当前位置: 仪器信息网 > 行业主题 > >

烧针器

仪器信息网烧针器专题为您提供2024年最新烧针器价格报价、厂家品牌的相关信息, 包括烧针器参数、型号等,不管是国产,还是进口品牌的烧针器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合烧针器相关的耗材配件、试剂标物,还有烧针器相关的最新资讯、资料,以及烧针器相关的解决方案。

烧针器相关的资讯

  • 警钟长鸣:深圳某生物科技公司研发室着火 仪器等皆烧毁
    18 日上午 8 点左右,深圳龙岗区龙东爱南路 78 号利好工业园一家工厂突然发生火情,霎那间大火从窗户内窜出,深圳市消防支队龙岗区大队龙东中队出动了 10 多辆消防车赶往现场进行灭火,火情中无人员伤亡。  记者赶到的时候,现场已经拉起了警戒线,多辆消防车还在进行灭火。据了解,起火的是五楼一家名为茵诺圣生物科技公司。楼顶窗户被烧掉了,墙壁熏得一片漆黑,从市民拍摄的视频可以看到事发时的火势非常迅猛,大火与浓烟不时的从该工厂各个窗户口窜出,窗户框烧得往下掉,场景非常吓人。有目击者介绍,工厂起大火的时候,幸好工人还没有正式开始上班,大部分工人看到起火后没有上去,都站在楼下观望,只有一个女工吸入些许浓烟,不过并无大碍。  现场群众立即拨打了报警电话,深圳市消防支队龙岗区大队龙东中队出动了 10 多辆消防车紧急赶往现场进行处置。消防人员进入五楼后,发现楼道还弥漫着大量的浓烟,而起火的地点是五楼的研发室,里面的仪器等一些物品都被烧毁,天花板烧得只剩下架子,还摇摇欲坠。消防人员将外面的大火扑灭后,发现车间里面的一个大门被紧锁,立即用铁棍将大门撬开,经过勘察后发现并没有人员被困。救援行动持续了一个多小时,消防人员将大火扑灭。由于救援及时,火情也得到控制,事故没有发生人员伤亡。记者从龙岗街道办了解到, 2016 年 11 月 18 日 7 时 43 分,群众报警称位于龙岗街道龙东爱南路 78 号利好工业园 11 栋旁边五楼着火,接警后,同乐所消防民警立即赶赴现场处置。经初步调查,着火点为深圳市茵诺圣生物科技有限公司的研发室 1、2、3 车间(生产医学药物),目前火已被扑灭,过火面积为 30 平方米,无人员伤亡,起火原因及经济损失有待进一步调查。事故发生后,龙岗街道组织安监、龙东社区、派出所等部门根据职责对该工业园区开展全面的隐患排查整治工作。
  • 振动试验基础:加速度传感器介绍
    如果说振动控制仪是振动试验系统的大脑,那么加速度传感器就是人体的感官部分。本文主要介绍电荷型加速度传感器的原理和使用方法。※振动领域常用传感器加速度:压电型(电荷输出型或电压输出型IEPE)、动电型等。速度:激光测定器等。位移:LVDT(Linear Variable Differential Transformer)、Laser等。频率响应特性:加速度传感器 速度传感器 位移传感器(原因:相位关系),所以振动试验机系统多采用加速度传感器。※电荷输出型加速度传感器构造:原理:Q(电荷量) = C(电容) × V(电压)压力(F=mA)作用,压敏材料上产生电荷,对应电荷,输出电压变化。常见电荷型加速度传感器:※加速度传感器质量要求必须保证测定物质量的1/10以下。※加速度传感器频率使用范围避开传感器的共振点,使用直线形区域。在低频区域(1-5Hz)尤其要注意,由于频率响应特性的缘故,测得的加速度会有一定的偏差,对反馈控制有较大影响。也许这就是振动台厂家的设备产品目录中设备频率使用范围都是从5Hz开始标注的缘故吧。另外还要注意环境对传感器灵敏度的影响,比如,温度、湿度、电磁干扰等,别篇叙述。※加速度传感器的固定要求①用手测 ②磁铁(2点吸附) ③磁铁(平面吸附) ④垫片胶水粘贴 ⑤胶水粘贴 ⑥螺丝固定上图中,可以看出采用螺丝固定是最好的,但是由于实际情况,一般振动试验,能提供螺丝固定的螺孔基本上没有,所以通常采用胶水(502胶水等)粘贴或垫片(绝缘地线)胶水粘贴传感器。※加速度传感器的使用方法※加速度传感器的重要参数灵敏度、最大测定加速度、电容等。例:加速度传感器型号:2353B、灵敏度:0.209pC/(m/s²)传感器电容: 890pF,加速度500m/s²振动时,输出的电压是多少?(传感器低噪声电缆的电容已忽略。)Q=0.209×500=104.5[pC]V=Q/C=104.5/890=0.11742[V]= 11.742[mV]※前置功放(电荷放大器)将加速度传感器的电荷输出电压(mV级别)转换,通过增幅放大到±V级的电压信号,输出给振动控制仪。电压输出型(IEPE or ICP)加速度传感器也经常应用,稳定可靠,直接电压输出。内部含有微电子电路,受温度和湿度的影响比较大,一般使用上限在+125℃左右,建议在常温下采用。在三综合试验中,尤其需要特别注意试验条件的温度。备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 《振动试验基础》系列文章介绍
    振动试验基础系列文章主要针对刚入行的振动试验人员,介绍振动试验的基础知识,主要内容有必要的数学和物理知识、振动试验的概要、振动试验设备系统构成、振动试验设备的选择、常见振动试验条件说明、理论和实践测试要求。希望通过本专辑文章的介绍,对初入行业者有一定的帮助。主要文章如下:01.振动试验基础1--必要的数学和物理知识102.振动试验基础1--必要的数学和物理知识203.振动试验基础2--什么是振动,振动的种类04.振动试验基础2--振动试验的几个用语05.振动试验基础2--电动型振动试验机的构成06.振动试验基础2--加速度传感器介绍07.振动试验基础3--振动试验机的选择及试验可否判断要素08.振动试验基础3--振动试验机的选择及试验可否判断要素 加振力计算(垂直、水平)09.振动试验基础4--试验条件内容介绍之正弦试验10.振动试验基础4--试验条件内容介绍之随机试验11.振动试验基础4--试验条件内容介绍之冲击试验12.振动试验基础4--试验条件内容介绍之特殊试验1 RSTD、SOS、SOR、ROR13. 振动试验基础4--试验条件内容介绍之特殊试验2 TWR、sinebeat、sineburst、非高斯随机试验14. 振动试验基础5 理论测试题15. 振动试验基础5 理论测试题参考答案16. 振动试验基础6 实践操作题作者简介:薛峰,IMV株式会社上海代表处,技术经理。工学硕士,振动试验行业海外工作近20年,主要从事IMV振动试验系统的售前及售后工作,具有一定的振动试验测试能力和分析经验。独立运营原创微信公众号“振动试验学习笔记”,发表学习笔记近80篇,尽力普及振动试验基础,分享内容包括振动试验系统、振动试验、振动信号处理等知识,订阅用户已超过5000名。
  • 国家重大科研仪器研制项目(部门推荐)“基于超高帧频激光诊断的高温高压湍流燃烧研究装置”进行现场考察
    2022年8月26日,由国家自然科学基金委员会(以下简称自然科学基金委)副主任谢心澄院士带队,化学科学部组织专家对拟资助的国家重大科研仪器制项目(部门推荐)“基于超高帧频激光诊断的高温高压湍流燃烧研究装置”进行了现场考察,该项目由上海交通大学齐飞教授牵头负责。自然科学基金委化学科学部和计划与政策局相关工作人员,项目推荐部门教育部、依托单位上海交通大学及合作单位相关领导和项目组成员出席。 谢心澄副主任指出,专家组要对项目全面考察、严格把关,推动项目按期完成,项目依托单位和合作单位要为项目实施提供充分的政策支持和条件保障,期待通过本项目的实施,切实提升我国先进发动机燃烧研究的综合水平和国际地位。 化学科学部常务副主任杨俊林指出,原创仪器研制是产出创新科技成果的重要基础,科学仪器研制需要面向国家需求和科学前沿,以解决基础科学问题为目标,全面支撑我国科技原始创新能力的提升,为我国基础研究的发展提供强有力的手段和工具。同时,他强调了项目实施质量、建设条件保障和科技资源共享的重要性。 上海交通大学常务副校长丁奎岭院士代表依托单位感谢自然科学基金委对该项目的支持,强调上海交通大学将落实好依托单位责任,在各个方面全力支持和保障该项目的实施。 齐飞教授代表项目组汇报了项目的科学目标、研制方案、保障条件和研制基础,现场回复了专家组质询。随后,专家组实地考察了上海交通大学激光燃烧诊断实验室和拟建设的装置场地,并根据项目申请材料、负责人汇报和现场考察情况,提出了考察意见和项目实施建议,形成了考察报告,圆满完成了考察任务。
  • 振动试验内容介绍——随机振动试验
    随机(random)振动试验条件内容介绍如上图,随机振动没有周期性,其波形在时间轴上无法数式化表示,一般,振幅的概率密度函数近似符合正态分布(Normal Distribution)。假定:随机振动试验是平稳的各态历经(ergodic process)的正态分布。离开了这个假定,随机振动试验无从谈起。另外,初入者还要理解一个频谱的概念,随机振动基本上都是在频域范围内展开的。其波形,通过傅里叶变换,可以理解成是由无数的正弦波合成而来。将各个正弦波的频率和幅值用坐标表示的话,就得到其频谱图,如下二图。一般,随机振动都是有无数正弦波构成的,其频谱图为一条曲线,而不是下二图中间断性表示的。理解频谱图以后,经过一系列的数学计算、傅里叶变换、解析等,得到随机振动的功率谱密度,即PSD(power spectrum density),功率谱密度是随机试验中使用的一种谱,用通过在中心频率设置的窄幅过滤器的加速度信号平方的平均值的单位频率值表示。也称为加速度谱密度(acceleration spectral density,ASD),单位(m/s2)2/Hz。PSD单位用G2/Hz,两者之间的关系如下:1G2/Hz =(9.81m/s2)2/Hz = 96.236(m/s2)2/Hz有了PSD(或ASD)我们才可以进行随机振动试验,如何得到PSD,这是一个很复杂的数学计算过程,涉及到大量的人力、物力、财力。个人理解为以下过程:1. 场景作成。对实际使用环境进行划分为几个子场景,对子场景进行组合,再构成全体的使用条件(场景)。2. 振动测定。对各个子场景下的实际振动进行测定,保存时域的波形振动数据。3. 振动解析。FFT,将保存的各振动波形变换成加速度功率谱密度PSD。4. 数据编辑。观察所有的PSD数据,通过PSD形状来划分群组。求出各个子场景代表性的PSD,对各个群正态化处理。通过正态化处理,短缩试验时间(加速化)。5. 试验条件生成。通过对正态化的各子场景PSD的包络,求出试验条件的PSD。其试验时间是各子场景正态化的试验时间的总和。这个过程一般称为tailoring,是指对产品在使用或者运输等实际环境中的振动进行测定和解析,开发出适合产品的振动试验条件。随机振动试验正好相反。PSD中有能量的表示方法。一个PSD可以有无数个随机波形对应,或者说对于相同的PSD条件,我们每次做的试验波形是不同的(严格意义上,可能几十年或几百年后会出相同的波形,主要取决于振动控制仪中的算法。),但是其在该频率范围内所含的能量是一样的。一般随机振动试验的量级可以通过加速度有效值来衡量,其计算方法为:如下图PSD中,加速度rms值作为表示随机振动试验大小的一个指标,经常会使用到。上例中PSD是单纯的平直谱,计算比较简单。实际中PSD谱比较复杂,建议使用振动控制仪,输入频率和PSD值后,会自动得到加速度rms值。接下来介绍几个典型随机振动的试验条件。试验1:加速度Arms 96.663m/s2 频率与功率谱密度(PSD)值图中S表示绿线所围面积,开根号后即可得到加速度有效值。面积可以看成4个图形(长方形+梯形+梯形+长方形)的和。由于是对数坐标,各个图形的面积计算公式不能简单的用直线坐标方式计算,具体计算方法以后再叙。试验2:正斜率表示。加速度有效值rms为303.11m/s2。问题:100Hz和1000Hz处对应的PSD为什么约为100(m/s2)2/Hz?说明:10-100Hz之间有log(100/10)/log2 = 1/0.301 =3.322oct。所以,100Hz处PSD是10Hz处PSD的3.322oct×6dB/oct = 19.934dB,即10log(PSD100/1)= 19.934dB,最后得到PSD100 = 101.9934 = 98.5(m/s2)2/Hz。1000Hz处PSD没有增加(0dB),所以此处的PSD值和100Hz处的PSD值一样。总结:随机振动试验涉及到很复杂的数学计算,想要搞懂其内涵,及其困难。初入者先理解上面所述即可,有能力的,推荐书籍《随机振动试验应用技术》,胡志强、法庆衍等编著,北京:中国计量出版社,1996。备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 《振动试验入门》系列文章介绍
    《振动试验基础》专辑推出后,得到了大家的好评,在此再次感谢各位的支持和帮助。订阅用户反映《振动试验基础》主要理论基础涉及较多,对振动试验装置方面说明较少,所以《振动试验入门》专辑经过酝酿,开始提笔,争取在今年内陆续推出。《振动试验入门》主要含以下三方面的内容:1、振动试验装置基础知识。涉及振动试验装置系统构成、动作原理和构造、主要专业用语、试验种类介绍等方面。2、振动试验装置导入安装注意事项。涉及装置防振、防噪音对策、均匀度和横纵比、夹具评价、加速度传感器安装等方面。3、其他相关事项。比如加速度传感器构造、许可偏心力矩等方面。适合学习对象为:1、对振动试验没有经验的或者有些许经验者;2、振动试验装置的销售人员;3、振动试验装置厂家新入员工等。特别是对振动试验不熟,或者对振动试验听都没有听过的人员,操作振动试验装置需要注意哪些事项,通过本专辑学习后,能有所理解。本专辑中也有一些比较难理解的公式,可能不知道其是如何推导而来,只要会活用即可,对试验实施没有影响,故不必深究。作者简介:薛峰,IMV株式会社上海代表处,技术经理。工学硕士,振动试验行业海外工作近20年,主要从事IMV振动试验系统的售前及售后工作,具有一定的振动试验测试能力和分析经验。独立运营原创微信公众号“振动试验学习笔记”,发表学习笔记近80篇,尽力普及振动试验基础,分享内容包括振动试验系统、振动试验、振动信号处理等知识,订阅用户已超过5000名。
  • 振动试验内容介绍——正弦试验
