当前位置: 仪器信息网 > 行业主题 > >

质谱基因芯片高通量分析仪

仪器信息网质谱基因芯片高通量分析仪专题为您提供2024年最新质谱基因芯片高通量分析仪价格报价、厂家品牌的相关信息, 包括质谱基因芯片高通量分析仪参数、型号等,不管是国产,还是进口品牌的质谱基因芯片高通量分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱基因芯片高通量分析仪相关的耗材配件、试剂标物,还有质谱基因芯片高通量分析仪相关的最新资讯、资料,以及质谱基因芯片高通量分析仪相关的解决方案。

质谱基因芯片高通量分析仪相关的论坛

  • 各个领域的“基因芯片”

    基因芯片及其在病原微生物检测中的应用基因芯片是近年来迅速发展的一门生物高新技术,它以其能够快速、高效、大规模地同步检测生物遗传信息的卓越功能而得到发展。在基因测序、基因表达分析、药物筛选、基因诊断等领域显示出重要的理论和实用价值。基因芯片是指应用大规模集成电路的微阵列技术。在固相支持物表面(常用的固相支持物有玻璃、硅片、尼龙膜等载体)有规律地合成数万个代表不同基因的寡核苷酸“探针”或液相合成探针后由点样器有规律地点样于固相支持物表面;然后将要研究的目的材料中的DNA、RNA或用cDNA同位素或荧光物标记后,与固相支持物表面的探针进行杂交,通过放射自显影或荧光共聚焦显微镜扫描,对这些杂交图谱进行检测;再利用计算机对每一个探针上的杂交信号作分析处理,便可得到目的材料中有关基因表达信息。该技术可将大量的探针同时固定于支持物上,所以一次可对大量核酸分子进行检测分析。基因芯片分类基因芯片按其片基不同可分为无机片基芯片和有机合成片基芯片:如果按其应用不同,可分为表达谱芯片、诊断芯片、检测芯片;如果按其结构不同可分为DNA阵列和寡核苷酸芯片;如果按其制备方法不同可分为原位合成芯片和合成后交联芯片。目前,常用于基因芯片制作的固相支持物主要包括半导体硅片、普通玻璃片、尼龙膜等基质。它们各有优缺点,可根据不同的用途和目的选择使用。用硅片制作的芯片,其DNA探针排列的密度高,在1.28cm芯片上,可达40万点阵。检测灵敏度高但专一性差。用玻璃制作的芯片,可用于双色荧光标记杂交,便于杂交信号的检测,但其灵敏度低,而且对玻璃片的处理要求高。尼龙膜主要用于制作eDNA芯片,即将不同的eDNA片断点阵于尼龙膜上,它可用同位素标记检测,灵敏度高,专一性好,但是DNA阵列的密度低。DNA探针的制备及固化探针的制备及固化有2种方法:①在片基上原位合成寡核苷酸;②在片基以外制备DNA探针,并以显微打印等手段将其固化于片基上。作者介绍了待测DNA样品的制备、标记样品与基因芯片杂交、杂交信息的检测与分析、操作过程中存在的问题及解决办法。基因芯片可以对病原细菌检测、病毒的检测及其他方面如支原体检测等。问题和展望基因芯片在病原微生物检测中具有快速、灵敏、高通量、自动化等特点。但目前仍面临一些问题有待解决,这些问题主要体现在硬件和软件2个方面。在硬件方面,DNA芯片技术需要昂贵的尖端仪器,如生产原位合成芯片需要光刻机器和寡核苷酸合成仪;构建DNA微集阵列的自动仪器约需8万美元以上,而检测芯片则要激光共聚焦显微镜、落射荧光显微镜等设备,费用较高。在软件(即技术)上也存在一些问题。首先,探针制备的环节上,原位合成寡核苷酸技术复杂,且有专利保护,合成过程中有可能插入错误核苷酸或混入杂质,降低了特异性和信噪比;显微打印技术较灵活,易实现,但需收集或合成大量探针,且阵列的集成度不高。其次,在样品和芯片杂交的环节上 ,因为杂交在固相上进行,空间因素会对杂交造成不利影响;还有,在一个芯片上存在多种探针,这对杂交条件是个挑战,因为这种探针的最适条件未必适合另一种探针;而且,复杂的探针如长寡核苷酸容易自身形成二 、三级结构,影响与靶序列的杂交或给出错误的阴性信号,当然在其它技术环节上也存在着一些难题,如样品准备复杂、检测的灵敏度低等。虽然基因芯片技术在多个环节上有待提高,但它在生命科学及相关领域中已呈现出广阔的应用前景,相信随着研究的不断深入和技术的更加完善,基因芯片会成为基础研究和临床应用的强有力工具。

  • 基因芯片实验操作流程图

    基因芯片实验操作流程包括样本DNA或RNA制备、标记、杂交及洗涤等步骤http://img1.jiansuo.net/trademd/upload/asset/meeting/2010/12/02/1291289644.JPG 基因芯片实验操作流程图 1、样本DNA或RNA制备 芯片实验中核酸的抽提没有特殊之处,参照常规的分子生物学实验手册就可以。但对于RNA样本,由于RNA的稳定性很差,在活体内的半衰期也很短,因此取材一定要新鲜,取材后迅速保存在液氮中,在整个处理过程中要非常小心,以免降解,影响实验成功率或结果的可靠性。 2、核酸标记方式 分子生物学常用的标记方法有同位素标记和非同位素标记方法,常用的同位素有33 P、32 P、125 I及3 H等化学发光标记和荧光标记,非同位素标记方法又分为化学发光法和荧光法。常用的化学发光物质有碱性磷酸酶和辣根过氧化物酶,它们能催化相应的底物产生有颜色的沉淀物;生物素和地高辛是最常用的非同位素标记物。很多荧光染料、碱性磷酸酶和辣根过氧化物酶可直接同抗地高辛抗体及亲和素偶联。而目前常用的荧光染料种类有德克萨斯红(Texasred)、荧光系、罗丹明、Cy3、Cy5等。生物芯片中的标记方法普遍采用荧光方法,很少采用化学发光法和同位素标记方法。 核酸样本通常采用酶反应法进行标记,蛋白质样本采用化学方法或抗体―抗原间接标记的方式。核酸中常用的酶反应方法有:反转录法、随机引物法、切口平移(nicktranslation)、PCR、体外转录等。在酶反应过程中掺人带荧光的dNTP,从而标记新合成的核酸分子。如果酶反应中需要引物,如PCR、随机引物法和反转录法,也可以将荧光基团通过化学反应加到引物的末端。 3、样品标记方法 样本标记方法很多,这里仅举几种常用的方法。 (1) RNA标记方法:对于表达谱基因芯片和RNA不同剪切体的研究,是针对RNA样本进行标记。最常见的标记方式是用Cy3或Cy5荧光,通过反转录标记法,选择不同激发波长的荧光标记不同的样本。如Cy3或Cy5标记的dNTP,通过酶反应掺人到待测样品中,便可以在一张片子上同时检测两份标本的信息,做到平行性比较,数据更可靠。另外,由于反转录法所需RNA样本量大,一般需要20fig的总RNA。对于微量的组织样本很难制备足够的RNA,这时可以采用RNA线性扩增方法,最普遍采用的RNA扩增方法是RNA体外线性扩增方法。 (2) DNA样本的标记方法:当对样本进行CGH分析、SNP、分子分型或甲基化研究时,主要选用DNA作为样本。对于CGH,可以进行全基因组标记,通常采用随机引物标记方法。这种方法需要的DNA量大,一般在2pg以上的基因组DNA。虽然有人发明了全基因组DNA的线性扩增技术以减少对样本量的需求,但效果上都不很理想,很难真正做到全基因组及完全的线性扩增。对于SNP研究,可以采用类似CGH的标记方式进行全基因组标记。由于SNP检测的是DNA的“质”,而不像表达谱或CGH质检测核酸的“量”,因此不必要考虑标记时DNA的线性关系,可以采用其他的全基因组的扩增方法。但由于杂交条件的限制,一般难以做到真正意义上的高通量。因此,一般只是选择少数目的基因的少数SNP位点进行研究,可以采用多重PCR标记方法标记目的片段代替全基因组标记。甲基化研究有两种方案,一种采用SNP的检测原理,另一种类似CGH的方法。

  • 【转帖】基因芯片技术进展!

    基因芯片技术进展及应用 作者:刘炎 [关键词] 基因芯片;核酸探针序列;杂交 1 基因芯片概述  随着人类基因组计划( Human Genome Project)即全部核苷酸测序的即将完成,人类基因组研究的重心逐渐进入后基因组时代( Postgenome Era)向基因的功能及基因的多样性倾斜[1,2]。通过对个体在不同生长发育阶段或不同生理状态下大量基因表达的平行分析,研究相应基因在生物体内的功能,阐明不同层次多基因协同作用的机理,进而在人类重大疾病如癌症、心血管疾病的发病机理、诊断治疗、药物开发等方面的研究发挥巨大的作用。它将大大推动人类结构基因组及功能基因组的各项基因组研究计划。  基因芯片的工作原理与经典的核酸分子杂交方法(southern 、northern)是一致的,都是应用已知核酸序列作为探针与互补的靶核苷酸序列杂交,通过随后的信号检测进行定性与定量分析,基因芯片在一微小的基片(硅片、玻片、塑料片等)表面集成了大量的分子识别探针,能够在同一时间内平行分析大量的基因,进行大信息量的筛选与检测分析[3,4]。基因芯片主要技术流程包括:芯片的设计与制备;靶基因的标记;芯片杂交与杂交信号检测。  基因芯片的设计实际上是指芯片上核酸探针序列的选择以及排布,设计方法取决于其应用目的,目前的应用范围主要包括基因表达和转录图谱分析及靶序列中单碱基多态位点(single nucleotide polymorphism,SNP)或突变点的检测,表达型芯片的目的是在杂交实验中对多个不同状态样品(不同组织或不同发育阶段、不同药物刺激)中数千基因的表达差异进行定量检测,探针序列一般来自于已知基因的cDNA 或EST库,设计时序列的特异性应放在首要位置,以保证与待测目的基因的特异结合,对于同一目的基因可设计多个序列不相重复的探针,使最终的数据更为可靠。基因单碱基多态检测的芯片一般采用等长移位设计法[5],即按靶序列从头到尾依次取一定长度的互补的核苷酸序列形成一探针组合,这组探针是与靶序列完全匹配的野生型探针,然后对于每一野生型探针,将其中间位置的某一碱基分别用其它三种碱基替换,形成三种不同的单碱基变化的核苷酸探针,这种设计可以对某一段核酸序列所有可能的SNPs位点进行扫描。  芯片制备方法主要包括两种类型:(1)点样法:首先是探针库的制备, 根据基因芯片的分析目标从相关的基因数据库中选取特异的序列进行PCR扩增或直接人工合成寡核苷酸序列[6],然后通过计算机控制的三坐标工作平台用特殊的针头和微喷头分别把不同的探针溶液逐点分配在玻璃、尼龙以及其它固相基片表面的不同位点上,通过物理和化学的方法使之固定,该方法各技术环节均较成熟,且灵活性大,适合于研究单位根据需要自行制备点阵规模适中的基因芯片。(2)原位合成法[7~10]:该法是在玻璃等硬质表面上直接合成寡核苷酸探针阵列,目前应用的主要有光去保护并行合成法,压电打印合成法等,其关键是高空间分辨率的模板定位技术和高合成产率的DNA化学合成技术,适合制作大规模DNA探针芯片,实现高密度芯片的标准化和规模化生产。待分析样品的制备是基因芯片实验流程的一个重要环节, 靶基因在与芯片探针结合杂交之前必需进行分离、扩增及标记。标记方法根据样品来源、芯片类型和研究目的的不同而有所差异。通常是在待测样品的PCR扩增、逆转录或体外转录过程中实现对靶基因的标记。对于检测细胞内mRNA表达水平的芯片,一般需要从细胞和组织中提取RNA,进行逆转录,并加入偶联有标记物的dNTP,从而完成对靶基因的标记过程[11],对于阵列密度较小的芯片可以用同位素,所需仪器均为实验室常规使用设备,易于开展相关工作,但是在信号检测时,一些杂交信号强的点阵容易产生光晕,干扰周围信号的分析。高密度芯片的分析一般采用荧光素标记靶基因,通过适当内参的设置及对荧光信号强度的标化可对细胞内mRNA的表达进行定量检测。近年来运用的多色荧光标记技术可更直观地比较不同来源样品的基因表达差异,即把不同来源的靶基因用不同激发波长的荧光素标记,并使它们同时与基因芯片杂交,通过比较芯片上不同波长荧光的分布图获得不同样品间差异表达基因的图谱[12,13],常用的双色荧光试剂有Cy3- dNTP和Cy5- dNTP。对多态性和突变检测型基因芯片采用多色荧光技术可以大大提高芯片的准确性和检测范围,例如用不同的荧光素分别标记靶序列及单碱基失配的参考序列,使它们同时与芯片杂交,通过不同荧光强弱的比较得出靶序列中碱基失配的信息[14]。  基因芯片与靶基因的杂交过程与一般的分子杂交过程基本相同,杂交反应的条件要根据探针的长度、GC碱基含量及芯片的类型来优化,如用于基因表达检测,杂交的严格性较低,而用于突变检测的芯片的杂交温度高,杂交时间短,条件相对严格。如果是用同位素标记靶基因,其后的信号检测即是放射自显影,若用荧光标记,则需要一套荧光扫描及分析系统,对相应探针阵列上的荧光强度进行分析比较,从而得到待测样品的相应信息。由于基因芯片获取的信息量大,对于基因芯片杂交数据的分析、处理、查询、比较等需要一个标准的数据格式,目前,一个大型的基因芯片的数据库正在构建中,将各实验室获得的基因芯片的结果集中起来,以利于数据的交流及结果的评估与分析。

