当前位置: 仪器信息网 > 行业主题 > >

综合性萃取净化浓缩系统

仪器信息网综合性萃取净化浓缩系统专题为您提供2024年最新综合性萃取净化浓缩系统价格报价、厂家品牌的相关信息, 包括综合性萃取净化浓缩系统参数、型号等,不管是国产,还是进口品牌的综合性萃取净化浓缩系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合综合性萃取净化浓缩系统相关的耗材配件、试剂标物,还有综合性萃取净化浓缩系统相关的最新资讯、资料,以及综合性萃取净化浓缩系统相关的解决方案。

综合性萃取净化浓缩系统相关的论坛

  • 【原创大赛】土壤萃取液的净化是个细致活

    【原创大赛】土壤萃取液的净化是个细致活

    [b]前言[/b]土壤中多环芳烃和有机氯具有“三致”作用,对人类健康危害较大,许多科研单位和检测机构都对其展开测定工作,在诸多测定方法中,由于土壤基质成份复杂,土壤萃取液需要净化除杂这个重要步骤。净化后的样品,可以有效降低干扰,提高灵敏度,防止污染仪器的进样口,检测器,离子源等处。本文针对净化步骤展开讨论,结合全自动固相萃取仪,可以同时净化多个样品,净化速度较快,效果较为满意。1、[b] 仪器设备及耗材[/b]平行蒸发仪1台,全自动固相萃取仪1台,全自动氮吹仪1台, Florisil小柱若干,500[color=#333333]℃[/color]烘烤4小时的无水硫酸钠。2、 [b]实验步骤2.1第一次脱水[/b]在萃取瓶口,放置一个小漏斗,加入适量的无水硫酸钠,然后轻轻晃动,静置5分钟左右,如需脱硫,加入适量铜粉,见图1。[img=,522,337]https://ng1.17img.cn/bbsfiles/images/2019/08/201908091718377442_6153_3247983_3.jpg!w522x337.jpg[/img] 图1[b]2.2萃取液浓缩[/b]将萃取瓶中的萃取液倒入平行蒸发仪的浓缩瓶中,再倒入2-3ml正己烷荡洗萃取瓶,合并到浓缩瓶中,不要让无水硫酸钠落入浓缩瓶中,见图2.[img=,519,339]https://ng1.17img.cn/bbsfiles/images/2019/08/201908091724031598_5618_3247983_3.jpg!w519x339.jpg[/img] 图2[b]2.3平行蒸发仪条件[/b]冷却循环水设置为5[color=#333333]℃ [/color]。加热真空装置,温度设置为40[color=#333333]℃ ,[/color]如果是分析多环芳烃,温度不能过高,多环芳烃中有几种低环化合物(如萘),有一定挥发性,低温减少损失。图3[img=,523,339]https://ng1.17img.cn/bbsfiles/images/2019/08/201908091728377708_5805_3247983_3.jpg!w523x339.jpg[/img] 图3[b]2.4真空泵设置[/b]首先将真空设置为500mbar,6-8分钟后,设置为258 mbar为什么要两步设置呢,因为萃取液中有丙酮,真空值设置为500mbar,是首先将丙酮挥发出,防止液体沸腾,引起损失,正己烷真空值为258 mbar,最后将正己烷挥发出来,如果用的是二氯甲烷,可以查询它的真空值后再设定,见图4。[img=,526,341]https://ng1.17img.cn/bbsfiles/images/2019/08/201908091736332431_7421_3247983_3.jpg!w526x341.jpg[/img][b] [/b] 图4[b]2.5第二次脱水[/b]平行蒸发仪的浓缩瓶中,液体体积剩余大概3-5ml时,将浓缩瓶取出,此时再加入少量无水硫酸钠进行脱水。因为水与丙酮互溶,此时再一次脱水,可以将从丙酮中析出的水完全除去。见图5[img=,528,339]https://ng1.17img.cn/bbsfiles/images/2019/08/201908091742269908_9161_3247983_3.jpg!w528x339.jpg[/img] 图5右图的样品,红箭头标识处,无水硫酸钠有结块现象,说明浓缩后的萃取液仍残留少量水份。[b]2.6全自动固相萃取仪净化[/b]将浓缩后的萃取液转移到固相萃取取样管中,并合并洗涤液,(需要净化的样品放置在固相萃取仪左边,右边是接收管)剩下的净化工作让全自动固相萃取仪完成。见图6[img=,528,339]https://ng1.17img.cn/bbsfiles/images/2019/08/201908091749128237_9434_3247983_3.jpg!w528x339.jpg[/img] 图6看到这,可能有同学会问,为什么萃取液要浓缩后再净化,这是因为萃取液有65ml左右,如果直接过[color=#333333]Florisil[/color][color=#333333]小柱[/color]净化,会因为体积过大,大量杂质又被冲洗下来, 达不到净化效果,故浓缩至5ml左右,效果较佳。[img=,530,342]https://ng1.17img.cn/bbsfiles/images/2019/08/201908091751445729_7007_3247983_3.jpg!w530x342.jpg[/img] 图7净化条件中,见图7,本实验室,土壤有机氯选用正己烷:丙酮=9:1(体积比)进行洗脱,效果较好,土壤多环芳烃选用正己烷:二氯甲烷=9:1(体积比)进行洗脱,效果相同。[b]2.7净化液定容[/b]本实验室的平行蒸发仪不能定容,故最后的定容选用氮吹浓缩仪,将氮吹定容后的样品放入进样小瓶中,此刻,土壤萃取液净化工作完成,见图8。[img=,550,339]https://ng1.17img.cn/bbsfiles/images/2019/08/201908091757156198_7182_3247983_3.jpg!w550x339.jpg[/img] 图8[b]3、小结[/b]1、土壤萃取液净化是个重要步骤,也是个细致活,须做到每一步细致,如浓缩时,液体不能蒸发干,过[color=#333333]Florisil[/color][color=#333333]小柱,须保持湿润,速度不能过快等。只有做好了这些“细活”才可能获得较好的效果。[/color]2、[color=#333333]也有老师是将[/color]萃取液浓缩后,去除丙酮再脱水,我个人感觉如果土壤样品含有较多水时,这种脱水效果不是很好,因为水比重比正己烷大,会残留在液体底部,也有可能浓缩后,剩下的是水了,最好还是两步脱水。[b]如有不妥之处,望各位老师批评指正。[/b]

