当前位置: 仪器信息网 > 行业主题 > >

飞秒激光剥蚀固体进样系统

仪器信息网飞秒激光剥蚀固体进样系统专题为您提供2024年最新飞秒激光剥蚀固体进样系统价格报价、厂家品牌的相关信息, 包括飞秒激光剥蚀固体进样系统参数、型号等,不管是国产,还是进口品牌的飞秒激光剥蚀固体进样系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合飞秒激光剥蚀固体进样系统相关的耗材配件、试剂标物,还有飞秒激光剥蚀固体进样系统相关的最新资讯、资料,以及飞秒激光剥蚀固体进样系统相关的解决方案。

飞秒激光剥蚀固体进样系统相关的方案

  • SOLIS-500激光烧蚀固体进样系统和ICP-OES联机的低合金钢分析(英文版)
    SOLIS500是一简洁的激光烧蚀固体进样系统,适用于各种类型和大小的样品。无需对样品大小有限制及样品的分解,就能进行激光烧蚀取样和大块合金的分析。 SOLIS500型固体进样系统专为ICP-OES直接进样分析大块样品而研制。事实上,任何样品都可以烧蚀进样而无需样品分解。SOLIS500采用非常稳定的高能量Nd:YAG 1064nm激光器,**功率50mJ/脉冲。样品放置在客户化设计的样品架上并通过控制键选择烧蚀取样,可以是单点或扫描取样分析。可与任何ICP-OES想联机无需光学观察和复杂的聚焦精密度和正确度与经典的固体进样技术相当适用于导电及非导电样品设置和操作简单、方便真正的免维护激光头的稳定性:1%,在满功率时
  • 钛铁矿的紫外纳秒和飞秒激光剥蚀特性:非基体匹配定量的影响(英文原文)
    使用飞秒激光电感耦合等离子体质谱仪分析钛铁矿中57Fe和49Ti的浓度大约比NIST SRM 610高1.8倍。与193nm准分子激光器相比,257nm 飞秒激光器的元素分离量较小。采用193nm准分子激光剥蚀时,激光能量密度的选择对钛铁矿元素分离有显著影响。与飞秒激光相比,纳秒激光生成的剥蚀坑和沉积气溶胶形貌的扫描电镜图像显示了更大的熔化效应,烧蚀坑周围颗粒沉积面积更大。在纳秒剥蚀坑周围喷出物主要由大滴再凝固的熔融物质组成;然而,在飞秒剥蚀坑周围的喷出物是由形状“粗糙”的微粒团块组成。这是纳秒激光和飞秒激光不同剥蚀机制的结果。使用NIST SRM 610作为193nm准分子LA-ICP-MS和fs-LA-ICP-MS的参考材料,可以对钛铁矿样品进行非基体匹配条件下的定量分析。采用193nm准分子LA-ICP-MS 在12.7 J cm-2高激光能量密度条件和采用fs-LA-ICP-MS对钛铁矿样品中的大部分元素进行分析,得到的结果一致。
  • 飞秒激光剥蚀多接收等离子体质谱分析硫化物中 Pb 同位素组成研究
    开展了利用飞秒激光剥蚀多接收等离子体质谱进行硫化物矿物中Pb 同位素原位微区分析技术研究, 采用高温活化活性炭过滤载气中的Hg, 使得Hg 背景信号降低了48%, 进一步降低检出限, 分析过程的分馏效应及质量歧视效应校正采用内标Tl 和外标NIST SRM 610 相结合方式进行.
  • 飞秒激光剥蚀多接收等离子体质谱准确分析地质样品中的铅同位素组成
    开发了利用飞秒激光剥蚀多接收等离子体质谱(fLA-MC-ICPMS)微区原位分析以铜为基体的金属、硅酸盐玻璃及长石等中的铅同位素组成的方法.利用本研究建立的方法对NIST(NIST SRM 610, 612, 614), USGS(BHVO-2G, BCR-2G, GSD-1G)和MPI-DING (GOR132-G, KL2-G, T1-G, StHs60/80-G))标准玻璃中Pb同位素组成进行了准确测定, 结果与参考值在2 s误差范围内完全一致. 此外, 利用本研究的方法对高温炉合成的长石熔融玻璃进行了Pb同位素微区分析, 结果与化学法在误差范围内吻合.