  • 基因芯片技术知识概要

    生物科学正迅速地演变为一门信息科学。最明显的一个例子就是目前正在进行的HGP(human genome project),最终要搞清人类全部基因组的30亿左右碱基对的序列。除了人的遗传信息以外,还有其它生物尤其是模式生物(model organism)已经或正在被大规模测序,如大肠杆菌、啤酒酵母、秀丽隐杆线虫以及中国和日本科学家攻关的水稻基因组计划。但单纯知晓生物基因组序列一级结构还远远不够,还必须了解其中基因是怎样组织起来的,每个基因的功能是什么,又是怎样随发育调控和微环境因素的影响而在特定的时空域中展开其表达谱的,即我们正由结构基因组时代迈入功能基因组时代。随着这个功能基因组学问题的提出(后基因组时代,蛋白组学),涌现出许多功能强大的研究方法和研究工具,最突出的就是细胞蛋白质二维凝胶电泳(2-D-gel)(及相应的质谱法测蛋白分子量)和生物芯片(Biochip)技术。一、什么是基因芯片生物芯片,简单地说就是在一块指甲大小(1cm3)的有多聚赖氨酸包被的硅片上或其它固相支持物(如玻璃片、硅片、聚丙烯膜、硝酸纤维素膜、尼龙膜等,但需经特殊处理。作原位合成的支持物在聚合反应前要先使其表面衍生出羟基或氨基(视所要固定的分子为核酸或寡肽而定)并与保护基建立共价连接;作点样用的支持物为使其表面带上正电荷以吸附带负电荷的探针分子,通常需包被以氨基硅烷或多聚赖氨酸等)将生物分子探针(寡核苷酸片段或基因片段)以大规模阵列的形式排布,形成可与目的分子(如基因)相互作用,交行反应的固相表面,在激光的顺序激发下标记荧光根据实际反应情况分别呈现不同的荧光发射谱征,CCD相机或激光共聚焦显微镜根据其波长及波幅特征收集信号,作出比较和检测,从而迅速得出所要的信息。生物芯片包括基因芯片、蛋白质芯片、组织芯片。而基因芯片中,最成功的是DNA芯片,即将无数预先设计好的寡核苷酸或cDNA在芯片上做成点阵,与样品中同源核酸分子杂交的芯片。基因芯片的基本原理同芯片技术中杂交测序(sequencing by hybridization,SBH)。即任何线状的单链DNA或RNA序列均可被分解为一个序列固定、错落而重叠的寡核苷酸,又称亚序列(subsequence)。例如可把寡核苷酸序列TTAGCTCATATG分解成5个8nt亚序列:  (1) CTCATATG  (2) GCTCATAT  (3) AGCTCATA  (4) TAGCTCAT  (5) TTAGCTCA这5个亚序列依次错开一个碱基而重叠7个碱基。亚序列中A、T、C、G4个碱基自由组合而形成的所有可能的序列共有65536种。假如只考虑完全互补的杂交,那么48个8nt亚序列探针中,仅有上述5个能同靶DNA杂交。可以用人工合成的已知序列的所有可能的n体寡核苷酸探针与一个未知的荧光标记DNA/RNA序列杂交,通过对杂交荧光信号检测,检出所有能与靶DNA杂交的寡核苷酸,从而推出靶DNA中的所有8nt亚序列,最后由计算机对大量荧光信号的谱型(pattern)数据进行分析,重构靶DNA 的互补寡核苷酸序列。二、芯片类型一般基因芯片按其材质和功能,基本可分为以下几类:(一)元件型微阵列芯片1 .生物电子芯片2 .凝胶元件微阵列芯片3 .药物控释芯片(二) 通道型微阵列芯片1.毛细管电泳芯片2 .PCR扩增芯片3 .集成DNA分析芯片4 .毛细管电层析芯片(三)生物传感芯片1 .光学纤维阵列芯片2 .白光干涉谱传感芯片小鼠基因表达谱芯片(MGEC)附:目前国内基因芯片常见品种(上海博星公司)http://www.biomart.cn/upload/asset/2008/08/01/1217591301.gifhttp://www.biomart.cn/upload/asset/2008/08/01/1217591302.gifhttp://www.biomart.cn/upload/asset/2008/08/01/1217591303.gif

  • 【分享】基因芯片的制备

    1 原位光刻合成寡聚核苷酸原位光刻合成技术是由Affymetrix公司开发的,采用的技术原理是在合成碱基单体的5'羟基末端连上一个光敏保护基。合成的第一步是利用光照射使羟基端脱保护,然后一个5'端保护的核苷酸单体连接上去,这个过程反复进行直至合成完毕。使用多种掩盖物能以更少的合成步骤生产出高密度的阵列,在合成循环中探针数目呈指数增长。某一含n个核苷酸的寡聚核苷酸,通过4×n个化学步骤能合成出4n个可能结构。例如:一个完整的十核苷酸通过32个化学步骤,8个小时可能合成65,536个探针。  2 原位喷印合成 芯片原位喷印合成原理与喷墨打印类似,不过芯片喷印头和墨盒有多个,墨盒中装的是四种碱基等液体而不是碳粉。喷印头可在整个芯片上移动并根据芯片上不同位点探针的序列需要将特定的碱基喷印在芯片上特定位置。该技术采用的化学原理与传统的DNA固相合成一致,因此不需要特殊制备的化学试剂。  3 点样法 点样法是将合成好的探针、cDNA或基因组DNA通过特定的高速点样机器人直接点在芯片上。采用的机器人有一套计算机控制三维移动装置;多个打印/喷印针的打印/喷印头;一个减震底座,上面可放内盛探针的多孔板和多个芯片。根据需要还可以有温度和湿度控制装置;针洗涤装置。打印/喷印针将探针从多孔板取出直接打印或喷印于芯片上。直接打印时针头与芯片接触,而在喷印时针头与芯片保持一定距离。打印法的优点是探针密度高,通常1平方厘米可打印2,500个探针。缺点是定量准确性及重现性不好, 打印针易堵塞且使用寿命有限。喷印法的优点是定量准确,重现性好,使用寿命长。缺点是喷印的斑点大,因此探针密度低,通常只有1平方厘米400点。国外有多家实验室和公司研究开发打印/喷印设备,目前有一些已经商品化。军事医学科学院目前正在利用打印/喷印技术进行生物芯片的研究和开发,预计2年内将有用于实验室研究或临床诊断的基因芯片产品问世。  4 电子芯片电子芯片是由美国Nanogen公司开发的,目前国内清华大学和复旦大学也在开发这一技术。这种芯片为带有阳电荷的硅芯片、芯片经热氧化,制成1mm(1mm的阵列、每个阵列含多个微电极,在每个电极上通过氮化硅沉积和蚀刻制备出样品池。将链连接亲和素的琼脂糖覆盖在电极上,在电场作用下生物素标记的探针即可结合在特定电极上。电子芯片的最大特点是杂交速度快,可大大缩短分析时间。制备复杂、成本高是其不足。  5 三维芯片三维芯片是由美国的Packard、摩托罗拉、Argonne国家实验室三家机构与俄罗斯Engelhardt分子生物学研究所合作开发的一种芯片技术。三维生物芯片的实质上是一块显微镜载玻片,其上有10,000个微小聚乙烯酰胺凝胶条,每个凝胶条可用于靶DNA,RNA和蛋白质的分析。先把已知化合物加在凝胶条上,用3cm长的微型玻璃毛细管将待测样品加到凝胶条上。每个毛细管能把小到0.2nl的体积打到凝胶上。以上几家机构构合作研究的生物芯片系统具有其它生物芯片系统不具有的几个优点。一是凝胶条的三维化能加进更多的已知物质,增加了敏感性。二是可以在芯片上同时进行扩增与检测。一般情况下,必须在微量多孔板上先进行PCR扩增,再把样品加到芯片上,因此需要进行许多额外操作。本芯片所用凝胶体积很小,使PCR扩增体系的体积减小1,000倍(总体积约纳升级),从而节约了每个反应所用的PCR酶(约减少100倍)。三是以三维构象形式存在的蛋白和基因材料可以其天然状态在凝胶条上分析,可以进行免疫测定,受体-配体研究和蛋白组分析。  6 流过式芯片(flow-thru chip) Gene Logic 正在开发一种在芯片片基上制成格栅状微通道,Gene Logic设计及合成特定的寡核苷酸探针,结合于微通道内芯片的特定区域。从待测样品中分离DNA或RNA并对其进行荧光标记,然后,该样品流过芯片,固定的寡核苷酸探针捕获与之相互补的核酸,采用Gene Logic's信号检测系统分析结果。流通式芯片用于高通量分析已知基因的变化,其特点在于(1)敏感性高:由于寡核苷酸吸咐表面的增大,流过式芯片可监测稀有基因表达的变化;(2)速度快:微通道加速了杂交反应,减少了每次检测所需时间;(3)价格降低:由于采用了特殊的共价化学技术将寡核苷酸吸咐于微通道内,使每一种流过式芯片可反复使用多次,从而使其成本降低。