    本文主要介绍典型的振动与冲击试验条件内容——正弦试验,希望初入者对其有一定的认识。典型振动与冲击试验分类正弦定频(spot)试验正弦扫频(sweep)试验扫频方式:直线扫频、对数扫频★直线扫频Vl =(f2-f1)/TVl:扫频速度(Hz/s)f2:扫描频率上限(Hz)f1:扫描频率下限(Hz) T:扫描时间(s)振动次数:C=f1・T+0.5V1・T2(回)(T≦(f2-f1)/ Vl )例:10Hz~1000Hz直线扫描、扫频速度100Hz/s、来回一次、扫频时间需要多少秒?去路 T=(1000-10)/100=9.9s来回 9.9×2=19.8秒★对数扫频R = Roct/T (二倍频)= [ log(f2/f1)/log2] /TR:扫频速度(oct/min)f2:扫描频率上限(Hz)f1:扫描频率下限(Hz) T:对数扫描时间(min)振动次数:C=60(f2-f1)/(ln2・R)回或者 R=Rdec/T(十倍频很少用到,不做叙述。)例:10Hz~1000Hz对数扫描、扫频速度2oct/min、来回一次、扫频时间需要多少秒?Roct= log(1000/10)/log2 = 2/log2 oct  去路 T=2/log2/2 = 1/log2 min来回 1/log2×2=6.645 分总结:以上试验条件内容加上振动方向、加速度传感器控制和检测通道数、试验体质量等信息,便构成了基本的正弦试验条件内容,从来通过试验内容来选择合适经济的振动台。正弦振动是振动试验的基础,在几十年前由于科学技术的落后,只能通过简单的正弦试验来进行,沿用至今。现今随着随机振动试验技术的成熟,大有被其代替的趋势。备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 第三届燃烧流场的光学诊断技术学术研讨会即将召开
    p  燃烧过程复杂恶劣,对瞬态环境的实时诊断技术要求极其苛刻。燃烧流场的光学诊断技术主要是以激光技术、光谱技术、光电探测技术、数据图像处理技术等为基础的一种综合性测试诊断技术,可以实现燃烧场温度、组分及浓度、火焰构造和流速等参量信息的高时空分辨精确测量,而且测量对燃烧过程无扰动。这些参数的测量对于研究燃烧场的瞬态化学反应动力学过程,如固体推进剂燃烧动力学、超声速燃烧动力学、汽车和飞机发动机燃烧效率和污染控制、以及保障电站锅炉安全和经济运行等具有重要意义。/pp  为了促进我国本领域技术的完善与发展,学会定于2016年11月16-18日在西安召开“第三届燃烧流场的光学诊断技术学术研讨会”。会议组委会将邀请国内外该领域的知名专家和学者到会共同交流,深入探讨燃烧流场的光学诊断技术领域所取得的最新研究成果。诚挚欢迎国内外相关领域研究院所的科研人员以及高等院校的教师、研究生等踊跃参加。/pp  主办单位:中国工程院信息与电子工程学部,国家自然科学基金委员会,中国光学工程学会/pp  承办单位:中国光学工程学会,中国宇航学会光电专委会/pp  联办单位:空军工程大学 等离子体动力学国家重点实验室,激光与物质相互作用国家重点实验室/pp  大会主席:乐嘉陵 院士(中国空气动力研究与发展中心),李应红 院士(空军工程大学)/pp  刘晶儒 研究员(西北核技术研究所)/pp  征文范围,全文截稿时间(第三轮):2016年10月30 日/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201610/insimg/433bf8ce-0c6f-4346-9936-e3f5a8d6d9bd.jpg" title="1.png"//pp  投稿须知:会议邀请作者将原创的论文投往本会议,文章长度为4-8页,中英文兼收,所有文章必须严格符合会议征稿主题,投稿论文必须是从未在任何会议、期刊及杂志上出版。投稿请登录在线投稿系统 http://events.kjtxw.com/tougao/1426492999.html/pp  论文发表:会议来稿将收录在会议论文集中。其中,中文优秀稿件推荐至《红外与激光工程》EI、《光学精密工程》EI、《强激光与粒子束》EI、《航空动力学报》EI、《实验流体力学》中文核心、《太赫兹科学与电子信息学报》科技核心,正刊出版 英文稿件推荐至SPIE会议论文集,EI核心检索。/pp  特邀专家报告/pp  燃烧场及等离子体诊断技术研发/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201610/insimg/5c2f1a46-0b5a-427e-bb72-de1454c1c6f8.jpg" title="2.png"//ppimg src="http://img1.17img.cn/17img/images/201610/insimg/c1a5df59-3a51-40ba-8b61-e551204b4784.jpg" title="5.png"//pp  strong无论是否投稿均欢迎参会。/strong/pp  会议注册:请登录http://events.kjtxw.com/register/1426492999.html,在线报名。/pp  会议费:2605 元/人,包括文件、餐、杂支等。三人以上参会,注册费优惠为2405元/人。/pp  会议稿件发表在SPIE会议论文中,将加收版面费2200元/篇。/pp  汇款时请务必注明“姓名+燃烧”/pp  开户行:工行北京科技园支行,户名:中国光学工程学会,账号:0200296409200177730/pp  联系人:吴迪,022-58168520,wudi@csoe.org.cn,/pp  地址:天津市空港经济区中环西路58 号-8358-9,邮编300308/pp style="text-align: right "img src="http://img1.17img.cn/17img/images/201610/insimg/6f61f933-7729-4a76-9522-0d50d86acfff.jpg" title="6.png"//p
  • 雷尼绍(Renishaw)参加2011国际刑侦展
    雷尼绍(Renishaw)公司于2011年8月10日至12日参加了北京展览馆举办的&ldquo 2011国际刑侦、禁毒、反恐、经侦技术装备展览会暨学术交流会&rdquo ,此次展览会是由公安部、科技部批准,公安部装备财务局、刑事侦查局、禁毒局、反恐怖局、经济犯罪侦查局主办,公安部物证鉴定中心和中国刑事科学技术协会承办,历时3天的展览,主要内容涉及刑侦、禁毒、反恐、经侦的相关仪器和装备。雷尼绍(Renishaw)公司此次主要展出了inVia系列激光共焦显微拉曼光谱仪,并在展台为参展观众进行了演示。inVia系列新一代激光共焦显微拉曼光谱仪在刑侦领域,主要应用涉及毒品、爆炸物和纤维鉴定与涂料、颜料、墨迹和射击残留物等样本的分析。其仪器主要特点不仅包括高分辨率、高灵敏度、高稳定性,而且高自动化程度也是该仪器的一大亮点,可根据客户需求选择不同配置,最高可升级至顶级配置inVia-Reflex。此外,该系列拉曼光谱仪的模块化设计真正做到满足不同领域的应用需求;在刑侦科学的应用方面,主要用于实验室的分析与检测。雷尼绍(Renishaw)也有可用在犯罪现场的测试和勘察的RA100型光纤探测式拉曼系统。展览会外景大会开幕式雷尼绍工程师Jack为客户详细介绍inVia系列拉曼光谱仪在刑侦方面的应用 雷尼绍展台全景 雷尼绍inVia系列激光共焦显微拉曼光谱仪
  • 深蓝云直播课堂 | 引物探针的设计和设计软件的介绍
    PCR(聚合酶链式反应)是一种用于放大扩增特定的DNA片段的分子生物学技术,其最大的特点是能将微量的DNA大幅增加。作为科研路上打怪升级的初级关卡,PCR可以说是重点中的基本,基本中的重点。对于实验室萌新来说,它很神秘;对于实验室老手来说,它很easy。那为什么老手们做起来不那么费力呢?主要是他们把握住了PCR实验的关键--引物探针的设计。引物探针的设计很大程度上决定了PCR实验的难易程度,那么该如何设计引物探针呢?现有的引物设计软件和网站又该怎么使用呢?所有的答案都在“引物探针的设计和设计软件的介绍”的直播课中,让北京深蓝云生物科技有限公司来为您答疑解惑吧!想了解更多关于实时荧光定量PCR知识的分享,快来参加深蓝云直播课堂吧!赶紧扫描上方二维码报名参加吧!
  • 振动试验内容介绍——特殊试验
    谐振搜索和驻留试验谐振搜索和驻留试验(RSTD)是指先通过正弦扫频试验搜索出试验体的共振频率,然后在共振频率上进行跟踪驻留试验。搜索功能通过传递信号来确认共振频率,并在实时控制过程中,对每一个共振频率进行跟踪和驻留。当驻留期间频率变化时,其特殊的跟踪特性使用相角信息调节驱动频率跟踪谐振。即自动侦测谐振峰的偏移,并自动调整正弦激励信号的频率来跟踪谐振峰的偏移。在机械结构的疲劳试验中应用广泛,比如高周期关键部件的涡轮机叶片或汽车曲轴的疲劳试验。试验步骤一般分为以下几步:第一步,共振点调查 在要求的频率范围内进行扫频试验,找出共振点。第二步,谐振搜索 找出共振点以外的谐振点,选择驻留试验的频率点。第三步,驻留试验设定 驻留时间、加振量级等。第四步,驻留试验。试验1:位移峰值推定;跟踪方式(tracking)扫频速度:1oct/min、单程1次共振点判定标准:传递率3以上共振点驻留模式:标准位移搜索(还有高速位移搜索、相位搜索、频率固定三种方式)共振点使用:共振点搜索中最初的峰值对应的频率。加振量级:10m/s2报警(Alarm)上下限:±3dB、中断(Abort)上下限:±6dB驻留时间:1小时、试验时间:无往返共振点偏移判定:传递率比率-10%~+10%频率步长:1.0Hz/s共振点搜索范围:频率比率±10%(注意:振动控制仪的软件不同,对应的参数会有变化。)多正弦试验疲劳试验时,多个频率的正弦同步扫频或者定频,可以大大的减少试验时间。这种方法由德国的一家汽车制造商提出,目前正越来越广泛地为其他谐波试验所应用,已经发展成为汽车发动机组件可靠性试验的一个重要方法。试验1:多个扫频同时进行。频率分割区域1:扫频20~63.3Hz区域2:扫频63.3~200Hz区域3:扫频200~632.5Hz区域4:扫频632.5~2000Hz扫频速度:1oct/min来回扫频次数:32次扫频开始频率:20Hz△试验中振动控制仪图像试验2:多个定频试验同时进行试验时间:1小时△试验中振动控制仪图像试验3:波形叠加△参考波形混合模式控制试验(SOR、ROR)应用于模拟宽带振动上叠加窄带或者周期性的振动环境。周期性能量通过正弦的形式或者窄带随机来模拟。比如直升机的振动就是正弦加随机(SOR)信号,气流扰动造成宽带随机而旋翼产生正弦振动。SOR也常常应用在汽车测试中的发动机振动试验。履带式车辆的振动是典型的随机加随机(ROR)信号,履带的窄带随机叠加在道路的宽带随机上。对于正弦加随机加随机(SOROR),叠加分量可以固定或扫频。试验1:SOR宽带随机振动:上图中10-1000Hz,量级50m/s2rms。窄带扫频:扫频速度:1oct/min,往返扫频次数:5次。基波扫频:100-400Hz,如上图扫频,初相位0°。2次谐波扫频:基波的80%量级扫频,初相位180°。试验2:ROR宽带随机振动:上图中10-1000Hz(虚线部分),量级50m/s2rms窄带随机振动:基波和2次谐波窄带扫频随机振动。扫频速度:1oct/min、来回扫频5次。基波:100-400Hz,量级75(m/s2)/Hz,频宽15Hz的PSD。2次谐波:量级为基波的-2dB,频宽30Hz的PSD。△试验中振动控制仪图像时域模拟试验(路谱再现(TWR,time wave replication)试验)在试验室中再现长时间的现场试验数据。可以是随机或者正弦振动数据波形。比如使用路面或者飞行记录的试验数据,可以模拟最真实的振动环境,确保高品质的试验结果。一般用于验证试验,设计试验时确实存在着一些缺点。波形再现只会产生给定的数据振动,缺乏随机数据的统计变化。可以认为随机数据是真实世界多样性的代表,随机试验可以比这种试验需要更少的时间。但时域模拟试验提供了从现场采集振动数据到在单个或多个振动台上再现的所有功能。同样,通过数据编辑(单位和采样频率指定、过滤处理、首尾数据处理、频率变换、数值间演算、数据点数变更、补偿波附加等过程)后得到可以在电动式振动试验机上进行试验的波形。试验1:某试验中进行的波形。拍波试验(sine beat)主要用于耐震或抗震试验,特别是构造物受到短时间的脉冲力和周期性力冲击后的环境情况。类似于拥有一个共振频率的单纯构造物的地面受到水平方向地震波,试验后确认其健全性。波形如下图,试验条件中需掌握,振幅值A是多少?生成的正弦波的频率f是多少?波形长度(波数n和拍数)是多少?波形是调制的正弦波,频率为试验结构体的自振频率,以期望产生共振效应,其幅值被一个长周期正弦波所调制。拍波的每一拍中,一般包含5-10个同频循环。通常试验中,几个拍(常见为5拍)同时进行,每个拍之间应有足够的间隔(常见为2秒),如下图。常见试验规格有IEC 60068-2-59。试验1:频率:7Hz加速度幅值:3G波数:10垂直水平三方向各10拍,各拍间隔2秒。正弦脉冲试验(sine burst)一种准静态环境模拟的试验方法,主要用于卫星在运载火箭升空的主动段,受到火箭高值加速度而产生静力过载的模拟试验。为了确定卫星承受的静载荷对其本身结构及运行状态的影响,要对卫星做加速度过载试验,以模拟卫星在火箭发射过程中受到的稳态或准稳态加速度惯性载荷。波形如下图,试验条件中同样需掌握,振幅值A是多少?生成的正弦波的频率f是多少?波形长度(波数n)是多少?在实际试验中,为了避免试验一开始就受到大量级的负荷,需要加入上升和下降领域,如下图所示。非高斯(正态分布)随机试验随机振动试验是一种模拟试验,通过对现场环境实测波形的提取,得到PSD,再进行随机振动试验,对应的振动能量相同。按照其试验规格试验后,产品通过要求,但是,在现场环境下,还是会出现破损等不合格现象,尤其在运输环境下。通过研究,在进行产品的可靠性试验和环境试验的时候,发现有些动态环境的时间历程具有非高斯分布特性。于是,提出了非高斯分布振动试验,在原来的随机振动试验要求中,加入了尖度K(Kurtosis)和偏度S(Skewness)两个要求,使波形更接近实际环境的波形。式中,Xi是加速度,m是加速度平均,N是数据点数,σ是标准方差。通过对实测波形分析和变换,在得到原来随机振动试验PSD的基础上,计算出K和S。再反过来在振动台上实现含有K和S的波形,从而飞跃性提高随机振动的精度,这就是非高斯随机振动试验。下图是含有不同K和S波形对应的概率密度图,供参考。试验1:如下图PSD,调整到rms值为10m/s2。非高斯分布特性为峰值发散性,K=5。试验时间30min。总结:以上罗列一些比较特殊的试验要求,并进行了简单的说明。初学者只需适当的了解即可,受制于振动控制仪软件授权码的限制,有可能永远也不会碰到。备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 安捷伦科技总裁邵律文拜访镇海炼化分公司
