当前位置: 仪器信息网 > 行业主题 > >

可变脉冲宽度高功率激光器

仪器信息网可变脉冲宽度高功率激光器专题为您提供2024年最新可变脉冲宽度高功率激光器价格报价、厂家品牌的相关信息, 包括可变脉冲宽度高功率激光器参数、型号等,不管是国产,还是进口品牌的可变脉冲宽度高功率激光器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合可变脉冲宽度高功率激光器相关的耗材配件、试剂标物,还有可变脉冲宽度高功率激光器相关的最新资讯、资料,以及可变脉冲宽度高功率激光器相关的解决方案。

可变脉冲宽度高功率激光器相关的资讯

  • 上海光机所实现用于单周期艾瓦激光的超宽带脉冲压缩光栅
    近期,中国科学院上海光学精密机械研究所邵建达研究员、晋云霞研究员团队和张江实验室李朝阳研究员在超宽带脉冲压缩光栅领域取得突破性进展。研究团队针对单周期脉冲压缩需求,成功研制超400 nm宽带金光栅,其在750-1150 nm 的波长范围内衍射效率大于90%,比现役金光栅带宽提升近一倍,并且其研制口径可进一步推向米量级。相关成果以“400nm ultra-broadband gratings for near-single-cycle 100 Petawatt lasers”为题发表于《自然-通讯》。  拍瓦激光器的脉冲宽度从目前10-20个周期压缩到单周期(3.3 fs)结合大能量的载入被认为是实现艾瓦激光的未来。研究团队长期深耕于宽带高阈值脉冲压缩光栅领域。在本项工作进展中,超宽带金光栅的仿真设计取得突破,引入方位角扩展了设计和应用自由度 实验上掌握了光栅槽形演化规律,发明了大底宽小尖角金光栅技术(专利号:CN114879293B),成功研制1443 g/mm和1527 g/mm超400 nm宽带金光栅。如此宽带和高阈值(优于0.3J/cm2)的超宽带光栅将在宽角非共线光参量啁啾脉冲放大系统【WNOPCPA,Laser Photonics Rev 17, 2100705(2022). https://doi.org/10.1002/lpor.202100705】中发挥关键性作用,理论计算证明其足以支撑 4 fs 脉冲压缩,可将实现百拍瓦需要的光栅口径从米级缩减至半米级。  啁啾脉冲放大(CPA)及其衍生技术推动激光峰值功率从太瓦推向10PW量级,脉冲压缩器已成为高功率超强超短激光装置的核心模块。受限于大口径、宽光谱、高阈值压缩光栅的单路负载能力,中、欧、美、俄、韩等国均已部署多路相干合成100 PW乃至艾瓦量级的激光设施建设。除此外,单周期(3.3fs)脉冲也是产生艾瓦级激光的重要策略之一。近些年来,WNOPCPA等技术能够在工程上支撑增益介质的带宽拓展至 400 nm,从而支撑 3-6 fs的傅里叶变换极限脉冲。支持单周期脉冲展宽和压缩的超宽带光栅是实现单周期艾瓦激光的一个核心技术难题。目前,团队正将超宽带光栅的口径推向米级,并将其应用于单周期艾瓦激光的原理样机。  研究工作得到了国家重点研发计划、国家自然科学基金、科技部、上海市战略新兴产业项目的支持。
  • 魏志义谈2023诺贝尔物理学奖成果——阿秒光脉冲超快激光
    北京时间10月3日17时50分许,在瑞典首都斯德哥尔摩,瑞典皇家科学院宣布,将2023年诺贝尔物理学奖授予美国俄亥俄州立大学名誉教授皮埃尔阿戈斯蒂尼(Pierre Agostini)、匈牙利-奥地利物理学家费伦茨克劳斯(Ferenc Krausz)和瑞典隆德大学教授安妮呂利耶(Anne L’Huillier),以表彰他们在阿秒光脉冲方面所做出的贡献。2023年每项诺贝尔奖的奖金也由去年的1000万瑞典克朗,增加到1100万瑞典克朗,约合人民币720万元。“阿秒”是时间单位,即10-18秒。按照时间长短划分,从秒开始依次是毫秒(10-3秒)、微秒(10-6秒)、纳秒(10-9秒)、皮秒(10-12秒)、飞秒(10-15秒)、阿秒(10-18秒)。而“阿秒光脉冲”就是指持续时间在阿秒量级的光脉冲。如此短的脉冲持续时间也为其带来了重要的应用。对此,诺贝尔奖给出的获奖理由如下:获奖理由:三位2023年诺贝尔物理学奖获得者因其实验而获得认可,这些实验为人类探索原子和分子内部的电子世界提供了新的工具。Pierre Agostini、Ferenc Krausz和Anne L’Huillier已经证明了一种制造超短光脉冲的方法,可以用来测量电子移动或改变能量的快速过程。当人类感知到快速移动的事件时,它们会相互碰撞,就像一部由静止图像组成的电影被感知为连续的运动一样。如果我们想调查真正短暂的事件,我们需要特殊的技术。在电子的世界里,变化发生在十分之几阿秒——阿秒如此之短,以至于一秒钟内的变化与宇宙诞生以来的秒数一样多。获奖者的实验产生了短到以阿秒为单位测量的光脉冲,从而证明这些脉冲可以用来提供原子和分子内部过程的图像。1987年,Anne L’Huillier发现,当她将红外激光传输通过稀有气体时,会产生许多不同的光泛音。每个泛音是激光中每个周期具有给定周期数的光波。它们是由激光与气体中的原子相互作用引起的;它给一些电子额外的能量,然后以光的形式发射出去。Anne L’Huillier继续探索这一现象,为随后的突破奠定了基础。2001年,Pierre Agostini成功地产生并研究了一系列连续的光脉冲,其中每个脉冲只持续250阿秒。与此同时,Ferenc Krausz正在进行另一种类型的实验,这种实验可以分离出持续650阿秒的单个光脉冲。获奖者的贡献使人们能够对以前无法遵循的快速过程进行调查。诺贝尔物理学委员会主席伊娃奥尔森表示:“我们现在可以打开电子世界的大门。阿秒物理学让我们有机会了解电子控制的机制。下一步将利用它们。”。在许多不同的领域都有潜在的应用。例如,在电子学中,理解和控制电子在材料中的行为很重要。阿秒脉冲也可以用于识别不同的分子,例如在医学诊断中。魏志义:我国激光产业发展迅速,未来可期实际上我国也一直在阿秒激光领域深耕,培养了一批杰出的科研人员。当前国内研究超快激光和阿秒激光的主要代表人物是来自中国科学院物理研究所的魏志义研究员,主要研究领域为超短超强激光物理与技术,包括飞秒激光放大的新原理与新技术、阿秒激光物理与技术、光学频率梳及应用等。魏志义研究员长期致力于超短脉冲激光技术与应用研究,主要成果有:提出了高对比度放大飞秒激光的一种新方法,得到同类研究当时国际最高峰值功率的PW(1015瓦)超强激光输出,创造了新的世界纪录;发明了同步不同飞秒激光的新方案,研制成功综合性能国际领先的同步飞秒激光器;建成国内首个阿秒(10-18秒)激光装置,得到了脉冲宽度小于200阿秒的极紫外激光脉冲;发展了新的光学频率梳技术,研制成功综合性能先进的系列飞秒激光频率梳;利用新的脉冲压缩技术与国外同事一起获得了亚5fs的激光脉冲,打破了保持10年之久的超短激光脉冲世界纪录;研制成功系列二极管激光直接泵浦的新型全固态超短脉冲激光,开发成功多种飞秒激光产品并提供国内外多家用户。仪器信息网在世界光子大会上有幸采访了魏志义研究员。魏志义表示,超快激光(即超短脉冲激光)领域激光领域前沿研究主要关注如何实现越来越窄的激光脉冲宽度,窄的激光脉冲可以用于物质中分子、原子甚至电子的运动过程研究,因为运动过程决定了物质的一些规律和属性。科研人员关注的另一方面是激光功率,更高功率的激光可能用于武器、加工、医疗等领域。功率方面的研究主要包括峰值功率和平均功率,其中峰值功率研究我国处于世界前列。魏志义在采访中表示其对高频功率非常关注和感兴趣。谈到国内在相关领域的前沿研究进展时,魏志义表示,我国在激光领域具有比较好的基础,与国外水平接近,虽然在整体上还有较大差距,但在部分领域有所领先。在超快脉冲激光方面,我国上世纪八九十年代与国际水平差距并不大,如西安光机所、天津大学、中山大学做得都非常不错。当前超快激光脉冲突破到阿秒量级,国内包括物理所在内的一些单位也拥有产生阿秒脉冲激光的能力,可以用来开展研究工作。在激光高频功率方面,上海光机所等单位在峰值功率研究上已达国际领先水平,并将国际水平推向了新的高度。据介绍,物理所十多年前在峰值功率方面取得了很好的研究成果,做到了当时国内最好也是国际上最高的的峰值功率。但在高频功率方面我国还是与国外有较大差距,特别是在产业方面。魏志义建议,接下来不仅要在极端指标方面,还要在可靠稳定性、高频功率方面做出突破,更好的提供给广大用户开展应用工作。魏志义也强调,我国当前在超快激光研究方面有些落后,但也在奋起直追,跟国际最高水平相比有一定差距,在高频物理方面,工业应用方面差距更大。但同时,魏志义表示这些年我国激光产业发展非常迅速,未来可期。
  • 我国飞秒脉冲激光参数准确度国际领先
    中国计量科学研究院超短脉冲激光测量研究取得突破性进展  我国飞秒脉冲激光参数准确度国际领先  日前,由中国计量科学研究院承担的国家“十一五”科技支撑课题“飞秒脉冲激光参数测量新技术研究”通过专家验收。该课题自主研制的飞秒脉冲自相关仪和飞秒脉冲光谱相位相干仪实现了飞秒脉冲激光参数的准确测量,课题组提出的飞秒脉冲光谱相位还原方法降低了传统方法的测量不确定度,将我国飞秒脉冲激光参数的准确度提高到国际领先水平。  飞秒是时间单位,1飞秒相当于10-15秒。它有多快呢?我们知道,光速是1秒钟30万公里,而在一飞秒内,光只能走0.3微米,相当于一根头发丝的1%。飞秒脉冲是人类目前在实验室条件下所能获得的在可见光至近红外波段的最短脉冲。它以其独具的持续时间极短、峰值功率极高、光谱宽度极宽等优点,在物理学、生物学、化学、光通讯、外科医疗、精细加工制造及超小器械制造等领域得到广泛的应用。如何准确地测量超短脉冲信息已成为飞秒脉冲研究领域迫切需要解决的难题。  该课题成功解决了这一技术难题,实现了超短脉冲时域参数的精确测量,对于超短脉冲的更深一步的研究和应用具有重要意义。多家国际同行研究单位引用课题组提出的新技术成功解决了超短脉冲研究和应用中存在的技术问题,极大地提升了我国在超短脉冲激光参数测量领域的国际地位。  据课题负责人邓玉强博士介绍,课题组在成功解决飞秒级超短脉冲参数测量的基础上,又展开了皮秒级超短脉冲测量的研究。皮秒脉冲处于纳秒脉冲和飞秒脉冲之间的带隙(1皮秒=10-12秒),它的光谱相对较窄,难以使用测量飞秒脉冲的光谱干涉技术,而传统的自相关仪器又存在量程范围小,需要标定校准,测量准确度不高等诸多问题。为解决这些问题,课题团队又自主研发了一种新技术和装置,实现了亚十飞秒(10-14秒)至数百皮秒(10-10秒)宽度范围内超短脉冲的精确测量,能得到强度自相关和条纹分辨自相关两种结果。该装置可实现测量的自校准,不仅提高了皮秒级激光脉冲宽度的测量准确度,而且扩大了超短脉冲参数测量的量程,进一步提高了我国超短脉冲激光时域参数的测量能力。
  • 激光功率测量积分球和探测器
    在基于垂直腔面发射激光器(VCSEL)的激光雷达和面部识别系统中,对激光束的多属性评估至关重要。这些属性包括功率、频谱和时间脉冲形状,它们共同决定了激光性能的优劣。然而,捕获和准确测量这些属性,特别是对于准直、发散、连续和脉冲光源,极具挑战性。Labsphere的多功能激光功率积分球和传感器凭借其出色的性能和精确度,为解决这些问题提供了有效方案。我们可根据您的需求提供激光功率测量积分球。选择不同的尺寸和涂层以满足您特定的测试激光功率水平。同时,根据测试激光的波长以及光学探测器的光谱响应度校准范围,我们可为您定制最合适的光学探测器,确保满足您的所有需求。特点确保激光器发出的功率能够被全面收集,无论其发散角度或偏振状态如何。高效地衰减高功率,以防止传感器过载。集成第二个探测器端口,用于进行光谱监测或扩大波长覆盖范围。减少在裸露状态下,传感器有效区域响应不均匀所引起的误差。应用&bull 连续(CW)与脉冲激光测量&bull 实验室与生产测试&bull 镜头校准&bull 激光功率质量评估LPMS 配备皮安计和激光功率软件&bull 第n波长的平均辐射功率(连续波)&bull 第n波长的平均峰值辐射功率(脉冲)&bull 探测器采样率(Hz)&bull 探测器扫描间隔(秒)&bull 激光功率密度:单位面积的瞬时激光束功率,单位为W/cm2,可选择以cm2为单位的光束面积需要输入光束面积&bull 最大功率(连续波)&bull 最小功率(连续波)&bull 峰值辐射功率(脉冲)&bull 脉冲宽度或脉冲持续时间间隔&bull 辐射功率范围(连续波)&bull 辐射功率(W)&bull 重复率/频率(脉冲)&bull 标准偏差(连续波)&bull 总脉冲数&bull 波长(由客户根据激光输出和校准数据表选择)
  • 国家重大科学仪器专项高功率窄线宽光纤激光器研发取得重要进展
    p  由山东海富光子科技股份有限公司牵头承担的国家重点研发计划重大科学仪器设备开发重点专项“高功率窄线宽光纤激光器”项目经过近两年的努力,突破了半导体增益芯片设计制备与高效封装耦合、玻璃光纤制备中新型热熔键合及高浓度均匀掺杂、窄线宽光纤激光放大器非线性效应抑制等关键技术,开发出高功率窄线宽光纤激光器样机。近日,项目通过了科技部高技术中心组织的中期检查。/pp  高功率窄线宽光纤激光器兼备高峰值功率及窄线宽特性,同时采用全光纤结构,是激光精密测量、激光测距和遥测等重大科学仪器的关键核心部件之一。目前国内高功率窄线宽光纤激光器主要依赖国外进口,国内还不能实现产品级整机供货。项目通过采用非对称光栅的脊波导和大光腔的锥形增益结构,优化光栅结构参数减少激光器的线宽值,开发出高可靠性窄线宽脉冲激光种子源 研究了高倍率低噪声光放大、窄线宽光纤激光器中的SBS抑制、SPM补偿和模式控制等关键技术,获得高功率窄线宽光纤激光输出 开发了可工程化应用的高功率窄线宽光纤激光器 开展了激光雷达遥感的应用示范研究和产业化推广。/pp  该项目下一步将加强仪器可靠性的整体设计,加快可靠性试验验证,提高产品稳定性 进一步加快应用示范的进度及工程化实施。/p
  • 我国超短脉冲激光技术始终走在世界前列——访中国科学院物理研究所魏志义研究员
    仪器信息网讯 7月26-28日,2023世界光子大会暨第十四届光电子产业博览会在北京国际会议中心顺利召开!本届大会由中国光学工程学会(CSOE)、国际光学工程学会(SPIE)、俄罗斯工程院、德国工程院、美国工程院等各国学会机构主办。大会以“光领制造,智创未来”为主题,聚焦光电子行业新市场、新产品、新技术,近20余场学术会议,八大主题展览,以及第12届国际应用光学与光子学技术交流大会(AOPC2023)同期举办,近百位大咖专家聚焦光电子领域的学术与技术的创新碰撞。大会期间,仪器信息网特别采访了中国科学院物理研究所魏志义研究员。据了解,魏志义主要从事超短脉冲激光(即超快激光)研究。采访中,魏志义向我们介绍,激光领域前沿研究主要关注如何实现越来越窄的激光脉冲宽度,窄的激光脉冲可以用于物质中分子、原子甚至电子的运动过程研究,因为运动过程决定了物质的一些规律和属性。此外,科研人员关心的另一方面是激光功率,更高功率的激光可能用于武器、加工、医疗等领域。功率方面的研究主要包括峰值功率和平均功率,其中峰值功率研究我国处于世界前列。魏志义在采访中对高频功率非常关注和感兴趣。以下为现场采访视频:
  • 全球首台商用石墨烯飞秒光纤激光器问世
