当前位置: 仪器信息网 > 行业主题 > >

太阳能流密度监视测量设备

仪器信息网太阳能流密度监视测量设备专题为您提供2024年最新太阳能流密度监视测量设备价格报价、厂家品牌的相关信息, 包括太阳能流密度监视测量设备参数、型号等,不管是国产,还是进口品牌的太阳能流密度监视测量设备您都可以在这里找到。 除此之外,仪器信息网还免费为您整合太阳能流密度监视测量设备相关的耗材配件、试剂标物,还有太阳能流密度监视测量设备相关的最新资讯、资料,以及太阳能流密度监视测量设备相关的解决方案。

太阳能流密度监视测量设备相关的资讯

  • 中教金源助力----全光谱太阳能光热化学利用研究取得新进展
    北京中教金源科技有限公司是以实验仪器研发和生产的国家ji高新技术企业、中关村高新技术企业,与全国各高校研究所建立了长久紧密的合作关系。公司自成立以来,研究人员采用中教金源的仪器设备,在科研上取得了很大的进展!近期中国科学院工程热物理研究所应用中教金源的光催化系统在全光谱太阳能光热化学利用研究取得新进展,中教金源在此表示最热烈的祝贺! 以下内容摘自中国科学院工程热物理研究所科研进展版块 利用太阳能制取氢气、醇类、氨、烃类等燃料是可再生能源领域的重要研究方向,也是中科院“液态阳光”倡议的主要内容。光热复合催化是近年来新兴的太阳能-燃料转化方式,指热能、光能协同作用下的催化反应,其相对于热化学反应具有温度低的优势,相对于光化学反应具有速率加快的优点,近年来逐渐成为美国、日本、欧盟等国的研究热点。在当前的光热复合催化研究中,主要通过在非聚光的半导体光催化反应中引入电加热,观察反应路径、选择性和产率的变化规律。在分解CO2和水制碳氢燃料方面,相比于室温下的光催化反应,光热复合催化可提高20-40倍反应速率;相比于单纯太阳能热化学,可将反应温度从高于1200℃降低到200-400℃。然而,电加热的光催化反应仍存在以下问题:(1)非聚光太阳能反应器面积较大,电加热温度场与光场难以协同;(2)在太阳能聚光反应器上,输入的光能和热能均具有较高能流密度,常规光催化剂不能对其进行有效利用。  针对上述问题,工程热物理研究所分布式供能与可再生能源实验室设计提出了全光谱太阳能聚光光热复合催化反应器,如图1所示。与以往电加热光催化反应不同,该反应器直接通过氙灯模拟5-30倍聚焦太阳光,照射进反应器内的液固或气固反应床上。反应床内的纳米光热催化剂可将聚光太阳能同时、同地转化为光生载流子和热声子,促进了温度场和光场的协同,不需电加热维持反应温度。该反应器具有提升光热复合反应速率和太阳能-燃料效率的潜力。  在上述研究基础上,进一步合成了具有光热复合作用的等离激元金属负载TiO2纳米催化剂,并在15倍聚光比下开展了甲醇水重整制氢实验研究。负载等离激元金属的TiO2可利用280-780nm紫外-可见太阳光产生光生载流子。同时,红外波段太阳光可在TiO2中激发热声子,在催化剂表面产生80-100℃局域热能,活化反应物分子。实验结果显示,光热复合产氢速率1120mL gcat-1 h-1,相比于只利用紫外光的半导体光催化体系提高了50倍;同等催化剂用量下,与太阳能热化学体系的分解水产氢速率相近,而太阳聚光比有望降低20-30。经过50h重复实验,光热复合催化剂的微观形貌和催化活性保持稳定。  上述工作得到了国家自然科学基金和中国科学院前沿科学重点研究项目的支持,相关研究成果为基于太阳能燃料的可再生能源系统研发提供了一条新的途径。
  • 我国首台大功率太阳炉聚光器竣工
    记者日前从中科院电工所获悉,由该所太阳能热发电实验室承担研制的大功率太阳炉聚光器近日在宁夏惠安堡镇竣工,其成功研制表明我国科研工作者已掌握了大型高精度聚光器的核心技术和制作工艺。  “太阳能聚集供热方法的研究及成套设备的开发”是国家“973”项目和“863”太阳能制氢课题子课题。大功率太阳炉聚光器经过近3年的研制,各项技术参数经过精心调试,已达到合同要求,并在太阳能制氢试验试运行中产出氢气。  据介绍,该太阳炉系统由3个平整度为1毫米的120平方米的正方形定日镜、跟踪控制系统、300平方米大型高精度抛面聚光器、太阳炉和制氢系统组成。其中,定日镜边长11米,成三角形排列,后面一座高出前面两座1.8米。聚光器为旋转抛物面,旋转轴与地面平行,距地3米。根据惯例,太阳直射辐射按照1000瓦/平方米计算,该太阳炉的总功率是0.3兆瓦。此套系统是我国自主研发的第一台大功率太阳炉聚光器,总聚光面积300平方米,跟踪精度好于1毫弧度,峰值能流密度设计值高达10兆瓦/平方米。该太阳炉的热功率在世界排名第三,前两位分别位于法国的科学研究中心(CNRS)和乌兹别克斯坦物理研究所内。  该系统通过将平面定日镜作为反射器把太阳光反射到对面的抛面聚光器上,经过抛面聚光器聚焦至焦点位置的太阳炉中心处,中心高温高达约3000℃,可在氧化气氛和高温下对试验样品进行观察,不受燃料产物的干扰。目前,该系统平台与西安交通大学的反应器接口已经成功产出氢气。
  • 飞秒激光在ITO薄膜表面诱导周期性透明纳米导线
    使用线偏激光照射金属、半导体、透明介质等材料产生表面周期结构(laser induced periodic surface structures,LIPSS)是一种普遍的现象,LIPSS的周期取决于激光条件和材料的性质,在接近入射激光波长到小于波长的十分之一范围变化。这些周期性纳米结构可用于有效地改变材料的性质,并在表面着色、光电特性调控、双折射和表面润湿性等方面有许多应用。氧化铟锡(indium tin oxide,ITO)具有较宽的带隙,对可见光与近红外波段有很高的透射率,ITO薄膜具有较低的电阻率,是液晶面板、新型太阳能电池等元件的重要组成部分。一直以来,发展制备ITO薄膜的新方法,调控ITO薄膜的光电特性是非常重要的研究课题,而在激光加工领域,使用激光在ITO薄膜诱导LIPSS是一个有效且简便的方法。华东师范大学精密光谱科学与技术国家重点实验室贾天卿教授课题组探究了一种通过飞秒激光直写在ITO薄膜表面加工LIPSS的方法,并详细分析了不同激光参数下加工的ITO薄膜在可见到红外光波段的透射率与其各向异性电导率的变化规律。合适的激光参数可以在ITO薄膜上有效地加工大面积低空间频率的LIPSS,这些LIPSS能够表现出独立纳米导线的特性,并且在电学特性上具有良好的一致性。结果表明,飞秒激光直写过程中并不会改变材料的性质,而且与原始的ITO薄膜相比,具有规则LIPSS的ITO薄膜在红外波段的平均透射率提高了197%。这对于将ITO薄膜表面加工规则的LIPSS作为透明电极应用于近红外波段的光电器件具有重要的意义。如图1,原始ITO薄膜的面电阻各向同性。随着激光能流密度的增加,垂直和水平于LIPSS方向的面电阻迅速增加且变化梯度不同,出现了明显的各向异性导电性,当ITO薄膜表面出现规则且独立的LIPSS结构以后,在一定能流密度范围,ITO薄膜能够在不同方向上显现出单向导电/绝缘的电学特性。图1 扫描速度为3 mm/s时,不同能流密度激光辐照后ITO薄膜的面电阻。图中给出了电学测量中横向(Transverse)与纵向(Longitudinal)的定义通过调节激光的能流密度,可以在一个较大的范围内制备出不同形貌的纳米导线(LIPSS)。图2(a)展示了不同能流密度的飞秒激光加工的纳米导线扫描电镜图像。在能流密度上升的过程中,纳米导线的宽度从537 nm降低到271 nm。纳米导线的高度从平均220 nm降低到142 nm,如图2(b)所示。纳米导线的单位电阻随着能流密度的上升从15 kΩ/mm上升到73 kΩ/mm,这是由于纳米导线的宽度与高度都在同步下降造成的,如图2(c)。图 2 (a)不同能流密度下的纳米导线的扫描电镜图像;(b)纳米导线的高度与宽度随着能流密度的变化情况;(c)纳米导线的单位电阻与电阻率随着能流密度的变化情况如图3,原始厚度为185 nm的ITO薄膜在1200~2000 nm的近红外光谱范围内的平均透射率为21.31%。经过飞秒激光直写后,当能流密度在0.510~ 0.637 J/cm2的范围内,ITO薄膜对于近红外的透过率达到54.48%~63.38%,相较原始的ITO薄膜得到了156%~197%的提高。同时,飞秒激光直写后的ITO薄膜在可见光波段的透过率略微提高且曲线较为平滑。通过调节激光的能流密度,ITO薄膜在近红外的透过率能够得到显著提高,并且能够保持较好的导电性。图 3 扫描速度为3 mm/s时,不同能流密度激光直写后的ITO薄膜的透射率。在0.637 J/cm2时红外波段(1200~2000 nm)透过率为63.38%该工作近期以“Periodic transparent nanowires in ITO film fabricated via femtosecond laser direct writing”为题发表在Opto-Electronic Science (光电科学)。
  • 纳米级近场光学成像对钙钛矿太阳能电池表面涂层电子迁移和载流子浓度的研究进展
    太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置, 其中以光电效应工作的晶硅太阳能电池为主流。虽然通过掺杂及表面覆盖抗光反射层能提高晶硅太阳能电池的效率,但是超过能带间隙和一些特定波长的光反射造成了巨大的光能量损失,反而限制了晶硅太阳能电池的效率。 Y.H. Wang等利用有机金属三溴纳米粒子(CH3NH3PbBr3)涂层吸收部分短波长太阳光,使其转化成化电场。该化电场可以通过促进分子重排而增强有机-晶硅异质结太阳能电池的不对称性,从而增加表面活性载流子密度,终将有机-晶硅异质结太阳能电池的效率从12.7%提高到了14.3%。 苏州大学Q.L. Bao教授等人在钙钛矿结构微纳米线的光电转换离子迁移行为和载流子浓度分布等领域作出了突出贡献。2016年,发表在ACS Nano上的钙钛矿结构微纳米线的光电转换离子迁移行为的研究中,作者利用neaspec公司的近场光学显微镜neaSNOM发现:1. 未施加外场电压时, 该微纳米线区域中载流子密度(图1 g. s-SNOM振幅信号)和光折射率(图1 g. s-SNOM相位信号)较均匀;2. 施加外场正电压时,该区域中载流子密度随I-离子(Br?)的迁移而向右移动(图1 h. s-SNOM振幅信号),其光折射率随随MA+离子(CH3NH3+)的迁移而向左移动(图1 g. s-SNOM相位信号)较均匀;3. 施加外场负压时,情况正好与施加正电压时相反(图1 i)。该研究显示弄清无机-有机钙钛矿结构中的离子迁移行为对于了解钙钛矿基的特殊光电行为具有重要意义,进而为无机-有机钙钛矿材料的光电器件应用打下了坚实的基础。图1.SNOM测量钙钛矿结构微纳米线的光电转换的离子迁移行为。 d-f. 离子迁移测量示意图;g-i,相应的s-SNOM光学信号振幅和相位图 2017年, Q.L. Bao教授等人发表在AdvanceMaterials的文章中再次利用neaspec公司的近场光学显微镜neaSNOM,次在实验中研究了太阳能电池表面钙钛矿纳米粒子涂层的载流子密度。结果显示:钙钛矿纳米粒子覆盖区域近场信号强度高于Si/SiO2区域中信号强度(参见下图2 b 图2 a为对应区域的形貌)。另外作者也研究了增加光照的时间的影响(参见下图2 c, d)。其结果显示:近场信号强度随光照时间增加,从12.5 μV (黄色,0 min) 增加到 14.4 μV (红色, 60 min),该近场信号反映了可移动自由载流子密度的变化。终,红外光neaSNOM研究结果证明:随光照时间增加,太阳能电池表面的钙钛矿纳米粒子涂层富集和捕获了大量的电子。图2. SNOM测量钙钛矿结构纳米粒子涂层的载流子密度。a. AFM形貌图;b, s-SNOM光学信号图-未加光照;c, s-SNOM光学信号图-光照30min;d, s-SNOM光学信号图-光照60min 作者预见,该研究对于设计新型太阳能电池,提高其转化效率具有重要意义。同时,该研究还提出了一种使钙钛矿结构材料和晶硅太阳能电池相结合的研究方法,为之后的研究和应用提供了解决新思路。相关参考文献1.Zhang Y.P. et. al. Reversible StructuralSwell?Shrink and Recoverable Optical Properties in Hybrid Inorganic?OrganicPerovskite. ACS Nano 2016,10, 7031?7038.2.Wang Y.H. et. al. The Light-InducedField-Effect Solar Cell Concept - Perovskite Nanoparticle Coating IntroducesPolarization Enhancing Silicon Cell Efficiency. AdvancedMaterial 2017, First published: 3 March 2017 DOI: 10.1002/adma.201606370.相关产品链接超高分辨散射式近场光学显微镜 http://www.instrument.com.cn/netshow/SH100980/C170040.htm德国Neaspec纳米傅里叶红外光谱仪 http://www.instrument.com.cn/netshow/SH100980/C194218.htm
  • 测量太阳能背板颜色与耐厚性的关键考量—色差仪