  • 求助!土壤萃取液硅胶柱净化问题

    在做土壤中的多环芳烃,用ASE300萃取完土样后进旋蒸仪浓缩,更换为正己烷做溶剂,然后上硅胶柱净化。我是用60-100目的硅胶10g放入正己烷中调成均浆湿法填入玻璃层析柱的,之前硅胶在130度下活化了16小时。萃取液通过柱后用二氯甲烷和丙酮1:1混合溶液进行的洗脱,可是效果很不好,好像没有起到净化的作用,溶液颜色很深,进样分析后杂质很多,请问我的问题出在哪呢?硅胶在每次使用前都需要活化吗?

  • 新能源电池包综合性能测试系统压缩机安全保护说明

    新能源电池包综合性能测试系统中每个配件都是比较重要的,其中,压缩机是比较主要的配件,一般在选择新能源电池包综合性能测试系统压缩机的时候,需要注意其安全保护,这一点也是很重要的。  一般新能源电池包综合性能测试系统的过载保护器都具有启动和运行2个方面的保护功能。当压缩机启动时,由于机械故障使转子轧煞,电流迅速上升,当电流超过启动电流额定值时,保护器接点跳开,切断电流,避免了电动机启动绕组的烧毁。在压缩机正常运行时,由于外界原因造成温升过高或电流允许值时,保护器接点也会跳开,切断电源,避免了电动机运行绕组的烧毁。  过载保护器是新能源电池包综合性能测试系统压缩机电动机的过电流和过热保护,过载保护器的外壳与压缩机壳体表面紧贴,用于单相压缩机电动机时,保护器应串接在全电流通过的共用线上;用于三相压缩机电动机时,保护器应串接在三相线中的两条线路上。内部保护器是用于新能源电池包综合性能测试系统压缩机电动机上,串接在压缩机内部电动机的绕组共同线上,对压缩机电动机进行过电流保护。  热继电器新能源电池包综合性能测试系统三相压缩机电动机的线路过电流保护,其两组线圈串接在三相线路中的两相上。当过载电流流过时并达到一定的时间后,其保护开关断开。反相防止器用于新能源电池包综合性能测试系统三相旋转式压缩机电动机,保护三相供电电源的相序,以防止压缩机旋转方向反相。此外,还具有缺相保护功能。  新能源电池包综合性能测试系统的压缩机保护是由各个保护装置一起保护的,所以一定需要向可靠厂家进行购买。