    安捷伦科技总裁邵律文拜访镇海炼化分公司 2010年4月16日,北京---世界知名测量测试公司安捷伦科技(NYSE:A)今天宣布,安捷伦科技公司总裁兼首席执行官邵律文先生(William P. (Bill) Sullivan)日前访华,并拜访了中国最大的炼油企业之一,位于宁波的中国石化镇海炼化分公司。 4月14日下午,安捷伦科技公司总裁兼首席执行官邵律文先生、大中华区总裁霍丰先生、化学分析集团和生命科学集团大中华区总经理牟一萍女士等一行访问了镇海炼化分公司,与镇海炼化分公司副总经理张玉明先生、检验部门以及国际合作处的相关负责人进行了友好会谈。张副总经理在会谈时介绍了镇海炼化基本情况。经过35年的改革,发展,创新,从一家名不见经传250万吨的小炼厂发展成为世界第17大炼厂,成为国内规模最大、效益领先的炼化一体化企业。根据国家石化产业振兴发展规划,镇海炼化将在&ldquo 十二五&rdquo 期间继续扩大炼油、乙烯规模,形成世界级规模、国际一流水平的现代化炼化一体化石化基地。随后,张副总经理向邵律文先生详细介绍了100万吨大乙烯工程10套生产装置概况,感谢安捷伦中国团队为已投产的聚丙烯和MTBE/丁烯-1两个装置提供的优质服务。目前正是100万吨大乙烯项目开工的关键时期,安捷伦的分析仪器将在乙烯开工中发挥更重要作用。张副总经理表示邵律文先生此次访问充分体现了安捷伦科技对镇海石化的高度重视,希望安捷伦以多年在石化行业的丰富经验为大乙烯顺利开车保驾护航。此次合作的成功,将为双方未来的深入合作奠定基础。张副总经理向邵律文总裁赠送礼物 邵律文先生也对安捷伦科技的情况作了简单介绍,安捷伦科技公司从惠普时代开始就重视研发,不断创新。作为最早进入中国的外资高科技企业,目前已经在北京、上海、成都建立基地,同时有遍布全国的服务中心。中国是全球瞩目的大市场,同时也是安捷伦在美国本土以外的第二大市场。中国战略是安捷伦全球战略中至关重要的一部分,安捷伦化学分析集团在中国拥有一支优秀的本地化销售和服务团队,结合在上海的工厂以及研发团队,一直致力于为中国的用户提供最佳的技术支持。今后安捷伦还将不断投资中国,与镇海炼化以及广大用户共同推动中国经济的飞速发展。邵律文先生承诺安捷伦中国团队将为镇海炼化大乙烯项目提供全面支持,并预祝镇海炼化开车成功。 牟一萍总经理随后向张副总经理介绍了安捷伦科技在中国的发展情况。安捷伦作为分析仪器行业的领导者,不仅拥有享誉全球的色谱技术,更为石化用户提供全球解决方案,在全球石化行业中占据着主导地位。近年来,安捷伦针对国内石化行业特点和需求,将公司售前售后资源进行优化整合,成立了&ldquo 石化行业支持团队&rdquo ,这支能征善战的特种部队陆续完成了青岛大炼油、惠州大炼油、独山子乙烯、福建炼油乙烯、天津石化乙烯工程、盘锦乙烯等多个大石化项目的安装,为用户提供了周到完善的服务。牟一萍总经理表示,&ldquo 石化行业支持团队&rdquo 将与镇海炼化相关部门落实保运方案,提供完备的技术支持及保障方案,包括售后和技术支持人员、消耗品,备件及备用仪器的调配。务必保证开车顺利进行。 会谈后,安捷伦科技公司一行在张副总经理陪同下,参观了镇海炼化实验室和大乙烯项目开车现场。 邵律文总裁一行参观镇海炼化实验室邵律文总裁与张副总经理在实验室共贺合作成功邵律文总裁、牟一萍总经理与张副总经理在大乙烯项目开车现场安捷伦科技一行与镇海炼化领导合影关于安捷伦科技 安捷伦科技(NYSE: A)是全球领先的测量公司,是通信、电子、生命科学和化学分析领域的技术领导者,公司的17,000名员工在110多个国家为客户服务。在2009财政年度,安捷伦的业务净收入为45亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn 。
  • 如何使用高温燃烧器分析铝元素(火焰法)
    铝的原子化温度很高,为2700℃,因此使用原子吸收分光光度计分析时,需要采用高温燃烧器,并选择N2O作为助燃气体来进行测试。但是使用高温燃烧器可能存在如下问题:通常情况下,使用高温燃烧器测定时,碳会附着在燃烧器火焰口导致测定数值偏低。日立原子吸收分光光度计ZA3000系列采用偏振塞曼校正法和双光束干涉效应解决了这个问题,下面我们通过具体实验来证明。使用高温燃烧器分析铝(火焰法)此次实验对每组样品重复测定10次,每组依次测定空白样品 — 样品 A — 样品 B— Al 30mg/L,以确认高温燃烧器测定数据的稳定性。实验共测定了40个样品,测试完成后查看燃烧器火焰口碳附着量。■ 测试条件:√ 使用高温燃烧器(P/N:7J0-8857)测定样品。√ 样品 A、样品 B是在河水中添加了Al。 ■ 测试数据: ■ 测试结果: 重复10次测定各样品,其定量值RSD波动在0.9%~1.1%,由此证明,使用日立原子吸收分光光度计ZA3000可以得到稳定的定量值。 测定结束时火焰口只附着极少量的碳,并且没有影响测定结果的稳定性。 综上所述,日立原子吸收分光光度计ZA3000系列采用偏振塞曼校正法和双光束干涉效应,即使燃烧器火焰口附着碳,也不会造成基线波动,从而获得了稳定的定量值。
  • 卓立汉光深圳分公司员工韶关游记
    为丰富员工文化生活,增加团队凝聚力,卓立汉光深圳分公司全体员工在韶关开展了为期2天的团队拓展活动,体验别致丹霞美景,收获轻松休闲及团队情谊。在岭南地区的韶关,有一处丹霞地貌,这里被《中国国家地理》杂志评为“中国最美的七大丹霞”。与西北丹霞地貌的粗犷斑斓不同,韶关丹霞山有着岭南独特的奇、峻、秀、险。旅程从美丽的丹霞山出发,并被这里的美景所震撼!丹霞山境内有大小石峰、石墙、石柱、天生桥共计680多座;一站我们来到丹霞山最古老的景点——长老峰。登上长老峰的观日亭可俯视丹霞山全景,途中又可以欣赏到众多雄姿灵秀的山峰,如睡美人、茶壶峰、僧帽峰、蜡烛峰、姐妹峰、别传寺、鸳鸯树等,美景让人应接不暇。丹霞山精华的部分汇集在这里,从山脚到山顶,一步一景,人文风貌与自然观景相结合。下着雨,让原本陡峭的山路更添湿滑,我们手拉手好似拴在一起,一点点往下挪,这就是团队的力量。身披铠甲有风度,内心柔软有温度。赵大侠手持十年神木,一路为我们锄草扶弱。 一天的兴奋还未散去,就开始了我们第二天的挑战之旅。这一天我们挑战了1638级的祥云梯,来到祥云梯脚下,只见告示牌上写着“量力而行”四个字,极目望去,高不见顶,内心一阵挣扎,山不在于高,而因为陡,我们彼此相望,互相打气,踏上这几乎80°的阶梯,然而挑战并没有结束,等待我们的还有一条全透明高空景观玻璃桥,该桥全长316米,桥面通体透明,可以非常清楚地看到谷底的景色,如果在谷底仰望,玻璃上的人影也清晰可见。最终,一个都没有少,我们登上了祥云梯,也走向更加惊险刺激的玻璃桥。两天的韶关之行很快过去。在这奇、峻、秀、险的大自然里,我们用热爱去拥抱峻秀的山河,也用勇敢去面对奇险的挑战。彼此的乐观与不放弃,构筑了团结积极的精神,使我们去到了一个个不敢想象的高度,也让我们更加热爱生活,敬畏生命。
  • 资本是科学仪器企业发展不可缺少的重要要素——访海能技术总经理张振方
    仪器信息网讯 7月11-13日,第十一届慕尼黑上海分析生化展在国家会展中心(上海)成功举行。展会期间,仪器信息网特别采访了海能未来技术集团股份有限公司总经理张振方,一起听听他对公司战略规划的看法。据张振方介绍,海能近几年的产品系列的不断完善,主要的应用领域也开始从食品向制药领域、环境、新能源和半导体转移。通过这几年的努力,目前制药领域已经成为海能目前最大的行业细分领域。同时,海能也面向近期第三次全国土壤普查的项目,以及产教融合、高校的检测能力提升等项目,推出了一些针对性的产品和解决方案。在公司战略方面,张振方说,海能一直坚持多品牌多品种的策略。之所以每推出一个不同系列的产品便采用不同品牌的策略,主要有两方面的考虑,第一是因为科学仪器的每个品类产品的使用范围和机理差别很大,为了让客户能够将品牌和产品更好关联起来,产生更深刻的印象,海能技术采用了每一个大的系列产品对应一个独立品牌的多品牌发展策略;第二是基于产品专业性的考虑,采用独立品牌,团队可以更加快速响应客户需求,为客户提供更专业的服务。谈到海能的上市时,张振方认为,资本是一个科学仪器企业发展所不可缺少的重要要素,上市可以解决拓宽整个公司的融资渠道,在资本市场上更进一步,也一直是海能管理层重要的方向和工作。海能技术的本次IPO将大大加快整个智能化数字化的全产业链的建设进度,提升在制造业和产业链方面的竞争力;另一方面,IPO的过程以及公众公司和上市公司的监管要求,使公司的整个治理水平以及信息披露能力都得到了质的提升,这对于企业的长久发展和向更大规模发展奠定了非常好的基础。详细内容请点击视频:
  • 青岛某高校实验室起火 仪器全被烧毁
    3月31日早上6时左右,青岛四方区郑州路某高校内的化学实验楼一楼的一间实验室突然着起了火,大火很快将里面的仪器烧毁,熊熊火焰从破损的门窗处喷出蔓延到楼上房间 ,5辆消防车扑救半小时才将大火扑灭。在该实验室的学生怀疑,可能是实验仪器夜间未断电导致起火。   实验室里的仪器全被烧毁了。  实验室外面的墙被熏得漆黑。   实验室清晨起火  记者闻讯赶到现场时,大火已经基本得到控制,起火的实验室周围聚集着数十位老师和同学。“当时的场景实在是太吓人了。”一位姓刘的女同学告诉记者,早上6时许,她还在睡梦中,突然听到楼下有人大喊“着火了”,她起床后出来一看,发现对面实验楼的一角已经浓烟滚滚了 ,“透过窗户,我看到里面主要是电脑和一些仪器着火,紧接着整个房间都着了起来,大火将实验室的门窗都烧毁了。”据刘同学介绍,熊熊火焰从破损的门窗处喷射而出,很快就蔓延到楼上几层。  实验仪器全被烧毁  记者在现场看到,起火的实验室位于该校化学与分子工程学院楼一楼的东南角,大楼的外墙被熏得漆黑,一楼实验室四周的窗户已经被完全烧毁,仅剩下脱了漆的防盗网挂在窗户上,房间里传出浓重的烧焦味。  透过斑驳的防盗窗,记者看到实验室四周的墙壁一片漆黑,通过地上的残骸,依稀能够辨认出实验室内原有的一些桌椅板凳、电脑仪器等设备,一位工作人员正在里面检查损失情况。“一场火就全毁了,要知道当初建个实验室是多么不容易啊。”一位同学感叹地说道。  整楼灭火器齐上阵  在实验室门口,四五位带着厚棉口罩的男同学正在清理着地上的积水。“这种化学实验室不同于一般民房,里面的好多药品都对人体有害,善后处理起来一定要小心。”一位同学说。对于刚刚发生的火灾,这几位同学都不愿多说什么。记者绕到实验楼的后门处,看到一位校工正在从楼内往外清理灭火器。记者粗略数了数,足足有15个之多,这些灭火器都是已经使用过的。  “整栋楼的灭火器都用上了。”一位从楼内出来的同学告诉记者,事发后楼内的工作人员及部分同学纷纷上前灭火,但无奈火势太大无法控制。随后5辆消防车赶到,经过近半小时的扑救,大火才被完全扑灭。  疑仪器未断电所致  记者注意到,实验室门口的牌子上写着“新材料与绿色化技术研究室”字样。在该实验室工作的一位同学说,事发前一晚,实验室的同学把刚刚清洗完的器皿放到烘箱里,晚上离开的时候电源没关。“我们一般都是这样,放到烘箱里烘干一晚上,这样第二天上午来了就可以用了。”该同学说,很可能是烘箱调温出了问题,结果酿成了火灾。说起此次事故的损失,这位同学告诉记者,一个实验室的东西加起来少说也得几十万元,这还不算实验成果的价值。  目前起火原因正在进一步调查中。
  • 介绍X-Pulse台式核磁共振谱仪的自动进样器及重大更新
    先进的模块化设计使X-Pulse成为可完全升级的宽带台式核磁共振系统,以满足研究、开发、质量控制和教学中的化学分析需求。2022年4月25日,英国牛津仪器推出全新的X-Pulse台式宽带核磁共振波谱仪与X-Auto全自动样品进样器。X-Pulse的新增功能显著提高了仪器的易用性、进样效率和远程工作能力,同时进一步降低了运行成本。仪器已实现利用新的外部信号频率锁场技术消除对氘代试剂的需求、增加了原子核间的自动软件切换、提高了灵敏度并新增了无需值守的自动进样器等多种功能。连续的流动监测和先进的样品温度控制与真正的宽带多核相结合,以满足从电池到制药等行业的多种化学分析需求。独特的模块化结构使新款X-Pulse可完全灵活配置,是符合核心科学、先进分析研究、质量控制及优化和教学的高性价比投资。新款X-Auto自动进样器允许预装多达25个样品,配合SpinFlow 3.1软件中的新功能,确保用户仅需简单点击即可为每个样品添加单独实验或长队列实验。通过对实验队列的重新排序,您可以优先运行所有样品中的短时间实验,以快速确定继续运行长时间实验的价值,实现效率增大。此外通过远程连接仪器,您可以更改所有预加载的样品,并根据分析需求添加或定制新的实验,这样可以提高远程工作效率并缩短仪器值守时间。原子核间的自动软件切换特别有利于需要使用多种核磁共振活性核的应用,包括电池、聚合物和精细化工等领域。诺丁汉特伦特大学健康中心的Philippe Wilson教授说:“台式核磁共振是我们护理疾病研究的核心部分。配备X-Auto的新款X-Pulse将大大加快我们的项目。由于无需更多的样品准备,即使最重要的原子核间切换也能自动实现,我们的博士后可以在无人值当的情况下运行一天的样品。归根结底,更快的文章发表和更全面的数据对于我们的工业合作者及我们整个团队都将是至关重要的。”牛津仪器材料分析集团董事总经理Ian Wilcock博士补充道:“新款X-Pulse和X-Auto自动进样器增强了新的远程和混合工作模式,这将使我们的客户在其研究和过程控制的进样量和效率方面得到进一步的提升。我很兴奋我们的团队设计了如此全面配置和模块化的台式核磁共振系统,以满足我们客户越来越广泛的需求。”
  • Molecular Devices 网络讲座:开始荧光偏振实验--应用和检测系统介绍
    What网络应用讲座:开始荧光偏振实验&mdash &mdash 应用和检测系统介绍主讲人:Cathy Olsen 和 Yvonne Fitzgerald探究如何用荧光偏振技术加快您的实验和筛选工作。不管您是在设计您自己的荧光偏振实验,还是将要把荧光偏振加入到您的实验和筛选工具中,或是想要了解更多关于荧光偏振的技术和应用,这个网络讲座都会为您讲解!WhenSep 26 2012 11:00 PM - Sep 27 2012 12:00 AM (CST)荧光偏振技术是一种可以检测分子相互作用的技术。荧光偏正技术可以检测生物分子相互作用时分子的移动和方向的变化,例如,蛋白质之间或受体与配体之间的相互作用。荧光偏振技术的其他应用还包括:DNA与蛋白质之间的相互作用、竞争性免疫分析和激酶检测。还经常被应用于确认hERG通道的阻断化合物、鉴定家畜的病原体和监测食品中的酶活性等。讲座内容包括:荧光偏振技术原理介绍荧光偏振实验设计技巧荧光偏振技术的常见应用荧光偏振实验的检测和分析的仪器与软件介绍SpectraMax® Paradigm® 和M5多功能读板机SoftMax® Pro 软件错过了前面的活动?点击阅读!二十五周年活动记录 庆典还在继续!持续支持您的研究:Molecular Devices University
  • 垃圾焚烧烟气监测全能战士
