何打破尺度壁垒,整合微观神经元和神经突触活动与大脑整体的活动和个体行为信息,是领域内亟待解决的一个关键挑战。/pp  新一代微型化双光子荧光显微镜体积小,重仅2.2克,适于佩戴在小动物头部颅窗上,实时记录数十个神经元、上千个神经突触的动态信号。在大型动物上,还可望实现多探头佩戴、多颅窗不同脑区的长时程观测。相比单光子激发,双光子激发具有良好的光学断层、更深的生物组织穿透等优势,其横向分辨率达到0.65μm,成像质量与商品化大型台式双光子荧光显微镜可相媲美,远优于目前领域内主导的、美国脑科学计划核心团队所研发的微型化宽场显微镜。采用双轴对称高速微机电系统转镜扫描技术,成像帧频已达40Hz(256*256像素),同时具备多区域随机扫描和每秒1万线的线扫描能力。/pp  此外,采用自主设计可传导920nm飞秒激光的光子晶体光纤,该系统首次实现了微型双光子显微镜对脑科学领域最广泛应用的指示神经元活动的荧光探针(如GCaMP6)的有效利用。 同时采用柔性光纤束进行荧光信号的接收,解决了动物的活动和行为由于荧光传输光缆拖拽而受到干扰的难题。未来,与光遗传学技术的结合,可望在结构与功能成像的同时,精准地操控神经元和神经回路的活动。/pp  微型化双光子荧光显微成像改变了在自由活动动物中观察细胞和亚细胞结构的方式,可用于在动物觅食、哺乳、跳台、打斗、嬉戏、睡眠等自然行为条件下,或者在学习前、学习中和学习后,长时程观察神经突触、神经元、神经网络、远程连接的脑区等多尺度、多层次动态变化。/pp  该成果在2016年底美国神经科学年会、2017年5月冷泉港亚洲脑科学专题会议上报告后,得到包括多位诺贝尔奖获得者在内的国内外神经科学家的高度赞誉。冷泉港亚洲脑科学专题会议主席、美国著名神经科学家加州大学洛杉矶分校的Alcino J Silva教授在评述中写道,“从任何一个标准来看,这款显微镜都代表了一项重大技术发明,必将改变我们在自由活动动物中观察细胞和亚细胞结构的方式。它所开启的大门,甚至超越了神经元和树突成像。系统神经生物学正在进入一个新的时代,即通过对细胞群体中可辨识的细胞和亚细胞结构的复杂生物学事件进行成像观测,从而更加深刻地理解进化所造就的大脑环路实现复杂行为的核心工程学原理。毫无疑问,这项非凡的发明让我们向着这一目标迈进了一步。”/pp  可以期待,微型化双光子荧光显微成像系统将为实现“分析脑、理解脑、模仿脑”的战略目标发挥不可或缺的重要作用。/p
  • 国产技术渐崛起:北京2021激光共聚焦及超高分辨显微学研讨会召开
    仪器信息网讯 2021年4月10日,“北京市2021年度激光共焦及超高分辨显微学学术研讨会”在北京召开。会议由北京市电镜学会主办,北京理化分析测试技术学会协办,会议旨在推动北京市及周边省市激光共焦超高分辨显微学的进步和发展,提高广大相关工作者的学术及技术水平,促进上述学科在生命科学等领域中的应用。150余名光学高分辨显微学领域国内专家学者、青年科技工作者,及相关仪器厂商代表慕名参会。会议现场“铁打的”进口品牌,悄然崛起的国产技术本次参会,从专家报告分享到会见交流,都给笔者留下一个印象——国产仪器技术正在逐渐崛起。以下笔者整理了仪器信息网参加的近六届“北京市年度激光共焦及超高分辨显微学学术研讨会”(2020年度因新冠疫情停办一次)仪器技术相关报告情况,从仪器技术分享报告数量来看(含仪器技术研究与商业化技术),近六年来,进口品牌变化不大,而国产技术已在悄然崛起。谈应用:市场需求大 超分辨荧光成像解决的科学问题还比较有限中国科学院动物研究所财务资产部资产管理办公室主任王荣荣分享了动物所在激光共聚焦超高分辨显微镜等技术支撑下的科研创新情况。其影像学平台主要提供光学成像类分析测试服务,先进的设备可满足XY分辨率从50nm-500nm的成像需求,专业团队可提供从分析测试到后期图像处理、定量计算的整套解决方案。据介绍,影像学平台配置有结构光照明、激光扫描共聚焦显微镜、双光子显微镜等成像要求设备17套,目前处于饱和运行,接下来还有很大采购需求。在这些设备支持下,平台支持的许多科研成果发表在《Cell Research》、《PNAS》、《Cell Stem Cell》等国际高水平期刊上。中国科学院生物物理研究所王晋辉研究员分享了光学成像技术在示踪大脑记忆细胞方面的应用,以小鼠大脑成像进行研究,对小鼠的胡须、嗅觉,及尾巴进行温度刺激,研究表明,多个相关信号是联合捕获的,大脑会集成和存储这些相关信号,且信号间可相互检索,联想记忆是认知和感情的基础。且联想记忆相关的脑细胞可以对多个相关信号的存储进行编码,可以接受多种来源突触神经的支配。中国农业大学傅静雁教授分享了团队利用超分辨显微技术解析中心体骨架蛋白装配的研究进展。如何重建中心体以满足细胞的需求?基于组装中心体蛋白质动态3D形态的目标,其团队利用系列超高分辨显微技术研究了中心中心体蛋白质的3D结构及形成过程。分别利用3D-SIM技术(120nm分辨)研究得出中心体的分层模型,及中心体蛋白动态装配顺序;进一步利用STED技术(50nm分辨率)研究得出中心体核心蛋白空间分布;接着,利用Expansion microscopy+3D-SIM技术(30nm分辨率)最终研究得出中心体九轴对称的分子基础结构。谈仪器技术之“铁打的”进口品牌:新技术百花齐放徕卡显微系统邢斯蕾介绍了徕卡去年推出的STELLARIS共聚焦平台。与以往平台相比,STELLARIS性能显著增强。蓝-绿波段的灵敏度增强(PDE 55%)提升了最常用光谱的检测限值和动态范围。集成式TauSense是基于荧光寿命而无需增加额外专用硬件的创新成像模式。能够让研究者区分特异性的荧光信号和多余的自发性荧光,从而改善最终图像的质量并通过光谱分离技术将原先无法分离的荧光分离出来。Andor(牛津仪器)王坤主要介绍了其多模式共聚焦显微成像系统Dragonfly,其核心功能是多点高速,高灵敏度共聚焦成像,其采集速度比普通点扫描共聚焦技术快至20倍。另外采用高分辨,高灵敏的探测器,有效减少活细胞成像的光毒性及光漂白,同时也适合于固定样品的高分辨快速三维成像。据介绍,该产品推出以来已经实现全球装机200台,中国装机50台。卡尔蔡司吕冰洁介绍了其去年推出的全新Lattice Light Sheet晶格层光显微镜——Lattice Lightsheet 7,该产品基于Ernst H.K. Stelzer教授在德国海德堡欧洲分子生物学实验室,以及诺贝尔奖获得者Eric Betzig教授在美国霍华德休斯医学研究所Janelia研究园区对于光片技术开创性的研究成果。该产品具有非常低的光毒性,从而能长时间以亚细胞分辨率观察细胞及微小生物体的3D动态过程。配置以环境温控系统以及稳定的光学设计,该产品能帮助研究人员连续观察活体样本数小时,甚至数天。奥林巴斯王咏婕主要介绍了其NoviSight 3D分析软件带来的共聚焦显微凸显分析新方法。该软件特别适合对多孔板多细胞球等标本在复杂的3D范围内进行数据分析。具有精准快速的3D检测、简单便捷的分类分析、数据图片实时联动、与多种共聚焦兼容等特点。上海仁科生物黎瑜辉介绍了美国3i光片显微镜系统产品,包括Lattice LightSheet(超分辨光片系统,实现活细胞内超分辨4D成像)、Marianas LightSheet(多功能光片显微镜,专为活细胞定制)、VIVO LightSheet(活体多光子成像系统)、Cleared Tissue LightSheet(CLTS光片显微镜,专为透明化组织成像定制)等。尼康仪器薛志红分享了其2020年推出的新品显微镜自动培养和成像系统BioPipeline-Live,可解决研究人员在细胞培养与细胞成像环节中的潜在难题。产品具有高内涵平台、摆脱箱式系统的束缚、强大软件系统等特性,采取了灵活的高内涵倒置显微镜平台,可适用于高内涵采集和分析的镜、探测器、影像采集设备和应用程序。软件系统NIS-Elements为用户提供了一个处理和分析工具箱,同时也搭载了全新三大AI模块。谈仪器技术之悄然崛起的国产技术:产业化品牌逐现中国科学院生物物理研究所黄韶辉研究员分享了其团队关于荧光相关光谱(FCS)单分子技术的仪器研发机产业化工作。相关成果在广东中科奥辉科技有限公司实现转化,研制出首创的桌面式荧光相关光谱单分子分析仪CorTectorTM SX100,被纳入中科院首批(2019)推荐国产仪器目录,并认定为广东省高新技术产品,首批客户包括美国国立卫生研究院(NIH)、加州大学旧金山分校等。锘海生物翟星帏主要介绍了其于2019年推出的锘海LS 18平铺光片显微镜,LS 18是一款为透明化大组织样品设计的高分辨率3D成像仪器,采用自主研发的动态虚拟光片平铺技术,克服传统光片显微镜3D空间分辨率、Z轴层析能力和成像视野之间的矛盾,摒弃了原有选择性平面照明显微镜中的单光片照明的方式,利用多个薄的光片分段照明,在不损失成像视野的情况下,获得高分辨率的3D图像,具有高速高分辨率成像、成像模式灵活可调,多色同时成像等优势。据悉,该产品已完成10台销售。北京大学陈良怡教授发明了一系列高时空分辨率生物医学成像方法,还将原创技术转化为国内急需的高端显微镜产品,解决国内高端显微镜“卡脖子”现状。发明的主要技术包括:高分辨微型化双光子显微镜、高三维成像速度的贝塞尔三光子荧光显微镜、大视场下高分辨双光子三轴扫描光片显微镜、海森结构光成像结构超分辨荧光显微镜等。在广州超视计生物科技有限公司产业化的自主创新超灵敏结构光超分辨显微镜HiS-SIM PRO,性能参数皆由于国外厂商同类高端超分辨显微镜,且商品化产品已经达到已经发表高水平文章中的效果。北京世纪桑尼赖博分享了公司于2018年启动研发,2019年实现上市的CSIM 100/110共聚焦成像系统,基于独特光路结构(激光和荧光相向穿过同一个针孔等)和自主开放的信号放大电路(更高信号转换效率等),该系统具有相应时间快、重复精度高等优点。目前该系统DAMO及装机用户包括兰州大学、遗传发育所、军科院、北京大学等高校院所,并表示性能不弱于进口品牌。最后,赖博分享了超分辨技术摄像的探讨及接下来的研发工作,基于其发现的无限远校正光学系统原理,提出增加扫描透镜和真空透镜距离,可提高系统轴向分辨率,突破物镜分辨率极限的计划畅想。
  • 适用于单细胞内单分子动态观测的层状光超高分辨率扫描荧光显微系统的研究
    成果名称适用于单细胞内单分子动态观测的层状光超高分辨率扫描荧光显微系统的研究单位名称北京大学联系人马靖联系邮箱mj@labpku.com成果成熟度□研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产成果简介:超分辨技术是利用随机光学重构等方法,突破光学衍射极限的一种新型显微技术,它使得我们有机会在单分子水平上观察亚细胞结构。但是传统意义的超分辨技术是基于全内反射照明的,这就使得我们可观测的样品厚度远小于细胞厚度,从而无法对细胞深处,如细胞核内的分子进行实时观测。层状光扫描技术是利用高斯光束的性质,通过光线的单方向汇聚产生亚微米级的层状光,从而可以对组织样品进行3D扫描。层状光荧光扫描显微系统有着成像速度快,光致漂白与光毒性效应小等优势,非常适合于组织及真核细胞的观测,但它的分辨率会受到衍射极限的限制。生命科学学院孙育杰课题组将这两种技术进行了优势互补,发展了新型集成芯片技术,研发出了一种适用于单细胞内单分子动态观测的新型显微系统。在基金的资助下,通过相关设备的购置和材料的加工,有力地推动了项目组相关工作的开展,其主要工作包括:(1)层状光-荧光扫描系统的实现;(2)适用于单细胞层状光成像的新型细胞芯片技术的研究;(3)单分子超高分辨率荧光技术的实现;(4)超高分辨率一层状光荧光扫描复合光路的实现。通过以上工作的开展,单分子超高分辨率荧光显微系统的样机搭建已经完成,顺利通过了第四期项目的验收。这项工作获得了国家自然科学基金委重大项目的后续支持,项目名称为&ldquo 细胞中活性分子实时动态变化与相互作用的荧光探针研究&rdquo 。应用前景:该研究成果在细胞生物学,特别是干细胞定向分化、胚胎早期发育、胞内运输等生物过程的研究领域中有着重要的应用前景。
  • 蔡司推出新一代超高分辨率显微成像系统
    双倍提升结构光照明显微技术分辨率蔡司新一代超高分辨率显微成像系统Elyra 7 with Lattice SIM2蔡司推出了具有开创性的Lattice SIM²,可提高结构照明显微镜(SIM)的分辨率和光切质量。使用显微镜系统蔡司 Elyra 7上的Lattice SIM²,将传统的SIM分辨率提高一倍,生命科学研究人员现在可以以60nm分辨率区分出活的和固定的样品的最佳亚细胞结构。SIM是一种基于栅格的照明技术,可以以超出光学显微镜衍射极限的分辨率进行成像。两年前,随着蔡司Lattice SIM的推出,SIM成像技术迈入新的时代,蔡司将SIM的分辨率优势与成像速度和检测灵敏度的大幅提高相结合,使超高分辨率显微镜蔡司 Elyra 7成为活细胞成像的理想选择。借助Lattice SIM²,蔡司通过不懈努力将超高分辨率成像技术又向前推进一大步,使研究人员能够突破以往超高分辨率成像技术在分辨率,成像速度和光毒性等方面的限制。Lattice SIM2同时提升分辨率、光切性能和样品适用性Lattice SIM²在分辨率,光切性能和样品适用性方面均优于传统的SIM,而无需特殊的染色方案或复杂的显微镜技术的专业知识。Lattice SIM²不仅可以解析低至60 nm的结构,还可以同时进行超高分辨率和高动态成像——这是观察活细胞或生物体中快速生物过程的必要条件。以远低于100 nm分辨率进行活体生物样品成像借助Lattice SIM²,研究人员现在可以同时以低于100 nm的分辨率和高达255fps速度进行活体生物样品的细节成像。这种简单易用又能达到高时空分辨率的成像方式,将使发现新的亚细胞功能原理成为可能,并有助于更好地了解细胞器的分布和结构。发育生物学,神经科学,植物科学和相关学科的研究人员将通过揭示快速的细胞过程,以更深的成像深度解析3D结构并研究分子水平的结构变化,来获得对模式生物和标本的更多见解。参与产品测试的用户立即意识到Elyra 7 with Lattice SIM²的研究潜力,并对新的可能性表示了热情。约克大学影像与细胞计量学负责人Peter O’Toole:“我记得最初看到结果时,我惊讶的大笑。我的下一个反应是向可以立即受益的一些关键用户发送电子邮件。从组织神经生物学家到细胞和分子免疫学家,再到从事酵母和细菌研究的科学家,他们都已经从Lattice SIM²中受益。”随着Lattice SIM²的推出,蔡司Elyra 7将不断发展成为兼容活细胞的超高分辨率显微成像的主要平台。蔡司有着强大的动力,想为科学界提供可轻松使用先进的成像技术
  • 400万!北京大学宁波海洋药物研究院超高分辨激光共聚焦显微成像系统采购