  • 加压流体萃取-凝胶渗透净化-气质法测定土壤中的64种半挥发性有机物

    加压流体萃取-凝胶渗透净化-气质法测定土壤中64种SVOC前言:半挥发性有机物(Semi-volatile organic,简称SVOC)主要包括多环芳烃类、有机农药类、氯苯类、苯胺类、邻苯二甲酸酯类、苯酚类等化合物。土壤中半挥发性有机物的提取,传统的索式提取法耗时耗力,很难满足大量样品的检测需求;加压溶剂萃取提取技术具有提取时间短、效率高、消耗溶剂少的特点。现参考标准(HJ 834-2017土壤和沉积物 半挥发性有机污染物的测定 气相色谱-质谱法)来进行相关实验的分析。本实验使用了全自动高效快速溶剂萃取仪提取土壤中的64种SVOC,全自动凝胶净化系统进行净化,平行定量浓缩系统浓缩后用气质联用仪进行检测的一整套方法。该方法能够高效、稳定地达到实验的要求,可以提供领域范围内的良好应用。关键词:土壤 SVOC 1、实验部分1.1仪器和设备1.1.1 HPSE-E高效快速溶剂萃取系统;1.1.2 GPC 1000全自动凝胶净化系统:具可变波长紫外检测器,高效不锈钢凝胶净化柱;1.1.3 MultiVap-10平行定量浓缩系统;1.1.4 7890B气相色谱-5977B质谱联用仪1.2 试剂和样品1.2.1正己烷(色谱纯);1.2.2丙酮(色谱纯);1.2.3乙酸乙酯(色谱纯);1.2.4环己烷(色谱纯);1.2.5二氯甲烷(色谱纯);1.2.6快速溶剂萃取溶剂:用正己烷(1.2.1)和丙酮(1.2.2)按1:1体积比混合;1.2.7凝胶渗透色谱流动相:用乙酸乙酯(1.2.3)和环己烷(1.2.4)按1:1 体积比混合;1.2.8 SVOC标准使用液(200mg/L,溶剂为丙酮-二氯甲烷1:1);1.2.9内标使用液(400 mg/L,溶剂为丙酮-二氯甲烷1:1);1.2.10替代物标准使用液(200mg/L,溶剂为丙酮-二氯甲烷1:1);1.2.11硅藻土:置于马弗炉中400℃烘4h,冷却后置于玻璃瓶中于干燥器内保存。1.3土壤样品处理1.3.1 提取取研细过筛后的环境土壤样品20.0g,与7g硅藻土混合均匀,装填至34mL的萃取罐中。同样方法装填好两个萃取罐后,置于FLEX-HPSE样品架中(双通道运行,最多可连续萃取30个样品),萃取溶剂为丙酮正己烷混合溶剂(1.2.6),系统压力10Mpa,萃取温度100℃,加热平衡时间3min,静态萃取时间6min,冲洗体积60%,N2吹扫60s,循环运行两次,萃取液收集到50mL浓缩杯中。1.3.2 浓缩将收集管置于MultiVap-10中,浓缩温度30℃,开启定容功能。最后置换溶剂为乙酸乙酯环己烷混合溶剂(1.2.7),样品体积在5mL左右。1.3.3 净化净化过程采用凝胶渗透色谱净化的方式,具体方法如下:按照图1方法进行净化实验,收集时间为8min~32min,收集液用MultiVap-10浓缩,定容浓缩完成后再浓缩一定时间,溶液转移至2mL进样瓶中,加入适量内标后,定容至1mL,待测。https://ng1.17img.cn/bbsfiles/images/2022/10/202210081532527249_7872_3191395_3.png图1 凝胶净化方法1.4土壤加标回收率实验按1.3.1方法装填土壤样品,进行加标实验,20.0g样品加目标物(1.2.9)和替代物(1.2.13)各10μg,然后按照1.3.1~1.3.3方法进行实验,分别进行三组6个平行样品,用来测定加标回收率。1.5 分析步骤1.5.1 气质条件色谱柱:HP-5MS,30m*0.25mm*0.25μm;进样口温度:250℃;不分流进样;载气流速:1.0mL/min;恒流模式;进样量:1.0μL;柱温:35℃保持2min,以15℃/min升温至150℃,保持5min;再以3℃/min升温至290℃,保持2min。离子源:电子轰击源,70eV;四极杆温度:150℃;离子源温度:230℃;辅助加热温度:280℃;溶剂延迟时间:4.0min;扫描模式:全扫描Scan(化合物保留时间,定量和定性离子见表1)。表1定量和定性选择离子序号化合物名称RT/min定量离子定性离子1定性离子21N-亚硝基二甲胺5.1942744322-氟酚(SS)7.6264112923苯酚-D6(SS)9.119971---4苯酚9.139466405双(2-氯苯酚)醚9.2393636562-氯苯酚9.281281306471,3-二氯苯9.501461117581,4-二氯苯-D4(IS1)9.60150115---91,4-二氯苯9.63146148111101,2-二氯苯9.8514614811111二(2-氯异丙基)醚10.0312110777122-甲基苯酚10.051081077713N-亚硝基二正丙胺10.274370130144-甲基苯酚10.301071087715六氯乙烷10.3711710920116硝基苯-D5(SS)10.51821285417硝基苯10.54771235118异佛尔酮10.918213854192-硝基苯酚11.041396581202,4-二甲基苯酚11.121071227721二(2-氯乙氧基)甲烷11.279363123222,4-二氯苯酚11.4416216463231,2,4-三氯苯11.531477410924萘-d8(IS2)11.62136108---25萘11.66128129---264-氯苯胺11.791271296527六氯丁二烯11.82118260223284-氯-3-甲基苯酚12.72107142144292-甲基萘12.9611514114230六氯环戊二烯13.28130235239312,4,6-三氯苯酚13.70196198200322,4,5-三氯苯酚13.81196198200332-氟联苯(SS)13.91172171170342-氯萘14.25162127----352-硝基苯胺14.70138659236邻苯二甲酸二甲酯15.4016377---372,6-二硝基甲苯15.691656389383-硝基苯胺15.70659213839苊烯15.7315276---40苊-d10(IS3)16.3716416216041苊16.5215376---422,4-二硝基苯酚17.031846315443二苯并呋喃17.43168139---442,4-二硝基甲苯17.681658963454-硝基苯酚17.761391096546邻苯二甲酸二乙酯19.20149177---47芴19.3616616382484-氯苯基苯甲醚19.5820414177494-硝基苯胺19.9165138108504,6-二硝基-2-甲基苯酚20.021985110551偶氮苯20.547718251522,4,6-三溴苯酚(SS)20.9033262143534-溴二苯基醚21.632501417754六氯苯22.7228428628255五氯苯酚24.36266184---56菲-d10(IS4)25.4818880---57菲25.6517817617958蒽26.0117817617959咔唑27.6016716613960邻苯二甲酸二正丁酯31.121491507661荧蒽34.4320220020362芘36.03202200201634,4’-三联苯-D14(SS)38.1024424524364邻苯二甲酸丁基苄基酯42.601499120665苯并(α)蒽45.4622822622966?