  • 上海凯来:使用激光剥蚀LA-CP-MS和氦气碰撞池分析塑料中的有毒金属Pb
    激光剥蚀固体采样时一种微损技术,可大大减少塑料样品制备时间,样品通量高。这里展示的数据介绍了一个独特的激光剥蚀固体采样方法,显示其作为可行技术能够*的进行Pb等多元素定量分析。
  • 飞秒激光长石Sr同位素分析方法研究
    纳秒激光剥蚀长石效率很低!激光参数:193nm, 60μ m, 8 J cm-2。纳秒激光剥蚀长石产生大量沉积物,纳秒激光表现出明显的基体依赖,飞秒激光在不同物质之间剥蚀速率比较接近。飞秒激光可以改善透明矿物(如长石)剥蚀效率。飞秒激光-纳秒激光信号强度对比。
  • 上海凯来:使用激光剥蚀LA-CP-MS和氦气碰撞池分析塑料玩具中的有毒金属As
    激光剥蚀固体采样时一种微损技术,可大大减少塑料样品制备时间,样品通量高。这里展示的数据介绍了一个独特的激光剥蚀固体采样方法,显示其作为可行技术能够*的进行As等多元素定量分析。
  • 上海凯来:使用激光剥蚀LA-CP-MS和氦气碰撞池分析塑料中的有毒金属Hg
    激光剥蚀固体采样时一种微损技术,可大大减少塑料样品制备时间,样品通量高。这里展示的数据介绍了一个独特的激光剥蚀固体采样方法,显示其作为可行技术能够*的进行Hg等多元素定量分析。
  • 上海凯来:使用激光剥蚀LA-CP-MS和氦气碰撞池分析塑料中的有毒金属Cd
    激光剥蚀固体采样时一种微损技术,可大大减少塑料样品制备时间,样品通量高。这里展示的数据介绍了一个独特的激光剥蚀固体采样方法,显示其作为可行技术能够*的进行Cd等多元素定量分析。
  • 上海凯来:使用激光剥蚀LA-CP-MS和氦气碰撞池分析塑料玩具中的有毒金属Cr
    激光剥蚀固体采样时一种微损技术,可大大减少塑料样品制备时间,样品通量高。这里展示的数据介绍了一个独特的激光剥蚀固体采样方法,显示其作为可行技术能够*的进行多元素定量分析。
  • 使用激光剥蚀LA-CP-MS和氦气碰撞池分析塑料中的有毒金属
    激光剥蚀固体采样时一种微损技术,可大大减少塑料样品制备时间,样品通量高。这里展示的数据介绍了一个独特的激光剥蚀固体采样方法,显示其作为可行技术能够*的进行多元素定量分析。
  • 纳秒、飞秒激光剥蚀-高空间分辨率ICP-MS法准确测定硅酸盐玻璃中的多种元素(英文原文)
    尽管LA-ICP-MS有大量的成功应用,但是元素分离仍然是地球科学应用中的主要局限,这种局限在高空间分辨率分析中尤其突出。本研究采用193nm ArF准分子纳秒(ns)激光器和257nm飞秒(fs)激光剥蚀电感耦合等离子体质谱法,研究了硅酸盐玻璃NIST SRM 610和GSE-1G的元素分离和质量载荷效应。与在ns-LA-ICP-MS中观测到的相反,在fs-LA-ICP-MS中,16-24μ m的小粒子的分离效率低于40-60μ m的大粒子分离效率。在193nm准分子激光LA-ICP-MS中观察,硅酸盐玻璃材料NIST SRM 610和GSE-1G中的Li、Na、Si、K、V、Cr、Mn、Fe、Co、Ni、Cu、Rb、Cs和U的分离行为存在显著差异,利用257nm fs-LA-ICP-MS在高空间分辨率下消除了这些差异。此外,与ns-LA-ICP-MS相比,fs-LA-ICP-MS的质量负载效应和与基体相关的质量负载效应也有所降低。除Sb、Pb、Bi外,元素分离与所选的激光通量无关,与ns-或fs-LA-ICP-MS无关。在本研究中,选择24μ m光斑来测试LA-ICP-MS在高空间分辨率下的分析能力。