  • 基因芯片相关软件介绍

    1、基因芯片综合分析软件ArrayVision 7.0 一种功能强大的商业版基因芯片分析软件,不仅可以进行图像分析,还可以进行数据处理,方便protocol的管理功能强大,商业版正式版:6900美元。 Arraypro 4.0 Media Cybernetics公司的产品,该公司的gelpro, imagepro一直以精确成为同类产品中的佼佼者,相信arraypro也不会差。phoretix™ Array Nonlinear Dynamics公司的基因片综合分析软件。J-express 挪威Bergen大学编写,是一个用JAVA语言写的应用程序,界面清晰漂亮,用来分析微矩阵(microarray)实验获得的基因表达数据,需要下载安装JAVA运行环境JRE1.2后(5.1M)后,才能运行。2、 基因芯片阅读图像分析软件 ScanAlyze 2.44 斯坦福的基因芯片基因芯片阅读软件,进行微矩阵荧光图像分析,包括半自动定义格栅与像素点分析。输出为分隔的文本格式,可很容易地转化为任何数据库。 3、 基因芯片数据分析软件 Cluster 斯坦福的对大量微矩阵数据组进行各种簇(Cluster)分析与其它各种处理的软件。 SAM Significance Analysis of Microarrays 的缩写,微矩阵显著性分析软件,EXCEL软件的插件,由Stanford大学编制。4.基因芯片聚类图形显示 TreeView 1.5 斯坦福开发的用来显示Cluster软件分析的图形化结果。现已和Cluster成为了基因芯片处理的标准软件。FreeView 是基于JAVA语言的系统树生成软件,接收Cluster生成的数据,比Treeview增强了某些功能。 5.基因芯片引物设计 Array Designer 2.00 DNA微矩阵(microarray)软件,批量设计DNA和寡核苷酸引物工具。

  • 基因芯片扫描系统

    GeneChip System ([url=https://insevent.instrument.com.cn/t/Mp]gc[/url]S) 3000Dx v.2基因[b][url=http://hplc17.com]芯片扫描系统[/url][/b]是最可靠的临床研究平台,也是唯一被FDA批准/ SFDA,试管和CE标志芯片系统,适用于临床检测基于RNA和DNA。  [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]S 3000 dx v . 2是扩大Affymetrix临床的基础装备,装备还包括FDA批准,试管和CE标志Affymetrix基因分析试剂和人类基因组U133 v2.0芯片,即利用人类基因组U133 v2.0 cGMP制造芯片的版本。  Affymetrix的临床工具包提供了一种进入市场的有效方法,使测试开发人员能够节省时间、金钱和监管风险。  Affymetrix的基因芯片技术已经得到了成千上万的研究人员的信任,在芯片应用中产生了高度可重复的结果。[img=GeneChip® System ([url=https://insevent.instrument.com.cn/t/Mp]gc[/url]S) 3000Dx v.2基因芯片扫描系统1]http://17wab.cn/uploads/allimg/180726/1-1PH6102HW11.jpg[/img]  [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]S 3000Dx v.2 基因[b][url=http://hplc17.com]芯片扫描系统[/url][/b]适用于:  [b]科研[/b] 自信地分析或研究宝贵的人类样品  [b]诊断检测的开发[/b] Affymetrix合作伙伴已经开发并商业化了一些获得FDA批准的体外诊断和符合CE-IVD的诊断检测  [b]常规检测[/b] 一个系统,多种应用[img=GeneChip® System ([url=https://insevent.instrument.com.cn/t/Mp]gc[/url]S) 3000Dx v.2基因芯片扫描系统2]http://17wab.cn/uploads/allimg/180726/1-1PH6102JYW.jpg[/img]  [b]功能/应用范围:[/b]  1.基因功能研究   2.基因表达谱分析、基因诊断、序列分析   3.药物筛选与新药开发   4.基因多态位点及基因突变检测   5.其他方面的应用,如环境保护、农业和蓄牧业等领域的应用。  [b]主要附件:[/b]  专用芯片杂交箱640 全自动洗涤工作站 电脑  [b]主要技术指标:[/b]  扫描分辨率2.5微米,存储16bit图象,固态绿色激光器,检测波长570纳米。  [b]技术特色:[/b]  一、  1.强大的类比性   2.巨大的信息产出率   3.高度敏感性和专一性   4.高度重复性   5.微型化、自动化   6.哺育新的实验方法。  二、全基因组表达谱,基因组SNP检测。

  • 【讨论】基因芯片前途如何?

    我觉得基因芯片假阳性和假阴性率特别高,对数据分析的要求也很高,不适合于单独的实验室或者课题组自己做,应该搞几个全国范围的芯片中心,利于操作和数据分析标准化

  • 基因芯片技术知识概要【二】

    八、基因芯片的应用(一)基因表达分析基因芯片具有高度的敏感性和特异性,它可以监测细胞中几个至几千个mRNA拷贝的转录情况。与用单探针分析mRNA的点杂交技术不同,基因芯片表达探针阵列应用了大约20对寡核苷酸探针来监测每一个mRNA的转录情况。每对探针中,包含一个与所要监测的mRNA完全吻合和一个不完全吻合的探针,这两个探针的差别在于其中间位置的核苷酸不同。这种成对的探针可以将非特异性杂交和背景讯号减小到最低的水平,由此我们就可以确定那些低强度的mRNA。目前,Affymetrix公司已经生产出HugeneFL、Mu6500(含有小鼠6500个基因)、Ye6100(含有酵母6100个基因)等基因芯片成品。1.分析基因表达时空特征。英国剑桥大学Whitehead研究所的Frank C.P. Holstege等人,应用含有酵母基因组的基因芯片,深入研究了真核细胞基因组的调节周期。应用基因组水平的表达分析,监测那些表达受转录起始机制的关键成分控制的基因,发现RNA聚合酶II、主要的转录因子TFIID和SAGA染色体修饰复合物等均在基因的表达中有自己特定的作用位点。通过本试验,研究人员揭示了:(1)基因特异性的转录因子对表达的调控作用。(2)细胞在缺乏营养的环境中,基因不同位点的协同调节作用的全新机制。(3)信号转导通路的最终作用位点,在最初的几步中就可以确定。以此试验为基础,研究人员进一步绘制出了酵母基因组控制图,并由此分析出了各种调节因子在基因上不同的作用位点和其作用的分子机制。美国Stanford大学的V.R.Iyer等人,对成纤维细胞中与细胞增生和损伤修复有关的基因进行了分析。首先,他们用成纤维细胞中的8600个基因片断制成基因芯片的探针阵列,通过与mRNA反转录形成的cDNA的杂交反应,可以判断出该基因的活性。在试验中,成纤维细胞被置于无营养的环境中,使绝大部分基因的活性关闭,两天后,加入10%的血清,24小时内,分6个不同的时间点,观察基因的活化情况。试验结果表明,在所有被监测的基因中,约有500个基因最为活跃,而使细胞保持不分裂状态的基因活性被抑制。其中,最早被活化的是那些转录调控基因。在活化的基因中,有28个基因共同作用,控制细胞的增殖;8个与免疫反应的激活有关;19个与血管重建有关;另有许多基因,与血管新生密切相关。在肿瘤细胞中,基因的表达与正常的细胞存在着明显的差异。通过基因芯片绘出基因表达的时空图谱,有助于人类认识生命活动过程和特征。2.基因差异表达检测生命活动中基因表达的改变是生物学研究的核心问题。理解人类基因组中10万个不同的基因功能,监测某些组织、细胞不同分化阶段的差异基因表达(differential gene expression ,DGE)十分重要。对差异表达的研究,可以推断基因与基因的相互关系,细胞分化中基因“开启”或“关闭”的机制;揭示基因与疾病的发生、发展、转归的内在联系。目前DGE研究方法主要有表达序列标签(ESTs)测序、差减克隆(subtractive cloning )、差异显示(differential display)、基因表达系列分析 (serial analysis of gene expression,SAGE)。而cDNA微阵列杂交技术可监测大量mRNA的转录,直接快速地检测出极其微量的mRNA,且易于同时监测成千上万的基因,是研究基因功能的重要手段之一。Rihn BH等利用基因芯片检测胸膜间皮瘤与正常细胞间比较了6500个基因,,发现了300多个差异基因的表达。其中几个典型基因的表达经RT-PCR进行定量后,可作为胸膜间皮瘤诊断的标记物(Markers)。Sgroi报告DNA芯片结合激光捕获显微切割技术(laser capture microdissection)用于乳癌浸润期和转移期及正常细胞的基因表达谱(gene expression profiles)差异研究,结果被定量PCR和免疫组化所证实。差异表达有助于早期发现瘤细胞3万个基因与正常细胞的区别,有助于了解瘤细胞的发生、浸润、转移和药敏。最近,美国毒物化学研究所(CIIT) 和国家环境健康科学研究所(NIEHS)正计划在一张玻片上建立8700个小白鼠cDNA芯片,用于肝癌的研究。我国也已成功研制出能检出41000种基因表达谱的芯片。美国Stanford大学的David Botstein利用cDNA微阵列芯片,对乳腺癌细胞的基因表达进行了分析,发现其基因表达水平明显低于正常细胞。利用基因芯片对表达进行分析,在一次试验中可以获取相当于在60余万次传统的Northern杂交中所获得的关于基因表达的信息。通过这种实验方法,可以建立一种全新的肿瘤分类学方法,即依据每个肿瘤细胞中的基因表达情况对肿瘤细胞进行分类。基因芯片技术在分析基因的表达中具有不可比拟的优势。3.发现新基因 Moch等利用肿瘤微阵列芯片(5184个cDNA片段)发现了肾细胞癌的肿瘤标志物基因,并于正常细胞进行比较。在532份标本中检测到胞浆纤维Vimentin的表达基因,阳性率为51%~61%。追踪观察,有Vimentin表达的患者,预后极差。人类大量ESTs给cDNA微阵列提供了丰富的资源,数据库中400000个ESTs代表了所有人类基因,成千上万的ESTs微阵列将为人类基因表达研究提供强有力的分析工具。这将大大地加速人类基因组的功能分析。定量检测大量基因表达水平在阐述基因功能、探索疾病原因及机理、发现可能的诊断及治疗靶等方面是很有价值的。如该技术在炎症性疾病类风湿性关节炎(RA)和炎症性肠病(IBD)的基因表达研究中,由RA或IBD组织制备探针,用Cy3和Cy5荧光素标记,然后与靶cDNA微阵列杂交,可检测出炎症疾病诱导的基因如TNF-α、IL或粒细胞集落刺激因子,同时发现一些以前未发现的基因如HME基因和黑色素瘤生长刺激因子。Schena等人报道了cDNA的微阵列在人类基因表达监测、生物学功能研究和基因发现方面的应用。采用含1,046个已知序列的cDNA微阵列,用高速机器人喷印在玻片上,用双色杂交法定量监测不同基因表达,在一定的实验条件下,不同表达模式的阵列成分通过序列分析鉴定其特征。该方法较以往常用的方法敏感10倍以上,检测限度为1:500,000(wt/wt)总人体mRNA。在培养T细胞热休克反应的测定中,发现17个阵列成分的荧光比较明显改变,其中11个受热休克处理的诱导,6个呈现中度抑制,对相应于17个阵列成分的cDNA测序发现5个表达最高的成分是5种热休克蛋白,17个克隆中发现3个新序列。另外,在佛波酯诱导检测中,发现有6个阵列成分信号增强超过2倍,测序及数据库比较揭示有5个已知的,诱导表达最高的两个是PCA-1酪氨酸磷酸酶和核因子-κB1,有一个是未知的。这4个新基因的表达水平均相对较低,仅呈现2倍的诱导。Northern杂交结果证实了微阵列的结果。进一步检测了人的骨髓、脑、前列腺及心脏组织中热休克和佛波酯调节基因的表达,4种组织中检测出15种热休克和佛波酯调节基因的表达,其表达水平与Jurkat细胞中相应成分的表达水平密切相关如在四种组织中表达水平最高的两个基因β-actin和细胞色素C氧化酶在Jurkat细胞中的表达水平也很高。上述实验提示在缺乏任何序列信息的条件下,微阵列可用于基因发现和基因表达检测。目前,大量人类ESTs给cDNA微阵列提供了丰富的资源,数据库中400,000个ESTs代表了所有人类基因,成千上万的ESTs微阵列将为人类基因表达研究提供强有力的分析工具。这将大大地加速人类基因组的功能分析。4.大规模DNA测序 人类基因组计划的实施促进了高效的、自动化操作的测序方法的发展。芯片技术中杂交测序(sequencing by hybridization,SBH)技术及邻堆杂交(contiguous stacking hybridization,CSH)技术即是一种新的高效快速测序方法。用含65536个8聚寡核苷酸的微阵列,采用SBH技术,可测定200bp长DNA序列,采用67108864个13聚寡核苷酸的微阵列,可对数千个碱基长的DNA测序。SBH技术的效率随着微阵列中寡核苷酸数量与长度的增加而提高,但微阵列中寡核苷酸数量与长度的增加则提高了微阵列的复杂性,降低了杂交准确性。CSH技术弥补了SBH技术存在的弊端,CSH技术的应用增加了微阵列中寡核苷酸的有效长度,加强了序列准确性,可进行较长的DNA测序。计算机模拟论证了8聚寡核苷酸微阵列与5聚寡核苷酸邻堆杂交,相当于13聚寡核苷酸微阵列的作用,可测定数千个核苷酸长的DNA序列。Dubiley等人将合成的10聚寡核苷酸固定于排列在载片表面的0.1×0.1×0.02mm或1×1×0.02mm聚丙酰胺凝胶垫上制备聚寡核苷酸微阵列,先用分离微阵列(fractionation chips)进行单链DNA分离,再用测序微阵列(sequencing chips)分析序列,后者联合采用了10聚寡核苷酸微阵列的酶促磷酸化、DNA杂交及与邻堆的5聚寡核苷酸连接等技术。该方法可用于含重复序列及较长序列的DNA序列测定及不同基因组