    南太湖旺能垃圾焚烧厂垃圾焚烧烟气排放监测是我司2011年承接的烟气改造项目,目前项目已进入执行阶段,垃圾焚烧厂于2008年建设完成并投入使用,垃圾焚烧量1100吨/天,年发电量100M kwh,项目位于湖州市南浔区和孚镇废矿山内。为响应国家“生活垃圾焚烧污染控制标准”、垃圾焚烧企业信息公开,南太湖旺能垃圾焚烧厂于2010年计划投入环境改造,监测烟气排放因子。 由于生活垃圾焚烧尾气具有高粉尘、高水分、高污染、强腐蚀的特点,这就对监测系统的预处理、分析仪表、设备材质提出了更高的要求。聚光的CEMS-2000 B FT FTIR型烟气在线连续监测系统的出现使得这一系列技术难题迎刃而解。CEMS-2000 B FT系统外观图 系统结构图 在项目运行过程中,系统监测排放烟气中含有SO2、NOX(NO、NO2)、NH3、HCI、HF、CO、CO2、O2、H2O等多种组分。气体室内部腔镜表面镀金,反射率极高,可保障全程温度180℃以上,避免烟气冷凝带来的气体污染物成分损失。同时采用怀特腔设计,信噪比高,测量光程可达5 m,探测下限低,动态范围大。系统通过算法优化,选择合适的波长范围,可以有效消除H2O等组分的干扰。 CEMS-2000 B FT平台安装图 CEMS-2000 B FT 现场图片 除此项目以外,CEMS-2000 B FT烟气在线监测系统已在全国各地的垃圾焚烧厂和固废处理厂开展应用,现场使用效果良好。 为了证明该系统在垃圾焚烧厂具有良好的使用性能,我们邀请了国家环境总站前往我司的垃圾焚烧厂烟气监测项目进行CEMS-2000 B FT系统的环保认证测试工作,其中比对工作采用Horiba PG350和Gasmet FTIR DX4000两种便携设备,聚光是国内少数几家在垃圾焚烧厂开展烟气在线设备环保认证的厂家。Horiba PG-350 GASMET FTIR DX4000 随着聚光烟气CEMS产品在污染源排放行业的应用越来越广,其产品质量和服务受到了广泛的认同。今后我们将再接再厉,不断创新,优化整合烟气排放行业环境解决方案,为打造绿色生态文明奉献自己的一份力。
  • 纽迈分析网络讲堂“低场核磁共振新技术的应用介绍”即将开讲
    纽迈分析网络讲堂“低场核磁共振新技术的应用介绍”即将开讲随着深入的研究,市场对低场核磁共振技术的需求不断提高,如高分辨率、超短弛豫分析等,对此纽迈分析研发出数个新的采样及成像序列,开发出了相应领域新的解决方案,并将于9月8日在仪器信息网的网络讲堂开讲“低场核磁共振新技术的应用介绍”,届时,纽迈分析将会同特邀嘉宾-同济大学佘安明老师向新老客户介绍低场核磁共振的新技术与新应用。内容主要:1、无损测量多孔介质的孔径大小及分布(2nm-500nm); 2、颗粒表面特性分析(比表面积);3、清醒小动物体成分分析及脂肪分布成像; 4、水凝胶分离机理研究;5、致密砂岩的孔隙度分析; 6、高聚物等致密样品的弛豫分析;7、基于低场核磁共振技术的水泥基材料特性研究。网络讲堂时间:2016年9月8日 10:00-11:30报名方式:1、点击以下链接,登录仪器信息网报名参与在线听讲并提问:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2031 2、您还可以微信回复留下您的姓名、单位、邮箱和联系电话,我们会派专人和您联系,邀请您加入网络讲堂。此次网络讲堂主讲人是纽迈分析应用方法研发经理高杨文先生,他主要负责低场核磁新方法的研发及应用,近两年其团队协助成功推出多个新产品,在市场上取得不俗的销售成果。纽迈分析还有幸邀请到了同济大学佘安明老师,佘老师主要研究水泥基材料荷载-环境耦合作用下细观损伤劣化、水泥基材料防护与自修复技术等,在水泥孔隙结构研究方面积累了丰富的经验。通过本次网络讲座,相信您将会对低场核磁共振有一个全新的认识!新的技术、新的解决方案、专业技术人员在线答疑,精彩纷呈,纽迈分析网络讲堂热忱期待各位网友共同参与!届时,我们还会从线上抽取8名幸运观众,赠送精美礼品。更多信息请关注纽迈分析公司网站
  • 聚氨酯生产企业氧指数测定仪首选仪器厂商---莫帝斯燃烧技术
    烟台万华聚氨酯股份有限公司(烟台万华)成立于1998年12月20 日,是山东省第一家先改制后上市的股份制公司。 公司主要从事MDI为主的异氰酸酯系列产品、芳香多胺系列产品、热塑性聚氨酯弹性体系列产品的研究开发、生产和销售,是亚太地区最大的MDI制造企业。目前,公司共有三套MDI装置,产能达到100万吨/年,产品质量和单位消耗均达到国际先进水平。江苏长顺集团有限公司位于张家港市金港镇南沙工业园区长阳路一号长顺大厦,成立于1995年5月18日,是一家致力于低碳环保、科技创新的国际品牌化工企业,为汽车、电子、电器、建筑、家居等行业提供工程塑料材料、高性能复合板材、PVC表皮、聚氨酯系列产品和系统解决方案。自公司发展至今,先后成立了温州长颖贸易有限公司、重庆长润贸易有限公司、青岛长润通贸易有限公司、上海长颖化工有限公司、长泰汽车材料饰件有限公司、中德合资贝内克-长顺汽车内饰材料(张家港)有限公司、长顺保温节能科技有限公司、江苏长华聚氨酯科技有限公司、长能特种聚氨酯材料有限公司和长顺高分子材料研究院有限公司,构建成了科研、生产、销售于一体的产业格局。这两家国内聚氨酯行业的龙头企业,都毫不犹豫的选择了莫帝斯燃烧技术(中国)有限公司的氧指数测定仪,作为生产的品质检测,以及研发工具,莫帝斯仪器得出的测试数据稳定,质量优越,同时操作简单,深受用户好评!莫帝斯燃烧技术(中国)有限公司生产的氧指数测定仪具有以下几大特点:1、选择寿命更长的氧气传感器,避免了用户的频繁更换及后期的无谓消耗;2、数字化显示氧气浓度,便于用户读数3、数字化显示氮气百分比浓度及混合气体总流量数值4、调节步长为为0.1-0.2L/min,便于用户更快、更精确确定读数www.firetester.cnwww.motis-tech.com
  • 振动试验内容介绍——冲击试验
    冲击是指在极其短暂的时间内给产品施加一个高量级的外力脉冲,从而评估其在储存、运输、使用的寿命周期内对冲击环境的适应性和耐受程度。冲击试验有很多种,自由跌落、翻转、抛摔、拍击、撞击、弹道冲击、爆炸冲击等等。 一般常见的冲击试验有三种:经典波形冲击、冲击响应谱、瞬态冲击脉冲波形(实测波形)。1 经典波形冲击半正弦波(halfsine wave)、半正矢波形(haversine wave)、梯形波(trapezoidal wave)、锯齿波(sawtooth wave)、三角波(triangle wave)。试验1:正弦半波 加速度10G 脉宽20msec正方向3次 反方向3次 三个方向(X、Y、Z)冲击 试验2:后锯齿波 加速度5G 脉宽15msec正方向5次 三方向(X、Y、Z)冲击试验3:梯形波 加速度50G 脉宽8.4msec正反方向各5次 三方向(X、Y、Z)冲击试验条件内容相对比较简单,需要注意的地方是,必须注意控制波形在容差带内,实在不行的情况下,上升沿波形必须在容差带内。另外,还有一个前补偿和后补偿的概念,即下图所示中的B1和B2,一般振动控制仪中的默认值为A的10%。当位移量不够用的时候,可以适当调整前后补偿,改变最大位移量。2 冲击响应谱(SRS,Shock Response Spectrum)经典波形冲击试验由于没有考虑机构对冲击的响应,在实际环境中还是有损坏的情况发生,已经不能满足试验的要求。于是,冲击响应谱概念便被提出,指在冲击激励函数的作用下,一系列单自由度振动系统的最大(加速度、速度、位移)响应值随系统的固有频率而变化的图谱。提供的是一个产品和它的组成部分对一个给定的输入脉冲响应的估计方法,具有更加真实的环境模拟效果。冲击响应谱控制技术通常用来模拟复杂振动环境如地震和爆炸冲击。它是描述瞬态波形对结构的潜在损伤程度。试验参考谱即冲击响应谱,通过冲击响应谱合成出时域波形,时域波形由用户指定阻尼的正弦或半正弦波合成,从而驱动振动台振动。能实现冲击响应谱的试验设备有很多,在爆炸冲击中应用最为广泛。随着电动式振动台控制技术的发展,在振动台上己经实现了模拟低幅值的复杂冲击环境的冲击谱的能力,如冲击响应谱控制中的小波综合及正弦衰减模拟方式等等。电动振动台操作成本低、可控性高等优点,但它们的幅值、频谱范围(3 kH z以下)和方向受到限制。试验1:目标SRS:SRS分析条件:采样频率8192Hz数据点数:4096点波形合成条件:变谐正弦波控制条件:线数800冲击方向:X、Y、Z,每方向三次。试验2:频率范围:5-100Hz:响应谱5-30g100-5000Hz:响应谱30g冲击方向:X、Y、Z,每方向三次。3 瞬态冲击脉冲波形(短时实测波形)通过实时主动控制来完成,包含了导入瞬态数据,数据编辑,在振动台上复现波形数据的过程。比如地震再现等试验。在利用振动台进行试验的时候,需要注意动圈位移和功放额定功率的限制,必要的时候可以通过数据编辑改变量级,以便有效地实现试验的动态特性。试验1:下图,从某国家地震网站上下载的csv地震文件,通过数据编辑(单位和采样频率指定、过滤处理、首尾数据处理、频率变换、数值间演算、数据点数变更、补偿波附加等过程)后得到的一个方向上的地震波波形。总结:冲击环境是振动的一种非稳态、持续时间相对较短的机械瞬态振动。个人认为,冲击试验是电动式振动台能实现的试验中,最难的试验,不能理解概念的话,就不能更好的操作控制软件,也就不能得到良好的试验结果。可能是个人所涉及的冲击试验经验比较少,也有可能造成冲击的原因很多且各不相同,对产品造成的效应也不相同。由于冲击情况复杂性,很难归类。备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 某化工仪器店爆炸 仪器全被烧毁
    化工仪器店内被烧得焦黑一片  30日凌晨5时许,龙岗区横岗街道发生一起因爆炸引发的火灾,一家从事生产和售卖化工仪器用品的店铺被焚烧一空,所幸该次火灾未造成人员伤亡。  据了解,事发地位于龙岗区横岗街道保安村天安巷27号一楼一家店铺,民警和消防队员赶到现场后,将大火扑灭。据介绍,爆炸发生时,店铺的卷闸门被炸烂,断成了几截飞到了几米开外。火灾过后,该店铺里被烧得一片狼藉,门口的电视和电脑等都烧成了焦炭,货架上的仪器、试剂等物品全部付之一炬。火灾也殃及当时停放在店门口的两辆车。其中一辆白色的人货车车头损毁严重,另外一辆越野车车身也有被火烧过的痕迹。  据目击者介绍,昨日凌晨5时左右,正在熟睡中的他们忽然被窗户外传来两声巨响吵醒,等他们穿好衣服下楼查看时,才发现楼下的店铺燃起了熊熊大火,火苗夹杂着浓烟都蹿到2层楼高了。住户们发现着火后,纷纷跑下楼来。对于起火原因,附近居民表示,店铺里平时存放的都是一些化学试剂,很可能是化学药品发生爆炸,进而引发火灾。  记者从警方证实,昨日凌晨5时30分左右,消防队员将火扑灭。火灾没有造成人员伤亡。
  • 董绍俊院士在单原子纳米酶研究取得新进展 电镜X衍射仪等科学仪器齐上阵
    p style="text-indent:28px"span style="font-family:宋体"近日,电分析化学国家重点实验室董绍俊科研团队在单原子纳米酶研究领域获得重要进展,相关研究成果以“/spanspanSingle-atom nanozymes/spanspan style="font-family:宋体"”为题发表在近期《科学》子刊《科学· 进展》(/spanspanScience Advances/spanspan style="font-family:宋体")上。/span/pp style="text-indent:28px"span style="font-family:宋体"纳米酶是一种具有酶特性的纳米span style="font-family: 宋体 text-indent: 28px "催化/span材料,近年来,由于其成本低、稳定性高、催化活性可调、易于大规模生产和储存等独特的优点,在生物传感、组织工程、治疗和环境保护等领域得到广泛的应用。然而,纳米酶的低活性位点密度以及复杂的结构/spanspan-/spanspan style="font-family:宋体"晶面催化机理是传统纳米酶技术发展所面临的重大难题。/span/pp style="text-indent:28px"span style="font-family:宋体"为了解决这些问题,董绍俊研究团队发现了一类新的单原子纳米酶/spanspan--spanFeNsub5/sub SA/CNF/span/spanspan style="font-family:宋体",该纳米酶将最先进的单原子技术与固有的酶样活性位点结合起来,其原子分散的金属中心最大限度地提高了原子的利用效率和活性位点的密度。研究团队借助/spanspanSEM/spanspan style="font-family:宋体"、/spanspanTEM/spanspan style="font-family:宋体"、/spanspanSTEM/spanspan style="font-family:宋体"等对单原子纳米酶进行了形貌表征,通过/spanspanXRD/spanspan style="font-family:宋体"、/spanspanXPS/spanspan style="font-family:宋体"、/spanspanXAFS/spanspan style="font-family:宋体"等进行了原子结构分析并运用比色法测定了/spanspanFeNsub5/sub SA/CNF/spanspan style="font-family:宋体"的氧化活性。/span/pp style="text-indent:28px"span style="font-family:宋体"研究团队通过模拟酶活性中心的空间结构,采用自底向上的方法合成了具有轴向五氮配位铁活性中心的单原子纳米酶。以氧化酶催化为模型,通过理论计算和实验研究,/spanspanspanFesub5/sub SA/CNF/span/spanspan style="font-family:宋体"类氧化活性最高的原因是其关键的协同作用和电子供体机制。/spanFesub5/sub SA/CNFspan style="font-family:宋体"的/spanTEMspan style="font-family:宋体"、/spanSTEMspan style="font-family:宋体"表征显示其是拥有多空性质的金属单原子纳米酶,其在碳纳米片上只存在单个的铁原子,单原子纳米酶的平均孔径在/span0.8-3.4nmspan style="font-family:宋体"之间,比表面积达到了/span1407 msup2/supgsup?1/supspan style="font-family:宋体"。电子能量损失谱图像表明,/spanFespan style="font-family:宋体"和/spanNspan style="font-family:宋体"原子均匀分布在整个领域,形成/spanFe-Nspan style="font-family:宋体"三维矩阵网络结构。