我们使用fs-LA-ICP-MS对MPI-DING、USGS、NIST玻璃样片中的大部分元素的测试数据与参考值具有一致性,误差小于10%。对于ns激光剥蚀分析,其准确性高度依赖于使用的校准策略(传统的外部校准方法或100%氧化物归一化方法)和选择的外部参考物质(NIST SRM 610或GSE-1G)。与193nm准分子LA-ICP-MS相比,fs-LA-ICP-MS中较少的激光诱导元素分离和基体效应使其更适合于高空间分辨率硅酸盐材料的分析。
  • 使用激光剥蚀与 Agilent 7900 ICP-MS 联用对高纯金属进行定量分析
    激光剥蚀-ICP-MS (LA-ICP-MS) 可用于固体样品和粉末中的元素分析,其中包括地质材料、陶瓷、生物组织和法医样品。本研究使用两种校准策略(基质匹配和非基质匹配)对高纯度金属进行定量分析。LA-ICP-MS 可直接分析固体样品,因此与标准液体样品进样相比,固体样品只需极少的样品前处理步骤。由于无需溶出过程,降低了分析物损失的风险,也避免了引入污染物。但是,由于缺少固体校准标样,LA-ICP-MS 分析可能难以实现精确定量分析。用于固体样品分析的校准标样比用于液体样品分析的校准标样更难以制备,含合适浓度分析物的基质匹配的固体校准标样也比较少见。在金属行业等少数领域中可能已经获得特征明确的基质匹配标准品,因为电弧/火花或辉光放电 (GD) 光学发射光谱 (OES) 等成熟分析技术中使用固体标样。
  • 直接固体进样石墨炉分析混纺棉纱中的磷
    本文中采用德国 Ananlytik Jena AG 公司的 AAS vario 6 型商品原子吸收光谱仪,用直接固体进样法成功测定了混纺棉纱(90%棉+10%聚酯)中的磷含量。作为平行样品测定的精密度在2.3%~7.4%RSD, 非常令人满意,其重现性可与溶液进样石墨炉相媲美。直接固体进样石墨炉原子吸收分析既可解决特殊样品分析的难题,又可大大节省样品处理的时间和工作量;与悬浮液进样法相比不存在稀释和悬浮液杂质污染的问题,是值得推广的一种现代分析技术。
  • 飞秒激光剥蚀多接收等离子体质谱准确分析地质样品中的铅同位素组成
    开发了利用飞秒激光剥蚀多接收等离子体质谱(fLA-MC-ICPMS)微区原位分析以铜为基体的金属、硅酸盐玻璃及长石等中的铅同位素组成的方法. 研究发现中国国家标准物质研究中心研制的以铜为基体的标准样品GBW02137(青铜)中Pb同位素组成均一(208Pb/204Pb=37.9661± 0.0005 (2 s), 207Pb/204Pb=15.5770± 0.0002 (2 s), 206Pb/204Pb= 17.7462± 0.0002 (2 s)), 可作为原位微区分析黄铜矿、古钱币等含铜基体样品中Pb同位素组成的外部标准物质和监控样品(QC), 为矿床成因研究提供原位微区的Pb同位素地球化学制约, 亦可为利用古钱币、青铜器等中的Pb同位素来研究矿料来源、古代工艺、文化交流等. 利用本研究建立的方法对NIST(NIST SRM 610, 612, 614), USGS(BHVO-2G, BCR-2G, GSD-1G)和MPI-DING (GOR132-G, KL2-G, T1-G, StHs60/80-G))标准玻璃中Pb同位素组成进行了准确测定, 结果与参考值在2 s误差范围内完全一致. 此外, 利用本研究的方法对高温炉合成的长石熔融玻璃进行了Pb同位素微区分析, 结果与化学法在误差范围内吻合.