    在日益增长的可再生能源行业中,太阳能发电是一种越来越受欢迎的选择,这不仅归功于其零排放、绿色和可持续的特性,还因为其在逐步优化和技术进步的推动下,其效率和成本效益也在不断提高。在构成太阳能电池板的各个关键部件中,背板无疑是至关重要的一环。太阳能背板是太阳能电池板的结构组件,位于太阳能电池板的最下层,它有助于保护电池板免受环境影响,同时也起着绝缘和安全防护的作用。在生产这些背板的过程中,它们的颜色和耐厚性是两个重要的考虑因素,这两个因素都会影响到太阳能电池板的性能和耐用性。因此,在制造和测试太阳能背板时,颜色和耐厚性的测量是一个不可或缺的步骤。颜色可以影响太阳能板吸收光的效率和散热的能力。不同颜色的背板对阳光的反射率也不同,这将影响到太阳能电池的性能。这就是为什么颜色成为了测量和生产过程中的一个关键参数。我们通常使用Ci6x系列的色差仪来对颜色进行测量。Ci6x系列的色差仪,包括Ci64、Ci60和Ci62等手持式色差仪,是一系列设计精良、性能卓越的手持色差仪,它们对于颜色的测量提供了极其精准的解决方案。Ci64手持式色差仪是该系列中最高端的模型,它具有无与伦比的测量精度和优异的重复性,适用于颜色质量控制的最高标准。Ci64可以实现全面的色彩管理和精准的颜色匹配,是颜色控制应用的理想选择。Ci60手持式色差仪则是一个方便快捷的手持设备,适用于直接在生产线上进行颜色测量和管理,帮助实现颜色一致性并减少废品率。Ci62手持式色差仪具有高反射性或不规则表面的材料设计的色差仪,如金属、塑料和涂料等。其独特的设计能够在这些特殊表面上提供准确且一致的颜色测量。这些设备的使用,可以让我们更好地控制和调整太阳能背板的颜色,进而影响太阳能电池板的性能。特别是在加速老化测试后,我们可以通过Ci6x系列色差仪来测量和对比色差,从而了解背板颜色变化的趋势和速度,这对于评估背板材料的稳定性和耐用性具有极其重要的意义。对于耐厚性,即材料的厚度在生产后和加速老化后的变化,这同样是一个重要的考量因素。材料的耐厚性越好,就能越有效地抵抗环境因素的影响,从而延长其使用寿命。我们通常会在生产出来后以及经过一段时间的加速老化后,分别对其进行测量,然后比较这两次测量的结果,以此来确定其耐厚性。测量耐厚性的时候,我们常常采用台式测量机,如Ci7x00系列的台式色差仪,这些设备可以提供精确的测量结果。Ci7x00台式机又分为,Ci7860精密色差仪,Ci7800台式色差仪,Ci7830反射率测定仪等多款台式机,这系列色差仪凭借其精确的测量结果和强大的性能,已经广泛应用于各类颜色和光泽度的测量。Ci7860精密色差仪是这一系列中最高端的模型,它拥有最高的测量精度,可以捕捉最细微的色差,适用于那些需要极高精度色彩管理的场合。Ci7800台式色差仪则是一个全功能的色彩测量解决方案,它能够快速、准确地测量颜色,并提供全面的色彩数据。这种设备非常适用于生产现场的色彩质量控制,可以帮助实现颜色一致性并减少废品率。Ci7830反射率测定仪则是专门用于测量材料反射率的设备,它可以帮助我们了解太阳能背板对光的反射情况,从而评估背板的光学性能。其精确的测量结果对于调整和优化太阳能背板的设计有着极其重要的作用。Ci7x00系列的台式色差仪提供了全面、精确的颜色和光泽度测量解决方案,可以帮助我们更好地了解和控制太阳能背板的耐厚性,从而优化太阳能电池板的性能和耐用性。测量和控制太阳能背板的颜色和耐厚性,对于提升其性能,延长其使用寿命,以及实现绿色、可持续的能源发电至关重要。希望这篇文章能够为您提供有用的信息,对您的研究或项目有所帮助。“爱色丽彩通”是丹纳赫公司旗下的品牌,总部位于美国密歇根州,成立于1958年。作为全球领先的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • 2023 Nano-Micro (IF:26.6)阳军亮團隊通过晶化和定向调制提高刮刀法钙钛矿太阳能
    在太阳能技术不断发展的领域中,钙钛矿太阳能电池(PSCs)因其出色的光电特性而成为一个有前途的竞争者。然而,挑战在于开发可商业化的可扩展制造技术。在一项重大突破中,中南大学物理与电子学院副院长阳军亮教授所率领的研究团队引入了一种新型添加剂——甲胺盐酸盐(MACl),以调节两步序列刮刀法钙钛矿薄膜的晶化和定向。这种创新的方法极大地改善了钙钛矿薄膜的质量,使其具有令人瞩目的23.14%的转换效率(PCE)。钙钛矿太阳能电池的潜力:钙钛矿太阳能电池因其高吸收系数、长载流子扩散长度和低陷阱密度而成为密集研究的对象。这些特性使得PSCs的认证PCE达到25.7%。然而,大多数高效率的PSCs是通过实验室规模的旋涂沉积制备的。虽然这种方法在受控实验室环境中被证明是有效的,但对于工业应用而言,它不具备可扩展性。因此,发展可扩展的大面积制造技术对于PSCs的商业化至关重要。可扩展性的挑战:PSCs可扩展的两步序列沉积制造的电池的转换效率远远落后于最先进的旋涂法制备的电池。两步序列沉积工艺涉及有机盐与铅卤化物反应,绕过了钙钛矿薄膜在一步过程中不可控的成核过程。然而,中南大学物理与电子学院副院长阳军亮教授所率领的研究团队的研究重点就是解决这种性能差异。甲胺盐酸盐(MACl)的作用:该研究团队引入MACl以调节两步序列刮刀法钙钛矿薄膜的晶化和定向。MACl在改善钙钛矿薄膜质量方面起着关键作用。它增加了晶粒尺寸和结晶度,从而降低了陷阱密度并抑制了非辐射复合。非辐射复合是太阳能电池中的一个重要损耗机制,吸收光能转化为热能而不是电能。通过抑制非辐射复合,MACl显著提高了太阳能电池的效率。此外,MACl促进了钙钛矿薄膜(100)面向上的优先定向。这种定向更有利于载流子的传输和收集,从而显著提高了填充因子。填充因子是太阳能电池的一个关键参数,代表电池的最大可获得功率,并指示电池的质量。填充因子越高,太阳能电池的效率越高。令人印象深刻的结果:引入MACl导致基于ITO/SnO2/FA1-xMAxPb(I1-yBry)3/Spiro-OMeTAD/Ag结构的PSCs取得了23.14%的最佳转换效率和优异的长期稳定性。该结构是PSCs的常见架构,其中ITO/SnO2是电子传输层,FA1-xMAxPb(I1-yBry)3是钙钛矿吸收层,Spiro-OMeTAD是空穴传输层,Ag是电极。该研究团队还分别实现了1.03 cm2的PSC和10.93 cm2的小型模块的卓越PCE,分别达到21.20%和17.54%。这些结果代表了大规模两步序列沉积高性能PSCs在实际应用中的重大进展。研究的影响:中南大学物理与电子学院副院长阳军亮教授所率领的研究团队的研究在钙钛矿太阳能电池的可扩展制造技术发展中迈出了重要一步。引入MACl来调节钙钛矿薄膜的晶化和定向被证明是一个改变游戏规则的举措,极大地改善了钙钛矿薄膜的质量,并显著提高了转换效率。此外,该研究团队采用了Enlitech光焱科技的SS-X太阳光模拟器来测试太阳能电池的性能。SS-X模拟器采用氙气短弧灯作为宽带光源,具备A+级别的光谱模拟能力,并提供多种光斑面积选择,范围从50mm到220mm。该模拟器具有独家专利的自动变光强功能,精度高达1%。它还具备可变光谱功能,适用于测试叠层太阳能电池。使用先进的等离子沉积技术制造的AM1.5G滤光片确保光谱精度高,并具有长使用寿命。SS-X模拟器的优越光谱等级使其比其他模拟器更适合表征各种新型太阳能电池,例如低带隙有机太阳能电池和钙钛矿/Si串联太阳能电池。SS-X模拟器能够提供稳定且连续的照射强度,避免由于被测试太阳能电池的响应时间较慢而引起的表征误差。两步刮刀法制备的钙钛矿薄膜的表征。 a. 湿态原始钙钛矿薄膜的XRD图谱。b. 热退火后的钙钛矿薄膜的XRD图谱。c. 稳态光致发光(PL)发射光谱。d. 时间分辨PL衰减曲线。使用不同MACl比例制备的两步刮刀法钙钛矿薄膜的PSCs的光伏性能和光电特性。a. 典型PSCs的J-V曲线和相应参数。b. PSCs的Voc光强依赖关系。c. PSCs的莫特-肖特基图谱。d. 填充因子限制包括非辐射损耗(蓝色区域)和传输损耗(粉色区域)。e. 钙钛矿薄膜的空间电荷限流(SCLC)测量。f. EIS的Nyquist图谱。Performance of OAI-modified PSCs and mini-module. a. J-V曲线。b. 在最大功率点(MPP)测量的稳定功率输出。c. 在约30%相对湿度的环境条件下,未封装的OAI改性器件的长期稳定性测量。d. 1.03 cm2 PSCs和10.93 cm2 mini-module的J-V曲线。插图为1.03 cm2 PSCs和10.93 cm2 mini-module的图片。
  • Fluxim发布多通道太阳能电池稳定性测量系统新品
    多通道太阳能电池稳定性测试系统整合了AAA级稳态LED太阳光模拟器和56通道的独立测试单元,配合光强稳定反馈控制系统和光谱调节功能,同时密闭的腔室可对样品的温度、湿度等进行控制,达到ISOS测试要求,从而对太阳能电池的长时间稳定性进行准确的测量与分析。 主要特点: * 集成了A++AA+级/AAA级稳态LED太阳光模拟器; * 寿命超过10000小时的LED灯; * A++级/A级光谱,并可根据应用调节; * 光强稳定性反馈控制系统; * 多达56通道的多路数据采集系统; * 高精度JV和稳定性测量; * 最大功率点追踪,Voc和Jsc每个通道独立选择; * 扫描电压±10V; * 最大电路50mA/通道; * 温度控制范围RT~150℃; * 测试环境控制(氧气、湿度度);创新点:1)多达56通道测试;2)整合3A级LED太阳光模拟器3)温度、湿度和光照强度控制4)长时间太阳能电池稳定性测试5)LED灯泡长寿命,A级或A+级光谱6)自动化程序控制多通道太阳能电池稳定性测量系统
  • 美国NREL-研究人员应如何测量基于钙钛矿的单片多结太阳能电池的性能?
    【重点摘要】由国家可再生能源实验室(NREL)的研究团队发表如何从校准实验室的角度来衡量钙钛矿基单片多接面太阳能电池的性能。对钙钛矿多接面太阳能电池进行精确的标准测试条件(STC)测量至关重要,但具有挑战性。提出了优化的测量方法,能够实现精确的性能特征化。标准化、与生产相关的量化协议持续进步是实现商业可行性的关键。【研究背景】钙钛矿多接面太阳能电池(PVSK MJs)在与硅能源电池结合时已经取得了显著的功率转换效率提升,效率超过30%。这些高效率是在标准测试条件(STC)下报告的,以便进行比较。准确的多接面太阳能电池在STC下的性能测量至关重要,但比单接面器件更加复杂,需要进行光谱模拟并限制每个子电池。需要谨慎的方法,因为快捷方式可能导致误导性的效率评级。【研究结果】提出的钙钛矿多接面太阳能电池的优化测量方法能够在标准测试条件下准确地表征电流-电压曲线和效率评级。通过调整模拟光谱和平衡每个子电池的电流,可以避免与快捷方法相比的误导性能评级。正在开发的高通量测量程序展示了减少测试时间一个数量级而不影响准确性。进一步改进加速测试协议并在研究团队间标准化方法可以促进持续的效率提升。在标准条件下准确评估效率仍然对评估新型多接面结构中的损失机制至关重要。【研究方法】准确测量PVSK MJ性能需要具有光谱可调的太阳模拟器来调节照射在器件上的光谱。测量过程包括确定每个子电池的光谱响应,调整模拟器光谱以实现电流匹配,并在STC下测量IV曲线和功率输出。讨论了在无法使用光谱模拟器时的常见错误和准确性评估方法。【结论】准确的标准测试条件(STC)下的钙钛矿基多接面太阳能电池测量需要具有光谱可调的太阳模拟器。优化的定量方法包括确定每个子电池的光谱响应,调整模拟器光谱以实现电流匹配,并在STC下精确测量功率输出。随着钙钛矿子电池的串联太阳能电池快速发展,防止误导性效率评级的需求使准确的标准测试量化变得更加迫切。最近更新的IEC 60904-1-1要求对于多接面测量中使用的模拟器提出了严格的规范,包括可调输出光谱范围为300-1700nm,符合AM1.5G标准,平均光谱不匹配率低于6%(A++等级)。这种最先进的设备克服了以往双源系统的可靠性问题。Enlitech的SS-PST利用创新的单氙弧灯基础的光谱控制,独特地满足这些新一代标准。Enlitech SS-PST在400-1100nm波长范围内的光谱偏差为11.2%,在300-1200nm范围内为13.1%。300-1700nm的输出光谱可以满足AM1.5G光谱的要求,平均光谱不匹配率低于6%(IEC 60904-9:2020)。输出光谱可调。校准设施采用这些先进工具有望有助于保持使用校准设备的各组报告性能值之间的一致性。朝着负担得起且标准化的定量技术取得进展是促进高效率多接面概念转化为具有商业竞争力的光伏产品的重要基础。可靠的准确测量消除了最终制造规模扩大和部署具有超越传统技术效率潜力的钙钛矿串联结构的障碍。Figure S1.左图:随着钙钛矿/Si串联电池顶部钙钛矿结构的辐照变化,VMPP、IMPP和ISC的变化。右图:二接面电池的示意IV曲线及其组成部分结构,其中顶部结构限制了电流。图S2. 左图:双结钙钛矿/钙钛矿电池的光电流-电压曲线。右图:顶部钙钛矿结构的辐照变化与双结钙钛矿/钙钛矿串联电池的VMPP、IMPP和ISC的关系。
  • 为太阳能行业提供专业的光谱测量方案——海洋光学圆满参加SNEC展
    2013年5月14日至16日,SNEC第七届(2013)国际太阳能产业及光伏工程(上海)展览会暨论坛圆满举办。海洋光学在展会上首次展示了其为太阳能行业提供的专业的光谱测量方案,包括薄膜测量、透反射率测量和太阳能模拟器测量,引起了高度关注。全新的NanoCalc光学膜厚测量系统解决方案,可以对各类型的太阳能系统生产中的薄膜厚度进行测量。便携、灵活、快速的透反射率检测方案,搭配多种采样附件,在镜片、滤光片、薄膜等多个行业都有广泛的应用。计量级光学测量系统RaySphere,用以测量太阳光模拟器和其他辐射源从紫外线到近红外(350-1700nm)的绝对辐射。太阳能作为已知最为清洁且几乎取之不尽用之不竭的新型能源,是未来科技的重点发展方向。海洋光学致力于为太阳能行业提供专业、便捷的光谱测量方案,为其健康发展&ldquo 保驾护航&rdquo 。
