当前位置: 仪器信息网 > 行业主题 > >

智能高氯废水消解仪

仪器信息网智能高氯废水消解仪专题为您提供2024年最新智能高氯废水消解仪价格报价、厂家品牌的相关信息, 包括智能高氯废水消解仪参数、型号等,不管是国产,还是进口品牌的智能高氯废水消解仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合智能高氯废水消解仪相关的耗材配件、试剂标物,还有智能高氯废水消解仪相关的最新资讯、资料,以及智能高氯废水消解仪相关的解决方案。

智能高氯废水消解仪相关的资讯

  • 生物纺织酶添绿印染业 助力减少废水排放量
    p  近日,中科院天津工业生物研究所宋诙研究员领先开发了生物纺织酶技术,这一技术在印染材料前处理过程中代替烧碱,将极大减少废水排放,并节水节电,被业界评价为我国印染行业的又一重要技术创新。/pp  你有没有想过你穿的一件件T恤衫、牛仔裤或者连衣裙是在怎样的环境下生产出来的?事实上,色彩绚丽的服装带来的却是对环境的极大破坏。印染行业一直是高污染、高耗能的落后产能代表,近年来,不少地方尤其是一线城市的印染行业逐渐外迁,甚至关停。/pp  与此同时,印染又是纺织行业不可或缺的环节,在政策倒逼下,印染行业也在不断寻求技术创新,朝着绿色印染方向前进。/pp  由中科院天津工业生物研究所宋诙研究员领先开发的生物纺织酶技术,在印染材料前处理过程中代替烧碱,可极大减少废水排放,并节水节电,被业界评价为我国印染行业的又一重要技术创新。/pp  印染行业迫切需要抵制污染/pp  “当前中国纺织产业的污染问题已经到了需要刻不容缓解决的地步。传统纺织生产不仅给环境带来污染,更是产生各种有害化学物质,对我们的身体造成损害。全社会应该共同抵制污染性、消耗性的生产过程??”/pp  国际环保地球誓言(EarthPledge)发布的数据显示:“全世界至少有8000种化学品在将原料制成纺织品的过程中,会使用25%的农药用于种植非有机棉。这将导致对人类和环境不可逆转的损害,还有2/3的碳排放量会在服装的购买后继续发生。”在加工服装面料的过程中会耗费几十加仑的水,尤其是面料染色过程,合成材料的染色需要2.4万亿加仑的水。/pp  中国环境统计数据表明,在重点调查工业行业中,纺织业是排污大户。纺织工业废水排放量在全国41个行业废水排放中位居前列,而其中印染加工过程产生的废水排放占纺织废水排放量的七成以上。/pp  此外,作为水污染的重要来源,中国的纺织工业还消耗了巨大的水资源,在水资源利用效率方面远远落后于世界其他地区。根据中国环境科学出版社出版的《全国重点行业工业污染防治报告》,在生产同类单位产品的情况下,我国印染废水中污染物平均含量是国外的2—3倍,用水量则高达3—4倍 同时,印染废水不仅是行业主要污染物,印染废水所产生的污泥处理起来存在问题。/pp  这其中,印染材料的前处理由于使用到大量烧碱,造成的污染尤其严重。“染色前需要用烧碱处理,用蒸汽把它蒸硬,然后,再用盐酸把这些烧碱中和掉,这就排放出大量废水。”曾经在印染企业一线工作多年的河北纺联物资供销有限公司驻津办事处经理高忠强说。/pp  针对这一现状,中国科学院天津工业生物技术研究所宋诙带领团队首先将目标瞄准可代替烧碱的新酶制剂开发。/pp  生物酶制剂解决印染难题/pp  传统的印染前处理工艺流程包括烧毛、退浆、精炼、漂白和丝光五个步骤。虽然此前有国外公司生产用于印染前处理的酶制剂,但仅用于退浆这一环节。/pp  宋诙介绍道,酶制剂是一种高效、低耗、无毒的生物催化剂,基于酶制剂的生物处理方法是解决印染工业高污染和高消耗的理想途径,但是,此前,酶制剂品种单一成本偏高,酶制剂的复配及与纺织助剂的相容性研究缺乏,完整的酶法染前处理工艺尚未形成。/pp  此次,宋诙团队与天津天纺集团、河北纺联物资供销有限公司达成密切合作,历经三年,研发出多种性质优良的纺织用生物酶制剂及其生产工艺,包括淀粉酶、碱性果胶酶、木聚糖酶和过氧化氢酶等,可以将退浆和精炼合并成一步完成,大大提高前处理的效率。/pp  “退浆—精炼复合酶制剂解决了涤棉、纯涤纶坯布混合浆料退浆难的问题。以往的淀粉酶退浆只能解决淀粉上浆的坯布,有PVA混合浆料的坯布只能用高温碱煮去除。”天纺集团总工程师丁学琴说,含阻燃丝、纯涤纶组分的坯布品种不能高温碱煮退浆,否则会皱缩,而使用生物复合酶的退浆效果很好,防止了坯布皱缩,而且退除淀粉、PVA干净,同时处理后布匹手感蓬松、柔软,也为工厂解决了一个技术难题。/pp  节水节电减少污水排放/pp  宋诙介绍道,酶法退浆精炼一次完成,不仅省去了传统处理工艺的高温,并且,酶法处理温度在低温下进行,大大降低了前处理过程中的蒸汽用量,显著节约了蒸汽能耗,与传统工艺相比,节约蒸汽25%—50%,节省电量40%。/pp  生物酶法前处理工艺替代传统工艺中的烧碱退浆和烧碱精炼过程,意味着生物发酵产品可替代烧碱、精炼剂等化学制剂,因此,可大大降低处理后废水的pH值及COD值,精炼剂等化学制剂的有效取代可使前处理废水中得COD值降低60%以上。/pp  “生物复合酶制剂具有处理条件温和、效率高、专一性好等特点,应用生物酶处理对棉纤维几乎没有损伤,而对于坯布上的淀粉浆料及PVA浆料具有高效的降解作用,可达到良好的退浆效果。”宋诙说,经该技术处理的棉纤维质量较传统方法提高许多。/pp  对于印染企业关心的价格问题,宋诙表示,生物复合酶酶活效价高、用量少,价格与一般纺织助剂相当,不会提高处理成本,大多数纺织企业可接受。此外,应用生物酶进行前处理可通过降低蒸汽能耗、省去碱性废水处理成本、以及减少多种化学助剂用量,从而达到显著降低前处理成本的目的,提高纺织行业的经济效益。/pp  “在天纺的酶法前处理工艺应用中,12000米纯棉棉布和11000米芳纶热波卡布的酶法前处理与传统碱法工艺比较,可分别降低成本30%和70%。”丁学琴说。/pp  预计三年内推广到近20家企业/pp  今年3月至6月,河北宁纺集团成功完成了16000米布以上的生物酶法前处理工艺的应用示范和推广。/pp  此前,应用该生物复合酶的生物酶法前处理工艺在天津天纺集团首次试验成功,完成了累计大于300万米布的中试生产实验,实验品种包括军用迷彩、帐篷防水布、芳纶等等。/pp  宋诙表示,接下来将与河北纺联继续合作完善技术推广工作,组成技术服务小组,服务全国印染企业,以及未来三年可完成10—20家纺织企业的推广应用,累计创造新增利润5000万到1亿元人民币。/pp  在近日举办的生物纺织酶成果发布会上,前来参会的福建经销商告诉说,他认为该产品会受到印染企业的欢迎,他已决定代理该产品。/pp  “我们也会进一步完善技术,同时针对印染的其他环节开展研发,开发出更多技术和产品。”宋诙说。/p
  • 易普易达发布Clear实验室废水综合处理设备新品
    易普易达 Clear 实验室综合废水处理设备严格执行国家现行的环保技术标准规范,选用先进、合理、可靠的处理工艺,在确保处理排放达标的前提下,做到操作简单、管理方便、占地小、投资省、运行费用低、避免和减少二次污染。为了提高污水站管理水平,采用自动化程度高、操作人员劳动强度低的设计思路,合理选用优质配件,降低能耗,提高工作效益和使用寿命,降低成本。 一、概述1.实验室废水的分类实验室废水有其自身的特殊性质,间断性强, 高危害, 成分复杂多变。根据废水中所含主要污染物性质, 可以分为实验室有机和无机废水两大类。无机废水主要含有重金属、重金属络合物、酸碱、硫化物、卤素离子以及其他无机离子等。有机废水含有常用的有机溶剂、有机酸、醚类、多氯联苯、有机磷化合物、酚类、石油类、油脂类物质。不同的废水,污染物组成不同,处理方法和程度也不相同。实验室废水的处理本着分类收集,就地、及时地原位处理,简易操作,以废治废和降低成本的原则。实验室综合废水成份包括但不限于如下分类:(1)无机物类:重金属离子、酸碱PH值、卤素离子及其他非金属离子等;a、重金属离子类:汞、镉、总铬、六价铬、铅、锰、银 、镍、锌、铁、钴、锡、镁、锌、铜、铝、砷等金属阳离子以及处于络合状态的重金属离子团(Cr2O7)2-、(CuCN) -、(AuCN)- 、(Ptcl6)2-等;b、非金属离子类:氟酸或氟化物、游离氰或氰化合物、络离子化合物、AsO32-、AsO43-、Hg+、Hg2+等;c、酸碱PH值:硝酸、盐酸、磷酸、硫酸、双氧水、氯化钙等;(2)有机物类:有机溶剂、洗涤剂、表面活性剂、苯、甲苯、二甲苯、苯胺、苯酚、多氯联苯、苯并芘、酚类、甲醛、乙醛、丙烯腈、烷烃、烯烃、氟化氢、石油类、油脂类物质、甲醇、苯胺类、多环芳烃、硝基化合物、亚硝胺、氯苯类、硝基苯类、醚类、混合烃类、炳酮、糖类、卤代烃、蛋白质、有机磷农药等;(3)生物类:病原体等;病原体:细菌、病毒、衣原体、支原体、螺旋体、真菌、布鲁氏杆菌,炭疽杆菌等。 2.实验室废水的主要来源实验室废水,通常实验室综合废水来源包括但不限于如下来源:实验室药品、试剂、试液、残留试剂、仪器清洗及跑冒滴漏等过程中产生的综合废水。随着经济的发展和科技的进步,各地的科研单位和高等院校进行的科研实验越来越深入、广泛,从实验室中排放的实验室废水与之增加,实验室废水的水质情况复杂、排放周期不定,排放水量无规律性,且所含污染物成分较为复杂,除含有洗涤剂及常用溶剂等有机物外,还有较多的酸碱,有毒有害的有机物以及重金属。实验室废水水量相对较小,但如果不加处理就外排将对环境造成极大的污染。然而经过调研,发现许多科研实验室对产生的废水仅仅是简单的处理,甚至不作任何处理就排放。为了进一步加强对实验室的管理,研究实验室废水综合治理的方法与处理效果好、技术先进、投资较少的设备势在必行。易普易达clear综合废水处理设备广泛应用于中、高等院校、科研院所、食品药品检验、产品质检所、疾控中心、环境监测、农产品质检、检验检疫、粮油检测、动物疾控、血站、畜牧、医疗机构、医院、生物制药、石油化工、企业等实验室、化验室废水处理,经过处理后废水达到废水综合排放标准【GB8978-1996】中的一、二、三级标准,处理后的污水可排入市政污水管网或地表、河水,也可以通过再处理工艺把处理后的废水进行再利用。 二、Clear实验室综合废水处理设备可有效处理以下实验室综合废水成分:无机物类、有机物类、生物类废水等;1.无机物类:重金属离子、酸碱PH值、卤素离子及其他非金属离子等;(1)重金属离子:汞、镉、铬、铅、锰、银 、镍、锌、铜、铝、砷等金属阳离子以及处于络合状态的重金属离子团(Cr2O7)2-、(CuCN) -、(AuCN)- 、(Ptcl6)2-等;(2)酸碱PH值:硝酸、盐酸、硫酸、双氧水、氯化钙等;2.有机物类:有机溶剂、苯、甲苯、二甲苯、酚类、甲醛、乙醛、丙烯腈、氟化氢、石油类、甲醇、N-N二甲基甲酰胺、异丙醇、哌啶、二氯甲烷、无水乙醇、 DIEA、DNA合成废液、乙腈、苯酸、苯胺类、氯苯类、硝基苯类、油脂类、醚类、混合烃类、炳酮、糖类、蛋白质、有机磷农药等;3.生物类:病原体、细菌、病毒、乙肝表面抗原、丙肝抗原、衣原体、支原体、螺旋体、真菌、布鲁氏杆菌,炭疽杆菌衣原体等;4.经过处理后的污水达到《污水综合排放标准》(GB8978-1996)中的一/三级标准。 三、clear实验室综合废水处理设备进出水水质设计表: 序号污染物项目设备处理后出水水质(mg/L)1CODcr≤402BOD5≤153SS≤54PH6.5~95氨氮≤106石油类≤0.57总铅≤0.58总锰≤3.09总锌≤3.010总铬≤1.011总汞≤0.312三氯甲烷≤0.513甲苯≤0.214苯酚≤0.415有机磷农药≤0.316表面活性剂(LAS)≤8 工艺流程工艺流程 工艺说明原水————————实验室仪器漂洗废水收集调节箱—————均衡水质水量,调节PH值,便于后续混凝反应絮凝装置——————投加PAC、PFC等絮凝剂,形成颗粒助凝装置——————投加PAM等助凝剂,形成矾花,加速沉淀沉淀装置——————利用重力沉淀池,沉淀污泥,并定期排放清水箱———————沉淀过后净水,收集装置预处理装置—————过滤吸附有机物质及颗粒物膜处理装置—————深度处理污水,达到排放标准消毒装置——————杀菌消毒排放————————达标排入市政污水管网 规格型号CL-50CL-100CL-200CL-300Cl-500CL-1000CL-2000处理能力50L/D100L/D200L/D300L/D500L/D1000L/D2000L/D系统主机1000(宽)×600(深)×800(高)Hmm1000(宽)×800(深)×1600(高)Hmm辅助主机/1200(宽)×800(深)×1300(高)Hmm占地面积10平10平电源输入AC220VAC220V输入功率0.5KW1.5KW备注:Clear实验室综合废水处理设备可以根据客户具体需求量身定做包括:1.根据废水水质种类制定特殊处理方案2.每天废水处理量(L/D)3.现场安装位置以及安装尺寸的合理布局调整等。 *具备远程管理与监控升级功能(选配)采用实验室废水处理系统专用管理监控软件运用传感器、数据线、PLC、电脑的有机结合,使系统的操作、保养、检测、监控、记录、统计、分析等都能在你的办公室电脑上立刻实施 六、产品特点★实用性广,可适应各类实验室的废水处理;★采用多项先进的技术对废水进行多元化处理净化,达到排放标准;★通过中央集中控制,自动化程度高,操作简单,全自动运行,无须专人职守;★可实现定时开关机、无废水保护功能、储液罐液位保护功能;★模块型集成技术,处理效果好,不会产生废渣、废水等二次污染,运行成本低;★耐酸碱腐蚀,噪音小,功率小、多重安全保护等特点;★通过“一站式”一体化设计,外形美观、占地面积小,便于集中管理;★设备采用PLC可编程序智能控制系统,人机界面操作系统:LCD液晶显示中文显示、具人机对话功能,时钟和语言设定功能,开机时设备电控系统自动检测,全自动处理废水、针对不同废水的成分和浓度,控制系统自动进行计算然后按比例进行自动投放药品,更加科学化和合理化。 七、应用领域应用领域实验室废水来源中、高等院校生命科学院、化工学院、材料学院、环境学院、食品学院、医学院、农学院 科研院所研究院、研究所、测试中心、检验中心疾控中心理化检验、微生物、PCR、P2、P3、P4等实验室畜牧兽医动物防疫、病原微生物等实验室药品检验化学室、药品室农产质检中心农产品质量安全检验、建材室产品质检食品分析室环境监测水分析室、恒量分析室农业技术中心化学室、药物残留室医院体检中心理化室、检验室检验检疫局保健中心、技术中心生物制药理化分析、质检室、实验室企 业中心实验室、质检室、化验室创新点:1.可实现定时开关机、无废水保护功能;2.具有远程管理与监控升级功能(选配)。Clear实验室废水综合处理设备
  • 【瑞士步琦】水和废水中凯氏氮的测定
    水和废水中凯氏氮的测定自然界氮素蕴藏量丰富,以三种形态存在:分子氮 N2,占大气的 78%;有机氮化合物 无机氮化合物。其中水体中的氮主要包括有机氮和无机氮两大类,其总量称为总氮(英文缩写为 TN)。 氮在水体中会发生转化。随着时日的延长,有机氮很不稳定,容易在微生物的作用下,分解成无机氮(在无氧的条件下,分解为氨氮 在有氧的条件下,先分解为氨氮,再分解为亚硝酸盐氮与硝酸盐氮),并不断减少。目前,国标针对水质中氮的分析主要分总氮、氨氮、硝态氮、凯氏氮4个方面。在水处理领域,一般认为总氮=总凯氏氮+硝氮+亚硝氮,凯氏氮=有机氮+氨氮。以下举部分标准:HJ 636—2012 水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法GB 11891-1989 水质 凯氏氮的测定HJ537- 2009 水质 氨氮的测定 蒸馏-中和滴定法硝酸盐氮的测定方法有离子选择电极法、酚二磺酸分光光度法、镉柱还原法、紫外分光光度法、戴氏合金换元法、离子色谱法、紫外法。戴氏合金换元法适用于污染严重并带深色水样。在本研究中,通过测试在不同浓度的尿素溶液中氮的回收率,对水样品中进行 TKN 以及检测限(LOD)和定量限(LOQ)的测定。1设备快速消解仪 K-439 (1154392000)尾气吸收仪 K-415 (114152331)MultiKjel K-365 (11K36531210)样品管 300mL (037377)消化棒 (043087)分析天平(accuracy ± 0.1 mg)2试剂与材料试剂:浓硫酸 96%, VWR (85546.320)BUCHI 凯氏定氮片(11057980)NaOH 32 %, VWR (9913.9010)2% 硼酸 pH 4.65 with Sher 指示剂和 3g/L KCl硫酸 0.1mol/L, VWR (30145.297)尿素, 试剂纯度 99.7%, Merck (1.08487.000)100-1000µ L 微量移液吸管去离子水安全操作请参考所有相应的 MSDS!样品:尿素原液1:~ 0.5 mg N/mL模拟地表水中 TKN 浓度尿素原液2:~ 1.5 mgN /mL模拟废水中 TKN 浓度3实验步骤3.1 消解方法在 300mL 的样品管中用移液管吸出所需的样品体积(本例中为尿素原液)(表1)加入 1 片催化剂和 8mL 硫酸,并沿样品管壁小心地插入消化棒,以帮助提高硫酸的沸点。同时准备空白样品,只加试剂不加样品。将尾气吸收仪 K-415 连接到 K-439 吸收酸雾。将抽吸模块安装到样品管上,进行消解。(根据表2)将带样品的机架插入冷却位置,开始预热步骤。预热完成后,将样品架移至消解位置,按照 表2 所列参数开始消解。待样品消化完毕后在冷却位置冷却。表1:样品的重量样品体积 [mL]蒸馏水稀释 [mL]TKN 浓度 ppm尿素溶液10.22000.5尿素溶液10.42001.0尿素溶液212560.0表2:K-439 标准消化的温度梯度步骤温度 [°C]预热预热250135024902490125冷却–35注释:本应用说明中的消化时间保持在所需时间以上,可以根据应用进行调整,在较低的回收率上可以进一步提高。3.2 蒸馏滴定根据下列参数进行蒸馏和滴定。表3:MultiKjel 蒸馏滴定的参数反应监测OffH2O 体积50mLNaOH 体积40mLReaction 时间5s蒸汽等级固定时间蒸汽功率100%水平检测Off蒸馏时间180s蒸馏搅拌速度5滴定类型硼酸滴定H3BO3 体积60mL (2%)滴定搅拌速度8滴定开始时间180s样品管排空30s接收瓶排空30sEco 滴定仪方法BUCHI BlankBUCHI Sample标准滴定液H2SO4 0.01 mol/L传感器类型Potentiometric (pH)Endpoint pH4.653.3 计算结果是按氮的百分比计算的。用公式(1)(2)(3)计算结果。wN:氮的重量分数V样品:样品消耗滴定酸的体积 [mL]VBlank:空白消耗滴定酸的平均体积[mL]z:摩尔系数(1 for HCl, 2 for H2SO4)c:滴定液浓度[mol/L]f:滴定系数(商业溶液一般为1.000 参照产品合格证)MN:氮的分子量(14.007 g/mol)m样品:样品质量 [g]1000:转化因子[mL to L]%N:氮的重量百分比P:对照品尿素的纯度[%]4结果4.1 测定检测限(LOD)和定量限(LOQ) “空白法”测定检测限(LOD)和定量限(LOQ)[4]。用 200mL 去离子水样品、1 片钛片和 8mL 硫酸测定 10 个空白。根据 表2 和 表3 所列参数对进行了整理和确定,结果如 表4 所示。表4:空白测定结果(300mL 样管中去离子水体积 200mL)_V空白 [mL]平均 [mL]SD [mL]RSD [%]10.4080.4120.0122.92220.44330.40740.40650.40160.42670.40880.43590.40090.421采用公式(3)计算检测限(LOD)ᶲ n α: factor 3.0 取决于空白数(n=10)和显著性水平(α=0.01)SD: 空白测定的标准偏差(SD=0.012 ml) [4]根据 LOD 可计算定量限(LOQ),见式(4)。4.2 样品中 TKN 回收率样品体积为 25mL 和 200mL 的尿素溶液的 TKN 测定和回收率结果如 表7-9 所示。表5:在 300mL 样管中,总样本量为 200mL 的尿素溶液中 TKN (0.5 ppm)的回收率结果(n=6)。平均空白体积(VBlank) 是 0.413mL (n=6, RSD= 1.739%).表6:在300mL样管中,总样本量为200ml的尿素溶液中TKN (1ppm)的回收率结果(n=6)。平均空白体积(VBlank) 是 0.412mL (n=6, RSD= 1.320%).表7:在 300mL 样管中,总样本量为 25mL 的尿素溶液中 TKN (60ppm)的回收率(n=6)。平均空白体积(VBlank) 是 0.392mL (n=6, RSD= 2.00%).6结论使用 MultiKjel K-365 测定水中总凯氏定氮(TKN)提供了可靠和可重复的结果。尿素原液回收率高,标准偏差小。对于 200mL 的样品体积,氮含量 LOD 为 0.036mg /L, LOQ为 0.108mg/L 。最大准确度模式和 AutoDist 模式,这些特性为操作人员提供了灵活性,而不影响测定的准确性和精度。在蒸馏后无需手动进行滴定,实现了流程的自动化。