    记者从近日在江苏泰州举行的中国石墨烯标准化论坛上获悉,泰州巨纳新能源有限公司研制的世界首台商用石墨烯飞秒光纤激光器Fiphene问世,同时创造了脉冲宽度最短(105fs)和峰值功率最高(70kW)两项石墨烯飞秒光纤激光器世界纪录。  飞秒光纤激光器的应用领域非常广阔,包括激光成像、全息光谱及超快光子学等科研应用,以及激光材料精细加工、激光医疗(如眼科手术)、激光雷达等领域。传统的飞秒光纤激光器核心器件&mdash &mdash 半导体饱和吸收镜(SESAM)采用半导体生长工艺制备,成本很高,且技术由国外垄断。  在飞秒光纤激光器领域,石墨烯被认为是取代SESAM的最佳材料。2010年诺贝尔物理学奖获得者撰文预测石墨烯飞秒光纤激光器有望在2018年左右产业化。要实现真正的产业化,需要解决高质量石墨烯制备、大规模低成本石墨烯转移、石墨烯与光场强相互作用、石墨烯饱和吸收体封装以及激光功率稳定控制等一系列关键技术。泰州巨纳新能源有限公司经过多年持续研究,成功攻克了这些关键技术,率先实现了石墨烯飞秒光纤激光器的产品化,主要性能指标均高于同类产品,具有很高的性价比和很强的市场竞争能力。  该产品被命名为Fiphene,取Fiber(光纤)和Graphene(石墨烯)两个词的组合。泰州巨纳新能源有限公司计划以Fiphene为平台,推出更多石墨烯光纤激光器产品,将石墨烯的应用发展向前推进。
  • 滨松成功研发只有桌子尺寸大小的高功率、高重复频率激光器
    滨松光子学株式会社(静冈县滨松市,董事长:昼马 明 ,以下简称“滨松光子学(株)”)将传统泵浦用半导体激光器的功率提高了三倍,并优化了放大器的设计 ,成功开发了只有桌面尺寸大小,可以产生1焦耳(以下,j)的高能量、300赫兹(以下,hz)高重复频率的功率激光器。一般的激光器的输出功率与设备的尺寸、重复频率成正相关关系,而该课题实现了小型却高功率、高重复频率的激光器。本产品的诞生,通过去除细小的污垢的激光清洁来提高了传统加工的生产效率,同时,期待它在金属材料的激光成形、延长金属器件的使用寿命的激光喷丸等方面的新应用。该产品的开发是内阁办公室主导的综合科学技术与创新研发推进项目(impact)的一部分,是佐野雄二负责的“普及功率激光器以实现安全、安心、长寿社会”研发项目的一环,由滨松光子学(株)中央研究所产业开发研究中心副所长川嶋利幸等人开发,而且今后我们也将继续推进研究成果的产品化。此外,该新研发的产品将于11月1日(星期四)起连续3天在actcity滨松(滨松市中町区)举行的滨松光子综合展“2018photon fair”上展出。<关于功率激光器>功率激光器主要由振荡器和放大器组成。 振荡器由泵浦用半导体激光器、激光介质、全反射镜、输出镜和光开关组成,放大器由泵浦用半导体激光器和激光介质组成。 由振荡器发出的激光通过放大器时,从三种高能量状态(激发状态)的三段激光介质接收能量实现高功率输出。功率激光器的结构<新产品概述>该产品搭载了最新研发的泵浦用半导体激光器,虽然只有桌子尺寸大小,但却是可以产生1j的高脉冲能量且300hz的高重复频率的功率激光器。滨松光子学(株)已经开始制造并销售300hz的重复频率下输出功率为100w的泵浦用半导体激光器。此次,结合公司独有的晶体生长技术和镀膜技术,将传统泵浦用半导体激光的功率提高到世界最高水平300w,同时放大器在激光介质的长度和横截面积上下功夫,并采用具有提高冷却效率的放大器,解决了由于热问题导致激光介质损坏或破坏的问题,成功输出了传统放大器的3倍能量。这是因为放大器采用了新的散热设计,提高了激光的放大效率。此外,由于采用半导体激光器作为泵浦光源,具有高于市面上销售的氙灯泵浦脉冲激光器约10倍的光电转换效率,约100倍的泵浦光源的寿命。通过控制零部件的数量,成功实现了器件的稳定输出、小型以及低成本。一般激光器的功率与设备的尺寸、重复频率成正相关关系,但本产品却实现了小型而又高功率和高重复频率的特性。利用该产品,可以对附着于材料上的小污垢进行激光清洁,以提高传统加工的生产效率。此外,我们也期待脉冲激光器在工业领域的新应用,如飞机的金属材料等可以在不使用模具的情况下进行变形加工完成激光成形,以及通过激光喷丸来提高金属器件的使用寿命等。<研发背景>激光在金属材料的钻孔、焊接、切割等方面有着广泛地加工用途,为了提高生产效率,光纤激光器和co2激光器等各种各样的激光都在朝着高功率的方向发展。激光分连续输出一定强度激光的cw(continuous wave)激光和短时间内重复输出激光的脉冲激光,目前cw激光是激光加工领域的主流。另一方面,脉冲激光不同于cw激光,它正在朝着新型激光加工的应用方向发展。采用半导体激光器作为泵浦光源的功率激光器,它具有高功率、高重复频率的特性,但因为半导体激光器价格昂贵很难推向产品的实用化,而市场上销售的j级脉冲激光器上使用的泵浦光源多采用氙灯光源,对激光器内部有严重地热影响,因此重复频率只能限制在10hz左右。像这样,为了进一步提高生产效率,同时扩大用途,对小型且可以发出高功率、高重复频率脉冲激光的激光器的需求日益增加。主要规格<委托研究信息>此研究成果,是通过以下的科研课题项目得到的。内阁办公室创新研发推进项目(impact)项目负责人:佐野雄二研发项目:普及功率激光器以实现安全、安心、长寿社会研发课题:开发高功率小型功率激光器研究负责人:川鸠利幸(滨松光子学株式会社 中研研究所 产业开发研究中心 中心副主任)研发时间:2015年~2018年本研究开发课题是致力于开发桌子大小、高功率、高重复且稳定性高的脉冲输出的功率激光器。<项目负责人佐野熊二的评论>“普及功率激光器以实现安全、安心和长寿的社会”的impact计划,推动了大功率脉冲激光器的小型化、简化和高性能的发展,这对于探索最先进的科学和工业是不可缺的,同时,我们也正在推进相关基础技术和应用技术的开发,旨在提供可以随时随地使用,具有高稳定性的廉价激光器,向工业领域的创新努力。此次,滨松光子学(株)的开发团队采用了自有的先进半导体激光器作为泵浦高能脉冲激光器的光源,通过优化激光器件,以低价格实现前所未有的小型、高功率、高重复的激光设备。从限制成本和生产效率的角度来看,在我们之前放弃引入激光设备的领域,也期待会有更多的应用。功率激光器设备的结构 功率激光器设备外观
  • 滨松成功研发出适用于高功率CW激光器的空间光调制器
    滨松公司利用其独特的光学半导体制造工艺,成功研制出世界上最大规模的液晶型空间光调制器(Spatial Light Modulator,以下简称SLM※1),该SLM的有效面积约较以往产品增加了4倍,且耐热性更高。该开发器件可应用于工业用高功率连续振荡(以下简称CW)激光器,实现激光分束等控制,应用到如金属3D打印,以激光烧灼金属粉来模塑成形车辆部件等,同时有望提高激光热加工的效率和精度。本次研发项目的一部分是受量子科学技术研发机构(QST)管理的内阁办公室综合科学技术和创新会议战略创新创造计划(SIP)第2期项目“利用光和量子实现Society 5.0技术”的项目委托,开展的研发工作。该开发器件将于4月18日(星期一)至22日(星期五)在横滨Pacifico(横滨市神奈川县)举办为期5天的国内最大的国际光学技术会议“OPIC 2022”上发布,敬请期待。※1 SLM:通过液晶控制激光等入射光的波前,调整反射光的波前形状,来校正入射光的光束和畸变 等,是可自由控制激光衍射图形的光学设备。传统开发产品(左)和本次研发器件(右)产品开发概要本次研发的器件是适用于高输出功率CW激光器的SLM。激光器分为在短时间间隔内可重复输出的脉冲激光器和连续输出的CW激光器。脉冲激光器可以减少热损坏,实现高精度加工;而CW激光器可用于金属材料的焊接和切割等热加工,因此成为激光加工的主流。滨松凭借长期以来积累的独特的薄膜和电路设计技术,已经成功开发了全球耐光性能最佳,适用于工业脉冲激光器的SLM。通过应用SLM,将多个高功率脉冲激光光束进行并行加工,相较于仅聚焦到1个点的加工方式,它的优势在于它可以实现碳纤维增强塑料(CFRP)等难加工材料的高速、高精度地加工。但在应用于CW激光器时,存在随着SLM温度上升导致性能下降的问题。SLM结构和图形控制原理SLM由带像素电极的硅衬底、带透明电极的玻璃衬底,以及两衬底中间的液晶层组成。它通过控制在像素电极上的液晶的倾斜角度,来改变入射光的路径长度然后进行衍射。其结果便是,通过对入射光进行分支、畸变校正等,实现对激光束照射后衍射图形的自由调控。此次,滨松公司运用了大型光学半导体器件在开发和生产中积累的拼接技术(※2),将SLM的有效面积扩大到30.24×30.72 mm,约为现有尺寸的4倍,为世界上最大的液晶型SLM,也因此它可以减少SLM单位面积的入射光能量。同时,由于采用耐热性和导热性俱佳的大型陶瓷衬底,提高了散热效率,成功地抑制了因CW激光器连续照射而引起的温度升高,使得SLM可适用于工业用的高功率CW激光器。此外,大面积硅衬底在制造过程中容易出现弯曲、平整度恶化的情况,进而导致入射图形的光束形状产生畸变,针对这一问题我们运用了滨松独特的光学半导体元件生产技术,使SLM在增大面积的同时,保持了衬底的平整度。至此,实现了光束的高精度控制。※2拼接技术:在硅衬底上反复进行光刻的技术。适用于完成无法一次性光刻的大型电子回路。本次研发的器件适用于工业用高功率CW激光器,实现多点同时并行加工,有望提高如金属3D打印为代表的激光焊接和激光切割等激光热加工的效率。此外,通过对光束形状进行高精度的控制,该开发器件可根据对象物体的材料和形状进行优化,进而实现高精度的激光热加工。今后,我们将继续优化SLM结构中的多层介质膜反射镜,以进一步提高耐光性能。此外,我们也会将此开发器件搭载到激光加工设备中,进行实际验证实验。研发背景SIP第2期课题旨在通过将网络空间(虚拟空间)和物理空间(现实空间)高度融合的信息物理系统(Cyber Physical System,以下简称CPS)验证具有革命性的创新型工业制造。其中,“利用光和量子的Society 5.0实现技术”中,我们研发的主题包括激光加工在内的3个领域,旨在通过CPS激光加工系统验证创新型制造的可能性。随着CPS激光加工系统的实现,我们期待通过AI人工智能收集在多种条件下用激光照射物体得到的加工结果数据,选择最佳的加工条件,进而优化设计和生产过程。SLM被定义为CPS激光加工系统中必需的关键设备,为此,我们将继续致力于提高SLM的性能。本次研发的器件在CPS激光加工系统中的应用场景主要规格
  • 国内首台产品级掺镱高功率飞秒振荡器研制成功
    近日,北京量子信息科学研究院(简称“量子院”)全光量子源团队开发完成了国内首台产品级高功率飞秒振荡器——Fermion-007。该产品弥补了国内瓦量级飞秒振荡器的产品空白,在国际上仅有立陶宛Light Conversion等少数几家公司具有相当技术指标的产品。Fermion-007采用了多项创新技术,仅一级振荡器即可输出大于7W、重频80MHz的飞秒脉冲激光,其指标、可靠性均达到国际先进水平。目前,研发团队已接到超快电镜应用领域的商业合作订单。作为产生飞秒脉冲激光的“种子”,超快飞秒振荡器(Ultrafast femtosecond oscillator)具有高重频、高光束质量等优势,但输出功率普遍较低,往往需要对其进行功率放大以满足应用需求。然而,这种“振荡器+放大器”的技术路线会大大增加系统复杂度,导致成本变高、可靠性变差,从而限制了飞秒激光的受众范围。此外,超快电镜、飞秒双光子显微成像等应用对激光重复频率也有较高要求,因此,高功率飞秒振荡器成为相关领域的急需产品。飞秒振荡器主要分为光纤和固体两大类。固体振荡器虽然技术难度较高,但最高输出功率比光纤高3个量级,且具有更高重频和更长的锁模器件寿命,是满足应用需求的最佳技术方案。二者的具体对比见表1。表1 光纤、固体飞秒振荡器参数对比光纤飞秒振荡器固体飞秒振荡器直接输出功率百pW至mW量级几十mW至W量级最高重复频率百MHz几GHz飞秒锁模方式/器件寿命SESAM/3个月1. SESAM/3个月2. 克尔透镜锁模/无寿命问题技术难度技术门槛较低。基于标准化光纤器件、光纤熔接机设计、生产。技术门槛较高。对于腔型设计、调试经验、工程化等均有要求较高。对于产品商业化而言,工程水平的高低起决定作用。定制化程度激光器结构、指标类似,激光表现主要依赖于光纤、熔接仪器等的上游器件的性能。结构灵活性好,适合针对应用定制功率、重频、脉宽、中心波长等指标国内商业化现状5-10家商业化公司目前尚无商业化公司基于上述应用需求和技术路线分析,北京量子院开发了Fermion系列高功率全固态(DPSS)飞秒振荡器。在不需要额外放大的情况下,Fermion-007可直接输出大于7W、80MHz的飞秒脉冲激光,脉冲宽度~120fs,中心波长1035nm。此外,输出激光还具有优异的光束质量和长期稳定性,两维M2小于1.2,12小时连续运转功率均方根值小于0.3%。图1 Fermion-007 光谱及脉冲宽度测量图2 Fermion-007 光束质量及长期稳定性工程化是激光器从实验样机蜕变成可用产品的核心环节。Fermion-007采用了低热阻晶体封装、一体化密封、温湿度负反馈控制等多项工程技术,并对腔体、冷却模组的设计进行了模拟优化,以降低高泵浦热量对激光器运行环境的不利影响。激光器采用克尔透镜锁模(Kerr-lens mode locking)作为飞秒脉冲产生、维持的机制,相比可饱和吸收体(SESAM)具有更长的寿命和更高的器件可靠性。此外,研发团队首次将新型“射频同步技术”应用到Fermion-007中,用以自启动及维持飞秒锁模状态,从根本上克服了克尔透镜锁模飞秒振荡器长期存在的“失锁”问题。图3 Fermion-007 机械热分布及水路的模拟高功率飞秒振荡器在双光子显微成像、光参量泵浦等领域应用广泛。近年来,随着相关技术的发展,超快电镜、超快电子衍射等标准化仪器对此类激光器的市场需求也在迅速提升。超快电子显微镜(Ultrafast electron microscopy(UEM))是由传统电镜升级改造而成的高端分析仪器,“飞秒激光驱动光阴极”系统是其新增的核心模块。升级后的超快电镜除了拥有原子尺度的空间分辨率外,还具有飞秒-皮秒尺度的超高时间分辨率,由此成为研究材料动力学过程的有力工具。图4 Fermion系列产品在超快电镜中的应用研发团队与相关系统商开展了新型超快电镜开发的前沿合作,首次提出利用飞秒振荡器产生高重频的超快电子,以降低激光脉冲对光阴极造成的损伤风险。该方案有望从根本上解决此类仪器长期存在的光阴极可靠性问题,提高超快电镜产品的使用寿命和市场竞争力。据合作系统商的预估,超快电镜未来3年总市场需求量可达到50台/年。研发团队简介高功率飞秒振荡器是量子院全光量子源团队于子蛟助理研究员主导完成的研究项目。全光量子源团队于2020年由鲁巍教授组建,隶属于北京量子院技术产业开发中心。团队致力于打造支撑量子产业相关的关键激光设备,包括超快超强激光装置(TW-PW系统)、激光加速桌面光源及应用、新型高端科研飞秒激光器的前沿技术研究、产品研发及产业化落地。
  • 脉冲功率激光技术国家重点实验室顺利通过验收