    北京大学宁波海洋药物研究院超高分辨激光共聚焦显微成像系统采购项目国际招标公告项目编号 : 0762-2141CBNB3015 公布日期 : 2021-12-20宁波中基国际招标有限公司受招标人委托对下列产品及服务进行国际公开竞争性招标,于2021年12月20日在中国国际招标网公告。本次招标采用传统招标方式,现邀请合格投标人参加投标。1. 招标条件项目概况:北京大学宁波海洋药物研究院因发展需要,需采购超高分辨激光共聚焦显微成像系统设备1套。资金到位或资金来源落实情况:项目所需资金已经落实。项目已具备招标条件的说明:项目已具备招标条件。2. 招标内容:招标项目编号:0762-2141CBNB3015招标项目名称:北京大学宁波海洋药物研究院超高分辨激光共聚焦显微成像系统采购项目项目实施地点:中国浙江采购预算:人民币400万元;采购用途:科研交货期:合同签订后接招标人书面通知(或电子邮件形式)送货函发出之日起120 天内(含国定节假日)完成安装调试并验收合格;交货地点:宁波,北京大学宁波海洋药物研究院指定地点招标产品列表(主要设备):子包号产品名称数量简要技术规格/超高分辨激光共聚焦显微成像系统1套主要用途包括:本仪器应能够通过可见激光对线虫,活细胞、组织和切片进行连续扫描,获得精细的单个细胞或一群细胞的各个层面结构(包括染色体等)的三维图像,可利用荧光标记测定细胞内如钠、钙、镁等离子浓度的比率、动态变化及pH值的动态变化。具体详见第八章。3. 投标人资格要求1)投标人是响应招标、已在招标人或招标机构处领购招标文件并参加投标竞争的法人或其他组织。任何未在招标人或招标机构处领购招标文件的法人或其他组织均不得参加投标。2)除非另有规定,凡是来自中华人民共和国或是与中华人民共和国有正常贸易往来的国家或地区(以下简称“合格来源国/地区”)的法人或其他组织均可投标。3)接受委托参与项目前期咨询和招标文件编制的法人或其他组织不得参加受托项目的投标,也不得为该项目的投标人编制投标文件或者提供咨询。4)单位负责人为同一人或者存在控股、管理关系的不同单位,不得参加同一招标项目包投标,共同组成联合体投标的除外。5)只有在法律上和财务上独立、合法运作并独立于招标人和招标机构的供货人才能参加投标。6)近三年内(本项目招标截止期前)被“信用中国”网站列入失信被执行人和重大税收违法案件当事人名单的、被“中国政府采购网”网站列入政府采购严重违法失信 行为记录名单(处罚期限尚未届满的),不得参与本项目。7)如果投标人按照合同提供的货物不是投标人自己制造的,投标人应得到货物制造商或货物制造商的代理商同意其在本次投标中提供该货物的正式授权书。8)投标人须提供其开户银行在开标日前三个月内开具的资信证明原件或该原件的复印件(如资信证明中明确注明复印无效的则必须提供该资信证明原件,招标机构保留审核原件的权利)。9)投标人应当于招标文件载明的投标截止时间前在机电产品招标投标电子交易平台(网址:http://www.chinabidding.com)成功注册。否则,投标人将不能进入招标 程序,由此产生的后果由其自行承担。本项目不接受联合体投标。未领购招标文件不可以参加投标。4. 招标文件的获取招标文件领购开始时间:2021年12月20日,上午:8:30-11:30;下午:13:30-17:00。招标文件领购结束时间:2022年01月05日17:00(北京时间)招标文件领购地点:宁波中基国际招标有限公司(宁波市鄞州区天童南路666号中基大厦19楼前台),李小姐,电话88090098,传真:0574-87425386,电子邮箱:719126619@qq.com。或在线购买,网址:https://dwz.cn/BzVsB93Q。招标文件售价:500元人民币或75美元,售后不退(请勿个人或支付宝汇款)。5. 投标文件的递交投标截止时间(开标时间):2022年01月14日13:30(北京时间)投标文件送达地点:宁波中基国际招标有限公司会议中心(宁波市鄞州区天童南路666号中基大厦1楼)开标地点:宁波中基国际招标有限公司会议中心(宁波市鄞州区天童南路666号中基大厦1楼)6. 投标人在投标前需在中国国际招标网上完成注册。评标结果将在中国国际招标网公示。7. 联系方式招标人:北京大学宁波海洋药物研究院地址:宁波梅山保税港区三创基地二期联系人:王上宁电 话:0574-88090336招标代理机构:宁波中基国际招标有限公司地址:宁波市鄞州区天童南路666号中基大厦19楼联系人:徐军、高书焓、陈露、林申杰、张龙锋、梁慧强、夏巍联系方式:0574-88090039、880903368. 汇款方式招标代理机构开户银行(人民币):中国工商银行宁波鼓楼支行招标代理机构开户银行(美元):中国工商银行宁波鼓楼支行帐 号(人民币):3901110009200043078帐 号(美元):3901110009814008126帐 号(日元):3901110009827008737帐 号(欧元):3901110009838008695银行地址:中国浙江省宁波市中山西路218号开户名称:宁波中基国际招标有限公司swift代码:ICBKCNBJNBO行号(人民币):25197003
  • 北京2019激光共焦及超高分辨显微学学术研讨会在京召开
    p  strong仪器信息网讯/strong 2019年3月19日,“北京2019年度激光共焦及超高分辨显微学学术研讨会”在北京天文馆召开。会议由北京理化分析测试技术学会和北京市电镜学会共同举办,旨在推动北京市及周边省市激光共焦超高分辨显微学的进步和发展,提高广大相关工作者的学术及技术水平,促进上述学科在生命科学等领域中的应用。200余名光学高分辨显微学领域国内专家学者、青年科技工作者,及相关检测仪器厂商代表共同参与了本次研讨会。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/54180d3d-ac1e-4e40-a04e-5dd3855d52cb.jpg" title="IMG_7154.jpg" alt="IMG_7154.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "研讨会现场/span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/5ff22fdd-bdf9-48f3-bbd6-82ed351ddf29.jpg" title="IMG_6948.jpg" alt="IMG_6948.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "北京市电镜学会秘书长张德添致辞/span/pp  会前致辞中,北京市电镜学会秘书长张德添表示,激光共焦技术商业化的30余年来,从单光子到双光子再到高通量等,取得了飞速的发展。为紧随技术发展步伐,打通高端应用专家与一线科技工作者之间的屏障,秉承北京市电镜学会“学术与公益第一”的原则,此次论坛特邀十余位在光学高分辨显微学领域杰出专家与行业领先的仪器商技术专家,与大家共同分享激光共焦及超高分辨显微学领域最新应用成果及最新技术动态,并期待与会者能够满载而归。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/ddd048d5-7074-4e86-b77f-400bca4e7d92.jpg" title="IMG_7005.jpg" alt="IMG_7005.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告人:李栋(生物物理所)/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告题目:掠入射结构光超分辨显微镜(GL-SIM)揭示细胞器、细胞骨架动态相互作用/span/pp  李栋曾在“北京市2016年度激光共焦超高分辨显微学学术研讨会”报告介绍了当时其团队开发的两种光学超分辨技术:high NA TIRF-SIM和PANL-SIM。李栋笑称,今天再次在此论坛报告,算是对自己三年来工作成效的一个汇报。/pp  掠入射结构光超分辨显微镜(GL-SIM)技术由李栋团队与美国霍华德休斯医学研究所合作完成。该技术能够以97纳米分辨率、每秒266帧对细胞基底膜附近的动态事件连续成像数千幅。并利用多色GI-SIM技术揭示了细胞器-细胞器、细胞器-细胞骨架之间的多种新型相互作用,深化了对这些结构复杂行为的理解。微管生长和收缩事件的精确测量有助于区分不同的微管动态失稳模式。内质网(ER)与其他细胞器或微管之间的相互作用分析揭示了新的内质网重塑机制,如内质网搭载在可运动细胞器上。据悉,2019年2月底,该GL-SIM技术成功入选科技部高技术研究发展中心公布的2018年度中国科学十大进展。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/8c003b42-f045-4b4e-8b39-942e0322002e.jpg" title="IMG_7010.jpg" alt="IMG_7010.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告人:王怡净(徕卡显微系统(上海)贸易有限公司)/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告题目:高分辨率成像的新突破/span/pp  样品表征首先找到适合的表征技术手段十分重要,王怡净介绍了一种更加适合活细胞实时成像、大样品图像拼接方面的表征技术——徕卡THUNDER imagers技术,该技术基于宽场成像技术,由徕卡近期推出。/pp  宽场成像是生命科学显微成像中最重要的方法之一。但限于其本身不能有效避免背景信号及多焦面间的信号互扰,因此主要被用于单层细胞或厚度不超过50 μm组织切片。过厚的样本将导致宽场成像变的模糊,成像结果无法用于发表的论文或数据分析,如厚病理切片、培养皿中大量生长的活细胞(尤其悬浮细胞)、微孔板中的Colony、模式动物等样本等。而分辨率更高的共聚焦成像技术又存在成像时间过长(很多生命过程十分迅速)、对于厚样本单层共聚焦图像有时不能很好代表整体生物学信息等缺陷。THUNDER imagers技术则可以在与普通宽场成像相同成像速度的基础上,获得更高清晰度的图像,同时兼具与共聚焦相同的大样本拼接、层扫和3D重建功能。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/1101dc9e-1569-4f58-814c-8e8b1d47103e.jpg" title="IMG_7078_副本.jpg" alt="IMG_7078_副本.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告人:陈建国(北大生科院)/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告题目:中心体的结构与组装/span/pp  中心体是一个部分真核细胞的细胞器,由两个互相垂直的中心粒构成,是动物细胞与低等植物细胞中主要的微管组织中心,同时也能够调节细胞周期进程。陈建国结合其团队近期工作进展,首先介绍了中心体与微管网络结构的组织概况、中心体的结构、中心体的复制与细胞周期、子中心粒的组成、中心体的蛋白组分等。接着介绍了中心粒亚远端附属结构的组装以及中心粒远端结构蛋白和纤毛结构的组装及其调控机制,并对中心粒可能在人体中的功能进行了分析。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/dc539b06-860a-4157-8cb0-0d591d817d08.jpg" title="IMG_7090.jpg" alt="IMG_7090.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告人:朱凤胜(上海宇北医疗器械有限公司)/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告题目:前瞻性超分辨活细胞纳米荧光成像技术与系统/span/pp  受激辐射光淬灭超分辨率共聚焦显微影像系统 (pulsed-STED)由2014诺贝尔化学奖Stefan W.Hell团队设计,并随之创立Abberior公司。朱凤胜表示,Abberior pulsed STED具有的诸多优势包括:大幅减少“无意义”激光伤害和荧光漂白;高效时间分辨率,使各触控逐渐高度智能化协调,同时提供解析度;提供升级空间,满足更多应用需求等。与传统STED的3D分辨率(130*130*130nm)相比Abberior pulsed STED高至70*70*70nm,2D分辨率则由STED CW的80nm和g-STED的50nm提升至20nm。接着介绍了新一代 3D STED 超分辨纳米成像技术——Easy 3D STED,其SLM 调控的单一光路,提供镜头像差修正,可以切换使用油镜、水镜、甘油镜、硅油镜等,使得成像的厚度深达180微米。最后,朱凤胜预告了该公司的另一项革命技术MINFLUX,表示该技术将能够实现分辨单一纳米水平的分子结构。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/c6ef7e30-dbe0-4494-87c6-a2af27b0f6db.jpg" title="IMG_7130.jpg" alt="IMG_7130.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告人:纪伟(生物物理所)/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告题目:通过冷冻和干涉成像提高单分子定位显微镜的分辨率/span/pp  纪伟首先介绍了单分子定位成像技术的原理和进一步提升定位精度的方法(新的荧光探针和抗漂白试剂)。基于此,又分别介绍了冷冻单分子定位成像和干涉单分子定位成像技术,并针对已有的技术弊端进行改进;设计搭建冷冻超分辨光电融合成像系统以及干涉单分子定位成像系统,实验验证了其优异的性能表现。最后表示,纳米精度成像的应用方向包括:原位结构方面,为原位电镜结构解析提供导向定位;细胞成像方面,100nm以内的亚细胞结构解析和分子定位、功能;以及生物大分子动态构想变化等。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/b88d1cf7-7252-4273-a089-8f3938f7d10e.jpg" title="IMG_7168.jpg" alt="IMG_7168.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告人:孟丽丽(奥林巴斯(中国)有限公司)/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告题目:海量活细胞筛选下的超分辨成像技术/span/pp  孟丽丽报告中表示,海量活细胞的筛选具有“大数据”和“云计算”的特征,具体表现包括海量数据的快速采集与定量定性分析;获得全部样本数据;通过对对海量数据筛选,获得稀有事件(日CTC循环肿瘤癌细胞)等。奥林巴斯围绕这种需求提供了全面解决方案,如scanR软件可提供全自动海量细胞采集过程中的细胞周期精细分析、Time-Lapse活细胞动态分析,实时快速部件保证速度与精度,提供超高分辨/共聚焦高内涵/宽场高内涵显微三种成像模式等。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/ed552f26-bc0c-46b6-b1da-aeac60a9beee.jpg" title="IMG_7196.jpg" alt="IMG_7196.