-d12(IS5)45.5024023624167屈45.7022822622968邻苯二甲酸二(2-二乙基己基)酯47.481491675769邻苯二甲酸二正辛酯52.34149279---70苯并(b)荧蒽53.1425212625071苯并(k)荧蒽53.3525212625072苯并(α)芘55.2225225025373苝-d12(IS6)55.6126426026374茚并(1,2,3-cd)芘61.9427613827475二苯并(ah)蒽62.2627813927676苯并(ghi)苝63.312761382742、实验结果2.1 76种半挥发性有机物色谱图分离情况(含内标和替代物)图2 76种半挥发性有机污染物总离子流谱图2.2 土壤样品加标色谱图图3 土壤样品加标色谱图2.3 加标样品回收率表2 加标样品回收率物质名称回收率(%)平均值(%)RSD(%)123456N-亚硝基二甲胺48.2 48.8 49.3 51.8 47.8 55.6 50.3 5.9 2-氟酚(SS)53.9 60.8 51.4 54.1 58.2 54.6 55.5 6.1 苯酚-D6(SS)52.8 54.0 54.2 51.0 56.5 50.4 53.2 4.2 苯酚54.5 59.0 64.6 62.8 59.2 65.8 61.0 6.9 双(2-氯苯酚)醚53.1 65.0 58.7 60.3 55.9 57.6 58.4 6.9 2-氯苯酚56.1 64.1 53.4 54.5 58.1 62.6 58.1 7.5 1,3-二氯苯54.0 53.4 57.5 60.8 53.9 55.1 55.8 5.1 1,4-二氯苯59.3 57.7 51.9 52.8 48.0 47.8 52.9 9.1 1,2-二氯苯50.9 49.2 44.4 51.6 51.7 45.3 48.9 6.6 二(2-氯异丙基)醚58.3 51.1 59.7 71.8 59.9 59.0 60.0 11.1 2-甲基苯酚54.9 63.2 55.9 71.9 58.2 68.8 62.2 11.3 N-亚硝基二正丙胺56.7 59.8 58.5 74.9 61.6 62.2 62.3 10.4 4-甲基苯酚54.0 53.6 55.8 57.7 56.8 60.8 56.5 4.7 六氯乙烷59.4 53.2 68.9 61.7 58.4 53.8 59.2 9.7 硝基苯-D5(SS)53.0 54.3 56.4 69.5 58.9 61.1 58.9 10.2 硝基苯51.9 47.2 54.9 63.8 59.7 60.2 56.3 10.9 异佛尔酮52.4 63.6 59.5 53.5 68.6 64.5 60.4 10.7 2-硝基苯酚60.3 57.5 55.1 56.9 59.0 53.6 57.1 4.3 2,4-二甲基苯酚57.3 53.1 45.0 47.6 57.7 55.6 52.7 10.0 二(2-氯乙氧基)甲烷63.8 61.9 56.9 74.9 63.4 73.8 65.8 10.8 2,4-二氯苯酚65.8 56.9 68.1 59.1 66.3 62.3 63.17.0 1,2,4-三氯苯52.3 56.9 51.6 54.4 60.1 50.5 54.3 6.7 萘53.5 50.7 58.4 50.2 58.9 53.6 54.26.8 4-氯苯胺51.2 48.0 50.1 42.8 46.4 49.1 47.9 6.3 六氯丁二烯51.4 49.0 43.9 50.0 40.1 46.0 46.7 9.1 4-氯-3-甲基苯酚68.5 60.3 68.6 73.1 74.3 70.5 69.2 7.2 2-甲基萘65.4 59.3 61.1 53.7 57.6 66.9 60.7 8.1 六氯环戊二烯60.7 62.7 66.7 58.6 59.8 64.1 62.14.8 2,4,6-三氯苯酚68.7 57.4 60.4 60.2 61.5 60.4 61.4 6.2 2,4,5-三氯苯酚62.5 67.1 66.8 61.2 62.1 70.9 65.1 5.82-氟联苯(SS)60.4 53.1 55.8 56.1 62.9 61.8 58.4 6.7 2-氯萘50.5 65.9 64.5 59.3 59.0 71.5 61.8 11.7 2-硝基苯胺62.5 62.6 78.6 74.4 68.6 73.5 70.0 9.4 邻苯二甲酸二甲酯72.0 63.1 71.8 70.8 73.4 79.6 71.8 7.4 2,6-二硝基甲苯58.7 62.5 75.6 67.4 75.3 75.2 69.1 10.7 苊烯59.0 53.3 59.5 54.2 57.3 65.8 58.2 7.7 3-硝基苯胺46.3 52.6 54.6 47.6 53.5 53.5 51.4 6.8苊56.5 61.5 58.7 66.0 76.5 67.2 64.4 11.2 2,4-二硝基苯酚43.138.343.042.145.845.142.9 6.2 二苯并呋喃63.4 62.6 64.3 74.6 68.1 79.5 68.8 10.0 2,4-二硝基甲苯54.7 55.0 63.8 65.3 59.9 71.3 61.7 10.4 4-硝基苯酚61.5 73.6 84.3 73.6 69.5 77.5 73.3 10.4 邻苯二甲酸二乙酯80.5 78.0 77.2 80.2 82.3 73.8 78.7 3.8 芴67.1 71.3 66.3 77.9 70.9 82.0 72.6 8.5 4-氯苯基苯甲醚66.0 70.4 66.3 78.8 71.2 68.9 70.3 6.7 4-硝基苯胺53.350.450.458.450.747.451.8 7.2 4,6-二硝基-2-甲基苯酚58.9 60.0 68.7 59.3 73.7 70.9 65.3 10.1 偶氮苯68.6 61.2 66.8 80.8 72.5 73.1 70.5 9.4 2,4,6-三溴苯酚(SS)70.6 77.9 77.5 74.2 71.0 64.0 72.5 7.2 4-溴二苯基醚80.3 79.0 77.9 83.7 78.2 71.3 78.4 5.2 五氯苯酚74.6 70.6 75.6 69.1 76.8 67.9 72.4 5.1六氯苯71.4 71.1 69.3 81.4 77.3 90.1 76.8 10.4 菲88.3 88.8 84.7 100.6 89.5 84.0 89.3 6.7 蒽74.1 77.5 68.7 82.2 78.2 92.8 78.9 10.4 咔唑85.4 95.5 80.1 99.2 92.7 75.6 88.1 10.5 邻苯二甲酸二正丁酯112.4 123.4 101.7 117.5 121.0 105.4 113.6 7.6 荧蒽95.0 87.8 91.8 81.1 80.0 92.1 88.0 7.0 芘74.2 86.0 72.8 83.9 87.3 85.0 81.5 7.8 4,4’-三联苯-D14(SS)78.7 78.7 73.7 70.7 81.4 79.1 77.1 5.2邻苯二甲酸丁基苄基酯80.5 95.6 76.4 79.9 92.4 96.2 86.8 10.2 苯并(α)蒽73.5 88.8 70.7 86.0 82.3 77.9 79.9 8.9 屈76.2 91.5 73.6 88.5 83.7 91.4 84.2 9.2 邻苯二甲酸二(2-二乙基己基)酯111.2 114.4 116.0 118.3 108.3 115.0 113.9 3.1 邻苯二甲酸二正辛酯107.6 111.8 115.0 104.4 115.7 108.7 110.5 4.0 苯并(b)荧蒽75.2 93.4 85.1 90.6 88.1 83.1 85.9 7.5 苯并(k)荧蒽71.2 93.8 70.5 88.9 87.2 79.5 81.9 11.8 苯并(α)芘77.6 94.7 74.5 70.6 88.5 84.4 81.7 11.1 茚并(1,2,3-cd)芘85.1 92.4 84.4 91.0 85.3 100.3 89.8 6.9 二苯并(ah)蒽81.2 84.2 80.8 94.1 84.1 95.5 86.7 7.5 苯并(ghi)苝87.6 85.8 80.3 85.6 73.6 78.5 81.9 6.6 3、结论由表2可知,加压流体萃取-凝胶净化-气质法测定土壤中的64种半挥发性有机污染物,土壤加标回收率为42.9%~113.9%,RSD为3.1~11.8%;替代物回收率为53.2%~77.1%,RSD为4.2~10.2%。参考标准:1、HJ 834-2017土壤和沉积物 半挥发性有机污染物的测定 气相色谱-质谱法

