当前位置: 仪器信息网 > 行业主题 > >

液相离子阱色谱质谱联用仪

仪器信息网液相离子阱色谱质谱联用仪专题为您提供2024年最新液相离子阱色谱质谱联用仪价格报价、厂家品牌的相关信息, 包括液相离子阱色谱质谱联用仪参数、型号等,不管是国产,还是进口品牌的液相离子阱色谱质谱联用仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合液相离子阱色谱质谱联用仪相关的耗材配件、试剂标物,还有液相离子阱色谱质谱联用仪相关的最新资讯、资料,以及液相离子阱色谱质谱联用仪相关的解决方案。

液相离子阱色谱质谱联用仪相关的方案

  • 岛津液相色谱-离子阱飞行时间质谱联用仪用于四种有机炸药的筛查分析
    本文利用岛津液相色谱-离子阱飞行时间质谱(LCMS-IT-TOF)建立了4种有机炸药成分的定性筛查方法。通过获取一级高分辨质谱信息,并用Formula Predictor软件预测可能的分子式,再利用IT-TOF多级质谱功能进行结构鉴定,确认目标物。测定结果显示4种有机炸药性关系和仪器重复性良好。
  • 基于气相离子迁移谱检测静电场处理的大菱鲆品质
    研究静电场对大菱鲆贮藏品质的影响,比较了不同贮藏条件下对大菱鲆的菌落总数、假单胞菌、挥发性盐基氮(TVB-N)和TBA 值的影响。采用电子鼻采集其气体指纹信息,通过离子气相迁移谱对不同处理方式大菱鲆的挥发性物质进行分析检测。结果表明:静电场能够改善贮藏期间大菱鲆的品质,有效抑制菌落总数和优势腐败菌的生长及减少 TBA 值和 TVB-N 的增加,在一定程度上抑制了鱼肉内脂肪氧化,具有较好的保鲜效果。采用PCA、LDA 方法可较好区分不同贮藏时间及不同处理方式的大菱鲆品质。根据气相离子迁移谱采集的指纹图谱,利用热图聚类分析可区分不同贮藏时间内及不同处理方式下大菱鲆挥发性物质。气相离子迁移谱与电子鼻具有快速、准确、无损的特点,对大菱鲆新鲜度品质进行快速检测是可行的。
  • 超高效液相色谱串联质谱联用法测定瘦肉精
    本文建立了一种使用岛津超高效液相色谱仪LC-30A 和三重四极杆质谱仪LCMS-8030联用测定猪肉中克伦特罗、莱克多巴胺和沙丁胺醇的方法。样品经提取后,用超高效液相色谱LC-30A快速分离,三重四极杆质谱仪LCMS-8030进行定量分析。克伦特罗、莱克多巴胺和沙丁胺醇在0.05~100μg/kg浓度范围内线性良好,标准曲线的相关系数为0.999以上。
  • 液相色谱与电感耦合等离子体质谱联用测定中药中砷形态
    实验建立了一种能够快速准确分离、测定中药中不同形态砷的方法。使用高效液相色谱(HPLC)与电感耦合等离子体质谱(ICP-MS)联用的方法,使用磷酸二氢铵和磷酸氢二钠作为色谱流动相,分离了砷酸盐(As(Ⅴ))、亚砷酸盐(As(Ⅲ))、砷胆碱(AsC)、一甲基砷(MMA)和二甲基砷(DMA)5种不同的砷形态,测定了陈皮、艾草、白果、半夏、五加皮和细辛等6种中药中不同化学形态砷的含量。使用优化过的色谱条件,能够在7 min内完全分离砷的5 种形态,不同形态砷的检出限分别为 0.74 ng/mL As(Ⅲ)),2.20 ng/mL(As(Ⅴ)),6.56 ng/mL(AsC),2.60 ng/mL(DMA)和0.34 ng/mL(MMA);半夏中不同形态砷的加标回收率为94.3%~113.5%。该方法能够快速分离5种不同形态砷,对中药中不同化学形态砷含量实现准确测定。
  • 岛津:超高效液相色谱串联质谱联用法测定猪肉瘦肉精沙丁胺醇
    本文建立了一种使用岛津超高效液相色谱仪LC-30A 和三重四极杆质谱仪LCMS-8030联用测定猪肉中沙丁胺醇的方法。样品经提取后,用超高效液相色谱LC-30A快速分离,三重四极杆质谱仪LCMS-8030进行定量分析。沙丁胺醇在0.05~100μg/kg浓度范围内线性良好,标准曲线的相关系数为0.999以上。
  • 岛津:超高效液相色谱串联质谱联用法测定猪肉中瘦肉精莱克多巴胺
    本文建立了一种使用岛津超高效液相色谱仪LC-30A 和三重四极杆质谱仪LCMS-8030联用测定猪肉中莱克多巴胺的方法。样品经提取后,用超高效液相色谱LC-30A快速分离,三重四极杆质谱仪LCMS-8030进行定量分析。莱克多巴胺在0.05~100μg/kg浓度范围内线性良好,标准曲线的相关系数为0.999以上。