    11月2日,受科技部基础司委托,基础研究管理中心组织专家对依托中国人民解放军电子工程学院的脉冲功率激光技术国家重点实验室进行了验收。科技部基础研究司相关人员出席会议。  专家组听取了脉冲功率激光技术国家重点实验室主任的建设情况报告,并进行了实地考察。经过认真研究讨论,专家组认为脉冲功率激光技术国家重点实验室在科学研究、人才培养、平台建设和管理运行等方面基本完成了建设计划任务,同意其通过建设验收。  脉冲功率激光技术国家重点实验室是首个建设的军民共建国家重点实验,是军民共建科研体制的有益探索。该实验室以脉冲功率激光产生机理为主线,重点开展脉冲功率激光传输与控制和脉冲功率激光与物质作用等基础科学和军民应用技术的研究。
  • 填补空白!中智科仪发布数字脉冲延迟发生器“STC810”
    导读:中智科仪(北京)科技有限公司最近成功自主研发出STC810八通道数字延迟脉冲发生器,该产品以10ps延迟精度和35ps超低抖动性能脱颖而出,打破了国外技术垄断,为我国高端科研仪器自主创新树立了里程碑。STC810拥有8个独立高精度延时通道,采用了软件、触屏和旋钮操控模式相结合,同时配备多功能接口以适应多元化需求。这一技术突破填补了国内关键设备空白,极大提振了我国自主创新信心。STC810的成功为我国科技自主发展树立了榜样,鼓舞着更多企业积极从事科技创新,共同推动我国科研装备产业向更高层次迈进。正文:在当前信息化、智能化社会中,精准的时间和信号控制技术作为众多高科技领域发展的基石,在通信、雷达探测、医学成像等重要应用中发挥着不可或缺的作用。然而,在我国市场上,高端数字延时脉冲发生器这一关键设备长期以来被美国厂家的数字延迟脉冲发生器所主导。虽然国内部分企业也投入研发同类型产品,但在核心技术指标上,如延时精度与外触发抖动等方面仍难以达到与该厂家相媲美的水平。然而,为打破国际垄断局面,实现高端数字仪器设备国产化替代的目标,中智科仪(北京)科技有限公司的研发团队历经艰辛攻关,成功推出了自主研发的台式数字延迟脉冲发生器——STC810。这款专为科研工作者精心打造的产品,在性能和人机交互体验方面都取得了显著的进展。中智科仪自主研发的STC810八通道数字延迟脉冲发生器,内置八个独立可调延时输出通道,使用户能够轻松灵活地调节延迟时间、脉冲宽度以及频率等多种参数,以满足多元化应用场景需求。在核心性能方面,STC810以卓越的10ps延时精度挑战,同时将外触发抖动降低至35ps,达到了国际一流水准,充分体现了我国在该领域的自主研发实力和技术进步。STC810摒弃了传统的数码管显示模式,采用了先进的彩色触摸屏界面设计,大大提升了操作便捷性和直观性,使得实验过程中的参数设置更为高效、准确。通过自主研发的智能软件控制系统,STC810进一步简化了实验操作流程,无论是调整延迟、设置脉冲宽度还是频率,都能迅速响应,从而极大地提高了科研工作的效率。值得一提的是,STC810还具备分频处理功能,能在外部触发模式下实现70纳秒内的超短内置延迟,并支持低至0.25V的触发阈值,兼容上升沿和下降沿触发,同时适应高阻抗和低阻抗环境下的稳定运行。通过多功能输出端口的设计,确保了STC810能够在各种复杂的应用场景下发挥出色作用,真正实现了与国际标准比肩的精准同步延时能力。为了全面剖析“STC810”八通道数字延迟脉冲发生器的研发历程、技术创新及市场前景,我们特意与中智科仪(北京)科技有限公司的研发部负责人进行了一场深度对话,共同探讨了国产同类产品目前所遭遇的挑战以及蕴含的发展机遇。通过深入挖掘“STC810”的研发故事及其关键技术突破,我们揭示了这款产品如何成功应对国际竞争压力,实现对高端市场的突破,并为我国科研领域的自主可控提供了强有力的支撑,同时也展示了国产科学仪器在追求卓越性能与便捷操控上的不懈努力与创新成果。以下视频链接是与研发负责人探讨STC810数字延迟发生器发展历程与背后故事的对话:在与中智科仪研发负责人的深度对话中,我们共同追溯和剖析了STC810数字延迟发生器的研发历程及其背后的创新故事。这次互动使我们全面回顾了产品从设计构想到实际应用的发展历史,并深入体悟到其中所经历的曲折过程和取得的重大成就,从而深刻认识到创新道路上的挑战与突破对于产品研发的重要性。中智科仪在长期深耕时间分辨成像系统领域的基础上,为应对市场和技术挑战,以及降低潜在的供应链风险,自主研发了一款台式数字延迟脉冲发生器——STC810。这款产品源自公司核心相机技术中的时序控制功能扩展,不仅实现了对延时和脉冲宽度的高精度调节,还能够与镜头耦合型sCMOS相机及EyeiTS高速像增强模组完美融合,成为时间分辨成像系统不可或缺的核心组件。研发过程历经近五年的时间,团队在面对国内同类型技术空白、基础理论研究与算法层面相对薄弱的挑战时,以及在高科技竞争日益激烈的国际环境下的担忧中,决定主动出击,攻克关键技术难题。经过数年的持续努力,去年终于取得了突破性进展,成功研发出性能媲美国际先进水平的STC810。产品的核心亮点在于其外触发抖动达到了35皮秒的极低水平,远超国内市场上最优产品的500至800皮秒表现。同时,设备采用了先进的彩色屏幕显示技术,提供丰富全面的信息展示和便捷的操作体验,极大地提升了人机交互效果。展望未来,STC810同步时序控制器有着广阔的应用前景,可广泛适用于医学成像、激光雷达、时间分辨成像、量子精密测量、仪器触发与同步等多个尖端科技领域。这款自主知识产权的产品不仅彰显了中智科仪在高端科学仪器领域的研发实力,更预示着公司在国际市场上的强大竞争力,有望为中国乃至全球科研事业的进步作出重要贡献。图1 优于35ps外触发抖动图2 10ps延时精度图3 彩色触摸屏显示图4 数字延迟脉冲发生器经典应用以下视频链接是STC810分别在PC端软件/触屏操作/面板旋钮操作下的视频演示:以下链接是华中科技大学强电磁工程与新技术国家重点实验室借助中智科仪STC810数字延迟脉冲发生器用于等离子体诊断的时序系统控制的应用分享的文章:STC810数字延迟脉冲发生器用于等离子体诊断的时序系统控制-中智科仪(北京)科技有限公司 (cis-systems.com) 以下链接是上海交通大学航空航天学院光学精细成像实验室借助中智科仪STC810数字延迟脉冲发生器用于测试激光器触发与火焰动态拍摄的应用分享的文章:STC810八通道数字延迟脉冲发生器用于激光同步触发与火焰动态拍摄-中智科仪(北京)科技有限公司 (cis-systems.com)结论:通过深入听取研发工程师对STC810数字延迟脉冲发生器从最初构思到最终实现的全程回顾,以及分享的产品在开发过程中所遭遇的各种技术难关及其克服经历,结合当前我国高端设备自主研发所面临的挑战与机遇,我们有充分理由认为,国产数字延迟脉冲发生器未来的发展路径将尤为强调核心技术的自主突破、市场疆域的有力拓展和应用领域的深层次挖掘,具体体现在以下几个核心层面:1. 核心技术自主可控: 持续投入研发,提升脉冲产生、精确延时等关键技术的自主研发能力,实现核心部件和整机系统的全面自主可控。2. 高性能产品持续创新: 瞄准国际先进水平,研制更高精度、更稳定、更具灵活性和智能化的新型数字延迟脉冲发生器产品,满足不同行业领域对精密时序控制的高端需求。3. 应用场景不断拓宽: 不断探索并进入新的应用场景,如量子计算、超快激光、高速通信、粒子加速器等领域,提供定制化解决方案和服务。4. 市场竞争力增强: 通过技术创新与品质升级,提高国产设备在国内外市场的份额和影响力,积极参与国际竞争,树立国产品牌形象。5. 产学研深度融合: 加强与高校、科研院所及产业界的协同合作,推动科技成果快速转化,共同构建完善的产业链条,支撑行业的长远健康发展。
  • 太赫兹脉冲时域反射计系统在半导体行业的开发与应用
    1、前言随着半导体封装变得更小、集成度更高,使用非破坏性、高分辨率技术定位故障的能力变得越来越重要。对失效分析手段提出了挑战,故障高分辨率定位能力的需求逐渐增大。为满足这些要求,Advantest开发了TS9001TDR方案,该系统分析通过利用专有的短脉冲信号处理技术进行高分辨率时域反射测量(Time Domain Reflectometry, TDR),对先进半导体封装、电子元件和印刷电路板中的导线故障区域进行快速、高精度和无损分析。 2、主要应用以3D集成电路为代表的高密度集成电路中存在着无限小的布线结构,布线故障在封装、印刷电路板封装过程中频繁出现。检测故障点需要几十微米分辨率。由于上升时间(约20ps)和抖动(约1ps)的限制,传统示波器TDR方法的故障距离分辨率仍保持数百微米的分辨率。使用TS9001TDR系统可以准确分析各种尖端半导体封装的布线质量,如倒装芯片BGA、晶圆级封装和2.5D/3D IC封装,能够直接连接客户的射频探测系统,针对其设备形状和故障分析环境,实现高速、高分辨率的测量,提供灵活的解决方案。(1) 高度集成的集成电路封装故障分析1) 封装引线故障分析:确定引线故障点位于Si Interposer内还是封装内,识别故障是由预处理还是后处理中的因素引起的2) C4 Bump故障分析:利用测试回路确定和分析安装Si Interposer的条件,对测试回路的菊花链结构进行故障点分析,并对安装条件进行反馈3) TSV、Micro-Bump故障分析:识别层压芯片的故障层4) 印刷电路板PCB故障分析:识别PCB板中通孔和信号线的故障点3、原理与优势(1)原理与技术太赫兹脉冲时域反射计的原理参见上图。其利用两个的飞秒激光器分别泵浦光电导电线,产生高频的太赫兹脉冲信号。飞秒激光器的中心波长1550nm,脉冲宽度50fs。其中,一个飞秒激光器的重复频率50MHz,另一个激光器的重复频率稍有区别。采用两个激光器的重复频率稍有差别的缘由在于,利用两个激光器的差频延迟,可以实现高频太赫兹信号的产生和探测。其工作是高频太赫兹信号通过探针接触芯片的管脚,高频太赫兹信号在芯片封装的引线中传播。当芯片封装没有开断路时,高频太赫兹沿着引线向前传播;当芯片封装的引线等出现开路时,将反射回正峰脉冲信号;当芯片封装引线出现短路时,将反射回负峰脉冲信号。(2)技术优势为了识别故障点,常用的封装无损检测方法包括光发射显微镜(emission microscope)和示波器时域反射计(Time domain Reflectometry, TDR)等,但是这些无损检测方法受到时域信号抖动的限制(信号抖动约1ps),导致分辨率不高,不能定位微米级的失效位置,无法以高分辨率检测开路、短路故障。故亟需高分辨率时域反射计,以提供快速且精准的失效定位。Advantest通过独有的光学采样和电短脉冲生成技术,借助飞秒激光技术,产生抖动小于30fs的超短采样脉冲。可以实现5μm的故障定位分辨率。通过使用自动探针的自动触地功能,进行精确的可重复测量,具有更高精度和效率的故障位置测量。TS9001TDR系统通过自动探针和与CAD设计联动,实例分析芯片封装的引线开路和短路故障定位,可以直观快速定位芯片封装的故障点,实现先进封装的失效分析。4、国内外发展现状Advantest的TS9001TDR系统中采用两个超短脉冲激光器异步采样,采取异步采样技术可以使系统不再需要机械式的光学延迟线,并且具有超高速的信号扫描速度。是目前全球独一的技术,目前国内外没有同类设备。5、发展趋势随着晶圆代工制程不断缩小,摩尔定律逼近极限,先进封装是后摩尔时代的必然选择,3D封装迅猛发展。作为一种全新的实现定位方法,在未来的几年里,太赫兹TDR技术将继续保持高速发展的势头。随着关键技术的不断发展,相关产品的种类将越来越丰富,行业应用和相关配套服务也将越来越广泛。搭载脉冲电磁波产生和高速采样的超短脉冲光纤激光器的太赫兹TDR设备,有助于半导体3D封装的故障分析。 6、总结与展望 在实际芯片测量过程中,太赫兹脉冲信号耦合至芯片内部衰减较为严重,对于太赫兹脉冲的信噪比提出了很高的要求。为了进一步提高测量精度和芯片内的传输路径,提高信噪比是亟需攻克的问题。另外芯片内部的引线存在阻抗不匹配又没有完全开路的情况,对于这类Soft Open的芯片检测,TDR波形分析需要结合信号模拟仿真,增强对信号的解读。对于材料的吸收系数、折射率、介电常数等光谱特性,可以用太赫兹时域光谱仪表征,这也是爱德万测试太赫兹技术的核心应用。目前爱德万测试已经有太赫兹时域光谱成像系统,通过发射和接收时域太赫兹信号至样品,可以实现生物医学样品、食品农产品、化学品、复合材料、通讯材料等的光谱特性表征。(爱德万测试(中国)管理有限公司 供稿)
  • 科学岛团队在中红外激光高效率铌酸锂声光调Q技术上取得进展
    近日,中科院合肥研究院健康所医用激光技术实验室江海河研究员课题组与中电科集团合作,在中红外波段声光调Q技术研究方面取得重要进展:首次实现了铌酸锂 (LiNbO3) 晶体声光开关及其在2.79 μm Er,Cr:YSGG激光器中的高效率调Q输出。相关成果已在国际光学期刊Optics Letters上发表。   声光调制器作为调Q开关广泛的应用于激光器来获得高重频、窄脉宽激光输出。虽然3 μm波段的几种声光Q开关已取得初步成果,但其中声光介质和换能器通常是不同的材料,这对器件的制作工艺提出了较高的要求,也增加了超声传播过程中的能量损失。因此,用声光介质和换能器相同的材料制作的性能优良、制作工艺简单的调制器是必要的。   铌酸锂晶体是一种传统的多功能晶体。近年来,极低光学损耗、光电功能丰富的铌酸锂薄膜光子学器件得到了迅速发展,铌酸锂有望在集成光子学领域替代硅材料,为突破通信领域功耗大、速度慢的瓶颈性问题提供解决方案。自1937年发现铌酸锂晶体以来,虽然它具有良好的声光特性,长期以来都被作为换能器材料,但是一直未能实现块状晶体的激光声光调Q开关。本研究实现了声光介质和换能器同质和一体化,即能简化制作工艺,降低辅助成本,也能降低超声能量的损失,使得铌酸锂声光Q开关的衍射效率达到57% (图1),且铌酸锂晶体具有较高的抗损伤阈值(200 MW/cm2)。   自主研制的2.79 μm Er,Cr:YSGG声光调Q激光器验证了所设计的铌酸锂声光Q开关具有良好的声光调Q性能 (图2),在50 Hz的高重复频率下得到了脉冲能量为17.6 mJ、脉冲宽度为55.2 ns、峰值功率为319 kW的激光输出,研制的Er,Cr:YSGG 铌酸锂声光调Q激光器能够实现稳定的、高峰值功率的激光输出。   本研究表明,铌酸锂晶体具有较高的衍射效率、较高的抗损伤阈值和良好的声光调Q性能,是3-5μm中红外波段高功率激光器的新型声光开关。同时,本研究为探索同质材料直接键合成为一体化声光器件的可能性迈进了一步。图1. 铌酸锂声光Q开关的衍射效率随驱动功率的变化曲线图2. PRF=50 Hz时,脉冲能量、脉冲宽度随泵浦能量的变化曲线
  • 生物医学玻璃的激光微加工—芯片实验室