通过电感耦合等离子体质谱/span(ICP-MS)span style="font-family:宋体"及元素分析测定其中铁元素占比为/span1.2% (wt %)span style="font-family:宋体"、/span氮span style="font-family:宋体"元素占比为/span4.8%span style="font-family:宋体"(/spanwt %span style="font-family:宋体")。/span/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 432px height: 404px " src="https://img1.17img.cn/17img/images/201905/uepic/c30a18b9-7953-4916-ae47-0915cc53c2d9.jpg" title="董.jpg" alt="董.jpg" width="432" height="404"//pp style="text-align: center "strongspanspan style="font-family:宋体"图/spanspan1/span/spanspan.Fesub5/sub SA/CNF/spanspan style="font-family:宋体"的合成路线及形貌表征/span/strong/pp style="text-indent:28px"span style="font-family:宋体"研究结果表明,/spanspanFeNsub5/sub SA/CNF/spanspan style="font-family:宋体"的活性位点与天然氧化还原酶的轴向配位血红素相似。与传统纳米酶相比,/spanspanspanFesub5/sub SA/CNF/span/spanspan style="font-family:宋体"最大限度地提高原子利用效率,显著提高了催化性能,其催化速率常数是/spanspanFeNsub4/sub/spanspan style="font-family:宋体"催化剂的/spanspan17/spanspan style="font-family:宋体"倍、铂的/spanspan70/spanspan style="font-family:宋体"倍以上。与此同时,/spanspanFesub5/sub SA/CNF/spanspan style="font-family:宋体"在体外不仅具有广谱杀菌的作用,在体内也拥有良好的伤口消毒效果。该研究成果为纳米酶的催化机理和合理设计提供了一个新的视角,具有成为下一代纳米酶的巨大潜力。/span/ppbr//p
  • TOC分析的在线高温燃烧法比较:催化燃烧与非催化燃烧
    简介工业用水和废水的工艺监测技术必须长时间运行,且维护要求低,才能提供稳定可靠的监测数据来帮助决策者做出正确的工艺决策。采用高温燃烧法的总有机碳(TOC,Total Organic Carbon)分析技术具有处理多种样品类型所需的稳健性。就燃烧氧化技术来说,催化燃烧和非催化燃烧有所差别,主要体现在工艺监测的运行时长、维护要求、使用成本等方面。本文概述了在线催化与非催化高温燃烧TOC之间的主要差别。为了方便起见,下文将这些燃烧技术分别简称“高温催化燃烧(HTCC,High Temperature Catalytic Combustion)”或“催化法”,和“高温非催化燃烧(HTNCC,High Temperature Non-Catalytic Combustion)”或“非催化法”。本文中的比较只适用于在线技术和高温燃烧TOC技术。想了解更多?燃烧法检测TOC主要用于监测含有废水、工艺水、工业废水中常见的高分子化合物和难氧化有机化合物的样品。催化燃烧包括在一个炉子中加热样品,使用铂金催化剂支持氧化。添加催化剂的目的是为了确保样品中所有的有机碳都被完全氧化。催化燃烧法的炉温不够高,无法仅通过温度来彻底氧化样品中的有机碳。非催化高温燃烧法将炉管中的样品加热到更高温度,能够确保彻底氧化样品中的有机碳。非催化法无需使用催化剂,从而减少了诸多干扰因素。为了防止频繁出现维护问题,必须充分考虑高温非催化燃烧和高温催化燃烧中的盐含量。高温催化燃烧的温度比高温非催化燃烧低。采用高温催化燃烧时,未燃烧的盐会“毒害”催化剂,甚至“毒害”燃烧管。虽然替换燃烧管和催化剂,可以帮助催化燃烧装置在含盐的环境中运行,但会限制分析仪的测量范围和性能,还会增加维护工作量。如果采用高温非催化燃烧,所有的盐都会在更高的温度下彻底燃烧。无需催化剂意味着减少维护工作量。催化燃烧和非催化燃烧之间的最大区别在于工艺设备的维护要求、运行时间、使用成本。Sievers® TOC-R3非催化在线型TOC分析仪Sievers TOC-R3采用非催化高温燃烧法,具有维护简单、使用成本低、运行时间长等优点。Sievers TOC-R3使用光电离检测器(PID,Photoionization Detector)来直接监测挥发性有机化合物(VOC,Volatile Organic Compound),或使用电化学检测器(ECD,Electrochemical Detector)来监测总氮(TN,Total Nitrogen),因而具有满足任何应用需求的灵活性。即使对于挑战性样品基质,此款分析仪的自动稀释、冲洗、标准品检查等功能,都能大大延长仪器的运行时间。此款分析仪采用稳健的模块化设计,能够对样品基质变化做出快速响应。此款分析仪还具有预测诊断功能,提供无与伦比的可靠性。结论与催化燃烧法相比,非催化燃烧法要求更少的耗材和更低的维护要求,这意味着仪器的使用成本更低、运行时间更长。有了更长的运行时间和更可靠的监测数据,非催化燃烧法就能更好地帮助决策者做出正确的工艺决策。Sievers TOC-R3采用非催化高温燃烧法,功能稳健且灵活,能够满足所有应用需求。◆◆◆联系我们,了解更多!
  • TOC分析的在线高温燃烧法比较:催化燃烧与非催化燃烧
    简介 工业用水和废水的工艺监测技术必须长时间运行,且维护要求低,才能提供稳定可靠的监测数据来帮助决策者做出正确的工艺决策。采用高温燃烧法的总有机碳(TOC,Total Organic Carbon)分析技术具有处理多种样品类型所需的稳健性。就燃烧氧化技术来说,催化燃烧和非催化燃烧有所差别,主要体现在工艺监测的运行时长、维护要求、使用成本等方面。本文概述了在线催化与非催化高温燃烧TOC之间的主要差别。为了方便起见,下文将这些燃烧技术分别简称“高温催化燃烧(HTCC,High Temperature Catalytic Combustion)”或“催化法”,和“高温非催化燃烧(HTNCC,High Temperature Non-Catalytic Combustion)”或“非催化法”。本文中的比较只适用于在线技术和高温燃烧TOC技术。想了解更多? 燃烧法检测TOC主要用于监测含有废水、工艺水、工业废水中常见的高分子化合物和难氧化有机化合物的样品。催化燃烧包括在一个炉子中加热样品,使用铂金催化剂支持氧化。添加催化剂的目的是为了确保样品中所有的有机碳都被完全氧化。催化燃烧法的炉温不够高,无法仅通过温度来彻底氧化样品中的有机碳。非催化高温燃烧法将炉管中的样品加热到更高温度,能够确保彻底氧化样品中的有机碳。非催化法无需使用催化剂,从而减少了诸多干扰因素。为了防止频繁出现维护问题,必须充分考虑高温非催化燃烧和高温催化燃烧中的盐含量。高温催化燃烧的温度比高温非催化燃烧低。采用高温催化燃烧时,未燃烧的盐会“毒害”催化剂,甚至“毒害”燃烧管。虽然替换燃烧管和催化剂,可以帮助催化燃烧装置在含盐的环境中运行,但会限制分析仪的测量范围和性能,还会增加维护工作量。如果采用高温非催化燃烧,所有的盐都会在更高的温度下彻底燃烧。无需催化剂意味着减少维护工作量。催化燃烧和非催化燃烧之间的最大区别在于工艺设备的维护要求、运行时间、使用成本。Sievers TOC-R3非催化在线型TOC分析仪Sievers TOC-R3采用非催化高温燃烧法,具有维护简单、使用成本低、运行时间长等优点。Sievers TOC-R3使用光电离检测器(PID,Photoionization Detector)来直接监测挥发性有机化合物(VOC,Volatile Organic Compound),或使用电化学检测器(ECD,Electrochemical Detector)来监测总氮(TN,Total Nitrogen),因而具有满足任何应用需求的灵活性。即使对于挑战性样品基质,此款分析仪的自动稀释、冲洗、标准品检查等功能,都能大大延长仪器的运行时间。此款分析仪采用稳健的模块化设计,能够对样品基质变化做出快速响应。此款分析仪还具有预测诊断功能,提供无与伦比的可靠性。结论与催化燃烧法相比,非催化燃烧法要求更少的耗材和更低的维护要求,这意味着仪器的使用成本更低、运行时间更长。有了更长的运行时间和更可靠的监测数据,非催化燃烧法就能更好地帮助决策者做出正确的工艺决策。Sievers TOC-R3采用非催化高温燃烧法,功能稳健且灵活,能够满足所有应用需求。◆ ◆ ◆联系我们,了解更多!
  • 第一届光谱技术及应用大会暨第九届中国激光诱导击穿光谱学术研讨会暨第六届燃烧诊断研讨会
    光谱技术是近代光学计量的重要分支,通过对物质光谱的探测、分析来获取物质的组成、结构、含量、运动状态等信息,具有非接触、范围广、多组分、灵敏度高、可连续实时监测等优势。这一技术目前已广泛应用于燃烧诊断、环境监测、工业检测、生物医学、航空遥感、目标探测、能源勘探等诸多领域。为进一步推动光谱技术的应用与融合,探讨我国光谱技术的发展趋势和远景目标,促进光谱技术和仪器的进步与创新,中国光学工程学会将于 2023 年5月7-9日在敦煌举办“第一届光谱技术及应用大会暨第九届中国激光诱导击穿光谱学术研讨会暨第六届燃烧诊断研讨会”。会议将邀请150余位光谱及其应用领域的知名专家参会,通过学术报告、海报展示、仪器设备展览等形式,就光谱技术的重要科学问题、仪器发展的关键技术问题、最新研究成果及发展趋势等问题展开研讨。主办单位:中国光学工程学会承办单位:中国光学工程学会西北师范大学协办单位:敦煌研究院中国科学院近代物理研究所上海理工大学中国科学院合肥物质科学研究院中国矿业大学支持单位:长春新产业光电技术有限公司长沙麓邦光电科技有限公司光谱时代(北京)科技有限公司北京镭宝光电技术有限公司国仪量子(合肥)技术有限公司埃德比光子科技(中国)有限公司成都诺为光科科技有限公司北京欧兰科技发展有限公司东方闪光(北京)光电科技有限公司奥谱天成(厦门)光电有限公司上海五铃光电科技有限公司上海尤谱光电科技有限公司深圳市唯锐科技有限公司大会名誉主席:庄松林 院士(上海理工大学)范滇元 院士(深圳大学)乐嘉陵 院士(中国工程院)陈良惠 院士(中国科学院半导体研究所)许祖彦 院士(中国科学院理化技术研究所)大会主席:田中群 院士(厦门大学)刘文清 院士(中国科学院合肥物质科学研究院)孙世刚 院士(厦门大学)王建宇 院士(中国科学院上海技术物理研究所)执行主席:董晨钟(西北师范大学王 哲(清华大学 )蔡小舒(上海理工大学)阚瑞峰(中国科学院合肥物质科学研究院 )周怀春(中国矿业大学 )程序委员会(音序):蔡伟伟、 蔡小舒、曹世权、陈军 、褚小立 、崔执凤、狄慧鸽 、丁洪斌、丁晓彬、董晨钟、董大明、董磊、 董美蓉、付洪波、郭金家 、郭连波、杭纬、 侯贤灯、侯宗宇、胡继明、 胡仁志 、贾云海、阚瑞峰 、 雷庆春 、李博 、李传亮 、李聪、李飞 、李华、李润华、李祥友、李晓晖 、林庆宇、刘诚 、刘冬 、刘飞、刘继桥 、刘木华、卢渊、陆继东、陆克定 、马维光 、马新文、马欲飞、 梅亮 、 敏琦、彭江波 、 钱东斌、任斌、 邵杰 、邵学广、 史久林 、舒嵘、苏伯民、苏茂根、孙对兄、孙兰香、田野、万福 、王茜蒨、王强、 王珊珊 、王圣凯 、王哲、王珍珍、吴涛 、 吴学成 、 吴迎春 、夏安东、 徐文江 、 许传龙 、 许振宇 、 闫伟杰 、 杨荟楠 、 杨磊、杨增玲 、 姚顺春、殷耀鹏、尹王保、于宗仁、俞进、袁洪福 、 张大成、张登红、张雷、赵南京、赵卫雄 、 郑培超、周怀春 、 周磊 、 周卫东、周骛 、 周小计、朱家健 、 朱香平专题分会1) 激光诱导击穿光谱及相关技术召集人:王哲 (清华大学 )、 董晨钟 (西北师范大学 )邀请报告:➢ 丁洪斌(大连理工大学) LIBS 基本物理过程及聚变能应用进展➢ 段忆翔(四川大学) LIBS 技术与仪器的发展历程 从实验室研发到现场应用➢ 郭连波(华中科技大学) 激光诱导击穿光谱基础、仪器及应用研究➢ 刘木华(江西农业大学) PRLIBS 对农产品品质信息分析能力提升方法研究➢ 马欲飞(哈尔滨工业大学) 小型化固体激光器➢ 舒嵘(中国科学院上海技术物理研究所) )————“祝融号”火星车物质成分探测仪中的 LIBS探测与分析➢ 苏茂根(西北师范大学) 激光等离子体辐射、诊断与应用➢ 孙兰香(中国科学院沈阳自动化研究所) 矿浆成分 LIBS 定量分析方法与工业在线应用➢ 王茜蒨(北京理工大学) LIBS 技术在生物医药诊断监测中的应用研究➢ 王哲(清华大学) 激光诱导击穿光谱( LIBS )定量化理论方法及应用➢ 汪正 中国科学院上海硅酸盐研究所 基于微等离子体增强 LIBS 信号研究➢ 俞进(上海交通大学) 针对火星就位探测的激光诱导击穿光谱方法研究➢ 曾和平 华东师范大学 飞秒光丝非线性相互作用诱导击穿光谱➢ 郑荣儿(中国海洋大学) 深海 LIBS :何去何从➢ 周卫东(浙江师范大学) 激光诱导空化气泡的演化及其对 LIBS 光谱的影响➢ 周小计(北京大学) LIB S 在定量应用中的探索研究2) 原子光谱与质谱召集人:侯贤灯 (四川大学 )、 杭纬 (厦门大学 )邀请报告:➢ 陈明丽(东北大学) LA ICP MS 对动植物组织中元素成像方法研究➢ 冯流星(中国计量科学研究院) 阿尔茨海默症计量溯源技术研究➢ 高英(成都理工大学) 基于钒的光化学蒸气发生及应用➢ 郭伟(中国地质大学(武汉)) 高精度 LA ICPOES/ICPMS 原位分析技术及古气候中的应用➢ 杭纬(厦门大学) 高电离电位元素的激光质谱分析技术➢ 侯贤灯(四川大学) 原子光谱分析研究➢ 胡斌(武汉大学) ICP MS 单细胞分析➢ 蒋小明(四川大学) 微型原子发射光谱仪的放电激发源研制➢ 刘睿(四川大学) 金属元素标记均相免疫分析➢ 吕弋(四川大学) 基于金属稳定同位素标记的生物分析研究➢ 邢志(清华大学) 高纯非导体材料纯度分析方法探索➢ 徐明(中国科学院生态环境研究中心) 利用 LA ICP MS 成像技术解析间充质干细胞负载金纳米颗粒的肿瘤靶向规律➢ 于永亮(东北大学) 适于微等离子体发射光谱分析的样品引入方式与接口➢ 郑成斌(四川大学) 碳原子发射光谱及其应用➢ 朱振利(中国地质大学(武汉)) 基于等离子体技术的锑元素与同位素分析方法开发3) 