  • 赛默飞色谱与质谱:毛细管离子色谱质谱联用测定蓝藻发酵液中的葡萄糖
    离子色谱分离脉冲安培检测器测定糖分离度好灵敏度高,在糖类物质的研究中应用非常广泛。毛细管离子色谱常用色谱柱直径为0.4mm,流速为10 μ L/min,其进样体积通常为0.4 μ L,与常规分析型离子色谱相比,其灵敏度是常规离子色谱的近百倍,且。毛细管离子色谱的流速是10 μ L/min,符合质谱对低流速的需求;且经过抑制器后,淋洗液中的钾离子被交换到废液中,进入质谱的流动相基本为水,与质谱具有很好的兼容性,在需要进行定性研究时可连接质谱。并且在进入质谱前,可以通过一个三通引入部分乙腈以增加质谱的雾化效率,增加仪器的稳定性。本方法在柱后乙腈溶液中添加了少量乙酸钠,以提高糖在质谱中的重现性。毛细管离子色谱质谱联用测定糖方法操作简便,重复性好,线性范围内相关性好,准确度高,进一步拓展了毛细管离子色谱的应用范围,具有较高的实用价值。
  • 赛默飞色谱与质谱:毛细管离子色谱质谱联用测定蓝藻发酵液中的蔗糖
    离子色谱分离脉冲安培检测器测定糖分离度好灵敏度高,在糖类物质的研究中应用非常广泛。毛细管离子色谱常用色谱柱直径为0.4mm,流速为10 μ L/min,其进样体积通常为0.4 μ L,与常规分析型离子色谱相比,其灵敏度是常规离子色谱的近百倍,且。毛细管离子色谱的流速是10 μ L/min,符合质谱对低流速的需求;且经过抑制器后,淋洗液中的钾离子被交换到废液中,进入质谱的流动相基本为水,与质谱具有很好的兼容性,在需要进行定性研究时可连接质谱。并且在进入质谱前,可以通过一个三通引入部分乙腈以增加质谱的雾化效率,增加仪器的稳定性。本方法在柱后乙腈溶液中添加了少量乙酸钠,以提高糖在质谱中的重现性。毛细管离子色谱质谱联用测定糖方法操作简便,重复性好,线性范围内相关性好,准确度高,进一步拓展了毛细管离子色谱的应用范围,具有较高的实用价值。
  • 赛默飞色谱与质谱:毛细管离子色谱质谱联用测定蓝藻发酵液中的乳糖
    离子色谱分离脉冲安培检测器测定糖分离度好灵敏度高,在糖类物质的研究中应用非常广泛。毛细管离子色谱常用色谱柱直径为0.4mm,流速为10 μ L/min,其进样体积通常为0.4 μ L,与常规分析型离子色谱相比,其灵敏度是常规离子色谱的近百倍,且。毛细管离子色谱的流速是10 μ L/min,符合质谱对低流速的需求;且经过抑制器后,淋洗液中的钾离子被交换到废液中,进入质谱的流动相基本为水,与质谱具有很好的兼容性,在需要进行定性研究时可连接质谱。并且在进入质谱前,可以通过一个三通引入部分乙腈以增加质谱的雾化效率,增加仪器的稳定性。本方法在柱后乙腈溶液中添加了少量乙酸钠,以提高糖在质谱中的重现性。毛细管离子色谱质谱联用测定糖方法操作简便,重复性好,线性范围内相关性好,准确度高,进一步拓展了毛细管离子色谱的应用范围,具有较高的实用价值。
  • 赛默飞色谱与质谱:毛细管离子色谱质谱联用测定蓝藻发酵液中的海藻糖
    离子色谱分离脉冲安培检测器测定糖分离度好灵敏度高,在糖类物质的研究中应用非常广泛。毛细管离子色谱常用色谱柱直径为0.4mm,流速为10 μ L/min,其进样体积通常为0.4 μ L,与常规分析型离子色谱相比,其灵敏度是常规离子色谱的近百倍,且。毛细管离子色谱的流速是10 μ L/min,符合质谱对低流速的需求;且经过抑制器后,淋洗液中的钾离子被交换到废液中,进入质谱的流动相基本为水,与质谱具有很好的兼容性,在需要进行定性研究时可连接质谱。并且在进入质谱前,可以通过一个三通引入部分乙腈以增加质谱的雾化效率,增加仪器的稳定性。本方法在柱后乙腈溶液中添加了少量乙酸钠,以提高糖在质谱中的重现性。毛细管离子色谱质谱联用测定糖方法操作简便,重复性好,线性范围内相关性好,准确度高,进一步拓展了毛细管离子色谱的应用范围,具有较高的实用价值。
  • 赛默飞色谱与质谱:赛默飞在线固相萃取- 液相色谱- 质谱联用法测定环境水中的萘普生
    由于环境水体中萘普生含量很低,单独采用高效液相色谱法或者高效液相色谱- 质谱联用法无法满足检测要求,目前多采用离线固相萃取方法完成水体中样品富集,但步骤较为繁琐,单个样品耗时大。采用在线的固相萃取方法对样品进行净化和富集,大大提高了检测的灵敏度,节约了单个样品的分析时间。