  • ZEEnit 650P直接固体进样技术在食品检测中的应用
    资料提供了采用直接固体进样ZEEnit 650对茶叶中的铅含量进行测定的方法,并给出了直接固体进样技术在奶粉测定中的应用,样品无需前处理可直接上机测定,有效避免了样品在前处理过程中的污染
  • 德国耶拿:直接固体进样石墨炉分析混纺棉纱中的磷
    本文中采用德国 Ananlytik Jena AG 公司的 AAS vario 6 型商品原子吸收光谱仪,用直接固体进样法成功测定了混纺棉纱(90%棉+10%聚酯)中的磷含量。作为平行样品测定的精密度在2.3%~7.4%RSD, 非常令人满意,其重现性可与溶液进样石墨炉相媲美。直接固体进样石墨炉原子吸收分析既可解决特殊样品分析的难题,又可大大节省样品处理的时间和工作量;与悬浮液进样法相比不存在稀释和悬浮液杂质污染的问题,是值得推广的一种现代分析技术。
  • 直接固体进样直接测定烟草中的Pb和Cr
    采用高分辨率连续光源直接固体进样对烟草中的Pb和Cr,样品无需进行预处理即可直接上机测定,高分辨率的分光系统可有效避免光谱干扰,仪器灵敏度高,有效拓展了线性范围。是痕量分析的快速简便有效的测定方法
  • 基于低分散激光剥蚀系统-电感耦合等离子体飞行时间质谱的快速元素成像
    Fast Elemental Bio-Imaging with Low Dispersion Laser Ablation System Coupled toInductively Coupled Plasma Time-of-Flight Mass Spectrometry基于低分散激光剥蚀系统-电感耦合等离子体飞行时间质谱的快速元素成像
  • 利用薄层色谱与激光剥蚀电感耦合等离子体质谱法测定原油沥青组分中钒/镍的比例
    提出了一种用飞秒激光剥蚀电感耦合等离子体质谱(fs-LA-ICP-MS)与薄层色谱(TLC)相结合的方法,用于测定原油沥青组分中钒/镍的比例。薄层色谱法是一种简单而快速的分离原油组分的方法,溶剂用量少,并且fs-LA-ICP-MS不需要任何额外的样品制备即可直接分析薄层色谱板。该方法对委内瑞拉原油样品及其分离的沥青质进行了检测。这些结果与传统的使用分离、消解油样用ICP-OES检测沥青质方法的结果相吻合。TLC与fs-LA-ICP-MS的结合提供了快速、可靠的测定沥青质中V/Ni比例的方法,并能在无溶剂交换的情况下即可直接用原油进行检测。
  • 257nm飞秒激光氮气条件下对地质矿物中锶同位素原位微区分析方法改进(英文原文)
    激光剥蚀-多接收电感耦合等离子体质谱法(LA-MC-ICP-MS)对地质矿物的n位Sr同位素分析对岩浆源组成和地质过程来说的是一种强大的追踪技术。然而,由于Sr浓度低、同重元素或复杂结构小颗粒干扰,因此在对天然矿物特别是对长石等透明矿物进行分析时87Sr/86Sr比值的准确度和精密度不能令人满意。在这项研究的分析结果表明,飞秒激光对各种样品的剥蚀率(每个脉冲0.08 -0.11μ m)是一致的。但是使用纳秒激光剥蚀效率受地质材料影响相当明显,例如长石和黄铁矿剥蚀率分别为每个脉冲0.144μ m和0.026μ m。此外,由于飞秒激光的剥蚀效率较高,在相同的能量下分析长石中的Sr飞秒激光灵敏度是纳秒激光敏度的3.4倍。飞秒激光的这些优点不仅有利于消除激光剥蚀过程中的基体效应,而且有助于提高透明矿物的分析准确度。我们还证明了在6 - 12mLmin-1 N2条件下,同重元素钙二聚体(CaAr++CaCa+)和Kr+的干扰值分别降低了6.5-11.7和5-12.5。此外,随着N2 (12 mLmin-1)的加入,铷的灵敏度受到抑制,Rb/Sr信号比下降1.47倍。由于加入N2的抑制作用,尤其是对富含铷的长石87Sr/86Sr和84Sr/86Sr比值的准确度和精密度均有提高。结合飞秒激光系统的优点和氮气的加入,改进了原位微区Sr同位素的分析方法。对天然斜长石、高Rb/Sr(0.46)的K-长石和低Sr的斜长石进行分析,87Sr/86Sr比值的准确度和精密度结果令人满意,验证了该方法的可靠性。主要元素Sr和Rb含量不同的四种长石具有均匀的Sr同位素组成,因此可以推荐作为原位微区Sr同位素分析合适的参考材料。本文提出的方法可以为单一矿物提供高空间分辨率的地球化学信息。
