当前位置: 仪器信息网 > 行业主题 > >

超高温合金抗氧化分析仪

仪器信息网超高温合金抗氧化分析仪专题为您提供2024年最新超高温合金抗氧化分析仪价格报价、厂家品牌的相关信息, 包括超高温合金抗氧化分析仪参数、型号等,不管是国产,还是进口品牌的超高温合金抗氧化分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超高温合金抗氧化分析仪相关的耗材配件、试剂标物,还有超高温合金抗氧化分析仪相关的最新资讯、资料,以及超高温合金抗氧化分析仪相关的解决方案。

超高温合金抗氧化分析仪相关的论坛

  • 53.10 芝麻素的分离、分析及抗氧化性能的研究

    53.10 芝麻素的分离、分析及抗氧化性能的研究

    【作者】任蕾【摘要】 芝麻素(Sesamin)属于脂溶性木脂素类化合物,是一种安全、高效的天然抗氧化剂, 具有较强的抗氧化活性,是芝麻中的特殊成份。芝麻素具有多种生理保健功效,如抗氧化,延缓衰老,调节脂质代谢及降低血清胆固醇,促进乙醇代谢,保护肝脏, 提高机体免疫力等,芝麻素对流感病毒、仙台病毒和结核杆菌有抑制作用。农业上用作除虫菊酯的增效剂。芝麻是芝麻素的主要来源,本文以国产芝麻为原料,研究了芝麻素的超临界CO2 法萃取、分析与检测及高温条件下抗氧化能力,为芝麻素的开发利用提供基础。 1.本文以芝麻为原料,对采用超临界二氧化碳萃取芝麻油工艺的可行性及其适宜条件进行了全面而系统的研究。探讨了不同萃取参数(原料预处理(水分含量、粉碎粒度)、萃取压力、萃取温度、CO2 流量、萃取时间、分离压力及温度等)对芝麻油提取率的影响,确定了芝麻油超临界CO2 法萃取的最适宜的工艺技术条件:萃取压力35MPa、萃取温度40℃、萃取时间3h、CO2 流量15 kg/h、粉碎粒度40 目。 2. 采用高效液相色谱法快速测定芝麻油中芝麻素的含量,并对分析进行了研究。液相色谱条件为色谱柱:Diamonsil (C18 250mm×4.6mm,5μm),流动相:甲醇与水的比例为70∶30,流速:1mL/min,检测波长:290nm。芝麻素浓度和液相色谱图上的吸收峰面积在在5 ~ 200μg/mL 内呈现良好线性的关系, 其回归方程: y=72741x+105063,相关系数为R=0.9999;加标回收率为95.51% (RSD=1.29%, n=6)。该方法简便、结果准确、灵敏度高,可用于芝麻素含量的定量分析与检测。 3. 以猪油及大豆油为对象,对芝麻素在高温处理条件下对油脂的氧化稳定性的影响进行了研究,试验结果表明:在高温下,芝麻素具有良好的抗氧化性,且随添加量的增加而增强,如猪油经150℃高温处理后空白组过氧化值是添加0.10%芝麻素组的15.7 倍,而一级大豆油经150℃高温处理后空白组过氧化值是添加0.10%芝麻素组的4.1 倍;芝麻素对猪油和一级大豆油抗氧化效果高于同浓度的茶多酚;与乳酸、EDTA 相比,磷酸对芝麻素的高温抗氧化能力具有显著的增效作用。 【关键词】 芝麻;芝麻素;超临界CO2 萃取;高效液相色谱法;抗氧化性 http://ng1.17img.cn/bbsfiles/images/2012/08/201208201155_384605_2352694_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/08/201208201155_384606_2352694_3.jpg

  • 【原创】最新导电陶瓷材料的耐温2300度以上抗氧化测温热电偶及发热体,坩埚,炉管等产品

    我们刚开发与生产的热电偶,可以在氧化气氛测温2300度。导电陶瓷的发热体,蒸发舟,坩埚,电极,烧嘴,炉管炉衬,喷管喷嘴等这些产品是目前国内外领先的产品,材料的当前最先进的陶瓷,是铪的化合物的复合陶瓷,抗热震,耐腐蚀,有良好的导电与导热性能。这些陶瓷产品可以在氧化气氛耐温2300度,最高达3000度。 材料的突破往往带来一系列设备与产品进步与突破。 我们刚开发与生产的超高温、抗氧化、抗热震,耐腐蚀 ,长寿命导电导热性良好的陶瓷应用就很广,是一个重大利好消息。以此可以提高现有产品质量及开发新的设备,使以前所不能完成的研究与产品生产变为现实。 这种陶瓷是锆的化合物的复合陶瓷。经过复杂的工序制作经等静压后热压2100度烧结。是目前国内外(美、日、俄、欧等)投巨资正在热门研究的材料。这种产品首先是航空航天所急需。如火箭,导弹的鼻锥,翼前缘,发动机内衬,喷管等,所以我国也不例外,如上海硅所,哈工大,西北工大等已研究数年。是863计划。但多年并没有见走出实验室的社会应用报道。 目前我们将这种陶瓷制作于超高温热电偶保护管。利用我们自己的两项专利技术,生产的热电偶可以在氧化气氛及其它气氛准确测温达2300度,在航空航天发动机燃烧室测温,冶金连铸连续测温,高温窑炉,铝电解业连续温,阳极焙烧,燃烧炉,真空炉等以前所不能完成的测温变成现实或使用寿命短的热电偶温情况得到改善。而目前国内外氧化气氛热电偶测温小于1800度,影响了科研与生产的进步。大于1800度往往使用光学等法,由于光亮反射及气氛的影响,测温误差较大。在大于1800度的氧化气氛温度也通常凭经验进行估计。这对于温度要求严格的科研与生产是很不科学的。所以可以在氧化气氛测温超过1800度的热电偶是很有意义的产品。 同样这种陶瓷还可以应用于; 如这种导电陶瓷管以组成超高温氧化气氛感应电炉,可以在氧化气氛长期2300度使用,冲击使用温度最高可达3000度,比现在国内外氧化气氛电炉2000度,提高500度以上。是世界上氧化气氛使用温度最高的电炉。目前国内外最高氧化气氛使用电炉如氧化锆炉,铬酸镧炉等,由于其抗热震差容易炸裂,升降温很慢,浪费能源。并且氧化锆炉需要热启动,热电偶测温在1750度时要慢慢退出,另加光学测温。铬酸镧有严重挥发物影响。(最高使用温度小于1900度)。 以前的氧化气氛超高温炉中多使用碳化硅,硅钼,氧化锆,铬酸镧等,在保护气氛炉中多使用钨,钼,钽,石墨等这些炉管炉衬在超高温时往往不能很好满足研究与生产的特种需求。如高温氧化气氛下材料性能实验根本不能完成。我们这种导电陶瓷套管可以在空气中稳定使用,不需要气体保护。如在真空炉,保护气氛炉中使用该炉管制作的电炉可以一炉多用。大大节省设备投资。应用广泛。 如在石英拉丝炉中使用避免了保护气体的干扰影响产品质量及保护气体的密闭麻烦,并且没有石墨高温挥发造成的产品污染等等。对于开发更高熔点的新光纤产品提供了条件。尤其氧化物加工在氧化气氛是适当的。使拉丝机使用简单方便实用。也可以使得拉丝一机多用。 另外可以在高温光纤予制棒加热设备中得到应用。对于予制棒的研究也将发挥很大的作用。 同样在高温电炉业可以有升级换代的作用,对于氧化物的宝石及激光晶体生长炉也特别适宜,是宝石及晶体生产行业重要的新设备,是以前所绝无仅有的。对于容易氧化的材料加工也可以使用气氛保护,可以一炉两用。 陶瓷件的应用更加广泛,如导电蒸发舟的使用,可以直接接入电源,其效果及寿命远远好于现有产品及进口产品(如硼化钛,氮化硼陶瓷蒸发舟)。 导电陶瓷可以应用于磁流体发电的电极,通道。由于之前没有可以满足磁流体发电所需要的耐高温、抗氧化、耐腐蚀及有良好的导电与导热性能的材料,我国自从60年代在中科院电工所制作样机使用时间短,一直不能得到实际应用。而磁流体发电是一个没有机械传动直接由热能变电能的高效能低污染的发电方式。有很大的发展前途。 有其它如坩埚、蒸发舟,匝钵、电极、烧嘴、水口、铸模、等等在冶金,化工,航空航天,国防,军工等领域都是 前所未有的高档产品。也将发挥前所未有的作用。 这些产品是目前国内外领先的产品 ,在社会上是第一次推出。 导电陶瓷性能;熔点 : 3200度电阻率 : 9.2-11.5微欧.CM密度 : 4.8-6G.CM致密化 : 96%抗弯强度: 330Pa洛氏硬度: 92烧蚀率或抗氧化 : 氧-乙炔焰1950度3.2X10-5MM/S热胀系数: 25-1500;7.2X10-6/DEG导热率 : 0.07CAL/CM.SEC.DEG蒸汽压 : 4.3X10-3(1800度)抗热震 : 1200度放水中反复5次不炸裂耐腐蚀 : 耐金属铁、铝、铜、铅,硅,镁等熔体及冰晶石,氟化物,酸碱、气体等腐蚀可用气氛: O,V,R,N生产方法: 200MP等静压2100度热压烧结 热电偶参数;测温范围: 0-2300度(超过2300度须特别设计与制作)测温气氛: O,V,R,N分度号 : WRe5/26偏差 : 0-500;+ -5; 500-2300+ -1%;2300以上+ -2%丝径 : 0.1-0.5MM;超过1800度非标0.8特制抗热震 : 良好耐腐蚀 : 良好规格 : 直径10,12,14,16,18,20,22 ,24, 26,28,30,35MM;长度陶瓷部分小于200MM价格 : 高 导电陶瓷炉管发热体;感应加热:需要根据炉管尺寸及形状确定其电阻设计电源电阻加热:设计电源及引线体,引线体也可以是发热体材料加大横截面等方法。规格 :外径14,18,22,26,30...100MM;长度小于200MM。性能同上。