  • 卫生部“下放”基因芯片诊断技术

    日前,卫生部发出通知,决定将原本需经过国家卫生部审批的基因芯片诊断技术“下放”由省级卫生行政部门负责其临床应用管理。业内人士分析,此举使高高在上的尖端科技“跌落云端”,基因诊断将更快走入寻常百姓家,只需一滴血,你就可以预知自己是否会患上乳腺癌、高血压。检测:诊断更快更准更贵武汉大学中南医院基因诊断中心主任郑芳昨日介绍,疾病的发生发展经历了从基因到蛋白质,再到细胞、组织的变化,最后表现在脏器层面等一系列复杂的过程。传统的表形诊断技术最早能捕捉到蛋白质的异常,基因诊断则能提前到最早期的量变。此外,基因诊断速度更快。比如耐药性结核病,传统检测手段至少需要1个月,有些病人还没等确诊就恶化了,而基因诊断最快可在1天内得出结果。但是,基因诊断要做到更快更准,其尖端的设备和从业人员使得收费自然不菲,动辄数千上万元的价格往往令人望而却步。预知:并非一定发生“基因诊断能预知疾病,但其结果并非一定就会发生。”郑芳说,基因改变作为最早期的量变,与疾病的关系并不能一一对应,所有基因检测的结果,仅具有参考价值。比如癌症,基因检测可明确找出一个人是否携带相关的癌症基因,但是癌症发病受环境、遗传等诸多因素影响,有突变基因不代表一定会发病。规范:不同医生解读答案应相同首先,基因芯片诊断主要适用于那些依靠目前的临床诊断手段仍无法确诊,而病人已有症状或者主观感觉不适者。通俗地说,基因芯片并不能完全取代目前临床实验室诊断,而只能视其为补充或扩展。其次,从业人员也应接受完整、规范的培训,以对基因检测的结果做到统一解读,也就是说,一种基因检测不同医生给出的答案应当只有一个。对患者,医师应全面告知基因芯片诊断的目的、技术可靠性、参考价值、结果的客观评估和注意事项,以及可能发生的经济和心理负担,并签署知情同意书。

  • 基因芯片技术在疾病耐药性检测中的应用

    基因芯片技术对于疾病耐药性检测可从两个方面加以实现:1.在肿瘤中,通过检测肿瘤耐药基因的表达变化来分析对药物的抗性;2.在感染性疾病中,病原体的耐药性检测可通两种方式:表达谱芯片检测药物诱导的表达改变来分析其耐药性;寡核苷酸芯片检测基因组序列的亚型或突变位点从而分析其耐药性。一、多药耐药基因的表达检测肿瘤治疗中对细胞毒素药物的抗性是引起治疗失败的重要原因,是限制化疗的重要因素。机制是复杂的,由肿瘤的综合特征决定,如存活细胞的比例、血液的供给是否充分、特殊的细胞机制及多药耐药表型,多药耐药是指当肿瘤细胞暴露在某一化学治疗药物后会产生对此药及其他结构上没有联系的药物的交叉抗性,可由不同的机制引起,如MDR1、MRP、LRP等基因的过度表达,拓扑异构酶II和谷胱甘肽代谢的改变等,另外,其他促进DNA修复和抑制细胞凋亡的基因表达改变也可能导致多药耐药。检测多药耐药基因表达的变化不但可以研究恶性肿瘤的不同耐药机制,还可以用于临床诊断,以指导制定治疗方案。目前已建立了几种多药耐药检测方法,在RNA水平上有:Northern blot、Slot blot、RT-PCR、Rnase protection assay和原位杂交,从蛋白水平上的检测方法有免疫组化、Western blot及流式细胞仪等。这些方法一次只能对一个基因进行研究,效率低,难以定量检测耐药基因表达增加的幅度。基因表达谱芯片可同时对成千上万的基因表达进行检测,可以大大加速这方面的研究,在设计芯片时,可以将已知肿瘤相关基因及标记基因都点到芯片上,同时,芯片上还包含目前所有报导过的耐药基因。这样可以同时得到肿瘤的各个方面的信息。另外基因芯片还可以帮助发现新的耐药基因。二、病原体耐药性检测细菌对三种以上不同类抗菌药物耐药者即可称为多重耐药菌(multi-drug resistant bacteria, MDR)。MDR感染在全球的状况十分严重,对婴幼儿、免疫缺陷者和老年人的威胁巨大,1992年美国疾病控制中心(CDC)的资料表明,有13300例住院患者,是因为对所使用的抗菌药物耐药,细菌感染得不到控制而死亡。MDR感染已成为治疗上的难点和研究上的热点。MDR大多为条件致病菌,革兰阴性杆菌(GNR)占较大比例,如肠杆菌科中的肺炎杆菌、大肠杆菌、阴沟杆菌、粘质沙雷菌、枸橼酸菌属、志贺菌属、沙门菌属等,以及绿脓杆菌、不动杆菌属、流感杆菌等。革兰阳性菌中有甲氧西林耐药葡萄球菌(MRS),尤以MRSA和MRSE为多;万古霉素耐药肠球菌(VRE),近年来在重症监护室(ICU)中的发病率有明显增高;青霉素耐药肺炎链球菌(PRSP),常引起肺炎、脑膜炎、菌血症和中耳炎,人结核分支菌等。此外尚有淋球菌、脑膜炎球菌、霍乱弧菌等。耐药性又称抗药性,一般是指病原体的药物反应性降低的一种状态。这是由于长期应用抗菌药,病原体通过产生使药物失活的酶、改变原有代谢过程,而产生的一种使药物效果降低的反应,因而作用的剂量要不断增加。细菌对抗菌药物的耐药机制可有多种,最重要者为灭活酶的产生,如β-内酰胺酶、氨基糖苷钝化酶等;其次为靶位改变如青霉素结合蛋白(PBPs)的改变等;其他尚有胞膜通透性改变,影响药物的进入;细菌泵出系统增多、增强,以排出已进入细菌内的药物;以及胞膜主动转运减少、建立新代谢途径、增加拮抗药物等,两种以上的机制常可同时启动。耐药菌及MDR的发生和发展是抗菌药物广泛应用,特别是无指征滥用的后果。找到耐药菌的耐药基因,从而根据这些耐药基因设计新型抗生素,或将耐药菌分成不同的亚型,针对不同的亚型在临床上使用相应的抗生素,达到改善治疗效果的目的。国外采用基因芯片技术,检测耐药菌基因的改变,即检测耐药基因。如Michael Wilson就曾使用此方法检测到肺结核杆菌中脂肪酸合成酶II、fbpC、efpA、fadE23、fadE24和ahpC基因发生改变与耐药性有关。提供了新药物作用的靶目标,并指导抑制这些靶目标试剂和药物的合成。在感染性疾病中,病原体的耐药性检测可通过两种方式:1.表达谱芯片检测药物诱导的基因表达改变来分析其耐药性;2.寡核苷酸芯片检测基因组序列的亚型或突变位点从而分析其耐药性。用基因芯片不仅可以同时检测耐药菌的多个耐药基因,还可以同时对多个耐药菌的多个耐药基因进行检测。对临床上用药和新药物的合成均具有指导作用。

  • 电泳微流控芯片:生物分析的里程碑

    电泳微流控芯片是一种结合了电泳和微流控技术的创新型生物分析工具。该技术整合了微流体学的优势,通过微小尺度的通道、电场和高度灵活的流动控制,实现了对生物分子的高效分离、检测和分析。[align=center][img=图片]https://img1.17img.cn/17img/images/202404/uepic/434f44d0-8ac9-452a-bfa1-fd7840c0c1cc.jpg[/img][/align][b]——技术原理——[/b]电泳原理:在电解质溶液中,位于电场中的带电离子在电场力的作用下,以不同的速度向其所带电荷相反的电极方向迁移的现象。电泳微流控芯片技术可以分为两种主要类型:毛细管电泳和芯片上电泳。毛细管电泳利用单根毛细管作为分离通道,而芯片上电泳则将电泳所需的缓冲液、电极等组件集成到一个微流控芯片上,实现设备的微小化和自动化。这种集成化设计使得电泳微流控芯片具有高通量、高效率、低样品消耗和快速分离等优点。电泳微流控芯片的原理主要基于电场驱动下的带电粒子在微尺度流道中的迁移与分离。具体来说,电泳微流控芯片利用微加工技术在芯片上构建微米级的流道,这些流道用于容纳电泳缓冲液。当在芯片两端施加电场时,缓冲液中的带电粒子(如DNA、蛋白质等)会根据其电荷和电场方向发生迁移。不同带电粒子由于其电荷、质量和形状的差异,在电场中的迁移速度会有所不同,从而实现粒子的分离。[b]——应用领域——[/b]电泳微流控芯片的应用领域非常广泛,涵盖了多个重要的科学和工业领域。以下是其主要的应用领域:1、生物医学:在生物医学领域,电泳微流控芯片技术主要用于DNA片段、多肽、蛋白质等生物分子的分离和分析。它被认为是后基因时代中最有希望攻克蛋白质研究、基因临床诊断等科学难题的分离分析手段之一。此外,电泳微流控芯片技术也被用于[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]反应,可以大大简化操作步骤,显著提高检测效率。2、新药物合成与筛选:电泳微流控芯片技术在新药研发过程中发挥着重要作用。它可以用于药物分子的分离和筛选,从而加速新药的研发进程。3、食品和商品检验:电泳微流控芯片技术可以用于食品中添加剂、污染物等的检测和分析,确保食品的安全和合规性。同时,它也可以用于商品的质量控制和检验。4、环境监测:在环境监测领域,电泳微流控芯片技术可用于水、土壤、空气等环境样本中有害物质的检测和分析,为环境保护和污染治理提供科学依据。5、刑事科学:电泳微流控芯片在法医学中具有重要的应用,特别是在DNA分离、检测和分析方面,对于个体身份的鉴定和犯罪现场的物证分析具有重要意义。6、其他科学领域:此外,电泳微流控芯片技术还广泛应用于军事科学、航天科学等其他重要科学领域,为这些领域的研究和发展提供了强大的技术支持。[b]——优势——[/b]1、高分辨率和快速分离:微流控芯片中的通道尺寸小,因此具有较高的分辨率和更快的分离速度。这使得它能够在短时间内准确地分离和识别出各种生物分子,如DNA、蛋白质等。2、低样品和试剂消耗:由于微流控芯片中的流体通道尺寸微小,所需的样品和试剂量大大减少。这既降低了分析成本,也减少了生物样本的浪费,对于珍贵的生物样本尤其重要。3、高通量分析能力:微流控芯片可以并行处理多个样品,实现高通量分析。这大大提高了分析效率,使得在短时间内能够处理更多的样本,适用于大规模的生物分子分析任务。4、易于集成和自动化:电泳微流控芯片可以与其他技术(如质谱联用)实现联合分析,进一步提高分析的准确性和灵敏度。此外,微流控芯片技术易于实现自动化,减少了人为操作的误差,提高了分析的准确性和可靠性。5、微型化和便携性:电泳微流控芯片采用微型化设计,使得整个分析系统更加紧凑和便携。这使得它可以在现场进行实时分析,无需复杂的实验室设备,为现场检测和即时分析提供了便利。[b]保利微芯公司简介[/b]保利微芯科技有限公司隶属中国保利集团公司,由保利置业集团有限公司投资,设计研发微流控生物芯片,公司具备技术先进的微流控生物芯片设计制造能力,已形成创新性的、技术领先的微流控芯片整体解决方案。可以承接国内外芯片设计、应用公司的微流控芯片生产订单,为即时诊断(POCT)、基因测序、环境保护、食品安全和科学研究等应用领域的客户提供有核心竞争力的高性价比芯片产品。[来源:保利微芯][align=right][/align]