    相信大家在部分科幻电影或动漫中,常常能看到可以植入人体的芯片,用来监控身体各个参数、增强人体机能和神经反应。芯片一旦植入,普通人就变身成为神秘特工或战士。而现实中随着马斯克的脑机接口正在一步步迈向临床,AlphGo把人类棋手完虐等以前只能在科幻电影中见到的“未来科技”,逐步在现实生活中出现的时候,拥有“小身材有大智慧”的AI芯片似乎也能够梦想照进现实了。事实上,如今已有一些“芯片实验室(Lab-on-a-chip)”出现了,并且其发展速度是非常快的!芯片实验室什么是“芯片实验室(Lab-on-a-chip)”?简单地说,能够将整个在实验室中进行的基本操作单位集成到简单微系统上的技术就叫“芯片实验室”。“芯片实验室”中的芯片是作为流体在其中流动的微通道图案,可被模塑或刻蚀。微通道和外部宏观环境之间的连接需要通过若干孔,这些孔穿透芯片,具有不同的尺寸,用于将流体注入芯片或从芯片中移除。在微流控芯片中,根据实验需要,流体被混合、分离或引导。终结果可形成自动复合系统,从而实现高通量检测。在生物医学应用领域,芯片实验室可以实现快速诊断。芯片实验室技术有望成为一种重要的诊断工具。这些微型化的设备使医疗保健服务提供方可以使用非常少量的试剂和测试样本执行一系列诊断测试。此外得益于它们的便携性,还可以在远离实验室环境的现场进行测试。制作芯片实验室(Lab- on-a-chip)或微流控芯片(Microfluidic chip)的材料主要是玻璃,受限于芯片的微尺度特性,在制备过程中,对玻璃进行激光微加工有着很高的要求。制作芯片实验室的大挑战之一是在玻璃芯片内部加工高精度管道、容器和阀门。挑战:玻璃微加工由于其脆性和透明性,玻璃中进行微小的特征加工进行是相当困难的。如果使用常规工具手段,实际上是不可能的。但是快激光器可以胜任这种加工。当脉冲持续时间低于几十皮秒时,激光与材料的相互作用进入冷烧蚀状态,加工质量和精度会变得很高。常规的微制造方法,例如光刻,压印和软蚀刻,已经用于制备微流体芯片。然而,当要实现具有多功能集成的复杂微流控芯片时,这些方法将面临巨大挑战,因为它们需要太多工艺步骤,并且成本很高。刻蚀来啦▲由NKT Photonics的ORIGAMI XP飞秒激光制备的芯片实验室样品大功率快激光脉冲穿透玻璃。紧聚焦的飞秒激光脉冲可以经济地生产具有多功能的通用微流控芯片。短脉冲宽度提供了令人难以置信的峰值功率,即使在透明材料中,也可以进行表面和块状材料内部的改性以进行划线。▲飞秒激光加工的芯片沟道特写快激光确保加工的高精度和高质量。通过利用激光的高度空间选择性,可以将相互作用区域地设置在材料的特定局部区域。这使得飞秒加工技术可以在透明材料中以微尺度对复杂的三维形状进行非常高分辨率的图案化和雕刻。▲深度小于10 μm的沟道特写NKT快激光器可以实现非常精细的深度和通道宽度控制飞秒级短脉冲宽度比材料中的电子-声子耦合过程都短,因此短的飞秒脉冲宽度,意味着在飞秒时间尺度传递能量,这能很好的抑制热影响区的形成和热损害。这种“冷烧蚀”方式实现了高精度和高分辨率的微加工处理,并具有的处理可靠性。紧密聚焦的光束可以在微尺度上非常高分辨率地对复杂形状进行微加工。▲用ORIGAMI XP飞秒激光处理过的芯片实验室样品的特写图片展示为芯片中直径约0.6 mm的圆形储集层NKT Photonics:我们来提供NKT Photonics的快激光提供的短脉冲非常适合用于制备芯片实验室器件。我们强烈建议将ORIGAMI XP用于玻璃和其他透明材料的激光加工。ORIGAMI XP是一款集成、单箱、微焦级飞秒激光器。激光头、控制器和空气冷却系统都集成在一个小巧而坚固的包装中,体积小,甚至可以放在手提行李中! ORIGAMI XP系统基于紧凑的啁啾脉冲放大技术平台,能够在1030 nm处提供高达75μJ的脉冲能量,5 W的平均功率以及小于400 fs的脉冲持续时间。 特点:• 风冷,单箱体,易于集成• 400 fs标准脉冲宽度• 5 W / 75 μJ @ 1030nm• 2.5 W / 40 μJ @ 515 nm• 1 W / 20 μJ @ 343nm• 单发(Single-shot)和按需脉冲(Pulse-on-Demand)• 双输出波长模块• 的脉冲能量和指向稳定性• 工业,坚固的设计• 可以任意方向安装• 实时脉冲能量测量和控制?• 高可靠性• 亦可用水冷 北京凌云光技术集团作为NKT Photonics公司在中国的战略合作伙伴,多年的合作中NKT Photonics公司与凌云始终如一,为客户不断提供更稳定、更先进、更前沿的技术,如果您对以上产品感兴趣,请拨打400 898 0800 电话问询!
  • ALCOR 920性能再次提升!脑科学双光子显微成像系统理想飞秒激光光源——Spark Lasers
    自Spark Lasers公司推出ALCOR 920系列920nm飞秒光纤激光器以来,该系列产品就成为脑科学双光子显微成像系统主要使用的光纤飞秒激光器。凭借其高功率、窄脉宽、高稳定性、免维护等特性,ALCOR 920不仅成为传统钛蓝宝石飞秒激光器的高性价比替代产品,也成为同类产品的市场引领者。 ALCOR 920采用了Spark Lasers最新的HPC技术(High Pulse Contrast),功率有了进一步提高,同时脉冲形状也得到了优化。与前一代产品相比,ALCOR 920-1的平均功率从之前的1W提高到了1.5W;ALCOR 920-2的平均功率从之前的2W提高到了2.5W。ALCOR 920-4仍提供高达4W的平均功率,是目前市面上920nm飞秒光纤激光器中输出光功率最高的产品。图1 ALCOR系列产品主要参数列表 飞秒激光器作为双光子显微成像系统的核心部件之一,对系统成像效果是至关重要的。那么,如果想要得到好的成像效果,应该怎么办呢?我们有方法:1. 选择高峰值功率的激光器由于双光子效应是与光子密度正相关的非线性效应,越高的峰值功率就意味着越多的荧光分子能够同时吸收两个光子到达激发态,并在跃迁至基态的过程中发出荧光,也就是说最终被探测器采集到的荧光信号也就越强,最终生成的图像亮度和对比度也就越高。峰值功率的计算方式可以由下面的公式计算得出:例如,标准款ALCOR 920-2的平均功率为2.5W,重复频率为80MHz,脉冲宽度为100fs,那么ALCOR 920-2的峰值功率就高达312.5kW。 假如有一款飞秒激光器脉冲宽度只能做到150fs,平均功率和重复频率却能和ALCOR 920-2一样,那么会有什么影响呢?我们通过计算可以得到,这款激光器的峰值功率仅有208kW,仅有ALCOR 920-2的66.6%,这也就意味着相应的荧光强度也会有很大幅度的降低。同样地,假如有另一款产品,脉冲宽度也能达到100fs,但是平均功率却比较低,那么其峰值功率也是比较低的。 图2 使用低脉冲质量的激光器和Spark Lasers的高质量脉冲激光器的最终图像对比 2. 使用色散预补偿得到最优化的脉冲宽度然而,拥有一台激光器只是搭建双光子显微成像系统的第一步。由于成像系统内部有很多光学元器件,如反射镜、滤光片、光强调制器、空间光调制器、分光棱镜、物镜等等,而这些光学元器件中的大部分都会引入正色散,导致飞秒脉冲激光到达测量点处的过程中发生展宽,即脉冲宽度变宽。在上面的计算中我们可以看出,脉冲宽度变宽会导致激光峰值功率的下降,会在很大程度上降低荧光光强,以至于最终的图像亮度和对比度会变差。 ALCOR 920系列在激光头内部集成了色散预补偿模块,可以在激光发射时就带有负色散,这些负色散可以在激光脉冲传播过程中和光学器件引入的正色散相互抵消,从而使得在测量点处,脉冲宽度能保持比较窄。 标准款ALCOR带有0~-60000fs2的大色散补偿范围,同时提供0~-90000fs2的超大色散补偿范围选配,可以满足大部分双光子显微成像系统对色散补偿要求,甚至是最复杂的系统。根据我们的经验,一般复杂程度的双光子显微成像系统对色散补偿的要求在-30000fs2~-50000fs2。3. 对功率进行调制和精确控制ALCOR 920可提供XSight选配模块,即集成化内置AOM模块,以满足双光子显微成像系统对激光实现光强的开/关调制或模拟调制来实现复杂的功能的需要。内置模块可以在很大程度上节省光学平台的空间以及在光路中调试外置调制器的时间精力,同时,该模块能够提供:超高精度光强调节(分辨率高达0.1%)高带宽模拟调制(0~1MHz)高速光开关(上升/下降沿200ns)上海昊量光电作为Spark Lasers在中国地区独家代理商,为您提供专业的选型以及技术服务。对于Spark Lasers有兴趣或者任何问题,都欢迎通过电话、电子邮件或者微信与我们联系。欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
  • 正业科技:超快激光技术,为FPC精密加工增添新动力!
    时代在发展技术在进步20世纪60年代第一台红宝石激光器诞生制造业进入“光”时代从纳秒、皮秒到飞秒人们对激光技术的探索未曾止步 时间换算:1秒=109纳秒=1012皮秒=1015飞秒时间越短,激光作用在材料表面的时间越短,对材料表面的影响越小,加工效果也更好,因此超快激光技术已成为制造业精密加工领域的热点话题。 在精密加工领域,传统纳秒激光加工设备仍占据了大部分市场。但是就加工效果而言,飞秒及皮秒激光加工更具优势与前景,可飞秒激光器由于自身的可靠性低、价格昂贵等原因,从科研到工业应用,还需一段时间。与纳秒激光相比较,皮秒激光加工具有更短的脉冲宽度、更高的峰值功率,能够达到更好更精细的加工效果,实现真正冷加工,基本无炭化,逐步成为主流选择。 ▲正业激光切割效果图(皮秒VS纳秒) 正业皮秒激光切割机 正业科技研发生产的皮秒激光切割机应用超快激光技术,适用于覆盖膜(CVL)、柔性板(FPC)、软硬结合板(RF)和薄多层板的切割成形。 01切割实例 02独特优势 1、真正冷加工,基本无炭化:激光脉宽小于10ps,炭化范围极小,基本看不到炭化现象。 2、切割效果更精细:采用小单脉冲能量,高频加工,精雕细作,加工面更加精细光滑,综合加工精度高达±20μm。 3、双台面,零上下料时间,效率高,速度更快:皮秒的重复频率非常高,可达兆赫兹,大幅度提升加工效率。 4、加工前预览功能:避免切板报废。 正业激光 正业科技在PCB行业历经22载,始终认为技术创新才是企业的立足之本,是企业长久生存和可持续发展的不竭动力,不断攻克激光技术难题,探索超快激光技术奥秘。 目前,正业科技承担的激光类国家重点计划项目有典型硬脆构件的超快激光精密智造技术及装备、激光高性能连接技术与装备和激光高精度快速复合制造工艺与装备。 未来,正业科技将不断增强核心竞争力,积极拓展激光技术应用产业链,满足市场及广大客户需求,通过做强“激光”助力制造业转型升级发展。
  • 上海光机所在特殊波长的飞秒超快光纤激光器研制方面获进展
    近期,中国科学院上海光学精密机械研究所高功率光纤激光技术实验室在特殊波长的飞秒超快光纤激光器研制方向取得重要进展。该团队首次报道了一种基于色散管理、全保偏九字腔的978 nm飞秒掺镱光纤激光器。相关研究成果以Generation of 978 nm dispersion-managed solitons from a polarization-maintaining Yb-doped figure-of-9 fiber laser为题,发表在《光学快报》(Optics Letters)上。978 nm掺镱飞秒锁模光纤激光器因独特的应用价值而备受关注。然而,由于Yb3+在978 nm波长附近的吸收截面近似等于发射截面,为了在这个波长获得高性能激光输出,必须克服978 nm处的激光自吸收和1030 nm附近的放大自发辐射(ASE)等问题。此外,Yb3+在978 nm附近的增益带宽相对较窄,这进一步增加了在该波长下获得飞秒激光脉冲的难度。因此,与1 μm以上的传统掺镱锁模光纤激光器相比,实现这种978 nm的飞秒光纤激光器面临着更大挑战。针对上述问题,研究团队采用基于九字腔结构的非线性放大环镜(NALM)技术实现了978 nm处色散管理孤子的稳定输出。实验中,通过控制激光腔内各色散元件的参数有效地管理了腔内总色散,并引入滤波器来抑制1030 nm的ASE,最终获得了具有14.4 nm光谱带宽和175 fs的高相干激光脉冲。此外,激光腔由全保偏光纤器件组成,能够有效抗温度、震动等环境扰动,确保了锁模脉冲的长期稳定性。数值模拟结果表明,978 nm色散管理孤子的光谱宽度主要受限于Yb3+在相关波长附近的增益带宽。未来,可以利用非线性效应在腔外进一步展宽光谱,从而在这个特殊波长实现更窄脉宽的激光输出。该研究实现的978 nm锁模脉冲是迄今为止报道的相关波长超快光纤激光器中能够输出的最短脉冲,在水下通信和太赫兹波产生等领域具有良好的应用前景。图1.978 nm九字腔色散管理孤子光纤激光器实验装置图图2. 978 nm九字腔光纤激光器输出脉冲参数。(a)光谱,(b)脉冲序列,(c)射频谱,(d)自相关信号,(e) 腔外压缩后的频谱和(f)自相关信号。图3. 数值模拟结果。(a、b)输出色散管理孤子的光谱和时间特性;(c、d)腔内脉冲的时频演化过程。
  • 2015全球激光细分市场解读 仪器相关市场将达6.62亿美元
    市场细分  通信和光存储仍然是激光产业最大的细分市场,然后是材料加工和光刻激光器市场部分。对于2014年,医疗和美容激光产品销售总额仍然大于仪器和传感部分,最后是科研和军事细分市场。  通信和光存储  光存储市场疲软继续阻挠通信和光存储整个激光产品市场上扬 然而,通信部分激光器的销售额正蓬勃向上。基于PIC的通信网络系统供应商Infinera将之称为 &ldquo T比特时代&rdquo 并报道称相比于2013年同期销售额1.42亿美元,2014年第三季度销售额增长至1.74亿美元。LightCounting称2014年第二季度光收发器的全球销售额达11亿美元,连续五个季度增长。  2014年通信和光存储激光产品市场营业收入达到35.15亿美元,预计2015年增长2.8%达到36.15亿美元。尽管2014年大多数通信激光供应商的财务状况是良好的,但是戴尔的Oro集团预测2015年通信设备投资支出将会下降,原因是高级移动设备渗入、移动数据增长缓慢、缺乏新的收入来源以及发展中和未开发市场的竞争加剧。然而考虑到光通信正推动&ldquo 物联网(IOT)&rdquo ,这种预测令人相当费解:为了远程监控和诊断实现云连接,还有一大堆没有被命名的&ldquo 智能&rdquo 应用。  &ldquo 从铁路和电网采用的联网系统到连接个人终端的网络交换机客户端设备,无线设备,Cisco公司和Intel使Predix分布于终端,甚至在一些最苛刻的条件下,&rdquo 通用软件副总裁Bill Ruh在一个新闻发布会上说,并描述了在IoT世界软件和硬件如何惬合在一起。  Cisco系统董事长兼首席执行官John Chambers在2014年国际消费者电子展览上发表主题演讲,报道&ldquo 涉及IoT的价值&rdquo 达19万亿美元,并描述IoT如何使城市智能化,例如,通过更加智能化的公共建设投资获得直接的回报。  无论你把它叫做物联网或是干脆称为&ldquo 智能工具&rdquo ,对于光电子,尤其是激光产业来说,都是信息引擎的&ldquo 燃料&rdquo 。你能想象互联网是如何快速响应Gartner公司49亿连接设备实现无缝管理的吗?这些设备将在2020年增加到250亿台。  材料加工及光刻  2014年工业激光系统占全球机床销售的14%,所以毫无疑问世界制造业的健康发展意味着整个工业激光产业的健康状况。预计2014年机床消费增长在5%~7%的范围内,工业激光系统市场有望在此范围内。  