  • 谱尼测试 大型综合性检验集团

    PONY谱尼测试集团创立于2002年,集团总部位于北京,是由国家科研院所改制而成,拥有8000余名员工,30多个大型实验基地及150多个专业实验室组成的遍布全国的大型综合性检验集团。谱尼集团具备CMA、CNAS、食品复检机构、CATL、CCC、DILAC等资质,具备医疗机构执业许可证、医疗器械生产许可证等,检测报告获得100多个国家和地区的公认。谱尼集团可提供综合性检测、计量校准、验货、评价、审厂等专业化一站式技术解决方案。业务涵盖生物医药CRO/CDMO;医学检测;医疗器械检测;食品、农产品及健康产品检测;生态环境监测、环境咨询与运维、环保管家、空气治理净化、节能环保、碳交易、碳中和、碳核查;汽车整车、零部件、新能源汽车及燃料电池检测;化妆品检测及人体功效实验;日用消费品、纺织、玩具、油品检测;环境可靠性试验;电磁兼容EMC测试;电子电气检测等。

  • 烟草中内源性组分的萃取净化方法

    除了要监控农药等有害物质的残留量,一些影响烟草品质的内源性组分如植物多酚、芳香胺等同时也要检测。植物多酚是烟草中的一类重要物质,其含量对烟草品质有重要影响,因而研究烟草及其制品中的植物多酚具有重要意义。通常的方法是用热甲醇水溶液对烟草中的多酚进行萃取,然后通过C18 SPE柱除去萃取物中弱极性脂类干扰物。①烟草样品中植物多酚的固相萃取方法烟样萃取:将烟样粉碎后过0.18 mm筛。取0.20 g,加入45 mL 80%(体积分数)甲醇水溶液,加热回流30 min。冷却后定容至50 mL。固相萃取净化SPE柱:Sep-Pak C18,Waters公司。柱预处理:30 mL甲醇,30 mL水,10 mL/min。样品过柱:5 mL上述甲水萃取液过柱,10 mL/min,弃去最初3 mL,收集后面2 mL。馏分过滤:0.45μm针头过滤器过滤,HPLC分析。②烟草中苯酚、儿茶酚固相萃取方法烟草中挥发酚在烟草燃烧后会产生不好的气味。苯酚和儿茶酚对呼吸系统有腐蚀和助癌作用。因此,近年人们开始关注并监控烟草中挥发酚的含量。以下是固相萃取方法:烟样萃取:20.00 g烟样,加入150 mL 2.5mol/L硫酸,加热回流l h,自动水气蒸馏仪以50%蒸汽量蒸馏15 min,收集其问的约230 mL馏分,加入1.7g磷酸二氢钾,调节pH至弱酸性,定容至250 mL。固相萃取净化SPE柱:Sep—Pak C18,30 mg,Waters公司。柱预处理:15 mL甲醇,30 mL 0.05 mol/L磷酸二氢钾缓冲溶液。样品过柱:50 mL上述样品过柱,10 mL/min。柱干燥:离心除水。目标物洗脱:2 mL 60%(体积分数)甲醇溶液。HPLC分析:Nova-pak C18色谱柱,流动相A-甲醇,B-0.05mol/L磷酸二氢钾缓冲溶液。梯度洗脱,0min 80%B,10 min 20%B,15 min 20%B,20 min80%&流速0.5 mL/min。检测器:DAD,进样量10mL。应用该方法对烟样进行萃取分析,回收率:苯酚91.8%~104.5%,儿茶酚89.6%~103.6%。来源:中国标准物质网

  • 【资料】三聚氰胺萃取净化方法的比较

    【资料】三聚氰胺萃取净化方法的比较

    比较了目前流传的五种三聚氰胺萃取净化方法,并对萃取净化方法的每个步骤进行了探讨。在酸性条件下进行萃取,有利于将三聚氰胺萃取到水溶液中,同时,由于酸性条件下,三聚氰胺呈阳离子状态,便于阳离子交换固相萃取净化。 [img]http://ng1.17img.cn/bbsfiles/images/2009/08/200908111928_165046_1641058_3.jpg[/img]前处理方法比较 上述五个方法中,按照时间先后,最早是方法A,其次是方法B、方法D、再其次是方法C 和D。其中方法D 除了采用瓦里安的固相萃取柱外,其萃取及净化方法与方法A 完全相同。应该说,其他方法都是基于方法A 产生的。萃取方法: 在上述六种萃取方法中(其中方法C 有两种萃取方法),除了方法C 中的萃取方法二,其余都是将三氯氰胺萃取至酸性水溶液中。而方法C 中的萃取方法二是先进行中性萃取,然后再将萃取溶液调节至酸性。三聚氰胺属于弱碱性化合物,根据美国国家药学图书馆(United States National Library of Medicine)的数据,其pKa = 5。因此,应该在酸性条件下(pH ≤ 3,pH 至少低于三聚氰胺pKa 两个pH 单位)将三聚氰胺萃取至水溶液中。由于在三聚氰胺在酸性条件下呈阳离子状态,便于固相萃取净化时采用阳离子交换柱吸附。方法B、C、D 中均加入了乙酸盐,与三氯乙酸形成缓冲溶液,以减少pH 的波动。固相萃取净化: 上述五种方法中,固相萃取净化采用的均为混合型阳离子交换柱,其中方法A、D、E 中采用的均为高聚物为基质的亲水-亲脂混合型阳离子交换柱。Oasis MCX 和Cleanet PCX 柱的阳离子功能团为苯磺酸基,Bond Elut Plexa PCX 柱的阳离子交换功能团属性无数据可查。苯磺酸基属于强阳离子交换功能团,在任何pH 条件下都呈带负电荷的阴离子。因此,只要控制样品溶液的pH 使三聚氰胺呈阳离子状态,就能够被苯磺酸基通过离子交换方式吸附。而在上述溶液萃取中,三聚氰胺已经是在酸性条件下,所以是呈阳离子状态,可以被苯磺酸基吸附。方法B、C 并没有说明混合型阳离子柱中的阳离子交换剂是强阳离子交换剂还是弱阳离子交换剂。由于三聚氰胺属于弱碱,采用强阳离子交换剂是合理的。