  • 耐驰——STA超高温测试氧化铝纤维

    耐驰——STA超高温测试氧化铝纤维

    [color=#000000]STA[/color][color=#000000]配备的钨样品支架拥有确定的热流路径和高量热灵敏度。圆锥形的样品坩埚可以稳固地放置在样品支架上。热电偶采用非焊接设计,可以精确测量温度和DTA信号,方便更换。此外,样品坩埚可以彼此堆叠,方便测试特殊样品。[/color][color=#000000][img=,559,375]http://ng1.17img.cn/bbsfiles/images/2018/06/201806131352287360_7764_163_3.png!w559x375.jpg[/img][/color][color=#000000][color=#000000] 氧化铝纤维熔融和结晶的[/color][color=#000000]DTA[/color][color=#000000]信号,样品挥发产生少量失重[/color][/color][color=#000000][color=#000000][color=#000000]和石墨相比,钨的蒸气压较低,所以常被用在超高温条件下的测试。此处,采用钨炉体和[/color][color=#000000]W3%Re/W25%Re[/color][color=#000000]样品支架来测量高温[/color][color=#000000]TGA-DTA[/color][color=#000000]信号。将[/color][color=#000000]6.8mg[/color][color=#000000]氧化铝纤维置于钨坩埚中加热到[/color][color=#000000]2100[/color][color=#000000]°[/color][color=#000000]C[/color][color=#000000],之后再冷却,整个过程采用[/color][color=#000000]He[/color][color=#000000]气氛保护。上图显示:在红色加热[/color][color=#000000]DTA[/color][color=#000000]曲线上[/color][color=#000000]2047[/color][color=#000000]°[/color][color=#000000]C[/color][color=#000000]出现氧化铝纤维的熔融吸热峰,在蓝色冷却[/color][color=#000000]DTA[/color][color=#000000]曲线上[/color][color=#000000]1936[/color][color=#000000]°[/color][color=#000000]C[/color][color=#000000]出现结晶峰。在绿色[/color][color=#000000]TG[/color][color=#000000]曲线上约[/color][color=#000000]1900[/color][color=#000000]°[/color][color=#000000]C[/color][color=#000000]以后出现[/color][color=#000000]1.1% [/color][color=#000000]的轻微失重,这是由于样品在高温下发生少量挥发。[/color][/color][/color]

  • 超高温瞬间灭菌机使用操作手册

    超高温瞬间灭菌机使用操作手册  超高温瞬间灭菌机原理主要分为直接和间接加热两种,其中直接加热中有蒸汽吹入物料式和物料吹入蒸汽式两种(无锅炉用户也可选用电加热超高温瞬时灭菌机),而间接加热的又分为管式灭菌机和板式灭菌机。国内生产的超高温灭菌机中间接加热的最为常见。管式超高温灭菌机,即我们通常称为瞬时超高温灭菌机因其在乳品、饮料、酒类、冰淇淋、果汁及酱油等流体食品中广泛应用,且具有其它设备无可比拟的优越性,得到食品行业生产厂家使用的青睐。  超高温瞬间灭菌机原理:  一般物料由离心泵进入灭菌机中冷热料热交换装置中而得到预热,再经过充满高压的高温桶,物料被迅速加热到杀菌温度并在此前后保持约3秒,其中的微生物及酶类很快被杀灭。物料出高温桶后通过与冷料的热交换获得冷却,一般温度低于65℃。如果下道工序需要提高温度则可通过调节角式截止阀或循环等途径达到要求,反之则通过接入冷却水来降低出料温度。出料通过节流阀控制,此阀能使在维持一定压力下物料的沸点高于最高温度。正常生产时调节此阀,由泵的推动力克服弹簧压力而产生背压控制流量,在清洗灭菌机时则应全部开启。循环贮槽可用来配制酸碱溶液,对盘管内壁积垢进行有效清洗。由于同时采用不锈钢三通旋塞,流量可以得到适当调节。  超高温瞬时灭菌机使用注意事项  为保障瞬时超高温灭菌机使用性能及寿命,保证安全生产,使用中需注意以下问题。  1、定期检查疏水器及过滤器,防止蒸汽凝结水排出受阻。  2、经常检查安全阀、压力表及温度计是否失灵。  3、如发现进料泵轴封处渗漏严重应及时检修,或调换端面密封圈。  4、如与均质机同时使用,可选用3WR—1.5型高压泵配套,并按该产品说明书要求维护保养。  5、如果在冬季停用期间有受冻可能的地区,应把管道中的水放尽或用1%的碱液充满管子。  6、物料接头及旋塞应经常检查密封性能是否良好,防止泄露产生,空气混入。如果物料中带有空气将会加速物料在管壁上的积垢。  7、设备不用时,蒸汽排出阀应是开启的,以利于今后使用。  8、进料离心泵的电机轴承应一年清洗一次,并要换润滑油,用量不能过多,只要充满轴承壳一半就可以。  9、进料泵不允许在无液体时空转。  10.灭菌过程中遇上突然停电应迅速关闭蒸汽,打开排汽阀排尽高温桶内的蒸汽,同时打开进水截止阀。  11.灭菌过程中若出现停汽或气压达不到工艺要求,应调节阀门使物料在其中循环或暂时停机。  12.防止杂物等进入堵塞灭菌机,空气的进入也会加速盘管的结垢。

  • 超高温杀菌牛奶

    在乳制品制作工艺上,为提高液体乳的外观、营养价值与保存时间,缓解牛乳地域分布不均等现象,进入市场分销的长保质期液体乳,按规定要经过一道超高温灭菌的工序,以破坏其中可生长的微生物和芽孢。此做法是否妥当?有没有杀菌前后数据对比?