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告人:张毅(北京师范大学)/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告题目:花粉微丝骨架动态的调节机制/span/pp  花粉粒的萌发和花粉管的伸长对于开花植物完成双受精从而进行繁殖至关重要。花粉粒多为球形或椭球形的对称结构,其如何建立极性,进而确定萌发位点,一直是植物细胞生物学领域重要的科学问题。然而,由于花粉粒不易进行荧光显微镜观察,目前对这一重要生物学问题的研究非常滞后。张毅研究组以双子叶模式植物拟南芥为材料,利用转盘式激光共聚焦显微镜对花粉粒内微丝的动态变化进行长时间的实时追踪观察,发现微丝骨架在花粉粒萌发前建立极性并标记萌发位点;进一步的药理学和遗传学实验发现了不同于经典的以微丝作为运输轨道的细胞内物质运输方式。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/205d6c81-9c02-4a6d-b917-e1bf146874d4.jpg" title="IMG_7242.jpg" alt="IMG_7242.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告人:Jaron Liu(GE公司)/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告题目:Deltavision OMX Technology :One System, All the Answers/span/pp  来自新加坡的Jaron Liu主要介绍了GE公司的DeltaVision OMX SR超高分辨率显微镜的主要优势和应用。该系统提供2D和3D结构照明(SIM)技术以及单分子定位显微镜以及快速宽场采集高分辨率成像模式。创新Blaze SIM模块实现了高速SIM成像,使活细胞超高分辨率成像成为现实。此外,该系统支持创新的Ring-TIRF系统使得TIRF模式下也能实现的大面积均匀照明视野,用于多种应用,比如单分子追踪和单分子定位超高分辨率成像。其专利的BlazeSIM模块可以实现最多每秒15幅的超高分辨成像速度,轻松完成活细胞超高实验。单分子定位模块最高分辨率可以达到20nm。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/b7765b64-ac53-4c45-b5b3-cdc2e80ea8df.jpg" title="IMG_7264.jpg" alt="IMG_7264.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告人:席鹏(北京大学)/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告题目:为结构光超分辨赋予极性/span/pp  席鹏利用GE公司的DeltaVision OMX系统与尼康公司的N-SIM系统,通过小鼠肾段肌动蛋白的Polar-3D-SIM等对结构光超分辨的极性研究,获得启示:关于超分辨,新的维度或许可以打开新的视野。而偶极取向或是荧光分子的一个新的维度,如超分辨偶极取向显微镜、SIM与SDOM之间相似性、利用SIM直接获取极性信息等。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/cd59bc20-53b2-4059-978b-a15df45fcb4c.jpg" title="微信图片_20190319230724_副本.jpg" alt="微信图片_20190319230724_副本.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告人:周建春(尼康仪器(上海)有限公司 )/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告题目:尼康新型共聚焦及超分辨率系统介绍/span/pp  周建春介绍了尼康新型共聚焦及超分辨率系统的一系列创新:激光器方面,最多支持8个激光器,全固体激光器,寿命长,稳定性高等;Scan head方面,视野由传统的18mm增至25mm,使得“所见即所得”升级为“见,所未见”,高通量成像,节约成像时间等;新型高级共振扫描头(适用于活细胞成像)方面,高速和高清晰度(1k)、低光毒性等;可扩展功能方面,多模块成像、可定制软件、HCA软件、分辨率增强升级等。最后介绍到活细胞超分辨成像技术的优越之选——N-SIM S(高速成像达15fps,极低光毒性)。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/e36ef2de-b217-4abc-bb05-12ecc899e320.jpg" title="IMG_7306.jpg" alt="IMG_7306.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告人:张然 (蔡司)/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告题目:关于新一代蔡司超高分辨技术的应用/span/pp  张然介绍了蔡司于2018年年底推出的全新一代超高分辨率显微镜3D成像系统——Elyra 7平台。新品发布信息中,Elyra 7被描述为一种“快速、温和、灵活”的超高分辨率显微镜3D成像系统。新增的Lattice SIM技术扩展了结构化照明显微镜(SIM)的应用范围:采用晶格图案而非光栅可使图像对比度更高,图像重构处理更高效。科研工作者可以采用2倍的采样效率降低光毒性,观察超高分辨率条件下细胞的快速移动过程。即使在高帧率下也能确保高图像质量。Elyra 7平台广泛扩展性包括:SMLM单分子荧光定位显微技术、LSM激光共聚焦显微镜、关联显微镜等。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/92e7ff8f-acdc-465d-b675-2a8fda661f74.jpg" title="IMG_7338_副本.jpg" alt="IMG_7338_副本.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告人:齐冬(蒂姆温特远东有限公司)/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告题目:光片显微镜——高速、低杀伤的发育及功能研究/span/pp  齐冬首先通过与激光共聚焦的各项性能对比,介绍了光片显微镜的优点与不足,其主要适合对象为大样品长时程、低杀伤的发育生物学研究,如斑马鱼、果蝇、植物、早期胚胎、3D细胞培养、透明脑类研究等。接着介绍了蒂姆温特远东公司针对光片显微镜的设计与应用情况,创新的设计方案包括倒置式双轴、三轴(对侧照明& 单侧成像)、四轴(对侧照明& 对侧成像),并结合斑马鱼、果蝇、植物等介绍了其出色的应用。同时还介绍了其低杀伤、可大透明化样品直接观察等优势。面对大数据处理(TB级别以上)的问题,齐冬提出建立工作站、课题组共享的建议。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/65ce0dea-448a-4af8-ad15-56f63db80b66.jpg" title="展商.jpg" alt="展商.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "展商一角/span/p
  • 1050万!同济大学白激光荧光超高分辨共聚焦显微镜系统、多功能切片扫描和分析系统采购项目
    一、项目基本情况1.项目编号:0811-234DSITC2210项目名称:白激光荧光超高分辨共聚焦显微镜系统预算金额:750.000000 万元(人民币)最高限价(如有):750.000000 万元(人民币)采购需求:白激光荧光超高分辨共聚焦显微镜系统/壹套(项目预算:人民币750万元,可以采购进口产品)合同履行期限:合同签订之日起至合同内容履行完毕止本项目( 不接受 )联合体投标。2.项目编号:0811-234DSITC2211项目名称:多功能切片扫描和分析系统预算金额:300.000000 万元(人民币)最高限价(如有):300.000000 万元(人民币)采购需求:多功能切片扫描和分析系统/壹套(项目预算:人民币300万元,可以采购进口产品)合同履行期限:合同签订之日起至合同内容履行完毕止本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年10月24日 至 2023年10月31日,每天上午9:00至11:30,下午13:00至16:30。(北京时间,法定节假日除外)地点:微信公众号“东松投标”方式:关注微信公众号“东松投标”,完成信息注册,即可购买招标文件。售价:¥700.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:同济大学     地址:上海市四平路1239号        联系方式:金老师 18117132101      2.采购代理机构信息名 称:上海东松医疗科技股份有限公司            地 址:上海市宁波路1号申华金融大厦11楼            联系方式:林之翔、王悦 0086-21-63230480转8610、8627            3.项目联系方式项目联系人:林之翔、王悦电 话:  0086-21-63230480转8610、8627
  • 北大教授研发出超灵敏结构光超高分辨率显微镜
    p  北京大学陈良怡团队联合华中科技大学谭山团队发明了一种超灵敏结构光超高分辨率显微镜 -- 海森结构光显微镜 (Hessian SIM)。此项成果近日以全文形式在线发表于Nature Biotechnology (影响因子41.67),论文题目为“Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy”。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201804/insimg/9733f7f5-ffa5-4262-9ca6-a6f439e01233.jpg" title="1.png"//pp style="text-align: center "图1:海森结构光显微镜解析囊泡融合孔道形成全过程。上图:实际的动态过程解析;下图:由实验结果得到的囊泡融合的四个中间态。/pp  在每秒钟得到188张超高分辨率图像时,海森结构光显微镜的空间分辨率可以达到85纳米,能够分辨单根头发的1/600到1/800大小结构,而所需要的光照度小于常用的共聚焦显微镜光照度三个数量级。由于极低的光漂白以及光毒性,实现了100 Hz超高分辨率成像下连续采样10分钟得到18万张超高分辨率图像,或者是在1 Hz超高分辨率成像下连续1小时超高分辨率成像基本无光漂白。/pp  与获得2014年Nobel化学奖的受激辐射损耗超高分辨率显微镜(STED)相比,海森结构光显微成像以极高的时间分辨率、极低的光毒性在活细胞超高分辨率成像方面占显著优势。例如,在观察细胞内囊泡与细胞质膜融合释放神经递质和激素过程中,海森结构光显微镜与STED显微镜(分辨率60纳米,每秒5幅左右; 巫凌钢实验室2018年3月Cell上线的文章)都可以观察到囊泡融合形成的孔道;但是,海森结构光显微镜还解析出囊泡融合时四个不同中间态,包括囊泡打开3纳米小孔、囊泡塌陷、融合孔道维持和最后的囊泡与细胞质膜完全融合的过程,真正可视化膜孔道形成的全过程(图1)。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201804/insimg/a8d935d2-2f07-4d3a-bfc4-18cf43e9c1ae.jpg" title="2.png"//pp style="text-align: center "图2、海森结构光显微镜显微镜下观察到COS-7细胞中的内质网和线粒体相互作用的动态过程,蓝色的线粒体用MitoTracker Green标记,可以清楚辨识内嵴结构;品红色的是用SEC61-mCherry标记内质网结构。/pp  此项突破一方面是基于硬件自主设计的新偏振旋转玻片阵列、高精度的时序控制程序以及高数值孔径物镜的应用;另一方面是创新的重构算法,借鉴了人眼区分信号和噪声的机制,首次提出将生物样本在多维时空上连续、而噪声是完全随机分布的先验知识用于构建海森矩阵,指导超高分辨率荧光图像的重建。/pp  超灵敏海森结构光显微镜是目前活细胞成像时间最长、时间分辨率最高的超高分辨率显微镜,适用于各种细胞、不同探针的荧光成像 – 可以说,所有应用扫描共聚焦显微镜的场景都可以使用海森结构光显微镜,因而具有广泛的应用前景。/pp  该论文的第一作者为北京大学黄小帅、华中科技大学范骏超和北京大学李柳菊,通讯作者为北京大学陈良怡、华中科技大学谭山。工作得到了国家自然科学基金委重大仪器研制基金、重大研究计划专项、科技部国家重点研发计划基金、重点基础研究发展计划和北京市自然科学基金委重点项目的资助。陈良怡、黄小帅等主创成员参与了早先发表于Nature Methods的高分辨率微型化双光子显微镜的研制,荣获2017年中国十大科学进展等荣誉。未来,他们将进一步实现微型化海森结构光的显微在体成像。/p
  • 235万!徕卡中标中国地质大学(武汉)超高分辨率激光共聚焦显微镜系统采购项目
    一、项目编号:DDCG-20221021(招标文件编号:DDCG-20221021)二、项目名称:中国地质大学(武汉)超高分辨率激光共聚焦显微镜系统采购项目三、中标(成交)信息供应商名称:武汉贝徕美生物科技有限公司供应商地址:洪山区珞狮路362号湖北农业科技大楼8楼801室中标(成交)金额:235.8600000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元)1 武汉贝徕美生物科技有限公司 超高分辨率激光共聚焦显微镜系统 Leica Microsystems CMS GmbH/Germany Stellaris 5 1套 2358600
  • 超灵敏海森结构光超高分辨率显微镜研发成功
