当前位置: 仪器信息网 > 行业主题 > >

工业级大尺寸等离子处理仪

仪器信息网工业级大尺寸等离子处理仪专题为您提供2024年最新工业级大尺寸等离子处理仪价格报价、厂家品牌的相关信息, 包括工业级大尺寸等离子处理仪参数、型号等,不管是国产,还是进口品牌的工业级大尺寸等离子处理仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合工业级大尺寸等离子处理仪相关的耗材配件、试剂标物,还有工业级大尺寸等离子处理仪相关的最新资讯、资料,以及工业级大尺寸等离子处理仪相关的解决方案。

工业级大尺寸等离子处理仪相关的资讯

  • 基于多天线耦合技术的微波等离子体化学气相沉积系统,完美实现大尺寸金刚石制备
    化学气相沉积是使几种气体在高温下发生热化学反应而生成固体的方法,等离子体化学气相沉积是通过能量激励将工作物质激发到等离子体态从而引发化学反应生成固体方法。因为等离子体具有高能量密度、高活性离子浓度、故而可以引发在常规化学反应中不能或难以实现的物理变化和化学变化,且具有沉积温度低、能耗低、无污染等优点,因此等离子体化学气相沉积法得到了广泛的应用。微波等离子体也具有等离子体洁净、杂质浓度低的优点,因而微波等离子体化学气相沉积法(MPCVD)成为制备高质量金刚石的优先方法,也是目前有发展前景的高质量金刚石(单晶及多晶)沉积方法之一。MPCVD设备反应腔示意图金刚石具有优异的力学、电学、光学、热学、声学性能,在众多领域具有广泛的用途。而这些用途的实现在很大程度上依赖于高取向和单晶金刚石以及大面积透明金刚石膜。由于金刚石生长过程中普遍存在缺陷以及难以获取大面积范围内均匀温度场等参数,导致金刚石的取向发生改变,使高取向和单晶金刚石以及大面积透明金刚石膜的获得十分困难。因此,目前金刚石研究面临的大挑战和困难是如何制备优质单晶、多晶金刚石样品。 德国iplas公司基于 CYRANNUS 多天线耦合技术,解决了传统的单天线等离子技术的局限。CYRANNUS技术采用腔外多天线设置,确保等离子团稳定生成于腔内中心位置,减少杂质来源,提高晶体纯度(制备的金刚石单晶纯度可达VVS别以上)。MPCVD系统可合成饰钻石 同时稳定的微波发生器也易于控制,可以在10mbar到室压范围内激发高稳定度的等离子团,大限度的减少了因气流、气压、气体成分、电压等因素波动引起的等离子体状态的变化,从而确保单晶生长的持续性,为合成大尺寸单晶金刚石及薄膜提供了有力保证。 MPCVD系统可合成优质大尺寸金刚石薄膜 MPCVD同样适用于平面基体,或曲面颗粒的其它硬质材料如Al2O3,c-BN的薄膜沉积和晶体合成。德国iplas公司凭借几十年在等离子技术领域的积累,可以为用户提供高度定制的设备,满足用户不同的应用需要。相关产品链接 微波等离子化学气相沉积系统 http://www.instrument.com.cn/netshow/SH100980/C184528.htm
  • 激光跟踪仪:在大尺寸高端装备中大显身手
    导语:激光跟踪仪作为大尺寸空间几何量精密测量仪器,由于具有较高的技术门槛,国内企业又缺乏深厚的经验积累,导致该产品长期被国外垄断。历经十余年的研发与实践,中国科学院微电子研究所和海宁集成电路与先进制造研究院共同组建的研发团队终于在激光跟踪仪的技术领域有了与国际先进技术比肩的突破性进展。本文将带您了解这个研发团队的激光跟踪仪和它在精密制造中扮演的关键性角色。说起激光跟踪仪,高端装备制造企业对它大概并不陌生,它是一种大尺寸空间几何量精密测量仪器,是大型高端装备制造的核心检测仪器,具有测量功能多(三维坐标、尺寸、形状、位置、姿态、动态运动参数等)、测量精度高、测量速度快、量程大、可现场测量等特点。检测的装备体积越大越能显示出此类产品的优越性,所以它更多出现在航空航天、汽车制造、重型机械制造、重工与船舶、能源、科研、医疗等领域等先进制造领域。激光跟踪仪是激光干涉测距技术、激光绝对测距技术、精密测角技术、光电探测技术、精密机械技术、精密跟踪技术、现代数值计算理论等各种先进技术的集大成之作,需要突破百米的测量范围、毫秒级的测量时间、微米级的测量精度以及动态实时跟踪测量等各项技术难点,技术门槛非常高,需要长期的经验积累,几乎不存在弯道超车的可能性。目前,世界范围内主要有美国FARO、美国API、瑞士Leica三家公司生产销售激光跟踪仪,我国当前尚无成熟的激光跟踪仪产品销售。因此,攻克关键技术难点实现激光跟踪仪国产化迫在眉睫。组建团队 攻关激光跟踪仪技术壁垒由于激光跟踪仪的重要性、特殊性和不可替代性,国家层面高度重视激光跟踪仪的自主研发。中国科学院微电子研究所和海宁集成电路与先进制造研究院共同组建的研发团队(以下简称该团队)一直致力于实现激光跟踪仪的国产化。该团队激光跟踪仪的研发历史已有十余年,并阶段性取得骄人成绩:(1)2011年中科院微电子研究所 (原中科院光电研究院激光跟踪仪研发团队)在国内率先开展激光跟踪仪整机研制;(2)2013年推出国内首台原理样机,初步形成具有一定规模的、专业稳定的整机开发团队,引领国内激光跟踪仪的整机与系统关键技术发展,积极追赶国际前沿;(3)2017年推出国际首台三自由度飞秒激光跟踪仪样机,从技术层面上实现了跨越式发展;(4)2021年研制成功国内第一台六自由度激光跟踪仪样机,并通过技术指标测试;(5)2021年三自由度激光跟踪仪进入到产业化阶段,立足海宁集成电路与先进制造研究院,组建了数十人的激光跟踪仪产业化团队,建立激光跟踪仪小批量生产线。该团队在激光跟踪仪领域取得了一系列具有自主知识产权的研究成果,共申报发明专利32项(已授权21项),软件著作权6项,发表研究论文60余篇。2020年激光跟踪仪成果通过了中国仪器仪表行业协会组织的成果鉴定,鉴定委员会认为:“本研究成果技术难度很大,创新性很强,取得了多项自主知识产权。整体达到国际先进水平,研制的激光跟踪仪填补国内空白,飞秒激光跟踪仪属国际首创,其中绝对测距精度、断光续接精度达到国际领先水平。”该成果荣获中国机械工业技术发明特等奖和中国计量测试学会科技进步一等奖。该团队目前主推三自由度激光跟踪仪ICAM-LT-3DOF、六自由度激光跟踪仪ICAM-LT-6DOF如图1所示。除此以外,该团队还可以根据用户的要求定制解决方案,更加贴近客户的使用需求,解决用户的“非标”问题。图1 ICAM-LT-3DOF型激光跟踪仪图2 ICAM-LT-6DOF型激光跟踪仪干货满满 技术原理深度剖析当三自由度激光跟踪仪工作时,如图2所示,激光测距系统获得靶球到仪器的精确距离r,方位编码器和俯仰编码器测角系统分别测出目标方位角A和俯仰角E,利用这三个原始测量值,就可以通过球坐标与直角坐标之间的转换关系获取空间三维直角坐标(X,Y,Z)。图3 三自由度激光跟踪仪原理图合作靶球在空间移动时,从合作靶球返回的一部分光会进入激光跟踪仪内部的位置检测器(PSD,Position Sensitive Detector),随着合作靶球的移动PSD将探测偏移值,跟踪控制系统根据这个偏移值控制方位和俯仰电机转动直到偏移值为零,从而达到跟踪的目的。测量组合参数(A,E,r) 经过坐标转换得到空间三维直角坐标(X,Y,Z)后,经过数据分析软件可以得到被测对象各种几何量参数。激光跟踪仪数据采集系统将测量数据发送至上位机以后,经上位机解析可以确定目标的三维尺寸、几何形貌等信息,并通过计算机实时显示并打印测量结果。六自由度激光跟踪仪为三自由激光跟踪仪的升级产品,如图3所示,在空间位置信息测量的基础上加入了视觉测量、光电测量和惯性测量等模块,用以获取目标空间姿态信息。首先需要建立激光跟踪仪坐标系与上述测量模块之间的转换关系,并通过视觉测量中纵向投影比不变的约束实现横滚角测量;在上述基础上,基于光束向量唯一性约束和激光准直传感原理实现方位角和俯仰角的测量,最后实现三个空间姿态角的测量;除此之外,还融入了惯性测量单元IMU的测量信息,用于动态条件下的辅助测量。图4 六自由度激光跟踪仪原理图多项技术突破 跻身国际先进该团队历经10余年的垂直深耕,在激光跟踪仪领域相继突破了高速激光干涉测距、高精度绝对测距、精密跟踪转台设计、高精度测角、动态伺服跟踪、目标快速识别锁定、多源融合姿态测量、系统误差检测与补偿等多项关键技术,在80m范围内,跟踪测量速度大于4m/s,具有良好的目标快速识别锁定能力,测量精度达到15μm+6ppm,技术性能跻身国际先进行列。优势突出 大尺寸精密测量显身手在大尺寸精密测量领域,激光跟踪仪具有测量范围大、精度高、功能多、可现场测量等优点,取代了大型固定式三坐标测量机、经纬仪、全站仪等许多传统测量设备,在设备校准、部件检测、工装制造与调试、集成装配和逆向工程等应用领域显示出极高的测量精度和效率,激光跟踪仪已成为大尺寸精密测量的主要手段,在实践中可以为为航空航天、汽车制造、重型机械制造、重工与船舶、科学研究、能源、医疗等领域等行业提供可靠的技术保障。(1)航空航天领域在航空航天制造领域,飞行器具有外形尺寸大、外部结构特殊、部件之间相互位置关系要求严格等特点,飞行器的装配通常是在各部件分别安装后再进行总体装配,在部装的某些环节和总装的整个过程中都需要进行严格的几何检测。激光跟踪仪测量的现场性和实时性以及它的高精度可以满足飞机型架和工装的定位安装、飞机外形尺寸的检测、大型零部件的检测以及飞机维修等工程测量需求。例如,测量一架大型飞机的内外形尺寸,首先要确定整架飞机的空间坐标,保证所测量的外形尺寸空间点都在同一坐标系中,可以布置足够的激光跟踪仪测站,这些测站保证了飞机上、下、左、右、前、后等整个外形都在激光跟踪仪测量范围内。其次要保证飞机处于静止状态,测量过程中不能产生移动。激光跟踪仪在每个测站测量某一个区域的飞机外形坐标点,将各个测站下的飞机外形坐标连接起来就构成整架飞机的外形尺寸坐标,对这些点进行处理可形成飞机外形的数字模型。激光跟踪仪扫描范围大,采集数据速度快,数据采集量大,精度高,大大提高了飞机测量的工作效率。(2)汽车制造领域在汽车制造领域,激光跟踪仪用于车身检测、汽车外形测量、汽车工装检具的检测与调整。通过激光跟踪仪采集汽车不同部位的点云数据,再进行拼接得到完整的汽车曲面点云数据,利用三维造型软件得到汽车三维模型。另外,汽车生产线需要以最高级别的自动化程度和准确性进行定期检测,以进行重复性和适产性测试。激光跟踪仪这种移动坐标测量设备适合工业现场使用,在检测工程中使汽车生产的停工期大幅缩短。(3)重型机械制造领域在重型机械制造业中,大尺寸部件的检测和逆向工程常采用激光跟踪仪。在零部件生产中,该系统可以快速精确地检验每个成品零部件的尺寸是否与设计尺寸一致,同时将零部件物理模型迅速数字化,得到的数字化文件可以用各种方法处理从而得出测量结果。在工件模具生产中,激光跟踪仪对工件模型进行扫描测量后建立数据模型,由数据模型生成可被加工中心识别的加工程序,从而加工出模具。三维管片和模具测量系统也是激光跟踪仪的典型工程应用之一,通过跟踪测量成品管片各个表面上的空间点坐标,经过坐标系转换和纠正将表面数据点拟合成平面或曲面,检验管片的尺寸与设计尺寸的偏差,便可判断成品的质量是否合格。与传统的检测方法相比,激光跟踪仪测量速度快,能在短时间内采集大量空间数据点信息,同时可以直接处理数据,给出成果报表,不仅工作效率高,而且大大节省了人力物力。(4)重工与船舶领域在造船工业领域中,激光跟踪仪常用于舰船外形尺寸检测、重要部件安装检测与逆向工程等。例如,船舶制造公司对于甲板都有着极高的要求,每一个拼接块的连接点都必须恰好能够和另外一片拼接块严丝合缝对接,且甲板外侧的外观必须与船体形状严格吻合,如此才能体现船舶的质量和性能。激光跟踪仪能够实时地对长度以及横向曲率进行测量,代替笨重的模板进行现场装配与检测,可使生产时间节约60%-70%,大大提高了船舶的生产效率。(5)能源领域在能源领域,激光跟踪仪常用于大型零部件的高精度加工、尺寸检测和辅助维护。例如,水力发电站中,新的涡轮发电机投入工作之前,必须获得精确的涡轮机转子形状,以便后续的勘测;当进行水力发电站的检测时,需要对在役涡轮机转子开展数字化测量,从而确定涡轮转子的磨损情况。在风力发电站中,对大型风电轮毂叶片外形尺寸进行高精度测量是保证风电轮叶片正常工作的关键。激光跟踪仪能够完成定轴轴径、同轴度、轮毂连接孔位置度的高精度测量,并且仪器轻便灵活、精度高、测量范围大、能够现场测量,已成为风电行业的必然选择。(6)科研领域在科研领域中,激光跟踪仪在粒子加速器的定期检测与调整、重要核心部件安装检测以及机器人制造校准中发挥了重要作用。例如,机器人在工厂机械安装、马达驱动安装、夹具重组等整个生产周期过程中必须保持规定的精度,才能称为高性能工业机器人。机器人设计尺寸与实际生产尺寸的偏差往往较大,主要是由于机械公差和部件安装误差所引起的。在校准机器人的实际应用中,一般有两个工作测量组,一组负责装配机器人,一组则负责检测校准安装部件,激光跟踪仪安置在这两个测量组之间。操作人员通过计算机控制定位,激光跟踪仪可以监测两个工作小组的测量工作。在一组操作人员利用激光跟踪仪检测机器人配件的同时,另一组工作人员负责装配经过检测的工件,装配后再利用激光跟踪仪进行校准。这样,大幅提高了机器人生产安装的工作效率,也节省了人力物力。(7)医疗领域在医疗领域中,质子医疗机在治疗时最重要的是需要准确定位患者体内癌细胞位置,通过控制治疗床移动,将患者需要治疗的部位送到有效的治疗区域内,才能够进行准确有效的治疗。因此医疗机在安装调试时,要求系统能够控制机械臂,将末端工装精确地移动到理论位置。这对测量方案提出了更高标准的要求:能够准确调整病灶中心的位置,X、Y、Z方向偏差要求小于0.1 mm;能够调整连接法兰的姿态精度,RX、RY、RZ要求小于0.1°,同时检测、分析效率要尽可能高。在质子医疗机安装调试过程中,激光跟踪仪可以提供简单便捷的应用方案。首先通过测量固定在墙体上的定位点,建立离子源坐标系,在软件中将机器坐标系定位到离子源坐标系统;通过坐标转换得出病灶中心与工装上定位孔的坐标关系,解算出定位孔的坐标。其次,将反射球放置在定位孔上,通过监视窗口功能查看当前位置偏差,实时调整工装,使偏差逐渐缩小至公差要求。该团队研发的激光跟踪仪已在卫星天线变形与位姿测量技术、飞机大型部件装配测量技术、船舶分段对接测量技术、高能加速器准直调节测量技术、工业机器人现场校准技术等领域开展了一系列应用研究,并取得了良好的社会效益。制造业中的智能装备、复杂结构制造、高精密制造和装配的兴起,对于测量系统提出了精度更高、智能化程度更高、适应性更强的要求。激光跟踪仪作为最先进的三坐标及姿态精密测量仪器之一,将为工程技术及科学研究大尺寸精密测量提供有效的解决方案。由于激光跟踪仪应用范围广、测量效率高、测量精度高,该仪器在高端制造领域扮演的角色越来越重要。激光跟踪仪的国产化,对于我国的制造业,尤其是高端制造领域,具有十分重大的意义。借势而起 稳扎稳打培育市场目前,国家政策一直在主张推进仪器的国产化,实现国产仪器与进口仪器的同台竞争。中国仪器仪表行业协会与中国和平利用军工技术协会在此方面做了大量的工作,这对国产激光跟踪仪的市场化推进是极大的政策性优势。在国防军工行业,激光跟踪仪的应用主要在导弹的测量、潜艇的测量、战斗机的装配、军舰的测量、天线的装配及外形检测,大型结构件测量检测等。由于进口的高端激光跟踪仪含有摄像头装置,这对我国国防军工行业造成了安全隐患。另外,由于进口激光跟踪仪不对我国展示源代码,不排除进口激光跟踪仪含有潜在的功能,这对我国部分商业秘密也带来了风险。如此种种安全隐患更是急需国产激光跟踪仪技术的开发与产品的应用。这是提供给国内企业的机会更是挑战。该团队也将借助他们国际领先的技术优势、可靠的数据链优势,以及强有力的价格优势和维修服务优势,不遗余力的为客户提供高质量的定制化产品和服务。结束语随着中国先进制造业和高端装备的飞速发展,以激光跟踪仪为代表的高精度、数字化、智能化的精密检测设备已经成为这些领域企业占领行业制高点的制胜法宝。一方面,激光跟踪仪在先进制造和高端装备领域的关键作用日益凸显,成为制造行业的核心仪器,国内对激光跟踪仪的需求量激增,国产化呼声高涨;另一方面,近年来西方对我国的技术限制和打压,使激光跟踪仪的采购和售后具有一定的不确定性,这将影响我国高端装备的发展,所以国家对激光跟踪仪等关键核心仪器的国产化大力支持。显而易见,未来激光跟踪仪的产业化具有极为光明的市场前景。
  • 几何尺寸测量仪
    产品名称:几何尺寸测量仪产品品牌:EVM-G系列产品简介:本系列是一款高精度影像测量仪,结合传统光学与影像技术并配备功能完备的2.5D测量软件。可将以往用肉眼在传统显微镜下观察到的影像传输到电脑中作各种量测,并将测量结果存入电脑中以便日后存档或发送电子邮件。其操作简单、性价比高、精确度高、测量方便、功能齐全、稳定可靠。适用于产品检测、工程开发、品质管理。在机械加工、精密电子、模具制造、塑料橡胶、五金零件等行业都有广泛使用。产品参数:u 变焦镜筒:采用光学变焦物镜,光学放大倍率0.7X~4.5X,视频总放大倍率40X~400X连续可调,物方视场:10.6-1.6mm,按客户要求选配不同倍率物镜。u 摄像机:配备低照度SONY机芯1/3′彩色CCD摄像机,图像表面纹理清晰,轮廓层次分明,保证拥有高品质的测量画面。可以升级选配1/2′CMOS130万像素摄像机。u 底座:仪器底座采用高精度天然花岗石,稳定性高,硬度高,不易变形。u 光栅尺:仪器平台带有高精度光栅尺(X,Y,Z三轴),解析度为0.001mm。Z轴通过二次聚焦可实现对沟槽、盲孔的深度进行测量。u 光源:采用长寿命LED环形冷光源(表面光及底光),使工件表面照明均匀,边缘清晰,亮度可调。u 导轨:双层工作平台设计,配备高精度滚动导轨,精度高,移动平稳轻松。u 丝杆:X,Y轴工作台均使用无牙光杆摩擦传动,避免了丝杆传动的间隙,灵敏度大大提高,亦可切换快速移动,提高工作效率。 工作台仪器型号EVM-1510GEVM-2010GEVM-2515GEVM-3020GEVM-4030G金属台尺寸(mm)354×228404×228450×280500×330606×466玻璃台尺寸(mm)210×160260×160306×196350×280450×350运动行程(mm)150×100200×100250×150300×200400×300仪器重量(kg)100110120140240外型尺寸L*W*H756×540×860670×660×950720×950×1020 影像测量仪是建立在CCD数位影像的基础上,依托于计算机屏幕测量技术和空间几何运算的强大软件能力而产生的。计算机在安装上专用控制与图形测量软件后,变成了具有软件灵魂的测量大脑,是整个设备的主体。它能快速读取光学尺的位移数值,通过建立在空间几何基础上的软件模块运算,瞬间得出所要的结果;并在屏幕上产生图形,供操作员进行图影对照,从而能够直观地分辨测量结果可能存在的偏差。影像测量仪是一种由高解析度CCD彩色镜头、连续变倍物镜、彩色显示器、视频十字线显示器、精密光栅尺、多功能数据处理器、数据测量软件与高精密工作台结构组成的高精度光学影像测量仪器。仪器特点采用彩色CCD摄像机;变焦距物镜与十字线发生器作为测量瞄准系统;由二维平面工作台、光栅尺与数据箱组成数字测量及数据处理系统;仪器具有多种数据处理、显示、输入、输出功能,特别是工件摆正功能非常实用;与电脑连接后,采用专门测量软件可对测量图形进行处理。仪器适用于以二维平面测量为目的的一切应用领域。这些领域有:机械、电子、模具、注塑、五金、橡胶、低压电器,磁性材料、精密五金、精密冲压、接插件、连接器、端子、手机、家电、计算机(电脑)、液晶电视(LCD)、印刷电路板(线路板、PCB)、汽车、医疗器械、钟表、螺丝、弹簧、仪器仪表、齿轮、凸轮、螺纹、半径样板、螺纹样板、电线电缆、刀具、轴承、筛网、试验筛、水泥筛、网板(钢网、SMT模板)等。ISO国际标准编辑影响影像测量仪精度的因素主要有精度指示、结构原理、测量方法、日常不注意维护等。 中国1994年实行了国际《坐标测量的验收检测和复检测量》的实施。具体内容如下:第1部分:测量线性尺寸的坐标测量机 第2部分:配置转台轴线为第四轴的坐标测量机 第3部分:扫描测量型坐标测量机 第4部分:多探针探测系统的坐标测量机 第5部分:计算高斯辅助要素的误差评定。 在测量空间的任意7种不同的方位,测量一组5种尺寸的量块,每种量块长度分别测量3次所有测量结果必须在规定的MPEE值范围内。允许探测误差(MPEP):25点测量精密标准球,探测点分布均匀。允许探测误差MPEP值为所有测量半径的值。ISO 10360-3 (2000) “配置转台轴线为第四轴的坐标测量机” :对于配备了转台的测量机来说,测量机的测量误差在这部分进行了定义。主要包含三个指标:径向四轴误差(FR)、切向四轴误差(FT)、轴向四轴误差(FA)。