  • spss分析总酚含量和抗氧化性的相关性问题!

    [font=Tahoma, Helvetica, SimSun, sans-serif][color=#444444]我在网上查了一些教程,但还是有些问题不太懂。[/color][/font]我有四个样品,测了它们的总酚含量和抗氧化性,想要分析总酚含量和抗氧化性的相关性,spss输入数据后如下所示(每一个样品三个重复,对应的数据是编的):组别 总酚含量 抗氧化数值1 1 21 2 31 3 42 4 5 2 等等等等2333444网上的操作是:点相关性分析,双变量,把总酚含量和抗氧化数值选进去,选pearson系数就可以了但我不太明白的是:我的是四个品种,应该不属于连续变量吧,那是不是不能选pearson?还是说我应该分开做,把样品1的做一个分析,样品2的做一个分析......但是别人的文献里很多品种也只有一个相关性分析的表格想请问一下我这种情况【四个品种,每个品种的数据有三个重复】该怎么做相关性分析?后续我还有一部分数据,也是分析总酚含量和抗氧化的相关性,但那个是【未处理组、反应10min组、反应20min组、反应30min组】四组数据,每组三个重复,这种情况就算连续变量了吧?这个又该怎么做呢?研究了好久,还是理不清头绪,希望大家可以帮忙解答一下!感谢!!!

  • 超高温材料冲击测试装置蒸发器冷冻油多怎么处理?

    超高温材料冲击测试装置中配件比较多,大到压缩机小到电气元器件都是很重要的,冠亚超高温材料冲击测试装置如果发现蒸发器冷冻油比较多的话,建议及时处理比较好。  超高温材料冲击测试装置蒸发器中冷冻油太多,也能引起制冷量不足而导致降温缓慢。超高温材料冲击测试装置蒸发器中存油,可直接通过其油面的冷热分界线来判断,如超高温材料冲击测试装置油位过高应及时放出。  有些氟利昂与冷冻机油互相溶解,因此,超高温材料冲击测试装置制冷系统里的制冷剂在循环流动时,就免不了会有冷冻机油残留于各部件。超高温材料冲击测试装置冷冻油残留在换热器内会影响传热系数。特别是当冷冻机油进入超高温材料冲击测试装置蒸发器后,若结构设计或安装不合理时,超高温材料冲击测试装置冷冻机油就会只进不出或多进少出,使蒸发器里残留的冷冻机油愈来愈多,严重影响其吸热效果,出现制冷量不足的情况,到这地步不处理的话温度就降不下去,因此,必须进行超高温材料冲击测试装置放油工作。  如何判断超高温材料冲击测试装置蒸发管内留有较多的冷冻机油而影响制冷是件较困难的事情。若遇到超高温材料冲击测试装置这种情况,则会出现一个明显的反常现象,即蒸发管上的白霜是稀稀拉拉的,结得不完全,并且呈浮霜,若无其他故障的话,那很可能是蒸发管内残留冷冻机油太多的缘故。清除超高温材料冲击测试装置蒸发器内冷冻机油,必须将它拆下来,进行吹洗再烘干。对排管式蒸发器,因拆卸很不方便,可将超高温材料冲击测试装置蒸发器的进口用压缩空气吹,然后用喷灯烘蒸发管。  超高温材料冲击测试装置的蒸发器种类也是比较多的,一旦存在冷冻油比较多的话,就需要我们及时解决。

  • 【分享】什么叫巴氏杀菌奶和超高温灭菌奶?

    [size=5][b]什么叫巴氏杀菌奶和超高温灭菌奶?[/b][/size]巴氏杀菌奶,是以新鲜牛奶为原料,经过离心净乳,在低于牛奶沸点(100.55℃)的温度对牛奶进行加热杀菌。一般以塑料袋、玻璃瓶或新鲜盒包装。巴氏杀菌奶需要冷藏保存,保质期在1-7天左右,超高温灭菌(Ultra High Temperature,简称UHT)是通过瞬间(一般3~4秒)升高灭菌温度(135~140℃)来达到理想的灭菌效果。这种灭菌方式能杀死牛奶中绝大部分细菌,同时避免了对牛奶营养成分造成破坏。一般以利乐包包装。超高温灭菌奶可以常温保存,保质期可以达6个月,特别方便运输和储存。

  • 【原创大赛】酒中抗氧化能力ORAC分析

    【原创大赛】酒中抗氧化能力ORAC分析

    酒中抗氧化能力ORAC分析1.实验原理ORAC反应是一个经典的氢原子转移(HAT)的氧化过程。在实验条件下,一分子的AAPH失去一分子氮气,生成两分子AAPH自由基(方程1)。在空气中,生成的AAPH自由基很快与O2反应(方程2)生成相对稳定的过氧自由基ROO· 。荧光素的荧光衰退曲线表明过氧自由基对荧光素的破坏程度,在没有抗氧化剂存在的情况下,ROO·从FL获得一个氢原子(方程3),致使荧光素的荧光衰退;在有抗氧化剂(ArOH)存在的情况下,ROO·从抗氧化剂获得一个氢原子,生成ROOH和一个稳定的抗氧化剂自由基ArO· (方程4),致使荧光素被过氧自由基破坏的速率受到抑制(见图1)。R-N=N-R 2R· + N2 (1)R·+O2 ROO· (2)ROO· + probe (荧光素) ROOH + oxidized probe (失去荧光) (3)ROO·+ArOH(抗氧化剂) ArO· + ROOH (4)http://ng1.17img.cn/bbsfiles/images/2013/10/201310141626_470806_1613776_3.gif图1 ORAC检测示意图2.实验方法ORAC法即氧自由基吸收能力(又称为抗氧化能力指数),是一种测量不同食品抗氧化能力的国际通用标准单位,检测数值愈高代表其抗氧化能力就愈强。ORAC法适合抗氧化剂的高通量筛选,是目前评价抗氧化物质抗氧化活性的最为准确、灵敏度高、应用范围广的方法之一,目前国际上已经有很多商品的标签注明抗氧化能力(ORAC值)。将空白、样品以及标准抗氧化物(Trolox)各20μL,分别与160μL荧光素溶液混合后37℃保温30min,然后再加入AAPH溶液20μL,迅速开始测定,利用荧光酶标仪配备软件记录荧光强度,初始荧光强度值记为f0,以后每隔一段时间测定一个点,荧光强度分别记为f1, f2 …,抗氧化剂作用下荧光衰减曲线下的积分面积,扣除无抗氧化剂的空白曲线下面积,得出抗氧化剂的曲线下净面积(Net AUC)。抗氧化剂的ORAC值是通过其荧光衰退曲线的曲线下净面积与标准抗氧化物质Trolox的曲线下净面积相比得出的,ORAC值以Trolox当量μmol Trolox equivalent/g (μmol TE/g)或μmol Trolox equivalent/L (μmol TE/L)表达。我们将以ORAC方法来验证,包括线性(定量限与检测限)、精密度与准确度、重复性与稳定性、回收率等。通过验证方法的可行性,以此来评价保健酒的抗氧化能力。3.试剂溶液的制备3.1磷酸盐缓冲溶液3.1.1缓冲溶液储备液0.75 M K2HPO4:130 g K2HPO4溶于1 LddH2O;0.75 M NaH2PO4:90 g NaH2PO4溶于1 LddH2O 3.1.2缓冲溶液工作液分别量取K2HPO4贮备液81 mL,NaH2PO4贮备液19 mL,混合后用ddH2O定容至1000 mL,这样得到75 mM,pH 7.4的缓冲溶液,冰箱下贮存。3.2荧光素钠盐溶液荧光素钠盐贮备液1:称取0.0456g荧光素钠盐定容到100 mL磷酸缓冲液,4℃黑暗贮存;荧光素钠盐贮备液2:1000μL贮备液1用磷酸缓冲液定容至100mL,4℃黑暗贮存;荧光素钠盐工作液:800μL贮备液2用磷酸缓冲液定容至100mL,4℃黑暗贮存。3.3 Trolox标准溶液的配制0.0125 g Trolox定容到50 ml磷酸缓冲液中,得到1000μM的贮备液,−20℃ 贮存。然后用磷酸缓冲溶液依次稀释成100,50,25,12.5,6.25μM的工作液。3.4 AAPH溶液0.414g AAPH完全溶于10mL pH7.4,75mM的磷酸缓冲溶液,即得153mM的溶液,冰浴保存。(8h的有效期,现配现用)3.5