  • AFM助力美科学家首次以纳米精度检测太阳能电池
    p  美国家技术标准研究院(NIST)近日发布消息声称,该机构研究人员利用两种新技术,首次以纳米级精度检测了广泛使用的太阳能电池的化学成分及缺陷的变化。新技术检测了用碲化镉半导体材料制造的常见太阳能电池,有望帮助科学家更好地了解太阳能电池的微观结构,并可能提出进一步提高太阳能光电转化效率的方法。/pp  在研究中,NIST科学家利用两种依赖原子力显微镜(AFM)的辅助方法,通过光诱导共振(PTIR)来测量太阳能电池样品从可见光到中红外线的宽波长范围吸收光的数量,从而在纳米级尺度得到太阳能电池的构成及其缺陷。另一项技术,被称为扫描近场光学显微镜(dt-NSOM),通过记录特定位置传输光的数量来捕捉太阳能电池的组成及缺陷的变化,从而形成详细的纳米尺度图像。/pp  实验表明,材料晶体排列的缺陷与其化学构成中的杂质相关,新技术能检测碲化镉样品中所谓的深层次缺陷的空间变化。这些缺陷引起碲化镉与其它半导体中的电子和质子(带正电荷的颗粒)重新组合而不是发电,这是导致太阳能电池无法取得理论成效的关键原因之一。/pp  该研究成果具有广泛适用性,将有助于太阳能电池研究,更好地了解各种光伏材料。该研究成果发表在2017年4月12日的《Nanoscale》杂志上。/p
  • 捷锐为皇明太阳能提供供气系统
    皇明作为世界太阳能产业的领导者,捷锐有幸为其在德州皇明真空管镀膜线补气工程中太阳能集热管镀膜工艺的生产线提供高品质的供气系统,系统性能的稳定性、密封性和安全性为保证其生产品质奠定了坚实的后备保障。  该供气系统包括半自动切换特气汇流排、特气控制终端等产品。该系统产品采用特气系列减压器、安全阀、卡套接头、膜片阀等,所有减压器、阀门及管路均经过耐压和泄漏测试。捷锐所有产品的主体材料及其它关键材料均采用进口材料加工,如316L不锈钢,哈氏合金、特种高弹性镍合金、氟塑料、聚酰亚胺、氟橡胶等高性能金属和非金属材料。公司还配备了先进的材料分析仪和材料性能测试设备,从源头实施材料成份、性能及批号的管制,以保证材料统一性和可追溯性。公司拥有几十台CNC数控加工设备,其中有数台从日本进口的超精密加工中心,先进的加工设备为产品品质的一致性提供了坚实的基础。另外对超纯系列产品其生产流程增加了对流道采用挤压研磨和电化学抛光的工艺,避免毛刺和颗粒对检测过程的干扰。同时,我们在制造过程中,还采用法国进口的氦气检测仪对成品进行检漏测试,全面有效保证产品品质。     关于捷锐  捷锐企业(上海)有限公司成立于1993年,专精研发制造高洁净之集中供气系统及流体控制相关零件、组件、系统设备、焊割器具、仪器仪表等。产品主要应用在半导体、气体、化工、医疗、生物科技、核电、航天、食品等行业。厂区内配备欧美最先进的高科技生产设备,并设置中央实验室、检测室及Class 10/100/1000无尘室。GENTEC拥有美国40余年的市场、研发及制造经验,提供流体系统整体解决方案,遍布全球的行销服务网络,赢得全球用户的信赖。  更多信息,请登录公司网站了解详情:www.gentec.com.cn
  • Nature:突破障碍 - 何祝兵团队在甲胺掺杂的倒钙钛矿太阳能电池中达成25.86%的效率
    Nature:突破障碍 - 何祝兵团队在甲胺掺杂的倒钙钛矿太阳能电池中达成25.86%的效率分子掺杂工艺: 研究人员引入了一种使用二甲基胺基掺杂剂的分子掺杂工艺,该工艺能够创建一个与p-钙钛矿/ITO接触良好且能够完全钝化晶界的结构。这种创新工艺提高了钙钛矿太阳能电池的功率转换效率(PCE),实现了经认证的25.39%的PCE,这是对钙钛矿太阳能电池现有标准的改进。分子挤压技术: 该工艺采用了一种独特的“分子挤压”方法,在甲苯淬灭结晶过程中将分子从前驱体溶液排出到晶界和薄膜底部。这种独特的技术导致了钙钛矿薄膜的p-掺杂,有助于提高器件的效率。长寿命和高效率: 器件在逆向扫描时实现了25.86%的效率,并表现出卓越的稳定性,即使经过1000小时的光老化,仍能保持96.6%的初始效率。这表明钙钛矿太阳能电池在性能和可靠性方面取得了显著的进步。在不断发展的光伏领域中,更有效、可持续地利用太阳能的追求是一项不懈的努力。科学家已经探索了许多途径来提高太阳能电池的效率,其中钙钛矿太阳能电池因其性能潜力和经济制造能力的结合而一直脱颖而出。今天,我们将聚焦于一支南方科技大学何祝兵团队率领杰出的研究团队所取得的重大突破,他们实现了钙钛矿太阳能电池效率的深度提高,这标志着我们共同追求更可持续和能效的未来的重要一步。这项开创性的研究提出了一种与传统方法有着根本不同的新型分子掺杂工艺,使用了一种二甲基氨基基团的掺杂剂。这种掺杂剂巧妙地用于形成和谐的p-钙钛矿/ITO接触,并精确地去除晶界缺陷,推动了钙钛矿太阳能电池功率转换效率(PCE)的大幅提升。研究团队创造出了一个惊人的世界纪录,即25.39%的认证PCE,为该行业设定了新的标准和潜力。为了达到这个非凡的成就,研究人员提出了一种被称为“分子挤压”的巧妙技术。这种创新策略迫使前体溶液中的分子在甲苯淬火晶化过程中重新分布到晶界和薄膜底部。因此,这导致了钙钛矿薄膜的p型掺杂,这是实现设备效率显著提高的关键。这种独特的工艺因此标志着一种基础性的突破,从根本上改变了可再生能源范式。然而,这项研究的胜利不仅仅局限于效率领域。该团队的冠军设备不仅在反向扫描中展示了25.86%的PCE,超越了以往的阈值,而且表现出了卓越的稳定性,在经过1000小时的光老化后仍保持了96.6%的初始效率。这项成就解决了钙钛矿太阳能电池技术中的一个主要挑战——效率和稳定性之间的平衡,并为未来旨在优化这两个重要方面的研究提供了有价值的基础。在这项开创性研究的核心是Enlitech的QE-R精密测量设备的精确利用。这种先进的设备为团队提供了准确的读数,使他们能够仔细评估他们的新方法的结果。选择Enlitech的QE-R设备,这种以精度和可靠性闻名的设备,强调了顶级资源在实现突破性成果中的重要性。此外,研究人员深入探究了p-钙钛矿/ITO界面的复杂能带对齐。通过应用紫外光电子能谱(UPS),他们阐明了促进空穴提取的带弯曲现象,这是实现高性能太阳能电池的关键过程。实验揭示了二甲基氨基基团掺杂剂以及与铅离子形成的分子复合物修改ITO基板的功函数,从而获得了有利于高效空穴提取的能带对齐。除了提高效率和稳定性外,研究团队还解决了钙钛矿太阳能电池中常见的滞后效应挑战。通过采用分子挤压技术和精确的掺杂工程,他们显著降低了滞后效应,从而使设备性能更加可靠和可重复。这一突破为实际应用和商业化钙钛矿太阳能电池提供了巨大的潜力,因为它解决了阻碍其广泛应用的主要障碍之一。此外,研究团队对电荷载流子动力学的详尽研究揭示了他们的钙钛矿太阳能电池性能异常出色的机制。通过各种分析技术,包括电荷密度差和Bader电荷分析,他们揭示了钙钛矿薄膜内电荷的重新分布,这归功于有效的分子掺杂策略。这种重新分布导致了提高空穴提取效率和提高整体设备性能的效果。总之,这项开创性的研究代表了钙钛矿太阳能电池领域的重大进展,实现了25.39%的创纪录效率和卓越的稳定性。分子掺杂工艺结合创新的分子挤压技术为实现对设备性能和稳定性的前所未有的控制铺平了道路。Enlitech的QE-R精密测量设备的利用对于准确评估制造的设备的光电性质起到了至关重要的作用。这一非凡成就将我们更接近实现钙钛矿太阳能电池的全部潜力,推动我们迈向由清洁、可再生能源驱动的未来。分离ITO表面的Pb 4f(a),I 3d (b)和P 2p (c)的XPS光谱来自ITO/DMAcPA/钙钛矿(蓝色)和ITO/钙钛矿(DMAcPA)(红色)样品两种钙钛矿薄膜埋底面XPS图 S26.Pb 4f(a)、I 3d (b)和调查(c)的XPS光谱,在底部检测到原始(红色)和DMAcPA掺杂(蓝色)钙钛矿薄膜的表面,与正文中报导了制造过程。 Pb结合能的红移在钙钛矿的埋藏底面检测到(图。S26a)也可以表示O–Pb与键削弱了主流Pb-I共价键的结合能和这里解释了Pb的红移。 S26b),它可以是归因于P-O-H–I的氢键,这已经得到了很好的讨论和通过上述H NMR信号的下场化学位移进行检查(图3A)。
  • 大昌华嘉将参加SNEC第六届(2012)国际太阳能光伏大会
    大昌华嘉商业(中国)有限公司科技事业部将参加2012年5月16至5月18日在上海举行的SNEC第六届(2012)国际太阳能产业及光伏工程展览会暨论坛,届时大昌华嘉将携带美国麦奇克(Microtrac)公司激光粒度仪S3500亮相本次展会,欢迎新老客户前往DKSH展台参观洽谈。 时间: 2012年5月16日-5月18日 地点: 上海新国际博览中心(浦东新区龙阳路2345号) 展位号:E3228大昌华嘉商业(中国)有限公司(DKSH China)是一家著名的国际贸易集团,总部位于瑞士的苏黎世。公司自1900年以来便与中国进行友好贸易往来,业务范围涉及机器、仪器、消费品、纺织品、化工原料等诸多领域。 大昌华嘉仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们的业务逐年增加,市场不断扩大。华嘉公司在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。 激光粒度分析仪-美国麦奇克(MICROTRAC)公司视频光学接触角测量仪、表面/界面张力仪-德国克吕士(Kruss)公司比表面/孔隙度分析仪&mdash 日本拜尔BEL公司密度计/旋光仪/折光仪/糖度仪-美国鲁道夫(Rudolph)公司全自动氨基酸分析仪-英国Biochrom公司元素分析仪、TOC总有机碳含量分析仪、稳定同位素质谱仪-德国elementar公司薄层扫描仪、点样仪-德国迪赛克(DESAGA)公司水份活度仪-瑞士novasina公司凯氏定氮仪-德国贝尔(behr)公司高压反应釜-瑞士premex公司全自动反应量热仪-瑞士Systag公司LB膜分析系统&mdash 芬兰Kibron公司颗粒图像分析系统&mdash 挪威AnaTec公司堆密度&mdash 英国康普利COPLEY公司粉末流动性分析仪&mdash 英国Freeman公司
  • 弗尔德仪器参加第二届全国太阳能材料与太阳能电池学术研讨会
    太阳能电池材料简述目前,人类的主要能源(石油、煤炭、天然气)的储存量是有限的,为了应对能源危机和环境污染,新能源已是全球关注的焦点,太阳能因其清洁环保尤其备受关注。近几年太阳能电池产业以平均年增长率为30%的速度飞速发展。太阳能电池的种类十分多,按材料分类可分为四类:硅太阳能电池;多元化合物薄膜太阳能电池;有机物太阳能电池;纳米晶太阳能电池,综合考虑材料的价格、对环境的影响及转换效率等因素,以硅为原材料的电池是太阳能电池中最重要的成员。研究和应用最广泛的太阳能电池主要是单晶硅、多晶硅和非晶硅电池。而开发太阳能电池的两个关键问题就是:提高效率和降低成本。为了促进我国在太阳能材料与太阳能电池研究领域的交流和发展,“2018第二届全国太阳能材料与太阳能电池学术研讨会”于2018年6月22-24日在广州召开。本次会议由中国化工学会化工新材料委员会及新能源材料技术创新与协同发展中心主办,暨南大学承办。弗尔德(上海)仪器设备有限公司携旗下研磨筛分品牌德国Retsch(莱驰)、多功能粒度粒形分析仪品牌德国Retsch Technology(莱驰科技)、热处理技术品牌CarboliteGero(卡博莱特盖罗)、元素分析仪品牌德国Eltra(埃尔特),参加了第二届全国太阳能材料与太阳能电池学术研讨会,为太阳能电池材料的应用提供全方位的解决方案。大会主要从学术和产业化视角探讨我国太阳能光伏材料与器件,新型钙钛矿和化合物薄膜半导体材料与器件等方面科研成果与产业应用现状,探索太阳能开发与利用的研究新思路和新方法,推进太阳能研究领域人员之间的交流与合作,进一步提高我国太阳能领域科学研究与技术创新能力。 德国Retsch(莱驰)提供的行星式球磨仪PM系列和高能水冷球磨仪Emax能够实现纳米研磨,满足太阳能电池材料用户最为严苛的研磨粒径需求。此外,德国Retsch(莱驰)的筛分仪种类齐全、筛分方式多样、测量范围广泛、配套使用不同规格的分析筛,可以满足太阳能电池材料行业的粒径分级和测量的需求,筛分结果精确且具有重复性,符合DIN/EN/ISO/ASTM等国际国内标准,是全球唯一一家可提供全系列筛分仪的专业生产厂家。Retsch Technology(莱驰科技)专业从事粒度及粒形分析测试仪器的研发和制造,采用双镜头专利的动态图像分析技术,可精确分析可流动性的颗粒、粉体、胶体、悬浊液、磁性材料等样品的粒度及形态。Camsizer X2设计基于广受欢迎的Camsizer并进一步优化精细样品的测量条件(从0.6μm到8mm),不仅提高了光学解析度,更提供多样的的进样方式适用工业陶瓷行业的应用。德国Eltra(埃尔特)专业从事元素分析仪的制造研发和生产,可为陶瓷样品提供碳/氢/氧/氮/硫五种元素分析的整体解决方案。6月24日,第二届全国太阳能材料与太阳能电池学术研讨会圆满落幕,针对太阳能电池材料应用的具体解决方案与参会的专家学者们进行了深入交流。弗尔德仪器衷心地感谢各位客户的关注和支持!基于客户给予的信任和要求,弗尔德仪器定会不负众望、与日俱新,努力为太阳能电池材料客户提供一份满意的解决方案。除了仪器的展示,弗尔德仪器还在展会上介绍2018年抽奖活动,2018年7-12月,每月产生1个大奖10个幸运奖,大奖奖品价值3000元人民币。奖品有金条、进口空气净化器、高级电饭煲、食品料理机、进口道具组合、美颜相机。现在就关注“弗尔德仪器”官方微信,参加抽奖!
  • 如何祛除太阳能电池组件上的“毒瘤”?