ISO 10360-4 (2003) “扫描测量型坐标测量机” :这个部分适用于具有连续扫描功能的坐标测量机。它描述了在扫描模式下的测量误差。大多数测量机制造商定义了"在THP情况下的空间扫描探测误差"。在THP之外,标准还定义了在THN、TLP和TLN情况下的扫描探测误差。 沿标准球上4条确定的路径进行扫描。允许扫描探测误差MPETHP值为所有扫描半径的差值。THP说明了沿已知路径在密度的点上的扫描特性。注:THP的说明必须包括总的测量时间,例如:THP = 1.5um (扫描时间是72 秒)。ISO 10360-4 进一步说明了以下各项定义:TLP: 沿已知路径,以低密度点的方式扫描。THN: 沿未知路径,以高密度点的方式扫描。TLN: 沿未知路径,以低密度点的方式扫描。几何尺寸测量仪工作原理影像测量仪是基于机器视觉的自动边缘提取、自动理匹、自动对焦、测量合成、影像合成等人工智能技术,具有点哪走哪自动测量、CNC走位自动测量、自动学习批量测量的功能,影像地图目标指引,全视场鹰眼放大等优异的功能。同时,基于机器视觉与微米精确控制下的自动对焦过程,可以满足清晰影像下辅助测量需要,亦可加入触点测头完成坐标测量。支持空间坐标旋转的优异软件性能,可在工件随意放置或使用夹具的情况下进行批量测量与SPC结果分类。全自动影像测量仪编辑全自动影像测量仪,是在数字化影像测量仪(又名CNC影像仪)基础上发展起来的人工智能型现代光学非接触测量仪器。其承续了数字化仪器优异的运动精度与运动操控性能,融合机器视觉软件的设计灵性,属于当今最前沿的光学尺寸检测设备。全自动影像测量仪能够便捷而快速进行三维坐标扫描测量与SPC结果分类,满足现代制造业对尺寸检测日益突出的要求:更高速、更便捷、更的测量需要,解决制造业发展中又一个瓶颈技术。全自动影像测量仪是影像测量技术的高级阶段,具有高度智能化与自动化特点。其优异的软硬件性能让坐标尺寸测量变得便捷而惬意,拥有基于机器视觉与过程控制的自动学习功能,依托数字化仪器高速而的微米级走位,可将测量过程的路径,对焦、选点、功能切换、人工修正、灯光匹配等操作过程自学并记忆。全自动影像测量仪可以轻松学会操作员的所有实操过程,结合其自动对焦和区域搜寻、目标锁定、边缘提取、理匹选点的模糊运算实现人工智能,可自动修正由工件差异和走位差别导致的偏移实现精确选点,具有高精度重复性。从而使操作人员从疲劳的精确目视对位,频繁选点、重复走位、功能切换等单调操作和日益繁重的待测任务中解脱出来,成百倍地提高工件批测效率,满足工业抽检与大批量检测需要。全自动影像测量仪具有人工测量、CNC扫描测量、自动学习测量三种方式,并可将三种方式的模块叠加进行复合测量。可扫描生成鸟瞰影像地图,实现点哪走哪的全屏目标牵引,测量结果生成图形与影像地图图影同步,可点击图形自动回位、全屏鹰眼放大。可对任意被测尺寸通过标件实测修正造影成像误差,并对其进行标定,从而提高关键数据的批测精度。全自动影像测量仪有着友好的人机界面,支持多重选择和学习修正。全自动影像测量仪性能使其在各种精密电子、晶圆科技、刀具、塑胶、弹簧、冲压件、接插件、模具、军工、二维抄数、绘图、工程开发、五金塑胶、PCB板、导电橡胶、粉末冶金、螺丝、钟表零件、手机、医药工业、光纤器件、汽车工程、航天航空、高等院校、科研院所等领域具有广泛运用空间。选购方法编辑有许多客户都在为如何挑选影像测量仪的型号品牌所困扰,其实最担心就是影像测量仪的质量和售后。国内影像测量仪的生产商大部分都集中在广东地区,研发的软件功能大部分相似,客户可以不用担心,挑选一款能够满足需要测量的产品行程就行了。根据需要来选择要不要自动或者手动,手动的就比较便宜,全自动的大概要比手动贵一倍左右。挑选影像测量仪最重要看显像是不是清晰,以及精度是否达标(一般精度选择标准为公差带全距的1/3~1/8)。将所能捕捉到的图象通过数据线传输到电脑的数据采集卡中,之后由软件在电脑显示器上成像,由操作人员用鼠标在电脑上进行快速的测量。有的生产商为了节约成本可能会采用国产的,造价比较低,效果就稍微差点。常见故障及原因编辑故障1)蓝屏;2)主机和光栅尺、数据转换盒接触不良造成无数据显示;3)透射、表面光源不亮;4)二次元打不开;5)全自动影像测量仪开机找不到原点或无法运动。原因由于返厂维修周期长,价格昂贵,最重要的是耽误了客户的正常的工作。造成问题出现的原因很多,但无外乎以下原因:1)操作软件文件丢失或CCD视频线接触不良;2)光栅尺或数据转换盒损坏;3)电源板损坏;4)加密狗损坏或影像测量仪软件操作系统崩溃。以上问题可能是只出现一个,也有可能几个问题一起出现。软件种类编辑二次元测量仪软件在国内市场中种类比较多,从功能上划分主要有以下两种:  二次元测量仪测量软件与基本影像仪测量软件类似,其功能特点主要以十字线感应取点,功能比较简单,对一般简单的产品二维尺寸测量都可以满足,无需进行像素校正即可直接进行检测,但对使用人员的操作上要求比较高,认为判断误差影响比较大,在早期二次元测量软件中使用广泛。  2.5D影像测量仪在影像测量领域我们经常可以听到二次元、2.5次元、三次元等各种不同的概念,所谓的二次元即为二维尺寸检测仪器,2.5次元在影像测量领域中是在二维与三维之间的一种测量解决方案,定义是在二次元影像测量仪的基础上多加光学影像和接触探针测量功能,在测量二维平面长宽角度等尺寸外如果需要进行光学辅助测高的话提供了一个比较好的解决方案。仪器优点编辑1、装配2个可调的光源系统,不仅观测到工件轮廓,而且对于不透明的工件的表面形状也可以测量。2、使用冷光源系统,可以避免容易变形的工件在测量是因为热而变形所产生的误差。3、工件可以随意放置。4、仪器操作容易掌握。5、测量方便,只需要用鼠标操作。6、Z轴方向加探针传感器后可以做2.5D的测量。测量功能编辑1、多点测量点、线、圆、孤、椭圆、矩形,提高测量精度;2、组合测量、中心点构造、交点构造,线构造、圆构造、角度构造;3、坐标平移和坐标摆正,提高测量效率;4、聚集指令,同一种工件批量测量更加方便快捷,提高测量效率;5、测量数据直接输入到AutoCAD中,成为完整的工程图;6、测量数据可输入到Excel或Word中,进行统计分析,可割出简单的Xbar-S管制图,求出Ca等各种参数;7、多种语言界面切换;8、记录用户程序、编辑指令、教导执行;9、大地图导航功能、刀模具专用立体旋转灯、3D扫描系统、快速自动对焦、自动变倍镜头;10、可选购接触式探针测量,软件可以自由实现探针/影像相互转换,用于接触式测量不规则的产品,如椭圆、弧度 、平面度等尺寸;也可以直接用探针打点然后导入到逆向工程软件做进一步处理!11、影像测量仪还可以检测圆形物体的圆度、直线度、以及弧度;12、平面度检测:通过激光测头来检测工件平面度;13、针对齿轮的专业测量功能14、针对全国各大计量院所用试验筛的专项测量功能15、图纸与实测数据的比对功能维护保养编辑1、仪器应放在清洁干燥的室内(室温20℃±5℃,湿度低于60%),避免光学零件表面污损、金属零件生锈、尘埃杂物落入运动导轨,影响仪器性能。2、仪器使用完毕,工作面应随时擦干净,再罩上防尘套。3、仪器的传动机构及运动导轨应定期上润滑油,使机构运动顺畅,保持良好的使用状态。4、工作台玻璃及油漆表面脏了,可以用中性清洁剂与清水擦干净。绝不能用有机溶剂擦拭油漆表面,否则,会使油漆表面失去光泽。5、仪器LED光源使用寿命很长,但当有灯泡烧坏时,请通知厂商,由专业人员为您更换。6、仪器精密部件,如影像系统、工作台、光学尺以及Z轴传动机构等均需精密调校,所有调节螺丝与紧固螺丝均已固定,客户请勿自行拆卸,如有问题请通知厂商解决。7、软件已对工作台与光学尺的误差进行了精确补偿,请勿自行更改。否则,会产生错误的测量结果。8、仪器所有电气接插件、一般不要拔下,如已拔掉,则必须按标记正确插回并拧紧螺丝。不正确的接插、轻则影响仪器功能,重则可能损坏系统。测量方式编辑1、物件被测面的垂直测量2、压线相切测量3、高精度大倍率测量4、轮廓影像柔和光测量5、圆及圆弧均匀取点测量精密影像测绘仪测量软件简介:绘图功能:可绘制点、线、圆、弧、样条曲线、垂直线、平行线等,并将图形输入到AutoCAD中,实现逆向工程得到1:1的工程图。自动测绘:可自动测绘如:圆、椭圆、直线、弧等图形。具有自动寻边、自动捕捉、自动成图、自动去毛边等功能,减少了人为误差。测量标注:可测量工件表面的任意几何尺寸,不同高度的角度、宽度、直径、半径、圆心距等尺寸,并可在实时影像中标注尺寸。SPC统计分析软件:提供了一系列的管制图及多种类型的图表表示方法,使品管工作更方便,大大提升了品质管理的效率。报表功能:用户可轻易地将测量结果输出至WORD、EXCEL中去,自动生成检测报告,超差数值自动改变颜色,特别适合批量检测。鸟瞰功能:可察看工件的整体图形及每个尺寸对应的编号,直观的反应出当前的绘图位置,并可任意移动、缩放工件图。实时对比:可把标准的DXF工程图调入测量软件中与工件对比,从而快速检测出工程图和实际工件的差距,适合检测比较复杂的工件。拍照功能:可将当前影像及所标注尺寸同时以JPEG或BMP格式拍照存档,并可调入到测量软件中与实际工件做对比。光学玻璃:光学玻璃为国家计量局检验通过之标准件,可检验X、Y轴向的垂直度,设定比例尺,使测量数据与实际相符合。客户坐标:测量时无需摆正工件或夹具定位,用户可根据自己的需要设置客户坐标(工件坐标),方便、省时提高了工作效率。精密影像测绘仪仪器特点:经济型影像式精密测绘仪VMS系列结合传统光学与数字科技,具有强大的软件功能,可将以往用肉眼在传统显微镜下所观察到的影像将其数字化,并将其储存入计算机中作各式量测、绘图再可将所得之资料储存于计算机中,以便日后存盘或电子邮件的发送。该仪器适用于以二座标测量为目的一切应用领域如:品质检测、工程开发、绘图等用途。在机械、模具、刀具、塑胶、电子、仪表等行业广泛使用。变焦镜筒:采用光学变焦物镜,光学放大倍率0.7X~4.5X,视频总放大倍率:40X~400X,可按客户要求选配不同倍率物镜。摄像机:配备低照度SONY机芯1/3”彩色CCD摄像机,图像表面纹理清晰,轮廓层次分明,保证拥有高品质的测量画面。底座:仪器底座采用高精度天然花岗石,稳定性高,硬度高,不易变形。光栅尺:仪器平台带有高精密光栅尺(X、Y、Z三轴),解析度为0.001mm。Z轴通过二次聚焦可实现对沟槽、盲孔的深度进行测量。光源:采用长寿命LED环形冷光源(表面光及底光),使工件表面照明均匀,边缘清晰,亮度可调。导轨:双层工作平台设计,配备高精度滚动导轨,精度高、移动平稳轻松。丝杆:X、Y轴工作台均使用无牙光杆磨擦传动,避免了丝杆传动的背隙,灵敏度大大提高,亦可切换快速移动提高工作效率。
  • 生态中心发展一种纳米材料尺寸表征新方法
    中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室中科院院士江桂斌研究组近日发展了一种复杂介质中纳米材料尺寸鉴定与表征的新方法,通过将毛细管电泳与电感耦合等离子体质谱在线联用(CE-ICP-MS),可在单次检测中完成复杂介质中纳米材料的种类鉴定、尺寸分布表征和相关离子检测,结果比常规方法更为简便和准确。相关论文日前发表在化学期刊《德国应用化学》(Angew. Chem. Int. Ed., doi: 10.1002/anie.201408927)上,并被选为VIP paper(Very Important Paper)。  论文发表后,ChemistryViews 杂志以Getting the Measure of Nanoparticles 为题配发评论文章,认为这一工作为鉴定和表征混合纳米粒子提供了一种准确的新方法,可广泛用于纳米科学研究的相关领域。  目前通用的纳米材料的尺寸鉴定与表征方法主要依赖于透射电镜和光散射两种方法。毛细管电泳与等离子体质谱联用方法无须样品制备,可非常方便地用于纳米材料商品和医用品的质量控制,实现环境水样中纳米材料的快速筛查和尺寸表征。  CE-ICP-MS 表征纳米颗粒示意图
  • 上海微系统所在大尺寸石墨烯制备及导热应用方面取得进展
    制备决定未来,石墨烯材料的可控制备是石墨烯行业的基础,更是石墨烯在下游应用中充分发挥其性能优势的关键。在批量制造石墨烯材料的过程中,精确控制石墨烯片层厚度、横向尺寸和化学结构等参数已成为石墨烯在热管理、新能源、纤维等领域应用的瓶颈。鳞片石墨剥离技术是发展最为成熟的石墨烯规模化制备技术,该方法已实现石墨烯片层厚度和化学结构的精确控制,但在横向尺寸调控方面仍然面临挑战,典型的石墨烯横向尺寸分布在几百纳米到几个微米以内。单一石墨烯片的的横向尺寸越大,所组装构建的宏观结构在导热、导电和力学等性能方面具有更大的提升潜力和空间。因此,亟待发展横向尺寸在几十微米、甚至几百微米的大尺寸石墨烯材料规模化高效可控制备技术,而实现这一目标必须从制备机理上进行创新和突破。近期,针对传统技术利用长时间、强氧化剂环境氧化剥离石墨存在的剪切破碎严重、横向尺寸难保持等关键科学问题,中科院上海微系统所丁古巧课题组在前期独创的“离域电化学解理” 方法(Chemical Engineering Journal 428 (2022): 131122. 10.1016/j.cej.2021.131122)和“预解理再剥离”技术(Carbon 191 (2022): 477. 10.1016/j.carbon.2022.02.001)基础上,提出了 “氧化新鲜石墨烯网络结构”新策略,该策略首先利用离域电化学法深度解理石墨获得多孔的石墨烯网络结构,然后对获得的石墨烯多孔网络结构进行氧化剥离,由于多孔网络结构为氧化剂的输运提供了高速通道,实现了氧化剂当量和氧化剥离时间的同步大幅减小(图1a),氧化剂当量从通常报道的2-5减少至1,氧化时间从通常的3-5 h下降到1 h,为大尺寸石墨烯材料的制备提供了新的思路。图1. (a) “氧化石墨烯网络结构”策略示意图;(b)大尺寸氧化石墨烯横向尺寸及分布;(c)大尺寸氧化石墨烯的晶格结构分析;(d, e)“氧化新鲜石墨烯网络”策略的优势。该方法在不引入后续筛选处理的情况下实现了大尺寸高晶格质量氧化石墨烯的高效制备。将石墨剥离过程中横向尺寸保持率提高到文献报道最好水平的1.5-2倍,将氧化石墨烯的平均尺寸极限从~120 μm提升到~180 μm(图1b)。需要特别指出的是,结构表征数据表明所制备的水相可分散大尺寸氧化石墨烯具有完全不同于传统氧化石墨烯的晶格结构,也不同于一般的石墨烯,是介于氧化石墨烯和高质量石墨烯之间的一种特殊结构石墨烯材料。氧化剂当量和氧化时间同时减少不仅抑制了石墨/石墨烯碎裂,还在很大程度上保留了石墨原料的sp2结构,在剥离形成的石墨烯片中形成了 “晶区网络包围非晶区岛”的特殊晶格结构(图1c)。更重要的是,机理研究还发现深度预解理石墨结构并保持其“新鲜性”对于石墨烯横向尺寸保持至关重要,传统方法在预解理和氧化剥离体系之间切换时引入的洗涤干燥等过程不可忽视。现有预解理方法很难将石墨解理成石墨烯网络结构,而且溶液体系切换不可避免的片层“回叠”效应在很大程度上破坏了新构建的氧化剂输运通道。相反,“离域电化学解理”体系很好地匹配了氧化剥离体系,从根本上避免了不同体系切换造成的不良影响,是“氧化新鲜石墨烯网络结构”策略成功的关键。进一步的物性结果(图2)表明,大尺寸高质量石墨烯具有良好水相分散性,可组装形成层状结构宏观膜。与绝缘的传统氧化石墨烯膜不同,在不经还原处理情况下大尺寸高质量石墨烯宏观膜表现出良好导电性,电导率达到305.3 S m-1。同时,相对于小尺寸氧化石墨烯,大尺寸高质量石墨烯构建的宏观膜具有优异的力学性能,杨氏模量达到21.2 GPa,拉伸强度达到392.1 Mpa,分别是小尺寸石墨烯膜的~3倍和~5倍。更重要的是,大尺寸高质量石墨烯在构建石墨烯导热厚膜方面表现出明显优势,制备的100 μm石墨烯厚膜导热系数达到1576.1±26.7 W m-1 K-1,超过此前文献报道水平,充分体现了大尺寸石墨烯的导热优势。图2.大尺寸氧化石墨烯膜的显微结构(a)、导电性能(b)、力学性能(c-f)和导热性能(g-j)优势。上述工作大幅突破了氧化石墨烯的平均横向尺寸极限,同时拓展了氧化石墨烯的物性空间,形成了水相可分散大尺寸高质量氧化石墨烯的可规模化制备技术,从材料层面为石墨烯基器件热管理体系、力学增强结构、导电复合材料的性能突破和应用升级提供了新的解决方案。相关研究成果近期以“Oxidating Fresh Porous Graphene Networks toward Ultra‐Large Graphene Oxide with Electrical Conductivity”为题在线发表于Advanced Functional Materials (IF=19.924,10.1002/adfm.202202697)。论文第一作者为中科院上海微系统所张鹏磊博士,通讯作者为中科院上海微系统所丁古巧研究员、何朋副研究员。相关工作得到国家自然科学基金(51802337, 11774368 and 11704204)等资金支持。论文链接 https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.202202697
  • 试论晶圆关键尺寸量测手段和设备的“三体”混动时代
    电子束光刻(EBL)手段,自从其超级高手MAPPER和EUV光刻PK完败之后,一直怀才不遇地降维转战至量测领域,凭借其高贵的光刻血统,完成量测可以说是“手拿把掐”;晶圆Fab发展到65nm技术节点阶段,对以栅极宽度为典型对象的量测技术上,电子束手段以其独树一帜的分辨率、自动化、稳定性和高通量的特征,是无可争议,不能替代的独门武艺;电子束关键尺寸(Critical Dimension)量测设备厂家的竞争也到了白热化阶段;异军突起的中国人技术和设备-汉民微测HMI,凭借扎实的技术创新和对用户痛点的逐一攻克,借助一次Intel晶圆厂验证试机的良机,大秀肌肉,赢得了接下来多家IDM大厂的八成以上设备采购,竟将KLA这样的量测设备巨兽挤出了电子束市场,迫使他们暂时关闭了电子束量测部门。近年来随着半导体行业步伐的加快,由于今天的量测要求比历史上的关键尺寸测量要全面得多,所以半导体晶圆制造行业已经采用了具有各种尺寸量测能力的手段:非电子束光源的量测技术从物理规律的前后两端夹击,不断缩短靠近电子束的分辨率领地:从下方而来的光学量测OCD设备,凭借激光器技术的突破和晶圆光刻光源EUV的降维下放量测(日本公司技术),还有在不需要真空和对环境干扰比起电子束不敏感的先天优势,已经在28nm节点量测稳定发挥(以色列公司技术),并利用和飞秒等离子光刻技术(FPL)一个思维路线的脑洞,突破至14nm量测(新加坡公司技术30mW-1340nm/1320nm/1064nm),逐步挑衅逼近,最终和电子束量测领地短兵相接;而从上方而至的物理探针量测AFM等工具,借助其天然的分辨特长,和来自隧道探针显微术(STM)量子力学的底气,借助其与纳米压痕光刻技术(NIL)一样的思维角度,轻松完成了已经成为电子束瓶颈的极限尺寸量测任务。明眼人不难看出,只用一类量测手段和工具无法在线量测工艺规范所要求的所有关键尺寸。为了规避这种情况,工艺开发通常使用破坏性量测手段 - 横截面电子显微术(X-SEM),透射电子显微术(TEM)等进行尺寸表征(Thermo Fisher主要供货)。这些离线工具速度慢、成本高昂,并且采样和量测的整体通量低下,是不得已的选择。先进的工艺需要精确量测复杂结构上的多个复杂细节,随着FinFET、3D-NAND、Multi-Pattern、DRAM等令人乍舌的复杂沟槽结构的出现,以及IBM骤然发布的GAA 2nm变态制程节点,例如侧壁角度(Side Wall Angle),轮廓(Profile),垫片宽度(Sapcer Widths),垫片下拉(Spacer Pull-Down),外延接近(Epitaxial Proximity),基础/底切(footing /undercut),溢出/底部填充(overfill /underfill )等,而且所有这些特征的尺寸都需要控制在单微束埃的精度水平。为了应对这些不断增长的量测挑战,晶圆厂没有比任何时候更加需要通过引入混合量测技术(Hybrid Metrology),合体使用来自多种设备类型的量测手段,以实现或改进一个或多个关键参数的测量,来彻底改变这一怪兽级别行业的尺寸量测功能的需求。图中描述了量测对象及虚拟混合量测生态系统设想。现在是时候电子束量测低下高贵的头颅了,因为只有合体混动式量测技术和设备,才能把从不同工具获得的数据集合在一起,拿到量测对象的关键的优质的信息,更好地全面细致地了解晶圆的光刻及整体制造过程。以OCD,SEM和AFM这“三体”集成的横跨光源分辨率限制的混合式量测手段和设备,可以毫不夸张地成为晶圆量测的“革命性”方法,通过焊接三类工具的强项,从而可以分离每个单项工具中严重耦合的参数。混合量测技术对晶圆关键尺寸这朵小花实施了几种不同技术维度的交叉施肥。特别需要承认的是:一个量测手段可以提供另两个无法拿出的样品信息,反之亦然。这样的“三体”手段既可以从所有工具上获得相对独立的通用信息,也可将这“三体”相互交叉、引用以提高最终数据的准确性。换句话说就是:参数之间的干扰相关性降低,从而获得了更好的准确性。让我们把这个脑洞接着开大,就是发挥“三体”量测技术和设备工具的平衡术:由于混动量测技术结合了来自不同手段的信息,因此通常有一种更有效率的方法可以将每个手段按其所长分配给样品,来自一类工具和手段的数据可以与另一类交换,并以互补或协同的方式使用,在速度和测量精度方面提高其整体性能。图中的仿真模拟算法为我们显示了混合量测技术的引入是如何解耦两个几何参数的(SWA和TCD),对比这两个参数在没有混合量测技术的情况下是如何以非物理方式耦合的。综上所述,混合量测技术和设备使晶圆厂能够成功量测目前难以使用单个工具可靠量测的复杂结构;通过执行混合量测技术,可以获得增强的量测性能,重拾晶圆量测顶到技术天花板而逐渐失去的信心,是晶圆量测手段和设备的未来。