  • 超高温3000℃热物理性能测试中的红外测温计在线校准

    超高温3000℃热物理性能测试中的红外测温计在线校准

    [color=#990000]摘要:本文将针对超高温3000℃热物性测试中红外测温仪的在线校准,提出了采用高温固定点的在线校准方法,介绍了用于超高温条件下的几种固定点,并针对典型超高温测试设备描述了具体固定点单元形式和校准实施方法。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000]一、在线校准的必要性[/color][/size] 在超高温1500~3000℃范围内的材料热物理性能测试中,普遍使用非接触式红外测温仪进行样品温度测量。温度测量精度决定了热物性参数的测量准确性,所以红外测温仪要定期进行校准。但在实际使用中,校准过的红外测温仪还存在以下几方面因素对温度测量精度带来影响: (1)如在激光闪光法热扩散系数和热膨胀系数等测试设备中,测温仪一般直接测量样品表面温度,但往往测温仪的焦点位置并未与样品测温面重合,或测温仪的对准没有完全集中在样品上,而是部分聚焦在靠近样品周围的部分样品支架上,这些测温仪的轻微错位都会导致温度测量出现重大误差。 (2)如在超高温下落式量热计比热容测试设备中,很多时候测温仪是对装有被测物的样品盒表面温度进行测量,样品盒的表面温度与内部被测样品的实际温度还有一定差别,测温仪获得的并不是样品的真实温度。 (3)红外测温仪普遍对被测物表面的发射率比较敏感,如果没有进行特殊的黑体空腔处理,对于未知发射率表面的温度测量则很难测准。 (4)超高温下的温度测量,红外测温仪一般需要透过加热炉光学观察窗和内部保护气体监测温度,光学窗口和气体的透射率通常是未知的,并且可能会随着加热炉使用过程中蒸发材料的沉积而演变。 由此可见,在实际应用中,为了保证温度测量的准确性,需要对红外测温仪进行现场校准,而不仅仅是将它们从实验装置中取出进行定期校准。 本文将针对超高温3000℃热物性测试中红外测温仪的在线校准,提出采用高温固定点的在线校准方法,还将介绍用于超高温条件下的几种固定点,并针对典型超高温测试设备说明具体固定点单元形式和校准实施方法。[size=18px][color=#990000]二、高温固定点在线校准方法[/color][/size] 高温固定点在线校准方法是一种典型的对比法,原理是基于准确已知被测样品温度来校准接触和非接触式测温仪。具体方法是按照被测样品的外形测试和外表材质制作固定点单元,然后将固定点单元作为被测样品进行升温和升降试验,通过对已知的固定点标准温度与测温仪的测量值进行对比,达到对红外测温仪进行校准的目的。 固定点是国际温标中规定的可复现的平衡温度,是纯物质的三相点、沸点和凝固点,固定点都是根据物质的相变过程实现的,所选用的固定点绝大部分都是纯物质的变相点。 ITS-90温标在-189.3442℃~961.78℃温度范围共有九个定义固定点,分别为:纯银、纯铝、纯锌、纯锡、纯铟五个固定点,水、汞、氩三个三相固定点 以及镓熔点。 高温固定点是一系列金属的碳共晶与碳包晶固定点,主要有Pd-C(1492℃)、Rh-C(1657℃)、Pt-C(1738℃)、Ru-C(1954℃)、Ir-C(2292℃)、Re-C(2474℃)、WC-C(2749℃)和HfC-C(3185℃),由此可覆盖1500℃ 至3200℃范围内的红外测温仪在线校准。[size=18px][color=#990000]三、高温固定点单元[/color][/size] 固定点单元是一种样品尺寸大小的坩埚,坩埚内通过熔融灌装或直接镶入的方法植入了固定点材料。高温固定点单元要求满足以下几方面条件: (1)耐高温,且高强度避免损坏; (2)只有纯度最高的材料金属和石墨,不能有其他杂质; (3)外形尺寸与被测样品一致,且密封严紧避免熔液泄露; (4)集成有黑体空腔,降低发射率影响; (5)整体结构设计和布局要保证温度的均匀分布。 针对超高温热物性测试中的红外测温仪在线校准,需要根据相应的样品摆放形式和尺寸采用不同结构的固定点单元,如在各种超高温3000℃热物理性能测试设备中,样品的摆放主要有立式和卧式两种结构,那么就需要采用相应不同结构的高温固定点单元。 在很多超高温3000℃激光闪光法热扩散系数和下落式量热计比热容测试设备中,样品是立式摆放形式,红外测温仪一般从下至上或从上至下对样品的底部或顶部进行测温,相应的固定点单元结构如图1所示。固定点主体和端帽为高纯石墨,图中的多个长孔内浇灌固定点材料,或直接插入固定点材料细棒,图1(a)中左侧的黑体空腔朝向红外测温仪。[align=center][img=红外测温仪在线校准,690,170]https://ng1.17img.cn/bbsfiles/images/2022/01/202201060915316401_7706_3384_3.jpg!w690x170.jpg[/img][/align][align=center][color=#990000]图1 立式结构高温固定点单元:(a)主体剖面图;(b)主体顶视图;(c)端帽剖面图;(d)端帽顶视图[/color][/align][align=left][/align][align=left] 对于一些样品是卧式摆放形式的超高温3000℃热物性测试设备,如热辐射性能以及顶杆式和光学热膨胀仪,红外测温仪或高温热电偶一般在样品的水平方向上进行测温,相应的固定点单元结构如图2所示,固定点材料一般是直接熔灌入石墨坩埚内。图中的黑体孔对准红外测温仪,也可以插入被校热电偶。[/align][align=left][/align][align=center][color=#990000][img=红外测温仪在线校准,500,327]https://ng1.17img.cn/bbsfiles/images/2022/01/202201060916391456_3774_3384_3.jpg!w690x452.jpg[/img][/color][/align][align=center][color=#990000]图2 卧式结构高温固定点单元[/color][/align][size=18px][color=#990000]四、采用固定点在线校准过程[/color][/size] 在超高温热物性测试设备中采用固定点进行红外测温仪或热电偶在线校准的过程,首先是确定需要校准的温度测量范围,并选择不同的标准温度固定点单元尽可能的覆盖此温度范围,然后分别采用相应的固定点单元单独进行校准。 在每个固定点单元校准时,首先是用固定点单元代替被测样品,然后以低速率加热至固定点温度10℃以上并恒温,恒温一段时间后再以低速进行降温。在整个升降温过程中被校温度计连续测量温度,并将测量值随时间的变化曲线识别固定点单元的相变温度。图3示出了温度计测量纯铜固定点熔化和凝固过程的原始温度变化曲线。[align=center][color=#990000][img=红外测温仪在线校准,600,353]https://ng1.17img.cn/bbsfiles/images/2022/01/202201060917182923_7753_3384_3.jpg!w690x407.jpg[/img][/color][/align][align=center][color=#990000]图3 采用纯铜固定点单元在线校准升降温过程[/color][/align] 得到随时间变化的原始温度变化曲线后,对原始曲线进行一阶微分和二阶微分处理得到相应的微分曲线。根据一阶微分曲线中的极大值点可确定第一起始点和第一终止点,根据二阶微分曲线可确定第二起始点和第二终止点。基于得到的四个温度位置点,可最终确定原始温度变化曲线中在此加热速率下固定点单元熔化温度的测量值,此测量值与固定点标准值相差就是校准值。 为了减小升降温速率对校准精度的影响,可采用不同升降温速度进行更精确的校准,即采用不同的加热冷却速率进行加热冷却,得到不同速率下的校准值(测温仪误差),将此温度误差外推至加热或冷却速率为零的情况。[size=18px][color=#990000]五、总结[/color][/size] 综上所述,高温固定点技术可为各种超高温3000℃热物理性能测试设备中的温度测量提供全温区范围内的准确校准,而且高温固定点技术具有良好的重复性、再现性和长期稳定性,并可溯源到国际温标,由此彻底解决了超高温热物性测试中一直困扰着的温度测量准确性评估难题,为材料高温热物理性能准确测量提供了可靠的技术保障。[align=center]=======================================================================[/align]