    随着新能源的逐渐普及,太阳能也迅速的走进千家万户,成为了成活中的一部分。太阳能在给生活带来便利和环保的同时,有一个"毒瘤"却一直在残害着太阳能电池或者组件的寿命,令广大用户对它是爱恨交加啊。那么这个"毒瘤"究竟是什么?该如何祛除呢?“毒瘤”的诞生过程这个"毒瘤"叫做太阳能热斑。太阳电池组件由于在制造和实验的过程中,出现隐裂、碎片焊接不良等;或在应用过程中,被其它物体(如鸟粪、树荫等)长时间遮挡时,被遮挡的太阳能电池组件此时将会严重发热,这就是"热斑效应",也就是太阳能上的一颗毒瘤。有光照的电池所产生的部分能量或所有的能量,都可能被"热斑"的电池所消耗。“毒瘤”的破坏力这颗毒瘤会对太阳能电池会造成很严重地破坏作用,会严重的破坏太阳电池组件或系统,所以需要对太阳电池组件进行热斑检测,使相对发热均匀的电池片进行组合或维护,以避免组件所产生的能量被热斑的组件所消耗,同时避免由于热斑可能给太阳能组件或系统的寿命带来的威胁,所以需要用到一款专业的工具来检测这颗"毒瘤",然后将其消灭。如何祛除“毒瘤”红外热像仪拥有超高的灵敏度,能够准确的感应出被测物体表面发生的微笑温度变化,检测出太能能电池片或组件的缺陷,将产品的缺陷位置直观准确的显示在红外热图中,特别是由菲力尔公司生产的FLIR Ex系列红外热像仪,可以实现即瞄即拍,能够快速准确的发现"毒瘤",让其无所遁形,简直可以称之为"毒瘤杀手"。“毒瘤杀手”是如何工作的?想要发现毒瘤,就要让太阳能组件发热,这样热像仪才能发挥效应,所以首先要太阳能电池片或组件在正常的太阳光或辅助光源下工作,或将组件在上述光源的照射下短路,这样热斑才会出现。接下来就是FLIR Ex系列红外热像仪大显身手的时刻,FLIR Ex系列包括FLIR E4、E5、E6和E8共4种热像仪,通过画中画及热叠加技术,检测人员除了可以拍摄红外图像外,还可以同时捕获一幅可见光照片,并将其融合在一起,通过拍摄的红外图像,检测人员可以直观、快捷,方便在同时间和相同的环境下得到同一块组件上不同电池块的温度,第一时间识别和定位故障,找出热斑。不仅如此,在采用FLIR Ex系列红外热像仪检测热斑时,还不需要断电,其采用的非接触测量方式更不会干扰原有的温度场,反应速度更是小于1秒,所以检测人员可以更快更准的检测出热斑,与传统的数据采集器和红外点温仪相比,各方面性能可以说是完胜。所以,在检测太阳能电池片或者组件热斑的时候使用FLIR Ex系列红外热像仪是毋庸置疑的, "毒瘤杀手"可不是白叫的。
  • 北京卓立汉光推出太阳能薄膜电池专用测试系统
    随着地球能源的不断枯竭,太阳能越来越受到人类的重视,太阳能光伏电池的研究也得到了空前的发展,目前的太阳能光伏电池主要以晶体硅电池为主,但随着科学的进步,研究的不断深入,越来越多的高效节能电池被开发使用,其中以薄膜电池为翘楚。薄膜电池以其高效、低耗、大面积电池等特点广泛受到人们的关注。薄膜太阳能电池的形态各异,结构也是多种多样,这对研究薄膜电池带来了不小的麻烦。在制造过程中我们不仅要了解电池的转化效率等直观因素,为了更好的提高工艺制造出更高效的太阳能光伏电池,我们更要深入了解电池的内部光电转化过程及其影响因素。在众多因素当中IV特性曲线和量子效率曲线图无疑是重中之重。图一:IV曲线图图二:量子效率量子效率:是指太阳能电池的电荷载流子数目与照射在太阳能电池表面一定能量的光子数目的比率。研究量子效率对了解电池内部光电转化有着重要意义。早在2009年期间我公司在中科院张建民老师的带领下就研发试制了国内首台一体化自动测试量子效率系统,:SCS100测试系统。产品一经推出就受到了国内外太阳能研究人士的青睐。随着在太阳能电池测试领域经验不断地积累,公司今年上半年又推出了全新一代产品,SCS10-FILM薄膜电池专用测试系统。系统针对薄膜电池的特点,加入了单光源双路可调偏置光,最大输出能够达到一个太阳强度。为了适应薄膜电池的宽光谱,光谱测试范围覆盖了0.3~1.70μm光谱带,并编写了功能强大的测试软件,不仅实现了自动计算量子效率曲线,而且能够计算出电池的短路电流密度,更加方便了评估电池的整体效率。同时系统还实现了漫反射测试和量子效率测试同步测试的功能,更加准确的计算电池的内量子效率。图三:系统整体图先进的光源配置:系统的测试光源由卤素灯和氙灯光源两种灯源构成,这样,补偿卤素灯在紫外区能量不足的问题,又能解决氙灯光源在近红外有很多尖锐波峰的问题,实现了整个测试范围内的光源光谱平滑,有效增加了洗系统的稳定性。图四:普通卤素灯的光谱图图五:普通氙灯的光谱图独特的测试光路设计:大部分的量子效率测试系统都受困于量子效率测试点和反射率测试点不能够实现位置的重复定位,导致两参数测试在不同位置,这对于均与性不是很高的样品或高精度测试的试验中影响很大,本系统通过独特的光纤输出反射聚焦结构实现了反射率和量子效率同时同地测量的方式,有效地解决了上述问题带来的烦恼。通过聚焦反射光路,系统更能够大大降低色差对测试过程中带来的影响。由于太阳能电池的光谱测试范围宽,如果采用传统的投射聚焦方式进行测试,当测试到红外区时,因不同波长折射率不同的缘故聚焦光斑开始扩散,而红外区有是不可见的,因为会对测试带来极大的不确定因素。强大的偏置光配置:为了提高太阳能电池的转化效率,我们可以扩展电池的光谱响应范围以接受更多的太阳能,从而提高转化率,因此多节电池孕育而生。然而测试多结电池要比普通电池复杂得多,我们不仅要考虑多结电池的最小限流问题,还要考虑电池的偏压测试问题,因此测试多结电池我们要配有功能强大的偏置光附件,既能够满足光谱范围的需求,又能够对光强的要求。我们设计的单光源双路可调偏置光正可满足多结电池的测试需求,偏置光不仅实现了两路光能够各自调节光强,同时根据测试电池的不同,可选配不同的滤光片。功能全面高效的软件:软件集量子效率测试、反射率测试、内量子效率测试三测试功能于一体,自动计算画图,强大的图表处理能力,方便用户修改、标记测试曲线。多种格式输出保证了用户处理数据的方便使用。一键式参数文件保存功能不仅方便存贮测试数据还能保留测试参数,方便分析实验。图六:功能强大的图标管理功能特点总结:1、实现内外量子效率同步测试2、双光源测试,契合IEC标准,提高测试准确性3、双路可调偏置光,轻松实现三节电池测试4、功能强大的测试软件
  • 岛津亮相第六届上海国际太阳能光伏展SNEC 2012
    光伏作为可再生能源,是应对气侯变化的最重要举措之一,对于全球人类的可持续发展发挥着巨大影响。近十年来,中国的光伏产业取得巨大发展,为推动全球光伏产业的发展做出重要贡献。2012年5月16日至18日,世界光伏界的专家、学者、业界领袖、企业精英汇聚在中国上海新国际博览中心举办的“ (2012)国际太阳能产业及光伏工程(上海)展览会暨论坛”,就光伏产业未来市场趋势和合作发展战略、政策导向、前沿技术等问题进行了广泛而深入的探讨。 SNEC举办期间,晴空万里,太阳慷慨地向地球倾注着她的巨大热情,助力上海国际太阳能光伏展成功举办。本届SNEC规模宏大,占据了上海新国际博览中心的所有展馆。 博览中心的广场上展示的太阳能小屋,诠释着光伏产业与人类生活的密切关系岛津公司作为光伏产业解决方案的重要提供者精彩亮相本届SNEC 岛津作为一家综合性的分析仪器厂商,不仅能够提供太阳能电池生产所需的镀膜设备,而且能够对整套太阳能电池生产工序提供准确、高效的整体解决方案。检测范围能够涵盖原材料、电池、模块;电池类型不仅包括单晶硅、多晶硅,而且还涉及CIS/CIGS/CdTe薄膜、染料增感有机薄膜等新型产品,协助客户的产品性能监控及新产品研发。本届SNEC上,岛津展台展示了紫外可见分光光度计、傅立叶变换红外光谱仪、材料万能试验机、能量色散型X射线荧光分析装置、涡轮分子泵等用于光伏产业的装置、设备,并以展板方式介绍了岛津装置在光伏产业中诸多方面的大量应用。岛津在本届SNEC上展示的先进技术引起了大批与会者的瞩目。 岛津夏晨先生正在介绍岛津能量色散型X射线荧光分析装置在太阳能电池生产中的应用岛津侯艳红女士正在介绍岛津光谱仪器在在太阳能电池生产中的应用 岛津侯艳红女士介绍了部分岛津光谱仪器在光伏产业中的一些应用。她说,太阳能电池是将光能转换为电能的装置,为提高转换效率,其中之一的方法是使用防反射膜,能够更多地采入太阳光。防反射膜能够抑制太阳能电池表面光的反射,防止光能损失,因此,防反射膜的反射率测定在评价膜性能方面是很有效的。岛津紫外-可见-近红外分光光度计SolidSpec-3700/UV-3600配置可变角绝对反射测定装置附件可进行太阳能电池防反射膜的绝对反射率测定。 EVA膜做为太阳能电池组的密封材料被广泛使用,需要具备长时间的环境耐候性和长期稳定性。可使用FTIR进行UV照射的耐候性试验的分析评价。太阳能电池组中使用的高分子材料件经过加热或光照射,随着时间的推移,其分子构造会发生变化。 FTIR是追踪其变化的有效的测试手段之一,同时可以追踪多个吸收峰的变化。环氧类粘着剂,若混合主剂和硬化剂会反应发生硬化。为了研究此硬化过程中分子构造的变化,对不同加热温度时各官能基的峰面积的时间变化曲线和红外光谱进行测定,分析硬化时间以及硬化状态的差异。 岛津UV-3600 岛津Affinity-1 在本届SNEC上,岛津公司推出了MCXS PHOTO VOLTAIC CVD 装置,新开发的等离子源实现了太阳能电池组件的高转换率和减少工艺环节。MCXS的高密度直接等离子处理,有效地改善了硅片表面的缺陷,与传统的SiN成膜相比,进一步提升了转换效率。MCXS的高密度直接等离子处理,可以以单层SiN膜实现背面(两面)钝化,消减了背面(两面)成膜的工艺环节。 MCXS镀膜后的电池片   本届SNEC圆满落幕,阳光继续灿烂。太阳依旧无私地向大地播撒着无尽的恩惠。 据悉,2011年中国国内光伏需求增长到2.75GW,成为仅次于德国和意大利的全球第三大光伏市场。2012年,中国有可能成为全球最大的光伏市场。继2011年470%的大幅增长后,中国光伏市场新一年的强劲增长已经拉开序幕。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以“为了人类和地球的健康”为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 藉由以GDA和SnO2形成的分子桥接触的材料介面达成高效且稳定的太阳能电池
    █ 重点摘要最近,陕西师范大学向万春团队利用光焱科技公司的测试设备,开发出以甘蓝胺(GDA)埋入SnO2/钙钛矿界面上分子桥优化钙钛矿太阳电池。该研究结合先进的测试设备与材料开发策略,实现了电池转换效率从22.6%提升到24.7%,并显著改善了稳定性。1. 使用分子改性剂甘蓝胺(GDA)在SnO2/钙钛矿的埋底界面上构建分子桥,从而产生优异的界面接触。2. 通过GDA和SnO2之间的强烈相互作用实现的,明显调节能级。此外,GDA可以调节钙钛矿晶体的生长,产生晶粒尺寸增大且无针孔的钙钛矿薄膜,缺陷密度显着降低。3. 经过 GDA 修改的钙钛矿太阳电池表现出开路电压(接近1.2V)和填充因子的显着改善,从而使功率转换效率从 22.6% 提高到 24.7%。此外,GDA 器件在最大功率点和 85°C 热量下的稳定性均优于对照器件。█ 研究背景钙钛矿太阳能电池因具理论上可达25%的高转换效率,受到广泛关注,但钙钛矿材料易受温湿度影响降解,SnO2与钙钛矿界面难以实现有效电荷传输,使实际效率较预期低,制约了商业化进程。如何提升钙钛矿太阳电池转换效率和长期稳定性是当前研究热点。充分发挥精密量测设备的优势,开发高性能钙钛矿材料与界面工程技术,实现电池效率和稳定性的同步提升,是目前的研究方向。█ 研究成果陕西师范大学向万春团队设计开发出甘蓝胺(GDA)分子材料,优化SnO2与钙钛矿界面。X射线衍射分析表明,GDA调控钙钛矿晶粒生长,生成高质量钙钛矿薄膜,增加晶粒尺寸,降低缺陷密度。此外,GDA 可以调节钙钛矿的生长以形成高质量的薄膜,从而减少缺陷和相关的非辐射电荷复合。因此,经过GDA修饰的 PSC 表现出接近1.2 V的令人印象深刻的VOC和 24.70%的效率,高于对照器件的22.60%和离子类似物醋酸胍(GAAc)修饰的PSC的24.22%,同时迟滞现象减少最后,与对照和GAAc修改的器件相比,GDA 修改也大大提高了最大功率点 (MPP)跟踪和85 °C热量下的器件稳定性。该研究成果发表在《Angewandte Chemie International Edition》█ 研究方法采用设备本研究采用光焱科技AM1.5G太阳光模拟器(AAA class solar simulator)以及Si标准参考电池SRC2020(NREL-certified silicon cell ),量子效率量测设备 QE-R。█ 结果与讨论要点1:分子与SnO2和钙钛矿的桥接作用研究团队选择GDA作为钙钛矿界面改性剂的原因有两方面:其一,GDA具有高热稳定性和良好的溶解性,在界面形成和沉积过程中能够提供稳定的支撑。其二,GDA分子含有羧基和GA基团,可以与SnO2和钙钛矿形成强的配位作用,从而在两者之间建立桥梁,改善界面接触,有助于提高载流子传输效率和减少电荷复合。研究团队通过实验和密度泛函理论计算证明了GDA与SnO2之间的化学相互作用,主要源于GDA中的羧基与SnO2表面的欠配位Sn4+结合。傅里叶变换红外光谱(FTIR)测量也支持了这一观点,显示出GDA分子与SnO2层之间的相互作用。要点2:GDA对SnO2层的改性研究团队使用顶视扫描电子显微镜(SEM)和原子力显微镜(AFM)表征了GDA对SnO2层形貌和粗糙度的影响。GDA修饰导致SnO2表面的纳米粒子层变得更加均匀和连续,粗糙度减小,有利于钙钛矿薄膜的均匀成核和结晶,从而提高界面电荷转移效率。通过紫外光电子能谱(UPS)测量,研究团队观察到经过GDA修饰的SnO2能级发生改变,费米能级上升,有利于界面电荷传输。这些结果进一步表明,GDA修饰影响了SnO2的能级结构,从而改善了PSC界面性能。要点3:下界面改性对钙钛矿层的影响研究团队研究了经过GDA改性和未经GDA改性的SnO2层上钙钛矿层的性能。通过SEM和XRD表征,研究团队发现GDA修饰有助于形成更平坦和致密的钙钛矿薄膜,提高了结晶度。这对于减少电荷缺陷和提高电荷传输效率非常重要。要点4:下界面改性对钙钛矿薄膜结晶的影响通过原位XRD测量,研究团队研究了GDA修饰对钙钛矿薄膜结晶过程的影响。结果显示,GDA改性影响了中间相的形成,导致晶格膨胀。此外,研究团队发现GDA修饰还影响了钙钛矿薄膜的晶粒尺寸和结晶动力学,进一步改善了薄膜质量。要点5:器件性能与稳定性研究团队制备了经过GDA修饰和未经GDA修饰的PSC,并评估了它们的性能和稳定性。结果显示,经过GDA修饰的器件在光电转换效率(PCE)和稳定性方面都表现出优势。GDA改性有助于抑制非辐射电荷复合,提高载流子提取效率,并减少界面陷阱密度。这导致了更高的PCE和更好的稳定性。█ 结论该研究运用精密的光伏测试设备,开发出甘蓝胺分子材料修饰SnO2/钙钛矿界面,显著提升了钙钛矿太阳电池的转换效率和长期稳定性。研究证明先进测试设备的应用为材料开发提供了有力支撐,也为实现高效稳定钙钛矿太阳电池的低成本批量生产提出了新的设计思路。期待不同领域的产学研单位通力合作,加快高效钙钛矿太阳电池的实际应用进程。