    p  中科院膜生物学国家重点实验室联合华中科技大学发明了一种超灵敏结构光超高分辨率显微镜-----海森结构光显微镜 (Hessian SIM),实现了活细胞超快长时程超高分辨率成像,能辨清囊泡融合孔道和线粒体内嵴动态。在每秒钟得到188张超高分辨率图像时,海森结构光显微镜的空间分辨率可以达到85纳米,能够分辨单根头发的1/600到1/800大小结构,而所需要的光照度小于常用的共聚焦显微镜光照度三个数量级。同时,该显微镜也实现了细胞“能量工厂”线粒体的超快超分辨成像,首次在活细胞中解析线粒体融合、分裂时内嵴的活动,及线粒体内嵴自身的重组装过程,并能够观察内质网与线粒体发生相互作用时的动态变化。/pp  与获得2014年Nobel化学奖的受激辐射损耗超高分辨率显微镜(STED)相比,其具有极高的时间分辨率、极低的光毒性,在活细胞超高分辨率成像方面优势显著。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/235ade60-4b77-42b8-bfd2-21c083b4ea5d.jpg" title="640-2.jpeg"//pp  海森结构光显微镜解析囊泡融合孔道形成全过程。上图:实际的动态过程解析;下图:由实验结果得到的囊泡融合的四个中间态。/pp  灵敏海森结构光超高分辨率显微镜的成功验证,一方面基于新偏振旋转玻片阵列、高精度的时序控制程序以及高数值孔径物镜等硬件的自主研制;另一方面是重构算法的创新,首次提出将生物样本在多维时空上连续,而噪声是完全随机分布的先验知识用于构建海森矩阵,指导超高分辨率荧光图像的重建。/pp  超灵敏海森结构光显微镜适用于各种细胞、不同探针的荧光成像。可以说,所有应用点扫描共聚焦显微镜的场景都可以使用海森结构光显微镜,因而具有广泛的应用前景。/pp  此项研究成果以题为“Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy” 以全文形式于近日在线发表于《Nature Biotechnology》 上。/pp  论文链接:https://www.nature.com/articles/nbt.4115/ppbr//p
  • 680万!广东工业大学计划采购超高分辨率显微成像系统
    一、项目基本情况项目编号:0835-220Z12306661项目名称:超高分辨率显微成像系统采购采购方式:公开招标预算金额:6,800,000.00元采购需求:合同包1(超高分辨率显微成像系统采购):合同包预算金额:6,800,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他专用仪器仪表超高分辨率显微成像系统1(套)详见采购文件6,800,000.00-本合同包不接受联合体投标合同履行期限:合同生效180天内完成货物安装调试并交付使用。二、申请人的资格要求:1.投标供应商应具备《政府采购法》第二十二条规定的条件,提供下列材料:1)具有独立承担民事责任的能力:在中华人民共和国境内注册的法人或其他组织或自然人, 投标(响应)时提交有效的营业执照(或事业法人登记证或身份证等相关证明) 副本复印件。分支机构投标的,须提供总公司和分公司营业执照副本复印件,总公司出具给分支机构的授权书。2)有依法缴纳税收和社会保障资金的良好记录:提供投标截止日前6个月内任意1个月依法缴纳税收和社会保障资金的相关材料。 如依法免税或不需要缴纳社会保障资金的, 提供相应证明材料。3)具有良好的商业信誉和健全的财务会计制度:供应商必须具有良好的商业信誉和健全的财务会计制度(提供2021年度财务状况报告或基本开户行出具的资信证明) 。4)履行合同所必需的设备和专业技术能力:按投标(响应)文件格式填报设备及专业技术能力情况。5)参加采购活动前3年内,在经营活动中没有重大违法记录:参照投标(报价)函相关承诺格式内容。 重大违法记录,是指供应商因违法经营受到刑事处罚或者责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚。(根据财库〔2022〕3号文,“较大数额罚款”认定为200万元以上的罚款,法律、行政法规以及国务院有关部门明确规定相关领域“较大数额罚款”标准高于200万元的,从其规定)2.落实政府采购政策需满足的资格要求:合同包1(超高分辨率显微成像系统采购)落实政府采购政策需满足的资格要求如下:本项目不属于专门面向中小企业项目。本项目落实促进中小企业发展政策、支持监狱企业发展政策、支持残疾人福利性单位发展政策、支持脱贫攻坚等相关政策。本项目所属行业为工业。3.本项目的特定资格要求:合同包1(超高分辨率显微成像系统采购)特定资格要求如下:(1)供应商未被列入“信用中国”网站(www.creditchina.gov.cn)“记录失信被执行人或重大税收违法失信主体或政府采购严重违法失信行为”记录名单;不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间。(以资格审查人员于投标(响应)截止时间当天在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网(http://www.ccgp.gov.cn/)查询结果为准,如相关失信记录已失效,供应商需提供相关证明资料)。(2)单位负责人为同一人或者存在直接控股、 管理关系的不同供应商,不得同时参加本采购项目(或采购包) 投标(响应)。 为本项目提供整体设计、 规范编制或者项目管理、 监理、 检测等服务的供应商, 不得再参与本项目投标(响应)。 投标(报价) 函相关承诺要求内容。(3)本项目不接受联合体投标;不允许分包、转包。三、获取招标文件时间: 2022年09月07日 至 2022年09月14日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外)地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/方式:在线获取售价: 免费获取四、提交投标文件截止时间、开标时间和地点2022年09月27日 09时30分00秒 (北京时间)递交文件地点:广州市越秀区先烈中路102号华盛大厦北塔26楼广东元正招标采购有限公司开标室开标地点:广州市越秀区先烈中路102号华盛大厦北塔26楼广东元正招标采购有限公司开标室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.本项目采用电子系统进行招投标,请在投标前详细阅读供应商操作手册,手册获取网址:https://gdgpo.czt.gd.gov.cn/help/transaction/download.html。投标供应商在使用过程中遇到涉及系统使用的问题,可通过400-1832-999进行咨询或通过广东政府采购智慧云平台运维服务说明中提供的其他服务方式获取帮助。2.供应商参加本项目投标,需要提前办理CA和电子签章,办理方式和注意事项详见供应商操作手册与CA办理指南,指南获取地址:https://gdgpo.czt.gd.gov.cn/help/problem/。3.如需缴纳保证金,供应商可通过"广东政府采购智慧云平台金融服务中心"(http://gdgpo.czt.gd.gov.cn/zcdservice/zcd/guangdong/),申请办理投标(响应)担保函、保险(保证)保函。-七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:广东工业大学地 址:广州市广州大学城外环西路100号联系方式:020-393400322.采购代理机构信息名 称:广东元正招标采购有限公司地 址:广东省广州市越秀区先烈中路102号华盛大厦北塔26楼2608联系方式:020-87258495-1053.项目联系方式项目联系人:陈小姐、黄先生电 话:020-87258495-105广东元正招标采购有限公司2022年09月06日
  • 北京2016年激光共焦超高分辨显微学学术研讨会召开
    p style="line-height: 1.75em "  strong仪器/strongstrong信息网讯 /strong2016年3月22日下午,由北京理化分析测试技术学会和北京市电镜学会主办的“北京市2016年度激光共焦超高分辨显微学学术研讨会”在北科大厦举行。会议旨在推动北京市及周边省市激光共焦及超高分辨显微学的进步和发展,提高广大相关工作者的学术及技术水平,促进上述学科在生命科学等领域中的应用。本次会议吸引了来自高校、科研院所、仪器厂商等150余人参加,会议现场坐无虚席,甚至有不少听众由于座位不够只能站着听报告。/pp style="text-align: center line-height: 1.75em "img style="width: 500px height: 333px float: none " title="会议现场.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201603/insimg/77f5aa67-764f-4f63-8c4a-6be8e16f0c50.jpg" width="500" height="333"//pp style="text-align: center line-height: 1.75em "strong会议现场/strong/pp style="line-height: 1.75em "  自17世纪“诞生”以来,显微镜一直是生物学家从事研究工作、探寻生命奥秘必不可少的利器。2008年“出世”的超高分辨率显微技术,打破了常规光学显微镜的分辨极限(约200nm),实现科学家们对细胞内部结构的观察,使超高分辨率显微镜和激光共聚焦显微镜一起成为生命科学领域最重要的研究手段。2014年诺贝尔化学奖获奖者们利用荧光分子“标记”细胞内的精细结构,使其在显微镜下变得五彩缤纷、清晰可辨,真正帮助科学家们从纳米尺度上来认识细胞内的分子结构、定位以及相互作用。自此,生命科学的研究从微米尺度跨入了纳米尺度。/pp style="line-height: 1.75em "  据悉,超分辨显微产品目前在市场上非常受欢迎,伴随着技术的进步,其性价比也在不断提升,预计此类产品未来的应用前景将不断拓宽。/pp style="text-align: center line-height: 1.75em "img style="width: 500px height: 355px " title="陈建国.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201603/insimg/79aa39e8-c8e1-4453-ad35-42dfd4780ad5.jpg" width="500" height="355"//pp style="text-align: center line-height: 1.75em "strong报告人:北京大学 陈建国/strong/pp style="line-height: 1.75em " 北京大学的陈建国利用超高分辨显微技术对中心体蛋白Cep57及其在细胞分裂中的调控功能进行了研究。Cep57,原名translokin,最早被报道参与FGF-2胞质内转运过程细胞膜细胞核的双向运输,而2007年在瓜蟾提取物中的实验表明Cep57有稳定微管与动粒结合的作用。span style="line-height: 1.75em "陈建国通过结合免疫电镜和免疫荧光显微成像的结果说明Cep57是中心粒周围物质常驻蛋白,其中心体定位由N端卷曲螺旋结构域决定。同时,显微成像观察结果还显示,中心体蛋白Cep57作为纺锤体和中间体微管网络结构中的稳定因子在细胞有丝分裂过程中发挥了重要的作用。/span/pp style="text-align: center line-height: 1.75em "img style="width: 500px height: 357px " title="王文娟.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201603/insimg/845ef3a3-b325-47e9-8583-9af1de4bfbdc.jpg" width="500" height="357"//pp style="text-align: center line-height: 1.75em "strong报告人:清华大学 王文娟/strong/pp style="line-height: 1.75em "  来自清华大学的王文娟首先对清华大学细胞影像平台及其包含的仪器设备进行了介绍,并分别从空间分辨率、时间分辨率、成像深度和光毒性这几个方面对现有的共聚焦扫描、转盘共聚焦、宽场、结构光照明以及随机光学重构(STORM)等荧光成像技术进行了比较,以作为做生物荧光成像研究时选择相符合仪器设备的参考。另外,王文娟还介绍了激光共聚焦显微镜在生命科学中的几种高级应用,如FRAP(荧光漂白恢复)、FRET(荧光共振能量转移)、FLIM(荧光寿命显微成像)技术等的特点及其在实际应用过程中需要注意的情况。/pp style="text-align: center line-height: 1.75em "img style="width: 500px height: 382px " title="王晋辉.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201603/insimg/7d198b78-3cf5-416d-9536-cfa75417a935.jpg" width="500" height="382"//pp style="text-align: center line-height: 1.75em "strong报告人:中科院生物物理所 王晋辉/strong/pp style="line-height: 1.75em "  中科院生物物理所的王晋辉则以小鼠为动物模型,通过建立小鼠胡须触觉和嗅觉联合刺激训练的条件反射模型以及采用双光子激光共聚焦在活体上记录分析Barrel cortex(体觉皮层)区神经网络中神经元及星形胶质细胞的活动的方法对记忆细胞细胞基础的结构功能进行了研究。实验结果表明,在小鼠条件反射建立的过程中有对侧皮层的参与,非训练侧胡须对于条件刺激也有比较弱的非条件反应的现象。而共聚焦成像的结果也显示,小鼠在受到条件刺激时,Barrel cortex区神经网络中出现对条件刺激有反应的神经元和星形胶质细胞,而且条件反射建立之后,Barrel cortex和Piriform Cortex(梨状皮层)之间确实存在着某种联系。/pp style="text-align: center line-height: 1.75em "  img style="width: 500px height: 368px " title="陈良怡.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201603/insimg/671fcafd-e777-400a-b386-6553abf72aba.jpg" width="500" height="368"//pp style="text-align: center line-height: 1.75em "strong报告人:北京大学 陈良怡/strong/pp style="line-height: 1.75em " 随着显微技术在生命科学领域应用的不断深入,对仪器分辨率和采集速度的要求也越来越高,传统的显微技术已经满足不了对于活体生物深层组织的观察,对活体生物成像研究的深入迫切需要更多的技术进步。/pp style="line-height: 1.75em " 北京大学的陈良怡介绍了由北大牵头研制的大视场、高时空分辨新型双光子光片显微镜——2P3A-DSLM。新研制的光片显微镜具有采样速度快(1毫秒帧频)、光损伤小以及深层组织成像等优点。特别是与国际同类光片显微镜相比,2P3A-DSLM在保持超大视场的同时,具有最薄的光片(亚微米级),使得在活体模式动物组织深处观察亚细胞精细结构和动态过程成为可能。