  • 【资料】试剂与生活——抗氧化剂!

    抗氧化剂:是阻止氧气不良影响的物质。 它是一类能帮助捕获并中和自由基,从而祛除自由基对人体损害的一类物质。如维生素A、C、E;例胡萝卜素(虾青素、角黄素、叶黄素,B-胡萝卜素等);微量元素:硒、锌、铜和锰等  饮食中抗氧化剂长期以来倍受国内外学者关注,这是因为①食物中抗氧化剂能够保护食物免受氧化损伤而变质②在人体消化道内具有抗氧化作用,防止消化道发生氧化损伤@吸收后可在机体其他组织器官内发挥作用④来源于食物的某些具有抗氧化作用的提取物可以作为治疗药品。抗氧化剂的作用机理包括鳌合金属离子、清除自由基、淬灭单线态氧、清除氧、抑制氧化酶活性等。

  • 油脂氧化稳定分析仪

    我用油脂氧化稳定分析仪测试油脂的抗氧化能力,最近这些油脂的重现性很差,诱导时间也不一样,我想请教一下样品中的如果加入了挥发性抗氧化剂会不会有影响啊,加入的是二辛基醚。每次测的时间都不一样。

  • 万米地层的“照相师”——超高温高压小井眼电成像测井仪

    3月4日,当得知深地塔科1井钻探深度突破10000米大关时,马雪青激动不已。马雪青是中油测井制造公司一级工程师,也是深地塔科1井四开测井电成像仪器保障组组长。她主要负责200摄氏度、170兆帕[b]超高温高压小井眼电成像测井仪[/b]的研发、试验和保障工作。为满足深地塔科1井的测井耐温耐压指标要求,该仪器提前一年就完成了研发。2023年底,两支样机经高温测试和标准井功能验证后,从西安奔波2800余公里,与马雪青同时抵达轮台基地。可万万没有想到,经过验证的仪器来到塔里木却“掉了链子”,出现主电流突增通信中断、极板电路供电电源微跳等问题。马雪青对自己说:“必须在一个月内完成所有整改工作。”她逐一分析原因、查找源头,很快就设计出工艺、算法、电路的改进方案,带领团队对仪器进行整改。不料,整改后的仪器在接受万米井验收井——满深11井的检验时,仪器极板图像依然欠佳,地质信息显示不全。满深11井与深地塔科1井的四开井况相似,只有过了这一关,仪器才能具备挺进万米深井的能力和实力。走路、吃饭、睡觉……马雪青脑子里想的都是这件事。一天中午吃饭时,她发现这里的饭菜比西安的咸一些,这激发了她的灵感:“与之前的试验井相比,塔里木的两口试验井泥浆矿化度高,仪器可能是‘水土不服’。”马雪青立刻返回厂房,用食用盐水模拟井下环境,将极板放置其中,终于发现了问题,找到了症结。随之,她带领团队改变了仪器下回路地线结构和极板内部地线安装方式,这一次,仪器终于在高对比度井眼环境中通过了验证。目前,[b]中油测井自主研发的电成像、密度、能谱等6种12支测井仪器均已通过试验验证[/b],准备就位、整装待发。[来源:中国石油新闻中心][align=right][/align]

  • 食品中的抗氧化剂

    关键词: 钢铁成分分析标准样品 钢铁光谱分析标准样品 光谱分析标准物质 光谱标准物质 光谱标准样品 光谱标样 随着国内外对食品质量和安全的广泛关注,如何防止食品变质,保障人体健康日显重要。(钢铁成分分析标准样品)为了提高食品的抗氧化性能,在加工食品中必要时需添加防腐抗氧保鲜剂。(钢铁光谱分析标准样品)预防食物氧化,除了采用低温、避光、真空等物理方法外,主要依靠在食品中加入抗氧化剂,以防止食品,特别是油脂的氧化。(光谱分析标准物质)我国已列入GB 2760中允许使用的抗氧化剂共有17种。主要品种大致分3类:化学合成的酚类化合物、维生素、天然提取物(茶多酚、甘草抗氧化剂、竹叶抗氧化剂等)。(光谱标准物质)