  • 我国成立风能太阳能仿真检测认证技术实验室
    经国家能源局批准,以北京鉴衡认证中心为依托的“国家能源风能太阳能仿真与检测认证技术重点实验室”日前在北京宣告成立。  中国风能协会秘书长、北京鉴衡认证中心主任秦海岩称,这标志着我国风能太阳能行业拥有了集仿真技术、标准研究、检测认证技术研究和实践于一体的公共技术服务平台,对加快推动我国风能太阳能行业技术进步和国际化进程意义重大。  据了解,该实验室将紧密围绕我国风能太阳能技术领域的重大需求,着力完善风能太阳能标准和检测认证体系,加强相关标准研究、产品检测试验关键技术研究和认证技术研究,重点建设风电半物理仿真中心、风电机组和太阳能测试中心以及风电、光伏发电远程监测中心等。  目前,重点实验室的风电设备检测中心建设已经取得重大进展,位于河北省保定市的风电叶片与轴承检测中心的一期工程已经完工并投入使用。该中心全面建成后,可完成包括叶片原材料、叶片零部件、100米叶片全尺寸结构试验、无损检测、叶片跟踪测试等所有叶片相关试验测试,以及5兆瓦风电轴承和变桨系统的相关试验测试,试验条件达到国际先进水平。
  • Nano-Micro Letters陈棋&陈煜改进空穴传输层的胶凝性能提高鈣鈦礦太阳能电池的性能
    顶尖团队的选择在2023年7月10日出版的《纳米-微米快报》期刊上,北京理工大学材料科学与工程学院的研究人员在陈棋教授和陈煜教授的带领下,发表了一项有关提高钙钛矿太阳能电池稳定性的研究。该研究集中于通过改进空穴传输层的胶凝性能来提高太阳能电池的性能和寿命。这项研究提出了一种新的方法,通过使用对苯二甲酸(TA)修饰spiro-OMeTAD空穴传输层(HTL),形成凝胶状结构,从而提高钙钛矿太阳能电池(PSCs)的性能和稳定性。将TA添加到spiro-OMeTAD中会形成一种黄色透明的凝胶状聚合物网络,称为poly(TA)。HTL的凝胶化有效地提高了所得HTL的紧密性,并防止水分和氧气的渗透。此外,TA能够使钙钛矿缺陷被钝化,并促进从钙钛矿层到HTL的电荷传输。研究团队制备的基于凝胶化HTL的优化PSCs表现出PCE (22.52%)的高的转换效率和良好的器件稳定性。凝胶化的HTL还可以防止LiTFSI盐的聚集,并在潮湿条件下保持高导电性。研究团队开发的凝胶化HTL的PSCs,在25°C下连续照射1000小时后仍保持其初始PCE的85%,在25°C环境空气中连续照射2500小时后保持其初始PCE的92%。凝胶化HTL策略也应用于PTAA,并观察到类似的湿度稳定性改进。这些研究团队获得的发现为改进基于spiro-OMeTAD的HTL以实现高效稳定的PSCs提供了简单且有前景的策略。空穴传输层(HTL)。HTL是一种薄膜,有助于从钙钛矿层中提取正电荷(空穴)到电极。常用的HTL材料是spiro-OMeTAD,它具有良好的空穴迁移率和与钙钛矿材料的兼容性。然而,spiro-OMeTAD也存在一些缺点,如其原始状态下的导电性差和对湿度的敏感性。为了克服这些问题,通常会在spiro-OMeTAD中掺杂锂盐,例如LiTFSI,以提高其导电性并降低其能级。然而,掺杂锂盐也会引入新的问题,如由于LiTFSI的吸湿性导致HTL和钙钛矿层的降解,以及由于Li+离子的迁移导致J-V滞后现象的形成。因此,研究团队一直在探索各种改善HTL性能和稳定性的策略,例如开发新的HTL材料,使用替代掺杂剂,以及优化掺杂方法。在本文中,研究团队将回顾该领域最近的一些进展,并讨论其优点和局限性。材料:本文中的实验采用商业获得并按原样使用的材料,例如碘化铯(CsI,99.9%,Sigma-Aldrich)、碘化铅(PbI2,Xi’an Polymer Light Technology)、氯化甲基铵(MACl,Xi’an Polymer Light Technology)以及用于电荷传输层的材料(SnO2(15 wt%胶体分散液,Alfa)、2,2′,7,7′-四[N,N-二-4-甲氧基苯基]胺基]-9,9′-二苯并螺[5,5′-二(苯并)二噁咯](spiro-OMeTAD,Xi’an Polymer Light Technology)、三氟甲磺酰亚胺锂盐(LiTFSI,99.95%,Sigma-Aldrich)、硫辛酸(TA,99%,Sigma-Aldrich))。使用的溶剂包括氯苯(CB,Sigma-Aldrich,99.9%)、N,N-二甲基甲酰胺(DMF,99.99%,Sigma-Aldrich)、二甲基亚砜(DMSO,99.5%,Sigma-Aldrich)、异丙醇(99.99%,Sigma-Aldrich)、乙腈(ACN,99.95%,Sigma-Aldrich)和tBP(99.9%,Sigma-Aldrich)。此外,氟甲酸铵(FAI,Dyesol)在购买后进行了进一步纯化。器件制备:研究团队将ITO基底用超纯水、丙酮和乙醇在超声系统中清洗30分钟。然后,用N2气干燥并经过UV-O3处理30分钟,以提高其润湿性。在基底上以4000 rpm的速度旋涂一层致密的SnO2层,并在150°C下热处理30分钟。在沉积钙钛矿薄膜之前,基底暴露于紫外光10分钟。对于PbI2前体,研究团队将PbI2和CsI溶解在DMF:DMSO的混合溶剂中,并在70°C下搅拌5小时。有机阳离子前体通过将FAI和MACl溶解在异丙醇中制备。两个溶液均经过0.22 μm的PTFE过滤器过滤。采用两步法制备钙钛矿薄膜:首先旋涂PbI2前体,然后是有机阳离子前体。在150°C下热处理10分钟后,旋涂空穴传输层(HTL)在钙钛矿薄膜上。使用了两种类型的HTL前体。对于参考HTL,使用了CB中的spiro-OMeTAD、TBP和LiTFSI的溶液。对于目标HTL,将TA加入到参考HTL溶液中。经过过夜氧化后,沉积了100 nm厚的Au膜作为背接触。使用金属阴影掩模定义了器件面积为0.0805 cm2。表征:研究团队使用Anton Paar仪器(Physica MCR 301,德国)进行了poly(TA)的流变学测量,采用平行板几何形状。应变扫描测量在25°C下进行,角应变范围为0.1至2500%,频率为0.5 Hz。温度扫描测量在25至100°C之间进行,应变为1%,频率为0.5 Hz。傅里叶变换红外光谱(FTIR)采用Magna-IR 750(Nicolet,美国)进行。采用Bruker AVANCE III 300 MHz NMR Spectrometer获得1H NMR光谱。使用Al Kα辐射采集了XPS数据的Axis Ultra XPS光谱仪(Kratos,英国)。使用Hitachi Regulus 8230进行了SEM成像。使用带有PRUM-TNIR-D-10探头的Bruker Dimension Icon IR进行了纳米FTIR实验。ToF–SIMS测量采用PHI NanoTOF II仪器(ULVAC-PHI,Inc.)与30 keV Bi+脉冲主离子束。使用UV–vis漫反射光谱仪(UV–vis DRS,日本Hitachi UH4150)获取了UV–vis吸收光谱。使用具有470 nm脉冲激光和基于galvo的扫描仪的激光扫描共焦显微镜(Enlitech,SPCM-1000)用于2D PL映射。使用带有Cu Kα辐射的Bruker D8 Advanced获得XRD数据。使用FLS1000(Edinburgh Instruments Ltd)和450 W的Xe灯进行了稳态PL和TRPL测量。使用源表(Keithley 2400)和AM1.5G光照从1000 W m-2太阳模拟器(SS-F5-3A,Enlitech)评估了PSC的光伏性能。J-V扫描以50 mV s-1的扫描速度在正向和反向方向进行。使用Enli Technology(中国台湾)EQE测量系统记录EQE曲线。校准的硅二极管用作EQE测量的参考。结果和讨论空穴传输层(HTL)的凝胶化TA是一种天然存在的小分子,具有疏水的1,2-二硫代璘和烷基链基团,以及亲水的羧酸基团。TA的结构包括动态共价二硫化键和非共价氢键,使其成为形成稳健连续网络的潜在交联剂。当TA溶解在氯苯中,并加入LiTFSI,它会发生凝胶化,形成一种黄色透明的凝胶状聚合物网络,称为poly(TA)。研究团队进行了流变学测量,研究了凝胶化行为。应变扫描测试显示,在约340%的振荡应变幅值处,凝胶向溶胶转变。在这个临界应变以下,凝胶网络保持稳定,但在存储模量(G’)和损耗模量(G")交叉点附近的340%处发生失效。通过流变分析观察到,凝胶在50°C以上发生可逆的固态到液态转变。这种超分子聚合物在温度升高或被水稀释时会转变为黏稠的聚合物溶液。通过增加单体溶液的浓度或加入Fe3+,Pb2+,Zn2+和Ca2+等金属离子,可以提高凝胶的转变温度。FTIR分析证实了TA与LiTFSI之间的强相互作用,导致交联结构的形成。TA的添加促进了空穴传输层(HTL)前体溶液中凝胶的形成。如甲酸或乙醇等溶剂可以溶解凝胶,使研究团队能够在钙钛矿上制备HTL薄膜。与参考HTL相比,带有TA的凝胶HTL表现出了改善的薄膜形貌。SEM和AFM分析显示凝胶HTL薄膜具有均匀且致密的表面,表明TA在提高薄膜质量方面起到了作用。AFM-IR确认了凝胶HTL薄膜中TA的空间分布。a TA 交联聚合的示意图。 b TA聚合的图片。 c 应变扫描时聚 (TA) 凝胶的储能模量 (G’) 和损耗模量 (G")。 d TA(红色)、LiTFSI 和 TA 混合物(蓝色)、LiTFSI(黄色)的 FTIR 光谱。 e spiro-OMeTAD 和掺杂 TA 薄膜的 spiro-OMeTAD 的扫描电子显微镜 (SEM) 图像。 f 目标薄膜的 AFM 图像和 g 相应的纳米 FTIR 图像。红外频率为 1693 cm–1 的纳米 FTIR(与 TA 的 C&thinsp =&thinsp O 伸缩吸收共振)提高湿度稳定性研究团队使用ToF-SIMS映射评估了凝胶HTL薄膜中添加TA的成分分布。观察到在高湿度条件下,参考薄膜表面明显出现LiTFSI的聚集,而带有凝胶HTL的目标薄膜显示出减轻的LiTFSI聚集。这表明在高湿度条件下,凝胶HTL更加坚固。发现TA与LiTFSI之间的相互作用能够延缓Li的聚集。AFM-IR和深度剖面ToF-SIMS测量进一步证实了凝胶化在防止LiTFSI聚集和迁移方面的有效性。还研究了凝胶HTL策略对钙钛矿薄膜湿度稳定性的影响。将覆有HTL的钙钛矿薄膜在湿润空气中老化,并监测UV-vis吸收光谱。参考薄膜在暴露于湿润空气后显示出吸光度的急剧下降,而目标薄膜显示出微不足道的变化。XRD测量证实参考薄膜分解为PbI2和光不活性的δ相,而目标薄膜显示出延缓的α向δ相转变。经过老化的薄膜的PL映射显示,与参考薄膜相比,目标薄膜具有更窄的波长范围,表明其稳定性更好。凝胶HTL策略也适用于PTAA,观察到了类似的湿度稳定性改进。接触角测量表明,与参考薄膜相比,凝胶HTL薄膜的吸湿性降低。这些发现表明,使用凝胶HTL覆盖的钙钛矿薄膜的湿度稳定性得到了显著改善。a 参考膜和 b 目标膜在 25°C、85-90% 的高相对湿度下老化 200 小时之前和之后的 Li+ 的 2D ToF-SIMS 元素图。 c 参考钙钛矿薄膜和目标钙钛矿薄膜在 700–850 nm 处随时间变化的紫外可见吸收光谱。 d 参考膜和目标膜在 750 nm 处的归一化吸收。参考文献的 e PL 峰位置图和统计图。 f 目标薄膜在 25°C、85–90% 的高相对湿度下老化 500 小时之前和之后设备性能和稳定性的提高:研究团队研究了凝胶空穴传输层(HTL)对器件的光电性能和稳定性的影响。使用ITO/SnO2/钙钛矿/ spiro-OMeTAD(TA)/Au的n-i-p型平面太阳能电池结构来评估光伏性能。使用研究团队开发的凝胶HTL的目标器件显示出较高的平均光电转换效率(PCE),为20.22%,而参考器件为18.11%。它们还显示出改善的重复性和HTL薄膜的致密性。最佳目标器件的PCE达到22.52%,其VOC、JSC和FF的值较参考器件更高。研究团队开发的目标器件的稳定性显著提高,在暴露于环境大气条件(RH约30-60%)下2500小时后,保留了92%的初始PCE。相比之下,参考器件在1000小时后只保留了60%。未封装的目标器件在高湿度(85-90%)下也显示出良好的稳定性,在1000小时后保留了85%,而参考器件在530小时后只保留了75%。此外,目标器件在持续LED照明1000小时后保持了超过85%的初始PCE,而参考器件仅保持约40%。这些结果证实了凝胶HTL策略显著改善了太阳能电池的长期稳定性。a PSC 的结构以及钙钛矿和凝胶 HTL 之间的界面。 b 参考设备和目标设备的 PCE 统计分布。孔径面积为 0.0805&thinsp cm2 的最佳性能目标器件的 c J-V 曲线。 d 参考器件和目标器件的 EQE 曲线及其综合 JSC 曲线。 e 最大功率点附近偏置电压 (1.00 V) 对应的稳定功率输出数据。在 MPP 条件下 f ≈30–50% RH、g 85–90% RH 和 h 连续照明下参考器件和目标器件的归一化 PCE 演变提高光伏性能:为了理解凝胶空穴传输层(HTL)器件中增强的效率和稳定性的原因,研究团队研究了spiro-OMeTAD和凝胶HTL薄膜的电导率。与纯净的spiro-OMeTAD相比,凝胶HTL中TA的存在显著提高了电导率。这种增强归因于TA中S原子的强电负性,促进了spiro-OMeTAD的氧化。稳态光致发光(PL)和时间分辨光致发光(TRPL)光谱表明,凝胶HTL促进了光生空穴在钙钛矿/spiro-OMeTAD界面的传输和提取。光电压与光伏性能改善的关系与PL和TRPL测量结果一致。综上所述,研究团队通过改进空穴传输层(HTL)的胶凝性能,提高了钙钛矿太阳能电池(PSCs)的性能和稳定性。他们使用对苯二甲酸(TA)修饰的spiro-OMeTAD HTL形成了凝胶状结构,防止了水分和氧气的渗透,并促进了电荷传输。研究团队开发的凝胶HTL策略显著提高了钙钛矿太阳能电池的转换效率和稳定性,为实现高效稳定的太阳能电池提供了有前景的策略。a ITO/spiro-OMeTAD/Au 和掺杂 TA/Au 电阻器件的 ITO/spiro-OMeTAD 的 I-V 曲线。 b 使用 HTL 的参考钙钛矿薄膜和目标钙钛矿薄膜的 PL 曲线。 c 使用 HTL 的参考钙钛矿薄膜和目标钙钛矿薄膜的 TRPL 衰减曲线。请注意,具有 HTL 的样品的 TRPL 和 PL 是在短路时测量的。钙钛矿和钙钛矿/TA 薄膜的 Pb 4f 的 d XPS 谱。 TA 和含 PbI2 粉末的 TA 的 e FTIR 光谱。 f 使用 HTL 的参考钙钛矿薄膜和目标钙钛矿薄膜的 TRPL 衰减曲线。请注意,具有 HTL 的样品的 TRPL 是在开路条件下测量的