激光拉曼光谱与激光荧光光谱技术及应用召集人:任斌(厦门大学 )、 胡继明 (武汉大学 )邀请报告:陈建(中山大学)➢ 高亮(核工业西南物理研究院) 大气压等离子体活性物种激光诱导荧光定量诊断研究➢ 韩鹤友(华中农业大学)➢ 胡继明(武汉大学) 拉曼光谱在细胞分析中的应用➢ 谭平恒(中国科学院半导体研究所)➢ 杨海峰(上海师范大学)➢ 朱井义(中科院大连化学物理研究所)4) 光声光谱 与 TDLAS技术及应用召集人:马欲飞(哈尔滨工业大学 )、 董磊 (山西大学 )、 王强 (中科院长春光机所 )邀请报告:➢ 陈珂(大连理工大学) 光纤光声传感技术及应用研究进展➢ 姜寿林(香港理工大学深圳研究院) 基于空芯光纤光热光谱法的宽波段多组分痕量气体检测技术➢ 黎华(中国科学院上海微系统与信息技术研究所) 太赫兹光频梳与双光梳光源➢ 李磊(郑州大学)➢ 刘俊岐(中国科学院半导体研究所) 中红外可调谐半导体激光器➢ 刘锟(中国科学院合肥物质科学研究院) 光声光谱多组分检测技术研究➢ 鲁平(华中科技大学) 光声探测技术及应用➢ 王福鹏(中国海洋大学) 基于吸收光谱的海洋原位气体传感技术研究和共性关键问题探讨➢ 王强(中国科学院长春光机所) 高灵敏、大动态范围的腔增强光声光谱气体传 感技术➢ 王如宝(北京杜克泰克科技有限公司) 基于光学麦克风光声光谱技术的环境空气 VOCs检测➢ 吴君军(重庆大学) 基于石英增强光声光谱的相变液滴局部蒸汽浓度表征➢ 许可(朗思科技有限公司) 基于石英增强光声光谱的超高灵敏度气体分析仪器➢ 姚晨雨(山东大学) 空芯光纤 Fabry-Perot干涉仪解调方法和光热光谱气体检测研究➢ 闫明(华东师范大学) 基于光梳的光谱测量技术及应用➢ 郑传涛(吉林大学)➢ 郑华丹(暨南大学) 新型石英增强光声光谱测声器5) 红外及太赫兹光谱召集人:邵学广(南开大学 )邀请报告:➢ 陈斌(江苏大学) 低场核磁与近红外光谱联用分析仪的开发与应用探索➢ 陈孝敬(温州大学) 结合 Libs和线性回归分类对泥蚶重金属污染检测➢ 姜秀娥(中国科学院长春应用化学研究所) 仿生膜水合及其效应的红外光谱电化学研究➢ 兰树明(无锡迅杰光远科技有限公司) IAS在线近红外光谱分析仪器开发➢ 李晨曦(天津大学) 光谱成像与太赫兹光谱技术在食品检测中应用➢ 邵学广(南开大学) 近红外光谱分析中的化学计量学方法与应用➢ 夏兴华(南京大学) 等离激元增强红外光谱生化分析➢ 谢樟华(天津市能谱科技有限公司) 国产红外光谱仪的新机遇和新挑战➢ 臧恒昌(山东大学) 药品连续制造过程中近红外实时评价与放行技术的研究➢ 张良晓(中国农业科学院油料作物研究所) 油料油脂质量安全近红外快速检测技术研究➢ 周新奇(杭州谱育科技发展有限公司) FTIR光谱技术产品开发及其应用6) 超快及瞬态光谱召集人:夏安东(北京邮电大学 )邀请报告:➢ 边红涛(陕西师范大学)——受限体系结构及超快动力学研究➢ 陈海龙(中国科学院物理研究所)——利用飞秒红外光谱实现二维材料准粒子带隙的非接触测量➢ 陈缙泉(华东师范大学)——表观遗传核酸分子的激发态动力学研究➢ 陈雪波(北京师范大学)——镧系化合物势能面交叉控制能量转移动力学研究➢ 丁蓓(上海交通大学)——蓝光受体BLUF域质子耦合电子转移机理➢ 勾茜(重庆大学)——微波光谱探测Diels–Alder环加成预反应中间体➢ 金盛烨(中国科学院大连化学物理研究所)——瞬态光谱技术及其在半导体材料研究中的应用➢ 兰鹏飞(华中科技大学)——阿秒激光与阿秒时间分辨测量➢ 李明德(汕头大学)——双键光开关分子纳米晶激发态顺反异构化机制及其超快动力学研究➢ 蔺洪振(中国科学院苏州纳米所)——和频光谱在电化学能源器件界面表征中的应用➢ 刘剑(北京大学)——路径积分刘维尔动力学和超快振动光谱的模拟➢ 马骁楠(天津大学)——新型有机发光材料中的激发态化学研究➢ 任泽峰(中国科学院大连化学物理研究所)——准二维钙钛矿的本征载流子动力学➢ 夏安东(北京邮电大学)——藻胆蛋白光谱红移机理:构象或激子耦合?➢ 吴成印(北京大学)——超快激光与物质相互作用的新型光源产生及应用➢ 吴凯丰(中国科学院大连化学物理研究所)——胶体量子点自旋超快相干操控➢ 杨延强(中物院流体物理研究所)——含能材料冲击响应的时间分辨拉曼光谱技术➢ 叶树集(中国科学技术大学)——光转换材料构效关系的超快光谱研究➢ 张春峰(南京大学)——分子光电材料的激发态动力学妍究➢ 张贞(中国科学院化学研究所)——气液界面超分子手性自组装动力学及手性传递分子机理➢ 郑俊荣(北京大学)➢ 郑盟锟(清华大学)——面向实现超冷的绝对基态锂锶分子的精密光谱测量➢ 周蒙(中国科学技术大学)——金团簇相干振动的超快光谱研究➢ 朱海明(浙江大学)——石墨烯-半导体界面超快光谱研究➢ 朱一心(杭州善上水科技有限公司) ——一种新型的水合氢离子及其生物功能初探7) 燃烧诊断召集人:蔡伟伟 (上海交通大学 )、 彭江波 (哈尔滨工业大学 )邀请报告:➢ 蔡伟伟(上海交通大学)——金属颗粒燃烧三维形貌、温度、速度测量方法研究➢ 超星(清华大学)——红外光频梳光谱燃烧流场多参数测量方法➢ 陈爽(中国空气动力研究与发展中心)——复杂流场光学诊断技术研究进展➢ 雷庆春(西北工业大学)——四维燃烧诊断:从技术到应用➢ 梁静秋(中国科学院长春光机所)——基于光谱技术的航空发动机涡轮叶片温度及燃气浓度反演研究➢ 林鑫(中国科学院力学研究所)——激光吸收光谱技术在固液火箭复杂燃烧场测量的应用探讨➢ 彭江波(哈尔滨工业大学)——高频PLIF燃烧流场测量及数据分析方法研究进展➢ 彭志敏(清华大学)——基于多光谱融合的热工过程气体参数测量理论及应用研究➢ 齐宏(哈尔滨工业大学)——基于主被动光学层析探测的碳烟火焰温度场与粒径分布场重建研究➢ 伍岳(北京理工大学)——跨界面三维层析技术的开发与优化➢ 武文栋(上海交通大学)——高温环境中激光诱导等离子体激发过程的能量吸收特性研究➢ 熊渊(北京航空航天大学)——高速背景纹影测量技术及其应用8) 环境监测召集人:陆克定 (北京大学 )、梅亮 (大连理工大学 )邀请报告:➢ 陆克定(北京大学)——典型光化学观测站中的光学测量技术与挑战➢ 梅亮(大连理工大学)——基于可调谐二极管激光器的大气环境激光遥感技术➢ 胡仁志(中国科学院合肥物质科学研究院)——大气HOx自由基探测技术研究及应用➢ 刘诚(中国科学技术大学)——卫星结合地面靶向遥感VOCs排放源➢ 楼晟荣(上海市环境科学研究院)——基于激光诱导荧光的城市大气OH自由基总反应性测量与应用➢ 韦玮(重庆大学)——腔增强红外光谱技术➢ 赵卫雄(中国科学院合肥物质科学研究院)——磁旋转吸收光谱法测量OH自由基➢ 郑海明(华北电力大学)——光谱技术在烟气汞连续监测中的应用方法研究9) 工业检测召集人:姚顺春 (华南理工大学 )、袁洪福 (北京化工大学 )邀请报告:➢ 陈达(中国民航大学)——气体可再生能源在线监测技术与装备开发➢ 褚小立(中石化石油化工科学研究院)——近红外光谱分析技术在炼油工业的应用➢ 董大明(国家农业智能装备工程技术研究中心)——水体污染的激光光谱探测方法-从智能传感器到仿生机器鱼➢ 李天骄(南京理工大学)——纳米材料光点火诊断与应用➢ 马维光(山西大学)——光学反馈线性腔增强吸收光谱技术及其应用➢ 杨荟楠(上海理工大学)——基于激光光谱技术的气液两相多参数同步测量及疾病前瞻性诊断研究➢ 姚顺春(华南理工大学)——激光诱导击穿光谱的煤质检测方法➢ 张志荣(中国科学院合肥物质科学研究院)——冶金、石化等工业领域的光谱检测技术及其应用➢ 张彪(东南大学)——基于光场成像的燃烧诊断技术研究
  • iCMR 2017厂商报告:精准创新,低场核磁共振最新技术和应用介绍
    p style="TEXT-ALIGN: center"strong第一届磁共振网络会议(iCMR 2017)厂商报告/strong/pp style="TEXT-ALIGN: center"strong精准创新,低场核磁共振最新技术和应用介绍/strong/pp style="TEXT-ALIGN: center"strongimg title="刚刚.jpg" src="http://img1.17img.cn/17img/images/201711/insimg/5df5be3d-c559-4bcb-8d34-40456689f885.jpg"/ /strong/pp style="TEXT-ALIGN: center"strong高杨文 销售总监/strong/pp style="TEXT-ALIGN: center"strong苏州纽迈分析仪器股份有限公司/strong/ppstrong  报告时间:/strong2017年12月6日/ppstrong  报名地址:a title="" href="http://www.instrument.com.cn/webinar/meetings/iCMR2017/" target="_self"/a/stronga title="" href="http://www.instrument.com.cn/webinar/meetings/iCMR2017/" target="_self"http://www.instrument.com.cn/webinar/meetings/iCMR2017//a/pp strong 报告摘要:/strong/pp  随着国家“一带一路”建设、“西部崛起”战略的兴起,与石油、能源地质相关科研课题研究越来越深入,针对科研提出的新需求和新问题,纽迈推出多个针对性的技术和产品并形成相应的应用解决方案,如无损测量多孔介质的孔径大小及分布(2nm-500nm)、致密低渗岩心的孔隙度分析以及核磁共振成像等。此外,在新材料和生命科学领域以及食品农业领域,低场核磁共振技术表现出巨大的应用潜力:核磁共振颗粒表面特性分析仪获得本次2017BCEIA金奖,0.5T小动物成像方面采用最新研发的序列和配套硬件,成像质量和分辨率大大提升。分层饱和含水技术能无损同时监测样品不同部位的水分变化和迁移,为干燥、复水、物质内部传递提供可靠直观无损的检测技术。/pp  strong报告人简历:/strong/pp  高杨文,男、汉族,1982年12月生,山东人,博士研究生学历。核磁共振产品与技术专家。担任苏州纽迈分析仪器股份有限公司销售总监。/pp  博士,苏州纽迈分析仪器股份有限公司销售总监。核磁共振产品与技术专家。/pp  教育经历:/pp  2002年9月~2006年6月,华东师范大学化学系,化学专业,理学学士。/pp  2006年9月~2011年6月,华东师范大学物理学系,无线电物理专业,博士学位。/ppstrong  工作经历:/strong/pp  2011年7月~2013年12月,安捷伦科技(中国)有限公司,核磁共振产品应用工程师,核磁共振产品专员。/pp  2013年12月~2016年1月,上海纽迈电子科技有限公司,创新研究院经理、代理销售总监,从事低场核磁共振应用项目研发与部分大客户的销售维护工作。/pp  2016年1月至今,苏州纽迈分析仪器股份有限公司销售总监,主要从事低场核磁共振应用项目研发与国内销售管理、推广工作。/pp  附1科研成果:/pp  [1]. YangwenGao,Bingweng Hu, Yefeng Yao, Qun Chen, ‘Segmental Dynamics of PEO/LiClO4 Complex Crystals and Their Influence on the Li+-Ion Transportation in Crystal Lattices: A 13C Solid-State NMR Approach’, Chemistry - A European Journal, 2011, 17(32): 8941–8946. (SCI)/pp  [2]. Ling Wei, YangwenGao, Bingwen Hu, Qun Chen, ‘Structures of crystalline and amorphous phases of the poly(ethylene oxide)/lithium trifluoromethanesulfonate complexes as studied by solid-state high-resolution 13C nuclear magnetic resonance’, Polymer, 2013, 54(3): 1184-1189. (SCI)/pp  [3]. Ling Wei, Qinghua Liu, YangwenGao, Yefeng Yao, Bingwen Hu, Qun Chen, ‘Phase Structure and Helical Jump Motion of Poly(ethylene oxide)/LiCF3SO3 Crystalline Complex: A High-Resolution Solid-State 13C NMR Approach’, Macromolecules, 2013, 46(11): 4447-4453. (SCI)/pp /p
  • 第一届光谱技术及应用大会 暨第九届中国激光诱导击穿光谱学术研讨会暨第六届燃烧诊断研讨会