在工业激光市场方面,中国的首要任务是重塑他们的经济提供更多内需,减少对出口的依赖以及对资本密集型的国有企业的投资。处于经济衰退领域的欧洲制造业开始出现复苏的迹象,即使德国的制造业一直温和增长。在北美地区,随着经济的好转,美国市场变得&ldquo 五光十色&rdquo ,2015年住房和住宅实力增长,能源热潮至少持续至未来三年。金砖四国被预计将推动2014年工业激光市场发展,但因俄罗斯和巴西的停滞不前以及中国和印度经济放缓而表现不佳。至于2015年,国际货币基金组织(IMF)使公众注意美国、印度和英国是最有可能实现正增长的地区,同时警告全球资本投资的增加。  随着2014年的结束,用于制造业的工业激光市场的整体销售超过26亿美元,与2013年营业收入相比增加了6%(见表1)。2014年,用于材料加工应用的光纤激光器占全球激光器市场总营业收入的29%,仅次于通信应用领域的激光器市场部分(32%)。全球制造业的变幻莫测使激光在光电子领域紧随其后。  显而易见的是光纤激光器持续强劲增长的影响,在损害固态和CO2激光器市场的前提下,在整个工业激光市场的份额增长到了36%。作为最大的创收类别,光纤激光器行业是工业激光解决方案每年市场调查备受瞩目的部分。  光纤激光器作为动力源在金属切割方面的应用,尤其是在板材切割方面,系统的造价超过65万美元,2014年的营业收入超过13亿美元。加上高功率CO2激光器在同类应用的收入使整个资本设备的投资接近40亿美元,是2014年所有工业激光系统的销售的三分之一。  2014年同样值得注意的还有占整个市场份额13%的高功率二极管。这种相对新颖的市场产品主要用于在线应用,例如钎焊汽车的顶部以及其他金属部件。静静地,这一高效激光器雕刻出了一个利基市场。  高亮度高功率直接二极管激光器作为光纤激光器在金属板材加工方面的代替者,切割的质量和速度完全可以与等功率的光纤和盘形激光器媲美。虽然其销售量微乎其微,但是2014年其利润率相当可观。  随着光纤激光器继续无情的渗透到成熟市场,如打标市场,使固态激光器的销售额下降。7.5亿美元以上的打标/雕刻系统市场由低功率光纤激光器和封离式CO2激光器分别占据。后者用于非金属雕刻是相当安全的,由于波长的兼容问题。持续的固态激光器收入是快速接纳工作在兆瓦峰值功率状态、皮秒和飞秒脉冲宽度的超快(或超短脉冲)激光器,集中在微材料加工应用,例如,智能电话和平板电脑的器件加工。工作在非常短的脉冲宽度的光纤激光器在争夺这一市场份额,一些分析师推测,微加工有可能是这些激光器的下一个增长点。一些研究将近期超快脉冲激光器市场定在4.5亿美元。  然而在涉及微材料加工问题上,激光添加剂制造(AM)领域的强劲增长促进了固态激光器和光纤激光器的收入增加。沃勒斯联营公司表示,2013年AM增长超过63%,其中37%营业收入来自于3D和AM零件最终产品而不是原型。在关于AM的航空航天供应的调查显示,27%的公司已经使用,10%预计未来一年内使用,37%预计在未来五年内使用。随着公司挑战AM的&ldquo 极限&rdquo 激光加工将乘风破浪。  大型材料加工应用除了激光切割占高功率激光器营业收入的25%。领先收入增长10%的市场是用于焊接应用的光纤激光器和CO2激光器,主要集中在汽车行业。光纤激光器供应商预计焊接是未来几年一个不断扩大的市场。  总结2014年工业激光市场,打标同比增长4% 微材料加工增长14% 大型材料加工扩大8%。材料加工整体销售增长6%。  正如前面提到的,对于工业激光器的预测将遵循全球机床行业同样温和增长趋势。2014年11月澳大利亚的G20峰会以后,英国首相卡梅伦说:&ldquo 世界经济亮起了红灯&rdquo 。受采访的工业激光及系统供应商的普遍共识是2015年将继续2014年的增长势头,预计增长比例在5%左右。这与许多专家经济分析师预测降低GDP的国际经济缓慢增长、大多数先进、规模扩大和新兴工业化经济体相一致。  这一增长将再次由光纤激光器领导,但是增长率略低于2014年。光纤激光器有望继续侵蚀CO2和长脉冲固态激光器的市场份额。超快脉冲固态激光器将经历由大型加工应用包括AM在内的重要销售增长。高功率激光器在金属切割方面应用将稳定在一个比较稳定的个位数增长速度上,但是用于焊接的激光器预计在2015年增长两位数。  医疗和美容  医用激光器的重要性由以下2014年公告表明:长春新产业出品的用于光遗传学的2000MxL系列激光器(波长在405~671nm)出货量创下历史记录 相干公司推出其第2000台变色龙系列激光器用于多光子显微镜 英国Fianium公司交付了第 1000台超连续激光器,不断提高其性能用于超快光谱、近场成像和显微镜。  &ldquo 我们将完成本财年医用激光系统30%的营业收入增长,现在的生物医学系统集成商和制药公司正在寻找完整的解决方案而不局限在器件,&rdquo Modulight公司的总裁兼首席执行官Petteri Uusimaa说,&ldquo 通过提供终端到终端解决方案,我们已经签署了一些多年合同,并在2014年使我们的生命科学业务翻倍。&rdquo   2014年,外科、眼科和美容激光销售额分别增长13%、9%、8%,2014年医用和美容激光器市场销售额为7.45亿美元,预计2015年增长9%超过8.15亿美元。  虽然2014年牙科用激光器销售额只增长了1%,超快激光器改变了这一增长比率。&ldquo 现在的Er:YAG和CO2微秒和纳秒脉冲牙科激光器的能量太高,激光与组织作用时间太长,需要提供必要的热和应力限制,以防止微裂纹、术前和术后疼痛,并/或在牙科应用中电离水分子引发癌症,&rdquo 德国特劳恩施泰因山的执业牙医Anton Kasenbacher说,&ldquo 超短脉冲皮秒激光器高速扫描自动对焦反馈实现高烧蚀率,减少口内抽吸的次数,并允许使用单个系统进行治疗和诊断,控制生物安全非线性光子吸收。&rdquo   Kasenbacher说考虑到2011年美国估计有154000所牙科诊所,产生了近 1080亿美元的收入,牙科用激光器的未来销售潜力是巨大的。  在激光美容领域,Cynosure公司2014年第三季度的营业收入与去年同期相比增长18%达到7150万美元。而欧洲的收入增长只有17%,美国营业收入增长17%,最大的增幅46%来自亚太地区。销售增长主要是因为FDA和其他政府批准Cynosure公司的PicoSure产品用于良性病变、痤疮疤痕、纹身和祛皱。  Cutera公司2014年第三季度营业收入增长11%达到1870万美元 Lumenis公司2014年第三季度营业收入7420万美元,与去年同期相比增长9.4% Syneron-Candela公司2014年第三季度营业收入增长8.3%达到6030万美元。在所有的情况下,公司将增长归因于FDA授权以及全球对激光治疗的强大接受度。2014年以后,许多公司开始增加激光去除脂肪技术,这是明智之举,ABC新闻报道每年美国有1.08亿节食者大约花费200亿美元用于减肥。  仪器与传感  &ldquo 目前,超分辨率显微镜是激光仪器市场最有活力的部分,&rdquo 国际战略方向咨询服务的副总裁Mike Tice说,&ldquo 虽然激光扫描共聚焦显微镜已经存在了几十年,过去十到十五年发明的新技术正在大力商业化,诺贝尔化学奖最近又奖励了两项特殊技术&mdash &mdash 受激发射损伤STED和单分子显微镜,突破了光学显微镜的衍射极限,这些和其他超分辨率技术的首字母缩略词,如STORM、PALM和SIM,将有助于进一步生命科学研究,&rdquo Tice补充道,&ldquo 历史悠久的激光诱导击穿光谱[LIBS]技术正在经历复兴,作为下一代系统将提供更好的性能,一些LIBS的供应商将LIBS装配成手持式装置拓宽其应用范围。&rdquo   除了显微镜和能谱检测仪器,光学相干断层扫描(OCT)系统随着应用的增长在尺寸上持续缩减,在这种情况下,OCT正在超越眼科基础。2014年2月,Axsun技术公司,Volcano集团的全资子公司,从英国Michelson Diagnostics收到了扫频激光光学相干断层扫描(OCT)引擎的一笔大订单,将为Michelson的Vivosight多光束OCT系统提供动力。Michelson称Vivosight是第一个高清晰度肌肤成像OCT扫描仪,可进行非黑色素瘤皮下组织结构的皮肤癌诊断。  在传感领域,物联网应用和智能小工具将使激光制造商保持忙碌几十年。此外,激光器销售直接受益于美国石油和天然气的繁荣。2013年花在分布式光纤传感器的费用是5.85亿美元(预计2018年将达到14.6亿美元),根据2014光子传感器协会发布的消息,70%的销售额与石油和天然气市场细分相关。我们预测,分析、传感器、仪器仪表和生命科学激光市场预计在2015年增长7.5%达到6.62亿美元,轻松超过科学研究和军事细分市场的组合总销售额。  科学研究和军事  &ldquo 虽然全球经济环境疲软、汇率贬值滞缓了去年增长,我们仍然预测用于研发的DPSS和二极管激光器的销售额增长30%,包括LIBS、拉曼检测、光谱仪和粒子成像测速应用,&rdquo 长春新产业光电技术有限公司的销售经理刘天虹(音译)说,&ldquo 公司成立于1996年,生产的第一台激光器用于低端应用。现在,集成脉冲调制和客户定制光纤传输使我们可以为客户提供满足科学研究要求的激光器。&rdquo   AdValue光电子公司主要面向科技研发市场销售,计划2015年的营业收入增长达30%~50%。AdValue业务发展总监Katherine Liu说,&ldquo 虽然我们的连续波光纤激光器产品面临着市场的日益竞争,我们的2&mu m脉冲光纤激光器用于非线性光学和材料研究获得一致好评。&rdquo   激光物质相互作用研究继续推动大量研发激光器销售。2013年2月,Lasertel公司从利弗莫尔国家实验室获得500万美元合同,为极端光基础设施ELI束线设施供应兆瓦级泵浦激光器模块。  美国联邦采购数据分析显示与2012年相比,2013年国防部因扣押消费合同类经费下降16%,研发类经费下降最多为21%,2014年持续下跌。  然而,全球范围内HIS简氏防务预算年度回顾说,2014年国防支出将增长0.6%,达到15470亿美元&ldquo 推动2016年复苏&rdquo 。  Strategies Unlimited预测2015年科技研发和军事激光市场销售额达5.72亿美元,Frost & Sullivan公司航空航天和国防高级产业分析师Brad Curran预估激光瞄准指示器市场每年销售额为1.5亿美元,定向能武器市场为5000万美元,雷神、洛克希德马丁和波音公司领导这一市场。  雷神公司最近获得了1100万美元合同开发悍马车载DEW,波音的薄盘激光技术正式以30kW输出进入DEW阶段。Curran说虽然目前市场前景很平缓因大量武器平台削减,但长期来看DEWs的军事应用开销还是会上升。  娱乐和显示  2013年底,Christie公司为西雅图全景电影剧场提供并安装了世界上第一个商用数字激光投影仪。全景电影观众观看2014年11月20日放映的&ldquo 饥饿游戏:自由幻梦(上)&rdquo 是由4k、60000流明、6P双头投影照明,虽然人们观影后大多谈到了啤酒和巧克力爆米花而非图像质量,尽管如此,像&ldquo 数字电影激光战&rdquo 2014国际视听展这样的会议已经看不到什么新奇产品,但是未来高流明度、高可靠性、低消耗成本以及高能效激光娱乐产业将会蓬勃发展。  &ldquo 这是令激光照明产业兴奋的一年,&rdquo Necsel公司的销售和市场副总裁兼激光照明投影仪协会主席Greg Niven说,&ldquo 见证一个全新细分市场的诞生是不常有的事情,数以百万双眼睛将看到高功率可见光激光器进入大型场馆投影仪和低流明办公室数字投影仪市场。这不仅仅是基于激光的各种照明应用的新开始。&rdquo   所以等你体验过激光影院之后,前往南部海岸线激光标签总部华盛顿如何呢?公司为你将激光游戏从每小时每个游戏15美元降到了公司到你所处位置每英里 1.12美元。他们的金属激光枪使用红外激光器和传感器作指示,当一个玩家被标记,一些使用可见光激光器(限于室内效果的低功率连续波红或绿光可见光激光器指示器)的玩家就可以看到栩栩如生的射击效果。  随着激光影院市场的渗透和激光标识游戏的多样化,激光照明显示市场的营业收入持续固定增长。事实上,许多城市正在考虑&ldquo 消灭&rdquo 污染,即烟花汇演产生的固体垃圾也将有利于激光灯光秀的发展。随着所有激光娱乐市场的发展,我们预测2015年娱乐和显示应用的激光市场将增长近11%达到1.97亿美元。  成像  从2013年到2018年,CCS公司称打印机出货量将从1.06亿台增加到1.24亿台(同比年增长率3.1%),其中多功能喷墨打印机占总出货量的50%。增长速度最快的打印机类型是激光多功能打印机,到2018年增长到3000万台(占所有打印机出货量的25%)。  尽管出货量增加了,打印机价格持续下跌,残酷的价格竞争侵蚀了销售额增长势头。至于2015年,预计用于成像应用的激光市场将由2014年销售额6700万美元下降到6600万美元。
  • 陕西省高功率激光器及应用产业联盟成立
    3月26日上午,由陕西省发展和改革委员会主办,中国科学院西安光学精密机械研究所、陕西电子信息集团、西安炬光科技有限公司等单位承办的“陕西省高功率激光器及应用产业联盟成立揭牌暨项目签约仪式”在西安光机所隆重举行。陕西省副省长吴登昌、陕西省决策咨询委员会副主任崔林涛、中国科学院院士侯洵、中国科学院院士姚建铨以及陕西省、西安市政府有关部门领导,该产业联盟所有成员单位代表等共400余人出席了揭牌暨项目签约仪式。  为了贯彻落实《关中——天水经济区发展规划》,以建设西安统筹科技资源改革示范基地为契机,中国科学院西安光机所、陕西电子信息集团、西安炬光科技有限公司等三家单位发起组建陕西大功率激光器及其应用产业联盟的倡议。倡议指出,陕西在大功率激光器产业的技术和产业配套等方面具有较好的基础,为集群形成和发展提供了良好的条件,但还存在着产业分散、关联度低等问题,在一定程度上制约了全省大功率激光器产业的发展。因此,为大力促进我国大功率激光器产业快速发展,组建陕西大功率激光器及其应用产业联盟将刻不容缓。  在陕西省发改委等单位的大力支持下,目前陕西省高功率激光器及应用产业联盟已集合了全省在该领域中的近20家企业、大专院校和科研单位入盟。通过整合资源,并充分利用中国科学院西安光机所和西安炬光科技有限公司在高功率半导体激光器领域的技术、人才和产业等优势,建设陕西省激光产业集群,打造一条技术领先、产业集聚、竞争力强的全新的产业链,以加快培育战略性新兴产业,推动结构调整和发展方式的转变。  在本次签约仪式上,西安炬光科技公司与国投高科技投资有限公司签署了战略投资协议 与美国知名的激光器制造企业阿波罗公司(Apollo Instruments)签署了“光学整形与光纤耦合业务收购协议” 与西安光机所签署了“激光投影仪项目协议”,同时还与在陕的工业加工、医疗设备、科学研究等十余个激光器应用企事业单位签约了投融资项目和产品研发项目,总额近2亿元。  大会期间,陕西省发改委副主任张振红代表省发改委宣读了“关于成立陕西省高功率激光器及应用产业联盟的复函” 中国科学院西安光机所所长赵卫代表陕西省高功率激光器及应用产业联盟在大会讲话 陕西省副省长吴登昌、陕西省决策咨询委员会副主任崔林涛、中国科学院院士侯洵、中国科学院院士姚建铨为联盟的成立共同揭牌。