  • 种子尺寸分析仪-测量种子尺寸的仪器
    TPKZ-3-L种子尺寸分析仪由浙江托普云农公司提供,种子尺寸分析仪采用图像识别技术设计而成,可以在极短的时间内快速完成考种工作,测量种子长度尺寸。种子分析仪,也可以理解为能够测量种子尺寸的分析仪。  种子尺寸分析仪也称智能考种分析仪,托普云农新设计研发的智能型自动考种系统。这款仪器可以在极短的时间内快速完成考种工作,是现代育种考种、种子研发中的常用仪器之一。仪器是基于图像识别技术,突破籽粒和感知数据采集等关键技术,研发了集玉米、大豆等散粒长、粒宽、千粒重等多参数一体化快速检测设备,实现考种过程的自动化、智能化,减少人力成本投入,去除人为误差干扰,加强了考种测量准确率,构筑了智能化考种测量方法,为农业遗传育种研究而服务。  用途:能测量数量、千粒重、平均粒型、每一粒籽粒的粒型。玉米棒除外。  功能特点:  1.实时性:测量速度快,能够实时测量出籽粒的数量、粒长、粒宽、周长、面积、重量等参数。算法计算时间≤1s,大大缩短了测量的时间,为研究降低了时间成本。  2.一键式:智能考种分析系统是基于图像识别技术,一键执行,马上计算出所有测量参数,降低人工操作性,减少人为误差,简化操作流程,一键得到测量结果。  3.存储方式:测量数据的保存可以为研究提供详尽而细致的数据结果,智能考种分析系统配备了相应存储容量,可将所有数据导出excel到电脑,方便用户进行本地数据存储和数据对比分析工作,满足了数据存储的需要。  4.适应范围:针对于籽粒考种,智能考种分析系统设置散粒考种范围包括大豆,玉米的考种需求。  种子尺寸分析仪技术参数:  1.数粒范围:50~20000粒  2.数粒精度:圆形种子自动数粒误差≤±0.1%,长形种子自动数粒误差≤±0.5%,可手动修正保证结果准确。粒型误差≤±0.5%  3.系统供电:DC5V,直接使用USB供电,可以外接电脑或者充电宝  4.响应时间:5s内输出结果
  • 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析
    p style="text-align: justify text-indent: 2em "span style="text-indent: 2em "2004年,Andre Geim和Konstantin Novoselov分离出当前知名度最高的二维材料——石墨烯,并获得2010年诺贝尔奖。作为石墨烯的重要衍生物,氧化石墨烯可以通过预先对石墨进行氧化,然后再剥离石墨层而获得。随着剥离程度的不同,氧化石墨烯一般具有单层、双层、三层以及少层(一般为2-5层)和多层(6-10层)结构。由于氧化石墨烯具有的独特二维结构以及优异的电学性能、光学性能以及化学活性等特性,使得其在超级电容器、透光薄膜、催化触媒以及抗菌净化等诸多领域具有广泛的应用前景。同时,由于氧化石墨烯生产成本低廉,原料易得,同时拥有大量的羧基、羟基和环氧基等诸多含氧基团(图1),因此比其他碳材料更具竞争优势。目前,全球拥有成千上万的研究人员从事氧化石墨烯材料研发工作,很多中国高校和研究所都有这样的研究团队或研究人员。世界上有数千家公司在研发氧化石墨烯产品,包括众多的中国公司。/span/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201912/uepic/77331f4f-7c4e-493b-adce-d0c4c84bb86d.jpg" title="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析1.png" alt="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析1.png" style="text-align: center text-indent: 0em max-width: 100% max-height: 100% "//pp style="text-align: center text-indent: 0em "strong图1 氧化石墨烯结构示意图(a)和HRTEM图(b)/strong/pp style="text-align: justify text-indent: 2em "由于材料的尺寸、形状与材料的性能有着密切的关系,粒径是纳米材料最重要的表征参数之一。因此,获得尺寸及形状规则均一的氧化石墨烯纳米材料对于拓宽其应用领域,非常重要。然而,目前的制备技术一般获得的氧化石墨烯材料其尺寸以及形状均具有多分散性的特点。因而需要对产物进行处理,以获得尺寸及形状规则均一的氧化石墨烯纳米材料。/pp style="text-align: center text-indent: 0em "span style="font-size: 20px "strongspan style="color: rgb(0, 176, 240) "氧化石墨烯粒径调控技术/span/strong/span/pp style="text-align: justify text-indent: 2em "目前,针对于尺寸及形状多分散性的氧化石墨烯材料,其粒径调控技术主要有以下几种,现分别作简单介绍如下:/pp style="text-align: justify text-indent: 2em "strong1)氧化切割法/strong/pp style="text-align: justify text-indent: 2em "在石墨的氧化过程中,就石墨的内部碳原子而言,在氧化的开始阶段,石墨的sp2杂化结构将转变为sp3杂化结构,形成呈线状分布的环氧基,而后续的氧原子为了维持体系的稳定,将在环氧基线状分布的基础上,原位形成环氧基对。由于羰基比环氧基对的能量低,从而使得羰基在结构中具有更好的稳定性。因此,在氧化过程中,形成的环氧基对将原位转变为羰基,从而导致碳碳键断裂。如此循环,从而实现对石墨片的切割细化。而对于石墨边缘的碳原子而言,氧原子将首先与其结合并使石墨本身的碳碳键断裂,形成羰基。随着氧化反应的继续进行,从体系稳定性角度(能量最低),后续的氧原子将与内层(而非相邻)的碳原子结合形成碳氧键,同时再使内部碳碳键断裂。如此反复,进而实现对石墨片的切割作用。而该切割作用即可实现对氧化石墨烯产物粒径的调控优化。/pp style="text-align: justify text-indent: 2em "strong2)离心筛选法/strong/pp style="text-align: justify text-indent: 2em "离心筛选技术是在离心力的作用下,利用被离心样品物质的沉降系数、浮力、密度的差别,进行分离、浓缩、提取制备样品。作为一种高效便捷的分离技术,离心筛选已被广泛应用于固/液混合物的分离提纯等领域。/pp style="text-align: justify text-indent: 2em "在离心力场中,悬浮分散在水中不同粒径尺寸的氧化石墨烯会受到离心力的作用,而发生不同程度的沉降运动。通常,粒子的沉降速度与其粒径的平方成正比关系。也就是说,大粒子的沉降速度将大大快于小粒子。因此,通过高速离心,可以明显改善氧化石墨烯的粒径尺寸分布优化。/pp style="text-align: justify text-indent: 2em "strong3)超声细碎法/strong/pp style="text-align: justify text-indent: 2em "采用超声细碎技术,可明显加速多层氧化石墨烯的剥离,从而提高单层或少层氧化石墨烯的产率,同时对于细碎氧化石墨烯粒径尺寸以及优化其尺寸分布具有重要的作用。/pp style="text-align: justify text-indent: 2em "在适当的超声处理阶段,来源于超声波的震荡力会破坏氧化石墨烯之间的团聚(亦有利于层间剥离),同时粉碎细化氧化石墨烯,从而导致随着超声处理时间的延长,出现氧化石墨烯粒径尺寸的减小以及尺寸分布的窄化。当继续延长超声处理时间,由于此时的超声震荡力不足以再粉碎细化已经形成的较小尺寸的氧化石墨烯。因此,增加超声处理时间将不会再对氧化石墨烯的粒径尺寸起到粉碎细化作用。因此,在超声处理细化及优化氧化石墨烯粒径尺寸及其分布的过程中,存在临界处理时间。为了获得粒径尺寸及其分布满足需求的氧化石墨烯,必需选择适当的超声处理时间。/pp style="text-align: center text-indent: 2em "span style="color: rgb(0, 176, 240) font-size: 20px "strong氧化石墨烯粒径测试方法/strong/span/pp style="text-align: justify text-indent: 2em "现阶段,针对于氧化石墨烯材料粒径的表征方法众多,现简要介绍几种常用的测试方法如下:/pp style="text-align: justify text-indent: 2em "strong1)扫描电子显微镜 (Scanning Electron Microscopy, SEM) /strong/pp style="text-align: justify text-indent: 2em "SEM利用电子和物质的相互作用,以获取被测样品的各种物理、化学性质的信息,如形貌、组成、晶体结构等。SEM是对纳米材料尺寸和形貌研究最常用的方法。因此,该方法也常常用来测试表征氧化石墨烯的粒径尺寸状态(图2)。该方法是一种颗粒度观测的绝对方法,具有可靠性和直观性。但是,该方法的测量结果缺乏整体统计性,同时对一些不耐强电子束轰击的样品较难得到准确的结果。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/2a229252-f9c9-4537-9cb1-70fd8162027b.jpg" title="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析2.jpg" alt="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析2.jpg"//pp style="text-align: center text-indent: 0em "strong图2 氧化石墨烯粒径SEM图span style="text-indent: 2em " /span/strong/pp style="text-align: justify text-indent: 2em "strong2)透射电子显微镜 (Transmission Electron Microscope, TEM)/strong/pp style="text-align: justify text-indent: 2em "TEM是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子发生碰撞而产生散射,从而形成明暗不同的影像。TEM分辨率为0.1~0.2 nm,放大倍数为几万~百万倍,可用于观察超微结构。TEM是对纳米材料形貌、粒径和尺寸进行表征的常规仪器。该方法可直接观察氧化石墨烯材料的形貌和测定粒径大小(图3),具有一定的直观性与可信性。但是TEM测试的是材料局部区域观察的结果,具有一定的偶然性及统计误差,需要利用一定数量粒子粒径测量,统计分析而得到纳米粒子的平均粒径。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/b29af068-e379-4d3f-a146-92cc98809d46.jpg" title="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析3.jpg" alt="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析3.jpg"//pp style="text-align: center text-indent: 0em "strong图3 氧化石墨烯粒径TEM图/strong/pp style="text-align: justify text-indent: 2em "strong3)原子力显微镜 (Atomic Force Microscope, AFM)/strong/pp style="text-align: justify text-indent: 2em "AFM是利用测量探针与样品表面相互作用所产生的信号, 在纳米级或原子级水平研究物质表面的原子和分子的几何结构及相关性质的分析技术。AFM能直接观测纳米材料表面的形貌和结构。AFM测量粒子直径范围约为0.1nm~数十纳米,在得到其粒径数据的同时,即可观察到纳米粒子三维形貌。因此,该方法也常常用来测试表征氧化石墨烯的粒径形貌特征(图4)。同时,AFM可在真空、大气、常温等不同外界环境下工作,也不需要特别的制样技术,探测过程对样品无损伤,可进行接触式和非接触式探测等。但是,AFM测试观察范围有限,得到的数据不具有统计性,较适合测量单个粒子的表面形貌等细节特征。/pp style="text-align: justify text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/4ed4956d-b4ef-44ed-b765-1c76561c107e.jpg" title="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析4.jpg" alt="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析4.jpg"//pp style="text-align: center text-indent: 0em "strong图4 氧化石墨烯粒径AFM图/strong/pp style="text-align: justify text-indent: 2em "strong4)动态光散射 (Dynamic Light Scattering, DLS)/strong/pp style="text-align: justify text-indent: 2em "光通过胶体时,粒子会将光散射,在一定角度下可以借助于科学仪器检测光信号。DLS即通过测量样品散射光强度的起伏变化,而得出样品的平均粒径及粒径分布信息。DLS适用于氧化石墨烯工业化产品粒径的检测,测量粒径范围为1 nm~5 μm。该方法能够快速获得精确的粒径分布,重复性好,测试取样量较大,测试结果具有代表性。但是,其测试结果受样品的粒度以及分布影响较大,只适用于测量粒度分布较窄的颗粒样品,且测试中易受粒子团聚和沉降的影响。/pp style="text-align: justify text-indent: 2em "strong5)拉曼光谱法 (Raman) /strong/pp style="text-align: justify text-indent: 2em "拉曼光谱法基于拉曼效应的非弹性光散射分析技术,拉曼频移与物质分子的转动和振动能级有关,不同的物质产生不同的拉曼频移。利用拉曼光谱可以对纳米材料进行分子结构、键态特征分析、晶粒平均粒径的测量等。因此,该方法也常常用来测试表征氧化石墨烯的晶粒平均粒径(图6)。拉曼光谱法灵敏度高,不破坏样品,方便快速。但是也存在测试结果易受光学系统参数等因素的影响,而且傅里叶变换光谱分析常出现曲线的非线性问题等不足。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/43519652-3c6c-44a6-8ea6-9b86f2893737.jpg" title="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析6.jpg" alt="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析6.jpg"//pp style="text-align: center text-indent: 0em "strong图6 氧化石墨烯粒径Raman图/strong/pp style="text-align: center text-indent: 2em "span style="color: rgb(0, 176, 240) font-size: 20px "strong总结/strong/spanbr//pp style="text-align: justify text-indent: 2em "目前,针对于尺寸及形状多分散性的氧化石墨烯纳米材料,其粒径调控技术主要有氧化切割法、离心筛选法、超声细碎法等。同时,纳米材料粒度的测试方法众多,不同的粒度分析方法均有其一定的适用范围以及对应的样品处理方法。因此,在实际检测时,应综合考虑材料的特性、测量目的、经济成本等多方面因素,确定最终选用适当的氧化石墨烯粒径测试方法。/pp style="text-align: justify text-indent: 2em "br//pp style="text-align: justify text-indent: 2em "参考文献:/pp style="text-align: justify text-indent: 2em "[1] Su C, Loh K P. Carbocatalysts: graphene oxide and its derivatives [J]. Accounts of Chemical Research, 2013, 46 (10): 2275-2285./pp style="text-align: justify text-indent: 2em "[2] Erickson K, et al. Determination of the local chemical structure of graphene oxide and reduced graphene oxide[J]. Advanced Materials, 2010, 22(40): 4467-4472./pp style="text-align: justify text-indent: 2em "[3] Bianco A, et al. All in the graphene family-A recommended nomenclature for two-dimensional carbon materials [J]. Carbon, 2013, 65: 1-6./pp style="text-align: justify text-indent: 2em "[4] He Y, et al. Preparation and electrochemiluminescent and photoluminescent properties of a graphene oxide colloid [J]. Carbon, 2013, 56: 201-207./pp style="text-align: justify text-indent: 2em "[5] Li Z, et al. How graphene is cut upon oxidation? [J]. Journal of the American Chemical Society, 2009, 131(18): 6320-6321./pp style="text-align: justify text-indent: 2em "[6] Fan T, et al. Controllable size-selective method to prepare graphene quantum dots from graphene oxide[J]. Nanoscale research letters, 2015, 10(1): 55./pp style="text-align: justify text-indent: 2em "[7] Khan U, et al. Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation[J]. Carbon, 2012, 50(2): 470-475./pp style="text-align: justify text-indent: 2em "[8] Zhao J, et al. Efficient preparation of large-area graphene oxide sheets for transparent conductive films[J]. ACS nano, 2010, 4(9): 5245-5252./pp style="text-align: justify text-indent: 2em "[9] Krishnamoorthy K, et al. The chemical and structural analysis of graphene oxide with different degrees of oxidation[J]. Carbon, 2013, 53: 38-49./pp style="text-align: justify text-indent: 2em "[10] Hu X, et al. Effect of graphite precursor on oxidation degree, hydrophilicity and microstructure of graphene oxide [J]. Nano, 2014, 9(3): 14500371-8./pp style="text-align: justify text-indent: 2em " /pp style="text-align: justify text-indent: 2em "作者简介:/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "img style="max-width: 100% max-height: 100% width: 150px height: 196px float: left " src="https://img1.17img.cn/17img/images/201912/uepic/cba3ceb4-db0b-42e1-a0b4-d802034691c1.jpg" title="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析7.jpg" alt="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析7.jpg" width="150" height="196" border="0" vspace="0"/胡学兵,博士,硕士研究生导师。2014年博士毕业于中国科学院上海硅酸盐研究所,现就任景德镇陶瓷大学教授。2008年和2017年分别在法国欧洲膜研究所和英国诺丁汉大学从事学术研修工作。主要从事面向环境、能源等应用的功能化石墨烯新材料及分离膜材料的研究开发工作。先后主持国家自然科学基金、江西省青年科学基金重大项目和江西省科技计划项目等各类项目10余项。2016年荣获中国科学技术协会全国科技工作者创新创业大赛金奖(江西省唯一),2017年荣获中国科学院开放基金项目一等奖,2018年“儒乐杯”江西省青年科技创新项目大赛全省前8强。先后在《Journal of Membrane Science》、《RSC Advances》、《Applied Surface Science》、《Journal of Porous Materials》、《Materials Letters》等期刊上发表学术论文67篇(SCI/EI收录39篇)。申请国家发明专利15项,已授权13项。/span/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "12月18日,胡学兵教授将亲临由仪器信息网组织的strongspan style="text-indent: 2em color: rgb(0, 176, 240) "“a href="https://www.instrument.com.cn/webinar/meetings/nano2/" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "span style="text-indent: 2em color: rgb(0, 176, 240) "第二届‘纳米表征与检测技术’公益网络研讨会/span/a”/span/strong,更深入地讲解氧化石墨烯粒径尺寸测试表征技术,机会难得,业内同仁和莘莘学子可以点击下方图片或链接报名参会,与胡教授互动交流。/span/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strongspan style="text-indent: 2em "免费报名地址:/span/strong/spana href="https://www.instrument.com.cn/webinar/meetings/nano2/" target="_self" style="text-decoration: underline "strongspan style="text-indent: 2em "https://www.instrument.com.cn/webinar/meetings/nano2//span/strongstrongspan style="text-indent: 2em "/span/strong/a/pp style="text-align: center "span style="text-indent: 2em "a href="https://www.instrument.com.cn/webinar/meetings/nano2/" target="_self"img style="max-width: 100% max-height: 100% width: 664px height: 246px " src="https://img1.17img.cn/17img/images/201912/uepic/2206666c-651c-4189-ae79-e6c91973e92d.jpg" title="540_200.jpg" alt="540_200.jpg" width="664" height="246" border="0" vspace="0"//a/span/p
  • 粉体材料表面改性良方一种——低温等离子体技术
    p style="text-align: justify text-indent: 2em "粉体材料的一个重要特性就是其表面效应。粉体微粒的表面原子数之比随粉体微粒的尺寸减小而大幅度增加,相应的,粒子的表面张力也随之增加,粉体材料的性质就会因此发生各种变化。以金属纳米微粒为例,随着尺寸减小,微粒的比表面积迅速增加,因而稳定性极低,很容易与其他原子相结合,在空中燃烧。另外,一些氧化物粉体微粒也会由于类似的原因,在暴露于大气中的时候很容易吸附气体。/pp style="text-align: justify text-indent: 2em "改善粉体的的表面效应是粉体材料应用过程中最主要的难题之一,而低温等离子体正是一种有效的表面改性技术。首先我们先了解下究竟什么是低温等离子体。低温等离子体是在特定条件下使气体部分电离而产生的非凝聚体系,其整个体系呈电中性,有别于固、液、气三态物质,被称作物质存在的第四态。具体来说低温等离子体主要由以下几部分组成:中性原子或分子、激发态原子或分子、自由基、电子或负离子、正离子以及辐射光子。/pp style="text-align: justify text-indent: 2em "产生等离子体的方法也有很多种,热电离法、光电离法、激波法、气体放电法、射线辐照法等。等离子体技术在粉体表面处理方面的应用主要有三个维度:等离子体刻蚀、等离子体辅助化学气相沉积和等离子体处理。而低温等离子体技术在改进粉体材料表面处理方面的应用主要有三方面:改进粉体分散性、改进界面结合性能、改进粉体表面性能。/pp style="text-align: justify text-indent: 2em "改进粉体分散性:由于粉体的表面效应,导致粉体很容易团聚,通过等离子体处理,可使粉体表面包膜或接枝,而产生粉体间的排斥力,使得粉体间不能接触,从而防止团聚体的产生,提高粉体分散性能。/pp style="text-align: justify text-indent: 2em "改进界面结合性能:无机矿物填料在塑料、橡胶、胶黏剂等高分子材料工业及复合材料领域发挥着重要的作用。但过多的填充往往容易导致有机高聚物整体材料的某些力学性能下降,并且容易脆化,等离子体技术正是改善这类材料力学性能的好方法。例如等离子体处理的碳酸钙填充PVC制备SMA复合材料可以使其弯曲强度、冲击强度等力学性能大大提高。/pp style="text-align: justify text-indent: 2em "改进粉体表面性能:这部分应用主要有三个分维度,一是能提高粉体的着色力、遮盖力和保色性;二是能保护粉体的固有性能及保护环境;三是在制药领域,能够使得粉体具有缓释作用。/pp style="text-align: justify text-indent: 2em "粉体材料的低温等离子体处理技术对复合材料的发展具有重要的促进意义,但是其工业化的大量应用仍然有待继续努力,目前这一技术同时也是进行污水处理的研究热点之一。/ppbr//p
  • 新进展!中波红外大尺寸、高效率超透镜
    日常生活中人们通过颜色与明暗差异来识别物体,感知空间维度上的物质信息。与人类的眼睛只能感知可见光不同,一些生物能够接收到人类看不到的图像信息,例如虾姑能够感知紫外与红外波段而乌贼可以通过独特的眼睛构造识别偏振信息。  从描述光子本征属性的维度出发,光子除了具有强度维度外,还具有波长、偏振、拓扑荷等多种维度属性,其中一组正交的物理量可以作为无串扰的图像信息通道从而携带不同的外部信息。如虾姑与乌贼,其独特的图像感知能力使其能够看到人眼所看不到的信息,帮助其更好地完成捕猎、躲避危险、与同伴交流等活动,从而获得生存优势。  人类利用光学器件同样能够获得更卓越的“人工视觉”。如常用于地球遥感的红外偏振相机,通过波长与偏振的调制能够筛选识别出复杂环境下的具有红外与偏振特征的目标物。然而现阶段传统器件依然存在的问题是,为了实现多维度的感知功能,往往需要多种光学元件进行级联组合,导致器件体积、重量庞大,同时也引起了能量的损失与图像信息的误差累计。因此,可以说虽然人们制造的“人工视觉”光子器件已经实现了远超自然界的绝对性能,但在体积与集成性方面,相对于虾姑与乌贼精巧的视觉器官,传统器件依然没有超越自然界数十亿年的进化。  中国科学院上海技术物理研究所李冠海、陈效双、陆卫课题组与澳大利亚新南威尔士大学Andrey Miroshnichenko教授合作利用超构单元像素级的光场多维度调控能力,基于与传统硅基半导体工艺兼容的全硅双折射超表面体系在中波红外范围实现了色散调控模式下的波片式偏振解耦宽带中红外成像光子器件,能够实现比昆虫复眼更小尺寸下的光场调控与成像。  经过设计的光子成像器件由于像素级单元在波长-偏振维度的双重衍射效果设计,能够将正交偏振通道上的不同图像汇聚到不同的深度上,从而为后续级联的光处理器件与电处理器件提供了直接的物理接口。同时,研究团队也实现了消色差与消偏振的微型中红外光子成像器件,实现了集成的宽谱消偏振成像。值得注意的是,其不仅能够在工作波段内同时采集两个正交通道上的图像信息,同时其单元的结构排布角度,能够消除大入射角下的偏振效应,从而提升图像的准确度。  研究者相信,该研究成果将会为研究相对比较匮乏、难度较大但具有广泛应用前景的中波红外光电探测领域提供新的契机,该研究成果有望在自由空间量子通信、三维激光雷达、航空遥感等领域得到应用。  该研究得到了科技部重点研发计划量子调控和量子信息专项、纳米专项、国家自然科学基金委、上海市科委启明星项目、中国科学院青年创新促进会等项目的支持。图1 (a)不同正交偏振通道的消色差超透镜示意图;(b)用于不同偏振态调控的单元数据图;(c)超表面单元在不同波长及偏振下的等效折射率、透过率与相位分布示意图;
  • 上海光机所将时域散斑技术成功运用于大尺寸光学元件测量
    p  上海光机所信息光学与光电技术实验室周常河课题组近期将双目测量和时域散斑技术相结合,应用于300mm口径大尺寸透镜毛坯测量,成功重建出透镜毛坯表面的三维形貌。该方法实现了大尺寸透镜的快速、低成本测量,相关成果发表在[Optics Express 27,10898(2019)]上。/pp  大尺寸光学元件,尤其是非球面元件,被广泛运用在大型激光装置,例如“神光”II综合实验激光装置中。在元件的生产过程中,表面检测至关重要。在透镜毛坯的粗研磨阶段,主要检测设备是三坐标测量机。三坐标测量机的测量精度很高,但是这种逐点测量方式的效率低,尤其是在测量大尺寸(例如米级)透镜毛坯时,大型三坐标测量机价格昂贵,且不易移动,不便于使用。/pp  该课题组提出,用双目光学三维测量方法重建透镜粗毛坯的表面。双目视觉原理类似于人眼的三维感知,如图1所示。左右两个不同位置不同角度放置的摄像机,同步拍摄毛坯表面图像,经过同源点匹配和视差计算,可以用三角法对毛坯表面进行三维重构。但是,由于透镜毛坯强散射特性,基于空域的结构光编码方法会出现解码误差。课题组提出用时域散斑技术进行时域方向的编码,实验中顺序投影20幅带通随机数字散斑图像,对于每个像素点,都有一个20维度的编码。通过比较左右待匹配点码值之间的汉明距,可以在极线方向寻找到同源点对。另一方面,偏振技术被运用于消除透镜毛坯的多次反射问题。最终,全场的三维点云数据在短时间内被成功重建出,如图2所示。/pp  相对于三坐标测量机,该方法实现了透镜毛坯表面的快速、全场、低成本的三维测量,是一个很有前景的测量方法,尤其是对米级尺寸的透镜毛坯测量具有重要的应用价值。/pp  该项研究成果得到了中科院前沿科学重点研究项目、上海市科委专业技术服务平台项目、上海市自然科学基金项目的支持。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 266px " src="https://img1.17img.cn/17img/images/201906/uepic/482c68fb-7372-43b1-b732-3fc94bc4fd4c.jpg" title="1.jpg" alt="1.jpg" width="600" height="266" border="0" vspace="0"//pp style="text-align: center "图1 双目三维测量系统结构图/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 235px " src="https://img1.17img.cn/17img/images/201906/uepic/fe72b6f5-fdf9-4e68-99b9-cb2ee607b7ed.jpg" title="2-2.jpg" alt="2-2.jpg" width="600" height="235" border="0" vspace="0"//pp style="text-align: center "图2 透镜毛坯的三维点云/p
  • 发改委:加快在光刻胶、大尺寸硅片、电子封装材料等领域实现突破
    仪器信息网讯9月25日,中华人民共和国国家发展和改革委员会发布《关于扩大战略性新兴产业投资培育壮大新增长点增长极的指导意见》(发改高技〔2020〕1409号,以下简称《指导意见》)。本次《指导意见》针对扩大战略性新兴产业投资提出了三方面重点任务:一是聚焦重点产业投资领域;二是打造产业集聚发展新高地;三是增强资金保障能力。《指导意见》围绕优化投资服务环境,提出了四方面政策保障措施:一是深化“放管服”改革;二是优化项目要素配置;三是完善包容审慎监管;四是营造良好投资氛围。覆盖的重点产业投资领域涵盖信息技术产业,生物产业,高端装备制造产业,新材料产业,新能源产业,智能及新能源汽车产业,节能环保产业和数字创意产业。其中明确提出“围绕保障大飞机、微电子制造、深海采矿等重点领域产业链供应链稳定,加快在光刻胶、高纯靶材、高温合金、高性能纤维材料、高强高导耐热材料、耐腐蚀材料、大尺寸硅片、电子封装材料等领域实现突破”,“加快主轴承、IGBT、控制系统、高压直流海底电缆等核心技术部件研发”。光刻胶、大尺寸硅片和电子封装材料是半导体产业的关键技术领域,而IGBT更是涉及第三代半导体产业的重要半导体器件。此外,信息技术产业、高端装备制造产业和智能及新能源汽车产业更是有赖于半导体产业。本次《指导意见》的出台,半导体产业将再迎利好。以下为《指导意见》全文:关于扩大战略性新兴产业投资培育壮大新增长点增长极的指导意见发改高技〔2020〕1409号国务院有关部门,各省、自治区、直辖市、新疆生产建设兵团发展改革委、科技厅(委、局)、工业和信息化委(厅)、财政厅(局):为深入贯彻落实党中央、国务院关于在常态化疫情防控中扎实做好“六稳”工作,全面落实“六保”任务,扩大战略性新兴产业投资、培育壮大新的增长点增长极的决策部署,更好发挥战略性新兴产业重要引擎作用,加快构建现代化产业体系,推动经济高质量发展,现提出如下意见:一、总体要求以习近平新时代中国特色社会主义思想为指导,全面贯彻党的十九大和十九届二中、三中、四中全会精神,统筹做好疫情防控和经济社会发展工作,坚定不移贯彻新发展理念,围绕重点产业链、龙头企业、重大投资项目,加强要素保障,促进上下游、产供销、大中小企业协同,加快推动战略性新兴产业高质量发展,培育壮大经济发展新动能。——聚焦重点产业领域。着力扬优势、补短板、强弱项,加快适应、引领、创造新需求,推动重点产业领域形成规模效应。——打造集聚发展高地。充分发挥产业集群要素资源集聚、产业协同高效、产业生态完备等优势,利用好自由贸易试验区、自由贸易港等开放平台,促进形成新的区域增长极。——增强要素保障能力。按照“资金跟着项目走、要素跟着项目走”原则,引导人才、用地、用能等要素合理配置、有效集聚。——优化投资服务环境。通过优化营商环境、加大财政金融支持、创新投资模式,畅通供需对接渠道,释放市场活力和投资潜力。二、聚焦重点产业投资领域(一)加快新一代信息技术产业提质增效。加大5G建设投资,加快5G商用发展步伐,将各级政府机关、企事业单位、公共机构优先向基站建设开放,研究推动将5G基站纳入商业楼宇、居民住宅建设规范。加快基础材料、关键芯片、高端元器件、新型显示器件、关键软件等核心技术攻关,大力推动重点工程和重大项目建设,积极扩大合理有效投资。稳步推进工业互联网、人工智能、物联网、车联网、大数据、云计算、区块链等技术集成创新和融合应用。加快推进基于信息化、数字化、智能化的新型城市基础设施建设。围绕智慧广电、媒体融合、5G广播、智慧水利、智慧港口、智慧物流、智慧市政、智慧社区、智慧家政、智慧旅游、在线消费、在线教育、医疗健康等成长潜力大的新兴方向,实施中小企业数字化赋能专项行动,推动中小微企业“上云用数赋智”,培育形成一批支柱性产业。实施数字乡村发展战略,加快补全农村互联网基础设施短板,加强数字乡村产业体系建设,鼓励开发满足农民生产生活需求的信息化产品和应用,发展农村互联网新业态新模式。实施“互联网+”农产品出村进城工程,推进农业农村大数据中心和重要农产品全产业链大数据建设,加快农业全产业链的数字化转型。(责任部门:发展改革委、工业和信息化部、科技部、教育部、住房城乡建设部、交通运输部、水利部、农业农村部、商务部、卫生健康委、广电总局、国铁集团等按职责分工负责)(二)加快生物产业创新发展步伐。