  • 超高温高压流变仪用艾默生TESCOM ER5000压力控制系统的国产化替代方案

    超高温高压流变仪用艾默生TESCOM ER5000压力控制系统的国产化替代方案

    [color=#ff0000]摘要:本文针对高温高压流变仪中的压力控制,特别是针对美国艾默生公司的全套压力控制系统TESCOM ER5000,提出相应的国产化解决方案。解决方案采用的也是电气比例阀驱动背压阀实现高压精密控制,整个压力控制系统为分体式结构,但采用了独立的精度更高的双通道PID控制器作为外部控制器,与电气比例阀一起构成双环控制模式。此方案除了实现国产替代之外,最大特点是可以驱动两个背压阀实现高压全量程的精密控制,且控制精度更高。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][b]一、问题的提出[/b][/size]高温高压流变仪是在特殊的高温高压条件下测量流体材料流变特性(如粘度等)的精密分析仪器,模拟材料的使用工况条件,研究流体材料的黏度与温度、压力的关系,对石油开采(如钻井液、压裂液、酸化液、原油)、石化生产(如润滑油)、煤化工(如油煤浆)、食品加工(如淀粉糊化)等行业有重要指导意义。国内外都非常重视流变仪的研发和使用,但是其核心技术以前一直由西方国家掌握,我国的流变仪一直依赖进口,迫切需要中国自主研发的设备。为此,科技部设立了重大科学仪器设备开发专项“超高温高压钻井液流变仪的研发及产业化”(项目编号:2012YQ050242)以期彻底解决核心技术卡脖子问题。此开发专项由北京探矿工程研究所牵头承担,于2018年取得了重大技术突破,开发完成了Super HTHP Rheometer 2018超高温高压流变仪,并编制了相应的企业标准“Q/HDTGS0006-2018 超高温高压流变仪”,可用于测试钻井液、压裂液等样品在高温高压(最高320℃、220MPa)及低温高压(最低-20℃、220MPa)条件下的流变性。尽管Super HTHP Rheometer 2018超高温高压流变仪在关键技术上取得了突破,但根据文献“王琪, 赵建刚, 韩天夫,等. 超高温高压流变仪中高精度压力控制系统的实现[J]. 地质装备, 2018, 19(2):3.”报道,高压流变仪中的压力控制采用的是美国艾默生公司的全套压力控制系统,其中包含了TESCOM ER5000压力控制器和相应的背压阀。本文将针对高温高压流变仪中的压力控制,特别是针对美国艾默生公司的全套压力控制系统,提出相应的国产化解决方案。本文将详细介绍国产化替代方案的具体内容和相应配套产品。[b][size=18px]二、国产化替代解决方案[/size][/b]在高温高压流变仪中使用的TESCOM ER5000压力控制系统是一种典型的双回路串级PID控制方式(双环模式),如图1所示,其工作原理是采用0.7MPa量程的低压电气比例阀来驱动200MPa量程的背压阀实现精密高压调节。[align=center][img=01.TESCOM压力控制系统结构示意图,690,301]https://ng1.17img.cn/bbsfiles/images/2022/10/202210200941118441_5182_3221506_3.png!w690x301.jpg[/img][/align][align=center]图1 TESCOM ER5000压力控制系统结构示意图(内置和外置双压力传感器,双环模式控制)[/align]根据我们对高压压力控制的使用经验和具体实际应用的了解,特别是针对高温高压流变仪中的高压压力精密控制,应用TESCOM ER5000压力控制系统特别需要注意以下几方面的问题:(1)尽管TESCOM ER5000压力控制系统采用的是双回路PID串级控制模式,但由于采用的是16位AD转换器,所以在控制精度上还有潜力可挖,如采用更高精度的AD转换器。(2)在整个200MPa的高压范围内,采用一个艾默生TESCOM背压阀并不能准确覆盖整个高压范围的压力精密控制,在某些压力区间会出现失调现象。这也是所有背压阀都会出现的问题,解决方法是采用至少2个背压阀来覆盖整个高压范围的精密控制。由此,如果采用2个背压阀进行全量程的高压控制,这势必要采用两套ER5000压力控制器,会明显提升成本。目前国产的背压阀已经非常成熟,技术难度主要在于ER5000压力调节器的国产化替代。针对高精度的压力控制,我们分析了ER5000压力调节器的技术思路,特别基于ER5000压力调节器所采用的这种非常有效的双环模式高精度压力控制方法,我们提出了精度更高和更经济国产化替代方案。如图2所示,方案的技术核心为:[align=center][img=02.双阀高压压力精密控制系统结构示意图,690,497]https://ng1.17img.cn/bbsfiles/images/2022/10/202210200941243661_3252_3221506_3.png!w690x497.jpg[/img][/align][align=center]图2 双阀结构高压压力精密控制系统结构示意图[/align](1)采用分体结构形式,与TESCOM ER5000系统的工作方式相同,同样采用电气比例阀驱动背压阀。根据高压压力控制范围,选择2个不同工作压力范围的背压阀来覆盖整个量程。(2)采用国产电气比例阀作为背压阀的驱动,自带PID控制功能的电气比例阀组成内部闭环控制回路,实现背压阀压力输出的精密调节。(3)外置压力传感器和双通道PID控制器构成外部闭环回路,控制器输出作为电气比例阀设定值,由此可实现ER5000压力控制器的双环工作模式。(4)国产化替代的技术核心是双通道PID控制器,每个通道都具有24位AD和16位DA,双精度浮点运算和最小输出百分比为0.01%,控制器具有RS 485通讯和标准的MODBUS协议,并配备了测控软件,可遥控操作和存储显示测试曲线。此PID控制器性能指标远优于ER5000控制器。我们经过大量试验,已经验证了这种国产比例阀和高精度PID控制器组成的串级控制模式可有效的实现和改善高压压力控制精度,完全可以实现对ER5000压力控制系统的国产化替代。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 抗氧化剂的检测

    抗氧化剂检验方法的发展趋势是各类食品中抗氧化剂的多组分同时测定。色谱技术如高效液相色谱、气相色谱、离子色谱已成为抗氧化剂分析的主要手段。其中高效液相色谱法占主导地位,基本上能进行所有抗氧化剂的分析,气相色谱法主要应用于脂溶性抗氧化剂的分析,离子色谱法主要应用于水溶性抗氧化剂的分析。