  • 我国高功率拉曼光纤激光器研究取得进展
    近期,中国科学院上海光学精密机械研究所空间激光信息技术研究中心冯衍研究员领衔的课题组,在高功率拉曼光纤激光器研究中取得新进展。提出了一种镱-拉曼集成的光纤放大器结构,有效地解决了拉曼光纤激光器功率提升的主要技术瓶颈问题,在1120nm波长,首次获得580W的单横模线偏振拉曼光纤激光和1.3kW的近单模拉曼光纤激光输出。  近年来,高功率光纤激光器发展迅速。1&mu m波段的掺镱光纤激光器,近衍射极限输出功率可达20kW,多横模输出功率可达100kW。尽管如此,稀土掺杂光纤激光器的输出波长,因稀土离子能级跃迁的限制,仅能覆盖有限的光谱范围,限制了其应用领域。基于光纤中受激拉曼散射效应的拉曼光纤激光器是拓展光纤激光器波长范围的有效手段。  该项研究中,在一般的高功率掺镱光纤放大器中注入两个或多个波长的种子激光,波长间隔对应光纤的拉曼频移量。处于镱离子增益带宽中心的种子激光率先获得放大后,在后续光纤中作为泵浦激光对拉曼斯托克斯激光进行逐级放大。初步的演示实验获得了300 W的1120nm拉曼光纤激光输出 接着采用较大包层(400&mu m)的光纤,获得了580W的单横模线偏振拉曼光纤激光和1.3kW的近单模拉曼光纤激光输出。结果发表于《光学快报》(Optics Letters)和《光学快讯》(Optics Express) [Opt. Lett. 39, 1933-1936 (2014) Opt. Express 22, 18483 (2014)]。鉴于目前高功率掺镱光纤激光器均采用主振放大结构,新提出的光纤放大器结构可用于进一步提升拉曼光纤激光的输出功率。初步的数值计算也表明,该技术方法有望在1~2&mu m范围内任意波长获得千瓦级激光输出。  该项研究得到了中国科学院百人计划、国家&ldquo 863&rdquo 计划、国家自然科学基金等项目的支持。   千瓦级掺镱-拉曼集成的光纤放大器结构示意图  输出功率随976 nm二极管泵浦功率的变化曲线,其中的插图为最高输出时的光谱。
  • 我国成功研制先进的高速高精度激光汤姆逊散射仪
    p  近日,中国科学院空天信息研究院和中国科学技术大学等单位联合研制出高速高精度激光汤姆逊散射仪。/pp  今年5月,在“科大一环”磁约束聚变等离子体装置开展实验中,基于重复频率200赫兹、单脉冲能量5焦耳的激光脉冲,实现了小于5电子伏特的电子温度测量精度,电子温度安全预警时间间隔达5毫秒,所获得的预警时间是国际同类系统的一半,指标提高一倍。这标志着我国在该领域进入国际领先水平行列,为我国未来磁约束聚变能装置的高精度测量奠定了坚实基础。/pp  据了解,在磁约束聚变反应装置工作过程中,偏滤器将承受巨大的能量泄放,需要对等离子体电子温度进行提前预警和实时反馈控制,实现脱靶而避免等离子体损伤器壁进而导致灾难性后果。基于高频高能激光的汤姆逊散射测量是精确测量等离子体电子温度的唯一可靠测量手段,激光的工作频率决定了温度预警的采样时间间隔,间隔越小系统预警越及时,装置运行安全系数越高。/pp  受限于激光器能量和频率水平,我国以往等离子体温度诊断采用数十赫兹的低频激光器,采样间隔宽,遇到紧急情况无法及时预警,导致装置运行存在巨大风险。虽然采用多台低频率激光器合束技术可以满足预警时间间隔要求,但是这种方法可靠性大幅降低。欧洲和日本已经掌握了100赫兹工作频率的高能激光技术,预警时间间隔达到10毫秒,但这个预警时间间隔仍然较长,无法完全保证装置安全运行。/pp  从2015年起,空天信息研究院联合中国科学院光电技术研究所和同济大学等单位历时3年时间,突破了高能量高光束质量激光传输与放大、激光相位共轭波前畸变校正、大口径/大尺寸激光放大模块、大功率脉冲激光驱动电源等关键技术,于2017年4月在国际上首次发布重复频率200赫兹、脉冲能量5焦耳、脉冲宽度6.6纳秒、光束质量1.7倍衍射极限的高频高能激光指标,将我国纳秒脉宽激光器的功率水平提高了1个数量级。研究团队研发出基本完善的工艺流程,核心器件/部件实现国产化,形成整机工程化制造能力。以200赫兹/5焦耳激光器为光源,中国科学技术大学攻克了大功率激光传输系统综合降噪、收集光学精准对焦、弱光信号探测提取等难题,成功地研制我国迄今精度最高的激光汤姆逊散射检测系统。/pp  未来,研究团队将开展更高功率、更高频率激光器研发和更高精度的诊断实验,计划将激光器的工作频率提高至500赫兹,检测系统提供2毫秒的安全预警时间间隔和1电子伏特的电子温度测量精度,为下一代磁约束聚变装置安全运行提供高速预警手段。/ppbr//p
  • 中科院“LAMOST激光信标系统”通过验收
    p style="text-indent: 2em text-align: justify "近日,位于河北兴隆国家天文台的“LAMOST激光信标系统”项目通过中科院条财局组织的专家验收,该项目在中科院重大科技基础设施项目的支持下,由南京天文光学技术研究所李国平团队和福建物构所林文雄团队共同合作完成。br/ 林文雄团队研制的绿光激光器作为LAMOST的核心部件——激光信标,在12公里附近产生一颗处于望远镜中心视场的7等左右的激光星,通过对大气分子的瑞利散射光波前进行采样,获 得望远镜的面形数据并传递给促动器,实现了望远镜的主动光学校正。br/ 在激光器研制过程中,为了克服超长激光谐振腔的光学畸变问题,创新性采用时序控制及4f像传递技术,突破了一般工业用途激光器20 ns脉宽的瓶颈,研制出65 ns脉宽的激光器。为了使激光器能够适应-30℃~+40℃的环境温度,一方面采用热膨胀系数较低的材料作为激光器底板,并且通过合理的光学设计使激光谐振腔处于稳腔状态;另一方面,自主研发出自适应光学调整架,能够利用自身形变抵消环境温度变化引起的应力,保证了激光谐振腔在环境温度变化时的稳定性。这些技术为实现7等激光星以及精确测量瑞利散射光波前提供了有力的保障,相关的研究工作申请了专利3件,其中授权专利2件,发表文章1篇。br/ 激光器各项指标均优于合同指标:激光功率33 W,功率稳定性为0.7%;重复频率12 kHz;脉冲宽度65 ns;光束质量M2 = 1.3。验收总结会上,激光器稳定的性能指标得到了专家组的一致好评,由激光器产生的人工信标大大缩短了主动光学的校正时间,提高了LAMOST的巡天效率,为我国自主研制用于大气校正的激光导星系统提供了重要技术储备。/p
  • 科学家造出全谱段白光激光器,或催生新型光谱学检测手段
    近日,华南理工大学教授李志远团队成功造出一台全谱段白光激光器,其具备光斑明亮、光谱光滑且平坦、大脉冲能量的特点,能覆盖 300-5000nm 的紫外-可见-红外全光谱,单脉冲能量达到 0.54mJ。这样一台全谱段白光激光器的面世,可用于构建全谱段的超快光谱学探测技术,有望将激光技术推至世界领先水平,从而更好地服务于前沿研究。图 | 李志远(来源:李志远)基于本次成果,课题组将进一步构建全谱段的超快光谱学探测设备,届时有望对物质内部多个波段中的物理、化学和生命过程开展超快的精密探测,从而实现高速摄谱的技术能力,进而用于开展二维材料、锂离子电池、化学催化等领域的研究。本次研究中所涉及的光谱学技术,可以覆盖深紫外-可见波段的原子以及分子的电子跃迁吸收谱,也能覆盖近红外波段的半导体带间电子跃迁吸收谱、以及中红外波段的分子振动等。借此可以打造一种崭新的光谱学检测手段,对于那些使用传统手段所无法揭示的新现象和新规律,本次新手段很有希望填补相关空白。(来源:Light: Science & Applications)鉴于光学波段的光子和物质的电磁相互作用强度以及灵敏度,远远超过 X 射线光子与物质原子核、以及内壳层电子的电磁相互作用。而且,即便是 1mJ 量级的全谱段白光飞秒脉冲激光的光子亮度,也远远超过目前同步辐射 X 射线光源的亮度。“因此,全谱段白光激光器在物质科学和生命科学中所发挥的作用,也有望超过传统的同步辐射 X 射线光源。”李志远表示。日前,相关论文以《强紫外-可见-红外全谱段激光器》 (Intense ultraviolet–visible–infrared full-spectrum laser)为题发在 Light: Science & Applications,华南理工大学博士生洪丽红是第一作者,华南理工大学李志远教授、中国科学院上海光学精密机械研究所(上海光机所)李儒新院士担任共同通讯 [7]。图 | 相关论文(来源:Light: Science & Applications)助力解决 Science 125 个待解难题之一据介绍,作为一种崭新的激光光源,超宽带白光激光具有极宽带宽、高光谱平坦度、大脉冲能量、高峰值功率、高时空相干性等五大优点,能极大拓展激光技术的发展和应用范围。而如何构建一台覆盖紫外-可见-红外波段的全谱段白光激光器,同时拥有高峰值功率和高脉冲能量,是一个极具挑战的宏大目标。2020 年,Science 杂志将其列为 125 个前沿重大科学问题之一。主要原因在于,基于目前纯粹单一的激光器技术、二阶非线性变频技术、以及三阶非线性频率展宽技术,远不足以解决这一问题。过去十年,李志远团队基于自主开发的啁啾结构非线性铌酸锂晶体,结合大脉冲能量、高峰值功率的飞秒脉冲激光泵浦,利用二阶和三阶非线性协同作用的原创性物理机制,提升了白光飞秒激光的转换效率、频谱带宽、脉冲能量、光谱平坦度等指标。要想产生全谱段白光飞秒激光,需要达到两个先决条件:带宽超过一个光学倍频程的强泵浦飞秒激光光源,以及具有极大非线性频率上转换带宽的非线性晶体。不过,要想同时满足上述两个条件并非易事。为此,课题组使用光学参量啁啾脉冲放大技术,以及使用由充气空心光纤、纯铌酸锂晶体材料和啁啾极化铌酸锂晶体组成的极宽带非线性变频模块,将飞秒激光技术、二阶非线性变频技术、三阶非线性频率展宽技术加以综合,研制了这款全谱段白光激光器。其中,二阶和三阶非线性效应协同作用的原创性物理机制,是打造本次全谱段白光激光器的秘密。上述机制的好处在于,能够清除二阶非线性或三阶非线性方案中所存在的输出光谱性能不佳的限制。李志远表示:“全谱段白光激光有望成为激光技术发展历史上的一个里程碑,并能很好地回答 Science 杂志 2020 年的 125 个最前沿的科学问题,即人类能否造出与太阳光相似的非相干强激光。”(来源:Light: Science & Applications)让中国学界真正拥有属于自己的实验设备多年来,学界一直渴望产生像太阳光一样的白光激光。紫外-可见-红外全谱段白光激光的产生,则一直是激光技术等待攻克的堡垒,也是李志远团队努力追求的目标。十年来,该课题组历经 8 次阶段性成果的积累,才造出了上述全谱段白光激光器。2014 年,该团队将啁啾调制的概念引入一维铌酸锂晶体的周期设计中。在可调谐近红外光源的帮助之下,设计出多个不同啁啾度的准相位匹配晶体,让二次、三次谐波产生的非线性过程的相位失配,能够在单个晶体中得到补偿,借此实现宽带可调谐三基色光源的同时输出,也拉开了课题组“白光激光”之梦的序幕。2015 年,李志远让学生陈宝琴开展啁啾结构铌酸锂晶体中六次谐波产生的研究。在实验的关键阶段,李志远去现场看学生做实验,结果发现了又圆又白的激光束产生,这完全出乎意料之外。李志远觉察到这是一个“好东西”。仔细分析之后,确定啁啾结构铌酸锂晶体产生了二到八次谐波。在一个固体材料中产生高次谐波,这是一个前所未有的科学发现,也让课题组开始树立“白光激光”的梦想。随后,他们设计了啁啾结构非线性光子晶体,以中红外飞秒脉冲激光为泵浦源,在单块晶体中同时产生了超宽带二到八次谐波。其中,四到八次谐波形成 400-900nm 超宽带可见白光激光,其转换效率达到 18%。2014 年和 2015 年的这两项工作表明:该团队自主研发的铌酸锂晶体二阶非线性方案,可以支持宽带二次谐波产生。同时,也能支持宽带二次谐波和三次谐波产生,甚至支持基于级联三波混频的高次谐波产生,最终可以实现超宽带可见白光激光的产生。而要想产生全谱段白光飞秒激光,就需要继续深挖上述方案的潜能,以便满足产生全谱段激光所需要的苛刻条件:即泵浦激光脉冲带宽要足够宽,非线性晶体材料的准相位匹配带宽要足够大。2018 年,课题组选用更高能量的近红外飞秒脉冲激光作为泵浦源,针对相关泵浦条件设计出一款啁啾结构铌酸锂晶体,这块晶体在不同偏振状态之下,均能同时产生二次谐波和三次谐波。通过此他们首次发现了二阶和三阶非线性协同作用的新物理机制,并证明这一机制能够显著提升相关性能的指标。利用级联二次谐波和三次谐波方案,他们生成了 400-900nm 可见-近红外波段的可调谐白光激光,转换效率达到 30%。这一发现,也促使他们去发现产生白光激光的更优路线,即基于二阶和三阶非线性协同作用产生超连续白光激光的方案。在新路线的指导之下,他们设计出一块能同时产生二到十次谐波的宽带白光非线性晶体材料。针对这款白光非线性晶体材料,他们又采取 45μJ 脉冲能量的 3.6μm 中红外飞秒脉冲激光泵浦的设计方案,借此产生 25dB 带宽、覆盖 350-2500nm 的紫外-可见-红外超连续白光飞秒激光,单脉冲能量为 17μJ,转换效率为 37%。在此基础之上,他们继续优化二阶非线性和三阶非线性协同效应。期间,该团队发现石英玻璃的三阶非线性效应远远优于铌酸锂晶体,而特殊设计的铌酸锂啁啾非线性光子晶体可以同时使用高达十二阶次的准相位匹配。后来,他们利用 0.5mJ 的钛宝石飞秒脉冲激光器泵浦,来对熔融石英-啁啾极化铌酸锂晶体进行泵浦,最终实现 10dB 带宽覆盖 375-1200nm、20dB 带宽覆盖 350-1500nm 的超连续激光,单脉冲能量为 0.17mJ,转换效率为 34%。前面提到,课题组期望实现的白光飞秒激光具有五个高指标。因此,在追求极宽带宽范围的同时,他们还得实现更大的脉冲能量、更高的光谱平坦度。于是,该团队以高能量钛宝石主激光作为泵浦源,针对由熔融石英和啁啾极化铌酸锂晶体组成的级联光模块,对其整体非线性响应进行进一步的操纵,从而显著提高了白光飞秒激光的综合性能。期间,他们利用 3mJ 脉冲能量的钛宝石飞秒激光泵浦,对石英-超宽带白光非线性晶体级联模块进行熔融,基于二阶和三阶非线性协同作用的高效超宽带二次谐波产生方案,实现了 mJ 量级、3dB 带宽覆盖 385-1080nm 的超宽带白光飞秒激光。此外,自 2018 年起课题组联合一家外部公司研制了 3mJ/50 fs/1 kHz 钛宝石飞秒激光器,实现了相关仪器的国产替代。并以此作为泵浦源,和白光非线性变频模块加以结合,从而形成了成熟高效的白光飞秒激光生成方案,借此造出一款白光飞秒激光整机设备。以上成果也促使他们进一步思考:如何产生覆盖一到十次谐波的全谱段白光激光?为此,他们与上海光机所李儒新院士团队合作,提出一款非线性级联装置。这种装置可以满足以下两个条件:一个较强的带宽达到光学倍频的中红外泵浦激光光源;以及一个具有极大非线性频率上转换带宽的非线性晶体。随后,他们基于光学参量啁啾脉冲放大技术,研制出一种中红外飞秒脉冲激光器,它具有 3.5mJ、3.9μm 中心波长,可以起到泵浦激光光源的作用。接着,基于宽带二阶和三阶非线性变频模块,他们获得了光谱范围 25dB 带宽、覆盖 300-5000nm 的全谱段超连续白光飞秒激光。“至此,我们欣喜地发现借助强中红外飞秒激光作为泵浦源已经成功走通了全谱段白光激光产生的道路。”李志远表示。(来源:Light: Science & Applications)总的来说,课题组已经实现了“三高”型白光飞秒激光:大单脉冲能量(第一高)、300-5000nm 的频谱宽度(第二高)、高光谱的平坦度(第三高),基本涵盖了铌酸锂晶体的全部透光范围。接下来,他们将继续与李儒新院士团队合作,朝向更高目标前进,力争实现深紫外-紫外-可见-近红外-中红外-远红外的“三高”全谱段白光飞秒激光。假如可以实现,就能建造比拟同步辐射光源、以及自由电子激光光学波段的全谱段超连续激光光源。“届时,相信我们中国科学界将拥有属于真正自己的研究物质科学和生命科学的实验设备。”李志远最后表示。