    第一届光谱技术及应用大会暨第九届中国激光诱导击穿光谱学术研讨会暨第六届燃烧诊断研讨会2022 年 12 月 4-6 日 | 上海大华虹桥假日酒店https://b2b.csoe.org.cn/meeting/CSLIBS2022.html 光谱技术是近代光学计量的重要分支,通过对物质光谱的探测、分析来获取物质的组成、结构、含量、运动状态等信息,具有非接触、范围广、多组分、灵敏度高、可连续实时监测等优势。这一技术目前已广泛应用于燃烧诊断、环境监测、工业检测、生物医学、航空遥感、目标探测、能源勘探等诸多领域。为进一步推动光谱技术的应用与融合,探讨我国光谱技术的发展趋势和远景目标,促进光谱技术和仪器的进步与创新,中国光学工程学会将于 2022 年 12 月 4-6 日在上海举办“第一届光谱技术及应用大会暨第九届中国激光诱导击穿光谱学术研讨会暨第六届燃烧诊断研讨会”。会议将邀请 150 余位光谱及其应用领域的知名专家参会,通过学术报告、海报展示、仪器设备展览等形式,就光谱技术的重要科学问题、仪器发展的关键技术问题、最新研究成果及发展趋势等问题展开研讨。总体日程日期时间活动地点12.4周日14:00-20:00签到一楼大堂12. 5周一08:30-12:00大会开幕式 & 大会报告一楼大华厅13:00-13:30海报交流与评选一楼海报区13:30-18:3008:30-18:30专题 1:激光诱导击穿光谱及相关技术一楼文华厅专题 2:原子光谱与质谱专题 3:激光拉曼光谱与激光荧光光谱技术及应用二楼馨华厅专题 4:光声光谱与TDLAS 技术及应用专题 5:红外及太赫兹光谱一楼锦华厅专题 6:超快及瞬态光谱专题 7:燃烧诊断专题 8:环境监测专题 9:工业检测二楼嘉华厅08:30-18:30展桌展示一楼展区12. 6周二08:30-12:0513:30-18:00专题 1:激光诱导击穿光谱及相关技术二楼怡华厅专题 2:原子光谱与质谱专题 3:激光拉曼光谱与激光荧光光谱技术及应用专题 4:光声光谱与TDLAS 技术及应用专题 5:红外及太赫兹光谱二楼祥华厅专题 6:超快及瞬态光谱二楼馨华厅专题 7:燃烧诊断专题 8:环境监测专题 9:工业检测二楼嘉华厅08:30-18:30展桌展示二楼展区12.4-616:00-18:00现场核酸采样一楼核酸区12.4-617:30-19:00晚餐一楼餐厅12.5-612:00-13:00午餐一楼餐厅*日程可能会根据现场情况进行调整详细日程大会场12 月5 日上午08:30开幕式(1)介绍与会嘉宾 (2)主席致开幕辞大会报告08:50陈建民(复旦大学)——大气气溶胶光学特性研究09:20舒嵘(中国科学院上海技术物理研究所)09:50周怀春(中国矿业大学)——用于燃烧及高温光谱/成像诊断的高精度辐射模型10:20合影 & 茶歇10:40刘志(上海科技大学)11:10俞进(上海交通大学)——针对火星就位探测的激光诱导击穿光谱方法研究 会议日程专题 1:激光诱导击穿光谱及相关技术12 月 5 日下午第一场:基础研究+定量化方法主持人:俞进13:30王哲(清华大学)——激光诱导击穿光谱(LIBS)定量化理论方法及应用13:50苏茂根(西北师范大学)——激光等离子体辐射、诊断与应用14:10周卫东(浙江师范大学)——激光诱导空化气泡的演化及其对 LIBS 光谱的影响14:30张大成(西安电子科技大学)—— 激光诱导击穿光谱新技术与器件研究 (CSLIBS2022-01- 027)14:50陈钰琦(华南理工大学)——新型靶增强正交 DP-LIBS 与 OPC-LIBS 的元素分析研究(CSLIBS2022-05-003)15:00尼 洋(中国地质大学(武汉))——Elemental determination in stainless steel via laser- induced breakdown spectroscopy and back-propagation artificial intelligence network (CSLIBS2022-05-009)15:10李小龙(中国科学院近代物理研究所)——激光诱导击穿光谱表征软物质表面力学性能的实验研究 (CSLIBS2022-01-022)15:20茶歇第二场:基础研究+仪器设备+方法主持人:王哲15:50丁洪斌(大连理工大学)——LIBS 基本物理过程及聚变能应用进展16:10郭连波(华中科技大学)——激光诱导击穿光谱基础、仪器及应用研究16:30马欲飞(哈尔滨工业大学)——小型化固体激光器16:50曾和平(华东师范大学)——飞秒光丝非线性相互作用诱导击穿光谱17:10刘小亮( 东华理工大学) —— 飞秒激光诱导击穿光谱技术对石墨中钍的定量分析(CSLIBS2022-05-018)17:20孙天洋(上海交通大学)——基于神经网络的火星模拟和大气压环境 LIBS 光谱的非线性校准迁 移 (CSLIBS2022-01-003)17:30卢渊(中国海洋大学)——基于显微 LIBS 成像技术的贝壳有机成分分析 (CSLIBS2022-01- 017)17:40饶云飞(上海交通大学)—— 光谱选择和随机森林结合的碎石微量元素的灵敏和精准测定(CSLIBS2022-05-030)12 月 6 日上午第三场:基础研究+仪器设备主持人:丁洪斌08:30段忆翔(四川大学)——LIBS 技术与仪器的发展历程—从实验室研发到现场应用08:50汪正(中国科学院上海硅酸盐研究所)——基于微等离子体增强 LIBS 信号研究09:10林庆宇(四川大学)——面向肺癌组织的 LIBS 元素成像技术、装置及方法(CSLIBS2022- 01-006)09:20刘小亮( 东华理工大学) —— 飞秒激光诱导击穿光谱技术对石墨中钍的定量分析(CSLIBS2022-05-018)09:30张倍艺( 上海交通大学) —— 火星模拟气氛和模拟壤中氮元素的灵敏和精准测定(CSLIBS2022-05-031)09:40茶歇第四场:工业应用主持人:舒嵘10:00孙兰香(中国科学院沈阳自动化研究所)——矿浆成分 LIBS 定量分析方法与工业在线应用10:20王茜蒨(北京理工大学)——LIBS 技术在生物医药诊断监测中的应用研究10:40张雷(山西大学)——NIRS-XRF 联用煤质分析方法研究与应用11:00刘玉柱(南京信息工程大学)——Online in situ detection of elements and pollutions in the atmosphere (CSLIBS2022-05-029)11:20刘可( 华中科技大学) —— 基于 MLIBS 技术的挥发性卤代污染物检测方法研究(CSLIBS2022-01-005)11:30崔敏超(西北工业大学)——Rapid analysis of steel powder for 3D printing using laser- induced breakdown spectroscopy (CSLIBS2022-01-008)11:40刘曙(上海海关工业品与原材料检测技术中心)——激光诱导击穿光谱与铁矿石检测(CSLIBS2022-01-010)12 月 6 日下午第五场:其他应用主持人:汪正13:30郑荣儿(中国海洋大学)——深海 LIBS:何去何从13:50周小计(北京大学)——LIBS 在定量应用中的探索研究14:10刘木华(江西农业大学)——PRLIBS 对农产品品质信息分析能力提升方法研究14:30傅院霞(蚌埠学院)——An exploration of matrix effect on optimal acquisition delay for laser-induced breakdown spectroscopy of metal samples (CSLIBS2022-05-001)14:40田野(中国海洋大学)——水下固体靶的激光诱导等离子体诊断及光谱分析 (CSLIBS2022-01-014)14:50陈枫叶(上海交通大学)——LIBS 和机器学习实现火星气氛和模拟壤中碳元素的精确测定(CSLIBS2022-05-032)15:00何洪钰(中国原子能科学研究院)——激光诱导等离子体光谱直接探测气溶胶中的锶元素(CSLIBS2022-01-016)专题 2:原子光谱与质谱 & 专题 3:激光拉曼光谱与激光荧光光谱技术及应用12 月 5 日下午第一场:激光拉曼光谱与激光荧光光谱 I主持人:杨海峰、胡继明13:30胡继明(武汉大学)——拉曼光谱在细胞分析中的应用13:50杨海峰(上海师范大学)14:10朱井义(中科院大连化学物理研究所)14:30高亮(核工业西南物理研究院)——大气压等离子体活性物种激光诱导荧光定量诊断研究14:50于亚军( 中国科学技术大学) —— 基于线扫描和偶氮拉曼探针的快速活细胞成像(CSLIBS2022-03-004)15:10茶歇第二场:原子光谱与质谱 I主持人:侯贤灯、杭纬15:30侯贤灯(四川大学)——原子光谱分析研究15:50杭纬(厦门大学)——高电离电位元素的激光质谱分析技术16:10胡斌(武汉大学)——ICP-MS 单细胞分析16:30吕弋(四川大学)——基于金属稳定同位素标记的生物分析研究16:50郑成斌(四川大学)——碳原子发射光谱及其应用17:10邢志(清华大学)——高纯非导体材料纯度分析方法探索17:30杨杰(中国科学院近代物理研究所)——ⅥB 族原子一氧化物分子(CrO/MoO/WO)电子态结构研究 (CSLIBS2022-02-010)12 月 6 日上午第三场:原子光谱与质谱 II主持人:杭纬、于永亮08:30于永亮(东北大学)——适于微等离子体发射光谱分析的样品引入方式与接口08:50徐明(中国科学院生态环境研究中心)——利用 LA-ICP-MS 成像技术解析间充质干细胞负载金纳米颗粒的肿瘤靶向规律09:10陈明丽(东北大学)——LA-ICP-MS 对动植物组织中元素成像方法研究09:30郭伟(中国地质大学(武汉))——高精度 LA-ICPOES/ICPMS 原位分析技术及古气候中的应用 09:50茶歇第四场:激光拉曼光谱与激光荧光光谱 I主持人:任斌、陈建10:10谭平恒(中国科学院半导体研究所)10:30陈建(中山大学)10:50韩鹤友(华中农业大学)11:10李晓红(西南科技大学)——润湿性表面增强拉曼散射衬底的研究 (CSLIBS2022-04-002)12 月 6 日下午第五场:原子光谱与质谱 III主持人:侯贤灯、高英13:30高英(成都理工大学)——基于钒的光化学蒸气发生及应用13:50蒋小明(四川大学)——微型原子发射光谱仪的放电激发源研制14:10刘睿(四川大学)——金属元素标记均相免疫分析14:30冯流星(中国计量科学研究院)——阿尔茨海默症计量溯源技术研究14:50朱振利(中国地质大学(武汉))——基于等离子体技术的锑元素与同位素分析方法开发15:10张磊(中国科学院近代物理研究所)——MoO 分子光谱中的同位素位移 (CSLIBS2022- 02-007)15:20于尧(中国科学院近代物理研究所)——一氧化钌分子的电子态结构研究 (CSLIBS2022- 02-008)专题 4:光声光谱与TDLAS 技术及应用 & 专题 5:红外及太赫兹光谱12 月 5 日下午第一场:光声光谱技术I主持人:鲁平13:30刘锟(中国科学院合肥物质科学研究院)——光声光谱多组分检测技术研究13:50王强(中国科学院长春光机所)——高灵敏、大动态范围的腔增强光声光谱气体传感技术 14:10陈珂(大连理工大学)——光纤光声传感技术及应用研究进展14:30郑华丹(暨南大学)——新型石英增强光声光谱测声器14:50吴君军(重庆大学)——基于石英增强光声光谱的相变液滴局部蒸汽浓度表征15:10乔顺达(哈尔滨工业大学)——基于吸收加强的石英增强光声光谱技术 (CSLIBS2022-05- 039)15:20茶歇第二场:吸收光谱技术I主持人:王强15:50黎华(中国科学院上海微系统与信息技术研究所)——太赫兹光频梳与双光梳光源16:10姜寿林(香港理工大学深圳研究院)——基于空芯光纤光热光谱法的宽波段多组分痕量气体检测技术16:30王福鹏(中国海洋大学)——基于吸收光谱的海洋原位气体传感技术研究和共性关键问题探讨16:50王如宝(北京杜克泰克科技有限公司)——基于光学麦克风光声光谱技术的环境空气 VOCs检测17:10宋俊玲(航天工程大学)——燃烧场测量探头设计和工程应用 (CSLIBS2022-03-001)17:20梁添添(哈尔滨工业大学)——基于激光光谱技术的氢气/氧气传感研究 (CSLIBS2022-05- 037)12 月 6 日上午第三场:光声光谱技术II主持人:闫明08:30鲁平(华中科技大学)——光声探测技术及应用08:50郑传涛(吉林大学)09:10李磊(郑州大学)09:30许可(朗思科技有限公司)——基于石英增强光声光谱的超高灵敏度气体分析仪器09:50郎梓婷( 哈尔滨工业大学) —— 基于共振腔的石英增强光声光谱气体传感技术研究(CSLIBS2022-05-034)10:00茶歇第四场:吸收光谱技术II主持人:黎华10:30闫明(华东师范大学)——基于光梳的光谱测量技术及应用10:50刘俊岐(中国科学院半导体研究所)——中红外可调谐半导体激光器11:10姚晨雨(山东大学)——空芯光纤 Fabry-Perot 干涉仪解调方法和光热光谱气体检测研究11:30陈卫(中国空气动力研究与发展中心)——可调谐激光器在高超声速流场光谱诊断中的应用与需求(CSLIBS2022-03-002)11:40刘晓楠(哈尔滨工业大学)——基于中红外半导体激光器和光致热弹性光谱的高灵敏度甲烷检 测 (CSLIBS2022-05-038)12 月 6 日下午第五场:红外及太赫兹光谱方法与应用主持人:邵学广、夏兴华13:30夏兴华(南京大学)——等离激元增强红外光谱生化分析13:50姜秀娥(中国科学院长春应用化学研究所)——仿生膜水合及其效应的红外光谱电化学研究14:10臧恒昌(山东大学)——药品连续制造过程中近红外实时评价与放行技术的研究14:30张良晓(中国农业科学院油料作物研究所)——油料油脂质量安全近红外快速检测技术研究14:50陈孝敬(温州大学)——结合 Libs 和线性回归分类对泥蚶重金属污染检测15:10邵学广(南开大学)——近红外光谱分析中的化学计量学方法与应用15:30茶歇第六场:红外及太赫兹光谱仪器研发主持人:邵学广、陈斌15:50陈斌(江苏大学)——低场核磁与近红外光谱联用分析仪的开发与应用探索 16:10李晨曦(天津大学)——光谱成像与太赫兹光谱技术在食品检测中应用16:30兰树明(无锡迅杰光远科技有限公司)——IAS 在线近红外光谱分析仪器开发16:50谢樟华(天津市能谱科技有限公司)——国产红外光谱仪的新机遇和新挑战17:10周新奇(杭州谱育科技发展有限公司)——FTIR 光谱技术产品开发及其应用17:30鲁兵(华中科技大学)——椰糠基质有效氮近红外检测仪设计与试验 (CSLIBS2022-06- 001)专题 6:超快及瞬态光谱12 月 5 日下午第一场:原子、分子与超快光谱主持人:郑俊荣13:25致辞13:30勾茜(重庆大学)——微波光谱探测 Diels–Alder 环加成预反应中间体 13:55兰鹏飞(华中科技大学)——阿秒激光与阿秒时间分辨测量14:20吴成印(北京大学)——超快激光与物质相互作用的新型光源产生及应用14:45郑盟锟(清华大学)——面向实现超冷的绝对基态锂锶分子的精密光谱测量15:10茶歇第二场:超快光谱与理论主持人:郑盟锟15:25蔺洪振(中国科学院苏州纳米所)——和频光谱在电化学能源器件界面表征中的应用15:50刘剑(北京大学)——路径积分刘维尔动力学和超快振动光谱的模拟16:15夏安东(北京邮电大学)——藻胆蛋白光谱红移机理:构象或激子耦合?16:40张贞(中国科学院化学研究所)——气液界面超分子手性自组装动力学及手性传递分子机理 17:05郑俊荣(北京大学)17:30朱海明(浙江大学)——石墨烯-半导体界面超快光谱研究12 月 6 日上午第三场:超快与二维光谱主持人:马骁楠08:30边红涛(陕西师范大学)——受限体系结构及超快动力学研究08:55陈海龙(中国科学院物理研究所)——利用飞秒红外光谱实现二维材料准粒子带隙的非接触测量09:20李东海(中国科学技术大学)——二维光谱显微技术及应用 (CSLIBS2022-07-003)09:45任泽峰(中国科学院大连化学物理研究所)——准二维钙钛矿的本征载流子动力学10:10茶歇第四场:超快光谱与生物相关体系主持人:任泽峰 