  • 【讨论】来讨论一下基因芯片中的点样仪吧

    最近在考虑基因芯片配置的问题,听到了两种不同的说法。一说点样仪是历史的产物,由于自己点样在可靠性方面存在疑问,其会被商品化的芯片制作所取代另一说是点样仪可以根据自己的需要进行点样,灵活性强而且节约成本,很多单位都会选择购买点样仪感觉是各有道理,是从两个不同的方面来考虑一个问题。但这两方商家都各代表自身的利益,我也不好随便相信谁。想在这里问问大家,你们怎么看待这个问题?两个角度你们更看重哪一个?你所在单位或学校购买了点样仪么?

  • GeneChip® System (GCS) 3000Dx v.2基因芯片扫描系统

    GeneChip System ([url=https://insevent.instrument.com.cn/t/Mp]gc[/url]S) 3000Dx v.2基因[b]芯片扫描系统[/b]是最可靠的临床研究平台,也是唯一被FDA批准/ SFDA,试管和CE标志芯片系统,适用于临床检测基于RNA和DNA。  [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]S 3000 dx v . 2是扩大Affymetrix临床的基础装备,装备还包括FDA批准,试管和CE标志Affymetrix基因分析试剂和人类基因组U133 v2.0芯片,即利用人类基因组U133 v2.0 cGMP制造芯片的版本。  Affymetrix的临床工具包提供了一种进入市场的有效方法,使测试开发人员能够节省时间、金钱和监管风险。  Affymetrix的基因芯片技术已经得到了成千上万的研究人员的信任,在芯片应用中产生了高度可重复的结果。[img=GeneChip System ([url=https://insevent.instrument.com.cn/t/Mp]gc[/url]S) 3000Dx v.2基因芯片扫描系统1]http://17wab.cn/uploads/allimg/180726/1-1PH6102HW11.jpg[/img]  [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]S 3000Dx v.2 基因[b]芯片扫描系统[/b]适用于:  [b]科研[/b] 自信地分析或研究宝贵的人类样品  [b]诊断检测的开发[/b] Affymetrix合作伙伴已经开发并商业化了一些获得FDA批准的体外诊断和符合CE-IVD的诊断检测  [b]常规检测[/b] 一个系统,多种应用[img=GeneChip System ([url=https://insevent.instrument.com.cn/t/Mp]gc[/url]S) 3000Dx v.2基因芯片扫描系统2]http://17wab.cn/uploads/allimg/180726/1-1PH6102JYW.jpg[/img]  [b]功能/应用范围:[/b]  1.基因功能研究   2.基因表达谱分析、基因诊断、序列分析   3.药物筛选与新药开发   4.基因多态位点及基因突变检测   5.其他方面的应用,如环境保护、农业和蓄牧业等领域的应用。  [b]主要附件:[/b]  专用芯片杂交箱640 全自动洗涤工作站 电脑  [b]主要技术指标:[/b]  扫描分辨率2.5微米,存储16bit图象,固态绿色激光器,检测波长570纳米。  [b]技术特色:[/b]  一、  1.强大的类比性   2.巨大的信息产出率   3.高度敏感性和专一性   4.高度重复性   5.微型化、自动化   6.哺育新的实验方法。  二、全基因组表达谱,基因组SNP检测。

  • 【分享】生物芯片原理

    生物芯片原理生物芯片技术是应人类基因组计划而发展起来的一项高新技术。从1992年美国人Stephen Foder 研制出第一块基因芯片起,生物芯片技术飞速发展:从基因芯片到蛋白质芯片、组织芯片、细胞芯片、芯片实验室,从表达谱芯片到诊断芯片、药物筛选芯片、生物传感器,从寡核苷酸芯片到cDNA 芯片、基因组芯片,新兴的生物芯片技术层出不穷,生物芯片的应用领域也在不断扩展,生物芯片发挥的作用也越来越大,特别是在 2003年人类与SARS病毒的决战中发挥了至关重要的作用:科学家借助基因芯片技术迅速而及时地发现了病原体,并查明病原体的本质,为最终战胜SARS 奠定了基础。生物芯片技术的实质是进行生物信号的平行分析。它利用微点阵技术,将成千上万的生物组分(细胞、蛋白质和DNA等)集中到一小片固相基质上,从而使一些传统的生物学分析手段能够在尽量小的空间范围内,以尽量快的速度完成。与传统的仪器检测方法相比,生物芯片技术具有高通量、微型化、自动化和成本低等特点。生物芯片按照其上所进行的生物化学反应有无外加场力的干预,分为主动式和被动式两大类。被动式芯片是指芯片上进行的生物化学反应在无外加场力的情况下,通过分子的扩散运动完成,如已在研究和临床应用的微阵列芯片,包括DNA芯片,蛋白质芯片等。这也是目前最普遍的生物芯片,但这类芯片存在如下缺点:生产和检测过程人为干扰因素多、难以标准化,生化反应条件和过程不可控、反应效率较低,检测结果重复性较差等。主动式芯片是在芯片的构建和生化反应中直接引入外力或场的作用,它具有快速、高效、自动化和重复性好的特点,是构建芯片实验室、实现过程集成化的基本部件。主动式芯片技术已成为生物芯片技术研究的重点。随着新兴技术和新设计思想的不断产生,各种新型的主动式芯片必将陆续推出,他们的发展与完善将对生命科学与医学的研究与应用产生深远的影响。本项目旨在开发一种新型的主动式生物芯片(主动式蛋白芯片),减少蛋白芯片生产和检测过程中的人为干扰因素,标化芯片的生产和检测过程,并使芯片上的生化反应可控、高效、快速地进行,最终改善芯片检测结果的重复性和准确性。同时,这一技术也可应用于其他种类芯片(如基因芯片、组织芯片、细胞芯片)的升级换代。

  • 生物芯片入门:应用

    基因芯片技术及其研究现状和应用前景生物芯片技术是随着“人类基因组计划”(human genome project,HGP)的进展而发展起来的,它是90年代中期以来影响最深远的重大科技进展之一,它融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。生物芯片技术包括基因芯片、蛋白质芯片、细胞芯片、组织芯片、以及元件型微阵列芯片、通道型微阵列芯片、生物传感芯片等新型生物芯片。本文主要讨论基因芯片技术,它为“后基因组计划”时期基因功能的研究提供了强有力的工具,将会使基因诊断、药物筛选、给药个性化等方面取得重大突破,该技术被评为1998年度世界十大科技进展之一。1、基本概念基因芯片(gene chip)也叫DNA芯片、DNA微阵列(DNA microarray)、寡核苷酸阵列(oligonucleotide array),是指采用原位合成(in situ synthesis)或显微打印手段,将数以万计的DNA探针固化于支持物表面上,产生二维DNA探针阵列,然后与标记的样品进行杂交,通过检测杂交信号来实现对生物样品快速、并行、高效地检测或医学诊断,由于常用硅芯片作为固相支持物,且在制备过程运用了计算机芯片的制备技术,所以称之为基因芯片技术。2、技术基本过程2.1 DNA方阵的构建选择硅片、玻璃片、瓷片或聚丙烯膜、尼龙膜等支持物,并作相应处理,然后采用光导化学合成和照相平板印刷技术可在硅片等表面合成寡核苷酸探针;或者通过液相化学合成寡核苷酸链探针,或PCR技术扩增基因序列,再纯化、定量分析,由阵列复制器(arraying and replicating device ARD),或阵列机(arrayer)及电脑控制的机器人,准确、快速地将不同探针样品定量点样于带正电荷的尼龙膜或硅片等相应位置上,再由紫外线交联固定后即得到DNA微阵列或芯片。2.2 样品DNA或mRNA的准备从血液或活组织中获取的DNA/mRNA样品在标记成为探针以前必须进行扩增提高阅读灵敏度。Mosaic Technologies公司发展了一种固相PCR系统,好于传统PCR技术,他们在靶DNA上设计一对双向引物,将其排列在丙烯酰胺薄膜上,这种方法无交叉污染且省去液相处理的繁锁;Lynx Therapeutics公司提出另一个革新的方法,即大规模平行固相克隆(massively parallel solid-phase cloning)这个方法可以对一个样品中数以万计的DNA片段同时进行克隆,且不必分离和单独处理每个克隆,使样品扩增更为有效快速。在PCR扩增过程中,必须同时进行样品标记,标记方法有荧光标记法、生物素标记法、同位素标记法等。2.3 分子杂交样品DNA与探针DNA互补杂交要根据探针的类型和长度以及芯片的应用来选择、优化杂交条件。如用于基因表达监测,杂交的严格性较低、低温、时间长、盐浓度高;若用于突变检测,则杂交条件相反。芯片分子杂交的特点是探针固化,样品荧光标记,一次可以对大量生物样品进行检测分析,杂交过程只要30min。美国Nangon公司采用控制电场的方式,使分子杂交速度缩到1min,甚至几秒钟。德国癌症研究院的Jorg Hoheisel等认为以肽核酸(PNA)为探针效果更好。2.4 杂交图谱的检测和分析用激光激发芯片上的样品发射荧光,严格配对的杂交分子,其热力学稳定性较高,荧光强;不完全杂交的双键分子热力学稳定性低,荧光信号弱(不到前者的1/35~1/5),不杂交的无荧光。不同位点信号被激光共焦显微镜,或落射荧光显微镜等检测到,由计算机软件处理分析,得到有关基因图谱。目前,如质谱法、化学发光法、光导纤维法等更灵敏、快速,有取代荧光法的趋势。3、应用3.1 测序基因芯片利用固定探针与样品进行分子杂交产生的杂交图谱而排列出待测样品的序列,这种测定方法快速而具有十分诱人的前景。Mark chee等用含135000个寡核苷酸探针的阵列测定了全长为16.6kb的人线粒体基因组序列,准确率达99%。Hacia等用含有48000个寡核苷酸的高密度微阵列分析了黑猩猩和人BRCA1基因序列差异,结果发现在外显子11约3.4kb长度范围内的核酸序列同源性在98.2%到83.5%之间,提示了二者在进化上的高度相似性。3.2 基因表达水平的检测用基因芯片进行的表达水平检测可自动、快速地检测出成千上万个基因的表达情况。Schena等采用拟南芥基因组内共45个基因的cDNA微阵列(其中14个为完全序列,31个为EST),检测该植物的根、叶组织内这些基因的表达水平,用不同颜色的荧光素标记逆转录产物后分别与该微阵列杂交,经激光共聚焦显微扫描,发现该植物根和叶组织中存在26个基因的表达差异,而参与叶绿素合成的CAB1基因在叶组织较根组织表达高500倍。Schena等用人外周血淋巴细胞的cDNA文库构建一个代表1046个基因的cDNA微阵列,来检测体外培养的T细胞对热休克反应后不同基因表达的差异,发现有5个基因在处理后存在非常明显的高表达,11个基因中度表达增加和6个基因表达明显抑制。该结果还用荧光素交换标记对照和处理组及RNA印迹方法证实。在HGP完成之后,用于检测在不同生理、病理条件下的人类所有基因表达变化的基因组芯片为期不远了。3.3 基因诊断从正常人的基因组中分离出DNA与DNA芯片杂交就可以得出标准图谱。从病人的基因组中分离出DNA与DNA芯片杂交就可以得出病变图谱。通过比较、分析这两种图谱,就可以得出病变的DNA信息。这种基因芯片诊断技术以其快速、高效、敏感、经济、平行化、自动化等特点,将成为一项现代化诊断新技术。例如,Affymetrix公司,把P53基因全长序列和已知突变的探针集成在芯片上,制成P53基因芯片,将在癌症早期诊断中发挥作用。又如,Heller等构建了96个基因的cDNA微阵,用于检测分析关节炎、风湿性关节炎(RA)相关的基因,以探讨DNA芯片在感染性疾病诊断方面的应用。现在,肝炎病毒检测诊断芯片、结核杆菌耐药性检测芯片、多种恶性肿瘤相关病毒基因芯片等一系列诊断芯片逐步开始进入市场。基因诊断是基因芯片中最具有商业化价值的应用。3.4 药物筛选如何分离和鉴定药的有效成份是目前中药产业和传统的西药开发遇到的重大障碍,基因芯片技术是解决这一障碍的有效手段,它能够大规模地筛选、通用性强,能够从基因水平解释药物的作用机理,即可以利用基因芯片分析用药前后机体的不同组织、器官基因表达的差异。如果再用mRNA 构建cDNA表达文库,然后用得到的肽库制作肽芯片,则可以从众多的药物成分中筛选到起作用的部分物质。或者,利用RNA、单链DNA有很大的柔性,能形成复杂的空间结构,更有利与靶分子相结合,可将核酸库中的RNA或单链DNA固定在芯片上,然后与靶蛋白孵育,形成蛋白质-RNA或蛋白质-DNA复合物,可以筛选特异的药物蛋白或核酸,因此芯片技术和RNA库的结合在药物筛选中将得到广泛应用。在寻找HIV药物中,Jellis等用组合化学合成及DNA芯片技术筛选了654536种硫代磷酸八聚核苷酸,并从中确定了具有XXG4XX样结构的抑制物,实验表明,这种筛选物对HIV感染细胞有明显阻断作用。生物芯片技术使得药物筛选,靶基因鉴别和新药测试的速度大大提高,成本大大降低。基因芯片药物筛选技术工作目前刚刚起步,美国很多制药公司已开始前期工作,即正在建立表达谱数据库,从而为药物筛选提供各种靶基因及分析手段。这一技术具有很大的潜在应用价值。[/