  • “工业含糖废水超低排放技术”重点项目课题申请指南
    国家高技术研究发展计划(863计划)新材料技术领域“工业含糖废水超低排放技术”重点项目课题申请指南一、指南说明本项目选择废水排放量和COD排放量大的淀粉、味精、维生素C、啤酒、乳酸、赖氨酸等典型发酵行业,针对行业废水中含糖有机质浓度高、色度高、有臭味而难以治理的特点,重点开发含糖有机质废弃物转化为生物油脂工程化技术、高级氧化-生物强化-膜分离等集成的废水深度处理技术、节水型生产新工艺等废水超低排放的关键共性技术,并进行工程化开发、集成优化及应用验证,实现工业含糖废水超低排放成套技术及核心工艺的突破。本项目拟设置6个课题:1.年处理60万吨淀粉废水超低排放关键技术开发2.年处理150万吨味精废水超低排放关键技术开发3.年处理150万吨维生素C废水超低排放关键技术开发4.年处理100万吨啤酒废水超低排放关键技术开发5.年产1000吨乳酸生产新工艺中试开发6.年处理1500吨高含盐赖氨酸废水近零排放中试关键技术开发通过公开发布课题申请指南方式落实课题承担单位,鼓励产学研联合申请。项目国拨经费控制数为3500万元,执行期为2008年12月到2010年12月。二、指南内容课题一、年处理60万吨淀粉废水超低排放关键技术开发研究目标:针对高浓度淀粉废水资源化利用问题,突破废水中含糖有机质转化为生物油脂的关键核心技术,并与废水生物处理等技术集成;在年产20万吨以上淀粉的企业建成年处理规模60万吨以上的淀粉废水超低排放工业化装置并完成运行考核。主要研究内容:研究适用于高糖浓度下的降解COD生产油脂的菌种选育,开发微生物油脂发酵处理工艺并进行油脂提取工艺优化;开展废水深度处理及回用技术的集成及工程化研究。主要考核指标:1、建成废水处理规模60万吨/年以上的淀粉废水超低排放工业化装置,进水COD不低于20000mg/L,出水COD不高于70mg/L,装置稳定运行半年以上;废水回用率不低于90%,减排COD不低于100吨;2、吨淀粉的废水排放量不大于0.3吨,吨淀粉的COD排放量不大于0.021公斤;3、吨废水处理后(不额外添加碳源)副产的生物油脂不低于5公斤。说明:本课题国拨经费控制数为940万元,配套经费与国拨经费的比例不低于1:1,支持年限不超过2年。申请单位必须已经完成相应的中试研究。课题二、年处理150万吨味精废水超低排放关键技术开发研究目标:针对高浓度味精废水的资源化利用及废水超低排放问题,通过废水中含糖有机质转化为微生物油脂的工程化技术与膜法深度处理等技术的集成创新,在年产30万吨以上的味精企业建成年处理规模150万吨以上的味精废水超低排放工业化装置并完成运行考核。主要研究内容:研究适用于高氮高盐浓度下的降解COD生产油脂的菌种选育,开发微生物油脂发酵处理工艺并进行油脂提取工艺优化;开发长周期稳定运行的双膜法味精废水深度处理及回用工艺;开展油脂转化与废水处理集成技术的工程化研究。主要考核指标:1、建成废水处理规模150万吨/年以上的味精废水超低排放工业化装置,进水COD不低于80000mg/L,出水COD不高于70mg/L,装置稳定运行半年以上;废水回用率不低于80%,减排COD不低于120吨; 2、吨味精的废水排放量不大于1吨,吨味精的COD排放量不大于0.07公斤;3、吨废水处理后(不额外添加碳源)副产的生物油脂不低于8公斤。说明:本课题国拨经费控制数为850万元,配套经费与国拨经费的比例不低于1:1,支持年限不超过2年。申请单位必须已经完成相应的中试研究。课题三、年处理150万吨维生素C废水超低排放关键技术开发研究目标:基于维生素C废水水质特点,通过工程化技术开发及集成创新,突破难降解污染物与色度共生等制约维生素C废水超低排放的关键技术难题,研究开发集成废水降解COD、脱色、脱氮功能的维生素C废水超低排放成套技术,在年产7500吨以上维生素C生产线配套建成年处理规模150万以上吨维生素C废水超低排放工业化装置并完成运行考核。主要研究内容:针对维生素C废水中发色化合物与难降解污染物共生的特点,研究开发以脱色为核心的废水深度处理技术;研究维生素C废水生物强化处理过程中碳源结构、温度等关键工程参数对COD降解和脱氮效果的影响,开发废水处理超低排放设施的稳定降碳、脱氮、脱色季节性控制技术;技术集成后应用于废水处理规模150万吨/年以上的维生素C废水超低排放工业化装置。主要考核指标: 1、建成废水处理规模150万吨/年以上的维生素C废水超低排放工业化装置,装置稳定运行半年以上;废水回用率不低于80%,减排COD不低于240吨;2、吨维生素C的废水排放量不大于40吨,吨维生素C的COD排放量不大于3.2公斤。说明:本课题专项经费控制数550万元,配套经费与国拨经费的比例不低于1:1,支持年限不超过2年。申请单位必须已经完成相应的中试研究。课题四、年处理100万吨啤酒废水超低排放关键技术开发研究目标:开发基于低温厌氧发酵及高效生物反应器集成的啤酒废水深度处理技术,在年产10万吨以上啤酒生产线上配套建成废水处理规模100万吨/年以上的啤酒废水超低排放工业化装置并完成运行考核。主要研究内容:开发包括低温厌氧优势菌群的筛选、培育及其固定化等在内的低温厌氧处理工艺及技术装备,构建高效低温厌氧反应器及其监控体系;研究多级好氧生物处理实现高效除磷脱氮及其与低温厌氧处理工艺的合理组合、衔接及优化控制技术,构建连续高效的含糖啤酒废水深度处理装置,显著降低出水有机物、氮和磷等主要污染物浓度以实现超低浓度排放;进行废水处理技术集成及其应用验证并制定相应的技术应用规程。主要考核指标:1、建成废水处理规模100万吨/年以上的啤酒废水超低排放工业化装置,装置稳定运行半年以上;废水回用率不低于80%,减排COD不低于90吨;2、吨啤酒的废水排放量不大于2吨,吨啤酒的COD排放量不大于0.1公斤。说明:本课题国拨经费控制数560万元,配套经费与国拨经费的比例不低于1:1,支持年限不超过2年。申请单位必须已经完成相应的中试研究。课题五、年产1000吨乳酸生产新工艺中试开发研究目标:针对乳酸钙盐法生产工艺的高耗水高污染的现状,采用膜分离耦合技术,开发乳酸生产新工艺,着重解决氢氧化钠中和发酵和后提取的关键技术,大幅度降低我国乳酸生产过程中用水量和废水排放量;建成膜法乳酸生产新工艺及中试装置,为工程化研究提供依据。主要研究内容:研究采用氢氧化钠中和发酵法制备乳酸技术,开发出适合于乳酸发酵液体系过滤的新型结构陶瓷滤膜及其成套装备;研究发酵过程对膜分离效果的影响,获得合适的工艺条件;研究双极膜提取乳酸的电化学特性和工艺参数;开发发酵法乳酸生产用水的资源化回用膜集成技术;建成千吨级乳酸生产新工艺中试装置。主要考核指标:1、开发膜法乳酸生产新工艺并建成千吨级的中试装置,装置稳定运行半年以上,与乳酸钙盐法相比节水80%;2、乳酸收率由80%提高到90%,乳酸纯度高于99%;3、吨乳酸的废水排放量不大于3吨,吨乳酸的COD排放量不大于0.3公斤,无二氧化碳和硫酸钙废渣排放。说明:本课题专项经费控制数400万元,配套经费与国拨经费的比例不低于1:1,支持年限不超过2年。申请单位必须完成了相应的小试研究。课题六、年处理1500吨高含盐赖氨酸废水近零排放中试关键技术开发研究目标:针对赖氨酸生产产生的高硫酸铵废液治理的问题,开发硫酸铵再生循环技术,实现有机质的资源化及水的循环利用;在年产赖氨酸盐酸盐150吨以上的中试线配套建设废水处理规模1500吨/年以上的高含盐赖氨酸废水近零排放中试装置并完成运行考核。主要研究内容:研究开发脱盐/酸碱再生技术;研究酸碱再生的膜污染防治技术和工艺(包括对膜污染物质的预处理方法);优化废液培养饲料酵母的有机质资源化技术;开发末端治理及废水回用技术。主要考核指标:1、建成废水处理规模1500吨/年以上的高含盐赖氨酸废水近零排放中试装置,装置稳定运行半年以上;吨产品(赖氨酸盐酸盐)蒸汽消耗降到11吨,吨产品耗硫酸铵降到20公斤,吨产品耗硫酸降到14公斤;2、吨产品(赖氨酸盐酸盐)副产蛋白饲料不低于60公斤;3、吨产品(赖氨酸盐酸盐)的高含盐废水排放量不大于0.5吨, COD排放量不大于0.05公斤。说明:本课题专项经费控制数200万元,配套经费与国拨经费的比例不低于1:1,支持年限不超过2年。申请单位必须完成了相应的小试研究。三、注意事项1.课题申请者应根据本项目申请指南提出的课题名称、研究目标、研究内容、主要指标等要求,编写《国家高技术研究发展计划(863计划)项目课题申请书》。2. 课题申报时必须由法人(单位)提出申请,该法人是当然的课题依托单位,且必须指定1名自然人担任课题负责人。每个课题申请时只能有1个课题负责人和1个依托单位,课题的协作单位不能超过5家。 3.课题依托单位应符合的基本条件:在中华人民共和国境内登记注册一年以上、过去两年内在申请和承担国家科技计划项目中没有不良信用记录的企事业法人单位,包括:大学、科研机构等事业法人;中方控股的企业法人。 4.课题负责人应符合的基本条件:(1)具有中华人民共和国国籍;(2)年龄在55岁(含)以下(截止指南发布之日);(3)具有高级职称或已获得博士学位;(4)每年(含跨年度连续)离职或出国的时间不超过6个月;(5)过去三年内在申请和承担国家科技计划项目中没有不良信用记录。 5.课题负责人及主要参加人员不得违反以下限项申请的规定:为保证科研人员能够高质量地开展研究工作,国家科技计划实行限制申请及承担课题数量规定。每人同期只能主持一项国家主要科技计划(包括863计划、973计划、支撑计划)课题,作为主要参加人员同期参与承担的国家主要科技计划课题数(含负责主持的课题数)不得超过两项。申请者应按照上述要求进行申请,且在同一批发布的申请指南中只能申请一项863计划课题或项目。 6.申请者提出的专项经费申请不得高于项目课题申请指南规定的专项经费控制额,并应按照项目课题申请指南的要求提供相应的配套经费,否则不予受理。 7.申请者要遵守科学道德,以严谨的科学作风和实事求是的科学精神填写项目申请书,保证项目申请书的真实性,避免出现夸大和不准确的内容。同时,不得将研究内容相同或者近似的项目进行重复申请。863计划对申请者在申报过程中进行信用记录,对于故意在课题申请中提供虚假资料、信息的,一经查实,记入信用档案,并对单位在两年内取消其申报863计划资格、对个人在三年内取消其申报863计划资格。 8.申请程序和要求:课题申请采取网上集中申报。申报通过“国家科技计划项目申报中心”进行,网址为program.most.gov.cn,有关申请的程序、要求和其他注意事项详见《“十一五”国家高技术研究发展计划(863计划)申请指南》。 9.课题申请受理的截止日期为2008年12月12日17时。 10.咨询联系人及联系方式联系人: 卞曙光 010-88372105 蒋志君 010-68338919 电子邮件:jeanbsg@htrdc.com 863计划新材料技术领域办公室 二〇〇八年十月二十三日
  • 技术消息:常见氨氮废水的处理方法
    氨氮是指水中以游离氨(NH3)和铵离子(NH4+)形式存在的氮。近年来,随着经济的发展,越来越多含氮污染物的任意排放给环境造成了极大的危害。氮在废水中以有机态氮、氨态氮(NH4+-N)、硝态氮(NO3-N)以及亚硝态氮(NO2-N)等多种形式存在,而氨态氮是主要的存在形式之一。废水中的氨氮是指以游离氨和离子铵形式存在的氮,主要来源于生活污水中含氮有机物的分解,焦化、合成氨等工业废水,以及农田排水等。氨氮污染源多,排放量大,并且排放的浓度变化大。常见氨氮废水处理方法:1、化学沉淀法化学沉淀法又称为MAP沉淀法,是通过向含有氨氮的废水中投加镁化物和磷酸或磷酸氢盐,使废水中的NH4﹢与Mg2+、PO43-在水溶液中反应生成磷酸按镁沉淀,分子式为MgNH4P04.6H20,从而达到去除氨氮的目的。磷酸按镁俗称鸟粪石,可用作堆肥、土壤的添加剂或建筑结构制品的阻火剂。反应方程式如下:Mg2++NH4﹢+PO43-=MgNH4P04化学沉淀法的优点是当氨氮废水浓度较高时,应用其它方法受到限制,如生物法、折点氯化法、膜分离法、离子交换法等,此时可先采用化学沉淀法进行预处理 化学沉淀法去除效率较好,且不受温度限制,操作简单 形成含磷酸馁镁的沉淀污泥可用作复合肥料,实现废物利用,从而抵消一部分成本 如能与一些产生磷酸盐废水的工业企业以及产生盐卤的企业联合,可节约药剂费用,利于大规模应用。化学沉淀法的缺点是由于受磷酸铁镁溶度积的限制,废水中的氨氮达到一定浓度后,再投人药剂量,则去除效果不明显,且使投入成本大大增加,因此化学沉淀法需与其它适合深度处理的方法配合使用 药剂使用量大,产生的污泥较多,处理成本偏高 投加药剂时引人的氯离子和余磷易造成二次污染。2、吹脱法吹脱法去除氨氮是通过调整pH值至碱性,使废水中的氨离子向氨转化,使其主要以游离氨形态存在,再通过载气将游离氨从废水中带出,从而达到去除氨氮的目的。影响吹脱效率的因素主要有pH值、温度、气液比、气体流速、初始浓度等。目前,吹脱法在高浓度氨氮废水处理中的应用较多。吹脱法去除氨氮效果较好,操作简便,易于控制。对于吹脱的氨氮可以用硫酸做吸收剂,生成的硫酸钱制成化肥使用。吹脱法是目前常用的物化脱氮技术。但吹脱法存在一些缺点,如吹脱塔内经常结垢,低温时氨氮去除效率低,吹脱的气体形成二次污染等。吹脱法一般与其它氨氮废水处理方法联合运用,用吹脱法对高浓度氨氮废水预处理。3、催化氧化法催化氧化法是通过催化剂作用,在一定温度、压力下,经空气氧化,可使污水中的有机物和氨分别氧化分解成CO2、N2和H2O等无害物质,达到净化的目的。催化氧化法具有净化效率高、流程简单、占底面积少等有点,多用于处理高浓度氨氮废水。应用难点在于如何防止催化剂流失以及对设备的腐蚀防护。4、生物法传统生物法是在各种微生物作用下,经过硝化、反硝化等一系列反应将废水中的氨氮转化为氮气,从而达到废水治理的目的。传统生物法去除氨氮需要经过两个阶段,第一阶段为硝化过程,在有氧条件下硝化菌将氨转化为亚硝酸盐和硝酸盐 第二阶段为反硝化过程,在无氧或低氧条件下,反硝化菌将污水中的硝酸盐和亚硝酸盐转化为氮气。传统生物法具有效果稳定、操作简单、不产生二次污染、成本较低等优点。该法也存在一些弊端,如当废水中C/N比值较低时必须补充碳源,对温度要求相对严格,低温时效率低,占地面积大,需氧量大,有些有害物质如重金属离子等对微生物有压制作用,需在进行生物法之前去除,此外,废水中,氨氮浓度过高对硝化过程也产生抑制作用,所以在处理高浓度氨氮废水前应进行预处理,使氨氮废水浓度小于300mg/L。适用于处理含有有机物的低浓度氨氮废水,如生活污水、化工废水等。5、膜分离法膜分离法是利用膜的选择透过性对液体中的成分进行选择性分离,从而达到氨氮脱除的目的。包括反渗透、纳滤和电渗析等。膜分离法的优点是氨氮回收率高,操作简便,处理效果稳定,无二次污染等。但在处理高浓度氨氮废水时,所使用的薄膜易结垢堵塞,再生、反洗频繁,增加处理成本,故该法较适用于经过预处理的或中低浓度的氨氮废水。6、离子交换法离子交换法是通过对氨离子具有很强选择吸附作用的材料去除废水中氨氮的方法。常用的吸附材料有活性炭、沸石、蒙脱石及交换树脂等。沸石是一种三维空间结构的硅铝酸盐,有规则的孔道结构和空穴,其中斜发沸石对氨离子有强的选择吸附能力,且价格低,因此工程上常用斜发沸石作为氨氮废水的吸附材料。离子交换法具有投资小、工艺简单、操作方便、对毒物和温度不敏感、沸石经再生可重复利用等优点。但处理高浓度氨氮废水时,再生频繁,给操作带来不便,因此,需要与其他治理氨氮的方法联合应用,或者用于治理低浓度氨氮废水。
  • 以模块化、可定制的产品线助力污废水监测发展