加快推动创新疫苗、体外诊断与检测试剂、抗体药物等产业重大工程和项目落实落地,鼓励疫苗品种及工艺升级换代。系统规划国家生物安全风险防控和治理体系建设,加大生物安全与应急领域投资,加强国家生物制品检验检定创新平台建设,支持遗传细胞与遗传育种技术研发中心、合成生物技术创新中心、生物药技术创新中心建设,促进生物技术健康发展。改革完善中药审评审批机制,促进中药新药研发和产业发展。实施生物技术惠民工程,为自主创新药品、医疗装备等产品创造市场。(责任部门:发展改革委、卫生健康委、科技部、工业和信息化部、中医药局、药监局等按职责分工负责)(三)加快高端装备制造产业补短板。重点支持工业机器人、建筑、医疗等特种机器人、高端仪器仪表、轨道交通装备、高档五轴数控机床、节能异步牵引电动机、高端医疗装备和制药装备、航空航天装备、海洋工程装备及高技术船舶等高端装备生产,实施智能制造、智能建造试点示范。研发推广城市市政基础设施运维、农业生产专用传感器、智能装备、自动化系统和管理平台,建设一批创新中心和示范基地、试点县。鼓励龙头企业建设“互联网+”协同制造示范工厂,建立高标准工业互联网平台。(责任部门:发展改革委、工业和信息化部、住房城乡建设部、农业农村部、国铁集团等按职责分工负责)(四)加快新材料产业强弱项。围绕保障大飞机、微电子制造、深海采矿等重点领域产业链供应链稳定,加快在光刻胶、高纯靶材、高温合金、高性能纤维材料、高强高导耐热材料、耐腐蚀材料、大尺寸硅片、电子封装材料等领域实现突破。实施新材料创新发展行动计划,提升稀土、钒钛、钨钼、锂、铷铯、石墨等特色资源在开采、冶炼、深加工等环节的技术水平,加快拓展石墨烯、纳米材料等在光电子、航空装备、新能源、生物医药等领域的应用。(责任部门:发展改革委、工业和信息化部等按职责分工负责)(五)加快新能源产业跨越式发展。聚焦新能源装备制造“卡脖子”问题,加快主轴承、IGBT、控制系统、高压直流海底电缆等核心技术部件研发。加快突破风光水储互补、先进燃料电池、高效储能与海洋能发电等新能源电力技术瓶颈,建设智能电网、微电网、分布式能源、新型储能、制氢加氢设施、燃料电池系统等基础设施网络。提升先进燃煤发电、核能、非常规油气勘探开发等基础设施网络的数字化、智能化水平。大力开展综合能源服务,推动源网荷储协同互动,有条件的地区开展秸秆能源化利用。(责任部门:发展改革委、工业和信息化部、自然资源部、能源局等按职责分工负责)(六)加快智能及新能源汽车产业基础支撑能力建设。开展公共领域车辆全面电动化城市示范,提高城市公交、出租、环卫、城市物流配送等领域车辆电动化比例。加快新能源汽车充/换电站建设,提升高速公路服务区和公共停车位的快速充/换电站覆盖率。实施智能网联汽车道路测试和示范应用,加大车联网车路协同基础设施建设力度,加快智能汽车特定场景应用和产业化发展。支持建设一批自动驾驶运营大数据中心。以支撑智能汽车应用和改善出行为切入点,建设城市道路、建筑、公共设施融合感知体系,打造基于城市信息模型(CIM)、融合城市动态和静态数据于一体的“车城网”平台,推动智能汽车与智慧城市协同发展。(责任部门:发展改革委、工业和信息化部、住房城乡建设部、交通运输部等按职责分工负责)(七)加快节能环保产业试点示范。实施城市绿色发展综合示范工程,支持有条件的地区结合城市更新和城镇老旧小区改造,开展城市生态环境改善和小区内建筑节能节水改造及相关设施改造提升,推广节水效益分享等合同节水管理典型模式,鼓励创新发展合同节水管理商业模式,推动节水服务产业发展。开展共用物流集装化体系示范,实现仓储物流标准化周转箱高效循环利用。组织开展多式联运示范工程建设。发展智慧农业,推进农业生产环境自动监测、生产过程智能管理。试点在超大城市建立基于人工智能与区块链技术的生态环境新型治理体系。探索开展环境综合治理托管、生态环境导向的开发(EOD)模式等环境治理模式创新,提升环境治理服务水平,推动环保产业持续发展。加大节能、节水环保装备产业和海水淡化产业培育力度,加快先进技术装备示范和推广应用。实施绿色消费示范,鼓励绿色出行、绿色商场、绿色饭店、绿色电商等绿色流通主体加快发展。积极推行绿色建造,加快推动智能建造与建筑工业化协同发展,大力发展钢结构建筑,提高资源利用效率,大幅降低能耗、物耗和水耗水平。(责任部门:发展改革委、科技部、工业和信息化部、自然资源部、生态环境部、住房和城乡建设部、交通运输部、农业农村部、商务部、国铁集团等按职责分工负责)(八)加快数字创意产业融合发展。鼓励数字创意产业与生产制造、文化教育、旅游体育、健康医疗与养老、智慧农业等领域融合发展,激发市场消费活力。建设一批数字创意产业集群,加强数字内容供给和技术装备研发平台,打造高水平直播和短视频基地、一流电竞中心、高沉浸式产品体验展示中心,提供VR旅游、AR营销、数字文博馆、创意设计、智慧广电、智能体育等多元化消费体验。发展高清电视、超高清电视和5G高新视频,发挥网络视听平台和产业园区融合集聚作用,贯通内容生产传播价值链和电子信息设备产业链,联动线上线下文化娱乐和综合信息消费,构建新时代大视听全产业链市场发展格局。(责任部门:发展改革委、教育部、工业和信息化部、农业农村部、文化和旅游部、广电总局、体育总局等按职责分工负责)三、打造产业集聚发展新高地(九)深入推进国家战略性新兴产业集群发展工程。构建产业集群梯次发展体系,培育和打造10个具有全球影响力的战略性新兴产业基地、100个具备国际竞争力的战略性新兴产业集群,引导和储备1000个各具特色的战略性新兴产业生态,形成分工明确、相互衔接的发展格局。适时启动新一批国家战略性新兴产业集群建设。培育若干世界级先进制造业集群。综合运用财政、土地、金融、科技、人才、知识产权等政策,协同支持产业集群建设、领军企业培育、关键技术研发和人才培养等项目。(责任部门:发展改革委、科技部、工业和信息化部、财政部、人力资源社会保障部、自然资源部、商务部、人民银行、知识产权局等按职责分工负责)(十)增强产业集群创新引领力。启动实施产业集群创新能力提升工程。发挥科技创新中心、综合性国家科学中心创新资源丰富的优势,推动特色产业集群发展壮大。依托集群内优势产学研单位联合建设一批产业创新中心、工程研究中心、产业计量测试中心、质检中心、企业技术中心、标准创新基地、技术创新中心、制造业创新中心、产业知识产权运营中心等创新平台和重点地区承接产业转移平台。推动产业链关键环节企业建设产业集群协同创新中心和产业研究院。(责任部门:发展改革委、科技部、工业和信息化部、市场监管总局、中科院、知识产权局等按职责分工负责)(十一)推进产城深度融合。启动实施产业集群产城融合示范工程。以产业集群建设推动生产、生活、生态融合发展,促进加快形成创新引领、要素富集、空间集约、宜居宜业的产业生态综合体。加快产业集群交通、物流、生态环保、水利等基础设施数字化改造。推进产业集群资源环境设施共建共享、能源资源智能利用、污染物集中处理等设施建设。探索“核心承载区管理机构+投资建设公司+专业运营公司”建设新模式,推进核心承载区加快向企业综合服务、产业链资源整合、价值再造平台转型。推动符合条件的战略性新兴产业集群通过市场化方式开展基础设施领域不动产投资信托基金(REITs)试点。(责任部门:发展改革委、住房城乡建设部、交通运输部、水利部、证监会、国铁集团等按职责分工负责)(十二)聚焦产业集群应用场景营造。启动实施产业集群应用场景建设工程。围绕5G、人工智能、车联网、大数据、区块链、工业互联网等领域,率先在具备条件的集群内试点建设一批应用场景示范工程,定期面向特定市场主体发布应用场景项目清单,择优评选若干新兴产业应用场景进行示范推广,并给予应用方一定支持。鼓励集群内企业发展面向定制化应用场景的“产品+服务”模式,创新自主知识产权产品推广应用方式和可再生能源综合应用,壮大国内产业循环。(责任部门:发展改革委、工业和信息化部、住房城乡建设部、能源局、知识产权局等按职责分工负责)(十三)提高产业集群公共服务能力。实施产业集群公共服务能力提升工程。依托行业协会、专业机构、科研单位等建设一批专业化产业集群促进机构。推进国家标准参考数据体系建设。建设产业集群创新和公共服务综合体,强化研发设计、计量测试、标准认证、中试验证、检验检测、智能制造、产业互联网、创新转化等产业公共服务平台支撑,打造集技术转移、产业加速、孵化转化等为一体的高品质产业空间。在智能制造、绿色制造、工业互联网等领域培育一批解决方案供应商。支持有条件的集群聚焦新兴应用开展5G、数据中心、人工智能、工业互联网、车联网、物联网等新型基础设施建设。(责任部门:发展改革委、工业和信息化部、住房城乡建设部、商务部、市场监管总局、中科院等按职责分工负责)四、增强资金保障能力(十四)加强政府资金引导。统筹用好各级各类政府资金、创业投资和政府出资产业投资基金,创新政府资金支持方式,强化对战略性新兴产业重大工程项目的投资牵引作用。鼓励地方政府设立战略性新兴产业专项资金计划,按市场化方式引导带动社会资本设立产业投资基金。围绕保障重点领域产业链供应链稳定,鼓励建立中小微企业信贷风险补偿机制,加大对战略性新兴产业的支持力度。(责任部门:发展改革委、工业和信息化部、财政部等按职责分工负责)(十五)提升金融服务水平。鼓励金融机构创新开发适应战略性新兴产业特点的金融产品和服务,加大对产业链核心企业的支持力度,优化产业链上下游企业金融服务,完善内部考核和风险控制机制。鼓励银行探索建立新兴产业金融服务中心或事业部。推动政银企合作。构建保险等中长期资金投资战略性新兴产业的有效机制。制订战略性新兴产业上市公司分类指引,优化发行上市制度,加大科创板等对战略性新兴产业的支持力度。加大战略性新兴产业企业(公司)债券发行力度。支持创业投资、私募基金等投资战略性新兴产业。(责任部门:人民银行、银保监会、证监会、发展改革委等按职责分工负责)(十六)推进市场主体投资。依托国有企业主业优势,优化国有经济布局和结构,加大战略性新兴产业投资布局力度。鼓励具备条件的各类所有制企业独立或联合承担国家各类战略性新兴产业研发、创新能力和产业化等建设项目。支持各类所有制企业发挥各自优势,加强在战略性新兴产业领域合作,促进大中小企业融通发展。修订外商投资准入负面清单和鼓励外商投资产业目录,进一步放宽或取消外商投资限制,增加战略性新兴产业条目。(责任部门:发展改革委、工业和信息化部、商务部、国资委等职责分工负责)五、优化投资服务环境(十七)深化“放管服”改革。全力推动重大项目“物流通、资金通、人员通、政策通”。深化投资审批制度改革,推进战略性新兴产业投资项目承诺制审批,简化、整合项目报建手续,深化投资项目在线审批监管平台应用,加快推进全程网办。全面梳理新产业、新业态、新模式准入和行政许可流程,精简审批环节,缩短办理时限,推行“一网通办”。(责任部门:发展改革委牵头,各部门按职责分工负责)(十八)加快要素市场化配置。充分发挥市场在资源配置中的决定性作用,更好发挥政府作用。统筹做好用地、用水、用能、环保等要素配置,将土地林地、建筑用砂、能耗等指标优先保障符合高质量发展要求的重大工程和项目需求。加强工业用地市场化配置,鼓励地方盘活利用存量土地。(责任部门:发展改革委、自然资源部、生态环境部、住房城乡建设部、水利部、商务部等按职责分工负责)(十九)完善包容审慎监管。推动建立适应新业态新模式发展特点、以信用为基础的新型监管机制。规范行政执法行为,推进跨部门联合“双随机、一公开”监管和“互联网+监管”,细化量化行政处罚标准。(责任部门:发展改革委牵头,各部门按职责分工负责)(二十)营造良好投资氛围。各地区、各部门要积极做好政策咨询和宣传引导工作,以“线上线下”产业招商会、优质项目遴选赛、政银企对接会、高端论坛等形式加强交流合作,增强企业投资意愿,激发社会投资创新动力和发展活力,努力营造全社会敢投资、愿投资、善投资战略性新兴产业发展的良好氛围。(责任部门:发展改革委牵头,各部门按职责分工负责)国家发展改革委科技部工业和信息化部财政部2020年9月8日
  • 利用等比例扩大管道尺寸实现用于核酸药物递送的脂质纳米颗粒的可扩展化合成
    基于脂质纳米粒子(LNPs)的核酸药物递送系统已经被证明在基因编辑、癌症治疗、传染病预防、慢性病治疗等领域具有巨大潜力。微流控技术作为一种高效的可调合成平台,可以在LNPs的合成过程中精确控制流动参数,包括流量比、总流量以及脂质浓度等,从而实现不同尺寸的粒子合成。这对于实现不同器官的精准靶向具有重要意义,是当前科学研究的一个关键焦点。然而,将LNPs从实验室研发成功转化为临床应用仍然面临一个严峻的挑战:如何稳健地实现制备规模的放大。目前,规模化合成LNPs的方法主要分为并行化合成策略和通道尺寸扩大策略两种。虽然并行化合成策略原理简单,但需要建立复杂的系统以确保流量分配的稳定性,因此尚未在LNPs的工业制造中广泛应用。通道尺寸扩大策略则采用更大尺寸的单一芯片,提高了最大容许流量,并通过高流速下的湍流混合来确保极限尺寸纳米粒子的合成,例如受限撞击射流混合器和T型混合器。然而,尽管后者能够实现稳定的大规模生产,但在不同流速下难以维持一致的粒径和尺寸分布。因此,我们迫切需要一种创新性的方法,既能保证可扩展的合成,又能维持LNPs的一致性和稳定性。为此,中科大工程学院褚家如教授团队的李保庆副教授与生命科学与医学部田长麟教授团队深入研究后,提出了一种创新的脂质纳米粒子合成策略,即“等比例缩放通道尺寸实现LNPs的可扩展合成”。这一策略通过在三个维度上等比例缩放惯性微流体混合器,并且通过控制混合时间保持一致来确保一致粒径分布的LNPs的合成。这一策略为LNPs的大规模生产提供了实际可行的途径。相关研究成果已发表在Nano Research上。中国科学技术大学在读博士生马泽森和童海洋为共同第一作者。合作团队首先研制了一种高效的惯性流混合器,该混合器充分利用了流体的惯性效应,包括迪恩涡、分离涡以及分离重组效应,以显著提高混合效率。与其他惯性流混合器相比,这种混合器在更低的雷诺数下也能实现充分混合。利用这一混合器,合作团队研究了两种LNPs配方在不同混合时间下的粒径分布,发现混合时间和粒径之间存在良好的线性关系。因此,合作团队推测,通过在不同混合器中控制混合时间的一致性,可以实现具有相同粒径分布的LNPs的合成。基于这一构想,合作团队等比例缩放了该惯性流体微混合器,并使用高精度3D打印和激光加工制备了具有不同通道尺寸的芯片。这些芯片用于实现不同通量条件下的LNP筛选和规模化制备的一致性。对于管道尺寸小于100μm的芯片,选择了摩方精密nanoArch S130设备进行打印和加工,以确保尺寸得到精确控制,从而实现了小于1mL/min流量下均匀的LNPs的合成。此外,合作团队还基于流体力学的相似性理论进行了研究,通过量纲分析和实验标定,总结出了不同管道尺寸混合器实现相同混合时间的流量关系。经过实验验证,在相同的混合时间下合成的LNPs具有一致的粒径、分散性以及包封率。此外,合作团队还验证了具有相同粒径的LNPs在核酸递送方面的能力,成功合成了包封siRNA的LNPs,并证明了它们具有相同的基因沉默效力。总体而言,合作团队提出的“等比例缩放通道尺寸实现可扩展化合成”的策略为核酸药物的大规模生产提供了一种简单、可靠且稳定的途径。这一方法有望极大地加速LNPs药物从早期开发阶段迈向临床应用,推动核酸药物研发进入崭新的领域,为人类健康做出重要贡献。利用摩方精密nanoArch S130设备打印加工的管道尺寸分别为50μm和100μm的微流控芯片模具。其中XY方向上的精度为2μm,Z方向上的精度为5μm,样件尺寸为30mm×40mm。图1 惯性流混合器的结构以及原理示意图。(a)混合器的结构示意图。(b)利用混合器合成脂质纳米粒子的原理示意图。(c)混合器混合机理示意图。三种惯性流效应共同促进了混合,包括迪恩涡、分离涡以及分离重组效应。图2 利用计算流体力学仿真不同管道尺寸混合器的流型相似性。(a)前两个混合单元混合流型的顶部视图。(b)三种管道尺寸混合器在不同雷诺数下的流型相似性。图3 通道尺寸为100、250和500μm的混合器的前两个混合元件的流态俯视图。流动状态包括层流(Re=25和132)、瞬态流(Re=264)和湍流(Re=396)。图像经过数字处理以增强对比度。将溶解有黑色染料(0.025g/mL)作为示踪剂的去离子水和乙醇以3:1的FRR泵入混合器中。流动方向是从左到右。其中100μm的芯片是通过摩方精密nanoArch S130设备打印进行加工。图4 在相同混合时间下,不同通道尺寸的混合器合成具有一致粒径和尺寸分布的LNPs。(a)等比例缩放微混合器用于可扩展化合成LNPs。(b-c)在相同的混合时间下测量了两种LNPs配方的粒径分布。图5 一步对相同粒径LNPs核酸药物递送的性能评估。合成了包封因子VII siRNA后进行静脉注射,两天后测定因子VII活性。结果表明不同组别之间呈现一致的体内沉默效率。原文链接https://doi.org/10.1007/s12274-023-6031-1
  • 全省唯一!光智科技大尺寸硒化锌项目入选“科创中国”先导技术榜
    近日,中国科协发布2023年“科创中国”系列榜单遴选结果。该榜单经初评、终评遴选出先导技术榜150项、新锐企业榜50项等共计230项拟入榜项目。【拓展阅读:230项!2023年“科创中国”系列榜单遴选结果公示:涵盖人工智能、新能源等领域】。其中,安徽光智凭借“超厚大尺寸高均匀性CVD硒化锌规模化生产技术”成功入选榜单!这也是安徽省唯一的上榜项目,标志着公司在科技创新和产品研发方面取得重要突破,并获得中国科协高度认可。全省唯一,图源:中国科协为聚焦新兴前沿领域和产业基础领域核心技术攻关,培育壮大科技型中小企业队伍,发挥技术经理人在科技成果转化中的重要催化作用,2020年中国科协推出“科创中国”品牌。其旨在深入推动科技与经济深度融合,树立产学研深度融合风向标,着力打通科技强到产业强、经济强的关键环节。安徽光智此次入选的先导技术榜,面向电子信息、生物医药、装备制造、先进材料、绿色低碳、产业基础六大领域的产业需求,遴选代表本领域前沿水平,且具有开创性突破和广阔应用场景,可转移、转化、交易的先导技术成果。硒化锌材料,图源:安徽光智超厚大尺寸高均匀性CVD硒化锌便是公司攻关研发出的“明星产品”之一。硒化锌是一种无机化合物材料,对红外波长具有低吸收性,并可透射可见光,是制作红外透镜、窗口、输出耦合窗口和扩束镜的首选材料,是制作大功率二氧化碳激光器的重要材料。长期以来,硒化锌制备技术和大尺寸硒化锌产品受制海外封锁,严重影响产业的发展。同时,大尺寸硒化锌成套制备技术属于国内空白。其沉积系统设计复杂、合成工艺开发难度大、高精度加工难度高,规模化生产面临极大挑战。对此,安徽光智立足于国家战略材料的重大需求,经过多年不懈研发,首创了数字集成自动化控制大型化学气相沉积系统,开发了均匀温场分布与原位高温退火工艺相结合的新工艺体系。目前,公司可生产的超厚大尺寸高均匀性CVD硒化锌,产品性能已达国际先进水平。新荣誉激励新发展,新动力成就新高度。未来,安徽光智将以此次入选科协榜单为契机,继续开创科研工作新局面,加速培育公司新质生产力,为实现我国光电行业高质量发展提供硬核动力。
  • MH-5000 便携式等离子体发射光谱仪
    佰汇兴业(北京)科技有限公司最新代理日本MICRO EMISSION MH-5000等离子体发射光谱仪,该仪器为一款利用液态电极等离子体来分析痕量金属的发射光谱仪,它通过向溶液施加电压以使其加热并蒸发,液体电极产生等离子体,溶液中的溶质被送入等离子体中产生发射光谱。它可以应用到冶金制造、工业废物处理和环境监测等领域中。特点:手持掌上型尺寸的实现(小型,便携式手持)操作简单,初学者也可快速入门电池驱动,可使用于现场测定同时测定多种元素检测极限0.1ppm~100ppm工程管理、土壤测定、水质测定、食品测定
  • 大尺寸单晶石墨烯制备获突破
    2月28日,《自然—通讯》杂志在线发表了中科院金属所沈阳材料科学国家(联合)实验室成会明、任文才团队在石墨烯制备方面取得的一项新突破,他们通过金属外延生长方法,制备出了具有非常优异场发射效应的毫米级单晶石墨烯及其薄膜。  石墨烯优异的电、光、强度等众多优异性质使其在电子学、自旋电子学、光电子学、太阳能电池、传感器等领域有着重要的潜在应用,但大规模高质量制备技术是制约其进入实际应用的瓶颈之一。  目前制备高质量石墨烯的方法,有胶带剥离法、碳化硅或金属表面外延生长法和化学气相沉积法(CVD),前两种方法效率低,不适于大量制备。而迄今由CVD法制备的石墨烯,一般是由纳米级到微米级尺寸的石墨烯晶畴拼接而成的多晶材料。  对于以金属基体生长的石墨烯,通常以腐蚀金属基体的方法来进行转移,不仅存在金属残存、转移过程破坏石墨烯结构的问题,而且污染环境、成本高、不适合贵金属基体。  成会明等采用贵金属铂生长基体,以低浓度甲烷和高浓度氢气通过常压CVD法,成功制备出了毫米级六边形单晶石墨烯及其构成的石墨烯薄膜。通过该研究组发明的电化学气体插层鼓泡法,可将铂上生长的石墨烯薄膜无损转移到任意基体上。  该方法操作简便、速度快、无污染,并且适于钌、铱等贵金属以及铜、镍等常用金属上生长的石墨烯的转移,金属基体可重复使用,可作为一种低成本、快速转移高质量石墨烯的普适方法。  该方法转移的单晶石墨烯具有很高的质量,将其转移到Si/SiO2基体上制成场效应晶体管,测量显示该单晶石墨烯室温下的载流子迁移率可达7100 cm2 V-1 s-1。  金属基体上大尺寸单晶石墨烯及其薄膜的多次重复生长,为石墨烯基本物性的研究及其在高性能纳电子器件、透明导电薄膜等领域的实际应用奠定了材料基础。