  • 天普太阳能组建太阳能技术检测中心
    3月9号,罗振涛、霍志臣、何涛、张晓黎等太阳能行业领导和专家到天普公司考察调研。罗主任、霍秘书长与程翠英总经理和太阳能资深专家罗赞继研究员、于学德高工亲切交谈,探讨天普研究院的发展大计。     行业专家们指出,天普是太阳能行业的骨干企业。起步早,创新成果丰富。研究院要本着有所为有所不为的态度,找准定位,明确目标,建立广泛利用社会资源,走集约科研的路子。程总介绍说,在太阳能行业天普首倡太阳能系统安全性,只有从消费者利益出发,建立起完整的质保体系,才能建立起太阳能在消费者心中的信任度,从而提升和带动整个行业的高标准。     技术检测中心主要任务是:为太阳能系统安全性保驾护航。积极开展太阳能等可再生能源技术研究和产品开发,开展太阳能热利用及高效节能产品的相关技术测试和产品检测服务,面向北京地区和国内外开展可再生能源领域的学术交流与合作,为太阳能热利用企业提供技术交流平台。  测试中心的成立,还为天普的太阳能产业技术和管理人才提供了一个交流平台,将成为中国太阳能产业的人才培养基地 同时该中心作为太阳能产业的公共研发平台,也将成为技术创新和技术推广的平台,有利于推动中国太阳能行业的快速壮大。
  • 尚德实验室获北京鉴衡认证中心太阳能光伏产品金太阳认证认可
    2010年6月7日电 尚德电力控股有限公司今天宣布, 尚德光伏产品检验实验室近日参加并通过北京鉴衡认证中心授权的总共27个测试项目,涵盖 IEC61215:2005全部18个测试项目、IEC 61730-2:2004 9个测试项目(除燃烧实验外的全部组件测试项目),由此而获得北京鉴衡认证中心太阳能光伏产品金太阳认证认可。北京鉴衡认证中心万琳副主任说:“尚德公司是国际领先的光伏龙头企业,产品在国内外有着广泛的应用和良好的声誉。鉴衡认证中心是中国光伏产品认证的权威机构和倡导者,通过认可企业的实验室,可以极大地帮助企业缩短认证周期,节省认证费用 同时也将促进双方在产品质量保证、检测技术交流、实验室管理等领域的广泛合作,达到共同促进光伏产业健康可持续发展的目的。”  尚德公司副总裁张光春先生表示:“我们非常高兴能成为鉴衡认证中心认可工厂实验室,鉴衡认证中心是国内光伏产品认证和检测的领跑者,此次合作,有助于促进我们实验室的不断进步,同时也缩短了产品的认证周期。一直以来,尚德始终把产品质量放在首位,对实验室的建设非常重视,投入也很大,并在今年2月获得了中国合格评定国家认可委员会(CNAS)的国家实验室认可,成为国内得到认可项目最多、最全的企业光伏实验室,这标志着尚德光伏产品检验实验室具备了世界一流的管理水平和检测技术能力,确保了实验数据的准确性、可靠性和公正性。我们将不断加强和扩大与鉴衡认证及其他一些著名的国际认证机构合作,确保把具备世界一流品质的产品交给我们每一个客户。”  尚德光伏产品检验实验室致力于开展与国内外知名测试认证机构的合作,在2009年06月,获得了 UL 授予的中国光伏行业第一个 WTDP(Witness test Data Program)证书 在2009年12月,获得 VDE 授予的 TDAP(Test Data Acceptance Program)证书,成为亚洲首个获得 VDE 认可的目击光伏测试实验室,并在2010年2月荣获中国合格评定国家认可委员会(CNAS)国家实验室认可证书。此次获得北京鉴衡认证中心太阳能光伏产品金太阳认证认可工厂实验室,意味着尚德生产的新型号组件产品在国内外市场的认证周期将会大幅度的缩减,这有助于尚德的组件更快的投放市场,并在竞争中获得先机。  关于鉴衡认证中心  鉴衡认证中心(China General Certification Center)是由中国家认证认可监督管理委员会(CNCA)2003年批准成立,由中国计量科学研究院组建,致力于可再生能源产品认证、检测等技术服务的专业机构,是我国第一家开展太阳能光伏、光热产品认证的机构,是目前我国光伏行业制订认证技术规范最多、技术能力最强、认证范围覆盖领域最广的专业可再生能源认证机构,也是唯一合法拥有“金太阳”认证标志知识产权的认证机构。  关于尚德电力控股有限公司  尚德电力控股有限公司是全球领先的太阳能光伏企业,公司专业从事晶体硅太阳能电池、组件,硅薄膜太阳能电池、光伏发电系统和光伏建筑一体化(BIPV)产品的研发、制造与销售。2009年,尚德电力实现晶体硅太阳能电池、组件产能达1100兆瓦,全年组件出货量达704兆瓦,是全球最大的晶体硅太阳能电池、组件生产商。其自主设计、研发、生产和销售高质、高产、价优、环保的太阳能产品,被广泛应用于住宅、商用建筑、工业和公共设施等领域。尚德电力在全球设有三大区域总部,分别位于中国、瑞士和旧金山,在中国拥有无锡、上海、洛阳、青海四大生产基地。尚德电力积极致力于改善人类的生活环境,并通过研发先进的太阳能解决方案实现可持续性发展。  尚德光伏产品检验实验室是尚德公司下设的专业从事太阳能光伏组件检测的独立测试机构,严格按照 ISO/IEC17025:2005《检测和校准实验室能力的通用要求》(CNAS-CL01《检测和校准实验室能力认可准则》)的要求,逐步建立了完善的质量管理体系,规范管理和运作。经过不断努力,已经成长为世界一流,国内最大,技术顶尖的光伏组件检测实验室。实验室分室内和室外两部分,室内面积1800平方米,室外面积7000平方米,下设性能检测室、安全检测室和环境检测室三个专业检测室,引进国内外先进仪器设备30余台,拥有包括脉冲及稳态太阳模拟器、多台步入式环境实验箱、机械载荷、冰雹测试机,EL(电致发光)及高精度红外相机等尖端检测设备,能够检测和评估光伏组件质量和性能方面的所有指标。同时拥有一批高素质的、富有经验和专业知识背景的技朮团队。
  • 普达特科技首批太阳能电池设备预期于Q4交付
    近日,普达特科技披露称,公司将向客户制造及供应14套太阳能电池设备。其中,9套太阳能电池制绒设备预期于今年第四季交付。今年7月,公司完成更名,正式进入面向半导体及太阳能设备制造领域的全面转型期。紧接着8月份,公司宣布完成对两家太阳能设备公司的收购,向泛半导体设备制造商转型再进阶。太阳能设备在中国的市场前景更值得期待,据测算,2023年全球太阳能组件市场规模将达到781亿美元,对应到普达特科技关注的太阳能电池设备市场,则有高达56亿美元的市场规模。其中,中国更是占到全球太阳能设备市场比重的超过95%。在“碳中和”背景下,近年来中国出台了一系列政策鼓励和支持太阳能发电,太阳能电池作为产业链的重要组成部分,成为资本聚焦的核心。普达特科技的设备业务目前有两大板块:半导体设备以及太阳能设备。其中,半导体业务依靠公司强大的自研团队及外延式并购双轮驱动,主要涉及单片机清洗设备以及薄膜沉积工艺的CVD设备。太阳能业务是通过收购德国RENA公司中国区太阳能业务而来,主要涉及湿法清洗制绒设备以及铜电镀设备。目前,公司在徐州的一期生产基地共三层,总建筑面积可达三万平米,目前太阳能设备装配面积4,200平米,半导体设备制造面积1,000平米,及仓储物流面积2,000平米。目前生产基地的年产能约为太阳能设备300台,半导体设备100台,未来3-5年的规划为太阳能1000台,半导体500台。为配合累计订单及多种设备的产能需求,后续扩增生产基地亦是题中之意。今年6月份,公司出货了首台太阳能湿法设备,目前,公司正在组装若干台太阳能湿法设备以及半导体清洗设备。
  • 浙江太阳能产品质检中心成立
    2009年12月17日,浙江省太阳能产品质量检验中心成立大会在浙江省海宁市袁花镇太阳能工业园隆重举办。浙江省质监局领导,嘉兴市质监局领导,海宁市政府领导,海宁市质监局、科技局、经贸局、发改局、财政局、人事局,袁花镇党委政府领导,国家中心、太阳能行业协会领导,全省太阳能企业受邀代表,及相关部门领导和新闻媒体等120人共同参与本次活动,庆祝中心的成立。  活动上午,由几个政府及质监局领导发言,共同祝贺中心的成立,并希望质检中心为浙江太阳能行业做出更大的贡献,最后海宁市政府领导和质监局领导共同为浙江太阳能产品质量检验中心举行了揭牌仪式。  活动下午,在中心继续举办了“潮韵科技讲坛-太阳能热利用发展趋势”论坛,海宁市质监局稽查大队长江平先生在海宁市太阳能企业在太阳能产品标示、标注及质量情况方面作了主题发言,叮嘱企业严把质量观念,遵守国家标准,实现稳步快速发展。国家太阳能热水器质量监督检验中心(北京)代表张昕宇先生对今年太阳能热水器产品的质量检测情况也作了详细的阐述,随后国家太阳能热水器质量监督检验中心(昆明)高文峰先生作了主题为“南方太阳能热利用情况及发展”的讲座,帮助企业拓展云南、广东等南方市场,市场上容易遇到的问题,和当地的太阳能利用情况,受到与会代表的一致肯定和感谢。  太阳能产业是浙江海宁的新兴产业,经过十多年的发展形成了初具规模的太阳能产品及完整产业链集群。2008年统计太阳能热水器已销售500万平方米,占全国20%。但生产企业整体规模不大,产品质量参差不齐,而绝大部分又没有自检设备,产业升级遭遇瓶颈。  浙江省太阳能产品质量检验中心的成立,可以为数以千计的企业提供一个检测设备齐全、检验能力强大的公共服务平台。在光热方面,中心的检测设备和检测参数几乎覆盖了产业链的每种产品,从家用太阳能热水系统技术条件的综合测试,到全玻璃真空管的膜层太阳能吸收率与半球反射比的分光光度检测 从密封圈、金属板材元素分析和抗腐蚀性的理化试验,到玻璃毛坯管检测,检测中心二期已规划建设光电产品的检验项目。  浙江省太阳能产品质量检验中心必将为太阳能产业的健康、有序、发展起到保驾护航的重大作用,而置身于这一产业集群的中心区域更可为企业提供快捷、方便、高水平的贴心服务。  相关链接:浙江省太阳能产品质量检验中心简介和服务  浙江省太阳能产品质量检验中心,隶属于海宁市产品质量监督检验所,于2008年3月启动筹建,经过一年的紧张筹建在2009年12月正式成立。该省级太阳能产品质量检验中心总投资1365万元,其中仪器设备资产500万元 建筑面积4033平方米,其中办公面积1000平方米,实验室面积2000多平方米,装备有700平方米的的太阳能热性能检测平台、90平方米恒温恒湿实验室和6平方米步入式超低温实验室。  目前中心已通过省级计量认证和审查认可,具备家用太阳能热水系统、全玻璃真空太阳能集热管、太阳能集热器及硅胶圈、蒸散型钡吸收剂、不锈钢、支架等太阳能产品原辅材料的31各项目检验能力 检验中心的员工本科以上学历工作人员占90%,其中硕士及以上学历职工达20%。通过不断的努力,目前质检中心已成为集技术检测、科研开发和技术咨询服务为一体的专业省级质检中心。中心举杯同时开展16台套家家用太阳能热水器、2台套集热器,10批次真空管的检测能力,中心的检测能力、检测规模达到了国内先进水平。中心的建立也必将成为推动浙江省太阳能产业发展、提升太阳能产品质量和培育太阳能专业技术人才的基地,成为省太阳能行业提供技术交流、共同发展的平台。
  • 大规模设备更新:中等职业学校太阳能与沼气技术利用专业仪器设备装备规范
    2024年,科学仪器行业迎来大规模设备更新的“泼天富贵”。  3月13日,国务院印发《推动大规模设备更新和消费品以旧换新行动方案》,明确到2027年,工业、农业、教育、医疗等领域设备投资规模较2023年增长25%以上。  5月25日,国家发改委、教育部联合印发《教育领域重大设备更新实施方案》。支持职业院校(含技工院校)更新符合专业教学要求及行业标准,或职业院校专业实训教学条件建设标准(职业学校专业仪器设备装备规范)的专业实训教学设备。  以下为仪器信息网整理中等职业学校太阳能与沼气技术利用专业(太阳能技术利用专业方向)仪器设备装备规范:表 2 基础实验仪器设备装备要求实 训 教 学 场 所实训教学 目标仪 器 设 备序 号名 称规格、主要参数或主要要求单 位配备数量执行标 准代号备注合 格示 范电 工 电 子 实 验 室1.掌握电 工、电子电 路的基本 原理;2.掌握万 用表等常 用仪器、仪 表的使用 方法及基 本电量参 数的测量 方法;3. 学 会 常 用电子元 器件的识 别和测量。1通用电 工、电 子综合 实验装 置1.具有电工、电子学基本定理的验证功能;2.具有常用电工、电子仪表的使用及基本电参数的测 量功能;3.具备完成 R、L、C 等电路元件的特性分析及电路 实验的功能;4.具备完成与教学要求相关的单相、三相交流电路 应用实验的功能;5.具有基本放大器电路、稳压电源电路实验功能; 6.具有基本逻辑门电路的逻辑功能;7.具有常用电子元器件识别及测量的实验功能; 8.具有漏电保护功能。台1020GB 21746、GB 217482万用 表1.直流电压:(0~25)V;20000Ω/V;(0~500)V; 5000Ω/V; ±2.5%;2.交流电压:(0~500)V;5000Ω/V; ±5.0%;3.电阻:量程:0~4kΩ~40kΩ~400k Ω~4M Ω~ 40MΩ 25Ω中心; ±2.5%。只10203双踪示波器1.频宽: 20MHz;2.偏转因数:5 mV/div~20 V/div; 3.上升时间: ≤17 ns;4.垂直工作方式:CH1、CH2、ALT、CHOP、ADD; 5.扫描时间因数:0.5s/div~0.2 μs/div ;6.