    导语:污水废水治理一直是水环境治理重要的组成部分。近几年在政策支持下,污水处理行业发展态势较好,污水处理能力持续增强。污水废水包括医疗污水、工业废水、生活废水等。从污水处理基础设施建设情况来看,污水处理厂数量和城市排水管道长度都在逐年递增。随着新冠肺炎疫情中病毒存在通过粪便和污水传播的可能,对污水废水处理提出了更高的要求。而对污水废水水质的监测检测则成为污水废水处理的基础和保障。我国污水废水排放和治理现状呈现怎样的特点?要了解我国污废水治理的现状,我们先来看一组数字:2007年末,我国城市共有污水处理厂883座,污水日处理能力为7,138万立方米,城市污水处理率只有62.8%。而截至2019年6月底,全国设市城市累计建成城市污水处理厂5000多座(不含乡镇污水处理厂和工业),污水处理能力达2.1亿立方米/日,城市污水处理率已超过90%。可见从“十一五”到“十三五”之间的十多年时间里,我国污水处理规模大幅度提高。有哪些现行的标准和方法?基于环境保护目标和污水处理水平的不断提高,生态环境部始终致力于推动监测技术发展和标准要求的提升,比如2019年底发布了《污水监测技术规范》等一系列污水在线监测新标准/规范,并于2020年上半年开始实施。国家近期发布的一系列污水在线监测新标准/规范而我们现行污水排放标准主要为《污水综合排放标准》(GB8978-1996)和《城镇污水处理厂污染物排放标准》(GB18918—2002),这两个标准已有多年未更新,随着污水在线监测新标准/规范的实施,想必这些标准也要随之变化。污水废水监测中有哪些项目值得关注?根据现有的污水废水排放标准,我们主要关注的污水废水监测项目还是化学需氧量CODcr、氨氮、总磷、总氮、重金属、pH等参数。赛默飞在污水废水水质监测方面有哪些仪器产品或产品组合?有哪些优势?赛默飞拥有较完整的污水监测仪器产品线,可覆盖生活污水、工业废水处理过程中及排放口需要测量的多种参数,如化学需氧量、氨氮、总磷、总氮、重金属、pH、溶解氧、ORP、电导率、余氯等参数。并且我们可提供一定程度定制化、模块化的测量解决方案,通过灵活的组合帮助用户节省采购和使用成本。如:Thermo ScientificTM 6850微型水质在线自动监测系统6850是6800微型水质在线自动监测系统的子型号。占地仅需0.7平米,可测量常规五参数和比色法双参数(化学需氧量CODcr、氨氮、总磷、总氮、重金属(总铬、六价铬、铅、铜、锰、镍等)、氰化物等任选二)。Thermo ScientificTM OrionTM 3150总磷/总氮水质在线自动监测仪1. 可自动切换量程2. 可灵活配置总磷、总氮单参数或二合一3. 定量准确,不受样品色度、浊度干扰Thermo ScientificTM OrionTM 8010cX 氨氮自动监测仪1. 采用水杨酸分光光度法原理2. 可自动切换量程,且无需新校准3. 高精度注射泵保障了高精度测量4. IP65防护等级Thermo ScientificTM 3300重金属水质在线自动监测仪1. 可自动切换量程2. 定量准确,不受样品色度、浊度干扰3. 可任意配置总铬、六价铬、铅、铜、锰、镍等中的2个参数Thermo ScientificTM MPC 20在线多参数通用控制器1. 可同时测量常规五参数、水中油、叶绿素、蓝绿藻、UV全光谱等参数2. 可同时使用10+N个传感器,降低每个测量点的成本3. IP66防护等级Thermo ScientificTM OrionTM 3106COD化学需氧量自动监测仪1. 采用重铬酸钾氧化消解-比色法原理,符合国标2. 可自动切换量程,且无需重复校准3. IP66防护等级 ,适合较恶劣环境赛默飞在污水废水水质监测方面可以提供哪些解决方案?目前,赛默飞可以提供包括《市政污水/工业废水综合解决方案》、《污水中总余氯的测量》、《地表水/废水中的固体悬浮物测量》等多种污水废水监测的解决方案,搭配赛默飞丰富的污水监测仪器可以实现对各类污水废水的水质监测。请扫描下方二维码联系我们了解赛默飞污水废水水质监测解决方案赛默飞世尔科技中国简介赛默飞世尔科技进入中国发展已超过35年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数约为5000名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有7家工厂分别在上海、北京、苏州和广州等地运营。我们在全国还设立了8个应用开发中心以及示范实验室,将世界级的前沿技术和产品带给中国客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心,拥有100多位专业研究人员和工程师及70多项专利。创新中心专注于针对垂直市场的产品研究和开发,结合中国市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2600名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com
  • 升级版DGB-402A型便携式余氯/总氯测定仪——轻松搞定医疗废水中的余氯检测
    面对来势汹汹的奥密克戎病毒,涉疫重点场所废水消毒是重中之重,要严格按照要求做好涉疫重点场所废水消毒,充分考虑不同疫情形势下涉疫废水处置方式,确保在极端情况下涉疫废水得到有效处理,余氯含量保持在6.5-10mg/L之间。但是过量加入消毒剂会影响水环境并破坏城镇污水处理系统,面对治疗和防护过程中源源不断产生的医疗废水,如何及时、有序、高效、无害化的检测及处理? 序号项目详情1依据新型冠状病毒污染的医疗污水应急处理技术方案(试行)2场所接收肺炎患者或疑似患者诊疗的定点医疗机构(医院、卫生院等)以及相关单位3消毒剂液氯、二氧化氯、氯酸钠、漂白粉或漂白精4要求有效氯投加量为50mg/L:消毒接触池的接触时间≥1.5小时,余氯量大于6.5mg/L(以游离氯计)有效氯投加量为80mg/L:接触时间为1.0小时的,余氯大于10mg/L(以游离氯计) “雷磁”2022年新上市的升级版DGB-402A型便携式余氯/总氯测定仪,采用DPD法测量原理,内置锂电池续航能力强,内置校准曲线,一键校零,一键完成测量,标配手提箱和配套检测试剂。与旧版相比,简单易用,极大地方便现场操作人员的工作,已经在一线生态环境检测机构和医疗机构得到应用。 型号名称升级版DGB-402A型便携式余氯/总氯测定仪旧版DGB-402F便携式余氯/总氯测定仪产品照片基本误差≤±0.03 mg/L 或 ±5%≤1mg/L:±0.05 mg/L;>1mg/L:±5%重复性≤1%≤2.5%供电内置锂电池5号碱性电池*4尺寸/重量80*190*60mm,0.35kg85*230*50mm,0.4kg比色管比色瓶,φ25*60(具有2/5/10ml刻度线及定位标志)16mm 直径比色管,5只,φ16*100mm防护箱310*245*110 mm470×350×130 mm测试过程:1. 开机后等待约30秒,让光源稳定下来。2. 用水样清洗比色瓶三次。3. 向比色瓶中加入10mL水样,将比色瓶放入仪器中。按“□”键进行清零。若水样中余氯或总氯浓度超过仪器量程,比色瓶中自带2mL、5mL、10mL刻度,则取适当水样,用无氯水稀释至10mL进行显色。最终水样浓度将仪器测量浓度乘以稀释倍数即可。4. 取出比色瓶,加入试剂包(测量余氯和总氯需加入相对应的试剂包),盖好瓶盖,摇晃比色瓶使显色剂溶解。上下颠倒比色瓶,消除气泡后放入仪器。按“√”键开始测量,约几秒后直接读取测试结果。5. 测试完的比色瓶应立即用纯水清洗。 疫情期间,废水检测的一线检测人员工作人员,在取样和检测过程中一定要做好防疫防护,检测完成后也需要对检测仪器及配套配件进行消杀,确保安全。
  • “农药废水低排放技术开发”重点项目课题申请指南
    国家高技术研究发展计划(863计划)新材料技术领域“农药废水低排放技术开发”重点项目课题申请指南一、指南说明农药废水是非常典型的难降解有机废水,处理难度大,对生态环境的危害严重,已成为环保治理的重点和难点。研究开发农药废水低排放技术对于农药工业可持续发展具有十分重要的意义。本项目拟通过农药骨干品种清洁生产技术开发和废水预处理技术、深度处理技术以及综合治理集成技术开发,为农药行业实现清洁生产、减少废水排放提供技术支撑,提升农药行业废水处理技术水平,满足农药行业节能减排的迫切需求,为农药行业实现可持续发展奠定基础。本项目拟支持草甘膦、百草枯、菊酯类农药、阿维菌素、吡虫啉、氯代吡啶类除草剂、毒死蜱等骨干农药品种清洁生产与废水低排放技术开发。项目国拨经费控制数5000万元,执行期为2008年12月到2010年12月。二、指南内容课题一、草甘膦废水低排放及母液回收利用技术开发研究目标:针对草甘膦原药生产中存在的废水排放量大的问题,开发草甘膦及其重要中间体亚氨基二乙腈和双甘膦的清洁生产工艺及废水低排放成套技术,并在20000吨/年以上草甘膦原药生产装置上进行集成应用。主要研究内容:通过反应器、催化剂等的创新提高亚氨基二乙腈的反应收率,研究开发亚氨基二乙腈母液回收利用及废水处理技术;优化双甘膦合成工艺,脱除双甘膦废水中的盐和甲醛,实现双甘膦废水循环利用;开发草甘膦母液的无害化、减量化技术;集成草甘膦废水综合处理技术并应用于20000吨/年以上规模的原药生产装置。主要考核指标:(1) 草甘膦吨产品废水产生量减少50%,降低到11吨以下。(2) 草甘膦吨产品末端废水排放量减少80%,不高于18吨(COD≤100mg/l)。(3) 草甘膦吨产品COD排放量不高于1.8公斤。(4) 草甘膦吨产品废水处理成本降低40%,不高于500元。说明:本课题国拨经费控制数1150万元,配套经费与国拨经费的比例应不低于1:1。本课题牵头申请单位必须是国内草甘膦原药生产企业,鼓励产学研合作。课题二、百草枯废水资源化成套技术开发研究目标:开发百草枯清洁生产工艺和废水资源化成套技术,应用在2000吨/年以上原药生产装置上。主要研究内容:通过催化剂及工艺条件的优化提高百草枯反应总收率,分离回收废水中残量百草枯、氰根离子和氨,实现中水回用和残液高效焚烧处理。主要考核指标:(1) 百草枯吨产品工艺废水产生量减少50%,不大于3吨。(2) 废水中氰根离子去除率≥95%。(3) 焚烧炉排放尾气符合国家GB18484-2001《危险废弃物焚烧污染物控制标准》一级排放标准,处理每吨废水耗燃料油100kg以下,焚烧炉使用寿命不低于10年。(4) 百草枯吨产品废水处理成本降低50%,不高于1500元。说明:本课题国拨经费控制数1000万元,配套经费与国拨经费的比例应不低于1:1。本课题牵头申请单位必须是国内百草枯原药生产企业,鼓励产学研合作。课题三、菊酯类农药废水综合治理技术开发研究目标:开发菊酯类农药的清洁生产工艺和废水综合治理技术,并在3000吨/年以上菊酯类农药生产装置上获得应用。主要研究内容:优化菊酯类农药反应工艺,回收废水中的有效成分,有效集成活性污泥生物系统及其它废水深度处理技术,应用于3000吨/年以上菊酯类农药生产装置上。主要考核指标:(1) 菊酯类农药吨产品废水产生量减少50%,不高于20吨。(2) 菊酯类农药吨产品末端废水排放量减少95%,不高于20吨。(3) 菊酯类农药吨产品COD排放量减少95%,不高于2公斤。(4) 菊酯类农药吨产品废水处理成本降低20%,不高于2600元。(5) 回收中间体异戊烯醇生产废水中的醋酸钠,回收率大于90%。(6) 环化工艺产生的废水中N,N-二甲基乙酰胺(DMA)回收率大于80%,环化废水处理后DMA含量小于0.5%。说明:本课题国拨经费控制数800万元,配套经费与国拨经费的比例应不低于1:1。课题牵头申请单位必须是国内菊酯类农药原药生产企业,鼓励产学研合作。课题四、阿维菌素新工艺及废水低排放技术开发研究目标:针对阿维菌素生产废水排放量大的问题,提高阿维菌素发酵效价,开发阿维菌素废水的催化氧化预处理技术、废水深度处理及回用技术,在80吨/年以上原药生产装置上进行集成应用。主要研究内容:开发阿维菌素菌种基因改造、诱变育种以及多尺度发酵等创新技术,提高提取收率,开发废水双膜处理及回用技术,开发废渣成肥应用技术。主要考核指标:(1) 阿维菌素吨产品废水产生量减少50%,不高于400吨。(2) 阿维菌素吨产品末端废水排放量减少50%,不高于360吨。(3) 阿维菌素吨产品COD排放量减少80%,不高于30公斤。(4) 阿维菌素吨产品废水处理成本降低45%,不高于5300元。(5) 阿维菌素的平均效价达7000μg/ml。(6) 发酵废渣灭活后制备的有机肥料达到国家相关标准。说明:本课题国拨经费控制数500万元,配套经费与国拨经费的比例不低于1:1。课题牵头申请单位必须是国内阿维菌素原药生产企业,鼓励产学研合作。课题五、吡虫啉创新工艺研究与废水治理技术开发研究目标:针对吡虫啉原药生产废水排放量大的问题,开发吡虫啉创新生产工艺和废水综合处理技术,在5000吨/年以上原药生产装置上进行集成应用。主要研究内容:优化催化剂和反应工艺条件,提高反应总收率,综合回收利用废水中的二甲基甲酰胺(DMF),集成废水催化氧化预处理技术和双膜生物反应器等深度处理技术,应用于5000吨/年以上原药生产装置。主要考核指标: (1) 吡虫啉吨产品废水产生量减少65%,不高于10吨。 (2) 吡虫啉吨产品末端废水排放量减少85%,不高于100吨。 (3) 吡虫啉吨产品COD排放量减少85%,不高于10公斤。 (4) 吡虫啉吨产品废水处理成本降低55%,不高于1200元。 (5) DMF综合回收利用率80%以上。说明:本课题国拨经费控制数600万元,配套经费与国拨经费的比例应不低于1:1。课题牵头申请单位必须是国内吡虫啉原药生产企业,鼓励产学研合作。课题六、氯代吡啶类除草剂废水综合治理与低排放技术研究目标:开发氯代吡啶类除草剂的创新生产工艺和废水综合处理技术,在2000吨/年以上原药生产装置上集成应用。主要研究内容:开发专用催化剂,改变反应溶剂,提高反应总收率;研究开发废水物理—化学相结合的综合处理技术,开发高氨氮废水中氨的回收利用技术。主要考核指标:(1) 氯代吡啶类除草剂吨产品废水产生量减少60%,不高于12吨。(2) 氯代吡啶类除草剂吨产品末端废水排放量减少70%,不高于30吨。(3) 氯代吡啶类除草剂吨产品COD排放量减少80%,不高于3公斤。(4) 氯代吡啶类除草剂吨产品废水处理成本降低50%,不高于3000元。说明:本课题国拨经费控制数500万元,配套经费与国拨经费的比例应不低于1:1。要求企业和研究单位联合申请,课题牵头申请单位必须是国内氯代吡啶类除草剂生产企业。课题七、毒死蜱清洁生产与废水低排放技术开发研究目标:开发毒死蜱的清洁生产工艺及废水综合处理技术,集成应用于5000吨/年以上原药生产装置。主要研究内容:研究提高原子利用率的新合成方法和高效催化剂,提高毒死蜱及其中间体乙基氯化物、三氯吡啶酚钠的反应收率,开发副产物单质硫的回收利用技术、废水综合治理技术和废水回用技术。主要考核指标:(1) 毒死蜱吨产品废水产生量减少50%,不高于30吨。(2) 毒死蜱吨产品末端废水排放量减少50%,不高于30吨。(3) 毒死蜱吨产品COD排放量减少80%,不高于3公斤。(4) 毒死蜱吨产品废水处理成本降低60%,不高于900元。(5) 回收的单质硫含量大于95%。说明:本课题国拨经费控制数450万元,配套经费与国拨经费的比例应不低于1:1。要求企业和研究单位联合申请,课题牵头申请单位必须是国内毒死蜱原药生产企业。三、注意事项1、本项目申请者应根据申请指南的规定和要求,按研究课题进行申请。2、课题申请者应根据申请指南提出的研究课题、主要研究内容和研究目标、主要考核指标等要求,编写《国家高技术研究发展计划(863计划)项目课题申请书》。3、课题必须由法人(单位)提出申请,申请单位与协作单位不得超过5家,并确定申请课题的依托单位和课题负责人。4、课题依托单位应符合的基本条件:在中华人民共和国境内登记注册一年以上、过去两年内在申请和承担国家科技计划项目中没有不良信用记录的企事业法人单位,包括:大学、科研机构等事业法人;中方控股的企业法人。5、课题负责人应符合的基本条件:(1)具有中华人民共和国国籍;(2)年龄在55岁(含)以下(按指南发布之日计算);(3)具有高级职称或已获得博士学位;(4)每年(含跨年度连续)离职或出国的时间不超过6个月;(5)过去三年内在申请和承担国家科技计划项目中没有不良信用记录。6、课题负责人及主要参加人员不得违反以下限项申请的规定:为保证科研人员能够高质量地开展研究工作,国家科技计划实行限制申请及承担课题数量规定。每人同期只能主持1项国家主要科技计划(包括863计划、973计划、支撑计划)课题,作为主要参加人员同期参与承担的国家主要科技计划课题数(含负责主持的课题数)不得超过2项。申请者应按照上述要求进行申请,且在同一批发布的申请指南中只能申请1项863计划课题或项目。7、申请者提出的申请经费不得高于申请指南规定的经费控制额,并应按照申请指南的要求提供相应的配套经费,否则不予受理。8、申请者要遵守科学道德,以严谨的科学作风和实事求是的科学精神填写项目申请书,保证项目申请书的真实性,避免出现夸大和不准确的内容。同时,不得将研究内容相同或者近似的项目进行重复申请。863计划对申请者在申报过程中进行信用记录,对于故意在课题申请中提供虚假资料、信息的,一经查实,记入信用档案,并对单位在两年内取消其申报863计划资格、对个人在三年内取消其申报863计划资格。9、申请程序和要求:课题申请采取网上集中申报。申报通过“国家科技计划项目申报中心”进行,网址为program.most.gov.cn。有关申请的程序、要求和其他注意事项详见《“十一五”国家高技术研究发展计划(863计划)申请指南》。10、课题申请受理的截止日期为2008年12月12日17时。11、咨询联系人及联系方式联系人: 卞曙光 010-88372105 蒋志君 010-68338919电子邮件: jeanbsg@htrdc.com 863计划新材料技术领域办公室    二〇〇八年十月二十三日
  • 废水中余氯的检测方法
    余氯是指水中加氯后会与水中的细菌、微生物、有机物等作用,这个过程会消耗一些氯,一段时间后水中还剩下一些氯。这些氯通常被称为余氯,通常是游离氯。一般饮用水、自来水、泳池池水、医疗废水等都需要检测余氯,余氯含量过高,对人体健康有较大的危害,因为其可以刺激眼鼻喉等呼吸道系统,浓度过高还会麻痹中枢神经,长期饮用或接触含余氯的水也会慢性中毒,致癌。基于以上危害,对于水中余氯我们要如何实现快速检测呢?解决方案检测方法:DPD法依据标准:HJ586-2010 水质游离氯和总氯的测定 N.N-二乙基对苯二胺(简称:DPD法) 分光光度法方法原理:在PH6.2-6.5条件下,游离氯直接与(DPD)发生反应,生成红色化合物,在相对应的波长下,采用分光光度法测定其吸光度。检测仪器:SH-3900A型多参数水质分析仪SH-3900A型多参数水质分析仪用于水样检测的智能仪器,可以快速、准确的检测水中主要污染物,如氨氮、总磷、总氮、化学需氧量(COD),各类阴离子如氯化物、硫酸盐、硝酸盐、亚硝酸盐、氰化物、挥发酚、余氯、总氯等,重金属元素等,广泛应用于环境、医疗、卫生、食品、造纸、印染、石化、冶金等行业的水质检测。仪器特点:◆显示界面:8寸彩色触屏液晶显示,中文菜单人机交互,数据直读;◇仪器光源:进口光源,稳定可靠,自动开启与关闭,延长使用寿命;◆测试方式:支持比色管360°旋转比色及4联池比色皿自动比色两种测定方式;◇项目参数:支持所有水质常规项目及可定制化扩展项目;◆曲线调用:分类别标准曲线,简单直观,支持客户自定义及编辑曲线;◇曲线校准:具有标样一键校准功能;◆数据编辑:可对测量数据实时编辑及保存,方便客户整理检测结果;◇仪器校准:开机自动校准及预热;◆数据平台:支持物联网功能,数据实时上传至盛奥华云数据服务中心,方便客户日常管理及分析,为污水处理的平稳运行提供数据支持;◇光学结构:采用凹面闪耀全息光栅,性能卓越,3秒内切换至任意波长;◆领域扩展:支持光度计功能,可实现光度测量及全波长扫描功能;◇软件升级:可实现软件版本远程升级;◆散热方式:优化结构,配以大风量静音风扇高效降温,延长仪器使用寿命;◇流程优化:配套专用检测试剂及配件,减少客户操作步骤,简便安全;技术参数:性能参数物理参数波长范围190-1100nm屏幕参数8寸高清触摸彩屏光路稳定性≤±0.002Abs/h比色方式比色杯(皿),比色管光度重复性0.2%T用户曲线>240条杂散光≤0.005%T数据传输远程物联网光谱带宽2nm打印方式内置热敏型光度准确性±0.5%T操作界面中文AOS操作波长分辨率1nm仪器电源AC(220±10%)50Hz波长准确度±1nm使用环境温度0-50℃湿度10-90%波长重现性0.2nm仪器尺寸460*320*350mm吸光度重现性±0.003Abs仪器重量约20kg吸光度准确性230-900nm±0.005abs额定功率60W序号测定项目测量范围序号测定项目测量范围1COD5-6000mg/L(分段)21氰化物0-0.5mg/L2氨氮0.01-100mg/L(分段)22磷酸盐0-0.5mg/L3总磷0.001-8mg/L(分段)23铜0-2.5mg/L4总氮0.01-100mg/L(分段)24铁0-5mg/L5色度0-400度25锌0-1mg/L6浊度0-200NTU26镍0-5mg/L7悬浮物0-200mg/L27银0-1mg/L8硫化物0-1mg/L28锰0-5mg/L9总油0-16mg/L29总铬0-2mg/L10余氯0-3mg/L30六价铬0-2mg/L11苯胺0-2mg/L31氨氮(水杨酸)0-1mg/L12挥发酚0-2.5mg/L31硝酸盐氮(可见光)0-10mg/L13高锰酸盐指数0-10mg/L(分段)33总氮(可见光)0-10mg/L14硝酸盐氮(紫外)0-10mg/L34总硬度10-600mg/L15亚硝酸盐0-0.2mg/L35二氧化氯0-3mg/L16硫酸盐1-150mg/L36铝0-0.25mg/L17氟化物0-1.5mg/L37硅酸盐0.2-40mg/L18臭氧0-2mg/L38二氧化硅0.2-30mg/L19总氯0-3mg/L39氯离子10-400mg/L20甲醛0-4mg/L40阴离子表面活性剂0.1-2.5mg/L检测试剂:余氯试剂量程:0-3mg/L应用范围:适用于地表水、工业废水、医疗废水、生活污水、中水和污水再生的景观用水中的游离氯的测定。实验步骤:1、向试管1/2中加入水样2、分别加热专用试剂1和试剂2 0.5ml3、试管1/2中分别加入纯净水5ml4、摇匀调出曲线57号5、试管外壁擦干净后放入仪器中读数