目前该系统已经成功应用于活体胰岛span style="color: rgb(51, 51, 51) line-height: 1.54 font-family: arial font-size: medium background-color: rgb(255, 255, 255) "β /spanspan style="line-height: 1.75em "细胞的结构功能研究,通过可视化胰岛素分泌过程,在不同的时间和空间尺度上监测β细胞功能和胰岛素分泌来研究糖尿病的形成机制。/span/pp style="text-align: center line-height: 1.75em "img style="width: 500px height: 379px " title="李栋.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201603/insimg/d170e613-d5b5-43ca-a1a0-0683a5bea245.jpg" width="500" height="379"//pp style="text-align: center line-height: 1.75em "span style="line-height: 1.75em "报告人:中科院生物物理所 李栋  /span/pp style="line-height: 1.75em "  中科院生物物理所的李栋也在报告中介绍了新的两种生物光学超分辨成像技术之high NA TIRF-SIM(高数值孔径物镜的全内反射结构光成像)和PANL-SIM(非线性激活结构光照明成像),是李栋和他的合作者基于原有的SIM(结构光照明成像)显微镜原理上发展的新的超高分辨率成像技术。/pp style="line-height: 1.75em "  科学家团队们利用了已经商业化的高数值孔径物镜将传统SIM的空间分辨率提高到84nm。高数值孔径限制了被光照明的样品范围,从而降低了光对细胞以及荧光蛋白分子的损伤。通过这一方法还可以同时对多个颜色通道进行成像,使得科学家们能够同时跟踪几种不同蛋白质的活动。 而结构光激活非线性SIM不仅分辨率更精细(〈80nm)而且图像采集速度也非常快,可在1/3秒内采集25幅原始图像,并从中重建出一幅高分辨率图像。它的图像采集很高效,只需用较低的照明光强,收集每一个亮态荧光蛋白分子所携带的信息,从而有效地保护了荧光分子,使得显微镜能够进行更长时间的成像,让科学家们可以观测到更多的动态活动,如细胞内蛋白质的运动和相互作用。/pp style="text-align: center line-height: 1.75em "img style="width: 500px height: 370px " title="徕卡.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201603/insimg/ef2ca0eb-c9e5-41d6-be96-d135527dd11d.jpg" width="500" height="370"//pp style="text-align: center line-height: 1.75em "报告人:徕卡 王怡净/pp style="line-height: 1.75em "  显微成像技术的不断发展也促使着各大仪器厂商们不断地提升相应产品的质量和性能。徕卡的王怡净给参会嘉宾们带来了题为《激光共聚焦及超高分辨技术应用新进展》的报告。她在报告中指出,当前激光共聚焦及超高分辨技术面临的挑战依然是更高的分辨率、更深的穿透深度以及超高分辨率下的多色成像和更快速度。基于此,徕卡推出了新的激光共聚焦平台——Hyvolution,可以帮助研究人员在140nm的分辨率下研究活细胞的快速动态过程,并同时采集多荧光标记的图像,或捕捉细胞内的细节信息。而全新的Leica TCS SP8 STED 3X则分别在三维超高分辨、多色成像和活细胞成像这三个关键领域实现突破性创新。/pp style="text-align: center line-height: 1.75em "img style="width: 500px height: 357px " title="蔡司.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201603/insimg/a8a82aac-9b26-4341-a31b-bec28e190acc.jpg" width="500" height="357"//pp style="text-align: center line-height: 1.75em "报告人:蔡司 位鹏/pp style="line-height: 1.75em "  来自蔡司的位鹏介绍了蔡司Airyscan技术在生命科学领域的一些新进展。据他介绍,今年在Airyscan技术中新增加了更灵敏的成像模式,通过平衡速度和分辨率来达到想要的实验结果,同时保证更好的分辨率和信噪比,并且通过双光子激发增强了深度性能的提升。他还透露,Airyscan技术的两款产品LSM800和LSM880自去年推出以来市场反响非常好,至今年2月份全国销量已达80台。另外,位鹏透露,今年下半年蔡司还将会推出新的技术。/pp style="text-align: center line-height: 1.75em "img style="width: 500px height: 362px " title="尼康.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201603/insimg/f4b1026c-463c-495e-96a8-768378c28c09.jpg" width="500" height="362"//pp style="text-align: center line-height: 1.75em "报告人:尼康 李勋 /pp style="line-height: 1.75em "  尼康公司的李勋介绍了尼康的超分辨共聚焦显微(ER)、简易版的SIM(SIM-E)和升级版的STORM(STORM4.0)。他特别指出,SIM-E是尼康公司结合中国市场推出的简易版的SIM,机器小巧,1帧/秒的时间分辨率、空间分辨率为传统光学显微镜的2倍,同时可进行多色超分辨率成像,非常适合个人实验室。而STORM4.0的图像采集速度则比前一代STORM提高了近10倍,成像区域是后STORM的4倍,实现了活细胞动态过程的超分辨成像。这款产品目前刚上市,市场表现值得期待。/pp style="text-align: center line-height: 1.75em "img style="width: 500px height: 370px " title="奥林巴斯.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201603/insimg/80f5497c-7dc2-466f-91ca-f60338ad63a3.jpg" width="500" height="370"//pp style="text-align: center line-height: 1.75em "报告人:奥林巴斯 戚少玲/pp style="line-height: 1.75em "  奥林巴斯20年来专注于双光子成像,国内用户超过100家。来自奥林巴斯的戚少玲介绍了奥林巴斯新型双光子系统在生命科学领域的应用,如在体小鼠肺部的研究、在体小鼠神经记忆功能追踪的研究和免疫细胞的迁移以及斑马鱼血管再生研究等。奥林巴斯高速、深层活体成像的最佳方案——FVMPE-RS实现了1300μspan style="color: rgb(51, 51, 51) line-height: 1.54 font-family: arial font-size: medium background-color: rgb(255, 255, 255) "/spanspan style="line-height: 1.75em "m的深层小鼠活体成像,能够有效收集动态影像,如被标记的细胞在血液中“缓缓”流动,斑马鱼的心脏“慢慢”起伏等。另外,基于近几年发展非常快的透明化技术,奥林巴斯还推出了一些特制的非商业化的专用物镜帮助生物学家们在活体成像研究达到“更深”的层次。/span/pp style="text-align: center line-height: 1.75em "img style="width: 500px height: 391px " title="Andor.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201603/insimg/6e64a67a-0c49-467e-84b6-98400155e2f1.jpg" width="500" height="391"//pp style="text-align: center line-height: 1.75em "报告人:Andor 王刚/pp style="line-height: 1.75em "  英国安道尔(Andor)科技有限公司位于英国北爱尔兰贝尔法斯特,现隶属于牛津仪器有限公司,专注于低光照快速成像。来自安道尔公司的王刚介绍了安道尔转盘共聚焦产品的关键技术点,包括安道尔专利的borealis激光照明技术、细胞环境控制、自动光照明定点漂白、损伤和激活技术等,使听众对转盘共聚焦有了一个大致的了解。/pp style="text-align: center line-height: 1.75em "img style="width: 500px height: 379px " title="TIMWINTER.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201603/insimg/89dcb9c2-b1d1-40ac-9c92-8ea6322c43d6.jpg" width="500" height="379"//pp style="text-align: center line-height: 1.75em "报告人:蒂姆温特 齐东/pp style="line-height: 1.75em "  最后是蒂姆温特公司的齐冬带来的题为《Femoto-3D/2D双光子从结构到功能》的报告。齐冬介绍道,成像应用的新趋势是结合新的成像技术超高速地定量测量清醒状态下在体系统内多体系协同作用现象。而全球唯一的声光(AO)驱动双光子扫描能够实现超高速的3D功能成像和超强信噪比对于观察单细胞形态和多细胞同步测量都有很好的效果,真正实现从结构成像到功能成像的跨步。/pp style="text-align: center line-height: 1.75em "img style="width: 500px height: 333px " title="IMG_5333.JPG" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201603/insimg/2a18e928-09c7-4bc0-b757-415c9dcbc865.jpg" width="500" height="333"//pp style="text-align: center line-height: 1.75em "strong北京市电镜学会秘书长张德添教授/strong/pp style="line-height: 1.75em " 本次研讨会由北京市电镜学会理事长郑维能、秘书长张德添教授、北大医学部何其华、北大医学部第一医院王素霞等多位业内专家主持。专家们的报告精彩纷呈,会议现场气氛十分热烈,与会嘉宾们纷纷在报告间隙提出了自己感兴趣的问题。/pp style="line-height: 1.75em "br//pp style="line-height: 1.75em text-align: right "撰稿人:陈星羽/p
  • 国产超分辨iSTORM新品!力显智能于清华发布新品活细胞超高分辨率显微成像系统!
    2023年8月6日至12日,由清华大学蛋白质研究技术中心、生物医学测试中心、中国细胞生物学学会细胞器生物学分会联合主办的第四届活细胞与超高分辨成像高级研讨会在清华大学成功举办。众多领域专家学者、行业头部翘楚齐聚一堂,和来自全国各地的100余位青年学者一起见证了这场学术盛宴。研讨会邀请了北京大学席鹏教授、陈良怡教授、孙育杰教授,中科院生物物理所李栋研究员,中国科技大学唐爱辉教授,西湖大学章永登研究员、清华大学陈春来副教授等十数位在活细胞、超分辨、单分子成像等领域的知名专家进行报告,还邀请了尼康、徕卡、蔡司等公司就超分辨成像、一体化活细胞成像等仪器进行了专业介绍和体验展示。在本次研讨会上,力显智能科技联合创始人兼COO张猛博士就《单分子定位超高分辨率显微镜iSTORM在生物医学领域的应用》进行了相关报告分享。会议期间,力显智能科技研发的新品活细胞超高分辨率显微成像系统iSTORM VIVO在清华大学正式发布,更是为这场精彩盛宴增添了一抹亮色。现场,清华大学高级工程师王文娟老师与力显智能科技联合创始人兼COO张猛博士共同为活细胞超高分辨率显微成像系统iSTORM VIVO揭幕。揭幕仪式力显智能科技联合创始人兼COO张猛博士表示:非常感谢一路支持力显的各位朋友和老师,是大家的支持和帮助,促成了这次活细胞超分辨新品在清华大学的圆满发布,这是广大用户对力显超分辨的再一次肯定,也是力显智能科技自研国产超分辨之路的又一个重要里程碑。活细胞超高分辨率显微成像系统iSTORM VIVO作为目前国内唯一的商业化单分子超分辨显微系统,iSTORM成功实现了光学显微镜对衍射极限的突破,使得在20纳米的分辨率尺度上从事生物大分子的单分子定位与计数、亚细胞及大分子复合物结构解析、生物大分子生物动力学等的研究成为现实。在原先标准版iSTORM的基础上,经光机系统、染料、算法协同开发,iSTORM VIVO在活细胞超分辨成像领域获得极大技术提高,提升原始图像拍摄速度,搭配高密度快速荧光定位算法,可以在维生条件下进行快速活细胞超高成像,以高精密度的成像能力解析活细胞的各种生命生理过程,极大弥补了传统STORM技术在活细胞超分辨成像领域的短板,给生命科学、医学等领域带来重大突破。
  • 810万!华中农业大学超高分辨率激光共聚焦显微成像系统等设备采购项目