  • 光伏太阳能电池-等离子表面处理和USC干式除尘的关键作用
    光伏电池又称太阳能电池,是一种直接将光能转化为电能的半导体薄片。*光伏电池(图源网络,侵删)其中,基板作为光伏电池的主要组成部分之一,其表面性能和洁净度直接关系到电池的光电转换效率和稳定性。光伏太阳能电池等离子处理、除尘解决方案在光伏电池制程中,等离子表面处理可用于玻璃基板表面活化,阳极表面改性,涂保护膜前处理等,在提高光伏元件表面亲水性、附着力等方面具有显著的优势。*光伏电池结构(图片来源:灼识咨询,侵删)同时,需要解决光伏电池制程中的尘埃污染问题。浮尘颗粒会附着在基材表面,不仅影响光电转换效率,还可能引发电池内部故障。*光伏电池工艺制程(资料来源:灼识咨询、中泰证券,侵删)因此,在光伏电池制程中,需要对光伏元件进行表面活化和除尘处理,增强基板表面附着力和洁净度,提升电池的稳定性。大气等离子应用案例通过等离子表面活化,可以提高玻璃基板表面亲水性,有效优化表面附着力,提升电池的稳定性和品质,从而改善器件的性能。等离子处理玻璃基板*光伏原片玻璃(图片来源:江西赣悦新材料,侵删)USC干式超声波除尘应用案例通过USC干式超声波除尘清洗机清除基板上的浮尘,可以提高光伏电池的性能和稳定性。除尘率可达97-99%光伏电池基板除尘光伏太阳能电池领域应用设备1、 大气等离子清洗机SPA-5800具有强大的数据处理功能,实现设备数字化控制,可对接客户产线,有效减低生产成本。✅ 支持数字通信接口和模拟通信接口✅ 搭载进口ARM芯片,实现功率自匹配✅ 具有十余种故障报警功能,故障率低2、 中频宽幅等离子清洗机适用于各种平面材料的清洗活化,可装配不同长度等离子枪头,可客制化流水线设备。✅ 等离子体均匀✅ 电源设计兼容性充足,输出功率范围大✅ 软件/硬件多重保护,安全可靠3、 在线式干式超声波除尘清洗机集除尘、除静电为一体的在线式除尘设备。配有真空吸附移动平台、内部洁净系统,不会对洁净室造成2次污染。✅ 非接触式除尘,产品无损伤✅ 闭环系统,不造成2次污染✅ 以空气作为除尘媒介物质,无需水、溶剂、干燥等过程4、 接触角测量仪SDC-200S光伏电池制备中对于基板表面的润湿性能具有一定的要求,SDC-200S具有全面、完整、精准的拟合测量法,可用于光伏电池基材表面润湿性能检测。✅ 变焦变倍镜头,成像清晰✅ 自动注液系统✅ 可自动生成报告
  • 东方晶源举行表彰大会,庆祝关键尺寸量测设备顺利出机
    近日,东方晶源举行百日会战战区总结表彰大会,对做出突出贡献的个人和团队给予嘉奖。本次表彰大会主要针对电子束装备战区和HPO软件战区,此次百日会战成功实现了关键尺寸量测设备(CD-SEM)的顺利出机、EBI和CD-SEM配套软件的研发升级和从0到1完成离线数据分析系统oDAS的研发。据了解,东方晶源微电子科技(北京)有限公司成立于2014年,总部位于北京亦庄经济技术开发区,是一家专注于集成电路良率管理的企业。今年7月份,东方晶源实现了国内首台关键尺寸量测设备(CD-SEM)出机中芯国际,标志东方晶源继2019年攻克电子束缺陷检测技术后,再一次取得了重大产品技术突破,填补了国内关键尺寸量测设备(CD-SEM)的市场空白。东方晶源的关键尺寸量测设备(型号:SEpA-c410)面向300mm硅片工艺制程,通过先进的电子束成像系统和高速硅片传输方案,搭配精准的量测算法,可实现高重复精度、高分辨率及高产能的关键尺寸量测。进驻中芯国际后,将通过实际产线验证,进一步提升、完善设备性能,向产业化目标整体迈进。而离线数据分析系统oDAS集数据的创建、传输、管理、分析和监控于一体,可实现Fab客户在工艺开发阶段对数据进行智能化管理和处理,是效率和良率提升的关键软件之一。
  • 盛鑫半导体大尺寸硅外延材料产业化项目首批设备入场
    近日,南京盛鑫半导体材料有限公司大尺寸硅外延材料产业化项目实现首批设备入场。中电材料消息显示,该项目是南京市集成电路产业链建设的地标性项目,将建设外延主厂房、晶体加工厂房、综合试验楼、动力站等相关建筑,主要从事大尺寸硅外延片和三代半导体外延片生产。去年4月,南京盛鑫半导体材料有限公司举行大尺寸硅外延材料产业化项目开工仪式。当时消息称,该项目将分两期实施,项目一期投资13.6亿元,建设8-12英寸硅外延材料和第三代化合物外延材料产业基地。值得一提的是,在南京市2023年经济社会发展重大项目中,南京盛鑫集成电路外延材料产业化项目在列。
  • 机构:2024年大尺寸OLED面板出货量将增长125%
    Omdia数据显示,2024年9英寸以上OLED面板(大尺寸显示器)的出货量将增长124.6%。2023年,该市场萎缩25.7%。Omdia表示,2024年所有应用领域的出货量都将增加,包括电视、显示器、平板电脑和笔记本电脑等,只有“其他”类别的销售将下降。特别是,平板电脑OLED出货量预计将比2023年增长294%,这在很大程度上是由于苹果在2024款iPad Pro平板电脑中采用OLED;笔记本电脑OLED出货量将增长152.6%;显示器OLED出货量将增长139.9%;OLED电视面板出货量将增长34.8%。从供应商来看,2024年领先的大尺寸OLED面板生产商将是三星显示,市场份额为52.5%;LG显示(LG Display)市场份额为33.1%;和辉光电市场份额为10.1%;京东方占有3%的市场份额;维信诺占有1.1%市场份额。
  • 2023年中国汽车工程学会尺寸工程分会论文征集通知
    由中国汽车工程学会尺寸工程分会主办的“2023 年汽车尺寸工程交流会”将于2023年7月召开。尺寸工程分会致力于在汽车尺寸工程领域开展学术交流、标准体系完善、人才培养及学会任务等工作,促进专业发展,提高专业水平,助力国家汽车专业尺寸工程整体技术水平提升。会议将以“务实、创新”为主题,以技术交流为目的,以助力汽车强国为初心,推动国内尺寸工程技术发展。诚挚欢迎尺寸工程专业的各位委员,从事汽车主机及零部件、摩托车制造及相关工业领域的尺寸工程技术人员,关心中国汽车尺寸工程技术进步的国内外友好人士踊跃投稿。入选论文将编入大会论文集,同时安排在会议上宣讲相关论文,并推荐在《汽车工艺与材料》、AI《汽车制造业》等杂志上发表。一、论文范围 1、尺寸工程技术在汽车尺寸同步工程方面的研究与应用;2、尺寸工程技术在白车身尺寸精度控制方面的研究与应用;3、尺寸工程技术在整车外观尺寸精度控制方面的研究与应用;4、尺寸工程技术在汽车质量控制工具方面的研究与应用;5、尺寸工程技术在汽车开发中的未来展望。二、论文格式要求采用A4幅面复印纸排版打印,上下左右的页边距均为30mm,字体及字号要求如下:论文题目(三号宋体加粗)作者姓名(作者所在单位 邮政编码) (五号宋体)【摘要】:300字以内(5号楷体)xxxxxxxxxxxxxxx(正文5号宋体)小标题(小4号黑体加粗)图表可用小5号或6号字要求文章没有发表过,且主题明确,逻辑严谨,文字精炼,图像清楚(若引用外文数据或图表必须翻译成中文),格式规范。要求专题论述论文不能超过2500字,综述性论文不能超过3500字。三、论文提交时间征文截止日期为2023年6月30日,论文请同时发至以下三个邮箱:联系人: 史有为 17743121786 shiyouwei@faw.com.cn杨 博 17804310832 yangbo1@faw.com.cn 苏志勇 13514466239 suzhiyong@faw.com.cn
  • 滨松成功研发只有桌子尺寸大小的高功率、高重复频率激光器
    滨松光子学株式会社(静冈县滨松市,董事长:昼马 明 ,以下简称“滨松光子学(株)”)将传统泵浦用半导体激光器的功率提高了三倍,并优化了放大器的设计 ,成功开发了只有桌面尺寸大小,可以产生1焦耳(以下,j)的高能量、300赫兹(以下,hz)高重复频率的功率激光器。一般的激光器的输出功率与设备的尺寸、重复频率成正相关关系,而该课题实现了小型却高功率、高重复频率的激光器。本产品的诞生,通过去除细小的污垢的激光清洁来提高了传统加工的生产效率,同时,期待它在金属材料的激光成形、延长金属器件的使用寿命的激光喷丸等方面的新应用。该产品的开发是内阁办公室主导的综合科学技术与创新研发推进项目(impact)的一部分,是佐野雄二负责的“普及功率激光器以实现安全、安心、长寿社会”研发项目的一环,由滨松光子学(株)中央研究所产业开发研究中心副所长川嶋利幸等人开发,而且今后我们也将继续推进研究成果的产品化。此外,该新研发的产品将于11月1日(星期四)起连续3天在actcity滨松(滨松市中町区)举行的滨松光子综合展“2018photon fair”上展出。<关于功率激光器>功率激光器主要由振荡器和放大器组成。 振荡器由泵浦用半导体激光器、激光介质、全反射镜、输出镜和光开关组成,放大器由泵浦用半导体激光器和激光介质组成。 由振荡器发出的激光通过放大器时,从三种高能量状态(激发状态)的三段激光介质接收能量实现高功率输出。功率激光器的结构<新产品概述>该产品搭载了最新研发的泵浦用半导体激光器,虽然只有桌子尺寸大小,但却是可以产生1j的高脉冲能量且300hz的高重复频率的功率激光器。滨松光子学(株)已经开始制造并销售300hz的重复频率下输出功率为100w的泵浦用半导体激光器。此次,结合公司独有的晶体生长技术和镀膜技术,将传统泵浦用半导体激光的功率提高到世界最高水平300w,同时放大器在激光介质的长度和横截面积上下功夫,并采用具有提高冷却效率的放大器,解决了由于热问题导致激光介质损坏或破坏的问题,成功输出了传统放大器的3倍能量。这是因为放大器采用了新的散热设计,提高了激光的放大效率。此外,由于采用半导体激光器作为泵浦光源,具有高于市面上销售的氙灯泵浦脉冲激光器约10倍的光电转换效率,约100倍的泵浦光源的寿命。通过控制零部件的数量,成功实现了器件的稳定输出、小型以及低成本。一般激光器的功率与设备的尺寸、重复频率成正相关关系,但本产品却实现了小型而又高功率和高重复频率的特性。利用该产品,可以对附着于材料上的小污垢进行激光清洁,以提高传统加工的生产效率。此外,我们也期待脉冲激光器在工业领域的新应用,如飞机的金属材料等可以在不使用模具的情况下进行变形加工完成激光成形,以及通过激光喷丸来提高金属器件的使用寿命等。<研发背景>激光在金属材料的钻孔、焊接、切割等方面有着广泛地加工用途,为了提高生产效率,光纤激光器和co2激光器等各种各样的激光都在朝着高功率的方向发展。激光分连续输出一定强度激光的cw(continuous wave)激光和短时间内重复输出激光的脉冲激光,目前cw激光是激光加工领域的主流。另一方面,脉冲激光不同于cw激光,它正在朝着新型激光加工的应用方向发展。采用半导体激光器作为泵浦光源的功率激光器,它具有高功率、高重复频率的特性,但因为半导体激光器价格昂贵很难推向产品的实用化,而市场上销售的j级脉冲激光器上使用的泵浦光源多采用氙灯光源,对激光器内部有严重地热影响,因此重复频率只能限制在10hz左右。像这样,为了进一步提高生产效率,同时扩大用途,对小型且可以发出高功率、高重复频率脉冲激光的激光器的需求日益增加。主要规格<委托研究信息>此研究成果,是通过以下的科研课题项目得到的。内阁办公室创新研发推进项目(impact)项目负责人:佐野雄二研发项目:普及功率激光器以实现安全、安心、长寿社会研发课题:开发高功率小型功率激光器研究负责人:川鸠利幸(滨松光子学株式会社 中研研究所 产业开发研究中心 中心副主任)研发时间:2015年~2018年本研究开发课题是致力于开发桌子大小、高功率、高重复且稳定性高的脉冲输出的功率激光器。<项目负责人佐野熊二的评论>“普及功率激光器以实现安全、安心和长寿的社会”的impact计划,推动了大功率脉冲激光器的小型化、简化和高性能的发展,这对于探索最先进的科学和工业是不可缺的,同时,我们也正在推进相关基础技术和应用技术的开发,旨在提供可以随时随地使用,具有高稳定性的廉价激光器,向工业领域的创新努力。此次,滨松光子学(株)的开发团队采用了自有的先进半导体激光器作为泵浦高能脉冲激光器的光源,通过优化激光器件,以低价格实现前所未有的小型、高功率、高重复的激光设备。从限制成本和生产效率的角度来看,在我们之前放弃引入激光设备的领域,也期待会有更多的应用。功率激光器设备的结构 功率激光器设备外观
  • GPU、大尺寸硅单晶在列!2024重大科学问题、工程技术难题和产业技术问题发布
    7月2日,在第二十六届中国科协年会主论坛上,中国科协发布了2024重大科学问题、工程技术难题和产业技术问题。以下是2024重大科学问题、工程技术难题和产业技术问题具体名单十大前沿科学问题包括:1.情智兼备数字人与机器人的研究2.以电-氢-碳耦合方式协同推进新能源大规模开发与煤电绿色转型3.对多介质环境中新污染物进行识别、溯源和健康风险管控4.作物高光效的生物学基础5.多尺度非平衡流动的输运机理6.实现氨氢融合燃料零碳大功率内燃机高效燃烧与近零排放控制7.中国境内发现的古人类是否为现代中国人的祖先8.通过耦合与杂化实现柔性材料的功能涌现9.人类表型组微观与整体的复杂关联及其机制解密10.肿瘤微环境中免疫抑制因素与免疫疗法的互作及机制研究十大工程技术难题包括:1.工业母机精度保持性的快速测评2.大尺寸半导体硅单晶品质管控理论与技术3.高地震烈度区复杂地质条件下高拱坝的安全可靠性研究4.冰巨星及其卫星就位探测飞行器技术研究5.介科学支撑多相反应器从实验室到工业规模的一步放大6.深远海海上综合能源岛建设关键问题研究7.空间多维组学引航下一代分子病理诊断革新8.基础设施领域自主工程设计软件问题9.以高通量多模态的方式实现脑机交互10.通过高效温和活化转化及大规模利用二氧化碳实现生态碳平衡十大产业技术问题包括:1.通过精准化学实现药物和功能材料的绿色制造2.采用清洁能源实现低成本低碳炼铁3.云网融合技术在卫星互联网中的应用4.基于数字技术的碳排放监测方法研究5.自主可控高性能GPU芯片开发6.饲料原料豆粕玉米替代的产业化关键技术突破7.构建珍稀濒危中药材的繁育技术体系及其可持续开发利用8.高端芯片制程受限背景下实现高速大容量光传输技术可持续发展的路径9.应用AI眼底血管健康技术促进相关代谢疾病分级诊疗10.基于CTCS的市域铁路移动闭塞技术的突破今年的征集发布活动共收到102家全国学会、学会联合体、企业科协和高校科协推荐的597个问题难题,涵盖数理化基础科学、地球科学、生态环境、制造科技、信息科技、先进材料、资源能源、空天科技、农业科技、生命健康等十大领域。进一步广泛动员,号召一批知名院士专家和国际组织参与问题难题凝练推荐,129位院士专家经过初选、终选等环节,严格评议把关,最终选出十大前沿科学问题、十大工程技术难题和十大产业技术问题。
  • 使用泰伯劳干涉仪测量HED等离子体相衬像
    诊断高能量密度(HED)等离子体的特性,例如存在于惯性约束聚变(ICF)中的等离子体,对于理解它们的演化和相互作用至关重要。然而,考虑到所涉及的通常极端的温度和密度条件,以及其中一些相互作用发生的小时间和空间尺度,获得这些测量结果是具有挑战性的。干涉测量法是目前等离子体最灵敏、最成功的诊断方法之一。然而,由于最常见的干涉测量系统的设计,工作波长有限,因此可以探测的密度和温度范围受到严重限制,难以测量对于可见光波段不透明的 HED 等离子体。基于 Talbot 效应的 Talbot-Lau 干涉法,提供了将干涉测量扩展到 X 射线波长的可能性。另一方面,在光子能量从几 keV 到几十 keV 的范围内的硬 X 射线,低 z 物质的弹性散射截面远大于衰减截面,相位对比度比传统的衰减度对比对电子密度的变化更敏感。因此,在成像机制上,基于折射的方法相较于基于吸收的方法有更高的固有对比度。即,基于相位变化的 X 射线成像方法,包括 Talbot-Lau 偏折测量方法,尤其适用于低 z 生物组织、聚合物、纤维复合材料和 HED 等离子体等的表征。约翰霍普金斯大学物理与天文学系的 M. P. Valdivia 与 D. Stutman 等人提出了将TL莫尔光束偏转技术扩展到8 keV 能量,用于 HED 等离子体实验中的密度梯度测量。[http://dx.doi.org/10.1063/1.4885467]该实验采用低能 TL 干涉仪装置采用焦斑为 ~ 15 μm FWHM 的铜阳极管作为 X 射线源。当在 22 kV 下工作时,该管产生 Kα 特征线主导的光谱,在 8 keV 处有一个强峰。同时使用了 30 μm 厚度的 Ni 滤波器,进一步提高特征线与轫致辐射之间的比率。对于微周期 Talbot-Lau 光栅的设计与制造工艺,对于高能量X射线(如20~100keV),难点在于得到高厚度/深宽比的光栅结构;对于低能 X 射线(如10keV),则应在设计上更多的考虑光栅衬底的影响,即必须使用自支撑结构或者薄衬底的光栅.该实验中使用了由德国 Microworks 公司制造的基底为10 μm 厚聚酰亚胺膜的光栅。如下图所示,源光栅 G0 周期为 2.4 μm,直径有效尺寸为 7 mm,金高度为 21-24 μm;相位光栅G1的周期为 4.0 μm,直径有效尺寸为 9 mm,镍条高度为 3.0 μm。分析光栅 G2 周期为 12 μm,直径有效尺寸为 35 mm,金高度为 17-22 μm。1. Microworks GmbH 提供的 Talbot-Lau 光栅:a)源光栅;b)相位光栅;c)分析光栅该小组使用多种形状(棱柱,圆柱,球型)的多种材料(丙烯酸,铍,PMMA)作为材料进行实验验证。其中,以 PMMA 球形样品的测试结果为例:2. 直径1.5mm的 PMMA 球的 Moiré 条纹像(a)及其偏移映射图(b)结果表明,在 8 keV 下的测量足够灵敏,可以测量几到几十微弧度范围内的折射角,从而提供 10-20 到 10-21 mm&minus 2范围内的面密度。在静态模式下论证得出该技术能够为 HED 相关物体提供密度诊断。上述小组进一步改进该实验,使用短脉冲(30–100 J, 10 ps)激光轰击 Cu 箔产生 X 射线作为测量光源,由于激光的脉冲特性,使得对 HED 的时间分辨测量成为了可能。(doi: 10.1063/1.5123919)3. 超短脉冲时间分辨 X 射线 Talbot-Lau 干涉实验前端光路示意图4. Talbot-Lau X 射线干涉法诊断平台波尔多大学的 G. P´ erez-Callejo 与 V. Bouffetier,对特定靶结构在激光作用下产生的 HED 瞬时密度进行了模拟和测量,并提供了相应的干涉图像的后处理工具。(DOI: 10.1063/5.0085822)5. 等离子体靶材结构设计示意图(左);模拟轰击靶材后30ns 瞬时密度图像6. 瞬时状态下的干涉图像(a)与空光路参考图像(b)7. 经数据处理后的吸收像(a),暗场像(b)与相位像(c)相关阅读- Microworks光栅助力新冠病毒肺部诊断- 实验室X射线相衬成像技术—核心调制和探测器件技术分析(上)- 实验室X射线相衬成像技术—核心调制和探测器件技术分析(下)Microworks 德国 Microworks GmbH 基于其独特的 LIGA 技术,向广大科研用户提供定制化的微结构加工服务。其中,它的X射线透射光栅在相衬成像领域,有着极高的声誉。Microworks为X射线无损检测(NDT)提供标准化和定制产品。在微纳米技术领域,Microworks代表着高精度,其最高纵横比和精度可以远低于 1 µ m。北京众星联恒科技有限公司作为 Microworks 的中国大陆全权代理商,为中国用户提供所有的售前咨询,销售及售后服务,同时 TALINT EDU 干涉仪套件目前我们开放国内试用, 如果您想体验这款模块化、操作简易的 X 射线相衬、暗场成像套件, 欢迎联系我们。免责声明:此篇文章内容(含图片)部分来源于网络。文章引用部分版权及观点归原作者所有,北京众星联恒科技有限公司发布及转载目的在于传递更多行业资讯与网络分享。若您认为本文存在侵权之处,请联系我们,我们会在第一时间处理。如有任何疑问,欢迎您随时与我们联系。
  • Memmert 超大尺寸 1060L 烘箱全面上市!