触发方式: 自动、常态、TV-H、TV-V。台5104数字 式交 流毫 伏表1.测量范围:0.2mV~600V; 2.频率范围:10Hz~600kHz; 3.电压测试不确定度:±1%; 4.输入阻抗:1MΩ 5.显示位数:3-1/2 以上。只5105信号发 生器1.频率范围:0.1Hz~1MHz;2.输出波形:正弦波、方波、三角波、脉冲波; 3.输出信号类型:单频、调频、调幅、扫频;4.外测频灵敏度:100mV;5.外测频范围:1Hz~10MHz; 6.输出阻抗:600Ω 7.输出电压:≥20Vp-p(1MΩ),≥10Vp-p(50Ω); 8.数字显示、TL/CMOS 输出;9.输出端口具有短路保护。台520表 3 专业实验仪器设备装备要求实 训 教 学 场 所实训教学 目标仪 器 设 备配备要求序 号名 称规格、主要参数或主要要求单 位配备数量执行标 准代号备注合格示 范光 伏 原 理 及 应 用 实 验 室1.能通过 实验装置 了解光伏 技术的基 本原理;和 光伏发电 系统各个 组成单元 的作用;2.学会测 量发电输 出电压、发 电 输 出 电 流及湿度、 照度、温度 等物理量 的方法,并 理解相关 物理量的 含义;3.能对离 网光伏发 电系统装 置进行装 配和线路 连接;。4.能了解 各组成单 元的作用。1离网光 伏发电 教学装 置应包括实训工作台、监测仪表单元、交直流稳压 单元、充放电控制单元、可调负载单元、模拟光 源单元、光伏组件单元、离网逆变单元、电池组 单元等部件构成。各单元应达到如下主要要求: 1.光伏组件单元:开路电压 15V;输出功率:≥ 20W;2.交直流稳压单元:输入电压 220V;输出交直流 电压 0~18V 可调、,输出电流:≥1A;3.监测仪表单元:直流数字电压表:0~20V,精 度 0.5 级: ±(0.5%+3);直流数字电流表:0~ 10A,精度: ±(0.5%+3);精度 0.5 级;交流数 字电压表:0~500V,精度 0.5 级;交流数字电 流表:0~5A,精度 0.5 级;监测仪表应具备温 度、湿度、照度等参量的计量测量功能;4.可实现恒流、恒压和涓流模式下的充电,充放 电时间及充放电过程可控,具有防过充、防过放、 过载保护、短路保护、防反接等功能;5.模拟光源单元:能模拟 AM1.5 光谱;光源亮度 具备无级调节功能;具备光源到光伏组件距离可 调和可计测量功能;6.离网逆变单元:额定输出功率≥20W;逆变输 出电压 220V;输出波形:正弦波,失真度≤3%; 具有输出短路、过温、过载、欠压保护功能;7.电池组单元:采用太阳能专用胶体电池,电池 额定电压 12V,电池总容量≥18Ah;8.配备功率大于 50W 的 1 Ω~2K2k Ω 连续可调的 阻性负载;9.配备容性负载、感性负载;10.实训工作台采用整体框架式结构。台10202附件配套电缆、配套连接线等套1020表 3 专业实验仪器设备装备要求(续)实 训 教 学 场 所实训教学 目标仪 器 设 备序 号名 称规格、主要参数或主要要求单 位配备数量执行标 准代号备 注合 格示 范光 伏 材 料 检 测 实 验 室1.能理解IS© VOC 、FF、IMAX 、 VMAX、PMAX、电阻率等 物理量的含 义;2.学会电池 片和硅片常 用参数的测 量;3.能通过测 量,简单分析 和辨别材料 的性能优劣。1游标卡尺3-1/2 位数显把2040GB/T 213892数字多用表3-1/2 位台2040GB/T 139783四探针电阻 率测试仪具备双数字表头显示方式;电压表量程:0mV~199.9mV;电阻率测量范围:1.0³ 10-3 Ω² cm~200³ 103 Ω² cm;可测硅片大小:Φ15mm~Φ200mm。台484EL 缺陷测试 仪应具备测试显裂、隐裂、暗裂、微裂纹、结晶 缺陷、焊接缺陷等功能;有效测试面积:≥1200mm³ 2000mm; 分辨率:≥140 万像素;测试方式采用无接触式;配套专业测试分析软件及计算机系统。台135电池片 I-V 特性分析系 统可精确测量和计算包括 ISC、VOC、FF、IMAX 、 VMAX、 PMAX 在内的各种参数,能生成可打印的测试报 告,并保存测试数据台016电子金相显 微镜目镜倍数:≥10X;物镜倍数: ≥100X; 配套计算机系统;配套图像分析系统台8167P/N 测试仪具备判别半导体硅材料导电类型功能; 具备准确判定电阻率为 0.1Ω² cm 和 0.5 Ω² cm 以下的重掺硅料功能。台128测量用硅片多晶硅片、单晶硅片各 50 片套129测量用电池 片多晶硅电池片、单晶硅电池片各 50 片套1210测量用组件1W~185W 各类型多晶硅组件,共 50 块; 1W~185W 各类型单晶硅组件,共 50 块; 配备一定数量的薄膜组件。套1211存储柜用于存储配套工具及硅片等材料套2040表 4 专业实训仪器设备装备要求实 训 教 学 场 所实训教学 目标仪 器 设 备序 号名称规格、主要参数或主要要求单 位配备数量执行标 准代号备注合格示 范光 伏 组 件 加 工 实 训 室1.学会使 用划片机、 层压机等 常用 的组 件加工设 备;2.学会单 晶硅及多 晶硅 组件 加工各工 序的操作 方法;能按 规范的工 艺要求封 装层压组 件和滴胶 组件。3. 能按规 范完成光 伏应用类 电子产品 的组装与 调试。1焊接台1.配备防静电皮层及吸烟装置; 2.焊台功率: ≥60W;3.焊台控温范围:200℃~480℃ 4.焊台温度稳定度为:±1℃ 5.配备烙铁头:5 种。工位20402激光划 片机激光波长:1064nm;激光输出最大功率:≥50W;划片速度:≥100mm/s;划片精度:≤10 μm;最大划片厚度:≥1.2 mm;工作台幅面:≥350mm³ 350mm;冷却方式采用恒温循环水冷方式; 工作台采用双气仓负压方式吸附。台243半 自 动 层压机有效层压面积:≥350mm³ 550mm;温控方式:采用 PID 智能温度控制;温控精度:≤±1.5℃ 温控范围:室温~180℃ 抽气速率:30L/s~70L/s;层压时间:≤14min(含固化时间);加热方式:采用电加热或油加热。台114组件周 转车可一次性放置 10 套待压 185W 组件,下部安装 万向滚轮台125裁剪台采用铝合金框架,不锈钢滚轴; 板面上镶嵌双边不锈钢刻度尺; 采用钢化玻璃工作台面。台126电池片 周转车采用整体框架结构,工作面贴橡胶皮。辆127敷设检 测台采用铝合金框架,射灯数:≥12 盏,可测量组 件输出电压和输出电流。台12表 4 专业实训仪器设备装备要求(续)实 训 教 学 场 所实训教学 目标仪 器 设 备序 号名 称规格、主要参数或主要要求单 位配备数量执行标 准代号备注合 格示范光 伏 组 件 加 工 实 训 室同上8装框机1.采用组框铆角一体方式;2.最大组框长度:≥2100mm; 3.最大组框宽度:≥1200mm;4.最大铆接力: ≥25kN;5.驱动电机功率: ≥1.5kW。台119焊带裁剪 机全自动控制方式,数显;带打折弯装置和动力放料架.台1110烘干箱1.容积:≥100L;2.最高工作温度:≥80℃ 3.采用无氧化电热管加热; 4.温度控制精度:±1℃ 5.加热时间在 24h 内可调。台1211真空箱1.容积:≥100L;2.真空度:≤0.1MPa;3.抽真空时间:≤5min。台1212滴胶台整体框架结构; 配备滴胶托盘。台2413滴胶机自动定时分档并可调; 滴胶精度: ≥0.5%;最小滴胶量:≤0.01ml。台2414配胶台整体框架结构、工作面贴橡胶皮; 含计量工具。台1115配套工作 台包括:工作台、电池片分选台、组件修边台、 电池串暂放架等组1116万用表3-1/2 位数显台204017配套工具含焊接辅助工具、安装工具等套204018其它单晶硅、多晶硅硅片及电池片生产视频或仿 真软件。套11表 4 专业实训仪器设备装备要求(续)实 训 教 学 场 所实训教学 目标仪 器 设 备序 号名 称规格、主要参数或主要要求单 位配备数量执行标 准代号备注合 格示 范光 伏 发 电 技 术 实 训 室1.能按规 范要求安 装光伏发 电设备, 并能对设 备进行简 单的调试 操作;2.会测量 光伏发电 技术实训 中基本的 物理量;3.会进行 简单的设 备维护和 数 据 分 析。1光伏组件 及支架组件总功率:≥2kW,组件效率:≥15%; 支架采用模块化、可重复拆解式结构;支架倾角可调,采用螺栓固定方式。组8162并网逆变 器1.额定功率:≥2kW;2.输出波形:正弦波,谐波失真:≤3%; 3.隔离方式:变压器方式;4.具备电网故障检测和断电保护(防孤岛) 功能;5.具备最大功率点跟踪(MPPT)功能。只816GB/T 199393光伏直流 汇流箱1.防护等级:≥IP65,满足室外安装的使用 要求;2.配备直流高压防雷器;3.配备耐高压的直流熔断器和断路器两级 安全保护装置,直流耐压值:≥1000V。套8164交流配电 柜含功率表、电压表、电流表、组合开关等套8165配套软件光伏发电监测分析软件及配套系统控制软 件套8166配套工具安装拆解用组合工具套8167配套电缆 和附件与上述序号 1~6 设备配套套8168户外光伏 发电跟踪 演示系统1.采用双轴自动跟踪、倾角调节方式;2.采用PLC 或其它嵌入式系统控制方式; 3.跟踪精度:≤1° 4.发电输出功率:≥2kW。台14
  • 光伏太阳能电池-等离子表面处理和USC干式除尘的关键作用
    光伏电池又称太阳能电池,是一种直接将光能转化为电能的半导体薄片。*光伏电池(图源网络,侵删)其中,基板作为光伏电池的主要组成部分之一,其表面性能和洁净度直接关系到电池的光电转换效率和稳定性。光伏太阳能电池等离子处理、除尘解决方案在光伏电池制程中,等离子表面处理可用于玻璃基板表面活化,阳极表面改性,涂保护膜前处理等,在提高光伏元件表面亲水性、附着力等方面具有显著的优势。*光伏电池结构(图片来源:灼识咨询,侵删)同时,需要解决光伏电池制程中的尘埃污染问题。浮尘颗粒会附着在基材表面,不仅影响光电转换效率,还可能引发电池内部故障。*光伏电池工艺制程(资料来源:灼识咨询、中泰证券,侵删)因此,在光伏电池制程中,需要对光伏元件进行表面活化和除尘处理,增强基板表面附着力和洁净度,提升电池的稳定性。大气等离子应用案例通过等离子表面活化,可以提高玻璃基板表面亲水性,有效优化表面附着力,提升电池的稳定性和品质,从而改善器件的性能。等离子处理玻璃基板*光伏原片玻璃(图片来源:江西赣悦新材料,侵删)USC干式超声波除尘应用案例通过USC干式超声波除尘清洗机清除基板上的浮尘,可以提高光伏电池的性能和稳定性。除尘率可达97-99%光伏电池基板除尘光伏太阳能电池领域应用设备1、 大气等离子清洗机SPA-5800具有强大的数据处理功能,实现设备数字化控制,可对接客户产线,有效减低生产成本。✅ 支持数字通信接口和模拟通信接口✅ 搭载进口ARM芯片,实现功率自匹配✅ 具有十余种故障报警功能,故障率低2、 中频宽幅等离子清洗机适用于各种平面材料的清洗活化,可装配不同长度等离子枪头,可客制化流水线设备。✅ 等离子体均匀✅ 电源设计兼容性充足,输出功率范围大✅ 软件/硬件多重保护,安全可靠3、 在线式干式超声波除尘清洗机集除尘、除静电为一体的在线式除尘设备。配有真空吸附移动平台、内部洁净系统,不会对洁净室造成2次污染。✅ 非接触式除尘,产品无损伤✅ 闭环系统,不造成2次污染✅ 以空气作为除尘媒介物质,无需水、溶剂、干燥等过程4、 接触角测量仪SDC-200S光伏电池制备中对于基板表面的润湿性能具有一定的要求,SDC-200S具有全面、完整、精准的拟合测量法,可用于光伏电池基材表面润湿性能检测。✅ 变焦变倍镜头,成像清晰✅ 自动注液系统✅ 可自动生成报告
  • 钙钛矿太阳能电池距离市场还有多远?|前沿应用
    编辑:高明审核:chen钙钛矿太阳能电池作为第三代新概念太阳能电池代表,近年来备受关注,这得益于其具备的种种优势,譬如:它采用溶剂工艺,可以在常温下制备,生产成本大大下降;柔性好、可大面积印刷,在光伏产业的应用有着为可观的前景;清洁廉价无限制,可为能源供应难题提供有效方案等等。不仅如此,钙钛矿太阳能电池之所以成为代表,一个更加备受瞩目的优势就在于——它的原料多为液态,可以用来制备大面积柔性电池及设备,在未来或许可以应用于可穿戴智能设备上,边走路边发电!这种在电影中才出现的镜头将来会成为日常,想想是不是就觉得很炫酷呢?但要想实现这一场景,还需解决三个难题,这也是钙钛矿太阳能电池尚未实现规模化商业生产的原因。哪三个问题呢?本次“前沿应用”栏目将带大家一探究竟~短寿之憾我们知道,对于电池来说,一个重要衡量指标就是使用寿命。钙钛矿电池实际生产和应用所面临的困难中,一个重要问题就是它的寿命只有短短数月,远远低于硅基太阳能电池,这也是其实现商业化面临的个问题。钙钛矿电池不够稳定,主要是因为钙钛矿电池对水、热、氧环境度敏感,使得电池结构不稳定,易产生不可逆降解。要延长钙钛矿电池的寿命就要提高稳定性,目前主要有两种方法,一种是采用复合型钙钛矿材料,提高其本身的稳定性,另一种就是找到合适的添加剂物质,来抑制钙钛矿材料的分解。目前关于这方面的研究已经紧锣密鼓地展开。就在今年1月份,欧洲薄膜太阳能电池研究联盟Solliance,TNO,imec和埃因霍温科技大学,就报道了一种采用工业工艺(溅射镀膜,狭缝涂布镀膜,原子层沉积和基于激光的互连)制造的封装钙钛矿太阳能电池模组,该模组经受既定的寿命测试,即耐光性测试,耐湿热测试和热循环测试,具有出色的稳定性。相信未来能有更多的方法能够应用于钙钛矿电池的分解问题解决。图片来源:pixabay效率之痛电池的效率是评价电池性能的另一个重要指标,在过去十年,钙钛矿太阳能电池的效率有不少提升。根据《科学》(Science)今年4月发表的一篇报道,钙钛矿太阳能电池的转换效率已经上升到26.7%,非常接近传统晶体硅太阳能电池的效率。但事实上,钙钛矿太阳能电池的转换效率依然有很大提升空间,这是因为转化过程中,通电的载流子会因为缺陷问题被卡住,从而降低电池效率。那么,什么是载流子寿命呢?它为何成为影响太阳能电池效率的重要指标呢?据HORIBA资深工程师Ben Yang博士介绍,钙钛矿太阳能电池产生的电能来源于电荷的分离、迁移和重组,其中电荷可以扩散多远、游离多久——即载流子寿命,很大程度上就决定了太阳能电池的效率。载流子寿命越长,电池的效率也越高。