    一、项目基本情况项目编号:ZCZB-2307-ZH080项目名称:华中农业大学超高分辨率激光共聚焦显微成像系统等设备购置项目(产教融合第三批)预算金额:810.0000000 万元(人民币)最高限价(如有):810.0000000 万元(人民币)采购需求:01包:超高分辨率激光共聚焦显微成像系统,详见附表;02包:荧光定量PCR仪(384通道),详见附表;03包:超高速冷冻离心机,详见附表;04包:全自动细胞计数仪等设备,详见附表。合同履行期限:1.交货期:详见附表2.质保期:详见附表3.质量目标:全新合格产品本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年07月16日 至 2023年07月21日,每天上午9:00至12:00,下午14:00至17:00。(北京时间,法定节假日除外)地点:湖北嘉汇志诚招标咨询有限公司官网(网址:www.zczbzx.com)方式:凡有意参加本项目的潜在供应商,通过互联网在“湖北嘉汇志诚招标咨询有限公司官网”(网址:www.zczbzx.com)进行投标人/供应商注册。完成注册后,通过“投标人/供应商登录”(网址:https://cloud.zczbzx.com/tender/login.html),明确所投项目及项目包段,通过网上下载获取招标文件。咨询电话027-86652085-801;系统技术服务QQ为263482602售价:¥1600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:华中农业大学     地址:武汉市洪山区狮子山街1号        联系方式:许老师、027-87282631      2.采购代理机构信息名 称:湖北嘉汇志诚招标咨询有限公司            地 址:武汉市武昌区和平大道513号绿地铭创大厦2005室            联系方式:陶丹、高雅、廖寿杰 027-86652085-801            3.项目联系方式项目联系人:陶丹、高雅、廖寿杰电 话:  027-86652085-801
  • 分辨率最高可达0.6 nm!国仪量子超高分辨场发射扫描电子显微镜SEM5000X
    分辨率最高可达0.6 nm!国仪量子超高分辨场发射扫描电子显微镜SEM5000X#NEWS超高分辨场发射电镜发布近日,国仪量子在2023全国电镜年会期间发布了全新的超高分辨场发射扫描电子显微镜SEM5000X,分辨率达到了突破性的0.6 nm@15 kV和1.0 nm@1 kV,进一步夯实了国产高端电镜发展的基础。深度挖掘用户需求 全新升级实现超强性能国仪量子在服务客户时发现,传统的场发射扫描电镜在拍摄一些特殊样品时会出现成像质量不佳的问题。例如,纳米材料的导电性较差,样品的粒径通常也非常小,观测难度较高。但随着科研水平不断进步,对材料的观测尺度也将不断缩小,观测难度愈发提高。为解决这一难题,国仪量子显微镜研发团队在调研用户需求后,基于深厚的技术储备与产品工程化能力,推出了“挑战极限”的超高分辨场发射扫描电子显微镜SEM5000X。SEM5000X如何“挑战极限”?极限挑战一:挑战超高分辨率SEM5000X在15 kV下分辨率优于0.6 nm,1 kV下分辨率优于1 nm,成功挑战了热场发射扫描电镜的极限分辨率。国仪量子对SEM5000X电子光学系统中的物镜部分做了特殊的改进优化,电透镜和磁透镜的重合度进一步提高,使得色差减小了12%、球差减小了20%,整体上提升了电镜的分辨率。极限挑战二:不惧高难样品在SEM5000X产品设计中,增加了样品台减速模块,采用了高压隧道和样品台减速的组合,实现双减速技术,能够挑战极限样品拍摄场景。极限挑战三:适应复杂环境此外,我们自研了高精度的优中心样品台,采用了超稳定的机架,还额外设计了可屏蔽环境干扰的全包围式屏蔽系统,使SEM5000X能够轻松适应各种复杂环境。产品优势SEM5000X01超高分辨率成像,达到了突破性的0.6 nm@15 kV和1.0 nm@1 kV02样品台减速和高压隧道技术组合的双减速技术,挑战极限样品拍摄场景03高精度机械优中心样品台、超稳定性的机架减震设计,可搭配整体罩壳设计,极大减弱环境对极限分辨率的影响04最大支持8寸晶圆(最大直径208 mm)的快速换样仓,满足半导体和科研应用需求如果您需要一台更高性能,更高分辨率的电镜,那您一定不能错过超高分辨场发射扫描电子显微镜SEM5000X。应用案例展示介孔二氧化硅/1 kV(Dul-Dec)/lnlens阳极氧化铝板/10 kV/Inlens芯片/5 kV/BSED-COM肾脏切片/5 kV/BSED-COMP泡沫镍/2 kV/ETD-SE蓝宝石衬底/5 kV/ETD-SE金颗粒/1 kV/Inlens光刻胶/2 kV/ETD-SE磁性粉末/10 kV/Inlens二氧化硅球/3 kV/ETD-SE催化剂/1 kV/ETD-SE波导/1 kV/ETD-SE
  • 首个真彩超高分辨率显微镜 打开光谱信息新大门
    美国劳伦斯伯克力国家实验室的科学家们开发了首个真彩(true-color)超高分辨率显微成像技术,为研究细胞结构和相关疾病提供了一个强大的工具。该技术将光谱与超高分辨率显微技术结合起来,在单分子成像时可以达到空前的光谱和空间分辨率。这一突破性成果发表在八月十七日的Nature Methods杂志上。  “我们用这一技术检测每个分子在空间和光谱中的定位,根据其光谱判断分子的颜色,可以说这是首个真彩超高分辨率显微镜,”助理教授Ke Xu说,他将这一技术命名为SR-STORM(spectrally resolved stochastic optical reconstruction microscopy)。  SR-STORM能够给出每个分子的光谱和空间信息,为人们打开了一扇新的大门。该技术不仅能够在细胞中成像多个组分,还能检测局部的化学环境(比如pH变化)。更重要的是,SR-STORM是一种高通量技术,能在大约五分钟内获得大量单分子的空间和光谱信息。  SR-STORM是Xu博士基于自己之前的工作开发出来的,当时他在著名学者庄小威(Xiaowei Zhuang)实验室从事博士后研究。庄小威教授研发的超高分辨率成像技术STORM与诺奖得主Eric Betzig的成果不相伯仲,却和2014年的诺贝尔化学擦肩而过。  现有的超高分辨率显微技术不能给出光谱信息,这样的信息对于理解分子行为是很有帮助的,而且能够对多个靶标实现高质量的多色成像。Xu博士和同事们经过深入探索,终于解决了这一难题。他们用发射波长相近的14种染料对样本进行染色。尽管这些染料的光谱彼此重叠,但SR-STORM能够很好的将其区分开。研究人员还用四种染料对线粒体、微管等四个不同的亚细胞结构进行标记。研究显示,SR-STORM能够根据分子的光谱轻松分辨不同的颜色,每个亚细胞结构都能鲜明的呈现出来。  “我们以大约10nm的高分辨率,成像了细胞内四个生物学组分的空间互作,”Xu说。“目前这一技术主要用于基础研究和细胞生物学领域,我们希望日后也能将其用于医疗。研究者们可以在SR-STORM的帮助下观察细胞结构的建立,以及它们在疾病中发生的变化。”  “细胞骨架包括一系列相互作用的亚细胞结构和蛋白,这一技术可以通过空前的颜色通道和空间分辨率,揭示不同靶标之间的互作。”  Xu博士正在尝试进一步改良这一技术,使它能够用于常规显微系统。他也在开发合适的染料和探针,在纳米尺度上监控细胞内局部环境的变化,比如pH值。  原文链接:Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy
  • 快速/温和/灵活:蔡司发布超高分辨率显微镜3D成像系统 Elyra 7
    p  strong仪器信息网讯 /strong12月4日,蔡司官网消息,蔡司全新一代“快速、温和、灵活”超高分辨率显微镜3D成像系统——Elyra 7 Lattice SIM(以下简称‘Elyra 7’)正式发布上市。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/70299677-8084-4fd8-9eb8-c90e0e7279a4.jpg" title="001.jpg.png" alt="001.jpg.png"//pp  发布信息中,Elyra 7被描述为一种“快速、温和、灵活”的全新超高分辨率显微镜3D成像系统。新增的Lattice SIM技术扩展了结构化照明显微镜(SIM)的应用范围:采用晶格图案而非光栅可使图像对比度更高,图像重构处理更高效。科研工作者可以采用2倍的采样效率降低光毒性,观察超高分辨率条件下细胞的快速移动过程。即使在高帧率下也能确保高图像质量。/pp  strongspan style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "技术背景/span/strongbr//pp  strong1873年/strong,蔡司创始人之一、德国著名物理学家Ernst Abbe第一次发现光学成像具有衍射限制现象。“阿贝极限”一直被认为是光学显微镜理论上的分辨率极限。/pp  strong2011年/strong,蔡司与诺贝尔奖获得者Eric Betzig及合作伙伴Harald Hess共同研发第一台基于PALM技术的商用成像系统,从而突破分辨率极限。/pp  strong2014年/strong,基于共聚焦系统的超高分辨率Airyscan面世,开启成像新标准。/pp  strong2018年/strong,蔡司与诺贝尔奖获得者 Stefan W.Hell领导的Abberior公司达成战略合作,共同推动超高分辨率技术的发展应用。/pp  strong现在/strong, 蔡司新一代超高分辨率成像平台Elyra7主要具有如下特点:/pp  strong1)使用Lattice SIM进行快速而低光毒性的超高分辨率成像/strong/pp  Lattice SIM可实现横向高达120 nm的3D超高分辨率快速成像。新型Lattice SIM技术光效更高,让科学家能够观察到每秒255帧的活细胞超高分辨率成像。/pp  采用较低的激光对样品进行照明,让科学家可以长时间观察成像,同时减少样品漂白及损伤。创新型Lattice SIM技术可以展示更多细节,还可以量化大视野范围中精细的亚细胞结构。/pp  strong2)使用SMLM优化定位显微镜/strong/pp  蔡司 Elyra 7可以使用单分子定位显微镜(SMLM)进行扩展,用于PALM,dSTORM和PAINT等技术。Elyra 7的SMLM模块具备大体量3D的分子级分辨率和强大的图像处理算法。研究人员在横向分辨率低至20 nm的成像中可以随意标记。SMLM提供了固定和活细胞样本中探究分子的机制。研究人员可以对分子进行计数,理解单个蛋白质在结构环境中的排列方式。/pp  strong3)使用Apotome模式进行快速光学切片/strong/pp  蔡司Elyra 7灵活度极高:用户可以使用蔡司活细胞显微镜进行种类丰富的研究。他们可以通过各种对比技术扩展Elyra 7应用,并将其与光学切片技术相结合。新的Apotome模式可快速对3D样品进行光学切片。Elyra 7还可以与扫描电镜在关联工作流程中进行无缝对接。/pp  strong4)生命科学研究的新视角/strong/pp  生命科学研究通常需要进行测量、量化并理解样品全部细节和亚细胞结构。科学家可能需要研究组织、细菌、亚细胞结构、神经元、活细胞或固定细胞等。蔡司 Elyra 7超越了传统显微镜的衍射极限,可对样品进行超高分辨率成像。研究人员正在研究大视野范围、3D、长时间且多种颜色条件下活细胞样品的快速动态过程。/pp  strongspan style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "关于蔡司/span/strong/pp  卡尔.蔡司是全球视光学和光电子工业领域知名的跨国公司, 1846年创立至今已有170余年历史。专注于技术的创新研发和为客户提供全面的解决方案。蔡司旗下所拥有的6个独立的事业部,即显微镜、医学器材、光学眼镜、光电子设备、半导体以及工业测量仪。蔡司显微镜部门的产品包含了传统光学显微镜、激光共聚焦显微镜、电子显微镜以及X射线显微镜,使蔡司公司成为全球唯一一家可同时提供全系列显微镜解决方案的公司。 目前,蔡司集团在40多个国家/地区拥有30多座工厂、50多个销售与服务机构以及约25个研发机构。全球约27,000名员工在2016/2017财年创造了约53亿欧元的业绩。公司于1846年在耶拿成立,总部位于德国奥伯科亨。卡尔蔡司股份公司是负责蔡司集团战略管理的控股公司。公司由Carl Zeiss Stiftung(卡尔蔡司基金会)全资所有。/pp  strong蔡司研究显微镜解决方案/strong是光学、电子、X射线和离子显微镜系统的一站式制造商,并提供相关显微镜的解决方案。产品组合包括生命科学和材料研究以及工业,教育和临床实践有关的产品和服务。该部门的总部设立在耶拿。其他生产和开发基地位于奥伯科亨,哥廷根和慕尼黑,以及英国剑桥、美国马萨诸塞州皮博迪和美国加利福尼亚州普莱森顿。蔡司研究显微镜解决方案属于工业质量和研究部门。部门约6300名员工在2016/2017财年创造了总额达15亿欧元的业绩。/p
  • 发布超高分辨率显微镜新品
    微球透镜(SMAL)成像技术,突破传统光学显微镜光学衍射分辨率极限(200nm),将用户带入全新的显微镜时代。   微球成像专利技术提高了光的功率,横向分辨率可达50nm,SMAL物镜可放大到400x。   通过SMAL成像技术,用户能够得到超高分辨率图像并保留光学显微镜所有优势——快速、简单、无损、完整、真实颜色。我们致力于为所有人能获得超高分辨率图像,无需昂贵的设备和严格的使用环境也无需大量的样品,只需光源、透镜和相机。   定制软件算法将高分辨率的微球图像拼接在一起,机械台会将样品移动到镜头下方。使用户能够快速的得到全彩色和超高分辨率的大区域样品图像。创新点:微球透镜(SMAL)成像技术,突破传统光学显微镜光学衍射分辨率极限(200nm),将用户带入全新的显微镜时代。  微球成像专利技术提高了光的功率,横向分辨率可达50nm,SMAL物镜可放大到400x。  通过SMAL成像技术,用户能够得到超高分辨率图像并保留光学显微镜所有优势——快速、简单、无损、完整、真实颜色。我们致力于为所有人能获得超高分辨率图像,无需昂贵的设备和严格的使用环境也无需大量的样品,只需光源、透镜和相机。  定制软件算法将高分辨率的微球图像拼接在一起,机械台会将样品移动到镜头下方。使用户能够快速的得到全彩色和超高分辨率的大区域样品图像。
  • 520万!浙江大学超高分辨激光共聚焦显微镜采购项目
    项目编号:ZUPC-GK-HW-2022041G项目名称:超高分辨激光共聚焦显微镜预算金额:520.0000000 万元(人民币)最高限价(如有):520.0000000 万元(人民币)采购需求:超高分辨激光共聚焦显微镜 一套,详见标书文件合同履行期限:合同签订后6个月内本项目( 不接受 )联合体投标。超高分辨激光共聚焦显微镜(ZUPC-GK-HW-2022041G)采购公告.docx
  • 超高分辨率显微镜:显微镜发展史上的新突破