10:25陈缙泉(华东师范大学)——表观遗传核酸分子的激发态动力学研究10:50丁蓓(上海交通大学)——蓝光受体 BLUF 域质子耦合电子转移机理11:15康斌(南京大学)——Pump-Probe 显微镜和瞬态成像测量的若干尝试 (CSLIBS2022-07- 003)11:40朱一心(杭州善上水科技有限公司) ——一种新型的水合氢离子及其生物功能初探12 月 6 日下午第五场:超快光谱与激发态理论主持人:杨延强13:30李明德(汕头大学)——双键光开关分子纳米晶激发态顺反异构化机制及其超快动力学研究13:55张春峰(南京大学)——分子光电材料的激发态动力学妍究14:20陈雪波(北京师范大学)——镧系化合物势能面交叉控制能量转移动力学研究14:45金盛烨(中国科学院大连化学物理研究所)——瞬态光谱技术及其在半导体材料研究中的应用15:10茶歇第六场:超快光谱与功能材料主持人:金盛晔15:25马骁楠(天津大学)——新型有机发光材料中的激发态化学研究15:50吴凯丰(中国科学院大连化学物理研究所)——胶体量子点自旋超快相干操控16:15王俊慧( 中国科学院大连化学物理研究所) —— 光化学转换动力学调控新机制(CSLIBS2022-07-004)16:40叶树集(中国科学技术大学)——光转换材料构效关系的超快光谱研究17:05杨延强(中物院流体物理研究所)——含能材料冲击响应的时间分辨拉曼光谱技术17:30周蒙(中国科学技术大学)——金团簇相干振动的超快光谱研究17:55结束语专题 7:燃烧诊断 & 专题 8:环境监测 & 专题 9:工业检测12 月 5 日下午第一场:燃烧诊断 I主持人:蔡伟伟、彭江波13:30彭江波(哈尔滨工业大学)——高频 PLIF 燃烧流场测量及数据分析方法研究进展13:50武文栋(上海交通大学)——高温环境中激光诱导等离子体激发过程的能量吸收特性研究14:10雷庆春(西北工业大学)——四维燃烧诊断:从技术到应用14:30齐宏(哈尔滨工业大学)——基于主被动光学层析探测的碳烟火焰温度场与粒径分布场重建研究14:50梁静秋(中国科学院长春光机所)——基于光谱技术的航空发动机涡轮叶片温度及燃气浓度反演研究15:10蔡伟伟(上海交通大学)——金属颗粒燃烧三维形貌、温度、速度测量方法研究15:20常光(中国航空工业空气动力研究院)——用于燃气当量比测量的丙酮/甲苯激光诱导荧光技术研究 (gpcl2021-01-004)15:30陈爱国(中国空气动力研究与发展中心超高速空气动力研究所)——低密度风洞流场的非接触测量需求及进展 (gpcl2021-01-005)15:40张玥(北京航空航天大学)——基于背景纹影法的动态温度场测量(gpcl2021-01-020)15:50茶歇第二场:环境监测与工业检测 I主持人: 梅亮、杨荟楠16:00赵卫雄(中国科学院合肥物质科学研究院)——磁旋转吸收光谱法测量 OH 自由基16:20梅亮(大连理工大学)——基于可调谐二极管激光器的大气环境激光遥感技术16:40楼晟荣(上海市环境科学研究院)——基于激光诱导荧光的城市大气 OH 自由基总反应性测量与应用17:00胡仁志(中国科学院合肥物质科学研究院)——大气 HOx 自由基探测技术研究及应用17:20李天骄(南京理工大学)——纳米材料光点火诊断与应用17:40张志荣(中国科学院合肥物质科学研究院)——冶金、石化等工业领域的光谱检测技术及其应用 18:00杨荟楠(上海理工大学)——基于激光光谱技术的气液两相多参数同步测量及疾病前瞻性诊断研究18:20马柳昊(武汉理工大学)——激光吸收光谱测温技术的谱线选择新策略研究 (gpcl2021-01-010)12 月 6 日上午第三场:燃烧诊断 II主持人:彭志敏、陈爽08:30陈爽(中国空气动力研究与发展中心)——复杂流场光学诊断技术研究进展08:50伍岳(北京理工大学)——跨界面三维层析技术的开发与优化09:10超星(清华大学)——红外光频梳光谱燃烧流场多参数测量方法09:30彭志敏(清华大学)——基于多光谱融合的热工过程气体参数测量理论及应用研究09:50林鑫(中国科学院力学研究所)——激光吸收光谱技术在固液火箭复杂燃烧场测量的应用探讨10:10熊渊(北京航空航天大学)——高速背景纹影测量技术及其应用10:30茶歇第四场:环境监测 II主持人:陆克定、韦玮10:40陆克定(北京大学)——典型光化学观测站中的光学测量技术与挑战11:00郑海明(华北电力大学)——光谱技术在烟气汞连续监测中的应用方法研究11:20韦玮(重庆大学)——腔增强红外光谱技术11:40刘诚(中国科学技术大学)——卫星结合地面靶向遥感 VOCs 排放源12 月 6 日下午第五场:工业检测 II主持人: 姚顺春、褚小立13:30姚顺春(华南理工大学)——激光诱导击穿光谱的煤质检测方法13:50张彪( 东南大学)——基于光场成像的燃烧诊断技术研究14:10褚小立(中石化石油化工科学研究院)——近红外光谱分析技术在炼油工业的应用14:30陈达(中国民航大学)——气体可再生能源在线监测技术与装备开发14:50董大明(国家农业智能装备工程技术研究中心)——水体污染的激光光谱探测方法-从智能传感器到仿生机器鱼15:10马维光(山西大学)——光学反馈线性腔增强吸收光谱技术及其应用15:30梁炫烨(北京航空航天大学)——Mach-Zehnder 干涉法测量丙烷-空气层流预混火焰的火焰传递函数 (gpcl2021-01-018)15:40乔俊杰(重庆大学)——大气压空气直流辉光放电等离子体转动拉曼散射光谱诊断研究(gpcl2021-01-019)15:50熊青(重庆大学)——非热等离子体激光诊断研究 (gpcl2021-01-021)防疫政策:1. 对 7 天内有高风险区旅居史,以及西藏、新疆、内蒙古呼和浩特、河南郑州、广州、重庆、黑龙江绥化市、甘肃省兰州市、青海省西宁市人员,请线上参会;2. 来沪返沪人员须在 12 小时内完成一次核酸检测(可在机场和火车站落地检),并实行三天三检;3. 参会人员须持双绿码及 24 小时核酸检测阴性证明进行会议签到,双绿码即“随申码”和“行程码”绿码,参会期间非必要不离开酒店;4. 组委会将于 12 月 4-6 日每天 16:00-18:00 在酒店一楼设置核酸采样处,其他时间可从大华酒店步行 4 分钟到凯德七宝商业区广场进行核酸采样(每天 09:00-11:30,13:00-17:00, 18:00-21:00),建议会议期间每天都参与做检测;5. 会议期间除用餐外须全程佩戴口罩,做好防护。注:防疫政策可能会实时调整,请关注会议官网的参会须知。会议注册:类型2022 年 10 月 1 日前(含)缴费2022 年 10 月 1 日后缴费普通代表2400 元/人2600 元/人学生代表2000 元/人2200 元/人会议费包括:1、所有会场和展区入场;2、第 2-3 日午餐,第 1-3 日晚餐,会议期间茶歇;3、会议手册、会议投稿光盘、资料袋。会议将提供正规会议费发票(推荐选择电子普票)。注册地址:https://b2b.csoe.org.cn/registration/CSLIBS2022.html付款方式:a) 在线支付(优选):注册完成后,可跳转到在线支付页面,选择“支付宝”在线完成支付;b) 汇款转账:汇款时请务必注明“姓名+LIBS22”,以便核对;c) 可以先注册填写参会信息,再现场缴费开户银行:工行北京科技园支行户名:中国光学工程学会账号:0200296409200177730住宿信息会议地点:上海大华虹桥假日酒店,上海市闵行区七莘路 3555 号会议合作酒店:上海大华虹桥假日酒店住宿协议价 550 元/间•天预订请联系:喻经理,13916973452*预订时请说明是中国光学工程学会光谱会议组委会联系人索尼珂:022-58168515,15122063125sonik@csoe.org.cn 张洁:022-58168510,zhangjie@csoe.org.cn
  • 融合发展 第一届光谱技术及应用大会暨第九届中国激光诱导击穿光谱学术会议暨第六届燃烧诊断会议在敦煌开幕
    仪器信息网讯 2023年5月8日,第一届光谱技术及应用大会暨第九届中国激光诱导击穿光谱学术会议暨第六届燃烧诊断会议在敦煌开幕。会议旨在进一步推动光谱技术的应用与融合,探讨我国光谱技术的发展趋势和远景目标,促进光谱技术和仪器的进步与创新。本次会议由中国光学工程学会主办,中国光学工程学会光谱技术及应用专业委员会、西北师范大学承办,敦煌研究院、中国科学院近代物理研究所、上海理工大学、中国科学院合肥物质科学研究院、中国矿业大学、先进能源科学与技术广东实验室联办。来自国内相关领域240余家单位的600余位代表出席会议,仪器信息网作为合作媒体出席并对大会进行系列报道。会议现场大会开幕式由中国光学工程学会理事、中国光学工程学会光谱技术及应用专业委员会副主任委员兼秘书长、清华大学王哲教授主持,大会主席、中国科学院上海技术物理研究所王建宇院士、西北师范大学副校长李文生教授分别致辞。大会主席、中国科学院上海技术物理研究所 王建宇院士 致辞虽然科学技术不断的发展,为光谱分析仪器带来了性能上的提高和应用范围的扩展,但不断提高的科学技术水平,也对光谱仪器的性能、体积、成本提出了更加苛刻的要求。王建宇院士在致辞中表示,随着国家对自主创新和工程应用的大力支持,我国光谱技术的发展取得了长足的进步,原创性成果持续涌现。在此形势下,希望通过本届会议,紧跟最新发展趋势,引导重点单位,部署分子科学、光学、电子、化学、仪器等相关行业跨界融合,推动全方位的合作,搭建开放的交流平台,为光谱领域的技术创新提供新的动力。西北师范大学副校长 李文生教授 致辞当前,信息技术创新日新月异,数字化、网络化、智能化深入发展,同时也加速了光谱技术成为近代光学计量的重要分支学科。因其具有测量范围宽、速度快、分析精度高等优势,已在元素分析燃烧诊断、文物保护、大气检测、工业检测、生物医疗、航空遥感、矿物检测等诸多领域发挥着越来越重要的作用。李文生教授表示,随着高端新型光谱仪器的自主化和国产化,其必将为我国近代化工业、农业、科技等众多领域的发展壮大作出重要贡献。中国光学工程学会副秘书长邓伟 进行中国光学工程学会重要活动发布为期两天的会议,组委会精心安排了大会报告、分类报告、青年学者口头报告和张贴报告、优秀论文评选和产品展示等活动。值得一提的是,本次会议特别安排了激光诱导击穿光谱及相关技术、原子光谱与质谱、激光拉曼光谱与激光荧光光谱技术及应用、光声光谱与TDLAS技术及应用、红外及太赫兹光谱、超快及瞬态光谱、燃烧诊断、环境监测、工业检测等多个分会场。会议同期,中国光学工程学会成立了光谱技术及应用专业委员会,并召开了第一届专业委员会工作会议,旨在充分发挥专家学者的创造力、凝聚力和积极性,搭建一个交叉融合,创新奋进的交流平台。光谱技术及应用专业委员会开幕式之后,中科院安徽光学精密机械研究所刘文清院士、中科院上海技术物理研究所王建宇院士、清华大学王哲教授、中国矿业大学周怀春教授、北京邮电大学夏安东教授、中国海洋大学郑荣儿教授分别作大会报告。上海理工大学蔡小舒教授、西北师范大学董晨钟教授分别主持大会报告。中科院安徽光学精密机械研究所 刘文清院士《温室气体光学监测技术进展》环境污染和气候变化是我国生态环境建设的两大关键问题。大气污染气体与温室气体二者同根同源,具有显著的协同性,都涉及到大气成分的变化,但是它们的监测技术原理和仪器构成千变万化,取决于监测对象的浓度和来源。刘文清院士在报告中简要介绍了目前用于在线、现场、地基和天基碳监测技术、成果及应用案例。刘文清院士指出,我国急需补齐温室气体监测能力短板,包括温室气体地面大气及生态碳汇监测、地基及天基遥感监测能力,并加快建立园区、城市、区域、全球不同层面的温室气体监测技术体系。中科院上海技术物理研究所 王建宇院士《深空探测中的激光光谱技术》目前激光诱导击穿/荧光光谱、拉曼光谱、可调谐激光光谱等技术已广泛应用于火星探测中,并且将在后续国际行星探测任务中发挥更大作用。王建宇院士在报告中介绍了深空探测中激光光谱技术取得的一系列进展,比如,中国首次火星探测搭载的 MarSCoDe 已经在火星上获取了宝贵的探测数据,帮助科学家进一步研究火星表面物质成分;中国将在嫦娥七号搭载拉曼光谱仪实现月球表面首次拉曼光谱探测等。王建宇院士指出,中国的行星探测已经走在国际前列,未来将继续进行月球、火星以及小行星探测,采用更多的激光光谱技术手段帮助人类了解行星的形成和地质演化过程。清华大学 王哲教授《中国激光诱导击穿光谱发展现状和展望》王哲教授从基础研究、仪器设备开发、定量分析算法、不同领域应用等方面综述了激光诱导击穿光谱在中国的研究进展,重点介绍了在LIBS精确定量方面的进展,并展望了在国家重大战略目标下LIBS未来的发展潜力和面临的挑战。同时,立足于中国在能源、冶金、化工、农业、文保等多个领域的重大需求,王哲教授展望了LIBS在中国未来发展的机遇和挑战,提出了中国在 LIBS 技术进步和大规模应用的潜在方向。中国矿业大学 周怀春教授《用于燃烧及高温光谱/成像诊断的高精度辐射模型》燃烧等高温辐射对象的光谱/成像诊断是一个越来越受到关注的重要发展方向。周怀春教授研究团队提出了基于蒙特卡洛法的DRESOR法,因其能够获得高方向分辨率辐射强度而成为高温辐射图像分析重要方法之一。同时,该团队进一步提出了辐射计算模型精度的定量评价指标和方法,分别针对蒙特卡洛法和DESOR法,提出了提高其计算精度的方法,特别是证明了改进后的DRESOR法全面优于蒙特卡洛法,为进一步提高燃烧及高温辐射光谱/成像诊断技术的性能奠定了良好基础。北京邮电大学 夏安东教授《复杂分子体系的溶剂化相关的激发态过程的探测和调控》夏安东教授在报告中介绍了课题组长期以来针对复杂分子激发态溶剂化动力学过程复杂且无法直接探测的相关技术和科学问题,发展的多种表征激发态溶剂化动力学的超快光谱技术的原理和方法。他重点介绍采用激发态受激调控(基于受激亏蚀原理)的策略实现了激发态关键中间态的溶剂化过程和关键中间"暗态"的直接探测和表征,激发态溶剂化演化动力学过程中的速率常数和溶剂化相关的结构变化动力学的同时探测等。中国海洋大学 郑荣儿教授《深海 LIBS:何去何从?》随着我国自主研发的深潜器和观测平台技术的发展和进步,如何提升深潜器的作业能力、如何借助于这些平台获得有突破性的科学成果,成为海洋技术领域关注的焦点。郑荣儿教授的报告从“LIBS for Sea or Sea for LIBS ”的讨论出发,对水下 LIBS 探测技术研究和器件研发的历史沿革和发展现状进行介绍。同时,围绕海洋资源探测的战略需求,郑荣儿教授对深海原位LIBS探测技术的未来发展方向和潜在应用“何去何从”进行了探讨。上海理工大学蔡小舒教授 主持大会报告西北师范大学董晨钟教授 主持大会报告此外,本次会议还得到多家仪器企业的支持,并在会议期间分享、展示了他们最新的产品、技术及应用解决方案。展示交流现场
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制