  • 润滑油的抗氧化安定性和试验方法概述

    绝大部分润滑油工作中会与空气接触,并处于较高的环境温度中,因此油品成分难以避免地会与空气中氧发生化学反应,生成含有氧元素成分的氧化产物。对油品性能和机械的使用带来一系列危害。    为减少润滑油氧化造成的影响,目前所采取的措施除了在生产中通过精制加工除去不安定成分外,应用zui多的方法是在油品中加人抗氧添加剂和清净分散剂。加人抗氧剂以阻止和延缓油品的氧化变质 加入清净分散剂则是将已氧化变质的成分积炭、油泥等产物从机械部件上清除,减小对机械工作的影响。    一、润滑油工作中的氧化情况:    润滑油的氧化是一个复杂的化学反应过程。氧化中油品烃成分以活泼的自由基形式与氧作用,生成一系列含氧化合物。对于抗润滑油的氧化性能的检测,采取的主要仪器为羽通公司生产的润滑油氧化安定性测定仪和YT-0196润滑油抗氧化安定性测定仪。    (一)润滑油氧化与其产物    以8号涡轮喷气发动机润滑油在储存和试验条件下的氧化情况为例:8号涡轮喷气发动机润滑油在常温下是不容易氧化变质的,在高温下则容易氧化变质,而且温度愈高愈易氧化变质。这不仅是8号涡轮喷气发动机润滑油的氧化规律,而且也是所有矿物润滑油的氧化规律。常温代表储存条件下的温度,高温(150℃以上)代表使用条件下的温度。由此可见,润滑油的氧化主要是在使用条件下的氧化。    1.烃类的氧化:    润滑油所含的各类烃中,在高温条件下,相比较烷烃较易氧化,环烷烃氧化难度较大,而芳香烃则zui不易氧化。    烷烃的氧化过程首先是产生化学活性高的自由基。然后通过一系列自由基链反应,与氧作用生成相应分子结构的醇类化合物、醛类化合物、酮类化合物和有机酸等含氧非烃成分中间产物。    所生成的中间产物醇、醛、酮、酸还会进一步发生氧化,例如有机酸进一步氧化生成含有羟基的复杂分子羟基酸。另外,氧化中间产物中,醇成分和有机酸可发生酯化反应生成酯类化合物。    中间产物醇与酸的酯化反应是润滑油氧化的一个特征反应,这种由两个化合物之间官能团的结合或在一个分子内部两个官能团的结合,其结果使得化合物相对分子质量增大,结构变得复杂。随着氧化过程的进行,分子中氧元素含zui逐渐增多,相对分子质zui逐渐增大,zui终成为粘稠的液体或胶质、固体沉淀从油中沉积下来。    环烷烃一般比烷烃难以氧化,氧化主要发生在烷基侧链上,而环结构部分则性能较稳定,难以发生氧化反应,当温度较高氧化较为剧烈时才可能出现断环生成含氧化合物。因此,环烷烃中随烷基侧链成分增多,相对分子质量增大,其氧化安定性变差。    在芳香烃中,无侧链的芳香烃在[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]时氧化倾向极小。氧化的主要倾向是在碳和氢原子之间加人氧而生成酚及其大分子的胶状缩合物。    有侧链的芳香烃比无侧链的芳香烃易于氧化。侧链的数目和长度增加,氧化倾向也增大。带长链的芳香烃氧化时,氧和侧链作用生成过氧化物.并进一步分解为醇类、醛类、酸类等。生成的醇类和酸类之间也会发生酯化反应生成大分子胶状物。    2.zui终氧化产物:    润滑油在使用中的氧化,如内燃机油的氧化有两个方向:一个方向是生成酸性物质(如羧基酸、羟基酸、沥青质酸等)和酯类的中间产物,zui终产物是炭青质 另一个方向是生成胶质、沥青质等,zui终产物是半油焦质。    在氧化产物中,按其性质可分为三类:    ①过氧化物、羧基酸、胶质,这些成分可溶于润滑油中,其中过氧化物和羧基酸对金属有一定的腐蚀作用     ②羟基酸、半交酯、沥青质酸,这些成分微溶于润滑油中,沉淀部分为粘稠物质,易附着在金属表面,高温时会转化为漆状物。其中羟基酸对金属有较强的腐蚀作用     ③沥青质、半油焦质、炭青质,这些成分以深褐色或黑色的固体粉末状细小的微校悬浮在油中,当聚集成大颗拉时可从润滑油中沉淀下来。    因此可见,经过深度氧化的润滑油,内部化学成分氧元素增多,相对分子质量增大,由烃成分转变为含氧非烃物 外观上颜色变深,沉淀增多,腐蚀性增大。显然,这种变化对机械润滑会带来一系列不良影响。    (二)氧化机理分析:    前所讨论是从反应方向和产物的角度分析了润滑油的氧化情况。然而氧化过程中,油品中的烃成分经历了哪些步骤和环节,以及为阻止这些氧化的进行可采用何种方法尚不明了。因此,在此有必要对润滑油的氧化反应历程和机理进行进一步的分析讨论。    根据现代理论,烃类的氧化本质是一系列通过自由基的链反应过程。    1.自由基    自由基是指带自由电子的原子或原子团,例如烃自由基(R.),羟基自由基(.OH),氢的自由原子(H.)等。通常自由基系由分子受到热、光辐射、电等能量的作用,发生分解而产生的。    由于自由基的自由电子未形成饱和的电子对,是一种不稳定状态,因而具有很高的化学活性。为形成饱和电子对而争夺电子的倾向,使得自由基内部电子云的分布以及所接触的其他分子的电子云的分布发生了相应的变化,从而使得许多在饱和分子间难以发生的反应在此很容易进行。实验证明,自由基和分子之间发生化学反应所需的的活化能一般在40kJ以内,少数为41.8-83.6kJ。而当饱和分子之间发生反应的时候,所需活化能则达300-400kJ。二者之间的差别是明显的。    2.链反应历程    烃类氧化的链反应过程包括四个阶段,即链的开始、链的传递、链的分支、链的中断。    (1)链的开始    链的开始就是指从原料分子中生成zui初的自由基或自由原子。自由基的产生有赖于分子中键的断裂,因此它所需要的活化能就等于饱和价分子中所作用的键能。当分子中吸收了大于键破坏能的能量时,就可使共价链断裂,已成键的共价电子对被拆开,形成两个各带一个自由电子的自由基。通常在分子中键能较小的地方首先发生断裂而生成自由基。    在没有催化剂的条件下,产生自由基所需的能量较大(约300-400k//mol),链的引发是比较困难的。因而氧化开始时,zui初产生的白由基的数目总是很少的,所需的能zui来源于这样几种可能:较高温度时的热能、热辐射和光能、金属器壁的催化作用等。    (2)链的传递    链的传递即自由基与烃分子或空气中氧发生作用的过程。前已介绍,自由基具有很高的化学活性,是烃类链反应的活化质点(也称活性中心),其发生化学反应的活化能一般只有几千焦至几十千焦,远远小于饱和分子间反应的活化能。因此,在自由基出现后,非常容易发生自由基与烃分子或空气中氧的反应,反应结果是通过转变形成新的自由基,使烃成分结构发生改变。烃分子中不断加人氧元素。    链的传递是通过自由基引发的一系列氧化反应过程。其特点一是由于自由基的存在使得反应活化能降低,出现自由基后引起烃类氧化 二是链传递中,自由基的数量没有变化,链传递的过程是由一种自由基形式转变成另一种自由基形式。因此,仅仅是链传递过程,对氧化没有加速的作用。    (3)链的分支    链的分支是自由基增加的反应。研究表明,当烃类链反应中出现过氧化物时,由于过氧化物性质活泼,反应活化能低,因此很容易出现分解反应,由一个过氧化物成分生成两个自由基。    过氧化物ROOH是一类性质很活拨的化合物,根据氧化条件及其本身的特性,可以发生不同的反应,朝不同的方向变化。一个方向是分解成两个自由基,增加自由基的数zui,形成反应链分支。由于过氧化物中O-O键的键能较弱,约100-200kJ,远低于饱和价分子的键    能(300-400kJ),因此,当出现过氧化物后,将会加速油品氧化。    在某些条件和催化剂的作用下,过氧化物的分解还可以朝另一个方向生成醇、醛、酮等饱和价分子的方向分解,这种分解可减少过氧化物数量和降低氧化分支的可能。因此.实际应用中可通过加人某些添加剂与过氧化物作用增强此方向的反应,起到阻止氧化的作用。    (4)链的中断    链的中断即自由基的湮灭。链反应中,一方面有产生自由基的反应。另一方面,也存在着自由基被湮灭的过程。烃类链反应中自由基消失的途径可源自于自由基间的相互作用生成化合物,或与惰性分子作用失去活性两种途径。    两个自由基相互作用时,会结合生成饱和烃化合物而失去自由基的活性状态,同时释放出一定的能量。    自由基的湮灭使得氧化反应中的部分反应链发生中断,起到抑制链反应的作用。    自由基湮灭的另一途径是与惰性分子作用,如与抗氧化剂作用,或被反应器的容器壁吸附。由此形成活性不高的化合物。使自由基失去反应活性而起到中断反应链的作用。    在烃类氧化过程中,当自由基产生的速度高于湮灭的速度时,反应呈现出加速的特征,而当自由基湮灭的速度大于其产生的速度时.则会使氧化的过程受到抑制。    二润滑油抗氧化安定性的评定    这个方法是将30g润滑油放在玻瑞氧化管中,在125℃和金属的催化作用下,进行厚油层中的氧化。具体检测仪器为上海羽通仪器仪表厂生产的YT-0196润滑油抗氧化安定性测定仪。    测定条件和结果的表示方法有两种,一是在缓和氧化条件下以润滑油氧化所形成的水溶性酸(包括挥发和不挥发的)的含量表示,另一种是以润滑油在深度氧化条件下所形成的沉淀物含量和酸值表示。沉淀物的测定可以选择合适的离心机,酸值测定为羽通公司生产的YT-264系列酸值测定仪和YT-7304系列酸值测定仪    因为烃类不同,氧化中间产物的性质可能不同(中性和酸性),羧酸、酚等为酸性物 醇类、酮类、酯类等为中性物。若中性物多,缩合沉淀,但酸值不一定高。所以侧定润滑油的抗氧化安定性时,除了测定其酸值以外,还要测定其沉淀物的含量。    在缓和氧化条件下测定时,是在氧化管内的油样中,放人铜珠和钢珠各一个,然后放人预热到125℃的油浴中,用像皮管将氧化管的支管和装有20mL蒸馏水的吸收瓶连接起来,然后通人清洁空气(通气量5OmL/min),经过4h氧化后,测定油样氧化产生的水溶性酸(包括不挥发性酸和挥发性酸)的含量,以mg(KOH)/g表示。水溶性酸含量越大,表明抗氧化安定性越差。    在深度氧化条件下测定时,测定温度仍为125℃,氧化管内油样中放绕有钢丝的铜片作催化剂,通人氧气(流量200ml/min),经8h氧化后,测定生成的沉淀物,以质量分数表示,并测定氧化后润滑油的酸值。氧化后沉淀物含量越少,酸值越小,表示润滑油的抗氧化安定性越好