    显微镜技术经过长期发展,加之近年来物理学界接二连三出现的重大科研进展,终于,在2008年,显微镜发展史上的新成果&mdash &mdash 超高分辨率荧光显微镜为科学家所研制出。人们预言,它定会成为生物学家的好帮手。  Stefan Hell打破了物理学界的传统看法  自从1873年Ernst Abbe第一次发现光学成像具有衍射限制现象以来,物理学界就公认,显微镜的分辨率具有极限,该极限与光源的波长有关。直到一个多世纪之后,罗马尼亚物理学家Stefan Hell推翻了这一观点。他是首位不仅从理论上论证了,而且用实验证明了使用光学显微镜能达到纳米级分辨率的科学家。  罗马尼亚物理学家Stefan Hell,现任德国马克斯· 普朗克生物物理化学研究院(Max Planck Institute of Biophysical Chemistry)主任。  早在上世纪80年代中期,当时师从德国海德堡大学(University of Heidelberg)一位低温固态物理学家的Stefan Hell就已经发现,如果不是像常规那样使用一个透镜聚焦,而是将两个大孔径的透镜组合在一起聚焦,就可以提高光学显微镜的分辨率。Stefan Hell是首位发现这一现象的研究人员。  Hell于1990年顺利完成了他的博士学业,但同时,这也意味着他将无法再凭借奖学金的资助进行研究了。Hell最终决定独自一人继续在家研究以上的发现,并最终成功发明了4Pi显微镜。4Pi显微镜,超高分辨率成像中的一个步骤  时任美国马萨诸塞州坎布里奇市哈佛大学(Harvard University)化学系教授的Sunney Xie遇到了Hell,当他了解了Hell发明的4Pi高分辨率显微镜时,Xie对Hell勇敢地对传统物理学观点提出挑战的精神表示赞许。  随后,Hell带着他的发明来到了位于德国海德堡的欧洲分子生物学实验室(European Molecular Biology Laboratory, EMBL),并获得了德国科学基金会提供的奖学金。1991年,Hell在该实验室开始他的博士后研究工作。  起初,许多科学家,包括那些声名显赫的物理学家都认为Hell的工作对于提高光学显微镜的分辨率没有太大的意义。他们认为,Hell仅用他那少得可怜的科研经费来从事这项研究简直就是在冒险。但Hell却始终坚信他能够打破衍射极限。  Hell的努力没有白费,他的冒险终于获得了回报。1992年,Hell第一次用他的4Pi高分辨率显微镜证明了他的确能将传统光学显微镜的分辨率提高3~7倍。然而,尽管Hell提高了Z方向的分辨率,他还是没能突破衍射极限的限制。  此后不久,Hell又在芬兰土尔库大学(University of Turku)得到了他的第二个博士后职位。一个星期六的早晨,Hell正躺在研究生公寓的床上看一本有关光学量子理论的书,突然,灵光一闪,Hell脑海里浮现了一个想法:如果使用一种合适的激光,仅激发一个点的荧光基团使其发光,然后再用一个面包圈样的光源抑制那个点周围的荧光强度,这样就只有一个点发光并被观察到了。Hell给他的这项发明取名STED,即受激发射损耗显微镜(stimulated emission depletion)。有了这个想法后,Hell立即行动,冲进实验室进行相关实验。每当回想起当时的心情,Hell都会觉得那是他科研生涯中最激动的时刻。  曾在EMBL与Hell共事,并共同研发4Pi显微镜的Pekka Hanninen指出,Hell在土尔库大学进行研究工作时非常刻苦。那时,他经常被许多问题困扰。尽管如此,研究过程中还是有许多快乐萦绕着他们。Hell不仅是一名严谨的科学研究者,还是一名音乐爱好者,每当工作至深夜时,实验室走廊总会回响起Hell吹奏萨克斯风的动听乐声。由共聚焦显微镜(左图)和STED(右图)成像的一个神经元。  1994年,Hell在《光学快报》(Optics Letters)上发表了他关于STED的理论文章。不过直到多年以后,这项理论才得以在实践中被证实。在那段时间里,Hell一面继续研究工作,一面四处奔走筹集科研经费,还卖掉了他4Pi 显微镜的专利。  但是那个时候Abbe的衍射极限理论仍然在学界占统治地位,许多物理学家对Hell的理论都持怀疑甚至批评态度,因此他们也都将研究重点放在其它的成像技术上。尽管如此,Hell还是在1997年与马普生物物理化学研究所签订了一份长达5年的合同,以继续他的STED研究。  1999年,Hell将他的研究成果分别投给了《自然》(Nature)杂志和《科学》(Science)杂志,不过都被退稿。当时两位杂志的主编都没有意识到他的研究成果将会改变整个显微镜领域。  直到2000年,事情才终于有了转机&mdash &mdash 《美国国家科学院院刊》(PNAS)发表了Hell的科研成果。采用 Hell的STED技术,人们第一次得到了纳米级的荧光图像。Hell的工作由此获得了广泛的肯定,2002年,他获得了马普研究所的终身职位。从此,Hell一直在马普研究所从事成像技术的研究工作。  紧随STED这项开创性工作之后,世界各地实验室等研究机构内陆续出现了一批高分辨率的显微镜技术。例如,由珍妮莉娅法姆研究学院(Janelia Farm Research Campus)的物理学家兼工程师Mats Gustafsson领导的研究团队开发出了结构光学显微镜(structured-illumination microscopy, SIM)。果蝇卵母细胞内的肌动蛋白的3D SIM成像,该照片拍摄于完整的卵泡内。  SIM技术的原理是通过一系列光成像的图案对低分辨率莫尔条纹形式的精细结构进行成像,此类图像是采用其它技术所无法观察到的。然后再由计算机处理、分析这些条纹中包含的信息,最终就可以获得高分辨率的图像。  同年,Gustafsson小组得到了HeLa细胞中肌动蛋白细胞骨架的图像,他的图像相比传统显微镜的图像来说,在测向上的分辨率提高了2倍。随后,Gustafsson小组又使用非线性技术将整体分辨率提高了4倍。  科研竞赛  2006年,超高分辨率显微镜研究行业翻开了新的篇章。Eric Betzig、Harald Hess以及Lippincott-Schwartz小组、Samuel Hess小组以及庄晓威(音译)科研小组几乎同时报道了他们提高显微镜分辨率的科研成果,下面分别介绍这三个小组的研究情况。  Eric Betzig、Harald Hess以及Jennifer Lippincott-Schwartz小组  2005年夏天,细胞生物学家Jennifer Lippincott-Schwartz卸下了她在美国马里兰州贝塞斯达美国国立卫生研究院(HIV)暗室里的红色灯泡。Lippincott-Schwartz正在为赋闲在家的两位物理学家Eric Betzig和Harald Hess腾出空间,筹备实验室。正是这两位物理学家研制出了光敏定位显微镜(photoactivated localization microscopy, PALM),他们的这种新产品能将荧光显微镜的分辨率提升至纳米级水平。  接下来的整个冬天,Eric Betzig、Harald Hess以及Lippincott-Schwartz等人都一直在那间狭小的没有取暖设备的实验室里工作。现在就职于美国弗吉尼亚州阿士伯恩霍华德休斯医学研究所珍妮莉娅法姆研究学院(Howard Hughes Medical Institute&rsquo s Janelia Farm Research Campus in Ashburn, Virginia)的Hess承认,自己与Betzig对生物学的认识都不深。不过近15年来,他们一直都在努力,希望能运用生物学知识获取高分辨率的显微图像,但是没有取得明显进展。然而,当Hess和Betzig了解到Lippincott-Schwartz和George Patterson在2002年发明的光敏绿色荧光蛋白(photoactivatable green fluorescent protein)后,他们知道他们已经找到了解决问题的关键所在。  回想起当时的情形,Lippincott-Schwartz指出:&ldquo 他们当时非常激动。我还记得当我们得到第一张显微图像时,你根本无法看出那是什么东西。直到我看到他们将荧光图像和电镜图像叠加之后的结果才相信,我们成功了。我当时觉得这一切真是太神奇了。&rdquo   2006年,Eric Betzig、Harald Hess以及Lippincott-Schwartz小组在《科学》(science)杂志上发表了他们的PALM研究成果。使用PALM可以清楚得看到细胞黏着斑和特定细胞器内的蛋白质。  Samuel Hess小组  Samuel Hess小组是上述三个小组之一。Hess是美国缅因州立大学(University of Maine)物理系的助理教授。2005年夏天,Hess一直在和他们学校的化学工程师和生物学工程师,就如何提高观察活体细胞脂筏结构的分辨率等问题进行交流。  2005年的一个夏夜,Hess被邻居家举办舞会的声音吵醒。半睡半醒的Hess走下楼来,随手画了一副设计图,他的这种设计是需要借助荧光标记的蛋白质来显示细胞形态的。第二天早上,当Hess重新翻看这幅非清醒状态绘制的潦草的设计图时,不由得大笑起来。不过令人吃惊的是,他的这幅设计图竟然没有一点问题。于是他把这幅图拿给物理系的同事检查,但同事也没有发现任何问题。  接下来,Hess就按照他的设计图开始制作显微镜了。此时,他的科研经费所剩不多,而结题时间转眼就到。因此,Hess等人以最快的速度组装好显微镜,并进行了试验。同时,在不到两天的时间里,缅因州立大学表面科学技术实验室的同事就为Hess制备好供检验显微镜效果的蓝宝石晶体样品。  对于同事们的帮助,Hess总是不胜感激。  2006年,《生物物理学期刊》(Biophysical Journal)刊登了Hess小组的科研成果。他们将这项研究成果命名为荧光光敏定位显微镜(fluorescence photoactivation localization microscopy, FPALM)。2007年,Hess小组证明了FPALM可以分辨细胞膜脂筏上的蛋白质簇。  庄晓威科研小组  与此同时,另一个研究小组&mdash &mdash 哈佛大学霍华德休斯医学研究所(Howard Hughes Medical Investigator at Harvard University)的研究员庄晓威科研小组也在研究高分辨率成像技术。  通过3D STORM观察到的一个哺乳动物细胞内线粒体网状系统。传统荧光成像(左图) 3D STORM成像(中图),其中,采用不同颜色标记出z的位置 3D STORM成像中xy维图像(右图)。  其实,这三个小组都有一个共同的也是非常简单的理念,那就是先获得单分子荧光图像,再将成千上万个单分子图像叠加在一起,获得最终的高分辨率的图像。  早在2004年初,庄等人就已经意外发现了有一些花青染料可以用作光敏开关。这也就意味着这些染料既可以被激活发出荧光,也可以被关闭不发光,人们可以使用不同颜色的光束来随意控制这些花青染料的开和关。  从那以后,庄等人就一直在研究如何用光敏开关探针来实现单分子发光技术。他们希望能用光敏开关将原本重叠在一起的几个分子图像暂时分开,这样就能获得单分子图像,从而提高分辨率。Eric Betzig小组和Samuel Hess小组也都采用了同样的策略,只不过他们使用的不是光敏开关而是一种可以先被荧光激活继而被漂白失活的探针。  2006年,庄的科研成果在《自然-方法》(Nature Methods)杂志上发表,他们将这项成果命名为随机光学重建显微镜(stochastic optical reconstruction microscopy, STORM)。使用STORM可以以20nm的分辨率看到DNA分子和DNA-蛋白质复合体分子。  此后几年,超高分辨率荧光显微镜又得到了进一步的发展。现在,生物学家已经能够使用超高分辨率荧光显微镜在纳米水平上观察细胞内部发生的生化变化了。以往那些大小在200nm至750nm之间的模糊泡状图像再也无法对他们造成困扰了。尽管早在上世纪80年代,科研机构里就已经出现了超高分辨率显微镜的构思,但只是最近几年里这项技术才伴随着它的商业化进程获得了快速发展。现在,已经有几十家实验室安装了这种最新型的显微镜并投入了使用。正像Lippincott-Schwartz所说的,超高分辨率显微镜正在以飞快的速度被科研界接受,在生物学界更是如此。  超高分辨率显微镜的成绩  已经开始使用这些显微镜的生物学家对这项技术都表示出了极高的热情。Jan Liphardt这位在美国劳伦斯伯克力国家实验室(Lawrence Berkeley National Laboratory)工作的生物学家,还清楚地记得他2006年第一次在《科学》(science)杂志读到Betzig的那篇有关PALM技术的论文时的激动心情。当他看到那幅线粒体蛋白的图像时立刻想到了该技术可以用于他自己的微生物研究领域。  Liphard说道:&ldquo 通常,我们得到的大肠杆菌荧光图像都只有20像素,甚至更低,现在突然有一幅几千像素的图片摆在你面前,你可以想象那是一种什么感觉。&rdquo   Liphard现在正与Betzig以及其他一些研究人员一起研究大肠杆菌的趋化现象(chemotaxis)。Liphard还提到:&ldquo 我从没想到这项技术达到的分辨率有这么高,可以如此清楚地看到细胞内单个蛋白质分子的定位,甚至还能定量。而对我来说,每天的工作实际上就是在弄清楚这些蛋白质在什么位置,什么时候存在。而之前我们的研究主要采用间接方法。但超高分辨率显微镜这项新技术是我从事科研工作这么长时间以来,感触最深,获益最大的一项科技成果。&rdquo   美国丹佛市科罗拉多州立大学医学院(Medicine at the University of Colorado Denver)的助理教授Nicholas Barry也正在和Betzig合作,他们使用了一台蔡司的全内反射荧光成像系统(total internal reflection fluorescence imaging, TIRF)来研究肾细胞顶端胞膜上的蛋白质簇。  Barry指出,只需要一台蔡司显微镜和普通电脑,差不多就足够了。此外,他们还花费3万美元添置了两台激光发射器。现在,Barry等人可以在8分钟内得到一幅图像,这幅图像由10000帧图像合成,每一帧图像上显示10个分子。最后的图像文件大小大约是0.3GB。Barry等人还使用Perl语言自己开发了一套免费程序。Barry表示:&ldquo 这里面包含了每帧图像的资料信息,客户可以根据这些信息进行相关计算。&rdquo Barry充满信心地提到,很快就会有人为NIH的那套免费图像分析软件ImageJ开发出一套运算程序作为插件使用。  美国斯坦福大学(Stanford University)化学及应用物理系教授W.E. Moerner曾于1989年第一个在试验中使用光学显微镜得到了单分子图像。W.E. Moerner教授表示,这几年来,超高分辨率显微镜研究领域已经取得了巨大的进展,终于达到了纳米级单分子分辨率。他兴奋地说:&ldquo 经过了近20年对单分子成像课题的研究,我们终于取得了完美的成果。&rdquo   展望  自从2006年STORM技术和PALM技术问世以来,科技工作者就一直在不断努力,对它们进行改进、完善和提升。2008年,Lippincott-Schwartz的研究团队将PALM技术和单颗粒示踪技术(single-particle tracking)结合,成功地观测到活体细胞胞膜蛋白的运动情况。同年,庄小威研究组在《科学》(science)杂志上也发表了他们的3D STORM成像成果,该技术的空间分辨率比以往所有光学3D成像技术的分辨率都要高出10倍。论文中,他们展示了用3D STORM成像技术拍摄的肾细胞内微管结构图和其它的分子结构图。随后,他们又进一步将该技术发展成了多色3D成像技术(multicolor 3D imaging)。Gustafsson,还有其他一些科研工作者使用3D SIM技术(该技术使用3束干涉光,而不是常见的2束)观察到了共聚焦显微镜(confocal microscopes)无法观测到的哺乳动物细胞核内结构。