  • 【资料】用于氯霉素、克伦特罗和雌二醇三种兽药残留检测的高通量悬浮芯片技术研究

    用于氯霉素、克伦特罗和雌二醇三种兽药残留检测的高通量悬浮芯片技术研究摘要:目的建立一种氯霉素、克伦特罗和雌二醇(17-beta-estradiol,E2)的3种兽药残留的新型高通量悬浮芯片检测技术。方法:合成3种兽药的牛血清白蛋白(bovine serum albumin,BSA)结合物,并进行紫外和质谱鉴定。绘制出3种兽药残留检测的标准曲线;对不同浓度的干扰物和待测物分组,以此进行特异性检测和盲样测定。并用扫描电子显微镜(简称电镜)进行微球表面微观结构观察。悬浮芯片检测的标准曲线方程和方程相应的决定系数(R^2)表现良好,R^2〉0.99;3种兽药悬浮芯片的检测区间分别为(40.00~6.25)×10^5ng/L,(50.00-7.81)×10^5ng/L和1.00×10^3~7.29×10^5ng/L;最低检出限为:40ng/L、50ng/L和1μg/L;同时,悬浮芯片的特异度测试良好,与其他药物无明显交叉反应;对盲样测定的检测浓度值与实际浓度偏差在8.09%-17.03%,可认为偏差较小。原文:资料中心。

  • 生物芯片入门:生物芯片及应用简介

    一、简介生物芯片(biochip)是指采用光导原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等等生物样品有序地固化于支持物(如玻片、硅片、聚丙烯酰胺凝胶、尼龙膜等载体)的表面,组成密集二维分子排列,然后与已标记的待测生物样品中靶分子杂交,通过特定的仪器比如激光共聚焦扫描或电荷偶联摄影像机(CCD)对杂交信号的强度进行快速、并行、高效地检测分析,从而判断样品中靶分子的数量。由于常用玻片/硅片作为固相支持物,且在制备过程模拟计算机芯片的制备技术,所以称之为生物芯片技术。根据芯片上的固定的探针不同,生物芯片包括基因芯片、蛋白质芯片、细胞芯片、组织芯片,另外根据原理还有元件型微阵列芯片、通道型微阵列芯片、生物传感芯片等新型生物芯片。如果芯片上固定的是肽或蛋白,则称为肽芯片或蛋白芯片;如果芯片上固定的分子是寡核苷酸探针或DNA,就是DNA芯片。由于基因芯片(Genechip)这一专有名词已经被业界的领头羊Affymetrix公司注册专利,因而其他厂家的同类产品通常称为DNA微阵列(DNA Microarray)。这类产品是目前最重要的一种,有寡核苷酸芯片、cDNA芯片和Genomic芯片之分,包括二种模式:一是将靶DNA固定于支持物上,适合于大量不同靶DNA的分析,二是将大量探针分子固定于支持物上,适合于对同一靶DNA进行不同探针序列的分析。生物芯片技术是90年代中期以来影响最深远的重大科技进展之一,是融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。由于用该技术可以将极其大量的探针同时固定于支持物上,所以一次可以对大量的生物分子进行检测分析,从而解决了传统核酸印迹杂交(Southern Blotting 和Northern Blotting等)技术复杂、自动化程度低、检测目的分子数量少、低通量(low through-put)等不足。而且,通过设计不同的探针阵列、使用特定的分析方法可使该技术具有多种不同的应用价值,如基因表达谱测定、突变检测、多态性分析、基因组文库作图及杂交测序(Sequencing by hybridization,SBH)等,为“后基因组计划”时期基因功能的研究及现代医学科学及医学诊断学的发展提供了强有力的工具,将会使新基因的发现、基因诊断、药物筛选、给药个性化等方面取得重大突破,为整个人类社会带来深刻广泛的变革。该技术被评为1998年度世界十大科技进展之一。二、应用领域1、基因表达水平的检测用基因芯片进行的表达水平检测可自动、快速地检测出成千上万个基因的表达情况。Schena等采用拟南芥基因组内共45个基因的cDNA微阵列(其中14个为完全序列,31个为EST),检测该植物的根、叶组织内这些基因的表达水平,用不同颜色的荧光素标记逆转录产物后分别与该微阵列杂交,经激光共聚焦显微扫描,发现该植物根和叶组织中存在26个基因的表达差异,而参与叶绿素合成的CAB1基因在叶组织较根组织表达高500倍。Schena等用人外周血淋巴细胞的cDNA文库构建一个代表1046个基因的cDNA微阵列,来检测体外培养的T细胞对热休克反应后不同基因表达的差异,发现有5个基因在处理后存在非常明显的高表达,11个基因中度表达增加和6个基因表达明显抑制。该结果还用荧光素交换标记对照和处理组及RNA印迹方法证实。在HGP完成之后,用于检测在不同生理、病理条件下的人类所有基因表达变化的基因组芯片为期不远了。2、基因诊断从正常人的基因组中分离出DNA与DNA芯片杂交就可以得出标准图谱。从病人的基因组中分离出DNA与DNA芯片杂交就可以得出病变图谱。通过比较、分析这两种图谱,就可以得出病变的DNA信息。这种基因芯片诊断技术以其快速、高效、敏感、经济、平行化、自动化等特点,将成为一项现代化诊断新技术。例如Affymetrix公司,把P53基因全长序列和已知突变的探针集成在芯片上,制成P53基因芯片,将在癌症早期诊断中发挥作用。又如,Heller等构建了96个基因的cDNA微阵,用于检测分析关节炎、风湿性关节炎(RA)相关的基因,以探讨DNA芯片在感染性疾病诊断方面的应用。现在,肝炎病毒检测诊断芯片、结核杆菌耐药性检测芯片、多种恶性肿瘤相关病毒基因芯片等一系列诊断芯片逐步开始进入市场。基因诊断是基因芯片中最具有商业化价值的应用。3、药物筛选如何分离和鉴定药的有效成份是目前中药产业和传统的西药开发遇到的重大障碍,基因芯片技术是解决这一障碍的有效手段,它能够大规模地筛选、通用性强,能够从基因水平解释药物的作用机理,即可以利用基因芯片分析用药前后机体的不同组织、器官基因表达的差异。如果再cDNA表达文库得到的肽库制作肽芯片,则可以从众多的药物成分中筛选到起作用的部分物质。还有,利用RNA、单链DNA有很大的柔性,能形成复杂的空间结构,更有利与靶分子相结合,可将核酸库中的RNA或单链DNA固定在芯片上,然后与靶蛋白孵育,形成蛋白质-RNA或蛋白质-DNA复合物,可以筛选特异的药物蛋白或核酸,因此芯片技术和RNA库的结合在药物筛选中将得到广泛应用。在寻找HIV药物中,Jellis等用组合化学合成及DNA芯片技术筛选了654536种硫代磷酸八聚核苷酸,并从中确定了具有XXG4XX样结构的抑制物,实验表明,这种筛选物对HIV感染细胞有明显阻断作用。生物芯片技术使得药物筛选,靶基因鉴别和新药测试的速度大大提高,成本大大降低。基因芯片药物筛选技术工作目前刚刚起步,美国很多制药公司已开始前期工作,即正在建立表达谱数据库,从而为药物筛选提供各种靶基因及分析手段。这一技术具有很大的潜在应用价值。4、个体化医疗临床上,同样药物的剂量对病人甲有效可能对病人乙不起作用,而对病人丙则可能有副作用。在药物疗效与副作用方面,病人的反应差异很大。这主要是由于病人遗传学上存在差异(单核苷酸多态性,SNP),导致对药物产生不同的反应。例如细胞色素P450酶与大约25%广泛使用的药物的代谢有关,如果病人该酶的基因发生突变就会对降压药异喹胍产生明显的副作用,大约5%~10%的高加索人缺乏该酶基因的活性。现已弄清楚这类基因存在广泛变异,这些变异除对药物产生不同反应外,还与易犯各种疾病如肿瘤、自身免疫病和帕金森病有关。如果利用基因芯片技术对患者先进行诊断,再开处方,就可对病人实施个体优化治疗。另一方面,在治疗中,很多同种疾病的具体病因是因人而异的,用药也应因人而异。例如乙肝有较多亚型,HBV基因的多个位点如S、P及C基因区易发生变异。若用乙肝病毒基因多态性检测芯片每隔一段时间就检测一次,这对指导用药防止乙肝病毒耐药性很有意义。又如,现用于治疗AIDS的药物主要是病毒逆转录酶RT和蛋白酶PRO的抑制剂,但在用药3~12月后常出现耐药,其原因是rt、pro基因产生一个或多个点突变。Rt基因四个常见突变位点是Asp67→Asn、Lys70→Arg、Thr215→Phe、Tyr和Lys219→Glu,四个位点均突变较单一位点突变后对药物的耐受能力成百倍增加。如将这些基因突变部位的全部序列构建为DNA芯片,则可快速地检测病人是这一个或那一个或多个基因发生突变,从而可对症下药,所以对指导治疗和预后有很大的意义。5、测序基因芯片利用固定探针与样品进行分子杂交产生的杂交图谱而排列出待测样品的序列,这种测定方法快速而具有十分诱人的前景。Mark chee等用含135000个寡核苷酸探针的阵列测定了全长为16.6kb的人线粒体基因组序列,准确率达99%。Hacia等用含有48000个寡核苷酸的高密度微阵列分析了黑猩猩和人BRCA1基因序列差异,结果发现在外显子11约3.4kb长度范围内的核酸序列同源性在98.2%到83.5%之间,提示了二者在进化上的高度相似性。据未经证实的报道,近年有一种不成熟的生物芯片在15分钟内完成了1.6万个碱基对的测定,96个这样的生物芯片的平行工作,就相当于每天1.47亿个碱基对的分析能力!