  • 【原创大赛】白芍提取物体外抗氧化的作用试验

    【原创大赛】白芍提取物体外抗氧化的作用试验

    白芍提取物体外抗氧化作用的研究目的:测定白芍提取物抗氧化的活性。方法:采用分光光度法对白芍提取物总抗氧化活性进行测定,使用754分光光度计,在520nm处测定其吸光度。结果:白芍提取物具有抗氧化活性,其抗氧化活性大小与浓度具有明显的关系。结论:分光光度法测定白芍提取物抗氧化活性稳定可行,简便,可作为白芍提取物的抗氧化测定标准之一。 白芍系毛莨科芍药植物( Paeonia lactiflora Pall.)的去皮干燥根,性微苦,味苦酸。有养血柔肝,缓中止痛,敛阴收汗的功能。我国白芍主产为浙江、安徽、四川等地。其化学成分主要为挥发油类、单萜类、三萜类及黄酮类化合物等。白芍具有抗凝血作用,能有效清除血管内皮过氧化物,能够明显改善由高胆固醇血症引起的血管内皮细胞的功能下降。可治疗胸腹胁肋疼痛,泻痢腹痛,自汗盗汗,阴虚发热,月经不调,崩漏,带下。中医认为白芍归肝、脾经,有养血、柔肝、疏肝的作用。近年来的研究证实,人体内自由基增多导致的脂质过氧化作用与多种疾病有关。因此,对抗氧化药物的研究已成为自由基医学研究领域中的一个重要课题。测定样品的总抗氧化能力(total antioxidant capacity,TAC)或总清除自由基抗氧化力(total radical-trap pingantioxidative capacity, TRAC)激起了许多学者的兴趣。我国有丰富的植物资源,植物中酚类、黄酮类、萜类和多种提取的抗氧化活性物质的研究越来越受到关注,并且在衰老的自由基学说以及与衰老相关的疾病研究中,抗氧化活性物质的研究也占有很重要的地位。本文采用分光光度法对白芍提取物总抗氧化活性进行测定,以没食子酸标准品为对照,为白芍的进一步研究和应用提供依据。1 仪器和材料1.1 仪器 UV–754N型分光光度计(上海天普);分析天平(TG-328A,上海天平仪器厂);恒温鼓风干燥箱(DHG-9070AS,深圳亿博兰电子有限公司);电热套;恒温水浴箱。1.2 材料白芍(安徽,121001)购于哈药世一堂。1.3 试剂总抗氧化能力测定试剂盒(研域化学试剂有限公司),没食子酸标准品(121131)。其余试剂:双蒸水。2 实验方法[f

  • 徐福记食品含违禁抗氧化剂,寻找食品中抗氧化剂的检测案例

    深圳福田区法院日前审结了一起案件,认定徐福记芒果酥、芝麻香酥沙琪玛含有国家规定不得在糕点或糖果类食品中添加的抗氧化剂,该行为已经构成对消费者的欺诈,必须作出赔偿。今年8月28日,广东一消费者在深圳家乐福商业有限公司购买了三款徐福记食品,其中一款是芒果酥,生产日期为2012年7月18日;另一款是芝麻香酥沙琪玛,净含量为35克,生产日期为2012年7月22日;还有一款落花生酥心糖,生产日期为2012年1月12日。  该消费者称,其在购买食品后才发现,徐福记的上述食品存在违规添加食品添加剂问题——在徐福记的上述食品产品标签中,标注含有食品添加剂TBHQ、BHT。而根据国家标准GB2760相关规定,特丁基对苯二酚(简称“TBHQ”)和二丁基羟基甲苯(简称“BHT”)两种食品添加剂不能添加到糕点或糖果类食品中,“TBHQ和BHT属于食品添加剂中的抗氧化剂,能防止或延缓油脂或食品成分氧化分解、变质,提高食品稳定性的物质。按照卫生部卫政申复2139号《政府信息公开告知书》,上述二种食品添加剂不能添加在糕点或糖果类食品里。”徐福记方面解释:涉案产品中的TBHQ和BHT并非人为添加,而是食品原料带入的。===================================================================================讨论:1、食品安全,原料带入与人为添加有依据判定吗?原料带入就能否定责任?2、征集食品中丁基羟基茴香醚(BHA)、二丁基羟基甲苯(BHT)与特丁基对苯二酚(TBHQ)的检测方法3、你检测过食品中抗氧化剂吗?都是什么食品呢?谈谈你的检测经验吧4、鼓励分享食品中抗氧化剂的检测原创分享,除了可以参加原创大赛,还可以获得100个积分奖励哦!!!*****************检测标准:GB T 23373-2009 食品中抗氧化剂丁基羟基茴香醚(BHA)、二丁基羟基甲苯(BHT)与特丁基对苯二酚(TBHQ)的测定

  • 【求助】抗氧化剂相关求助!!!谢谢

    大家好: 我们公司最近开展了抗氧化剂的检测,使用的方法是NY/T1602-2008,方法挺简单的 ,但是该方法中对分析结果的描述我不是很清楚,麻烦哪位高人指教指教,不胜感谢!方法:准确称取植物油约5g,至于15ml具塞离心管中,加入8ml甲醇,离心,取出上清液于25ml容量瓶中,残余物每次用8ml甲醇提取两次,清液合并于25ml容量瓶中,用甲醇定容,过滤进样。 计算公式是X=(A*V1*D*1000)/(V2*M) 式中:X-样品中抗氧化剂的含量(单位mg/kg) A-将样品所得峰面积带入工作曲线,计算所得进样体积中抗氧化剂的数值(单位为ug) V1-加入流动相体积的数值(单位为uL) V2-进样量的数值(单位为uL) D-稀释倍数 M-样品质量的数值(单位为g)

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制