    尺寸不是问题!全能型通用烘箱最新超大尺寸 1060L 全面上市! UF1060 及 UF1060Plus 涵盖多种应用,温度高于+50℃时应用效果甚为理想,性能无妥协!将最高精度、安全与最佳操作舒适度相结合的完美烘箱。大尺寸 1060L 烘箱全面上市,满足您对空间的需求!UF1060及UF1060Plus均为现货供应! 期待您的垂询! UF通用烘箱,SingleDISPLAY .UFplus通用烘箱,TwinDISPLAY.通用烘箱烘箱中的全能型产品,涵盖多种应用,温度高于+50℃时应用效果甚为理想。可选择自然或强制对流,性能无妥协!工业、科研院所找到一种将最高精度、安全与最佳操作舒适度相结合的完美烘箱。在节约能源方面有着无以伦比的优势。风扇速度可设定和编辑空气交换率和风门位置可在ControlCOCKPIT中进行电子控制。通风口的大小可以保证空气交换率及烘干时间。各类应用中不仅仅建议,甚至强制要求对通风进行控制。在对粉末、沙石或谷物进行烘干时,减少通风可以避免不必要的空气对流。在其他应用中,例如电线或电缆的测试,则需要确定的空气交换率。UFplus设备的特点在于,可通过使用AtmoCONTROL软件进行温度的编辑和空气交换率的设定。新鲜空气的预热由于输入的新鲜空气引起的温度偏差会影响测试样品的特性或者延长样品烘干时间,因此,对于MEMMERT通用烘箱,新鲜空气先被供给到预热室中预热,然后引入箱体内。温度范围℃高于环境温度10K(UF/UFplus)~+300设置温度范围℃20~300设置精度K≤99.9℃:0.1/≥100℃:0.5“至尊品质,追求卓越,永不妥协!”欢迎到我们公司网站了解更多信息 www.memmert.com
  • 小尺寸、低成本气体质谱分析仪问世
    微电子技术研究机构IHP-LeibnizInstitute以及德国航太研究中心(DLR),合作开发了一种尺寸小巧、具成本效益的气体质谱分析(gasspectroscopy)感测系统,运作于245GHz频率 而该系统也是全球第一套以矽锗(SiGe)晶片制作发送与接收器的系统。  IHP-Leibniz表示,该机构开发了一种具成本效益的方法来制造所需的SiGe半导体元件──也就是整合了天线的发送器与接收器晶片,运作频率再238GHz~252GHz 由于那些元件是采用标准矽制程技术,可利用现有半导体设备,因此能降低生产成本,并为气体感测器建立一个迄今无法达成的低价格技术基础。  新研发的气体感测器具备庞大的应用潜力,包括用以侦测有毒气体,或是运用在半导体产业的化学制程控制 此外该类感测器也能应用在医疗保健领域,例如藉由分析病患所呼出的气体来协助侦测肺部疾病。IHP-Leibniz开发小尺寸、低成本的气体质谱分析系统  毫米波吸收光谱(Millimeterabsorptionspectroscopy)技术是已经存在实验室的技术,应用在分子光谱学(molecularspectroscopy)与无线天文学(radioastronomy)领域,判定分子的浓度 传统上该技术所使用的RF发射源──萧特基二极体与下行频率乘法器(downstreamfrequencymultipliers)──都非常昂贵且笨重,虽然近几年来也有一些商用毫米波频率乘法器可做为RF发射源,体积也很小巧、但价格仍相对较高。  最近一个美国研究团队也开发出运作频率在210~270GHz的气体质谱分析系统,采用商用化的毫米波元件 不过这类系统的价格目前还是取决于高生产成本的毫米波元件。而理想化的解决方案是能利用以成熟的SiGe或CMOS制程生产的晶片,如此才能大幅降低系统成本。  IHP-Leibniz的研究人员所开发之SiGe接收器与发送器晶片原型,支援238~252GHz运作频率,范围虽然较窄,但研究人员强调这只是原型晶片,接下来将会有性能更提升的版本。该机构展示的系统利用一个光学试验台(opticalbench)来承载发射与接收模组,有效天线增益是经由一个透镜来放大 进行气体质谱量测时,一个尺寸约0.6m的气体吸收单元(gasabsorptioncell)会被放置在发送器与接收器之间。  接收器的IF讯号会利用一般商用实验室量测技术,被纪录为发送频率的一个函数 研究人员在发送器与接收器都整合了本地振荡器,其频率藉由外部的PLL电路来稳定。两个PLL单元采用两个具有恒定偏移的参考频率,能在一次完整的扫描后为接收器建立一个恒定的中频频率,因此能根侦测到非常微小的振幅变化做为气体吸收分析结果。
  • 聚焦半导体产业与等离子技术工艺——2019牛津仪器等离子技术研讨会在武汉隆重举行
    p  strong仪器信息网讯 /strong2019年10月31日,由牛津仪器主办的“2019牛津仪器等离子技术研讨会——光电及微机电器件制造工艺解决方案”在湖北武汉隆重举行。本次会议是一次针对等离子技术在光电及微机电应用领域的信息共享盛会,参会人数近百人。来自中山大学、华中科技大学、德国Axitron、深圳珑璟光电、湖南启泰传感科技、以及牛津仪器的技术专家为到会人员讲解了半导体行业前沿动态和等离子技术应用实例。仪器信息网在会议期间采访了牛津仪器等离子技术部中国区经理陈伟和中国区市场与工艺高级部门经理方子文博士,听两位大咖谈半导体产业和等离子技术的最新进展。/pp  牛津仪器等离子技术部中国区经理陈伟首先对到场人员表示欢迎,并作“牛津仪器等离子技术部全产品介绍”的报告。牛津仪器诞生在牛津大学,并在1959年成为第一家独立于牛津大学的商业机构,恰好今年也是牛津仪器的60岁生日。世界只有一个硅谷,在美国 世界只有一个光谷,即武汉光电发展产业园,这也是牛津仪器选择在武汉举办第三次用户会的原因。牛津仪器目前关注的重点主要有三部分:光电子、传感器、射频和功率器件 并且牛津仪器超过50%的用户都是量产型用户。其他在研的领域还有二维材料和原子层镀膜刻蚀等,这些领域可能在未来3-5年后才会产生应用。牛津仪器等离子产品主要集中在刻蚀和沉积两块,陈经理介绍了铌酸锂在体声波传感器应用、ICP、PECVD 离子束产品、离子束刻蚀、离子束沉积等内容。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 400px height: 267px " src="https://img1.17img.cn/17img/images/201911/uepic/8dacdfad-60e0-4a08-957b-8b2be967ceec.jpg" title="陈伟.jpg" alt="陈伟.jpg" width="400" height="267" border="0" vspace="0"//pp style="text-align: center "strong牛津仪器等离子技术部中国区经理 陈伟/strong/pp  中山大学教授蔡鑫伦作“基于硅-铌酸锂复合基底的马赫-曾德尔调制器”的报告。光电子芯片是光通信的基石,而硅基光电子器件是目前最有前景的集成平台,具有高集成度和CMOS兼容带来的低成本等优势。硅基电光调制器是其中最重要的部分,能把电域转化成光域,使得器件速率提高。硅基电光调制器目前主要有传统硅基调制器和硅基异质集成两种(如石墨烯/硅、聚合物/硅、磷化铟/硅、铌酸锂/硅等)。铌酸锂材料具有优秀的电光、声光、压电等性质,但面临折射率差小、尺寸大、集成度低、效率低等问题。使用干法刻蚀工艺制备的铌酸锂薄膜材料在垂直方向上可形成高折射率差,具有折射率差大、尺寸小、集成度高、效率高等优势。2018年,哈佛大学发表的铌酸锂材料做到了半波电压1.4V,电光带宽40GHz,速率210Gbit/s 2019年,中山大学取得了进一步的突破,半波电压提升到1.6V,电光带宽提升到了45GHz,速率提升到了220Gbit/s。铌酸锂薄膜与硅光结合,全面突破电光调制器的性能瓶颈,能够更好地支撑下一代光通信技术。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 400px height: 267px " src="https://img1.17img.cn/17img/images/201911/uepic/176f1ba3-e146-4a90-944a-6284c5ea47b0.jpg" title="蔡鑫伦.jpg" alt="蔡鑫伦.jpg" width="400" height="267" border="0" vspace="0"//pp style="text-align: center "  strong中山大学教授 蔡鑫伦/strong/pp  牛津仪器等离子技术部邓丽刚作“磷化铟半导体化合物光子器件等离子等离子刻蚀工艺综述”的报告。邓丽刚在牛津仪器工作了超过25年,在等离子刻蚀等领域具有超过30年的经验,长期在英国从事等离子体刻蚀等方面的工作。磷、铟等广泛应用于光电子器件中,报告中介绍了不同的器件对于工艺的基本要求、基本的等离子体概念、由基本概念引申出等离子体刻蚀影响因素以及如何利用这些概念调制刻蚀形貌 还介绍了DFB激光器的刻蚀工艺、器件损伤和工艺的重复性等。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 400px height: 267px " src="https://img1.17img.cn/17img/images/201911/uepic/8c3e4706-f280-4738-9372-fd82b27bf801.jpg" title="邓丽刚.jpg" alt="邓丽刚.jpg" width="400" height="267" border="0" vspace="0"//pp style="text-align: center "strong牛津仪器等离子技术部 邓丽刚/strong/pp  湖南启泰传感科技有限公司董事长王国秋作“薄膜压力传感器与物联网发展”的报告。压力传感器,由于压力源会造成表面变形,导致破坏性作用,使得传感器面临损坏、失效、寿命缩短等问题,目前国内主要使用进口产品。湖南启泰传感制造的压力传感器应用了金属基底,不但弹性更好、稳定性高、可靠性好、温度适应性好(-200℃-200℃),而且避免了使用硅和陶瓷材料的极端高压适应性问题 王总还以消防行业为例,阐述了物联网动态监测对于下一代压力传感器的革命性变革。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 400px height: 237px " src="https://img1.17img.cn/17img/images/201911/uepic/c07e59d6-debf-4766-9d80-6a00a7129eb6.jpg" title="湖南启泰传感科技有限公司董事长 王国秋.jpg" alt="湖南启泰传感科技有限公司董事长 王国秋.jpg" width="400" height="237" border="0" vspace="0"//pp style="text-align: center "strong湖南启泰传感科技有限公司董事长 王国秋/strong/pp  深圳珑璟光电技术有限公司赵硕博士作“AR光学方案趋势”的报告,介绍了AR和VR市场目前发展趋势及相关技术方案、衍射波导相关内容以及AR仪器在现实场景中的应用。赵博士认为,VR和AR市场取代手机是一个必然的发展趋势,2025年AR市场将达到8000亿美金以上。华为、英特尔、高通、微软、苹果等行业巨头已经在AR领域开始布局,其中,AR眼镜产品将成为焦点,而光学模组限制了AR场景的使用,且成本占比接近50%,是AR产品的重要元部件。 赵博士介绍了深圳珑璟光电在棱镜、Birdbath、阵列光波导、光栅的产品研发计划以及在G端、B端、C端的应用。br//pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 400px height: 267px " src="https://img1.17img.cn/17img/images/201911/uepic/0faa9bd8-d9dd-4e5a-8c16-0e3d45edf8fd.jpg" title="赵硕.jpg" alt="赵硕.jpg" width="400" height="267" border="0" vspace="0"//pp style="text-align: center "strong深圳珑璟光电技术有限公司 赵硕/strong/pp  华中科技大学引力中心刘骅锋教授作“基于硅基刻穿工艺的高精度MEMS加速度计”的报告,介绍了MEMS火星微震加速度计原理及关键技术,包括高深宽比体硅刻穿工艺、高精度位移传感技术、电磁力反馈控制技术、温度自补偿技术、冲击过载保护技术、低应力封装技术等。刘教授还在现场播放了来自火星的风声,令现场观众耳目一新。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 400px height: 267px " src="https://img1.17img.cn/17img/images/201911/uepic/d22f4dee-1b9e-414c-9444-386f844bd6ce.jpg" title="刘骅锋.jpg" alt="刘骅锋.jpg" width="400" height="267" border="0" vspace="0"//pp style="text-align: center "strong华中科技大学 刘骅锋/strong/pp  牛津仪器等离子技术部邓丽刚作“VCSEL及其他镓砷-铝镓砷等离子刻蚀工艺”的报告,通过大量实例介绍了VCSEL解决方案和镓砷-铝镓砷的刻蚀工艺。报告后,邓丽刚向参会观众提出两个与VCSEL有关的基础性问题,并为两位答题观众颁发了奖品。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 400px height: 267px " src="https://img1.17img.cn/17img/images/201911/uepic/c03d2870-7b58-4670-a0b6-6d1d35a372c2.jpg" title="邓丽刚为答题者颁奖.jpg" alt="邓丽刚为答题者颁奖.jpg" width="400" height="267" border="0" vspace="0"//pp style="text-align: center "strong牛津仪器等离子技术部邓丽刚为答题者颁奖/strong/pp  Axitron公司中国区市场与工艺高级部门经理方子文博士作“III/V族光电设备的大批量外延制造”的报告,介绍了VCSEL具体在砷化镓基、磷化铟基方面的应用以及Micro LED在显示方面标杆性的工作。方博士表示,VCSEL器件的出现已经很多年历史,但落实到生产要考虑到良率等问题,比如在均匀性方面,要考虑厚度均匀性、组分均匀性,另外也要考虑成本问题 尺寸在50微米以下的Micro LED产品,在未来必然会替代LCD、OLED等,但这离不开业界的努力,其市场相比于LED照明市场更加广阔,是LED市场的10倍以上。市面上见到的Micro LED产品其实还没有实现量产,而目前工业届最大的问题就是量产,Axitron公司也正在解决如何实现低成本、高良率生产问题,因为只有这样才能打开更广阔的市场。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 400px height: 267px " src="https://img1.17img.cn/17img/images/201911/uepic/db4f3c98-a467-4476-8443-c2b69cc8e72a.jpg" title="方子文.jpg" alt="方子文.jpg" width="400" height="267" border="0" vspace="0"//pp style="text-align: center "strongAxitron公司中国区市场与工艺高级部门经理 方子文/strong/pp  牛津仪器纳米分析部马岚博士作“半导体材料的表面分析”的报告,介绍了EDS及EBSD在半导体中的应用以及原子力显微镜在半导体中的应用。EBSD主要用于长程有序的结晶半导体样品分析,如微焊点等。EBSD能通过采集周期性样品表面所产生的衍射电子信号,确定样品晶体结构、晶粒取向、晶粒尺寸和界面分布,可以用于芯片的失效分析。随后,马岚博士也就原子力显微镜如何分析半导体表面粗糙度、形貌、缺陷等进行了详细介绍。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 400px height: 267px " src="https://img1.17img.cn/17img/images/201911/uepic/e05c777d-cf78-47be-8e59-4999118212af.jpg" title="马岚.jpg" alt="马岚.jpg" width="400" height="267" border="0" vspace="0"/ /pp style="text-align: center "strong 牛津仪器 马岚/strong/pp style="text-align: center "strongimg style="max-width: 100% max-height: 100% width: 400px height: 400px " src="https://img1.17img.cn/17img/images/201911/uepic/02f3ede5-bd2f-4713-b0d0-d61cde0ce5ee.jpg" title="颁奖_副本.png" alt="颁奖_副本.png" width="400" height="400" border="0" vspace="0"//strong/pp style="text-align: center "strong牛津仪器为报告人颁奖/strong/pp style="text-align: left "  仪器信息网还在会议期间采访了牛津仪器等离子技术部中国区经理陈伟和Axitron公司中国区市场与工艺高级部门经理方子文博士,了解国内半导体产业发展现状与等离子技术发展的趋势。br//pp  strong牛津仪器:/strongstrong以客户需求为中心 以行业应用为导向/strong/pp  陈经理谈到,得益于国内政策导向的支持与半导体芯片企业的飞速发展,牛津仪器凭借着每年10%以上的科研投入保持着两位数的高速增长。一方面,牛津仪器迎合客户需求,积极推陈出新,关注化合物半导体的发展,尤其是在光电、能源领域 另一方面,牛津仪器积极发展等离子体技术,比如在等离子体低损伤方面,不同于传统ICP以时间为单位,新型原子层刻蚀以每个Cycle为单位,刻蚀可以控制在原子层级别,精度大幅提升。/pp  牛津仪器目前超过50%的用户都是量产型用户,通过举办类似的线下用户会,与用户面对面交流,第一时间了解到用户的问题和攻克的难点,确定攻克方向上的优先顺序。