  • 质谱仪分析速度-四级杆质量分析器离子碎片通量及通过速度问题

    想请教一下各位大神,关于质谱仪的四级杆质量分析器,一般情况下允许同时通过质量分析器的离子碎片的量或者说个数是多少呢?同时通过的离子碎片会不会发生碰撞导致撞到四级杆上造成损失?如果提高离子碎片通过四级杆的通量和速度,是不是能提高质谱的分析速度呢

  • 荧光芯片扫描仪

    荧光芯片扫描仪   由于杂交时产生序列重叠,会有成百上千的杂交点出现在图谱上,形成极为复杂的杂交图谱。序列重叠虽然可为每个碱基的正确读出提供足够的信息,可提高序列分析的可靠性,但同时信息处理量也大大增加了。一般说来,这些图谱的多态性处理与存储都由专门设计的软件来完成,而不是通过对比进行人工读谱。用计算机处理即可给出目的基因的结构或表达信息。扫描一张10cm2的芯片大概需要2-6分种的时间。目前专用于荧光扫描的扫描仪根据原理不同大致分为两类:一是激光共聚焦显微镜的原理, 是基于PMT(photomultiplier tube,光电倍增管)的检测系统(另文介绍);另一种是CCD(charge-coupled devices,电荷偶合装置)摄像原理检测光子。CCD一次可成像很大面积的区域,而以PMT为基础的荧光扫描仪则是以单束固定波长的激光来扫描,因此或者需要激光头,或者需要目的芯片的机械运动来使激光扫到整个面积,这样就需要耗费较多的时间来扫描;但是CCD有其缺点:目前性能最优越的CCD数字相机的成像面积只有16×12mm(像素为10μm),因此要达到整个芯片的面积20×60mm的话,需要数个数码相机同时工作,或者也可以以降低分辨率为代价来获得扫描精度不是很高的图像。由于灵敏度和分辩率较低,比较适合临床诊断用。   生产商业化扫描仪的公司包括:Genomic Solutions公司、Packard公司、GSI公司、Molecular Dynamics、Genetic Microsystems公司、Axon ?Instruments公司等。其中GSI Lumonics 公司ScanArray 系列一直是生物芯片扫描检测系统中的领头产品。2000GSI并入著名的Parkard公司后ScanArray的软、硬件都得到进一步加强。   ScanArray利用其专利的激光共聚焦光学系统,通过计算机控制,对生物芯片的荧光杂交信号进行全自动的扫描采集,并通过分析软件对数据结果进行定量分析。  最高灵敏度高:0.1荧光分子/μm  扫描精度可从5μm-50μm分级调整  全范围扫描时间仅需5分钟,快速方便  多达十种检测滤光片,涵盖所有生物芯片荧光染料的检测,适用于多种荧光标记探针   不同波长依次扫描避免交叉光污染  扫描后的图像还需要进一步的处理,这要求一定的软件支持。现有的分析软件包括:Biodiscovery的ImaGene系列,Axon Instruments的GenePix系列,GSI的QuantArray等  3. 基因芯片上各克隆荧光信号的分析原理   用激光激发芯片上的样品发射荧光,严格配对的杂交分子,其热力学稳定性较高,荧光强;不完全杂交的双键分子热力学稳定性低,荧光信号弱(不到前者的1/35~1/5),不杂交的无荧光。不同位点信号被激光共焦显微镜,或落射荧光显微镜等检测到,由计算机软件处理分析,得用激光激发芯片上的样品发射荧光,严格配对的杂交分子,其热力学稳定性较高,荧光强;不完全杂交的双键分子热力学稳定性低,荧光信号弱(不到前者的1/35~1/5)(2),不杂交的无荧光。不同位点信号被激光共焦显微镜,或落射荧光显微镜等检测到,由计算机软件处理分析,得到到有关基因图谱。美国GSI ?Lumonics 公司开发出专专业基因芯片检测系统(ScanArray 系列),采用激光共聚焦扫描原理进行荧光信号采集,由计算机处理荧光信号,并对每个点的荧光强度数字化后进行分析。利用QuantArray软件包对扫描的荧光信号进行分析,比  较每个克隆在不同组织间表达水平的差别。软件具体分析步骤如下:   首先,同时导入同一区域两个channel扫描的图像文件;将两个channel扫描的图像用不同的颜色显示并重叠;选择拟分析的区域,输入矩阵的行数及列数以及矩阵的个数等参数;在计算机给出的该区域信号图片上标定网格,使得网格中所包含的横线和竖线的交点个数同每个区域点样的克隆数相同,调整网格,使每个交点均位于点样克隆信号的中心;信号的中心确定后,计算机将自动以交点为中心,按照设定的半径圈定各克隆,并将其内部区域作为待分析的信号,同时在圈定的各克隆周围再按照预设的值圈定一定范围的区域,将该区域内的信号作为背景噪音;计算机分析每个克隆扣除背景噪音后的信号强度,并按照不同的要求对数据进行分析;利用GenePie方式对两个channel信号的进行定量比较分析,此时计算机根据各克隆两个channel扫描的信号,以饼图的形式给出两个channel信号强度的相对比例,同时可以逐个克隆读取计算机分析出的两个channel信号的值及所占的比例,进而确定各克隆在两种组织间的表达差异。  4. Microarray数据分析   Microarray数据分析简单来说就是对Microarray高密度杂交点阵图象处理并从中提取杂交点的荧光强度信号进行定量分析,通过有效数据的筛选和相关基因表达谱的聚类,最终整合杂交点的生物学信息,发现基因的表达谱与功能可能存在的联系。   Microarray数据分析主要包括图象分析(Biodiscovery Imagene 4.0\Quantarray分析软件)、标准化处理(normalization)、Ratio值分析、基因聚类分析(Gene Clustering)。   1. 图象分析:激光扫描仪Scaner得到的Cy3/Cy5图象文件通过划格(Griding),确定杂交点范围,过滤背景噪音,提取得到基因表达的荧光信号强度值,最后以列表形式输出。   2. 标准化处理(Normalization):由于样本差异、荧光标记效率和检出率的不平衡,需对cy3和cy5的原始提取信号进行均衡和修正才能进一步分析实验数据,Normalization正是基于此种目的。Normalization的方法有多种:一组内参照基因(如一组看家基因)校正Microarray所有的基因、阳性基因、阴性基因、单个基因。   3. Ratio分析(Ratio Analysis):cy3/cy5的比值,又称R/G值。一般0.5-2.0范围内的基因不存在显著表达差异,该范围之外则认为基因的表达出现显著改变。由于实验条件的不同,此域值范围会根据可信区间有所调整。处理后得到的信息再根据不同要求以各种形式输出,如柱形图、饼形图、点图、原始图象拼图等。将每个Spot的所有相关信息如位标、基因名称、克隆号、PCR结果、信号强度、Ratio值等自动关联并根据需要筛选数据。每个Spot的原始图象另存文件,可根据需要任意排序,得到原始图象的拼图,对于结果分析十分有利。   4. 聚类分析(Clustering Analysis):实际是一种数据统计分析。通过建立各种不同的数学模型,可以得到各种统计分析结果,确定不同基因在表达上的相关性,从而找到未知基因的功能信息或已知基因的未知功能。Gene Clustering就是根据统计分析原理,对具有相同统计行为的多个基因进行归类的分析方法,归为一个簇的基因在功能上可能相似或关联。目前以直观图形显示GeneCluster结果的程序已有人开发出来,可将抽象的数据结果转化成直观的树形图,便于研究人员理解和分析。  尽管基因芯片技术受到了广泛关注,但在基因表达谱分析中起着关键作用的生物信息学却没能引起大家的足够重视,认为简单人工处理一下原始数据就可以得到有价值的生物学信息,大量有价值的信息就这样被浪费和湮没了。可以肯定地说,没有生物信息学的有效参与,基因芯片技术就不能发挥最大效能。加大基因芯片技术中生物信息学的研究开发力度已成为当务之急。国内外已经进行了有益的尝试,初步开发出供芯片平台管理实验数据的软件包,就目前实际情况来看,生物信息学在基因芯片研究开发中介入的程度已经越来越深,主要涉及基因表达信息分析管理系统及其分析工具和分析方法,简单概括为以下几个方面:

  • 什么是液态悬浮芯片系统?

    [b]液态悬浮芯片系统[/b]是基于xMAP技术的新一代多检测能力,具有更快的结果获取时间和自动化能力,是高通量核酸和蛋白质的首选。 [img=液态悬浮芯片系统1]http://www.celll.cn/uploads/allimg/180724/1-1PH4103205543.jpg[/img]液态悬浮芯片系统,在国内也被称为“多功能流格”、“液体芯片分析系统”、“液体芯片”和“流动荧光探测器”、“多功能并行指标分析系统”、“(微)悬架阵列技术”等,是Luminex专利技术产品,是目前最高的高通量测试平台。 应用领域包括HLA组合、自身免疫性疾病检测、过敏原检测、基因突变检测、肿瘤标志物检测、HPV分型等诸多领域。 [b]技术原理:[/b]1. 用两种不同比例的荧光染料将直径5.6微米的聚苯乙烯微球染成不同的荧光色。目前已获得的荧光编码微球不超过100种。2. 针对不同对象的抗体分子或基因探针与特定编码微球共价交联,每个编码微球对应相应的检测项目。3. 首先对不同对象的荧光编码进行混合,然后将形成的复合物与标记荧光素结合,加入待测材料或待测扩增片段。4. 用两束激光对微球进行测序,一束激光确定微球的荧光编码,另一束激光测量微球上报告分子的荧光强度。 [img=液态悬浮芯片系统2]http://www.celll.cn/uploads/allimg/180724/1-1PH4103221Z8.jpg[/img][b]特点:[/b]1.[b]高通量、高速度:[/b]每一个微球都可以作为一个检测体,同时进行大量的生物检测。每次可检测到100个指标,样本量为10-20l。达到每小时10,000个测试,真正实现“高吞吐量”和“高速度”。2. [b]多功能性:[/b]xMAP技术可用于多种生物测试,包括免疫分析、基因分型、基因表达、酶分析等,可检测蛋白质和核酸。除临床应用外,还可用于科研、疾控中心、血站、农牧业、生物制药等领域3.[b]高灵活性:[/b]微球可与特定的探针、抗原或抗体连接,以满足不同客户的需求。4.[b]灵敏度高:[/b]检测极限可达0.01pg/ml。5.[b]重复性好:[/b]类都有相反的响应模式,每个指标都有1000-5000个反应单元,分析100次取中值。6.[b]高精度:[/b]检测范围为3.5 ~ 6个数量级,与ELISA和质谱高度一致。7.[b]低成本:[/b]低试剂用量的流动荧光可以有效降低临床应用的成本。 [b]产品介绍:[/b]1.采用50种微珠检测系统2.与普通ELISA检测相比,成本大大降低3.大大减小了设备尺寸,减少了实验台的占用 截至2009年1月,基于该技术平台开发的产品共计48种,[b]液态悬浮芯片系统[/b]指标约300项,通过了FDA的严格认证并进入临床应用。近20种用于宫颈癌筛查的肿瘤标志物和人乳头瘤病毒(HPV)已通过国家SFDA认证并进入临床应用。