  • 香精样品萃取浓缩 可以用冷阱负压离心 浓缩仪浓缩吗?

    香精样品萃取浓缩 可以用冷阱负压离心 浓缩仪浓缩吗?

    想请教下: 香精样品萃取浓缩 可以用冷阱负压离心 浓缩仪浓缩吗?有人试过吗?看到很多人都是N2吹。以前实验室用的是冷阱,不过不是处理香精样品,现在考虑买一台,N2 需要用到气瓶,实验室还得改装,挺麻烦的,如果浓缩仪可以的话就方便了。有经验的大大给个建议哈~[img=,643,541]https://ng1.17img.cn/bbsfiles/images/2022/08/202208051104302983_1209_5536964_3.png!w643x541.jpg[/img]

  • 【实战宝典】样品浓缩之后再进行净化的目的是什么?

    问题描述:样品浓缩之后再进行净化的目的是什么?解答:[font=宋体]第一,可以除去有些较深的颜色,部分基质提取之后颜色还是很深,直接上机的话,会对后端仪器产生较大的影响,例如中药应用中的黄连、紫苏叶等样品颜色较深,色素含量较多,就必须通过进一步固相萃取净化后才可上机分析。[/font][font=宋体]第二,提取液含有杂质,影响目标化合物的检测:通过固相萃取柱进行净化,可以将提取液中的杂质去除掉,使目标化合物更容易被检测到。[/font][font=宋体]睿科[/font]RaykolFotector Plus[font=宋体]固相萃取仪采用全自动化操作代替人工净化方式,可同步进行[/font]6[font=宋体]个样品净化,连续自动处理[/font]60[font=宋体]个样品,做样通量高;同时可无人值守,大幅度减少了工作人员的工作量,提高了工作效率。此外还可避免工作人员因操作失误导致的检测偏差,也可将实验人员更迭对检测结果的影响最小化。[/font]以上内容来自仪器信息网《样品前处理实战宝典》

  • 污水样品做液液萃取,浓缩后呈胶状

    最近接到一个样品,做多环芳烃检测。加氯化钠和二氯甲烷液液萃取后,样品盐析乳化情况挺严重,收集乳化层超声离心破乳后过无水硫酸钠,没做净化直接浓缩,置换乙腈,浓缩到1ml样品就呈胶状凝固了,请问大家怎么做这种样品。感觉有油膜或活性剂。??????[img]https://ng1.17img.cn/bbsfiles/images/2020/07/202007272314345664_7431_3513633_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2020/07/202007272314345340_4773_3513633_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2020/07/202007272314345654_5189_3513633_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2020/07/202007272314345673_4450_3513633_3.png[/img]

  • 【实战宝典】加压流体萃取中,萃取循环次数对目标组分回收率的影响?

    [font=宋体]链接:[/font]https://bbs.instrument.com.cn/topic/2919342[font=宋体]问题描述:[/font][font=宋体]各位老师,我最近刚刚接触加速溶剂提取土壤中有机物,刚刚做了几个条件优化的实验,居然发现土壤中有机氯农药的回收率随着萃取循环次数[/font](cycles)[font=宋体]的增多而降低,[/font]1[font=宋体]次时最高,[/font]2[font=宋体]次降低,[/font]3[font=宋体]次更低,这是什么原因。[/font][font=宋体]解答:[/font][font=宋体]在其他萃取条件一定的情况下,由于新鲜萃取溶剂的引入,理论上目标组分的萃取回收率会随着萃取循环次数的增多而提高。然而实际工作中,萃取结束后,还需经过浓缩、净化、再浓缩等一系列步骤才能上机测试,而这些步骤恰恰对目标组分的回收率影响也很大。随着萃取循环次数的增加,最后得到的萃取溶液体积也增多,以致后续操作耗时增长,目标组分损失增多,进而影响目标组分的回收率。由此可见,萃取循环次数对目标组分回收率的影响需结合后续一系列步骤综合考查。[/font]以上内容来自仪器信息网《样品前处理实战宝典》

  • 新品上市!Gemini HPSE——独一无二的高效压力溶剂萃取系统

    新品上市!Gemini HPSE——独一无二的高效压力溶剂萃取系统

    晒图一张:Gemini HPSE闪亮登场http://ng1.17img.cn/bbsfiles/images/2014/08/201408041417_508994_2904170_3.png  经过多年的辛勤研究开发,Gemini HPSE高效压力溶剂萃取系统终于正式面世了。此款仪器集压力溶剂萃取与自动定量浓缩于一体,并可以加配固相萃取系统,真正意义上实现了从提取到净化的一站式操作,是一款在全球范围内独一无二的产品。在环境,农业,粮油,食品,检验检疫等部门具有良好的应用前景。http://ng1.17img.cn/bbsfiles/images/2014/08/201408041424_508996_2904170_3.gifGemini HPSE 特点:内嵌工控机,减少实验室占用面积。带有压力溶剂萃取、浓缩、固相萃取功能的多功能一体机,可根据不同的实验需求进行功能选用。配备SPE模块,可对萃取后的样品溶剂或浓缩后的样品溶剂进行固相萃取。八种溶剂接口,其中四种混合溶剂接口。配备有浓缩模块,可对萃取后的样品溶剂进行浓缩、置换。可选用八种萃取罐,满足不同用户对萃取罐体积需求。