  • 冷冻激光剥蚀电感耦合等离子体质谱法对黄瓜叶片中Ce元素成像的研究
    ?利用带冷冻室的激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)系统,研究了新鲜黄瓜叶片中纳米颗粒(NPs)的空间分布特征,对黄瓜叶片中纳米颗粒的空间分布具有重要意义。冷冻室消除了激光剥蚀过程的热效应,提高了信号的稳定性。因此,与室温下相比,冷冻室中NIST 612和添加琼脂凝胶的相对标准偏差更低。在低温条件下对鲜黄瓜中铈的成像进行了研究。63Cu、66Zn、31P、140Ce和13C在黄瓜叶片的分布信息表明,Ce3+对黄瓜叶片的负面影响比CeO2更大。据我们所知,本研究首次实现了冷冻室中植物Ce的成像,对评估生物组织在自然状态下的环境风险具有重要意义。
  • PSI-固体进样Griffin460 可移动GCMS检测茶叶及咖啡中咖啡因
    摘要: 咖啡因是一种黄嘌呤生物碱化合物,是一种中枢神经兴奋剂,能够暂时的驱走睡意并恢复精力。有咖啡因成分的咖啡、茶、软饮料及能量饮料十分畅销,因此,咖啡因也是世界上最普遍被使用的精神药品。在北美,90%成年人每天都使用咖啡因。很多咖啡因的自然来源也含有多种其他的黄嘌呤生物碱,包括强心剂茶碱和可可碱以及其他物质例如单宁酸。 Griffin 460可移动GC/MS系统设计紧凑、基于环形离子阱(CIT)质量分析器并配有先进的PSI-Probe技术,能够实现固体直接进样,从而省去样品前处理步骤。对于固体或者液体样品,采用Touch-and-Go(TAG)可以避免传统的复杂样品前处理过程而实现样品的进样分析。 本文使用Griffin 460可移动GC/MS系统,采用固体进样PSI-Probe方式,分析检测了4种茶叶和1种咖啡中的咖啡因,样品前处理简便,省去了复杂的前处理过程,10 min内能得到结果。
  • 石墨炉原子吸收法直接固体进样测定土壤中的镉、镍
    石墨炉原子吸收法直接固体进样测定土壤中的镉、镍样品制备样品直接分析,无需任何样品预处理。测定镍时,需加入10 μl 氢氟酸(40 % V/V) 作为基体改进剂。测定6次,Cd RSD:6.7%,Ni RSD:9.2%
  • 飞秒激光剥蚀多接收等离子体质谱分析硫化物中Pb同位素组成研究
    开展了利用飞秒激光剥蚀多接收等离子体质谱进行硫化物矿物中Pb 同位素原位微区分析技术研究, 采用高温活化活性炭过滤载气中的Hg, 使得Hg 背景信号降低了48%, 进一步降低检出限, 分析过程的分馏效应及质量歧视效应校正采用内标Tl 和外标NIST SRM 610 相结合方式进行. 利用研究建立的方法分析了都龙锡锌铟多金属矿带中的黄铜矿、黄铁矿和闪锌矿中Pb 同位素组成. 结果表明, 该矿区不同硫化物矿物间及同一种硫化物不同颗粒间的Pb 含量差异可达1000 多倍, 黄铁矿具有相对较高的Pb 含量,而闪锌矿的Pb 含量则偏低. 高Pb 含量的黄铁矿具有变化小且相对均一的Pb 同位素组成, 而低Pb 含量的闪锌矿的Pb 同位素组成变化极大, 一方面它可能较易受后期热液叠加作用而改变, 另一方面由于闪锌矿中铅含量较低, 则其中所含微量铀的影响显著加大,因而由铀放射性衰变随时间积累起来的放射成因铅也可能是造成其Pb 含量和同位素组成分布范围较大的原因之一. Pb 含量高于10 ppm 的黄铜矿和闪锌矿颗粒显示了一致的Pb 同位素分布, 而Pb 含量高于100 ppm 的所有硫化物颗粒均具有误差范围内一致的Pb同位素组成, 且与化学法得到的结果误差范围内吻合, 表明本研究方法的数据可靠. 本研究还表明, 只有Pb 含量相对较高的硫化物矿物中的Pb 同位素组成才能较真实地记录其成矿物质来源. 而Pb 含量偏低的硫化物矿物中的Pb 同位素组成则可能受样品中微量铀的影响而具有高放射成因铅同位素比值, 也可能代表了后期交代流体改造后的Pb 同位素组成.