  • 生物芯片及应用简介

    生物芯片及应用简介一、简介 生物芯片(biochip)是指采用逛到原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等等生物样品有序地固化于支持物(比如玻璃、硅片、聚丙烯酰胺凝胶、尼龙膜等载体)的表面,组成密集二维分子排列,然后与标记的待检测生物样品中靶分子杂交,通过特定的仪器比如激光共聚焦扫描或电荷偶联摄像机(CCD)对杂交信号的强度进行快速、并行、高效地检测分心,从而判断样品中靶分子的数量。由于常用玻片/硅片作为固相支持物,且在制备过程模拟计算机芯片的制备技术,所以称之为生物芯片技术。根据芯片上的固定的探针不同,生物芯片包括基因芯片、蛋白质芯片、细胞芯片、组织芯片,另外根据原理还有原件型微阵列芯片、通道型微阵列芯片、生物传感芯片等新型生物芯片、如果芯片上固定的是肽或蛋白,则称为肽芯片或蛋白芯片;如果芯片上固定的分子是寡核苷酸探针或DNA,就是DNA芯片。由于基因芯片(Genechip)这一专有名词已被业界的领头羊Affymetrix公司注册专利,因而其他厂家的同类产品通常称为DNA微阵列(DNA Microarray)。这类产品是目前最重要的一种,有寡核苷酸芯片、cDNA芯片和Genomic芯片之分,包括二种模式:一是将靶DNA固定于支持物上,适合于大量不同靶DNA的分析,二是将大量的探针分子固定于支持物上,适合于对同一靶DNA进行不同探针序列的分析。 生物芯片技术是90年代中期以来影响最深远的重大科技进展之一,是融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。由于用该技术可以将及其大量的探针同时固定于支持物上,所以一次可以对大量的生物分子进行检测分析,从而解决了传统核酸印迹杂交(Southern Blotting和Northern Blotting等)技术复杂、自动化程度低、检测目的分子数量少、低通量(low through-put)等不足。而且,通过设计不同的探针阵列、使用特定的分析方法可使该技术具有多种不同的应用价值,如基因表达谱测定、突变检测、多态性分析、基因组文库作图及杂交测序(Sequencing by hybridization,SBH)等,为“后基因计划”时期基因功能的研究及现代医学科学及医学诊断学的发展提供了强有力的工具,将会使新基因的发现、基因诊断、药物筛选、给要个性等方面取得重大突破,为整个人类社会带来深刻广泛的变革。该技术被评为1998年度世界十大科技进展之一。

  • 高通量微阵列清洗器优势及应用

    [url=http://www.f-lab.cn/microarray-manufacturing/washstation.html]高通量[b]微阵列芯片清洗器[/b][/url]专业为[b]玻片清洗[/b]和[b]微阵列芯片清洗[/b]而设计的[b]玻片清洗器[/b],拥有耐用的载玻片架,可容纳1-25个25×76毫米规格的玻璃玻片微阵列,可浸入到500ml的缓冲溶液槽。[b]高通量微阵列清洗器特色[/b]大大了微阵列芯片干燥前的清洗效率和效果。该缓冲溶液槽配备有磁力搅拌棒和盖子,可以防止缓冲物蒸发。含独立的缓冲液加快微阵列芯片的处理和清洗速度。是提高基因学,生物医学,制药和农业研究的质量和速度的理想的工具[img=高通量微阵列清洗器]http://www.f-lab.cn/Upload/microarray-wash.jpg[/img]高通量微阵列清洗器:[url]http://www.f-lab.cn/microarray-manufacturing/washstation.html[/url]

  • 小的不能再小的微型实验室,微流控芯片实验室

    中国在微流控芯片领域的水平和国外相差不大,而且中国已经有微流控芯片研发生产企业,在网上直接搜索“微流控芯片”便可以找到生产企业和微流控芯片相关资料文章。 微流控分析芯片最初在美国被称为“芯片实验室”(lab-on-a-chip),在欧洲被称为“微整合分析芯片”(micrototal analytical systems),它是微流控技术(Microfluidics)实现的主要平台,可以把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上,自动完成分析全过程。有着体积轻巧、使用样品及试剂量少,且反应速度快、可大量平行处理及可即用即弃等优点的微流控芯片,在生物、化学、医学等领域有着的巨大潜力,近年来已经发展成为一个生物、化学、医学、流体、电子、材料、机械等学科交叉的崭新研究领域。 微流控芯片采用类似半导体的微机电加工技术在芯片上构建微流路系统,将实验与分析过程转载到由彼此联系的路径和液相小室组成的芯片结构上,加载生物样品和反应液后,采用微机械泵。电水力泵和电渗流等方法驱动芯片中缓冲液的流动,形成微流路,于芯片上进行一种或连续多种的反应。激光诱导荧光、电化学和化学等多种检测系统以及与质谱等分析手段结合的很多检测手段已经被用在微流控芯片中,对样品进行快速、准确和高通量分析。微流控芯片的最大特点是在一个芯片上可以形成多功能集成体系和数目众多的复合体系的微全分析系统?微型反应器是芯片实验室中常用的用于生物化学反应的结构,如毛细管电泳、聚合酶链反应、酶反应和DNA 杂交反应的微型反应器等 。其中电压驱动的毛细管电泳(Capillary Electrophoresis , CE) 比较容易在微流控芯片上实现,因而成为其中发展最快的技术。它是在芯片上蚀刻毛细管通道,在电渗流的作用下样品液在通道中泳动,完成对样品的检测分析,如果在芯片上构建毛细管阵列,可在数分钟内完成对数百种样品的平行分析。自1992 年微流控芯片CE 首次报道以来,进展很快?首台商品仪器是微流控芯片CE ( 生化分析仪,Aglient) ,可提供用于核酸及蛋白质分析的微流控芯片产品。 微流控芯片的特点  芯片集成的单元部件越来越多,且集成的规模也归来越大,使着微流控芯片有着强大的集成性。同时可以 大量平行处理样品,具有高通量的特点,分析速度快、耗低,物耗少,污染小,分析样品所需要的试剂量仅几微升至几十个微升,被分析的物质的体积甚至在纳升级或皮升级。  廉价,安全,因此,微流控分析系统在微型化。集成化合便携化方面的优势为其在生物医学研究、药物合成筛选、环境监测与保护、卫生检疫、司法鉴定、生物试剂的检测等众多领域的应用提供了极为广阔的前景。  我国在微流控分析方面的研究虽然起步较国外晚了四到五年,但在多个相关的学科领域都具有足够的积累与优势,我国具有世界上最大的微流控芯片市场,用中国的芯片产品占领这一市场是我国科学家责无旁贷的使命。3月26日多名微流控领域的专家也将参加在上海举办的2015(第三届)先进体外诊断技术峰会,共同对微流控的先进技术进行总结和分析,对我国的微流控芯片研究领域进行更多的解读。相信经过不懈的努力,微流控芯片蓬勃的发展在我国很快将会到来。

  • 转基因检测技术知多少~~~

    事件一:7月4日,俄罗斯总统普京签署法令,禁止在俄境内种植转基因作物、养殖转基因动物、生产转基因食品,并禁止俄罗斯进口转基因食品,违者将处以罚款。=======================================================================事件二:7月29日,美国总统奥巴马签署了一项有关转基因食品销售的法律,要求生产商在食品包装上标注其是否含有转基因成分,从而让消费者“买得明白”。======================================================================= 美俄两个超级大国在转基因领域的大动作,代表着一个趋势,那就是政府部门对转基因食品的监管会越来越严格,立法越来越完善,因此对检测的技术要求也会越来越高。那么目前国内转基因发展现状,转基因成分的检测技术都有哪些,依据什么原理,准确度怎么样呢,就由小编为大家简单介绍一下。~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~据国际农业生物技术应用服务组织(ISAAA)统计报道,目前国内共批准60项转基因作物事件,分别为转基因玉米17项、转基因阿根廷油菜12项、转基因大豆10项、转基因棉花10项、转基因西红柿3项、转基因水稻2项、转基因杨树2项及转基因甜椒、转基因甜菜、转基因矮牵牛花和转基因木瓜各1项。转基因技术的核心是对物种遗传物质进行人为改造,导入外源基因,从而获得预期的目的性状。因此可以通过检测材料中是否含有外源启动子、终止子、标记基因、目的基因(抗虫、抗除草剂、抗病和抗逆等基因)及其表达产物来判断是否含有转基因成分。目前国内外对转基因成分的检测从原理上可以分为两类,基于外源蛋白靶标检测和基于外源核酸成分检测。基于外源蛋白靶标的检测技术主要是以免疫分析技术为基础,利用转基因作物产生的特定的外源蛋白与抗体的特异性识别进行检测和定量的技术。常见的基于外源蛋白靶标的转基因检测技术包括酶联免疫吸附技术(ELISA)、蛋白印迹(Western blot)检测技术、免疫层析试纸条技术及蛋白质芯片技术(Protein chip)等。ELISA方法和免疫层析试纸条法快速准确,但仅可检测一种目标蛋白,而蛋白质芯片可通过设计不同的探针阵列和特定的检测方法,使一次反应同时检测多个蛋白,具有通量高、微型且自动化等优点,但背景信号高、蛋白质活性难以长久保持。蛋白质检测方法往往不能检测加工食品,而且受目的蛋白质在转基因作物中的表达部位、表达时间及环境等的影响,限制了其应用。而核酸成分,尤其是DNA,因其稳定性好,在加工过程中不易降解,被广泛用于转基因检测中。基于外源核酸成分的检测方法主要包括 PCR 技术、恒温扩增技术、基因芯片技术等。PCR技术已经成为转基因作物及产品日常检测工作中应用最广泛的技术,国内以及国际发布的食品和饲料中转基因产品的检测标准方法大都采用的PCR技术原理,应用普通PCR方法或实时荧光定量PCR可以对检测样品进行定性和定量检测。在此基础上,新的PCR技术如巢式和半巢式 PCR、多重 PCR、PCR-免疫层析等技术也成功应用于转基因成分的检测中。同 PCR 检测技术相比,恒温扩增技术具有特异性强、等温高效、操作简单、耗时较短、产物易检测及设备要求低等优势, 在快速检测中具有良好的前景。基因芯片综合了 PCR 技术和分子杂交的优点,可用于一种转基因作物中多个基因的平行检测或对多种转基因作物进行同时检测,其快速简便、自动化、微型化、高通量、准确度高等优点,使其在转基因作物检测方面具有广阔的应用前景。数字 PCR 是一种基于单分子 PCR 的对DNA分子直接计数的绝对定量方法,不需要标准品作为参考,融合了定量 PCR的准确性及基因芯片的高通量,因此有望成为绝对定量新标准,也有潜力解决转基因检测通量和劳力成本的问题。目前, 国内外针对转基因成分的检测主要以DNA为检测对象的核酸扩增检测技术为主,但是却面临着两大挑战:1、Talen和CRISPR等基因组编辑技术在转基因研发中的应用;2、加工技术水平和加工精度的提高, 导致DNA的提取难度加大,提取质量下降。但是我们相信,正是在这些挑战的激励下,我们的检测技术会不断地发展,检测人员的水平也会不断地提高。行路难!行路难!多歧路,今安在?长风破浪会有时,直挂云帆济沧海。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制