  • 新能源电池包综合性能测试中压缩机说明

    新能源电池包综合性能测试性能好坏是离不开各个部件的支持,其中,压缩机作为无锡冠亚新能源电池包综合性能测试的主要配件,一旦发生故障的话,就需要及时解决。  新能源电池包综合性能测试压缩机失去工作能力的判断,是指压缩机能正常运转,但已失去吸、排气的功能。先将压缩机加液工艺管用剪刀剪断,如有大量R22喷出,可以判断不是由于泄漏制冷剂不制冷。这时,可将压缩机吸、排气管用焊枪熔脱,取下压缩机,单独启动压缩机,待压缩机运转后,用手感试压缩机的吸、排气压力。应先试吸气口有无吸气,然后,试排气口有无排气,用手堵住排气口,如感到压力不是很大,甚至没有排气,则可认为压缩机失去工作能力。因为在正常工作时,压缩机排气口用手指是堵不住的。  新能源电池包综合性能测试压缩机电动机为何电流过大?这是指压缩机匝间短路,但又未达到烧断保险丝的程度。压缩机的磨擦破坏了磨擦表面的光洁度,致使压缩机的功率和电流增大,但尚未达到抱轴或卡缸使压缩机不能转动的程度。可以用万用表检查压缩机电动机的对地绝缘电阻,正常情况下如显著变小或接近于零时,说明已短路。如对地绝缘电阻正常,查启动和运行绕组的电阻值。如匝间短路,则运行电流增大。  如何排除新能源电池包综合性能测试三相压缩机电动机在运转中速度变慢、一相保险丝熔断、一相电流增大的故障,这是由于压缩机电动机绕组有一相碰壳通地造成的。拆下接地线后,可用试电笔测机壳是否带电。如机壳带电,再将电源插头拔下,用手摸压缩机机壳,在机壳局部应有发烫感觉。请重绕压缩机电动机绕组或更换压缩机。如何排除新能源电池包综合性能测试三相压缩机电动机在运行中发出吭吭声,三相压缩机电动机在运行中发出吭吭,是由于三相严重不平衡产生的,肯定有一相电源缺相。请用万用表电压档进行检查,恢复三相即可。  新能源电池包综合性能测试的故障是可能导致整个新能源电池包综合性能测试不能有效运行,所以,以上这些故障我们都需要尽量避免。

  • 农残检测中不同样品的固相萃取净化处理

    以下是一次农残检测培训中的一些净化处理经验,与大家分享下农残分析中常用的净化方法有:液-液分配法、柱层析法、固相萃取法、吹扫蒸馏法、磺化法、凝结剂沉淀法和薄层色谱法等。1、柱子预处理(固定相活化)活化的目的是创造一个与样品溶剂相容的环境并去除柱内所有杂质。通常需要两种溶剂来完成上述任务,第一个溶剂(初溶剂)用于净化固定相,另一个溶剂(终溶剂)用于建立一个合适的固定相环境使样品分析物得到适当的保留。注意:终溶剂不应强于样品溶剂,若使用太强的溶剂,将降低回收率。另外,在活化的过程中和结束时,固定相都不能抽干,因为这将导致填料床出现裂缝,从而得到低的回收率和重现性,样品也没得到应有的净化。如果在活化步骤中出现干裂,所有活化步骤都得重复。 2、上样上样步骤指样品加入到固相萃取柱并迫使样品溶剂通过固定相的过程,这时分析物和一批样品干扰物保留在固定相上。为了保留分析物,溶解样品的溶剂必须较弱。如果溶剂太强,分析物将不被保留,结果回收率将会很低,这一现象叫穿漏。尽可能使用最弱的样品溶剂,可以使溶质得到最强的保留或者说最窄的谱带。3、淋洗分析物得到保留后,通常需要淋洗固定相以洗掉不需要的样品组分,淋洗溶剂的洗脱强度是略强于或等于上样溶剂。淋洗溶剂必须尽量地弱以洗调尽量多的干扰组分,但不能强到可以洗脱任何一个分析物的程度。注意:淋洗时不宜使用太强溶剂,否则会将强保留杂质洗下来。使用太弱溶剂,会使淋洗体积加大。可改为强、弱溶剂混用;但混用或前后使用的溶剂必须互溶。4、洗脱 淋洗过后,将分析物从固定相上洗脱。溶剂必须进行认真选择,溶剂太强,一些更强保留的不必要组分将被洗出来;溶剂太弱就需要更多的洗脱液来洗出分析物,这样固相萃取柱的浓缩功效就会削弱。一般菜样:如白菜、甘蓝、黄瓜、萝卜等,可根据需要选用 C18柱、 Florisil柱、NH2柱等净化。 深色样品:如菠菜、菜心、青椒和胡萝卜,含色素多,可用石墨碳黑柱去除色素。茶叶:含咖啡因多,用Si小柱净化可较好地去除。大豆、花生:含油脂多,净化时用SAX、PSA小柱去脂。 高糖高盐样品:如葡萄干、梅脯、腌黄瓜等可采用硅藻土柱助滤。由于不同样品存在一定的基质增强效应,因此用试剂配制标准溶液测定样品往往会造成检测结果偏高的现象,采用样品空白提取液配制标准溶液,可以有效弥补基质增强效应带来的定量偏差。