  • 固体进样-连续光源原子吸收测法定土壤中的镉含量
    本文通过对比研究了电加热板消解法-传统原子吸收光谱法和固体进样-连续光源原子吸收光谱法测定土壤样品中镉的含量。结果表明:传统原子吸收方法要求消解土壤,制备成溶液,使用空心阴极灯作为锐线光源测定土壤中的镉含量;固体进样-连续光源法,不需要消解土壤样品,直接测定,仪器操作简单、最大化地缩短了检测时间、保障了实验人员安全、避免样品受污染及减小误差的引入。测定结果准确可信。
  • 激光剥蚀ICP-MS定量成像单个真核细胞中的金、银纳米颗粒(英文原文)
    利用激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)对不同实验条件下培养成纤维细胞中金、银纳米颗粒分布进行空间分辨生物成像。通过优化扫描速度、剥蚀频率和激光能量,获得了较高的空间分辨率。纳米颗粒相对于细胞的子结构是可见的,并且随着孵育时间的增加,纳米颗粒会在核周区域聚集。在矩阵匹配标定的基础上,提出了一种在单细胞水平上定量测定金属纳米颗粒数量的方法。这些结果提供了纳米颗粒/细胞相互作用的见解,并对组织诊断和治疗中分析方法的发展具有启示意义。
  • 莱伯泰科:固体进样_直接测汞仪法测定金精矿粉中微量汞
    将金精矿粉样品直接置于石英舟中,在高纯氧气氛中燃烧,释放出汞,与齐化管中的金形成金齐化,于900℃加热放出汞蒸气,用直接测汞仪法测定汞的含量。测定结果的相对标准偏差为0.28%-1.57%(n=6),方法检出限为1.0ug/kg,加标回收率为95.7%-117.4%。用该法对4种土壤标准样品进行了测定,测定结果与标准值相符。该方法适合于金精矿粉中微量汞的测定。关键词 固体进样;直接测汞仪;金精矿粉;汞
  • 德国耶拿:石墨炉原子吸收法直接固体进样测定塑料中的铅和锌
    石墨炉原子吸收法直接固体进样测定塑料中的铅和锌是可靠、可信的。测试样品无需消解,省去了消解用化学试剂,免除了消解过程可能带来的污染,节省了费用;方法简单、快速。
  • 基于激光剥蚀-电感耦合等离子体质谱技术的生物元素成像分析
    生物体内的微量元素具有十分重要的生物功能,也与许多疾病密切相关。现代生物医学的研究亟需能在组织、细胞等不同水平上原位分析生物样品中微量元素的分析方法。本研究建立了激光剥蚀-电感耦合等离子体质谱(LA-ICP-MS)原位分析生物样品的方法。采用线扫描模式和较小的激光输出能量(<1 J/ cm2),得到了鼠脑切片和金纳米颗粒暴露后单细胞的金属元素成像图。LA-ICP-MS 具有空间分辨率高、检出限好、运行成本较低等优势,有望在生物医学研究中得到更广泛的应用,发挥更重要的作用。

厂商最新方案

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制