  • 赛默飞在线固相萃取- 液相色谱- 质谱联用法测定环境水中的萘普生
    由于环境水体中萘普生含量很低,单独采用高效液相色谱法或者高效液相色谱- 质谱联用法无法满足检测要求,目前多采用离线固相萃取方法完成水体中样品富集,但步骤较为繁琐,单个样品耗时大。采用在线的固相萃取方法对样品进行净化和富集,大大提高了检测的灵敏度,节约了单个样品的分析时间。
  • 岛津:超高效液相色谱三重四极杆质谱联用法测定水产品中的结晶紫
    本文建立了一种使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8030联用快速测定水产品中结晶紫和隐色结晶紫的方法。样品经提取后,用超高效液相色谱LC-30A分离,三重四极杆质谱仪LCMS-8030进行内标法定量分析。样品在2分钟内得到快速分离和检测。结晶紫在0.5~500 μg/L,隐色结晶紫在0.1~200 μg/L浓度范围内线性良好,标准曲线的相关系数均在0.999以上;对1 μg/L、50 μg/L和200 μg/L混合标准溶液进行精密度实验,连续6次进样保留时间和峰面积相对标准偏差分别在2.925%和0.160%之下,系统精密度良好;方法定量限为0.1 μg/kg,优于国标《GB/T 19857-2005 水产品中孔雀石绿和结晶紫残留的测定》中0.5 μg/kg的要求。
  • 超高效液相色谱三重四极杆质谱联用法测定水产品中的孔雀石绿和结晶紫
    本文建立了一种使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8030联用快速测定水产品中孔雀石绿、隐色孔雀石绿、结晶紫和隐色结晶紫的方法。样品经提取后,用超高效液相色谱LC-30A分离,三重四极杆质谱仪LCMS-8030进行内标法定量分析。样品在2分钟内得到快速分离和检测。孔雀石绿和隐色孔雀石绿在0.5~200 μg/L,结晶紫在0.5~500 μg/L,隐色结晶紫在0.1~200 μg/L浓度范围内线性良好,标准曲线的相关系数均在0.999以上;对1 μg/L、50 μg/L和200 μg/L混合标准溶液进行精密度实验,连续6次进样保留时间和峰面积相对标准偏差分别在2.925%和0.160%之下,系统精密度良好;方法定量限为0.1 μg/kg,优于国标《GB/T 19857-2005 水产品中孔雀石绿和结晶紫残留的测定》中0.5 μg/kg的要求。
  • 赛默飞色谱与质谱:毛细管离子色谱质谱联用测定蓝藻发酵液中的甘露醇
    离子色谱分离脉冲安培检测器测定糖分离度好灵敏度高,在糖类物质的研究中应用非常广泛。毛细管离子色谱常用色谱柱直径为0.4mm,流速为10 μ L/min,其进样体积通常为0.4 μ L,与常规分析型离子色谱相比,其灵敏度是常规离子色谱的近百倍,且。毛细管离子色谱的流速是10 μ L/min,符合质谱对低流速的需求;且经过抑制器后,淋洗液中的钾离子被交换到废液中,进入质谱的流动相基本为水,与质谱具有很好的兼容性,在需要进行定性研究时可连接质谱。并且在进入质谱前,可以通过一个三通引入部分乙腈以增加质谱的雾化效率,增加仪器的稳定性。本方法在柱后乙腈溶液中添加了少量乙酸钠,以提高糖在质谱中的重现性。毛细管离子色谱质谱联用测定糖方法操作简便,重复性好,线性范围内相关性好,准确度高,进一步拓展了毛细管离子色谱的应用范围,具有较高的实用价值。
  • 采用液相色谱-质谱联用技术直接分析水中全氟癸烷磺酸
    串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
  • 采用液相色谱-质谱联用技术直接分析水中全氟十八酸
    串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
  • 采用液相色谱-质谱联用技术直接分析水中全氟十一酸
    串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
  • 采用液相色谱-质谱联用技术直接分析水中全氟十二酸
    串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