  • 世界性难题高盐废水处理的“机遇”在哪?
    “高盐废水处理是世界性难题,我国每年产生的此类废水超过3亿立方米,由此副产的高盐危废超过千万吨,其中大部分没有得到合理处置,给生态环境带来巨大压力。”谈及工业废盐问题,享受国务院政府特殊津贴专家、天津理工大学绿色化工与废弃物资源化工程技术中心主任李梅彤说。中化环境总工程师李强告诉记者:“工业废盐的资源化利用已成为制约化工行业尤其是煤化工、农药、制药、精细化工等行业发展的‘瓶颈’和‘痛点’。”12月28日,中国物资再生协会危废工作委员会组织召开2023年危废行业高质量发展论坛。废盐资源化利用问题成为会议的焦点话题之一。我国的工业废盐来自哪里?废盐主要指以无机盐为主要成分的固体废弃物,由于含有多种复杂有毒有害成分,很大一部分都属于危废。由于在危废目录中没有单独分类,公开的危废统计数据无法直观反映废盐实际产量,带来监管的困难。据分析,我国每年工业废盐产生量超过2000万吨,目前交由危险废物经营单位规范利用处置的废盐约占总量的10%,大部分以副产盐或一般固体废物流向市场,严重危害公众健康和环境安全。这些废盐是怎么产生的?李梅彤告诉记者:“高盐废水是废盐的主要来源,高盐废水主要来源于农药、医药、染料、焦化、冶金、新材料、化纤等行业,种类主要包括氯化钠、硫酸钠、氯化铵、硫酸铵、醋酸钠以及混合盐等”。据悉,我国主要废盐产生区域处于第一梯队的包括山东、江苏等;处于第二梯队的包括河北、内蒙古、四川、湖北等;处于第三梯队的包括浙江、湖南、广东、江西等。废盐处理难在哪?为何资源化利用是最有前途的方向?李强说:“废盐成分差异明显,具有组分差异大、特征不固定的特点。不仅是不同行业产生的废盐成分不同,即使是来自同一行业的不同企业、同一企业不同批次的废盐,不仅盐硝比具有显著差异,其余杂质含量水平还具有十倍甚至几十倍的差别。这无疑增加了废盐处理的技术开发和实际运营难度。”在谈及目前我国废盐处理的问题时,李梅彤介绍:“我国是世界第一大涂料、染料生产国,世界第二大农药生产国,精细化工销售额排名世界第三位。”这就意味着废盐的产生量大。与此同时,目前我国正常运行的废盐集中处理企业较少。此外,废盐品种多、处置技术难度大、装置标准化困难。至今没有低成本、无二次污染、成熟的工艺应用。现有焚烧炉对高盐危废不适应,对复杂可燃危废适应性不强。因此,资源化、技术集成是高盐危废处置最有前途的方向。”据悉,目前,化工废盐资源化利用途径主要包括再生利用、制成肥料、制成建筑材料、焚烧处理等。其中,再生利用指的是将废盐经过净化处理达到再生工业盐标准后,再次用于工业生产。前三种都属于对废盐进行再利用,第四种属于无害化处理,比较彻底,但需要消耗大量能源。高值化工艺推广应用要打通“赌点”专家介绍,废盐资源化的技术瓶颈主要表现在废盐处理系统稳定运行难、废盐中有机污染物深度去除难、废盐残渣资源化利用难等方面。在深度去除污染物方面,李强告诉记者:“化工废盐再生处理后,绝大部分有毒有害物质被去除,但是仍残留少量杂质,如微量有机物、钙、镁及重金属离子、二氧化硅等。在氯碱工业中,部分杂质可通过盐水精制去除,但是仍有一些杂质(如TOC)难以通过常规手段去除。有必要开发微量杂质的去除方法,并对精制净化的饱和盐水开展长周期评价。”据悉,氯碱企业目前对再生盐的接受度低,只有极少数企业短时间、小比例(3%-5%)掺用再生盐。开展盐评价有助于消除氯碱企业担忧,确定废盐的合理掺混比例,打开废盐资源化利用的出路。李梅彤告诉记者:“在废盐资源化利用方面,目前典型的高值化工艺包括废氯化钠制氯碱,硫酸钠复分解制纯碱,硫酸钠及混合盐电解制备碳酸钠、硫酸铵(氯化铵)。现实情况是,高盐水废水量大、混合盐价值低。目前国内外蒸发出混合盐或分盐出盐的工艺,成本大多超过50元/m³。基于此,废氯化钠制氯碱从技术上讲是非常理想的方向,但从市场的角度看,因为投资较大,尤其因为氯化钠本身价格很低,氯碱企业使用意愿很低,短时间造成难以推广应用。国家相关部门正在制定鼓励使用的政策。低浓度杂盐废水制纯碱工艺是目前可以实现盈利的技术路线。硫酸钠盐和氯化钠制备纯碱,技术上已经不存在难题,但是由于碳酸钠产品标准有原料来源限制的问题,同样存在准入的障碍。”为推动产业发展、增加销售收入,需补齐哪些“短板”?虽然目前我国高盐废水和废盐资源化方面仍存在“痛点”,但专家认为,这一领域未来具备重大的机遇。一方面,近年来,国家相关政策不断出台,推动行业规范发展,助力拓展应用市场。另一方面,目前我国高盐废水和废盐资源化、高值化技术都取得了突破性进展,处于国际领先水平。同时,这一领域的难题更多的是工程难题,但目前也积累了大量的工程化经验,具备大规模推广的条件。为了更好地抓住机遇,补齐短板,专家达成共识,废盐资源化利用需要更多的标准支撑和政策引导。李强说:“废盐资源化后制取的产品盐标准不健全。工业废盐目前作为危废进行管理,如需利用工业废盐为原料精制得到的产品盐进行外售,必须解决其‘危废’身份。目前我国废盐制取产品盐的产品标准几乎为空白,因此工业废盐精制得到的产品盐往往需要经过危废鉴定,确认不属于危废后才可作为产品外售。”与此同时,专家认为,高值化是废盐资源化领域的发展趋势之一。废盐循环、资源化利用时要考虑下游产业,尝试高附加值的材料工艺技术。如氯化钠产品盐应用于氯碱行业,在以氢氧化钠为主要销售产品的同时,兼顾考虑将氯气开发成下游高附加值产品,有利于固废处理产业发展和增加销售收入。此外,李强告诉记者:“工业废盐资源化利用往往需要达到一定规模后,才能实现资源化效益。因此,可以省、市或者工业园区为单元,建立较大规模的处置中心实现集中、规模化处置,对废盐进行统一的、真正意义上的资源化利用。”
  • 工业废水集中治 园区管理助力减排常态化 l
    p  工业废水一直是水处理领域“难啃的硬骨头”,近年来,园区模式为集中科学管制工业污水带来了契机。为了不留隐患,工业集聚区污水治理重在监管,智慧转型也有望成为常态,走一条工业废水治理的长效之路。/pp  工业废水集中治 园区管理助力减排常态化/pp  来自环境保护部的消息显示,截至2018年1月底,全国已有2205家工业集聚区全面完成了污水集中处理设施建设,2148家完成自动在线监控装置安装。据悉,京津冀、长三角、珠三角等是重点区域,目前已经基本完成任务。/pp  当然,环保部相关负责人也明确,工业集聚区的水污染防治工作仍将继续强化和落实,完成“水十条”任务只是硬性标准之一,也只是开始。业内相关人士更是指出,工业废水,作为最难“啃”的水处理“硬骨头”之一,长效治理必不可少。/pp  而从目前我国工业污水治理的进程来看,工业集聚区的形成有利于统筹管控工业污水排放,并且对工业污水处理进行科学统筹规划。这也是为什么,近年来,不少工业园区相继落成,分散的企业开始向工业园区聚集,污水治理也在总量和质量上获得阶段性进展。/pp  总体而言,全国各地都在鼓励重污染企业搬迁入园,工业集聚区发展形态初成。但是,这也是存在先决条件的,即:坚守底线,不留隐患。进入工业园区并不意味着排污不受限,反而更看中节能减排的集约化管理效应。/pp  因此,工业集聚区水污染治理如何管好是关键。环保部水环境管理司相关负责人表示,“园内工业废水和生活污水要应纳尽纳,一滴不能漏,杜绝偷排、漏排等情况发生。”那么,工业园区水处理将如何过关斩将呢?/pp  首先,环保监管绷紧弦。按照环保部的规划,工业集聚区将逐步实现“一园一档”,推进数据化、信息化步伐。同时,中央环保督查的目标也会继续指向工业园区的绿色发展,肃清超标排放、违规操作、设施缺位等问题。/pp  其次,智慧转型加速。一个生态园区,一个智慧园区,二者之间的契合点值得推敲。监管重在施压,转型志在求变,更多人开始相信,“生态智慧型”将成为工业聚集区的未来选项。水污染治理自然不例外,高效、便捷,360度无死角,24小时全天候,全覆盖采集,智能化解析,这是清洁生产下的大势。/pp  再者,关系网统筹维系。纵观工业集聚区关系网,污水处理总避不开园区管理部、污水处理企业和污水处理厂三方。例如,管理部门要把好环评关,企业要把好生产制造关,处理厂要把好工艺关,如此才能做好园区内部的工业污水治理工作。/pp  总结起来一句话,自觉是基础,监管是手段,责任是动力,实效是核心,工业集聚区污水治理正是要兼顾这几点。截至目前,全国各地都针对工业集聚区污水展开了重点监管,诸如广西、江苏、吉林、四川等地频频传来捷报,示范试点快速建立,新老工业园区齐步治污。/pp  工业污水成分复杂,治理难度大,“散乱污”更是严重阻碍了水污染治理进程。有鉴于此,依托污水处理厂,集中高效治水的园区模式有了用武之地。紧接着,管好工业集聚区污水治理就成为了重中之重。/p
  • 聚光科技签订邯钢1.5亿工业废水项目
    p  聚光科技发布公告,控股子公司哈尔滨华春药化环保技术开发有限公司(以下简称“哈尔滨华春”)于近日分别与河钢股份邯郸分公司、邯郸钢铁签订了两大邯钢工业废水处理项目冷轧废水处理站提标改造及水运营10 年期管理项目合同,对应合同金额分别为7098 万元和8211 万元,共计1.53 亿元。/pp  根据公开资料显示,哈尔滨华春是高新技术企业,拥有国家专项水处理专利技术,具备环境工程甲级设计资质,以及环境工程二级施工资质,致力于污水深度处理回用领域,并广泛应用于炼化、石化、采油、冶金等多个行业。2016 年,公司实现营业收入8839万元,归母净利润达到3054 万元,净利率34.6%水平高。聚光科技在2016 年底以不超过1.65 亿元完成哈尔滨华春55%股权收购,与子公司北京鑫佰利共同开拓工业废水“零排放”的广阔市场,从监测龙头向环境治理端迈进。/pp  本次邯郸钢铁2 个项目EPC 投资规模较小,合计2281 万元 按合同要求改造将于5 个月内完成,预计年底将开始运营。以基础水量计算,运营后项目每年将合计贡献1260 万元运营收入,为哈尔滨华春贡献可观业绩增长。/pp  考虑到此前华北和天津地区“超级工业污水渗坑”曝光,引起公众、政府的关注和环保部门的重视,聚光科技邯钢项目直击京津冀和周边水污染严重痛点,顺应了环保督察趋严、治理现高压态势、注重“效果化”等行业现状。我们认为,工业废水治理和提标改造的订单空间广阔,订单落地加速可期。/pp  聚光科技去年11 月签署《黄山市黄山区浦溪河(城区段)综合治理工程项目PPP 合同》,合同总额12.5 亿元。今年5 月中标广西区环境物联网(空气质量监测站)PPP 项目B 分标,新建及运营26 个站,委托运营10 个存量站,项目成交总价1.33 亿元。公司有望借PPP 模式进一步开拓环境监测产品的销售+运营业务空间,带来可观业绩增量。/p
  • 水和废水中的有机物监测
    总有机碳(TOC)监测是行业了解其用水或废水质量的重要工具。它有助于确定水中存在的有机物质的量,有多种用途。TOC监测还使不同行业在多方受益,包括提高安全和加强环境保护,节省成本以及更好地遵守相关法规。但是,TOC监测也可能带来技术实施和成本等方面的挑战,这取决于应用的复杂性以及采用的仪表是否适用。什么是BOD、COD和TOC?检测有机物含量采用的最传统分析技术是生物需氧量(BOD)。随着技术的发展,法规允许采用其它方法来分析有机污染,如化学需氧量(COD)和总有机碳(TOC)。尽管BOD和COD已广泛使用,但TOC已成为越来越广泛接受的替代方法。BOD是确定废水有机污染的最常见的参数之一。该方法依靠微生物通过消耗样品中的氧气来分解有机物。如果水样品中有机物含量高,会导致溶解氧消耗增大。通过测量在20℃温度条件下培养五天所消耗的氧气量,BOD试验可以间接指示有机污染。化学需氧量(COD)是用于确定废水有机污染程度的另一种方法。该试验采用化学氧化来分解水中的污染物,然后测量在该分解过程中消耗的氧气。如果氧气消耗量增大,这说明品中有机物含量增高。2-3小时的分析时间少于BOD所需的时间,但需要用到有毒试剂。多年来的技术进步引入了总有机碳(TOC)分析仪,用于直接、快速检测水中有机物含量。与通过需氧量来确定有机物含量的BOD或COD不同,TOC分析仪是直接检测和定量分析样品中的碳。TOC分析仪将有机物氧化成CO2,然后通过电导率或非色散红外检测(NDIR)来测量CO2。样品氧化所采用的不同方法包括紫外线过硫酸盐、燃烧和超临界水氧化(SCWO)。TOC可通过特定相关性转换为BOD和COD。但是,在排放法规中,也有用TOC取代BOD/COD的趋势。挑战与TOC解决方案对于行业而言,总有机碳(TOC)监测对于确保其产品和工艺安全至关重要,同时,还有助于检测样品中有机化合物的量。在TOC监测方面,如果行业无法将其应用需求与合适的TOC技术相匹配,则将会面临诸多挑战。造成这种情况的原因有很多,包括取样技术欠缺,难以检测低浓度有机化合物以及分析方法不可靠。仪器商已经开发了不同的TOC解决方案来应对这些问题,从而降低了TOC监测的复杂性和成本,如下两个实例所示。电力行业挑战:煤气化装置要求在现场的水处理能力约为5,000-6,000 GPM,目标是零工艺水排放。由于该装置采用的是再生市政水,因此其蒸汽和冷凝水的来源中有机物含量高。因此,必须监测反渗透(RO)膜上的有机物负载量,以对处理工艺进行调整并保护宝贵的资产。解决方案:最初,在实验室进行TOC分析,后来采用在线TOC分析,以监测RO预处理性能并验证其可靠性。实时监测能够可靠、有效地调整预处理混凝剂的投加量。食品饮料行业 挑战:对于大型无菌生产企业,如果出现非无菌产品,会反复造成产品损失。他们一直在使用ATP检测拭子来检测微生物污染。但是,质量问题和产品损失则表明他们需要一种新技术。为了验证设备的清洁度并确保质量和安全,他们必须确保在开始灭菌前完全清除污染物和残余产物。除改进其清洗验证工艺外,生产企业还希望降低用水量和成本。解决方案:食品饮料生产企业需采用以turbo模式运行的Sievers M9 TOC分析仪来进行TOC分析——每4秒钟提供一个数据点,以对原位清洗(CIP)后的冲洗样品进行监测。在审核过程中,证明这些数据对设施在CIP效果和设备清洁度方面很有价值。通过目视检查确认设备很脏,但通过ATP检测拭子检查发现设备干净,但事实上并非如此。来自TOC监测的定量和全面的数据能够进一步减少不必要的CIP次数,并针对不同产品对其进行优化,从而节约用水并改进清洗工艺。碳监测通过TOC分析进行碳监测是一种重要且有用的方法,可以在水通过工业设施时对水质进行检测。通过检测可能出现的任何工艺中断,防止导致停机并造成高昂维护费用,这还是一个保护宝贵设备资产的好方法。碳监测在以下方面很有用:资产保护工艺优化质量控制满足法规要求源水水质源水污染水平会发生很大变化。水质可能受到季节变化、暴风雨径流和当地火灾等多种因素的影响,这些因素可能会造成源水被有机物污染。你的源水告诉了你哪些信息?通过对源水直接进行碳监测,以:监测基线 — 确定源水的正常TOC水平。识别发生的变化 — 市政是否改变了工厂水源?是否有暴风雨或天气事件改变了进入装置的源水的质量?采取纠正措施 — 采用实时、直接的碳数据来调整水处理工艺。确保处理装置正常运行,并调整流量以确保按照足够的比例脱除。公用工程用水水质工业设施经常需要热量来推动化学反应或工艺原材料。在许多工业装置中,使用公用工程用水来产生热量或便于热交换。热量的产生通常通过锅炉给水和冷凝水返回来实现。超纯水在锅炉中加热,然后转化为蒸汽。你的公用工程用水告诉了你哪些信息?通过对公用工程用水直接进行碳监测,以:监测基线 — 确定锅炉给水的最佳TOC含量,以满足设备保护的质量要求。确定正常的冷凝水水平。识别变化 — 快速检测由于处理低效或水源变化而导致的锅炉给水变化。无论是冷却液本身还是其它工艺流体,能够快速发现冷凝水泄漏。采取纠正措施 — 调整处理以确保锅炉给水的质量,如果被污染,则将冷凝水转移到废水收集设施或实施停车以防止污染影响产品或设备。废水处理工艺碳监测可以以多种途径用于废水处理,包括监测处理设施的废水负荷、生物处理效率或最终排放质量是否合规。你的废水告诉了你哪些信息?对废水直接进行碳监测,以:监测基线 — 定量分析原始废水中的碳负载量,以了解系统的真正养料负载量。识别变化 — 检测可能影响处理的任何变化倾向或较大波动。采取纠正措施 — 调整投加量、停留时间或进行分流,以优化处理并实现废水排放标准中规定的质量目标。对工业用水实施直接碳监测可使许多不同行业受益匪浅。TOC是控制产品质量、优化工艺、保护反渗透膜和锅炉等资产以及确保满足法规要求的绝佳工具。TOC能够为决策提供快速、准确的数据,并正在被写入世界各地更多的监管指南中。通过采用有机物监测,世界上许多不同的行业都在有效地监测用水和废水的质量。◆ ◆ ◆联系我们,了解更多!
  • 赛默飞:以模块化,可定制的污水监测仪器产品线助力中国污废水监测发展