图片来源:pixabay既然载流子寿命如此重要,那如何提升载流子寿命呢?精确测量是步,通过不断测量找到效率低下的关键问题,进而改进。“荧光寿命测量是一种常用于表征载流子寿命的技术,通过测量电荷重组率,进而标定电池的效率。HORIBA为测量荧光寿命研发了相应的产品。” Ben Yang博士如是说道。DeltaFlex和DeltaPro荧光光谱仪是专门的测量荧光寿命的分析仪器,它们可以监测光收集过程的效率,通过仪器搭配的TCSPC系统,研究人员可以测量重组率。另外,使用HORIBA QuantaMaster™ 、Fluorolog和FluoroMax荧光光谱仪,并联合HORIBA-IBH 荧光寿命组件,还可以完成测试钙钛矿材料对不同光吸收的效率。tips:如果您想了解更多荧光光谱仪的解决方案,点击阅读原文提交需求,我们的工程师会尽快联系您~您也可以进入HORIBA微信公众号的图书馆栏目,查看下载更多解决方案。值得庆幸的是,同样是今年4月,《自然》(Nature)杂志发表了一篇论文,介绍了剑桥大学等机构合作成果——钙钛矿材料中影响载流子寿命的“缺陷”根源。相信通过精准的测量和缺陷根源的追溯,载流子的寿命将会一步步提升,钙钛矿电池的效率也会进一步改善图片来源:pixabay量产之难实现商业化后一个攻关的技术点,便是“量产”。要实现大规模生产,就必须将钙钛矿从实验室搬到工厂,这是其终走向市场的关键。然而目前几乎所有高效率的钙钛矿太阳能电池都是用旋涂法制备的,即将钙钛矿材料一般旋涂于金属氧化物骨架上进行制备。然而旋涂法难以沉积大面积、连续的液膜,在实验室中制备,尺寸只有几厘米大小,因此无法满足工业化的高吞吐量与规模化制备的要求。这就成为钙钛矿太阳能电池量产的一个难题。近年来,也出现了一些其他适用于规模化生产的制备方法,像是:刮刀涂布法、电沉积等等,尤其是刮刀涂布法,它的基底温度可控,因此在规模化制备高质量、大晶粒钙钛矿薄膜方法中脱颖而出。更值得欣慰的是由刮刀涂布法制备的钙钛矿太阳电池,效率也能达到20%,十分接近旋涂法制备的器件。未来通过不断地研究,相信它地效率能更进一步。图片来源:pixabay从上文可以看出,尽管短寿之憾、效率之痛、量产之难,这三点是制约钙钛矿太阳能电池快速走向市场的三个问题,但我们仍然对钙钛矿太阳能电池的发展前景抱有大的期待。目前众多公司投资钙钛矿产业就是证明,相信产学研结合的能够解决大规模制备技术的提升,帮助钙钛矿太阳能电池在商业化道路上大步迈进。没有什么不可能,只要我们勇突破!现在不妨设想一下,钙钛矿太阳能电池就在我们的穿戴设备上,比如涂覆在手机表面上,那是怎样的情形呢?我们再也不用担心手机没电了!开心吧? 免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载。文章版权、数据及所述观点归原作者原出处所有,HORIBA Scientific 发布及转载目的在于传递更多信息及用于网络分享,供读者自行参考及评述。如果您认为本文存在侵权之处,请与我们取得联系,我们会及进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的选择,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。
  • RESOLUTE绝对式光栅可以满足光伏太阳能电池板制造业的需要
    高效光伏太阳能电池(发电板)制造商面临的最大挑战是降低成本和提高电池效率。通过提高产量、减少加工精度的分散变化,并消除影响生产力提升的障碍来提高工厂自动化程度,是公认的实现电网价格持平等问题的关键。 与众多行业一样,选择合适的光栅(位置编码器)在光伏电池制造的高效工厂自动化中是很重要的环节。全球各地的太阳能电池板制造商一直在寻找一种有助于增加输出量、提高产量并尽量缩短停机时间的编码器。雷尼绍的RESOLUTE绝对式直线光栅和圆光栅可以满足这些要求,该光栅将真正的绝对式光栅反馈与高分辨率(1 nm)、高精度(± 1 µ m/m)、非接触光学系统等计量优点相结合,具有非常出色的可靠性和安全性。 RESOLUTE是绝对式光栅,这意味着它在通电后就能立即确定绝对位置,无需返回参考(基准)点,从而极大缩短开启时间并在出现任何运动前就实现对轴的完全控制。此项性能特征在机床断电又重新通电的情况下非常重要。它可以安全可靠地执行复杂的恢复路径,确保价格昂贵的产品和设备免于受损。 实际上,位置反馈的安全性是RESOLUTE系统的一项突出优点。光栅运行两种独立算法:一种用于确定绝对位置,另一种用于检查测量结果。这些内置位置检查算法可以独立校验位置,确保报告位置的保真度并可防止轴的非受控运动。因此大大降低了制造过程中电池或轴受损的几率。RESOLUTE已被世界领先的外科手术机器人公司采用,这足以说明该集成功能的有效性和可靠性! RESOLUTE以一种完全独特的方式工作,类似于一台超高速数码相机对由长的非重复条形码组成的栅尺进行拍照,从而为读数头提供绝对位置。RESOLUTE比市面上最快的数码相机的速度还要高1000倍。在图片中进行插补可达到1纳米的分辨率。另外,由于RESOLUTE在100 m/s时可达到1 nm的分辨率,所以光栅速度永远不会是一种限制,因此硅太阳能电池制造设备可更快速地运转,并且与使用传统光学编码器的设备相比,可实现更高的产量和效率。而且绝不仅仅是高速度&hellip &hellip 条形码含有大量的冗余,而读数头应用复杂的交互校验和误差修正。因此结果不会受到诸如硅尘、油和指纹等栅尺污染的影响。RESOLUTE所具备的抗污能力意味着,它可以在可能引起其它光学编码器丢数的环境中连续运转。 另外,RESOLUTE可以达到非常优异的运动控制性能,因而提高了精度和制造过程的产量,甚至领先于极为苛刻的精密激光加工技术。传统密封式绝对式光学编码器通常具有约± 200 nm的细分误差 (SDE)。这么明显的SDE会产生很差的速度控制性能,导致运动轴上出现振动;在这样的轴上移动易碎、昂贵的硅片有可能发生&ldquo 恐怖的故事&rdquo ,而且可能出现微裂纹,太阳能电池的相关性能也会降低。较差的SDE还可降低诸如缺陷检测等动态执行的扫描作业的生产效率。RESOLUTE凭借其新颖的检测方法打消了所有这些顾虑,这种方法的固有SDE非常低,不超过± 40 nm。多轴设备的制造商还可以通过使用RESOLUTE获益,因为它具有非常低的噪声(10 nm RMS的抖动),进一步提高了位置稳定性和重复性。轴间的串扰也有所降低。 在最近举行的&ldquo 2010太阳能产业大奖&rdquo 评选中,雷尼绍的RESOLUTE绝对式光栅是唯一入选PV子系统组件类候选名单的编码器。集坚固耐用的设计、超高速和超凡的分辨率等优点于一身,RESOLUTE吸引了要求极高精度和运动控制集成的太阳能电池板加工设备制造商的浓厚兴趣。 RESOLUTE目前正在一些世界上最高效的商用太阳能电池的制造设备上进行试验,同时也引起了其它高科技行业,诸如半导体、平面显示器、医疗、天文学系统等要求平稳速度控制和高精度的行业的极大兴趣。
  • KLA将携最新新品亮相SNEC太阳能光伏展
    KLA Instruments 小课堂定期分享KLA Instruments旗下产品的各种技术资料、应用笔记和使用指南。旗下产品包括:轮廓仪、纳米压痕仪、薄膜测厚仪、方阻测量仪以及晶圆缺陷检测系统。 6月13日 KLA Instruments&trade 将亮相一年一度的2024太阳能光伏与智慧能源大会(SNEC)并展出为太阳能行业定制的最新新品 光学轮廓仪Zeta&trade -Solar2024飞行计划-第二站: 上海 SNEC光伏展览会是全球性的专业光伏展,其展出内容包括:光伏生产设备、材料、光伏电池、光伏应用产品和组件,以及光伏工程及系统、储能、移动能源等,涵盖了光伏产业链的各个环节。SNEC光伏论坛形式也格外丰富多彩,涉及光伏产业未来市场趋势分析、合作发展策略、各国政策导向、行业最前沿技术、光伏金融等,是向业界展示成果的最佳机会。KLA Instruments&trade 将借此次机会展出最新推出的新品光学轮廓仪Zeta&trade -Solar、Zeta&trade -20HR,探针式轮廓仪 Tencor P-7、方阻测试仪Filmetrics R54等多款重点机型,并由市场总监 Oskar Amster带来关于“KLA轮廓仪在晶硅/薄膜太阳能电池制程中的应用”的精彩演讲,欢迎莅临。展会时间:2024年6月13日-15日展会地点:国家会展中心(上海市青浦区崧泽大道333号)展位号: 3H-F10, F11演讲主题:KLA轮廓仪在晶硅/薄膜太阳能电池制程中的应用演讲嘉宾:Mr. Oskar Amster 演讲时间:2024年6月14日,上午10:00-10:15演讲地点:国家会展中心上海洲际酒店,大宴会厅3Oskar Amster PROFILE KLA Instruments&trade 市场总监Mr. Oskar Amster目前担任KLA公司旗下仪器事业部市场与战略研发总监的职位, 在KLA有10年的光学表征研发工作经历并曾担任过多种管理职务。在加入KLA之前, 他曾在Taylor Hobson公司担任光学轮廓仪产品研发和销售经理,并在PrimeNano公司材料表征部门担任过高级管理职务。他在表面测量和材料表征领域拥有超过25年的工作经验。Mr. Amster 毕业于加州州立理工大学,获得了材料工程硕士学位和物理学学士学位。在此次展会上,KLA将首次展出新品 Zeta&trade -Solar它是一款为太阳能行业定制的光学轮廓仪,可满足独特的太阳能电池金属化需求,针对先进的太阳能电池工艺金属细栅和主栅测量而设计。这款全新的 Zeta 型号利用3D成像技术的进步简化了成像系统。提供多种XY测量台选项,可满足230mmx 230mm最新一代太阳能电池的测量需求。此外还开发了 Zeta-Solar 软件, 将易于使用的 Profilm 软件与 Zeta 系统开发的成熟金属测量技术无缝结合。 全新的太阳能电池检测技术,可用于晶硅太阳能电池生产和研发中的金属栅线测量。 太阳能电池金属细栅和主栅高度和宽度测量(全自动化检测和分析 / 多截面分析 / 宽度、高度、高宽比和横截面积的统计分析/ 合格品/不合格品识别分析 HDR功能,可优化印在超低反射率绒面的栅线测量 自动拼接功能,可用于大视场(FOV) 区域测量,如主栅和栅线接触点等 高清三维显示功能 太阳能电池金属栅线的3D真彩色成像 采用230mm x 230 mm 可编程XY 测量台,适用于最新一代太阳能电池产品 产品性能:可重复性和再现性欢迎莅临展台,了解更多新品信息,及KLA在光伏制造领域的解决方案。
  • 科研用户特价 | 钙钛矿/有机太阳能电池组件仿真软件
    ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍Laoss是一款用于设计、构建、仿真、优化钙钛矿/有机太阳能电池组件和OLED面板,对其热学、光学和电学性能进行仿真的软件。对于提高面板和组件效率、优化其性能、缩短研发周期、节省材料成本等有着具大的帮助。目前,针对中国科研单位用户,Fluxim 团队决定给予最大幅度的优惠,详情请与我公司联系。主要特点• 简单易用,快速有限元分析模拟仿真• 直观图像化用户界面以及Workflow• 普通计算机即可快速运行仿真计算• 具备可视化大范围输出数据及结果的功能分析方法• 基于电&热仿真的有限元分析法• 焦耳(电阻)加热的电热耦合• 强大的3D-Ray追踪光学模拟仿真计算,模拟&优化• 分析大面积组件/面板电极电损耗 for PV and OLED• 评估电极中的电流 for PV and OLED• 计算大型器件的 I-V 曲线 for PV and OLED• 优化太阳能电池组件效率 for PV• 计算组件/面板上的温度分布 for PV and OLED• 量化像素串扰效应 for OLED• 优化电极的几何形状 for LED and PV• 模拟缺陷和电分流对组件/面板的影响 for PV and OLED‍‍三大主功能‍‍‍‍‍‍‍‍‍‍‍‍‍‍1.电学模块• 仿真大面积OLED面板和太阳能电池组件的特性(填充因子vs电导率,2D电位分布,电流密度,欧姆损耗,总输出功率等)• 优化OLED面板和光伏组件中的电极设计以减少电功率损失• 研究非理想效应(例如电分流)• 自动化优化电极的几何形状‍‍‍‍‍‍‍‍• 了解RGB OLED像素数组中的电串扰‍‍‍‍‍‍‍‍优化电极设计:电势图电极优化:电势图非理想效应(电分流)研究自动优化电极几何形状:输出功率vs钙钛矿太阳能电池的电极宽度OLED 像素数组中的电势图:层与层之间的漏电流造成OLEDs未正常工作‍‍2.热学模块• 模拟OLED面板或太阳能电池组件中的热学和电流(电热耦合)之间的双向相互作用• 在标准作业程序下计算OLED面板和太阳能电池组件中的温度分布• 分析由于电热耦合导致的OLED面板和太阳能电池组件中的非理想I-V特性曲线• 电热耦合可模拟热产生和电学性能两者之间相互作用‍‍‍‍‍‍‍‍‍‍‍‍(1)具有六角形栅极的组件中的电位分布(2)对应(1)的温度分布(1)双向电热耦合相互作用引起的温度分布(2)模拟I-V特性曲线3.光学模块• 仿真研究具有复杂3D光学组件或表面纹理化的OLED面板和太阳能电池的组件• 通过构建独立的3D光学组件来仿真其对OLED面板和太阳能电池组件的贡献• 仿真OLED面板中的光学串扰• 可与SETFOS结合方便地分析光耦合几何特性‍‍仿真菲涅耳透镜或其他3D光学组件与太阳能电池或OLED耦合以提高效率光学串扰仿真曲面显示仿真更新后的4.1版本增加了以下功能1.交流模拟2.Laoss-Setfos整合集成一体化全面仿真3.金属栅线预定义:栅线数量、角度和base offset等4.预先定义像素形貌:XY方向像素数量5.几何设计导入和预定义几何设计6.可跳过在Laoss光学模块中切割三角形步骤7.固定偏振角 Phi 对于非偏振BSDFs8.关闭Laoss前检查改变参数,运行一个仿真或者加载一个不同的仿真9.Laoss光学:设定每个主要方向的独立边界形式10.Laoss光学模块:光谱图11.在XY结果图表中显示界面几何结构12.项目和模拟结果保存‍‍‍‍‍‍‍‍‍‍‍‍‍‍
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制