  • 采用液相色谱-质谱联用技术直接分析水中全氟丁酸
    串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
  • 超高效液相色谱三重四极杆质谱联用法测水果中常见32种酚类物质
    本文采取岛津岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8060联用测定水果中常见多酚类物质,有效提升检测灵敏度,减少前处理净化步骤,为水果中代谢产物分析及营养品质评价奠定基础。
  • 毛细管离子色谱质谱联用测定蓝藻发酵液中的糖
    离子色谱分离脉冲安培检测器测定糖分离度好灵敏度高,在糖类物质的研究中应用非常广泛。毛细管离子色谱常用色谱柱直径为0.4mm,流速为10 μ L/min,其进样体积通常为0.4 μ L,与常规分析型离子色谱相比,其灵敏度是常规离子色谱的近百倍,且。毛细管离子色谱的流速是10 μ L/min,符合质谱对低流速的需求;且经过抑制器后,淋洗液中的钾离子被交换到废液中,进入质谱的流动相基本为水,与质谱具有很好的兼容性,在需要进行定性研究时可连接质谱。并且在进入质谱前,可以通过一个三通引入部分乙腈以增加质谱的雾化效率,增加仪器的稳定性。本方法在柱后乙腈溶液中添加了少量乙酸钠,以提高糖在质谱中的重现性。毛细管离子色谱质谱联用测定糖方法操作简便,重复性好,线性范围内相关性好,准确度高,进一步拓展了毛细管离子色谱的应用范围,具有较高的实用价值。
  • -一种不同企业生产的黄酒的气相离子迁移谱鉴别方法
    本发明公开了一种不同企业生产的黄酒的气相离子迁移谱鉴别方法。该方法对不同企业生产的5年酒龄黄酒的挥发性成分进行气相-离子迁移谱(GC-IMS)检测,通过对45种谱图特征区域进行主成分分析,区分不同企业生产的黄酒,并使用3种特定标准品对具有显著性差异的挥发性成分进行进一步分析,并对发现能精确分辨出不同企业生产的黄酒,以及能根据挥发物的特征因子确定品牌。相比传统分析方法,该法简单有效,耗时大大缩短,具有高灵敏度,可以用于快速检测不同企业生产的黄酒
  • 液相色谱-质谱联用技术测定无糖食品中果糖、葡萄糖、蔗糖、麦芽糖和乳糖
    摘 要 建立了无糖食品中葡萄糖、果糖、蔗糖、麦芽糖、乳糖的 高效液相色谱- 串联四极杆质谱联用测定方法。本方法以水提取样品, 以 Waters Carbohydrate Analysis柱 ( 3 00 mm @ 3.9 mm, 10 Lm ) 分离, 流动相为水- 乙腈 ( 15B85 ,V/V ) , 电喷雾负离子 M R M 模式检测 。方法的 检出限为 0.1g/kg 线性范围为 2.5 ~ 1 25 . 0 mg/L 加标回收率为 86.2 % ~ 97.7 % 相对标准偏差为 3.1 % ~ 8.7 % 。
  • 采用液相色谱-质谱联用技术直接分析水中全氟 [ 13C] 十二烷酸酯
    串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
  • 采用液相色谱-质谱联用技术直接分析水中全氟 [ 13C] 己酸酯
    串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
  • 采用液相色谱-质谱联用技术直接分析水中全氟辛基磺酸酯
    串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
  • 采用液相色谱-质谱联用技术直接分析水中全氟辛酸酯
    串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
  • 采用液相色谱-质谱联用技术直接分析水中全氟辛烷 [ 13C] 磺酸盐
    串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
  • 采用液相色谱-质谱联用技术直接分析水中全氟己烷 [ 18O] 磺酸盐
    串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。

厂商最新方案

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制