    pspan style="font-family: 楷体, 楷体_GB2312, SimKai "  中国面临严重的水污染问题,污水废水治理也一直是水环境治理最重要的组成部分。近几年在政策支持下,污水处理行业发展态势较好,污水处理能力持续增强。污水废水包括医疗污水、工业废水、生活废水等。从污水处理基础设施建设情况来看,污水处理厂数量和城市排水管道长度都在逐年递增。随着新冠肺炎疫情中病毒存在通过粪便和污水传播的可能,对污水废水处理提出了更高的要求。而对污水废水水质的监测检测则成为污水废水处理的基础和保障。为了帮助相关用户学习、了解污水废水水质监测最新技术及相关仪器在其中发挥的作用等内容,仪器信息网特别策划了“污水废水水质监测”专题并邀请赛默飞世尔科技市场拓展经理马颢珺谈谈他对中国污水废水水质监测现状的看法。/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/8170ebaa-d191-4232-a6b2-b2adde01a03f.jpg" title="赛默飞 马颢珺_450330.jpg" alt="赛默飞 马颢珺_450330.jpg"//pp style="text-align: center "  strongspan style="font-family: 黑体, SimHei "赛默飞世尔科技市场拓展经理 马颢珺/span/strong/pp  strongspan style="color: rgb(192, 0, 0) "仪器信息网:马经理,您好。据您了解,我国污水废水排放和治理现状呈现怎样的特点?对于我国污水废水监测检测采用的现行标准/方法您认为有哪些需要改进和完善的地方?/span/strong/pp  strongspan style="color: rgb(31, 73, 125) "马颢珺:/span/strong要了解我国污废水治理的现状,我们先来看一组数字:2007年末,我国城市共有污水处理厂883座,污水日处理能力为7,138万立方米,城市污水处理率只有62.8%。而截至2019年6月底,全国设市城市累计建成城市污水处理厂5000多座(不含乡镇污水处理厂和工业),污水处理能力达2.1亿立方米/日,城市污水处理率已超过90%。可见从“十一五”到“十三五”之间的十多年时间里,我国污水处理规模大幅度提高。/pp  基于环境保护目标和污水处理水平的不断提高,生态环境部始终致力于推动监测技术发展和标准要求的提升,比如2019年底发布了《污水监测技术规范》等一系列污水在线监测新标准/规范,并于2020年上半年开始实施。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/f19a21db-2166-46ea-8a6d-617c0d34a718.jpg" title="赛默飞 标准列表.png" alt="赛默飞 标准列表.png"//pp style="text-align: center "strong国家近期发布的一系列污水在线监测新标准/规范/strong/pp  而我们现行污水排放标准主要为《污水综合排放标准》(GB8978-1996)和《城镇污水处理厂污染物排放标准》(GB18918—2002),这两个标准已有多年未更新,随着污水在线监测新标准/规范的实施,想必这些标准也要随之变化。/pp  strongspan style="color: rgb(192, 0, 0) "仪器信息网:此次新冠肺炎疫情中,病毒可以通过粪便和污水传播。这无疑对包括医疗污水在内的污水废水监测检测能力提出了更高的要求。目前,相关水质监测现状怎么样?除了新冠病毒检测,污水废水监测中还有哪些项目值得关注?/span/strong/pp  strongspan style="color: rgb(31, 73, 125) "马颢珺:/span/strong医疗污水成分复杂,除了一般废水中常见的污染物质外,还含有病原性微生物、有毒、有害理化污染物和放射性污染物等。这其中除了部分理化监测指标——如pH值、悬浮物、氨氮、生化需氧量、化学需氧量和余氯等——可以利用在线监测仪实时监测。对于其它微生物指标(如粪大肠菌群)目前还未有成熟的在线监测方案。/pp  根据现有的污水废水排放标准,我们主要关注的污水废水监测项目还是化学需氧量CODcr、氨氮、总磷、总氮、重金属、pH等参数。/pp  span style="color: rgb(192, 0, 0) "strong仪器信息网:赛默飞在污水废水水质监测方面有哪些仪器产品或产品组合?相比于同类产品,贵公司产品有哪些优势?/strong/span/pp  span style="color: rgb(31, 73, 125) "strong马颢珺:/strong/span赛默飞拥有较完整的污水监测仪器产品线,可覆盖生活污水、工业废水处理过程中及排放口需要测量的多种参数,如化学需氧量、氨氮、总磷、总氮、重金属、pH、溶解氧、ORP、电导率、余氯等参数。并且我们可提供一定程度定制化、模块化的测量解决方案,通过灵活的组合帮助用户节省采购和使用成本。/pp  如6850微型水质在线自动监测系统,6850是6800微型水质在线自动监测系统的子型号。占地仅需0.7平米,可测量常规五参数和比色法双参数(化学需氧量CODcr、氨氮、总磷、总氮、重金属(总铬、六价铬、铅、铜、锰、镍等)、氰化物等任选二)。/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C395497.htm" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/0cc39aad-fdbd-4a11-b62a-67797965b62d.jpg" title="赛默飞 6850微型水质在线自动监测系统280436.jpg" alt="赛默飞 6850微型水质在线自动监测系统280436.jpg"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C395497.htm" target="_blank"strong赛默飞 6850微型水质在线自动监测系统/strong/a/pp  3150 总磷/总氮水质在线自动监测仪,可自动切换量程 可灵活配置总磷、总氮单参数或二合一 定量准确,不受样品色度、浊度干扰。/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C396581.htm" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/61528309-13e4-475b-8541-37343b148361.jpg" title="赛默飞 Orion3150 总磷总氮.jpg" alt="赛默飞 Orion3150 总磷总氮.jpg"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C396581.htm" target="_blank"strong赛默飞 Orion 3150 总磷/总氮水质在线自动监测仪/strong/a/pp  2240 氨氮在线自动监测仪,基于氨气敏电极法测量原理,不受水样浊度和色度的影响 测量范围最高可达1000mg/L 采用标准加入法自动进行校正,适用于低浓度或背景复杂样品。/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C220173.htm" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/442e4442-581d-4401-8e32-d9c8f33f8ed0.jpg" title="赛默飞 2240氨氮自动监测仪.jpg" alt="赛默飞 2240氨氮自动监测仪.jpg"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C220173.htm" target="_blank"strong赛默飞 2240 氨氮在线自动监测仪/strong/a/pp  8010cX 氨氮自动监测仪,采用水杨酸分光光度法原理 可自动切换量程,且无需新校准 高精度注射泵保障了高精度测量 IP65防护等级。/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C340805.htm" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/df36d977-04f6-467c-9cae-a93c8d2e25ae.jpg" title="赛默飞 8010cX氨氮自动监测仪.jpg" alt="赛默飞 8010cX氨氮自动监测仪.jpg"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C340805.htm" target="_blank"strong赛默飞 8010cX氨氮自动监测仪/strong/a/pp  3300重金属水质在线自动监测仪,可自动切换量程 定量准确,不受样品色度、浊度干扰 可任意配置总铬、六价铬、铅、铜、锰、镍等中的2个参数。/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C414760.htm" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/c62f9c8b-8d2d-4481-b334-de8f77ba2274.jpg" title="赛默飞 3300重金属水质在线自动监测仪.jpg" alt="赛默飞 3300重金属水质在线自动监测仪.jpg"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C414760.htm" target="_blank"strong赛默飞 3300重金属水质在线自动监测仪/strong/a/pp  MPC 20在线多参数通用控制器,可同时测量常规五参数、水中油、叶绿素、蓝绿藻、UV全光谱等参数 IP65防护等级。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/88902ec3-7f0c-4a5a-851c-0245c78d9a5c.jpg" title="赛默飞 MPC20在线多参数通用控制器400.jpg" alt="赛默飞 MPC20在线多参数通用控制器400.jpg"//pp style="text-align: center " strong 赛默飞 MPC 20在线多参数通用控制器/strong/pp  Chlorine XP 余氯/总氯分析仪,可测量水中的游离氯、总氯和游离总氯 基于DPD原理,每次分析仅使用0.03mL试剂 /pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C221987.htm" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/97a82037-828f-4171-b29d-cddf7fca0037.jpg" title="赛默飞 Chlorine XP.jpg" alt="赛默飞 Chlorine XP.jpg"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C221987.htm" target="_blank"strong赛默飞 Chlorine XP 总氯/余氯分析仪/strong/a/pp  3106COD 化学需氧量自动监测仪,采用重铬酸钾氧化消解-比色法原理,符合国标 可自动切换量程,且无需重复校准 IP66防护等级 ,适合较恶劣环境。/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C235904.htm" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/4575177d-7485-4b78-abe2-be93d01b6cca.jpg" title="赛默飞 3106COD 化学需氧量自动监测仪.jpg" alt="赛默飞 3106COD 化学需氧量自动监测仪.jpg"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C235904.htm" target="_self"strong赛默飞 3106COD 化学需氧量自动监测仪/strong/a/pp  strongspan style="color: rgb(192, 0, 0) "仪器信息网:贵公司在污水废水水质监测方面可以提供哪些解决方案?/span/strong/pp  strongspan style="color: rgb(31, 73, 125) "马颢珺:/span/strong目前,赛默飞可以提供包括《市政污水/工业废水综合解决方案》、《污水中总余氯的测量》、《地表水/废水中的固体悬浮物测量》等多种污水废水监测的解决方案,搭配赛默飞丰富的污水监测仪器可以实现对各类污水废水的水质监测。/p
  • TOC分析仪用于废水监测
    概要废水泛指使用过的水,其中会包含有人类排泄物、食品废渣、油污、肥皂和化学物等。所有制造业及市政废水厂都必须符合国家及当地地区的相关规定,以美国为例,美国国家环境保护局(USEPA)颁布清洁水法CWA(Clean Water Act)。为了确保排放的污水符合CWA法案,企业必须具备由EPA或EPA授权代理审核批文的国家污水排放控制系统NPDES(National Pollutant Discharge Elimination System)。只有企业能确保每天排放的污染物低于CWA设置的最低限值,才有可能获得此批文。限值根据当地权威单位的规定,或者经处理废水所排入的支流情况而互不相同。为使成本最小化,必须对废水处理过程最优化。为帮助实现优化,很多工厂使用总有机碳(TOC)监测来确保水质,同时显著降低费用。处理过程废水处理厂的处理过程必须同时满足国家及当地地区的规章制度。在生产过程或废水处理厂中,一旦净水补给时的水被污染或者不经处理就被排放,会对人体健康或者环境造成不良影响。水处理的最终目的在于确保排放的水质中污染物的含量符合规定,或者废水能被处理成可再回收使用的水质。此时的处理及净化过程同时包含物理和化学处理。净化水的第一步是去除可疑的固体杂质,第二步是化学处理以确保危险化学成本或细菌最小程度地被排放至环境。如果处理的过程未被适当地控制住,可能会对公司造成一定的影响。未被正确处理的水会对其接触物料产生损伤,例如输送管道或储水罐。未被有效处理的水还可能造成工厂的停产,废水水流的导流,或再返工处理。这些后果都会带来不必要及昂贵的费用。为什么要使用TOC来优化处理过程?对于废水流或负载水在源头就开始进行TOC检测,可以作为基线读数,这样水处理厂就知道处理前原始的有机物含量。确定水中大致的总有机碳含量,可以推算出需要多少量的化学药剂及过滤过程来进行处理。被排出的水或者处理后的净水再次进行TOC检测,通过对排出水的监控,处理工厂可以知道化学给药否有效。处理工厂还可以渐渐地减少或调整化学药剂的使用,实时比较其对出水质量的影响。EPA(美国国家环境保护局)确定了五类污染物必须受到控制,包括耗氧性物质、病原体、营养物、无机物及合成有机化合物、热量。所有这些污染物都会影响生态系统并对水质产生负面影响。这其中可以通过TOC监测的污染物是耗氧性物质。过去,很多公司通过一个需要耗时5天的BOD(生物需氧量)测试或需要耗时2个小时的COD(化学需氧量)来对耗氧性物质进行监控。目前TOC设备的优势及便利性渐渐体现,EPA已经允许使用TOC对耗氧性物质进行监控。TOC的分析过程仅需几分钟即可完成,相比之前的几个小时甚至几天,速度有很大的提升。EPA 40 CFR,取样及测试程序,133.104章节中提到“可以用TOC方法取代BOD5,只要BOD:COD或者BOD:TOC的长期关联性能被证实。”1当需要快速确定废水流的组成时,TOC的快速检测时间就是很大的优势。一但TOC数值显示排放水符合规定,立刻就能节约水处理成本。相反,如果由于未知的工艺污染,最初测出的废水TOC值开始上升,处理工厂可以立刻同步进行TOC分析,校正化学给药量。这种“实时”纠正,能帮助终端客户避免因排放不合格的废水而造成违规及不必要的成本。2009年因违反EPA2制定的CWA(Clean Water Act)而遭受罚款的案例马萨诸塞州的某公司“因排放受污染的雨水,面临高达$157,500的罚款处罚”。阿拉斯加州的某公司“因被指控违反CWA法,最终与USEPA达成了$30,600的罚款处理”。俄勒冈州的某公司位置在“联邦CWA法案禁止建厂的湿地上,被勒令立即搬迁,否则将因违反CWA而面临每天高达$32,500的民事罚款”。EPA向某德克萨斯州的公司颁布了一项行政诉讼和$157,500的民事罚款,“因为其违反了CWA法案”。爱达荷州的某公司“同意支付$47,700的罚金,以解除其因违反CWA法案而受到的USEPA的指控”。加利福尼亚的某公司被罚“$15,000,因为向与附近小河相通的雨水道排放了受污水的雨道排放了受污水的雨水,违反了CWA法案”。波多黎各某公司接到了“USEPA的$137,500的罚款指控,并勒令他们立即停止频繁的污水和工业废水排放”。向上滑动查看更多案例真实案例图1:废水处理厂的流程示意图(点击查看大图)图1显示了如何在整个水处理过程中多点使用TOC分析:点1:监控总有机碳(TOC),以深入了解澄清步骤,保护设备资产并管理您的进水有机负荷点2:监控TOC,通过TOC∶COD相关性优化生物处理和控制工艺过程点3:监控TOC以进行法规监测,符合排放标准并避免高额罚款点4:监控TOC以优化三级处理点5:监控TOC以符合回用标准若在此流程中不使用TOC检测控制,费用可能会很高而且可能会导致因不合规产生的违法费用。Sievers InnovOx实验室TOC分析仪使工厂可以监控他们的处理过程,确保他们的处理设施是合法合规的,同时还可以优化化学处理。优化包括避免废水的处理不足或过度处理。若不考虑废水在处理过程中的停留时间,能够根据实时的情况对废水进行化学给药可以帮助企业最优化成本,最大化利润。Sievers InnovOx实验室/在线TOC分析仪Sievers InnovOx方法论Sievers分析仪在TOC分析方法上有了创新性的突破,为极其困难的样品提供了稳定的分析仪。InnovOx使用了高效率的超临界氧化(SCWO)技术,能够连续检测几百个废水样品而无需校准、无需系统维护并不需要更换备件。Sievers InnovOx的运行原理基于化学湿法氧化技术,通过在样品中加入酸剂及氧化剂进行氧化。无机碳通过吹扫被去除,样品在高温下通过过硫酸盐被氧化,生成的二氧化碳通过非色散红外光度计进行测定。InnovOx会提高样品的温度,并加入试剂确保充分氧化,并把液体水样转换成超临界水。一旦进入这一状态,超临界水氧化(SCWO)现象便会发生。这一创新技术可以使氧化效率达到99%,因此检测精确度和准确度极高。Sievers InnovOx还能在每个检测结束后自动清除有问题的样品基体污染。因此,在仪器内部例如反应器、管路或者阀门内都不会有盐分或氧化副产物的累积问题。结论InnovOx TOC实验室及在线分析仪能够对废水进行非常准确、精确及快速的检测。若水厂能够在处理之前和之后都对水质有清晰了解,那么优势就是,能够提高处理效率并最小化风险,最重要的还在于保证合规。对分析仪器的投资能够很快在处理过程优化中收回成本,也降低了违反规范的风险。参考文献1.EPA, CFR 40 Section 133.104 Sampling and Test Procedures, pg. 548, 7-1-07 Edition.EPA, 40 CFR,133.104章,取样及检测规程,548页,7-1-07版2.Environmental Protection Agency. www.EPA.org (accessed March 2009).环境保护局,www.EPA.org (2009年3月)◆ ◆ ◆联系我们,了解更多!