在传统领域,牛津仪器主要是帮助量产型用户提升产能、良率 在新领域研发方面,牛津仪器也在关注二维材料等领域,虽然三到五年内尚不会成为主流,但其发展潜力看好。包括砷化镓,碳纳米管以及二硫化钼等低维材料都有希望成为替代硅的晶体管材料。目前,客户对等离子技术的需求日益提高,以无机材料中的化合物半导体为例,随着芯片的迭代升级,对频率和功率的要求更加严格,不仅要朝着刻蚀的无损化的方向发展,还要求一台设备能对应更多类型的材料,这都是牛津仪器目前在研发的方向。/ppstrong  Axitron公司:将与牛津仪器密切合作 携手促进等离子技术发展和半导体相关产业升级/strong/pp  方博士表示,Axitron公司与牛津仪器是上下游的合作关系,比如在薄膜的沉积和刻蚀方面,双方合作攻克新材料,从硅基材料到新型化合物半导体材料,如砷化镓及磷化铟等新兴材料。目前,化合物半导体材料在性能上比硅强,但是化合物半导体材料的普及主要还是集中在成本上,这包括了整个行业长期的质量验证过程以及行业整体“量”上的提升。以LED蓝宝石衬底为例,过去单片成本高昂,但随着政府的支持和大量工厂的兴起,单片成本大幅降低。在这个过程中,科研用户在化合物半导体领域进行初筛,选择最具量产前景的半导体新材料 工业用户主要负责降低单位成本,比如基台的成本和消耗,保证产能和良率的提升和化学源效率的提高。/pp  对于国内半导体产业面临的问题,方博士也指出,国内产业在数据分析方面还停留在初级阶段,产品质量出现问题才由工程师人为分析,尚未建立起工业的自动化,进行常见参数如温度、压力与对应产品批次的质量分析。对于国内半导体产业技术相对落后的问题,牛津仪器和Axitron公司也经常为客户做一些技术分享,帮助半导体相关产业升级。/pp  陈经理最后谈到,中国市场对于牛津仪器意义非凡,在整个亚太市场都占有很高的比重,牛津仪器也会重视中国市场的巩固与开拓,未来考虑将在上海建立DEMO实验室,帮助用户提供专业解决方案。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 400px height: 267px " src="https://img1.17img.cn/17img/images/201911/uepic/aa4ca30d-bd3b-434f-ab51-7ad34ef13c6c.jpg" title="Axitron公司方子文博士(左)和牛津仪器经理陈伟(右).jpg" alt="Axitron公司方子文博士(左)和牛津仪器经理陈伟(右).jpg" width="400" height="267" border="0" vspace="0"//pp style="text-align: center "strongAxitron公司方子文博士(左)和牛津仪器等离子技术部中国区经理陈伟(右)/strong/pp  本次会议在武汉隆重举行,牛津仪器与用户进行了深入的交流讨论,对于用户痛点以及未来的发展方向有了更加清晰的认知,也帮助用户解决了科研生产中的工艺问题,会议取得了圆满成功。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 400px height: 266px " src="https://img1.17img.cn/17img/images/201911/uepic/897cf5fb-7e61-4f7d-9275-41ac011fb8f7.jpg" title="获奖.jpg" alt="获奖.jpg" width="400" height="266" border="0" vspace="0"//pp style="text-align: center "strong研讨会期间还举办了抽奖环节,牛津仪器为与会老师提供了丰富的奖品/strong/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 400px height: 267px " src="https://img1.17img.cn/17img/images/201911/uepic/e67b1886-c314-44cd-b252-629652092789.jpg" title="会后热烈讨论.jpg" alt="会后热烈讨论.jpg" width="400" height="267" border="0" vspace="0"//pp style="text-align: center "strong会后热烈讨论/strong/ppbr//p
  • 世界最小尺寸闪烁氙灯开拓应用新希望
    在世界芸芸的闪烁氙灯中如今有一张十分显眼的面孔,并且因其稳定性和长寿命已经获得高度认可,那就是世界上最小的电池供电的滨松2W闪烁氙灯模块L12336系列。这张世界上最小的“面孔”已经出现在滨松的闪烁氙灯阵列中,闪烁氙灯是由充满高压氙气的玻璃封装组成。这是一个具有特殊的立方形外形的2W闪烁氙灯模块,并能够在电池电源下工作。现在让我们一探这款融合了创新思维和高科技制造含量的产品吧!滨松2W闪烁氙灯模块L12336系列充分利用同时可分析多种波长的优势闪烁氙灯是在极短时间内发射高强度光的脉冲放电灯。它们作为光源在工厂自动化中被用于血液分析、环境分析以及产品检查。滨松公司原有的5、10、20和60W闪烁氙灯,由于稳定性高、寿命长,都能提供世界上顶级的性能特性,但是滨松工程师发现近来LED也是潜在的光源,其具有紧凑、价位低等特性,自然成为市场上的宠儿。因此滨松公司开始了LED光源的研究,滨松2W闪烁氙灯模块L12336系列的开发工程师之一山下雄一(滨松电子管部门,第4制造部,负责设计与工程) 在介绍这款产品的时候曾说道:“这项工作使我们充分了解了LED光源的优劣。简单的说,LED是单色光源。如果想要同时分析多个波长,就需要多个LED光源。另一方面,在单个闪光内,闪烁灯的输出可以从紫外光到可见光,这对于同时分析多波长是理想的。”于是项目工程师们提出设想:如果可以利用这个特殊的特性来创造能与LED竞争的闪烁灯,那么它将开启更加宽广的应用。怀揣着这种可能性,山下与另一位负责生产的滨松工程师斋藤展彰(滨松电子管部门,第4制造部)开始了评估产品外形。滨松2W闪烁氙灯模块L12336系列研发工程师斋藤展彰(左)、山下雄一(右)山下认为,滨松研制的闪烁氙灯已经回应了市场需求。但是对这种2W模块,滨松现在要尝试一些新的东西,这能够使其在竞争中前进一步,所以这是一件很值得去做的事,虽然市场上已经有了2W模块的产品,但是滨松2W闪烁氙灯模块L12336系列在尺寸和外形上是完全不同的,开创世界前所未有的闪烁氙灯模块使用体验。面积42平方毫米——挑战世界上最小的尺寸滨松的之前研发的5W模块的外形是水平方向较长,并有两种类型:一种是灯在较长边,另一种是灯在较短边。虽然具有两种类型更符合市场的需求,但是具有相同性能的两种不同类型可能给一些使用者造成不便。所以,如今滨松2W闪烁氙灯模块L12336系列则选择了一种能够满足任意客户需求的外形,即骰子状的外形,而这种外形几乎可以在任意的结构中使用。而且,将其制成一个单独的模块也能降低生产成本。这可以为使用者带来方便和实惠的双重好处。滨松2W闪烁氙灯模块L12336系列研发工程师竹内望但实现这个外形,并不是一个简单的事情。对于此,负责评估与测试的滨松工程师竹内望(滨松电子管部门,第4制造部)曾说:“外形当然是个难题,而制造比其他产品更小的尺寸也使我们面临之前从未处理过的问题。不像滨松5W闪烁氙灯模块42*42*100毫米的尺寸,滨松2W闪烁模块L12336系列的目标尺寸是42平方毫米和小于一半的体积比。基本上所有的元件和布局都必须要从草图开始进行决定,为了得到正确的组合,努力和尝试的过程是重复而又艰难的。”2w的模块体积小于之前的5w模块的1/2滨松2W闪烁氙灯模块L12336系列和以前的5W型是完全不同的,这不仅仅是缩小和最小化元件尺寸的事,研发团队使用了以前完全没使用过的新的电子元件来重新设计电路。所以,尽管设备变得更小,但是也采取了措施来提高对整个新标准的可靠性评估。研发工作启动的6个月后进行了设计更改在开发过程中,滨松公司曾得到来自设备制造商的请求,他们想要能够进行室外现场测量的便携式或手持式设备。研发团队意识到,这个趋势将会蔓延到全世界的设备生产商,而他们必须制造拥有世界上最小尺寸的产品,并且该产品应使用电池供电已达到便于携带的目的。鉴于研发思维的变化,在距离研发工作开始大概半年的时候,整个滨松2W闪烁氙灯模块研发团队投入到了更改设计的工作中。而在研制产品的过程中,电池供电是最难的一个课题,但研发团队确信,电池供电这个特性是满足新的需求的要点。提供5V的电池电源要求电源供给的改变,但改变输入功率会破坏整体平衡,所以这迫使团队不得不重新选择元件来进行再次调整,以获得最优的性能。而元件之间也是有变化的,所以即使规格相同,每个产品的性能也有细微的差异。如果没有考虑到这些差异,闪烁氙灯模块将不能提供全部的性能。山下在描述这段经历的时候曾回忆:“当我们终于完成了艰难的重新选择和元件调整后,然后给竹内去评估它。但是第二天他一脸失望地出现告诉我,我们无法得到想要的性能……”,在该阶段这种问题一直反复发生,山下和竹内两人严肃地窃窃私语,这种严肃的氛围持续了很长一段时间。只要客户想要,那么就永不言弃单位时间内闪烁频率越高,测量和分析时间就可以缩短得越多,这个特性也可为客户带来更多的方便,因此发光重复规格高达1250HZ亦成为滨松2W闪烁氙灯模块研发团队的另一个需要攻克的课题。在此之前,滨松所有闪烁灯都没有达到1250HZ,并且该模块还必须使用5V的低电压,在山下的报告中,经常出现:“斋藤先生,我无法给电源充电”的话语,而且报告也有一些其他不乐观的结果。给电路充电的研发工作花费了团队最多的时间。每秒发光1250次需要大量的电能,但是没有充足的供电,光每秒只能发射1000次。为了得到1250HZ的闪烁频率,研发团队不断地评估主要元件和电路系统。在降低电源电压、电流,选择保持低电流的元件的同时,还想减小灯模块的尺寸,所以保持平衡十分必要。研发过程艰难而又坎坷,但如果说放弃使用电池,可以增大电流,但相应的产品的性能就不能为客户带去便利,所以在这个问题上团队未有屈服过,“甚至光发射速率达到了1250HZ,我们的客户也很快会要求在室外用电池供电使用这个设备,所以即使老板让我放弃,我也一直在努力。”斋藤在谈到这个问题的时候曾说到。来之不易的灯的稳定性滨松2W闪烁氙灯模块L12336系列和普通成人小指的尺寸差不多,包括电极在内的每一个部分都非常小,这些连安装过程都要用新的技术和技巧。使灯保持稳定是其中最难的一个任务。山下和负责装配灯的人会面,让其做些小的调整,而自己继续修改零件、安装并评估模块,并花费了无数的时间来重复这个过程,最后终于得到了一个令人满意的零件组合方案,通过装配后,最终实现了想要的规格,这对于整个团队来说无疑是一个激动人心的时刻。可同时进行多波长分析,因为一个闪光输出包含从紫外线到红外线。如果时间是微秒级的,脉冲照明型将从直流照明型获得大约1000倍的光输出。 技术难题的解决,是通过团队重新探讨了机械与电路设计,并在之后进行了多次检查电源匹配并对零件布局和方向做精确的调整来实现的。而工程师山下的经验也起到了重要的作用。在日常生产和进行研发工作的同时,富有经验的山下始终在检查在各产品中元件体现出的微小差异,当团队遇到困难时,这便成为了一个有力的帮助。这和滨松公司提倡将研发工作和日常生产工作联系在一起的理念有很大关系。广泛应用开拓的新希望滨松2W闪烁氙灯模块L12336系列的诞生,让闪烁氙灯模块有了一个新的高点,并为新型的应用提供了无限的可能性。如今,实验分析仪器已经从原来大型的分析中心或者设备发展成为紧凑的桌面仪器。鉴于市场趋势,下一阶段手持设备将越来越多地用于现场分析和测量,而滨松2W闪烁氙灯模块L12336系列便可以参与到其中。在医疗诊断领域把L12336结合在紧凑的设备中,更益于设备在病人护理现场或附近使用,例如闪烁氙灯作为宽光谱光源可以在小型生化分析设备中使用、作为激发光光源用在荧光检测领域,作为诊断设备中的光源产品,闪烁氙灯会把功耗小、小型化、长寿命、光产额高等优势发挥的淋漓尽致。在“即时检测”(即POCT)设备如火如荼发展的今天,光源、探测器等元器件的高集成化、微型化已经是一个必然的趋势,而将滨松公司2W闪烁氙灯模块L12336和滨松研制的世界上最小的光电倍增管“Micro PMT”(μPMT)结合在一起,以滨松μPMT作为光探测,滨松2W闪烁氙灯模块作为光源,使医学探测更加快速便捷,而这也有可能对新的医学治疗诊断做出真正的贡献。滨松该两类产品,均会在2015年3月的第12届中国检验医学展滨松中国展台(D区505、506展位)隆重展出,进一步向业内人士展示其在检验医学上的更多更广的应用可能。除此之外,滨松的高集成化、微型化的世界最小微型光谱仪C12666MA,以及最新多通道MPPC模块(硅光电倍增管模块)亦会出现在该展会上,共同印鉴“微”时代的到来。另外,关于滨松2W闪烁氙灯模块,滨松工程师竹内还曾谈到:“当我们首次在产品展览中展示该滨松2W闪烁氙灯模块时,客户首先对它用电池驱动感兴趣。在减小设备尺寸成为主要趋势时,产品紧凑的设计成为另一个受到高度评价的特性。我们也听到了客户的评价,他们想在测量生物活体中尝试使用这个闪烁氙灯模块。”而在环境检测方面,滨松亦在研发不同的光源来替代在紫外区域发射高强度的汞灯,而一个有效的产品就是氙灯。根据不同的原因,这款滨松2W闪烁氙灯模块被认为是十分有效的。山下也希望,能够听到更多来自客户的对这款滨松2W型号闪烁氙灯模块L12336系列的建议。 更多滨松2W闪烁氙灯模块—L12336系列产品详细信息:
  • 新品发布:PBS气泡尺寸监测系统
    新品发布:PBS气泡尺寸监测系统近年来,随着计算机技术的发展,国内外选矿厂的自动化程度越来越高,选矿厂的检测与控制系统也要求实现稳定控制、监督控制、最优控制。浮选过程控制的主要目标是保持合格的最终精矿品位、尽量提升有用成分的回收率、减少药剂消耗和提高浮选效率。浮选过程控制的主要因素包括:药剂的加药量、基于泡沫信息的综合检测分析技术、浮选矿浆pH值、浮选槽液位、充气量等。浮选过程中要添加的药剂主要有:捕收剂、起泡剂和调整剂。目前,浮选系统的加药还是以人工为主,人工加药难免会造成较大误差和药剂浪费,达不到精准加药,国内外的选矿厂都在研究自动加药系统,以期实现高精度的药剂自动添加。浮选泡沫体是由大量的大小不一、形状各异、灰度值不同的矿化气泡组成的,包含大量与浮选过程变量及浮选结果有关的信息,浮选泡沫图像采集和处理技术在浮选过程控制上的应用,显著地提高了工艺指标和自动化程度。PBS气泡尺寸监测系统是基于以上两个技术难点和检测要求应运而生的,在PBM气泡监测系统的基础上增加了自动进样系统和自控系统,测试结果可用于表征浮选机的刮泡量、判断所给药剂量是否合适、评定精矿的品味和回收率,该系统已在矿物浮选领域有成熟应用。PBS气泡尺寸监测系统的测试结果包括:气泡/泡沫图像和亮度气泡/泡沫数量气泡/泡沫浓度气泡/泡沫流动速度气泡/泡沫粒度分布(平均粒径、累计分布(D10、D50、D90等))气泡/泡沫粒度变化趋势气泡/泡沫稳定性
  • 大连理工大学突破等离子体工艺腔室仿真软件,助力半导体关键设备研发
    超大规模集成电路(ULSI)产业直接关系到国家的经济发展、信息安全和国防建设,是衡量一个国家综合实力的重要标志之一。在半导体芯片制备过程中,约有三分之一的工序要使用等离子体技术,因此配备等离子体工艺腔室的材料刻蚀和薄膜沉积设备是ULSI制造工艺的核心。目前,半导体工艺中最常用的两种等离子体源是CCP(容性耦合等离子体)和ICP(感应耦合等离子体)。等离子体工艺腔室制造过程极为复杂,不仅涉及精密机械加工技术,还要统筹考虑电源、气体、材料等外部参数的优化,以及与晶圆处理工艺的兼容性。如果采用传统的“实验试错法”,不仅成本巨大,而且延长了设备的研发周期,将严重制约我国ULSI产业的快速发展。因此,采用建模仿真与实验诊断相结合的方式、为等离子体工艺腔室的研发与优化提供方案,成为一种必然趋势。等离子体放电过程是极其复杂的,受到多种外界参数的控制,如电源功率与频率、气体成分与压强、腔室尺寸及材料属性等。此外,等离子体系统还包含了多空间尺度和多时间尺度的变化,以及多物理化学场的耦合过程。例如等离子体、鞘层、表面微槽等空间特征尺度相差10个量级;电磁场、带电粒子、中性气体及化学反应等时间特征尺度相差9个量级。如此复杂的等离子体工艺环境,给物理建模和数值仿真都带来了巨大挑战。物理学院PSEG团队在王友年教授的带领下,自2005年开始,历经近二十年时间,在国内率先研发出具有自主知识产权的等离子体工艺腔室仿真软件——MAPS(Multi-Physics Analysis of Plasma Sources)。通过采用物理建模、数值仿真与实验诊断相结合的方法,解决了制约等离子体工艺腔室设计和制造中的一些关键技术难题,为我国研发具有自主知识产权的等离子体工艺腔室提供了技术支撑。MAPS是一款专门面向等离子体工艺腔室的数值模拟软件平台,可以同时为等离子体工艺腔室的参数设计和表面处理工艺(材料刻蚀和薄膜沉积)的结果预测提供模拟服务。基于不同的等离子体模型,MAPS包含不同的数值模拟方法,如粒子/蒙特卡洛碰撞模拟方法、流体力学模拟方法、流体力学/蒙特卡洛碰撞混合模拟方法、整体模型模拟方法等。软件平台包含输入部分、输出部分以及七大模块,分别是等离子体模块、中性气体模块、电磁模块、鞘层模块、化学反应模块、表面模块及实验验证模块。此外,PSEG团队研制了结构可变的大面积、多功能等离子体实验平台和多套CCP和ICP放电平台,并自主研发了射频磁探针、微波发卡探针、光探针、吸收光谱诊断系统、布拉格光栅测温系统、悬浮双探针等诊断工具和集成了商用的Langmuir探针、质谱仪、离子能量分析仪、光谱仪、ICCD及光致解离负离子诊断系统等。这些诊断手段为等离子体源多参数诊断提供条件。大量研究表明,MAPS的模拟结果与实验测量结果在量级和变化趋势上达到一致,证明了MAPS仿真软件的可靠性。近期,针对工业中常用的CCP源,MAPS仿真软件提供了一种新的快速仿真算法:基于多时间步长、泊松方程的半隐式修正、超松弛迭代等,可以将模拟速度提高几十倍。此外,针对ICP源,PSEG团队也建立了一种新的双极扩散近似模型,可以对带有射频偏压的感性耦合放电过程进行仿真。该方法不仅模拟速度快,还适用于低气压放电。MAPS仿真软件具有外界控制参数多、耦合物理场多、数值求解器多、数值仿真模型多等优势,能够对ICP刻蚀机、CCP刻蚀机、PECVD(等离子体增强化学气相沉积)和PVD(物理气相沉积)工艺腔室进行仿真,支持对优化工艺过程参数的进一步探索,受到了国内的多家半导体设备制造企业的青睐。近十年中,MAPS仿真软件已分别为北方华创、中微半导体设备(上海)、拓荆科技、苏州迈为、武汉长江存储及理想能源设备(上海)等多家企业提供仿真服务。未来,PSEG团队将继续专注于对MAPS仿真软件的完善和升级,希望可以为半导体、光伏及平板显示等产业的创新与发展注入源源不断的强劲动力。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制