位于德国的世界知名光学仪器制造公司蔡司公司进一步发展了SIM和PALM技术,不过他们将PALM称为PAL-M。蔡司公司预计将于2009年末推出全新的成像产品。  2008年,Hell小组使用STED技术通过抗体标记目标蛋白,观察到了活体神经元细胞中突触小泡(synaptic vesicles)的运动过程。同年稍晚些时候,他们又使用4Pi显微镜和STED技术得到了固定细胞内线粒体的3D图像,分辨率达到了40至50nm。最近,他们又使用超高分辨率显微镜成像技术对脑切片组织中的形态学变化进行了研究,并得到了活体神经元细胞树突棘(dendritic spines)的3D图像。PALM在哺乳动物细胞内拍摄到的粘附复合物。  由于最近几年这些新技术的不断涌现,现在可以对活体细胞进行三维观察了。Gustafsson指出,随着PALM技术和STORM等新技术的出现,以前很多看起来不可能的事情现在都变得可能了。  尽管已有许多科学家从这项技术进展中获益,但是仍然可以进一步提高,以使更多的研究人员能够在自己的工作中使用它。到目前为止,那些成功应用此项技术的实验室都采取了正确的技术组合:研究人员可以很好地将物理学与生物学相结合&mdash &mdash 他们将显微镜装配并做适当的调节,然后用它对生物学样品进行检测。Moerner指出,软件的编写也不容小觑:对检测到的光子进行定位和报告需要进行准确计算,从而得到合适的分辨率。  仅仅是显微镜的价格就已经限制了它的普及性,Leica&rsquo s TCS STED显微镜高达100万美元。因此,如何获得相应的资金来购置显微镜仍然是摆在研究人员面前的一个难题,位于丹佛市的科罗拉多大学(University of Colorado)光学显微镜组主任Bill Betz这样说道。  Betz曾申请用于显微镜购置的资金,但遭到了拒绝。但他表示,他们已经计划再次申请相关资金。而Stefan Hell曾指出,激光领域的技术进展已经可以使得研究人员自己在实验室内构建一个STED平台,花费只需不到10万美元。  除了要将这一技术方法普及,使生物学家能够加以利用之外,该项技术的研发人员还表示,他们已经开始致力于研究更宽范围及更多样的荧光探针了。更好的探针当然能够为我们带来更高的分辨率及更快速的图像处理。美国纽约阿尔伯特&bull 爱因斯坦医学院(Albert Einstein College of Medicine)解剖学及结构生物学副教授Vladislav Verkhusha说到:&ldquo 为了对活体哺乳动物细胞进行研究,你就需要有一整套的荧光标记蛋白和可通过光控开关控制的蛋白质。&rdquo 他本人在荧光蛋白领域的研究工作就受益于PALM的出现。  庄晓威的众多项目之一便是与Alice Ting及其在麻省理工学院(MIT)的实验室合作,对蛋白标记技术进行研究,希望能够找到一种方法可以将小和明亮的光控开关可控的探针标记于细胞的特异蛋白上,从而可以对活细胞进行成像。她提到:&ldquo 将遗传标记方法与小而明亮且可被光控开关控制的探针结合在一起,将是今后发展分子级别超高分辨率成像的十分理想的一种方法。&rdquo   尽管研发人员还将继续努力,以进行相应技术的提高,但是超高分辨率荧光显微镜更加广泛的应用还是毫无疑问地成为新的一年的标志。Harald Hess说:&ldquo 这一技术的确会为生物学家的工作带来很大的帮助。同时,我们也在不断询问,&lsquo 你们想要用它做什么精彩的实验?&rsquo 事实上,我们也得到了许多精彩的答案。&rdquo
  • 北京市2023年度激光共焦及超高分辨显微学学术研讨会圆满召开
    仪器信息网讯 2023年4月15日,北京市 2023 年度激光共焦及超高分辨显微学学术研讨会在北京四川龙爪树宾馆成功举办。本次会议由北京理化分析测试技术学会电子显微学专业委员会主办,旨在提高广大相关科技工作者的学术及技术水平、促进生物光学成像技术在生命科学等领域中的应用,为相关科技工作者提供学术及技术交流的平台。会议吸引百余位来自高校、科研院所、仪器企业和仪器代理商等相关领域代表出席。会议现场会议由北京理化分析测试技术学会电子显微学专业委员会荣誉理事长张德添教授等主持,共有14位光学显微成像领域的科研和技术专家分享了报告。报告内容包括结构光超分辨显微技术、单分子超分辨显微技术、光片显微技术、超分辨共聚焦显微技术、双光子显微技术等多种显微成像技术和综合解决方案在神经科学、分子生物学、植物细胞生物学等生命科学研究领域中的应用。从多个报告中可以看到,“智能化”正在成为光学显微镜发展的一大趋势。部分报告主持人李栋 研究员 中国科学院生物物理研究所报告:多模态结构光超分辨显微镜技术开发与应用吕冰洁 卡尔蔡司(上海)管理有限公司报告:3D高分辨和大数据成像的图像处理及可视化解决方案李叶昕 徕卡显微系统(上海)有限公司报告:大道至简——徕卡智能成像新纪元呼新尧 北京纳析光电科技有限公司报告:多模态结构光超分辨智能显微镜潘雷霆 教授 南开大学报告:单分子定位超分辨成像及应用孙慧妙 锘海生物科学仪器(上海)有限公司报告:平铺光片显微技术及其应用魏涛 尼康精机上海有限公司报告:尼康最新超分辨共聚焦AXR及新一代双光子系统AXRMP邓伍兰 研究员 北京大学报告:转录调控中的单分子动态孙文智 研究员 北京脑科学与类脑研究中心报告:Engineering Practice Between Mouse and Microscope in Two-Photon Imaging王莹 宁波力显智能科技有限公司报告:单分子超高分辨率显微成像技术及其在生物医学领域的应用王咏婕 仪景通光学科技(上海)有限公司报告:Evident高分辨成像解决方案费鹏 教授 华中科技大学报告:高通量计算光片显微成像技术及生物医学应用朱慧慧 牛津仪器Andor报告:全新出发——牛津仪器Andor生命科学解决方案李晓娟 教授 北京林业大学报告:多尺度成像技术在植物细胞生物学中的应用会议现场,近二十家国内外光学显微镜厂商展示了自己的产品,并同与会代表充分交流。近几年,该会议的参展厂商中,越来越多的国产共聚焦、超高分辨率显微镜、光片显微镜等高端光学显微镜企业涌现,本次参展的国产光学显微镜厂商超过半数,许多科研成果也已到了开花结果的时候,这让整个高端光学显微镜市场充满活力。参展厂商活动抽奖环节
  • 超高分辨率荧光显微镜的应用
    超高分辨率荧光显微镜正在不断改变我们对细胞内部结构及运作的认识。不过在现阶段,显微镜技术还是存在着种种不足,如果人们希望显微镜能在生物研究领域发挥重要作用,就必须对其加以改进和提高。  光学显微镜的出现及其影响  自荷兰博物学家、显微镜创制者Antonie van Leeuwenhoek(1632-1723)在17世纪第一次将光线通过透镜聚焦制成光学显微镜并用它观察微生物(microorganisms or animalcule)以来,显微镜就一直是生物学家从事研究工作、探寻生命奥秘必不可少的利器。正是因为有了Leeuwenhoek的这项伟大发明及其后继者对显微镜技术的不断改进和发展,人们才能够对细胞内部错综复杂的亚细胞器等结构的形态有了初步的了解。  此后,研究人员对显微镜技术的追求从未停歇过,他们总是希望能得到分辨率更高的显微镜,从而更好地观察细胞内部更细微的结构。最近,《自然-方法》(Nature Methods)杂志上报道的超高分辨率成像技术(super-resolution imaging, SR imaging)终于使得人们可以在单分子水平上进行观察研究。  SR技术的发展过程  在达到今天SR技术水平的过程中,承载了许许多多研究人员辛勤劳动的汗水,也面临着诸多亟待解决的难题。  在以上这些光学SR成像技术中有两种技术&mdash &mdash 受激发射减损显微镜(stimulated emission depletion microscopy, STED)和饱和结构光学显微镜(saturated structured illumination microscopy,SSIM)最受关注。  最近,基于探针SR成像技术的光敏定位显微镜(PALM)和随机光学重建显微镜(STORM),以及借助荧光基团随机激活特性的荧光光敏定位显微镜(FPALM)都已经取得了成功。  通过基于探针的SR成像技术,可以获得多张原始图像。在每一张原始图像中,细胞内只有一部分被荧光标记的分子能发出荧光,即这些荧光分子都处于不断激活和灭活的交替状态,每一次都只有部分分子能被观察并成像。而且由于每次发出荧光的分子都分散得较为稀疏,因此相互之间不会受到影响,也就避免了因相邻分子发出荧光而无法分辨的问题。最后将这些原始图片叠加、重合在一起就得到了最终的高分辨率图像。这样,就能使得那些以前由于荧光点太密以至于无法成像的结构的分辨率达到纳米级水平,而且成像的分子密度也相当高,可以达到105个分子/&mu m2。  这种分辨率对于生物学家来说,意味着现在可以在分子水平上观察细胞内的结构及其动态过程了。  虽然显微镜技术已经发展到了如此高度,但它仍然只是生物学家研究中使用的一种工具。因此还需要将显微镜获得的图像与其它的试验结果互相参照,才能获得准确的结果。人们需要认清SR显微镜的优势与劣势,为操作以及判断SR图像制定出标准化的操作规范,只有这样才能最大限度地发挥SR显微镜的作用。  现在,由于人们对细胞内各组份的组织结构以及它们的动态变化过程都只有一个概念上的认识,因此,借助显微镜从纳米水平上对这些结构及过程进行真实的观察能让人们发现许多以往所不了解的东西。例如,以前人们通过电镜发现细胞骨架是由大量丝状网格样组织构成时,就有人对此现象持怀疑态度。那些认为细胞骨架是一种用来稀释细胞内生化物质浓汤这样一种结构的细胞生物学家把这种观测结果称作僵化的人为试验结果。  除非最新的SR显微镜图像或者其它的试验结果都能证明细胞骨架是由大量的丝状网格样组织构成的,否则还会有人持上述的怀疑观点。不过已经有其它的生化试验结果证实了早期的电镜观察结果是正确的。当然新兴的SR技术也需要其它传统的生化试验结果予以佐证才有价值,同时还需要电镜的辅助。因为电镜能提供纳米级的观察结果,这对于佐证具有同样分辨率的SR显微镜观测结果来说是最有价值的。  今后,大家在逐步了解、接受和广泛使用SR显微镜的同时,需要注意将会出现的各种问题,以下的表格列出了部分与SR显微镜使用相关的缺点及其目前的解决方法。  最近几年,就如何处理图像已经有了非常严格的操作规范。不过迄今为止,对于怎么处理SR图像还没有一个标准的操作规范。尤其需要指出的是,PALM和STORM数据在某些重要因素上,graph方面的共性要多于image方面。在一张SR图像上,分子的不确定性和密度都能用颜色表示出来,这种图像把细胞内该分子有可能出现的任何地点都标示出来了。而且只有被标记的分子按照一定的标准(发出的光子数)判断它的确是一个单分子并且定位准确之后才显示出来。必须对获得的图像进行这样的标准化处理之后才能分析结果。同样,对于试验数据也需要如此进行标准化处理。要提高分辨率不仅需要分子定位、分布得比较好,还需要分子数目够多,以致能达到尼奎斯特判断法(Nyquist criterion)的要求,即分子间的平均距离要小于显微镜分辨率的一半。虽然上述问题都不会影响SR显微镜的应用,但由于存在这些问题,所以我们应该时刻提醒自己,一定要仔细判读、分析SR显微镜的图像结果,只有这样才能得到有价值的生物学结论。  SR荧光显微镜在生物学研究中的应用  到目前为止,人们还很难得知,SR荧光显微镜会对生物学界的哪一个领域带来重大变革,但已经有几个领域出现了明显的改变。这些研究领域是动态及静态的细胞组织结构研究领域、非均质分子组织研究领域、蛋白动态组装研究领域等。这几个领域都有一个共同的特点,那就是它们研究的重点都是分子间如何相互作用、组装形成复合物。因此,能在纳米水平观察这些分子对它们来说具有重大的意义。  通过观察蛋白质之间的组合关系来了解它们的作用,并能为后续的细胞功能试验打下基础  结构生物学研究在这方面已经取得了很大的进展,目前已经发现了4-8纳米大小的分子间相互作用组装成细胞微管、肌丝、中间丝这些超过10微米大小聚合物的机制。不过对于核孔复合体、中心体、着丝点、中间体、粘着斑这些由许多不同蛋白经过复杂的三维组装方式组合起来的复合体,还需要更好的办法来进行研究。目标就是要达到分子水平的分辨率,这样就可以观察大复合体形成过程中的单个分子,也就能对这些分子的化学计量学有所了解了。要得到更多的生物学信息就需要SR显微镜这样的三维成像技术,例如可以使用活体细胞SR成像捕捉细胞骨架的动态重构过程等等。  SR成像有助于人们更好地了解分子间的差异  细胞膜蛋白组织方式的经典模型已经从随机分布的液态镶嵌模型转变成了脂筏模型、穴样内陷模型或特殊蛋白模型。这种差异与细胞不同功能相关,例如在高尔基体、cargo蛋白和高尔基体酶蛋白之间必须发生相互作用,但最终它们会按照各自的功能分开,发挥各自的作用。有很多试验手段,例如免疫电镜技术、荧光共振能量转移技术(FRET)等都已经被用来研究这种膜不均一性问题了。多色PALM技术(Multicolor PALM)为人们提供了一种新的手段用来观察膜蛋白集合、组织的过程,并且还能定量分析不同蛋白间的空间距离关系。因为有了PALM提供的单分子信息,人们就可以清楚地了解蛋白分子间的空间关系,甚至有可能计算出相隔某一距离的分子之间发生相互作用的可能性。这种方法除了用于研究膜蛋白之外,还能用于许多非随机分布的生物系统研究,例如研究微管上的马达蛋白。  SR成像技术还能用于在单分子水平研究蛋白动态组装过程  细胞对外界刺激信号的反应起始于胞膜,在胞膜上受体蛋白之间发生动态的集合,用来调节细胞的反应活性。像HIV这种有被膜病毒也是在细胞膜上完成病毒颗粒组装过程的病毒,也是利用了细胞的物质转运机制。尽管现在蛋白组装的物理模型还远远没有完成,但研究人员知道膜蛋白的动态组装过程是不均一的,所以通常使用荧光试验手段很难获得分子水平上的信息。同样,单分子测量技术(Single molecule measurements)也存在着类似的局限,因为单分子测量技术只能观察细胞内的几个分子,所以缺乏整体的信息。因此由于缺乏空间分辨率,很难动态地研究蛋白质组装过程。SR荧光成像技术与活细胞成像技术和单分子示踪技术(sptPALM)结合就能解决这一问题。我们可以借助分子密度准确地看出PALM图像中的蛋白质簇,蛋白质簇动态的统计数据和形态学数据能帮助我们了解蛋白质动态组装的机制。  上面只是选了生物学研究中的3个方面来说明SR技术的用途,但这已经很好的展示了我们是如何从Leeuwenhoek最初对于生命组成的假设一步一步走到了今天,使用SR显微镜来证实构成生命体的最基本材料&mdash &mdash 分子的组合过程。STED和PALM的商业化产品已经上市了,这标志着SR显微镜的时代来临了。我们相信SR显微镜在充满创造力的生物学家们手中,一定会充分发挥它的作用,帮助我们发现更多生命的奥秘。  原文检索:  Jennifer Lippincott-Schwartz & Suliana Manley. Putting super-resolution fluorescence microscopy to work. Nature Methods, 17 December 2008 doi:10.1038/nmeth.f.233
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制