  • “十二五”工业废水治理投资需求超1200亿元
    据中国水网最新发布的《中国水业市场研究报告(2012版)——中国水业政策与市场分析》(以下简称《报告》)研究数据显示,“十二五”期间,工业废水治理领域投资需求将超过1200亿。  “十二五”期间,工业废水治理成为水污染治理中备受关注的领域,据国家统计局数据显示,2010年全国工业废水排放总量为237.47亿吨,占全国废水排放总量的38.47%。工业废水排放的达标率为95.3%,比2005年提高4.1个百分点。从排放标准来看,不仅常规污染物面临着进一步削减,氨氮的总量控制也被提上了议事日程。  随着我国工业化和城市化水平的不断发展,工业废水待处理将持续增加的同时,水质排放标准也将越来越严格,环保监管政策也将进一步加强。在此背景下,工业废水处理市场对投资的需求将进一步加大。  《报告》分析认为,“十一五”期间,全国工业废水治理实现总投资821亿元,约占全国环境污染治理投资总额的3.8%。根据“十二五”环保规划,“十二五”期间全社会环保投资需求约3.4万亿元,如果按相同比例估算,则2011年至2015年全国工业废水治理领域的投资需求将达1292亿元。
  • UNEP:废水是一种被低估且不该被浪费的资源
    2015年8月26日联合国环境规划署(UNEP)发布题为《规范调整污水处理的良好实践:法律、政策和标准》(GoodPractices for Regulating Wastewater Treatment: Legislation, Policies andStandards)的报告。该报告详细介绍了阿根廷、芬兰和新加坡将废水高效处理并取得经济收益的案例,证明了污水处理是一个可靠的投资项目,同时表明了污水处理不仅有益于人类健康,而且已延伸到林业灌溉、工业、沼气、家庭用水、热能、电力以及肥料等各个领域。美国每年在废水处理上的投资高达300亿美元。例如,在北美有75%的废水经过处理,而处理过的废水只有3%被重复利用,然而在低收入国家只有8%的废水经过处理。报告以墨尔本为例说明了废水利用的状况,其最大的废水处理设施同时是一个受湿地拉姆萨公约保护的自然保护区。墨尔本通过一个超一万公顷的泻湖系统利用自然过程每天处理超过一半的城市废水,大约5000万立方米。这个处理系统的副产物是沼气,它可以被收集起来用于发电,这将有助于减少温室气体排放、减缓气候变化等。这项研究也展示了如何利用法律影响水质及其可用性。例如,177个国家的宪法明确规定人类享有健康环境的权利,也已经促进了阿根廷的马坦萨-里亚丘埃洛河流域水质的净化。流经阿根廷首都布宜诺斯艾利斯的河流正在被未经处理的生活废水和来自3000多家工厂(占国家GDP的24%)的工业废水所污染,使得儿童死亡率比相邻的省份高达2倍之多。阿根廷最高法院下令建立一个多部门参与的公民社会监督委员会,这个委员会已经确保清除了河流内的7万吨垃圾和24.3万立方米的垃圾代谢产物。报告也探索了不同类型废水处理措施的可能性。例如,芬兰的联合动力协作系统,城市依赖工厂提供自给自足的热能和自身所需的50%的电力,然后他们在偏远的农村建立合作企业来处理工厂产生的废水。约旦的As-Samra工厂,可以提供农业生产用水和提供95%自给自足的沼气。目前,新加坡40%的淡水资源靠进口,他们也正在寻找水质处理的创新解决方案,以达到在2060年实现用水独立的目标。经过两年多的试验,现在新加坡已经建立了4家水回收工厂,每天处理54.72万立方米的废水。本报告发布在斯德哥尔摩举办的世界水资源周活动上,同时也是对河流、湖泊和湿地水质恶化而引起的生物多样性减少三分之一所做出的及时反应。牛艺博 编译. UNEP报告称废水是一种被低估且不该被浪费的资源. 资源环境科学动态监测快报, 2015, (18):1.原文题目:Good Practices for RegulatingWastewater Treatment: Legislation, Policies and Standards
  • 金陵论道 | 精细化工领域的废水监控与处理
    初春的南京,天高云淡远黛青,在美丽的玄武湖畔,今年的精细化工废水、废气处理技术交流会于3月15-16日如期举办。早上8点30分,200余人的会场已经坐无虚席,听众从全国各地专程赶到南京,参与到本届会议中,期待从两天的会议中有所收获。- 中国化工企业管理协会医药专委会副主任何志斌先生对到场的各位嘉宾表示欢迎,并致开幕辞。- 《流程工业》杂志编辑胡静女士介绍了拥有百年历史的弗戈媒体集团及根植中国19年的《流程工业》杂志。- 来自国家环境保护制药废水污染控制工程技术中心的任立人先生,在开幕演讲中,为现场听众详细介绍了目前制药行业污水处理的现状和问题、污染物排放标准、水污染控制技术、企业污染综合预防思路及未来制药废水处理的技术展望。- 北京化工大学传质与分离工程研究中心主任李群生教授介绍了高效分离技术的原理及其在精细化工废气、废水处理中的工业应用。◆ ◆ ◆GE Sievers 总有机碳TOC分析仪在化工废水处理中的应用本次会议特设了展台,方便在场听众随时与知名供应商进行技术交流。GE分析仪器在现场展示了Sievers InnovOx 实验室型总有机碳TOC分析仪。在石油化工行业有机物监控方面,Sievers InnovOx TOC分析仪是GE分析仪器的王牌产品,在检测工艺过程水和废水中的TOC时,突破性地体现出优良的可靠性,并能分析各种复杂的水样。采用专利的超临界水氧化技术(SCWO),InnovOx TOC分析仪十分耐用,能分析大批量的水样。在线使用可以连续检测水样中的有机物浓度,适用于监测各种排入或排出的水流,从蒸汽冷凝水到污水,测量浓度范围极广。具体应用如下:- 蒸汽冷凝水有机物泄漏监测- 冷却水原水污染监测- 热交换器泄漏监测- 生物污水处理厂前后有机物监测及优化- 废水排放监测,COD/BOD相互关系- 高盐海水和卤水有机物监测其优势在于:- 可靠性强:超临界水氧化技术,反应器自清洁,检测器设计简单,无复杂部件- 维护和操作成本低:6个月标定有效期,无需昂贵催化剂及石英管,仅需便宜的化学试剂以及每月半小时的推荐预防性维护- 应用范围广:不限制水样成分,高盐水样及复杂水样可直接进样,无需预处理及稀释,也不会增加仪器维护频率- 测量模式多:多种测量模式, 包括 TOC (TC-IC) 或NPOC- 多流路:最多可同时监测5路水样,仪器内部完成切换,方便布置下列视频,介绍了超临界水氧化技术(SCWO)的工作原理和InnovOx TOC分析仪的优势。如您对有机物监测有任何问题,欢迎与我们联系!
  • 水质无小事!废水检测清单和选型指导
    水,是生命之源,是人赖以生存的重要物质。然而随着人口膨胀和工农业的迅猛发展,人对水源的需求量激增,对水体污染逐渐加剧,水资源危机也愈演愈烈。因此,对废水的检测和处理就显得尤为重要!一、废水需要检测哪些项目呢? 废水污染物监测项目有:PH、生化需氧量、化学需氧量、总有机碳、悬浮物、氨氮、总氨、总铜、总锌、总钡、总磷、总汞、总铬、总砷、烷基汞、总银、总镍、总铍、总铅、六价铬、氰化物、氟化物、苯并芘、浑浊度、氯化物等。 然而,对于不同的企业、使用单位而言,水质检测的要求也不一样,市面上的水质检测仪多种多样,改如何选择呢?希望这篇文章能对您有所帮助!二、废水检测相关设备清单1、分光光度计 2、紫外分光光度计3、气相色谱仪 4、电感耦合等离子体质谱仪5、原子吸收分光光度计 6、电感耦合等离子体发射光谱仪7、电位滴定仪 8、电子比色检测仪9、电子比色检测仪 10、原子荧光光谱仪11、液液萃取仪 12、固相萃取仪13、高效液相色谱仪 14、酸度计15、浊度计 16、水质重金属检测仪17、废水处理系统 18、地下水导拍系统三、废水检测方法以及方法标准如下表 水质检测仪型号多种多样,有的只能检测某些参数,有的能检测上百项参数,该如何选择呢?专业的问题交由专业人士解答! 我们有专业的客户经理给您一对一选型指导,根据您使用的场景和要求、需要检测的项目,给您推荐相应的型号。有选型、报价需求的客户,欢迎直接来电沟通,或者给我们留言讨论~
  • 川一仪器发布8孔智能COD消解器CYC0D-12新品
    COD消解器执行水质化学需氧量的测定,重铬酸盐法,分析方法规范地制定了水质化学需氧量COD(cr)的测定步骤,严格地规定了方法的加热消解时间、溶液酸度、氧化剂和催化剂的用量等条件指标。显而易见,水质COD(cr)的测定是有严格的条件规定,违背了条件规定进行操作,就会影响测定的准确性。遵循了国际标准(ISO)和国家标准(HJ)的基本原则,保证了回流加热微沸2小时的消解操作,试剂溶液的配制和加入量都和HJ法一致,确保可靠精确的分析结果。 主要特征:1.升降温速度快。 2、消解瓶消解完毕后可直接滴定测量,方便摇匀。 3、加热均匀、使用寿命长。 4、可以设定消解时间,消解完毕后,仪器自动停止加热,可无人看管。 5、样品消解完毕后,仪器风机继续工作,辅助样品冷却。 6、以风冷取代水冷,节约用电、用水,提高了效率,增强了仪器的安全性。 技术参数:型号CYC0D-4CYC0D-8CYCOD-12测量范围10~1000mg/L(大于1000mg/L的水样稀释后测定)稀释后测定消解时间10分钟-2小时(用户可通过按键自行调整消解时间) 测量误差邻苯二甲酸氢钾标准溶液(500mg/L)、 相对标准偏差不大于5.0%、工业有机废水(500mg/L) 相对标准偏、差不大于8.0%消解样品数4-12个(采用24#磨口的150mL消解瓶)加热功率1000W1500W2000W冷却方式风冷加热材质陶瓷陶瓷陶瓷备注其他加热材质和消解数量可根据客户要求定制 COD消解仪操作注意事项:1.在通电使用前,应先从回流管注水口处加入尽可能多的蒸馏水,以保证冷却效果。2.水样的氧化回流应该在通风橱内进行,以防氯气之类的有害气体妨碍操作人员的健康。3.在COD测定过程中产生的废液中,含有浓硫酸、重铬酸钾、硫酸汞,属于危险废物,应该作为危险废物专门处理,不得直接排往下水道中。4.每次实验时,应对硫酸亚铁铵标准滴定溶液进行标定,室温较高时尤其应注意其浓度的变化。5.水样回流消解结束后,加入蒸馏水或去离子水应从冷凝管上方缓慢加入,以便将附着在管内壁的挥发性有机物冲到试液中。6.测定低浓度COD的水样时,还要考虑一些可能的影响因素,如用聚乙烯桶盛装的蒸馏水或去离子水,随着放置时间的增加,其COD值也会逐渐增加,有时甚至达到10mg/L以上。7.滴定时不能激烈摇动锥形瓶,瓶内的试液不能溅出水花,否则影响测定结果。 实验室消解仪主要:微波消解仪、COD消解仪、石墨消解仪、电热消解仪微波消解仪是指在密闭容器里,采用微波加热原理,在高温高压条件下达到样品前处理目的的仪器。并为样品提供了快速,安全,自动化的解决方案仪器,广泛应用于食品、环境保护、疾病控制、质量监督、商品检验、科研院所等领域。 COD消解器执行水质化学需氧量的测定,重铬酸盐法,分析方法规范地制定了水质化学需氧量COD(cr)的测定步骤,严格地规定了方法的加热消解时间、溶液酸度、氧化剂和催化剂的用量等条件指标。显而易见,水质COD(cr)的测定是有严格的条件规定,违背了条件规定进行操作,就会影响测定的准确性。遵循了国际标准(ISO)和国家标准(HJ)的基本原则,保证了回流加热微沸2小时的消解操作,试剂溶液的配制和加入量都和HJ法一致,确保可靠精确的分析结果。 石墨消解仪选用优质高纯石墨材料,自行研发了智能石墨消解仪。具有消解快速、高效、方便等优点,适用于农业、林业、环保、化工、食品、医药、生化等行业以及高等院校、科研部门对土壤、食品饲料、植株、种子、矿石等化学分析之前的样品消解处理,也可以与微波消解仪配套,进行微波消解的预处理或消解后赶酸,是原子吸收、原子荧光、ICP-AES等分析仪器的理想配套产品。 创新点:1、人性化菜单设计,操作人员可迅速掌握仪器操作方法2、具有实时,显示当前温度,集热式加热方式,升温速度快,温度均匀性好,3、COE消解仪磨砂玻璃口衔接,气密性好、使用寿命长。4、新式加热回流装置取代传统方法,双通道冷却装置,节约实验时间。5、样品消解完毕后,仪器风机继续工作,辅助样品冷却。6、以风冷取代水冷,节约用电、用水,增强了仪器的安全性。7、环保、监测、实验室、污水、化工配套专用产品8、机器具有漏电保护,防水保护等多重保护功能,安全系数高8孔智能COD消解器CYC0D-12
  • 废水中重金属元素怎么测?莱伯泰科有妙招!