  • 北京是卓科技发布是卓科技、大气气溶胶激光雷达、新品
    大气气溶胶微脉冲偏振激光雷达:采用波长为532nm线偏振激光,可用于连续监测大气气溶胶的垂直分布,分析气溶胶的组成结构和时空演变。检测距离最大可达30公里,空间分辨率可以达到7.5米,可监测工业烟尘的排放等城市上空环境污染物的扩散规律、监测灰霾和沙尘暴等天气过程,对大气环境监测和大气科学研究都有着重要的意义。产品优势:精度高、范围广、可以全天候持续工作、可以数据联网云计算处理。应用领域:气象站、环境监测、工厂排污监测等。激光器激光器类型Nd: YAG 激光器工作波长532nm ± 1nm脉冲重复频率2.5KHz – 5KHz偏振比100:1 单脉冲能量~20uJ脉冲宽度~10ns脉冲能量变化± 3 % RMS光束发散角 100urad出光口光束直径70mm寿命10000h光学接收参数接收望远镜卡塞格林-折返结构 口径162mm探测器单光子探测器(双通道)量子效率@532nm22% (CPM) 60% (SPAD) 数据采集系统多通道采集卡探测距离最大20KM盲区≤40m空间分辨力4.5m 6m 7.5m 15m 30m 60m 用户可选时间分辨率1s滤光片带宽300nm其他工作温度、湿度-20℃—60℃;0—100%尺寸0.6*0.23*0.23m3外壳材质铝合金数据传输和处理工控机,Win7/10工作方式连续或间断(用户可配时间)供电100/240V 或 锂电池(24V 30AH)制冷方式空气制冷、液体制冷设备功率30W(平均),峰值60W云台功率:80W;俯仰:-10—120°;水平:360°;精度0.05°;最大转速:30°/s;支持程序控制;接口:RS485 创新点:1、自带恒温控制系统,包括液冷强制循环降温和加热系统确保-30℃——50℃可靠工作;2、大功率激光器,有效探测距离可大20KM;3、一体结构,体积小,无需另配站房,安装维护操作简便;4、双通道信号监测,单光子和模拟同步采集,完美解决了近端饱和及远端大量程探测距离问题。
  • 西安光机所在超短激光脉冲光场测量研究方面取得重要进展
    近日,西安光机所阿秒科学与技术研究中心在超短激光脉冲光场测量研究方面取得重要进展。研究团队创新性提出基于微扰的三阶非线性过程全光采样方法,该方法的可测量脉冲脉宽短至亚周期,波段覆盖深紫外到远红外,具有系统结构简易稳定、数据处理简单等优点。相关两项研究成果相继发表在Optics Letters。论文第一作者为特别研究助理黄沛和博士生袁浩,通讯作者为曹华保研究员、付玉喜研究员。   超短激光脉冲作为探索物质微观世界以及产生阿秒脉冲的重要工具,其完整的电场波形诊断尤为重要。目前普遍采用的表征技术广义上可分为频域测量、时域测量两类。在频域,具体有频率分辨光学门控(FROG)、光谱相位干涉法 (SPIDER)和色散扫描(D-SCAN)等主要方法,通过测量非线性过程产生的光谱信息来间接获取超短脉冲脉宽及相位。此类方法因装置简单易于搭建而被广泛采用,但通常需要复杂的反演迭代算法,并且难以获得光电场信息,而且受限于相位匹配机制,比较难以应用于倍频程以上的激光脉冲测量。   而基于时域采样的测量方法通常不受严格的相位匹配限制,并且对电场波形很敏感,可用于直接测量光电场,近年来发展势头较好。研究团队提出基于微扰三阶非线性过程的全光采样方法是一种基于时域采样的测量方法,在实验中分别应用瞬态光栅效应(TGP)和空气三倍频效应(Air-THG),准确的测量了钛宝石激光器输出多周期脉冲(750-850nm,25fs)、基于充气空心光纤后压缩技术(600-1000nm,7.2fs)和双啁啾光参量放大系统(1300-2200nm,15fs)产生的少周期脉冲,实现了覆盖可见、近红外到中红外波段的超短脉冲测量,可以满足不同波段超短脉冲测量的需求。未来此项进展可以在阿秒驱动源快速诊断、超短激光脉冲测量装置国产化等方面发挥重要作用。
  • 40年坚持,打通双折射双频激光器及干涉仪全技术链条
    双频激光干涉仪是先进制造业、半导体芯片制造等行业不可或缺的纳米精度的尺子,应用广泛。张书练教授团队(先清华大学精密测试技术及仪器国家重点实验室,后镭测科技有限公司),以解决双频激光干涉仪关键技术为线,经近40年坚韧攀登,研究完成了“可伐-玻璃组装式单频氦氖激光器→双折射双频激光器→双折射双频激光干涉仪”的全链条技术,并批产。该技术开国内可伐-玻璃组装式氦氖激光器之先,吹制工艺或成历史。开国内外应力激光腔镜产生双频激光之先,解大频差和高功率不可得兼之难,频率差可以在1~40 MHZ范围选择而功率大于1 mW。双折射双频激光干涉仪测量70 m长度误差小于5 μm,非线性误差小于1 nm,测量速度高于3 m。1 研究背景激光干涉仪是当今纳米时代的长度基准,也是先进制造业(机床、光刻机,航空、航天等)制造的精度保证。制造精度和生产效率越来越高,对激光干涉仪的测量精度和测量速度提出了更高的要求。激光干涉仪的“激光”是(HeNe)氦氖激光器,至今无可替代。传统HeNe双频激光干涉仪存两个难点,成为瓶颈:1)国内外,我们之前,双频激光器靠塞曼效应产生两个频率,频率之差小(在3 ~ 5 MHz之间),频差越大激光功率越小,不能满足光刻机等应用的更大频率差要求(如10、20、40 MHz),频率差大,测量速度高,效率高;2)不论是单频还是双频激光干涉仪,国产还是外购,各型号都有几纳米甚至十几纳米的非线性误差,一直没有找到解决办法。通常,在单频激光器的光增益路径上加磁场后(塞曼效应)就变成双频激光器。可是,相当长的期间,购买到的大部分单频激光器因为常出现跳模,用于单频激光干涉仪时淘汰率很高,此外,加上磁场后单频并不呈现双频,双频激光干涉仪难有好的光源。经近40年坚持,研究打通了单频氦氖激光器→双折射双频激光器→双频激光干涉仪的全技术链条,批产,获得了广泛应用和认可。2 双折射双频激光器及干涉仪的关键和全链条技术2.1 双折射双频激光器置晶体石英片(图1a中的Q双面增透)或有内应力的玻璃元件(图1b中的M2右表面镀反射膜)于激光器谐振腔内,这些元件的双折射使激光频率分裂,一个频率分裂成两个频率,两个频率的偏振方向互相垂直(正交偏振)。反复实验证明,激光器可输出频率差大于但不能小于40 MHz两个频率。如果频率差稍大于40 MHz,在改变(调谐)激光频率谐振腔长(即用压电陶瓷1纳米一步“距”的推动M2改变激光谐振腔长)过程中看到的是一个频率振荡会陡然变成两个频率振荡,而前者功率陡然下降一半,刚升起的频率则获得同样的功率。继续调谐腔长,最早振荡的频率会陡然消失,而后起振的频率功率升高到最大。如果频率差小于40 MHz,两频率则有你无我。图2示出了频率差20 MHz时o光和e光的光强度此长彼消得过程。理论和实验一致。图1 激光频率分裂原理图。(a)晶体石英片Q于激光谐振腔内,(b)激光输出镜为M2右表面,对M2加力使激光反射镜内产生应力图2 频差20 MHz时的强烈模竞争。激光强度随腔长调谐(改变)的实验曲线。理论和实验一致图3给出了两个频率的频率差多大时,在频率轴上两个频率的共存区的宽度,也即两个频率差大小对应的共存频域宽度。曲线最左侧可见,在约40 MHz时,共存宽度迅速下降趋于0 Hz,也即小于40 MHz时,两频率之一熄灭,频率差消失。图3 实验测得的两个频率共存的频域宽度和激光频率差的关系2.2 双折射-塞曼双频激光器塞曼双频激光器的频率差一般在5 MHz以下,功率随频率差增大而减小,7 MHz时的激光功率仅0.2 mW以下。作者团队研发的双折射双频激光器频率差大于40 MHz,研制成的双折射-塞曼双频激光器可以输出百KHz到几十MHz的频率差,而功率不因频率差增大而改变,可以达到1.5 mW。双折射-塞曼双频激光器包括两项关键技术,先由双折射造成激光器频率分裂,决定了激光器输出为两个偏振正交频率以及它们的间隔(频率差)的大小。再因激光器上加了横向磁场,横向塞曼效应使增益原子分成两群——π群和σ群。π群和σ群光子的偏振对应双折射互相垂直的主方向,也即正交偏振的光“各吃各粮”,它们之间的相互竞争不存在了,无论频率差大小都能振荡。频率差可以是3、5、7、10、20、40 MHz或更大。2.3 内雕应力双折射-塞曼双频激光器提出了“内雕应力”的概念和产生双频的原理,即用窄脉冲激光器对激光腔镜表面或基片内部造孔(或穴),造成激光腔镜内的应力精确改变(图4所示),“雕刻”提高了频率差的控制精度。“内雕应力”双折射双频激光器不仅用于国产双频激光干涉仪,也用于运行中的光刻机的激光器替换。同时,提供了科研单位的科学研究。该激光器替换正在服役的光刻机的原有激光器,使光刻机机台误差由24 nm下降到6 nm。图4 内雕应力双折射-塞曼双频激光器。M2内部雕刻出的孔造成激光器的双频,磁条PMF1和PMF2消除激光器强模竞争2.4 可伐-玻璃组装式(无吹制)双频激光器国内,研制生产HeNe激光器历史很长,但我国一直靠吹制工艺制造氦氖激光器,而且不能制造可伐-玻璃组装式氦氖激光器。北京镭测科技有限公司研制成可伐-玻璃组装式单频氦氖激光器,功率大于1 mW,满足单频和双频激光器的需求。同时,这一技术将使整个国产氦氖激光器告别吹制,进入一个新的技术高度(如图5所示)。图5 可伐-玻璃组装内雕应力双频激光器(镭测科技提供)2.5 研制成的双频激光干涉仪技术指标作者强调的是,我们有了可伐-玻璃组装式激光器和双折射(内应力)-塞曼双频激光器,双频激光干涉仪有了强力的“心脏”,有了自主可控的基础。团队又全面设计干涉仪的光、机、电、算。时至今日,可伐-玻璃组装式双折射(-塞曼)双频激光器(非吹制)和干涉仪已批量生产,正在满足科学研究和产业的需求。中国计量科学院对双折射-塞曼双频激光干涉仪的测试结果:频率稳定度为10-8,分辨力为1 nm,非线性误差小于1 nm(图6所示),12小时漂移35 nm(图7所示),70 m长度测量误差小于5 μm。这些数据来自中国计量科学院测试证书:CDjx 2014-2352, CDjx 2018-4810, CDjx 2020-04463等。图6 双频激光干涉仪非线性误差图7 双折射-塞曼双频激光干涉仪12小时零点漂移3 展望在实现“可伐-玻璃组装式激光器”→“内雕应力双折射-塞曼双频激光器”→“双折射-塞曼双频激光干涉仪”全链条技术基础上,进一步发展各种规格的可伐-玻璃组装式激光器,以开拓双折射-塞曼双频激光干涉仪的应用深度和应用范围。
  • 中智科仪逐光IsCMOS像增强相机用于纳秒脉冲DBD在空气消毒领域的应用机理研究
    清华大学电机工程与应用电子技术系付洋洋老师团队利用逐光IsCMOS像增强相机进行大气压介质阻挡放电等离子体在空气消毒方面的应用研究,相关成果近期以“Air disinfection by nanosecond pulsed DBD plasma”为题发表在“Journal of Hazardous Materials”期刊上。   1、研究背景   在公共场所的空气消毒应用中,大气压介质阻挡放电(dielectric barrier discharge,DBD)等离子体是一种新兴且有前景的技术。放电电源是其中的关键因素,但其对等离子体空气消毒性能的影响尚不清楚。   作者采用纳秒脉冲电源驱动一种新型光栅式DBD阵列,实现快速单次通过空气消毒。揭示了脉冲参数和环境因素对放电特性和单次细菌灭活效率的影响。为纳秒脉冲DBD的放电特性和空气消毒研究提供了基础认知。   文中给出了两个可能的评估参数:   1. 特定输入能量(Specific Input Energy,SIE),定义为单位体积的气体接受到的放电能量。   2. Z值,定义为使微生物存活率下降一个数量级所需的特定输入能量SIE。Z值越小,意味着消灭同样数量的微生物所需的能量越小。   2、实验装置和材料   实验装置部分是用于测试DBD等离子体对细菌气溶胶单次通过灭活效率的通风管道系统,以下为该系统各部分的说明。   1. 通风管道:在气溶胶入口前增加了一个可调节的管道加热器(0-1200 W),用以瞬间加热入口空气,探究在仅加热或“加热+等离子体”条件下气流温度对等离子体放电特性和细菌气溶胶存活特性的影响。   2. 温度和湿度监测:在加热器出口后安装了温度计,同时在等离子体反应器前后放置了两个温湿度计,用以监测气流的温度和相对湿度。   3. 气流速度:使用风速计测量反应器前的空气面速度(vin),在实验中固定为1米/秒,总流量为40立方米/小时。   4. DBD反应器:建立了一个垂直型光栅式DBD反应器,其电极被石英管包围,交替连接到高压和地线产生等离子体阵列。反应器内部空气通过尺寸为85×85平方毫米,有16个空气间隙。   5. 电源激发:DBD由单极纳秒脉冲源或交流电源激发,测量了电压和电流波形。   6. 放电功率和臭氧浓度:计算了脉冲DBD的平均放电功率,并使用臭氧分析仪测量了臭氧浓度。   7. 光学诊断:使用光谱仪(MX2500+, 海洋光学)记录等离子体的光发射光谱,并使用逐光IsCMOS像增强相机(TRC411-H20-U,中智科仪)和变焦镜头对等离子体进行了成像,以探测放电区域形成的激发的物质种类,确定放电均匀性。   图1 光栅式DBD反应器测试系统示意图   实验装置的设计允许研究者控制和监测影响DBD等离子体放电和细菌灭活效率的关键参数,如气流速度、温度、湿度和电源类型。   3、实验结果和讨论   为了比较由脉冲源驱动的DBD与交流(AC)源的电气参数和光发射信号,保持了气流速率、湿度和放电功率尽可能相同。脉冲电压的基本参数包括脉冲上升时间(tr)、宽度(tw)、下降时间(tf)、频率(f)和电压幅度(Vp),而交流电压包括电压频率(f)和幅度(Vp)。   将电压频率固定在5 kHz,vin为1 m/s,RH在15-17%。脉冲参数如下:tr = tf = 50 ns,tw = 100 ns,Vp约为14 kV。为了保持与脉冲源相当的放电功率34-35 W,将交流源的电压幅度调整为10.75 kV。   图2   图2 共对7个气隙进行了成像,并给出了第3个气隙的线发射密度。(a)脉冲源和(b)交流源的放电图像比较,交流源和脉冲源的线平均强度分别为135.6和175.5 a.u.(相对单位) 。