    随着现代工业的发展和人类生活水平的提高,越来越多的重金属污染物被排放到地表水中。地震、泥石流等自然灾害也可能会导致地下、地上的矿物大量浸入地表水,上游的化工厂等一旦被破坏,更是会严重污染水源,造成水中重金属元素超标,威胁人类健康。准确测定废水中重金属含量是废水治理中重要的一环,对如何合理选择治理方案,评估治理结果及后续工作的开展具有重要的指导作用。分光光度法、原子荧光法、原子吸收光谱法、电感耦合等离子体发射光谱法被广泛应用于废水中金属元素的测定。但是,分光光度法、原子吸收光谱法、原子荧光法只能单元素逐一测定,且不同元素需要不同的前处理方法,测定多个元素耗时时间长,工作效率低。电感耦合等离子体发射光谱法(ICP-OES),具有多元素同时测定,检出限低,精密度高、干扰小等优点,并且分析时间短,准确度高,线性范围宽,广泛用于水中重金属含量的测定。本文采用硝酸+盐酸+过氧化氢辅以微波消解的样品前处理技术,结合ICP-OES法测定废水中Pb、Cd、Cr、As、Se、Cu、Ni、Hg等8种重金属元素,方法检出限为0.023~0.089mg/L,RSD为2.37~4.25%,加标回收率为84.1~107.6%。结果表明,微波消解样品处理具有较好的准确性和重现性、操作简单、快速高效、污染小、检出限低、基体干扰小等优点,可用于废水样品的批量分析。具体操作方法主要仪器与试剂ETHOS UP微波消解仪(意大利MILESTONE公司) iCAP7400电感耦合等离子体发射光谱仪(美国赛默飞世尔科技有限公司)10mg/L等离子发射光谱分析混合离子标准物质(Pb、Cd、Cr、As、Se、Cu、Ni)上海市计量院测试技术研究院GBW(E)080124汞单元素标准溶液100mg/L硝酸、盐酸、过氧化氢优级纯实验室用水为超纯水。标准曲线的配制 分别吸取0,0.50,1.00,2.50,5.00,10.00mL混合标准溶液和0,0.05,0.10,0.25,0.50,1.00mL汞元素标准溶液于50mL容量瓶中,用3%的硝酸定容,最终得到浓度分别为0.00,0.10,0.20,0.50,1.00,2.00mg/L的标准溶液。实验步骤 吸取25mL废水于微波消解罐中,然后加入2.5mL硝酸,2.5mL盐酸和2mL过氧化氢。另取1个消解罐做空白实验。安装好消解罐,设置消解程序如表1。消解完成后,待消解罐冷却至室温后再通风柜内打开消解罐,用去离子水定容至50mL。表1 微波消解条件步骤时间t/min功率P/W温度℃1518001202518001203518001804151800180仪器工作条件冲洗泵速100rpm;分析泵速50rpm;RF功率1150W;雾化器流量0.5L/min;辅助气流量0.5L/min;冷却气流量12L/min。微波消解-ICP-OES法测定废水重金属的线性范围、准确度、精密度和检出限3.1 线性范围用浓度为0.00mg/L,0.10mg/L,0.20mg/L,0.50mg/L,1.00mg/L,2.00mg/L的标准溶液,做标准曲线。表2 各元素的曲线拟合方程元素曲线拟合方程相关系数Pby=866.6x+8.30.9999Cdy=45192x+245.50.9999Asy=1974.4x+34.80.9998Sey=2246.8x+53.90.9999Cuy=33768x+299.70.9999Niy=13515x+102.70.9999Hgy=5482.6x+76.30.9995Cry=33132x+249.70.9999《污水综合排放标准》中**类污染物**允许排放的浓度要求,各重金属限值在0.05~1.5mg/L。因此选择以上浓度点来做标准曲线。由上表可知,待测的8个重金属元素的相关系数都在0.995以上。3.2方法的检出限方法的检出限通过分析检测连续的11个测试空白进行计算。计算公式为:MDL=3s,s指连续11次测试空白的标准偏差,结果见表3。表3 ICP-OES测定水中各元素的方法检出限(mg/L)测定元素检出限测定元素检出限Pb0.079Cu0.089Cd0.043Ni0.031As0.028Hg0.027Se0.032Cr0.023各元素的检出限在0.023~0.089mg/L之间,低于《污水综合排放标准》**类污染物**允许排放浓度要求中各种金属元素的限值,符合分析要求。3.3方法精密度与准确度实验 取一所采水样,加入标准溶液,原样和加标样分别测定6次,计算精密度和回收率,测试结果见表4,加标回收率在84.1~107.6%之间,RSD为2.37~4.25%。表4 加标回收试验元素本底值(mg/L)加标量(mg/L)测定值(mg/L)回收率/%RSD/%Pb0.21170.20000.4187103.52.57Cd0.19240.20000.387897.72.37As0.15780.20000.356799.53.02Se0.19080.20000.386597.92.92Cu0.21220.20000.403495.62.87Ni0.22020.20000.410395.02.73Hg0.15110.20000.319384.14.25Cr0.19150.20000.4068107.62.64微波消解-ICP-OES法是测定废水中重金属的有效方法。该方法消解时间短,试剂用量少,检出限低,具有良好的精密度和准确度,加标回收率结果满意,完全满足当前环境监测中测定废水中重金属含量的要求。
  • 耶拿:污水废水的监测还需进一步与时俱进
    p  span style="font-family: 楷体, 楷体_GB2312, SimKai color: rgb(79, 129, 189) "中国面临严重的水污染问题,污水废水治理也一直是水环境治理最重要的组成部分。近几年在政策支持下,污水处理行业发展态势较好,污水处理能力持续增强。污水废水包括医疗污水、工业废水、生活废水等。从污水处理基础设施建设情况来看,污水处理厂数量和城市排水管道长度都在逐年递增。随着新冠肺炎疫情中病毒存在通过粪便和污水传播的可能,对污水废水处理提出了更高的要求。而对污水废水水质的监测检测则成为污水废水处理的基础和保障。为了帮助相关用户学习、了解污水废水水质监测最新技术及相关仪器在其中发挥的作用等内容,仪器信息网特别策划了“污水废水水质监测”专题并邀请德国耶拿北京技术应用支持中心主管崔贺谈谈她对中国污水废水水质监测现状的看法。/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/80806491-e7be-48ec-855d-33696a631865.jpg" title="耶拿崔贺_320.jpg" alt="耶拿崔贺_320.jpg"//pp style="text-align: center "strong德国耶拿北京技术应用支持中心主管 崔贺/strong/pp  strongspan style="color: rgb(192, 0, 0) "仪器信息网:崔主管,您好。据您了解,我国污水废水排放和治理现状呈现怎样的特点?对于我国污水废水监测检测采用的现行标准/方法您认为有哪些需要改进和完善的地方?/span/strong/pp  strongspan style="color: rgb(31, 73, 125) "崔贺:/span/strong我国水资源较为紧张,随着我国城市化、工业化进程的加速,全国废水的排放量也逐年增加,导致自然水体不断恶化,水资源污染形势仍十分严峻。水体污染、水资源短缺已经成为我国经济社会实现可持续发展的严重制约因素。近几年,国家对环保行业的重视程度和支持力度不断提升,污水处理行业也得到了快速发展。环保要求已经是各个企业抓的与安全生产同等重要的事情。各个工厂在环保方面投入巨大,重点企业已实现某些指标与环保局实时联动。说明我国在环保领域在下功夫认真管理。/pp  对污水废水的监测标准最好能够与时俱进,例如我国污水重要的监测指标是COD,化学需氧量。但由于COD方法操作复杂、耗时耗力、同时还有试剂污染,很多外国国家在保留COD测量的同时,也认可TOC指标作为替代指标,这种监测方法避免了上述问题并且能准确快速测定指标。还有总氮的测量,国内还没有使用总氮分析仪测定水质的标准,这在未来可以进一步地完善。/pp  strongspan style="color: rgb(192, 0, 0) "仪器信息网:新冠病毒可以通过粪便和污水传播的情况无疑对包括医疗污水在内的污水废水监测检测能力提出了更高的要求。目前,相关水质监测的技术现状怎么样,相关水质监测的难点在哪?除了新冠病毒检测,污水废水水质监测中还有哪些项目值得关注?/span/strong/pp  strongspan style="color: rgb(31, 73, 125) "崔贺:/span/strong生态环境部针对新冠疫情在2020年2月1日就发布了《关于做好新型冠状病毒感染的肺炎疫情医疗污水和城镇污水监管工作的通知》及《新型冠状病毒污染的医疗污水应急处理技术方案(试行)》(环办水体函[2020]52号),要求各地加强对医疗污水消毒情况的监督检查,严禁未经消毒处理或处理未达标的医疗污水排放。要求严格按照《医疗机构水污染物排放标准》的规定,对相关处理设施排出口和单位污水外排口开展水质监测和评价。/pp  加强对医院污水处理设施的监管刻不容缓,培训消毒人员掌握正确的消毒剂投加量是关键所在。人工采样点位的选择必须符合技术规范的要求。建议将医疗废水排放监测制度化、程序化和规范化。通过采取加强医疗废水日常监督监测、超标处罚等措施,提高污水处理设施运行效能,同时还应完善必要的医疗废水应急处理能力。/pp  《医疗机构水污染物排放标准》有明确的指标限量要求和检测方法,个人觉得有些项目的检测方法可以与时俱进,比如有些项目可以采取更为便捷的分析仪器方法替代传统的理化分析方法,无论从效率上还是准确度上都会得到明显改善和提高。/pp  除了应急事件针对性检测以外,某些特定行业的废水污染也要留意。例如造纸和印染行业污废水中的有机卤化物就是很重要的污染来源,但现在还没有受到足够的重视。/pp  strongspan style="color: rgb(192, 0, 0) "仪器信息网:耶拿公司在污水废水水质监测方面有哪些仪器产品或产品组合?相比于同类产品,贵公司产品有哪些优势?/span/strong/pp  strongspan style="color: rgb(31, 73, 125) "崔贺:/span/strong耶拿公司目前的主要生产销售总有机碳(TOC)/总氮(TN)分析仪,有机卤素化合物(AOX)分析仪,碳、硫、氮、氯等元素(C、S、N、Cl)分析仪 电感耦合等离子体发射质谱仪(ICP-MS)、电感耦合等离子体发射光谱仪(ICP-OES)、原子吸收光谱仪(AAS)和紫外/可见(UV/VIS)分光光度计和生化分析仪器等,同时代理拉曼产品。/pp  在废水检测方面,耶拿的multi N/C 3100 TOC总有机碳/总氮分析仪基于多项创新的专利,可以对水质TC,TOC,NPOC,TIC,POC等多项参数进行快捷准确的测量。/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C123103.htm" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/0958169b-2dce-47a2-bb2a-538ebebfaa22.jpg" title="耶拿 multi3100 TOC分析仪.jpg" alt="耶拿 multi3100 TOC分析仪.jpg"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C123103.htm" target="_blank"span style="font-family: arial, helvetica, sans-serif "strong耶拿 multi N/C 3100 TOC总有机碳/总氮分析仪/strong/span/a/pp  AOX总有机卤素分析仪可进行水质总有机卤素的测试。其中,multi X 2500总有机卤素分析仪能检测AOX/EOX/POX等多项指标,更可以配置特殊的TX和TOC分析模块,实现更多综合指标的分析。/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C72801.htm" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/38aad804-cc97-4288-bbc3-f4cce58d03bd.jpg" title="耶拿multi X2500总有机卤素分析仪360.jpg" alt="耶拿multi X2500总有机卤素分析仪360.jpg"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C72801.htm" target="_blank"span style="font-family: arial, helvetica, sans-serif "strong耶拿 multi X® 2500总有机卤素分析仪/strong/span/a/pp  光谱类仪器AAS,ICP-OES可进行水质重金属的测试,质谱ICP-MS可以进行水质痕量金属元素的分析以及和液相色谱联用的形态分析。耶拿的PQ9000高分辨率ICP-OES采用原装的卡尔蔡司光学系统,保证了160nm-900nm波长连续全覆盖和优于0.0004nm的波长准确度。独有的0.003nm高光学分辨率能显著提高信背比并改善BEC(背景相当浓度)。此外,耶拿的拉曼产品可监测有机污染物和微生物等。/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C189859.htm" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/c4ecbd06-4cdd-460b-943b-61608f22bd3e.jpg" title="耶拿PQ9000 ICP-OES_330.jpg" alt="耶拿PQ9000 ICP-OES_330.jpg"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C189859.htm" target="_blank"strong耶拿 PQ9000 高分辨率ICP-OES/strong/a/pp  strongspan style="color: rgb(192, 0, 0) "仪器信息网:贵公司在污水废水水质监测方面可以提供哪些解决方案?/span/strong/pp  strongspan style="color: rgb(31, 73, 125) "崔贺:/span/strong目前,耶拿公司可提供多种水质中重金属的检测监测方案,如污水中 Cu, Ni, Fe的测定 ICP法测试工业废水中P、S元素 原子吸收光谱法测定环境水中的Zn元素等。以及针对废水中TOC/TN/AOX的检测解决方案,如印染废水中TOC和TN含量的测定 生态修复废水中TOC的测定等。/p
  • 青海省标准化协会发布《工业废水 氯离子的测定 电位滴定法》团体标准征求意见稿
    各相关单位及专家:按照青海省标准化协会团体标准工作程序,标准起草单位已完成《工业废水 氯离子的测定 电位滴定法》团体标准征求意见稿,根据《青海省标准化协会团体标准管理办法》的要求,现在网上公开征求意见,欢迎提出宝贵意见。征求意见截止时间为2023年12月6日,请您在截止日期之前将您的意见反馈至青海省标准化协会。协会联系方式协会秘书处:刘伟朝:18297212652 韩建华:13909712796协会邮箱:qhsbzhxh@163.com 附件1:《工业废水 氯离子的测定 电位滴定法》附件2:意见反馈表.doc附件2:意见反馈表.doc工业废水氯离子的测定 电位滴定法 -.doc.pdf意见征求函.jpg
  • NA8000在石化行业废水氨氮监测中的应用
    一、背景介绍石化行业生产废水来自各个生产装置,其中常减压蒸馏、催化裂化、重整和加氢装置均会产生大量含硫污水。由于含硫污水含有较多的硫化氢、氨、酚、氰化物和油等污染物,不能直接排至污水处理场。一般污水处理场对进水中硫化氢和氨的浓度要求分别小于 50mg/L 和100mg/L,因此,该股污水需经过气提装置处理达标后才能排放到污水处理场。为了监测气提外排净化水的氨氮含量,石化厂常采用在线氨氮分析仪对排放废水氨氮进行内控监测,保障排放废水氨氮不超标,同时通过废水氨氮的含量变化也可反映装置运行的稳定情况。酸性水气提外排净化水染物物浓度较高,含油、腐蚀性强,对在线氨氮分析仪的稳定运行有比较高的挑战。中石化南京某石化企业脱硫装置排放废水之前采用国外某品牌氨氮分析仪,由于该氨氮分析仪采用的是气敏电极法测量原理,电极容易被污染,维护比较频繁——换膜、换电解液等,仪器测量不准确时维护也繁琐,因此客户更换了 HACH 的 NA8000 新款氨氮分析仪。 二、应用情况主要仪器:NA8000(主机)+CYQ-004P(预处理器)。现场安装照片如图1所示。 NA8000 在线氨氮分析仪安置在正压防爆柜内,为分析仪的正常稳定运行提供了良好的工作环境的同时满足现场防爆要求。考虑到废水水质较为复杂,水样先经换热器降温处理后再进入 CYQ-004P 预处理系统除去水样中油、悬浮物等易堵塞管路的成分,经膜过滤后再送至 NA8000 分析仪溢流杯供分析仪采样分析。 图 2 截取了 2019.8.30~2019.10.8 时间段内 NA8000 连续监测的数据结果。从结果看,NA8000 能够很好的监测废水氨氮的变化情况,且未出现较大的波动。据客户反馈,NA8000性能较好,运行期间质控样比对结果较好,数据偏差小于 10%,满足客户需求;用户对 NA8000的操作和维护等性能均非常满意。三、总结NA8000 在监测脱硫装置外排废水的应用效果比较理想,性能稳定,质控样比对结果达到客户要求,操作和维护得到客户认可,尤其在触摸大彩屏设计、量程自动切换等特点和功能设计方面便于用户学习、操作和维护。 CYQ-004P 预处理器与 CYQ-104C 预处理器相似,采用 PVDF 平板膜对水样进行精密过滤,适用于水质较差的应用工况,能够保障 NA8000 氨氮分析仪的正常稳定运行。此外,CYQ-004P 预处理器适用于工业正压防爆柜或仪表柜内安装要求,便于集成。
  • 连华独立控温双冷却(COD)智能回流消解仪,新款LH-6F正式上市
    水中COD是目前水质检测的基本指标,在环保监测、科研院所、石油化工、食品酿造、医药卫生、纺织印染、电镀电力等不同行业,都离不开COD水质检测。为满足国家环保政策要求及广大企业采购需求,连华科技推出了全新升级款LH-6F化学需氧量(COD)智能回流消解仪,其多项核心优势可极大提升水质检测效率。符合国标 应用广泛LH-6F化学需氧量(COD)智能回流消解仪完全按照国家新标准《HJ 828-2017水质 化学需氧量的测定 重铬酸盐法》原理设计制造,同时兼顾原国标,适用于各种生活用水和工业废水的检测需求。独立控温 节能环保LH-6F化学需氧量(COD)智能回流消解仪6个加热单元可单独控温,用户可根据每个水样特性自由选择加热温度,可以精确精准调控沸腾温度(系数),保证每个在最佳冷凝状态下,以最低功耗达到最佳沸腾效果。黑晶面板 安全可靠LH-6F化学需氧量(COD)智能回流消解仪面板采用黑晶加热组件,耐高温、耐腐蚀、易清理,在保证美观的同时增加了安全性。仪器左右加后方都有防护板,防止侧方及后方接触到消解瓶烫伤。智能模式 操作简单LH-6F化学需氧量(COD)智能回流消解仪内置智能操作模式,一键自动完成消解冷却过程,智能化程度高。并采用全中文操作提示,符合日常操作习惯,便于操作掌握。双冷系统 省时省力LH-6F化学需氧量(COD)智能回流消解仪采用水冷与风冷相结合的方式,样品消解完冷却时,增加风冷却系统,可快速降低消解瓶温度,方便取出进行后续测试,大大节约了检测时间,具有节能环保的显著优点。人性化设计 便于使用LH-6F化学需氧量(COD)智能回流消解仪相比12F整体降低10cm,现高65cm,降低了高度空间要求,可在大部分通风橱内使用,同时也降低了对操作人员的身高要求,不再是“高不可及”。技术参数企业简介连华科技是一家创新型实体,总部位于北京,在全国16个地区设立分公司及办事处。在近40年的研发与发展过程中,连华科技始终保持水质分析测试领域的核心竞争力,研发出多参数、COD、氨氮、BOD、总磷、总氮、重金属等水质分析仪二十余系列及丰富的专业化配件、试剂,可测定百余项水质指标,已发展成为一家集研发、生产、销售、解决方案服务为一体的复合型企业。 连华科技致力于解决当今人类生存环境所面临的一些重大挑战,同时十分注重用户的需要,积累了环保监测、科研院所、石油化工、食品酿造、医药卫生、纺织印染、电镀电力等不同行业的模型与数据,产出更富效率与价值的解决方案,与20余万家的客户和机构共同发展。连华科技已于2017年入驻京东、天猫等线上商城,满足不同用户的多样化体验。我们始终牢记我们的使命:让人类环境更加美好。
  • 新冠病毒存在粪-口传播风险!一文让你了解医院废水该如何监测