注意:气隙旁边的光是由透明石英管的光折射和反射产生的。对于两种光源,曝光时间固定为200 μs(一个周期)。以上等离子体图像由中智科仪IsCMOS相机拍摄。   为了可视化放电的空间分布,应用了短曝光成像。曝光时间固定在200 μs,对应一个周期,成像区域为45 × 30.5 平方毫米,包括总共七个空气间隙。如图2(a)所示,对于交流DBD,放电丝非常明显,几乎均匀分布在空气间隙中,间隔约1 mm。与此同时,脉冲DBD的放电更加均匀,但整体发射强度似乎更弱(图2(b))。   以第三个间隙为例,图3显示了间隙中心线和线平均强度的发射强度。尽管单个放电丝的最大强度更高,但对于交流源,放电丝更稀疏。结果,平均发射强度比脉冲源低22.7%,这与光谱仪测量结果一致。   4、结论   研究发现,通过提高电压幅度、缩短脉冲上升时间以及增加气流湿度和温度,可以增强光栅式DBD的单脉冲放电能量。相反,提高频率则会降低放电能量。这些发现与先前关于脉冲放电的报告一致。比较了脉冲源和交流源消灭微生物的性能。脉冲源在低频率(1 kHz)下产生的Z值低于交流源,但在某些情况下略高。这表明脉冲源在特定条件下可能更优。建议将特定输入能量(SIE)作为基于等离子体的空气消毒的剂量参数,而Z值主要取决于湿度。该研究提供了纳秒脉冲DBD等离子体空气消毒特性的基础认识,为供暖、通风和空调系统中的高效节能空气消毒提供了理论和工程基础。      免责说明:中智科仪(北京)科技有限公司公众号发布的所有内容,包括文字和图片,主要基于授权内容或网络公开资料整理,仅供参考。所有内容的版权归原作者所有。若有内容侵犯了您的权利,请联系我们,我们将及时处理。   5、解决方案   由中智科仪自主研发生产的逐光IsCMOS像增强相机采用高量子效率低噪声的2代Hi-QE以及第3代GaAs像增强器,光学门宽短至500皮秒 全分辨率帧速高达98幅/秒 内置皮秒精度的多通道同步时序控制器,由SmartCapture软件进行可视化时序设置,完全适合时间分辨快速等离子现象。   1. 500皮秒光学快门   以皮秒精度捕捉瞬态现象,并大幅降低背景噪声。   2.超高采样频率   逐光IsCMOS相机目前全分辨率下可达98帧,提供高速数据采集速率,同时可提供实验效率。此外设置使用其中16行的区域下,可以达到1300帧以上。   3.精准的时序控制   逐光IsCMOS像增强相机具有三路独立输入输出的时序同步控制器,最短延迟时间为10皮秒,内外触发设置可实现与激光器以及其他装置精准同步。   4. 创新“零噪声”技术   得益于单光子信号的准确识别,相机的暗噪声及读出噪声被完全去除。
  • 我国高功率全固态激光器成功实现应用
    工欲善其事,必先利其器。高功率全固态激光器技术就是先进制造领域的一把利器。长期以来,国外在高功率激光技术领域一直对我国实行严密的技术封锁,严重制约了我国先进制造领域工业关键激光成套装备的发展。为摆脱我国在这一技术领域的长期被动落后局面,抢占战略主动权,自&ldquo 十五&rdquo 开始,863计划持续对该项技术进行大力支持,经过多年攻关,相继突破3kW、4kW、6kW和8kW的激光输出,到&ldquo 十一五&rdquo 中期,成功研制了具有完全自主知识产权的工业级5KW全固态激光器,打破了国际禁运。  为加速成果转化应用,&ldquo 十二五&rdquo 期间,863计划继续设立&ldquo 先进激光材料及全固态激光技术&rdquo 主题项目,中国科学院半导体研究所牵头承担,以工业应用需求为导向,研制系列化的高稳定、高可靠的工业级全固态激光器及其装备,并在激光焊接、表面处理等领域实现产业化应用。目前,在项目研究成果基础上,我国首个具有自主知识产权的高功率全固态激光器生产线已在江苏丹阳建成,并实现批量生产 在汽车零部件激光焊接领域,自主研制的全固态激光器成功打破国外垄断,实现了产业化应用突破,自2012年以来,已为奇瑞汽车焊接了超过10万套自动变速箱的核心部件,为北京奔驰汽车焊接了近3万套天窗 攻克无预热情况下的激光熔覆防微裂纹、微气孔等核心技术,为全球第三大石油装备制造商威德福公司成功研制出超高耐磨转井部件,实现威德福首次将该类高难度核心部件从英国的剑桥转移到亚洲进行生产。  经过863计划长期的持续支持,我国的高功率全固态激光器产品已初步形成了从自主研制激光器到成套装备集成再到应用的完整产业链。随着我国激光技术的不断进步,更多的高功率全固态激光器产品走上成熟的工业化进程,将为提升我国先进制造产业核心竞争力,扭转关键成套装备基本依靠进口的被动局面,加强国防建设提供有力的装备保障和技术支撑。
  • 激光器光束质量分析检测技术介绍
    如今,激光器已经广泛应用于通信、焊接和切割、增材制造、分析仪器、航空航天、军事国防以 及医疗等领域。激光的光束质量无论对于激光器制造客户还是激光器使用客户都是重要的核心指标之 一。许多客户依赖激光器的出厂报告,从而忽略了对于激光器光束质量测试的重要性,往往在后面激 光器使用过程中达不到理想的效果。通过下方的对比图可以看出,同样的功率情况下(100W),如果焦点产生微小的漂移,对于材 料加工处的功率密度足足变化了 72 倍!所以,激光器仅仅测试功率或能量是远远不够的。对于激光光束质量的定期检测,如激光光斑尺寸大小、能量分布、发散角、激光光束的峰值中心、几何中心、高斯拟合度、指向稳定性等等,都是非常必要的。我公司对于激光光束质量的测试有着丰富且**的经验,对于不同波长、不同功率、不同光斑大小的激光器都可以提供具有针对性的测试系统和方案。相机式光束分析仪相机式光束分析仪采用二维阵列光电传感器,直接将辐照在传感器上的光斑分布转换成图像,传输至电脑并进行分析。相机式光斑分析仪是目前使用*多的光斑分析仪,可以测试连续激光、脉冲激光、单个脉冲激光,可实时监控激光光斑的变化。完整的光束分析系统由三部分构成:(1)相机针对用户激光波长以及光斑大小不同的测量需求,SPIRICON 公司推出了如下几类面阵相机:● 硅基 CMOS 相机通常为 190nm ~ 1100nm;● InGaAs 面阵相机通常为 900 ~ 1700nm;● 热释电面阵相机则可覆盖13 ~ 355nm 及 1.06 ~ 3000μm。相机的芯片尺寸决定了能够测量的光斑的*大尺寸,而像素尺寸则决定了能够测量的*小光斑尺寸;通常需要 10 个像素体现一个光斑完整的信息。相机型号SP932ULT665SP504S波长范围190-1100nm340-1100nm芯片尺寸7.1×5.3mm12.5×10mm23×23mm像.大.3.45x3.45μm4.54×4.54μm4.5x4.5μm分.率2048x15362752×21925120×5120相机型号 XC-130 Pyrocam III HR Pyrocam IV波长范围900-1700nm13-355nm&1.06-3000µ m13-355nm&1.06-3000µ m芯片尺寸9.6*7.6mm12.8mm×12.8mm25.6mm×25.6mm像元大小30*30um75µ m×75µ m75µ m×75µ m分辨率320*256160×160320×320灵敏度64nw/pixel(CW)0.5nJ/pixel(Pulsed)64nw/pixel(CW) 0.5nJ/pixel(Pulsed)饱和度 1.3 μW/cm2 @ 1550 nm3.0W/cm2 (25Hz)4.5W/cm2(50Hz))3.0W/cm2 (25Hz)4.5W/cm2(50Hz)) (2)光束分析软件Spiricon 光斑分析软件BeamGage 界面人性化,操作便捷, 功能强大,其Ultra CAL**逐点背景扣除技术,可将测量环境中的杂散背景光完全扣除掉,使得测量结果真实,得到更精准的ISO 认证标准的光斑数据(详情见 ISO 11146-3-2004)。(3)附件针对用户的特殊要求或者激光的特殊参数设定,SPIRICON 公司推出了一系列光束分析仪的附件,如:分光器、衰减器、衰减器组、扩/缩束镜、宽光束成像仪、紫外转换模块等等。对于微米量级的光斑,传统面阵相机受到像素的制约,无法成像或者无法显示完整的光斑信息。我们有两类光束分析仪可供选择。狭缝扫描光束分析仪NanoScan 2s 系列狭缝扫描式光束分析仪,源自2010 年加入OPHIR 集团的PHOTON INC。PHOTON INC 自 1984 年开始研发生产扫描式光束分析仪,在光通讯、LD/LED 测试等领域享有盛名。扫描式与相机式光斑分析仪的互补联合使得OPHIR 可提供完备的光束分析解决方案。扫描式光束分析是一种经典的光斑测量技术,通过狭缝 / 小孔取样激光光束的一部分,将取样部分通过单点光电探测器测量强度,再通过扫描狭缝 / 小孔的位置,复原整个光斑的分布。扫描式光束分析仪的优点 :● 取样尺度可以到微米量级,远小于 CCD 像素,可获得较高的空间分辨率而无需放大;● 采用单点探测器,适应紫外 ~ 中远红外宽范围波段;● 适应弱光和强光分析;扫描式光束分析仪的缺点 :● 多次扫描重构光束分布,不适合输出不稳定的激光;● 不适合非典型分布的激光,近场光斑有热斑、有条纹等的状况。扫描式光束分析仪与相机式光束分析仪是互补关系而非替代关系;在很多应用,如小光斑测量(焦点测量)、红外高分辨率光束分析等方面,扫描式光束分析仪具备独特的优势。自研自产的焦斑分析仪系统及附件STD 型焦斑分析系统● 功率密度 / 能量密度较大,NA 小于 0.05(约 3°),且焦点之前可利用距离大于 100mm,应当考虑使用本型号。● L 型焦班分析系统的标准版,采用双楔,镜头在双楔之间。● 综合考虑了整体空间利用率、对镜头的保护等因素。● 可进一步升级成为双楔在前的型号,以应对特别大的功率密度 /● 能量密度。● 合适用户 : 科研和工业的传统激光用户,高功率高能量激光用户, 超长焦透镜用户,小 NA 客户。02 型焦班分析系统● 功率密度 / 能量密度较小,或 / 和 NA 大于 0.05(约 3°),或 / 和焦点之前可利用距离小于100mm,应当考虑使用本型号。● 比 STD 更好调节;物镜更容易打坏。● L 型焦班分析系统,采用双楔,镜头在双楔之前。如遇弱光,可定制将双楔换为双反射镜。● 02 型机架不用匹配镜头尺寸,通用,可按需选择镜头。● 非常方便对焦。● 合适用户 : 使用小于 100mm 透镜甚至显微镜头做物镜的用户(表面精密加工);LD/ LED+ 微透镜的生产线做质检附件STA-C 系列 可堆叠 C 口衰减器&bull 18mm 大通光孔径。&bull 输入端为 C-Mount 内螺纹,输出端为 C-Mount 外螺纹。&bull 镜片有 1°倾角,因而可以堆叠使用。&bull 标称使用波段 350-1100nm。VAM-C-BB VAM-C-UV1 可切换式衰减模组&bull 18mm 通光孔径。&bull 标准品提供两组四片可推拉式切换的中性密度滤光片。&bull 用于需要快速改变衰减率的测量过程。&bull BB 表示宽波段,即 400-1100nm,提供 1+2、3+4 两组四片中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350-400nm,提供 0.1+0.2、0.3+0.7 两组四片中性密度滤光片镜组。LS-V1 单楔激光采样模组&bull 20mm 大通光孔径。&bull 内置单片 JGS1 熔石英楔形镜采样片,易于拆卸和更换的楔形镜架。&bull 标称使用波段 190-1100nm。其他波段可定制。&bull 633nm 处 P 光采样率 0.6701%;S 光采样率 8.1858%。&bull 355nm 处 P 光采样率 0.7433%;S 光采样率 8.6216%。&bull 前端配模组母接口;后端配模组公接口及 C-Mount 外螺纹接口。DLS-BB 双楔激光采样模组&bull 15mm 通光孔径,体积紧凑。&bull 内置两片互相垂直的 JGS1 熔石英楔形镜采样片,无需考虑偏振方向。&bull 标称使用波段 190-1100nm,其他波段可定制。&bull 633nm 处采样率 0.05485%。&bull 355nm 处采样率 0.06408%。&bull 后端可配 C-Mount 外螺纹接口。SAM-BB-V1 SAM-UV1-V1 采样衰减模组&bull 20mm 大通光孔径。&bull BB 表示宽波段,即 400-1100nm,提供四个插槽和 0.3、0.7、1、2、3、4 六组中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350-400nm,提供四个插槽和 0.1、0.2、0.3、0.7、1、2 六组中性密度滤光片镜组。&bull 前端配模组母接口;后端配 C-Mount 外螺纹接口。DSAM-BB DSAM-UV1 双楔采样衰减模组&bull 15mm 通光孔径,体积紧凑。&bull 内置两片互相垂直的 JGS1 熔石英楔形镜采样片,633nm 处采样率 0.05485%;无需考虑偏振方向。&bull BB 表示宽波段,即 400——1100nm,提供四个插槽和 0.3、0.7、1、2、3、4 六组中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350——400nm,提供四个插槽和 0.1、0.2、0.3、0.7、1、2 六组中性密度滤光片镜组。&bull 后端配 C-Mount 外螺纹接口对于大功率激光器客户,如增材制造应用以及光纤激光器客户,我们还有专门的光束分析仪系统BeamCheck 和 BeamPeek 集成 CCD 光束分析仪直接探测高功率激光的光斑,以及一台功率计用于实时监测测量激光的功率。特殊的分束系统使其可以直接用于高功率激光,极小部分功率被分配给光束分析仪进行光斑分析,而大部分功率由功率计直接探测激光功率。可在近场或焦点处测量。BeamCheck 可持续测量不大于600W 的增材加工激光,BeamPeek 体积更为小巧,可测量*大1000W 的增材加工激光不大于2 分钟,然后自然冷却后进行下一轮测试。 型号BeamCheck BeamPeek波长范围1060-1080nm532nm 1030-1080nm功率测试范围0.1-600W10-1000W可持续测试性持续测试2min at 1000W光斑大小37µ m-3.5mm34.5µ m-2mm焦长范围200-400mm150-800mm OPHIR 的 BeamWatch 非接触式轮廓分析仪通过测量瑞利散射,捕获和分析波长范围为 980nm - 1080nm 的高功率工业激光。该分析仪包括全穿透光束测量技术、无运动部件、轻便紧凑型设计等特征,非常适合于高功率工业激光进行分析。主要参数 BeamWatch波长范围980-1080nm最小功率密度2MW/cm2最小焦斑大小55µ m最大入射口径12.5mm束腰宽度准确度±5%束腰位置准确度±125µ m焦点漂移准确度±50µ m接口方式GigE Ethernet仪器尺寸406.4mm×76.2mm×79.4mm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制