    p style="text-indent: 2em text-align: justify "近日以来新型冠状病毒的肆虐,医院的压力越来越大,strong在医治患者的同时,医院废水的排放也成为重要污染来源,并可能导致粪-口途径传播疾病的流行及耐药菌的产生/strong。/pp style="text-indent: 2em text-align: justify "前期,社会上公认的新型冠状病毒传播途径主要有:直接传播-飞沫传播-接触传播。2月1日,深圳市第三人民医院透露,该院肝病研究所研究发现,strong在某些新型冠状病毒感染的肺炎确诊患者的粪便中检测出2019-nCoV核酸(新型冠状病毒)阳性,很有可能提示粪便中有活病毒存在,/strong引起社会强烈关注,strong这也指示着粪-口传播风险的存在。/strong/pp style="text-indent: 2em text-align: justify "2020年2月1日,生态环境部印发《关于做好新型冠状病毒感染的肺炎疫情医疗污水和城镇污水监管工作的通知》及《新型冠状病毒污染的医疗污水应急处理技术方案(试行)》,安排部署医疗污水和城镇污水管理工作,规范医疗污水应急处理、杀菌消毒要求,防止新型冠状病毒通过粪便和污水扩散传播。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/471e520a-e15c-49f1-8341-c78dd983c9be.jpg" title="图片 1.jpg" alt="图片 1.jpg"//pp style="text-indent: 2em "span style="text-align: justify text-indent: 2em "基于以上的严峻形势,strong医院废水的监控就显得尤为重要,如何实时监控医院废水?应该使用什么仪器?需要检测哪些指标?遵循哪些标准?/strong下面为大家一一解答。/span/pp style="text-indent: 2em text-align: justify "strong目前较为实际的废水检测手段是利用大肠菌群在线自动监测仪,/strongstrong仪器可以监测总大肠菌群、粪大肠菌群、大肠埃希氏菌、菌落总数等微生物指标。/strong/pp style="text-indent: 2em text-align: justify "span style="color: rgb(255, 0, 0) "strong为什么不是直接检测新型冠状病毒?/strong/span/pp style="text-indent: 2em text-align: justify "strong新型冠状病毒最有效的检测方式是/strongstrongPCR检测,但检测周期长,检测能力有限,不能实时反应污水的情况。检测大肠菌群的实时状况可以监测医院废水的消毒效果,以此及时作出相应措施,阻断粪口传播的途径。/strong/pp style="text-indent: 2em text-align: justify "span style="color: rgb(255, 0, 0) "strong为什么要监测大肠菌群?/strong/span/pp style="text-indent: 2em text-align: justify "大肠菌群来自人和其他温血动物的肠道,通过粪便排出。大肠菌群在自然环境中的存活时间与病原菌最接近,且以大肠菌群在肠道中的数量最多。因此,大肠菌群含量能较好的反映水体中肠道致病菌的含量,符合对水质进行粪便污染检测指示菌的要求。strong在实际工作中常以大肠菌群为指示生物来评价水的卫生质量。大肠菌群数的高低,表明了粪便污染的程度,也反映了对人体健康危害性的大小。/strong粪便中多以典型大肠杆菌为主。我国《地表水环境质量标准》(GB3838-2002)、《生活饮用水卫生标准》(GB5749-2006)、《城镇污水处理厂污染排放标准》(GB18918-2002)、《城市供水水质标准》(CJ/T 2006)都把大肠菌群列为常规检测项目。/pp style="text-indent: 2em text-align: justify "span style="color: rgb(255, 0, 0) "strong为什么把粪大肠菌群作为指示菌?/strong/span/pp style="text-indent: 2em text-align: justify "大肠菌群最初作为肠道致病菌而被用于水质检验,现已被我国和国外许多国家广泛用作食品卫生质量检验的指示菌。strong用大肠菌群作为水质的指示菌的原因有:/strong/pp style="text-indent: 2em text-align: justify "strong①在人粪中大量存在,在为人粪所污染的水体中容易测到;/strong/pp style="text-indent: 2em text-align: justify "strong②检验方法比较简便;/strong/pp style="text-indent: 2em text-align: justify "strong③对氯的抵抗力相似于致病的肠道细菌。/strong/pp style="text-indent: 2em text-align: justify "strongspan style="color: rgb(255, 0, 0) "各行业对粪大肠菌群的检测要求?/span/strong/pp style="text-indent: 2em text-align: justify "①strong《医疗机构水污染物排放标准》(GB18466-2005)中规定 :传染病、结核病医疗机构水污染物排放限值(日均值)为粪大肠菌群100MPN/L;综合医疗机构和其它医疗机构水污染物排放限值(日均值)为粪大肠菌群500MPN/L./strong/pp style="text-indent: 2em text-align: justify "②《地表水环境质量标准》(GB3838-2002)中规定粪大肠菌群I类水不大于200个/L;II类水不大于2000个/L;III类水不大于10000个/L IV类水不大于20000个/L ;VI类水不大于40000个/L。/pp style="text-indent: 2em text-align: justify "③《生活饮用水卫生标准》(GB5749-2006)中规定粪大肠菌群(MPN/100mL或CFU/100mL)不得检出。/pp style="text-indent: 2em text-align: justify "④《城镇污水处理厂污染排放标准》(GB18918-2002)中规定一级A标准水粪大肠菌群最高允许排放浓度(日均值)103个/L 一级B标准和二级水粪大肠菌群最高允许排放浓度(日均值)104个/L。/pp style="text-indent: 2em text-align: justify "⑤《城市供水水质标准》(CJ/T 2006)规定粪大菌群每100 mL水样中不得检出。/pp style="text-indent: 2em text-align: justify "span style="color: rgb(255, 0, 0) "strong废水中余氯和大肠菌群的关系?/strong/span/pp style="text-indent: 2em text-align: justify "strong目前对氯消毒存在一定的误区,并非只要经过氯消毒,就一定会杀死所有的细菌病毒。/strong目前市场上用的各种含有化合性余氯或者游离性余氯的消毒液,虽然杀菌速度快,杀菌力强,但消失的也快,而且在余氯浓度降低以后,细菌病毒有可能会复活。而且要区分杀菌跟抑菌的区别,抑菌是抑制细菌的生长,不让其继续繁殖,而杀菌是破坏细菌细胞的结构,让细菌死亡。所以strong医疗废水杀菌效果是否达到安全排放的一个标准,还需要精密的检监测设备实时连续性的检测才能得到可靠的结果。/strong/pp style="text-indent: 2em text-align: justify "span style="color: rgb(255, 0, 0) "strong粪-口传播途径之关键节点把控/strong/span/pp style="text-indent: 2em text-align: justify "水循环的流通,在粪-口传播的过程中,主要有如下水循环流程:饮用水源地-供水管网-医疗等单位-排污管网-污水处理厂-地表,病菌的传播也会按照这个流程进行流通。这里的strong三个节点分别为供水口,医疗废水口和污水处理厂出水口/strongstrong。管控住以上节点,实时监测粪大肠菌群的数量,是有效的管理手段。/strong/pp style="text-indent: 2em text-align: justify "span style="color: rgb(255, 0, 0) "strong“大肠菌群在线自动监测仪”的作用/strong/span/pp style="text-indent: 2em text-align: justify "strong大肠菌群在线自动监测仪已经在中国疾控中心、中国环境监测总站等权威检测机构得到应用并取得了大量验证性数据。/strong其检测技术具有监测速度快、数据重现性高、无需验证性实验、操作简单、便于数据网络共享等有点。该在线自动监测仪应用以来,在城镇生活污水处理率对城镇周边环境水体中粪大肠菌群含量的影响、病死家畜投入河道对水体粪大肠菌群的影响、水体中富营养化指标浓度与大肠菌群含量的关系等研究领域,strong提供大量的连续有效的数据。/strong/pp style="text-indent: 2em text-align: justify "strong关于青岛佳明/strong/pp style="text-indent: 2em text-align: justify "青岛佳明测控科技股份有限公司作为微生物在线监测技术居于世界领先水平(院士鉴定)的环保企业,是国内微生物在线监测仪器的重要厂商,strong在新型冠状病毒疫情面前,向火神山/雷神山医院捐赠了水质在线监测设备,/strong并在第一时间安排工程师安装调试,投入到抗疫一线当中,确保防疫期间医院污水排放安全。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/8c522d54-2acc-46f8-bb7a-b56d8b1835d4.jpg" title="图片 2.jpg" alt="图片 2.jpg"//pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/ec196a56-c77b-48d2-9dba-f9b4cde95e59.jpg" title="图片.jpg" alt="图片.jpg"//pp style="text-align: center "span style="text-indent: 0em "(运行现场实物图)/span/pp style="text-indent: 2em text-align: justify "在此非常时期,青岛佳明呼吁,严格按照生态环境部印发的《关于做好新型冠状病毒感染的肺炎疫情医疗污水和城镇污水监管工作的通知》及《新型冠状病毒污染的医疗污水应急处理技术方案(试行)》执行,各水质净化厂、污泥处理处置单位和管网运营单位要全面加强人员管理,加强生产工作的防疫防护,强化进出水水质监测,以及加强出水消毒,确保出水水质达标,每天监测粪大肠菌群等。/p
  • 中国首台电子束辐照处理医疗废水示范装置正式投入使用
    5月19日,中国首个“电子束辐照处理医疗废水示范装置”项目在湖北省十堰市通过专家评审验收,我国首台用于医疗废水处理的电子束装置正式投入使用。这是国家原子能机构为应对新冠疫情紧急启动,由中国广核集团有限公司与清华大学联合承制的科研项目,是核技术服务人民生命健康,促进经济社会发展的重要体现。  该装置已经在湖北省十堰市西苑医院试运行数月。经过第三方检测,电子束辐照组合工艺处理后的医疗废水指标优于国家传染病医院排放标准,对病毒有明显去除作用,其中甲型肝炎病毒和星状病毒去除率达到100%,粪大肠菌群数小于100MPN/L,能够实现医疗污水中抗生素的完全降解,出水水质达到《医疗机构水污染物排放标准》(GB18466-2005)。目前西苑医院示范装置及系统日污水处理能力最高可达400吨。本项目的完成,标志着我国利用电子束辐照处理医疗废水技术达到国际领先水平。项目核心设备——自屏蔽电子加速器(国家原子能机构供图)  据西苑医院院长刘振伟介绍,传统医疗废水处理方式是通过向污水中注入次氯酸钠等化学消毒剂进行微生物灭杀,易造成化学试剂残留,且无法降解污水中残留的抗生素,一旦被饮用可能导致人体产生耐药性。现在采用的电子束辐照处理技术,是通过电子加速器产生高能电子束,可以与废水中的微生物DNA、RNA分子或细胞组织瞬间发生作用,损伤微生物活性,灭杀废水废物中的致病菌和病毒,灭菌效率高、无需添加额外消毒剂、不产生二次污染,并能降解废水中抗生素等残留物质。十堰是南水北调中线控制性工程丹江口大坝所在地,确保水质对百姓健康意义重大。  中国首台电子束辐照处理医疗废水示范装置由中广核集团与清华大学联合研制,也是首个采用先立项后补助模式并完成验收的核能开发科研项目。本项目创造性地将电子束辐照技术与医疗消毒灭菌相结合,研制团队仅用时5个月就攻克了电子束辐照技术在医疗废水领域应用工艺及核心装备等难题,自主建设了一套用于医疗废水辐照的自屏蔽电子加速器,同时建立了适用于医疗废水中病毒浓缩及检测的方法,为防止新冠肺炎病毒和其他潜在病原体在医疗废水中传播提供了高效安全的解决方案。  中广核集团党委书记、董事长、总经理杨长利向记者介绍,中广核集团在辐照消毒灭菌、医疗废水处理等方面充分发挥核技术优势,助力共同打赢疫情阻击战。目前中广核集团正在持续拓展电子束治污技术的应用领域,将陆续建成抗生素菌渣、危废浓液、医疗固废、制药废水、垃圾渗透等示范项目。  新冠疫情暴发以来,国家原子能机构围绕医用防护服灭菌、医疗废物处理等疫情防控堵点难点,第一时间组织开展核技术应用论证,并紧急部署了一批核技术应用科研项目。中国首个电子束辐照处理医疗废水示范装置作为典型示范项目建成投运,是继今年3月份取得电子束灭活冷链食品外包装新冠病毒研究成果之后,利用核技术助力疫情防控的又一生动实践。  国家原子能机构副主任张建华表示,目前在国际市场上,核技术已广泛应用于工业、农业、医疗健康、环境保护等领域,年产值规模近万亿。国内核技术作为新兴产业尚处于起步阶段,市场前景广阔。下一步,国家原子能机构将统筹全行业技术资源,提升科技创新能力,与财政部、生态环境部、卫健委等有关部委共同推动核技术研究成果转化应用及产业化发展,促进核技术服务经济社会发展,为我国人民生命健康高质量发展作出应有贡献。
  • 关注制药工业排污监管,助力医药废水TOC监测
    导语近日,国家生态环境部发布了3份《制药工业(化学药品制剂制造、中成药生产、生物药品制造)排污许可证申请与核发技术规范》。新规范在规定化学药品制剂制造、中成药生产、生物药品制造排污许可的流程中,明确规定了化药类制造工业、中药类制造工业以及生物工程类制造工业水污染物排放限量指标。为了加快绿水青山的建设进程,国家不断推出严格标准。规范污水排放,是企业的社会责任,也是国家的强制要求。在新的技术规范中,国家根据企业的排放方式不同,要求监测的频率也不同。对于总有机碳指标来说,直接排放的污水,要求每个季度监测,而间接排放的污水,要求每半年监测。在监测的方式上,给了企业灵活的选择。企业视具体情况建立自行监测体系或者委托检验。 表1 污染物排放限值标准岛津同样也给大家提供灵活选择方案,在制药废水的总有机碳监控方面,岛津公司的在线监测方案和离线监测方案,都能轻松祝您一臂之力。 Ⅰ.在线监测方案 岛津在线TOC-4200具有流程简单、重现性好、灵敏度高、测定过程一般不消耗化学药品、不产生二次污染等特点。仪器测定范围包括0~5mgC/L到0~1,000mgC/LF.S.(使用稀释功能时0~20,000mgC/LF.S.),满足法规要求。 同时拥有数据贮存、断电和断水保护与自动恢复功能;自动报警功能;定期自动清洗和自动校准功能,真正实现高效,连续,准确,低成本的在线监测。TOC-4200具有全面的数字通信能力,也可以和其他设备联用完成即时多参数采集,同时具备和环保部门联网功能。Ⅱ.离线检测方案 岛津实验室型TOC具有占地面积小、能耗低、操作简单、重现性好、灵敏度高、维护需求极低的优点。参考最新环境标准HJ 501-2009《水质 总有机碳的测定 燃烧氧化-非分散红外吸收法》,采用岛津TOC-LCPH/CPN总有机碳分析仪对废水样品中TOC进行检测,完全满足国标相关检测要求。方法标准曲线样品结果及回收率表4 回收率数据结果表明,回收率为100.5%,符合国标方法要求的回收率在91~109%。 总结岛津借助丰富的产品线,同时提供了稳定,准确,低成本的在线TOC设备TOC-4200以及高灵敏度的实验室型TOC-LCPH/CPN,可灵活的应对废水(医疗废水)样品中TOC在线及离线分析监测,助力制药企业安全环保生产。
  • 案例 | 食品生产商改用TOC分析技术监测废水,节省运营成本
    项目总结用户Litehouse有限公司公司地址美国密歇根州洛厄尔市(Lowell)应用领域废水监测技术Sievers InnovOx总有机碳TOC分析仪影响技术选择的因素Litehouse公司以往采用BOD(Biochemical Oxygen Demand,生化需氧量)和COD(Chemical Oxygen Demand,化学需氧量)检测技术来监测废水,其分析时间长,实际操作极为不便。为了提高检测速度和准确度,Litehouse公司改用Sievers InnovOx TOC分析仪来监测样品中的有机物浓度。此款分析仪提供实时监测信息,具有稳健的技术设计和强大的检测功能,能够处理各种具有挑战性的样品。监测结果更换监测技术之后,公司的每月废水处理量增加了29%,大幅降低了未处理废水的运输成本,每年节省开支超过70万美元。COD检测时间和BOD检测时间分别以小时和天数计,而TOC检测时间以分钟计。关键词废水监测、TOC、BOD、COD、有机物监测、Sievers InnovOx TOC分析仪背景Litehouse公司主要生产沙拉酱、酱汁、蔬菜蘸酱、调料、奶酪等产品。位于密歇根州洛厄尔市的Litehouse食品加工厂平均每天产生75000加仑废水。食品加工厂的废水处理车间使用两个溶气气浮系统(DAF,Dissolved Air Flotation),该系统处理过的废水流入该市的废水处理厂。该市有严格的废水排放标准,食品加工厂如果达不到排放标准,就必须支付高额罚款。在食品加工厂产生的废水中,有机物含量和流速的变化很大,废水处理车间以前主要根据BOD和COD检测结果来控制工艺和设置排放限值。图1:位于洛厄尔市的Litehouse公司废水处理车间废水处理车间的日排放限值为800磅BOD。操作人员在当日工作班次开始时进行COD分析。车间根据COD和BOD的比例进行日常运行,确保不超过每日BOD排放限值。需要在当地的第三方实验室来完成BOD分析,约需5天时间才能拿到分析结果,这就增加了公司的运营成本。COD分析虽然较快(约需2小时),但需要使用危险化学试剂。此外,BOD和COD分析的准确度都会受样品中的有机物以外的其它化学物质的影响,因此公司在进行排放达标工作时还必须充分考虑这一重要影响因素。废水处理车间由于不能收集实时水质数据,因此无法大量处理废水,不得不请其它废水处理厂运走未处理的废水,此项成本每年高达120万美元以上。挑战Litehouse公司与Sievers分析仪合作,以更好地满足公司的水质监测需求。合作目标包括:改善废水处理车间的运行控制避免超标排放更有效地收集废水中的有机物数据处理更多废水降低未处理废水的运输成本 // 食品厂如果超标排放,就会被迫停产整顿,并增加废水处理程序。解决方案食品厂急需一种稳健的有机物检测方法来监测样品中的高盐和脂肪、油、油脂。他们选用Sievers InnovOx TOC分析仪来完成这项工作。在排放限值监测的过程中,分析时间越短,食品厂就能处理越多废水,而且操作人员就能越快地根据监测结果来调整工艺。食品厂将有机物监测数据作为优化工艺的主要参数,选用Sievers InnovOx TOC分析仪进行了3个月的试验。TOC分析是一种准确、精确、快捷的有机物监测技术,能够使用户在制定工艺决策时拥有足够可信的凭据。上游工艺的实时数据变化使食品厂能够立即调整工艺,从而大大降低未处理废水的运输成本。图2对比了使用Sievers InnovOx TOC分析仪前后的平均每月废水处理量。图2:Sievers InnovOx TOC分析仪提供快速、准确的TOC检测值从而增加了食品厂的废水处理量结果每月废水处理量增加29%。大幅降低未处理废水的运输成本,每年节省70万美元以上。与COD分析的2小时和BOD分析的5天相比,TOC分析的时间极快,只需6分钟。由于Sievers InnovOx试验的成功,食品厂决定采用TOC分析来监测上游工艺所产生的有机物。食品厂从BOD:COD分析转换为TOC分析,大大节省了工艺调整的时间和成本。结论经过评估,Litehouse公司决定在其食品加工厂中安装Sievers InnovOx ES实验室型TOC分析仪。实验室型分析仪能从不同地点取样,因而食品厂无需在生产线中安装多台在线型分析仪。实验室型分析仪操作灵活,是食品厂的最佳选择。Litehouse公司使用Sievers InnovOx TOC分析仪进行TOC监测,提高了废水处理量,杜绝了超标排放事故。废水处理车间增加了废水的现场处理量,大大降低了未处理废水的运输成本。◆ ◆ ◆联系我们,了解更多!
  • 中科院纺织印染废水处理智能在线监测技术通过鉴定
    由广州中国科学院沈阳自动化研究所分所(以下简称沈阳自动化所广州分所)与互太(番禺)纺织印染有限公司共同完成的“纺织印染废水处理智能在线监测及优化运行技术”项目通过了广州市科技创新委员会组织并主持的技术成果鉴定。  鉴定组专家由华南理工大学、华南师范大学、广东省环境科学研究院、珠江水利委员会珠江水利科学研究院、广州市微生物研究所、广东省自动化研究所、广州市环境监测中心站的相关领域专家组成。鉴定委员会听取了项目负责人作的研制工作和技术总结报告,审阅了相关资料,并观看了系统演示。  经过交流讨论,鉴定组认为:本项目建立的一套纺织印染废水处理智能在线监测及优化运行技术体系,从系统实时在线监测、在线优化运行和专家知识库辅助运行三个层次对纺织印染废水处理过程进行全流程监控和系统性优化。  开发了基于微生物呼吸状态的污水可生化性在线监测设备,实现了对污水可生化性、微生物活性等关键工艺指标的在线分析,提高了药耗和能耗环节控制水平,降低了成本,保证系统出水水质的稳定达标。鉴定组专家们一致认为,本项目整体技术达到国内先进水平,在可生化性控制方面达到国内领先水平,同意通过科技成果鉴定。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制