  • 油脂样品乙腈正己烷液液分配及固相萃取柱净化来测定塑化剂的除油酯效果的初步考察

    油脂样品乙腈正己烷液液分配及固相萃取柱净化来测定塑化剂的除油酯效果的初步考察

    油脂样品乙腈正己烷液液分配及固相萃取柱净化来测定塑化剂的除油酯效果的初步考察看到许多网友对于含油脂样品的处理方法的讨论和几家厂商的处理净化方案,也一直在想除油净化效果如何?所以就测定一下,供大家参考。对于含油脂样品,例如食用油、黄油等动物油样品的塑化剂的测定,因为里面含大量油脂,不能用一般的溶剂提取后进行GCMS分析,需对样品净化以除去油脂。一种办法是凝胶色谱法(GPC)来净化,但设备比较贵,溶剂使用量大,还需氮吹除去溶剂。另一种方法就是乙腈正己烷液液分配加固相萃取柱净化来除去油脂。可能还有其它方法,但我不知道。下面简单的考察一下第二种办法除油的效果。1试剂dSPE玻璃萃取管(纯油基质型):1.0g/12mL(上海某公司提供)正己烷色谱纯。乙腈色谱纯。17种邻苯二甲酸酯类化合物混合标准液正己烷饱和的乙腈乙腈饱和的正己烷2 仪器与装置美国安捷伦7890A/5975C气相色谱-质谱联用仪高温气相色谱仪(HTGC):HP5890 plus漩涡混合器氮吹仪固相萃取仪SPE10 mL具塞玻璃刻度试管10 mL3样品处理准确称取0.5g的油脂样品于10mL具塞玻璃刻度试管(加入适量内标物),加4mL正己烷饱和的乙腈,2mL乙腈饱和的正己烷,漩涡震荡1min,静止或离心分层,吸去上层正己烷相,下层乙腈相待净化。在dSPE玻璃萃取管,用7mL二氯甲烷、7mL乙腈活化柱子,然后取上述乙腈相2mL加到柱子上并用试管收集,待样品过柱后再用4mL乙腈洗脱并一起收集,进GCMS分析。(如果要提高检测限,洗脱液可用氮吹仪吹干,加正己烷定容样液至1.0mL,样液供GC-MS分析,外标法)。4 GC/MS条件色谱条件: 色谱柱:安捷伦HP-5MS (30m×0.25 mm (i.d.)×0.25μm)毛细管柱;升温程序:60℃保持1min,以20℃/min升至220℃,保持1min,再以5 ℃/min升至280℃,保持8 min。(实际分析时间可以缩短) 载气(He,纯度99.999%以上)流速1 mL/min;进样口温度250℃,不分流进样;进样量:1μl。质谱条件: 电子轰击(EI)离子源;电子能量70eV;传输线温度280℃;离子源温度[/

  • 全自动固相萃取仪的应用

    适用于饮用水、地表水、地下水等液体样品中有机氯、有机磷、杀虫剂、除草剂、多环芳烃等半挥发性有机物的萃取。特别适用于环保及疾控等系统水体样品的检测。Automated SPE 606S全自动固相萃取仪仪器采用正压过柱,全密闭操作,兼顾SPE柱法和膜法过柱,多通道同时处理,也可独立处理。自动完成柱活化、上样、干燥、淋洗、洗脱以及后续收集液的在线浓缩、定容等实验步骤。全自动浓缩和定容实现无人值守,6通道独立加热,氮吹红外定容不受颜色干扰。采用Automated SPE 606S全自动固相萃取仪和EVA32 氮吹浓缩仪开发了饮用水中8种有机氯农药的净化富集方法,取得了较好的结果。在0.1ug/mL加标水平下,8种有机氯农药的回收率在74.39% - 113.34%之间,同一个通道的重现性RSD(n=5)在4.6% - 12.9%之间。

  • 【原创大赛】全自动固相萃取仪的应用

    适用于饮用水、地表水、地下水等液体样品中有机氯、有机磷、杀虫剂、除草剂、多环芳烃等半挥发性有机物的萃取。特别适用于环保及疾控等系统水体样品的检测。Automated SPE 606S全自动固相萃取仪仪器采用正压过柱,全密闭操作,兼顾SPE柱法和膜法过柱,多通道同时处理,也可独立处理。自动完成柱活化、上样、干燥、淋洗、洗脱以及后续收集液的在线浓缩、定容等实验步骤。全自动浓缩和定容实现无人值守,6通道独立加热,氮吹红外定容不受颜色干扰。采用Automated SPE 606S全自动固相萃取仪和EVA32 氮吹浓缩仪开发了饮用水中8种有机氯农药的净化富集方法,取得了较好的结果。在0.1ug/mL加标水平下,8种有机氯农药的回收率在74.39% - 113.34%之间,同一个通道的重现性RSD(n=5)在4.6% - 12.9%之间。

  • 水中有机物液液萃取浓缩的最大倍数是多少?

    GB/T5750饮用水中气相色谱法项目,很多前处理是萃取浓缩然后上气相色谱分析。例如:饮用水中邻苯二甲酸二(2-乙基己基)酯,是取500ml水加环己烷萃取浓缩至1ml;环氧氯丙烷是取100ml水样用二氯甲烷萃取浓缩至1ml。那么一个方法的萃取浓缩的最大倍数是多少?理论上如果取大量水样用有机物萃取然后浓缩至1ml,那么液液萃取方法可以做到任何检测限?

  • 香气成分的有机溶剂萃取液的浓缩

    本人香气成分的二氯甲烷萃取液经旋转蒸发仪浓缩后,GC-MS检测结果不理想,怀疑是蒸发浓缩过程中发生了变化。询问各位大侠还有何浓缩办法?有无简单便宜的仪器或装置?

  • 固相萃取仪

    固相萃取(Solid Phase Extraction,简称SPE)是从八十年代中期开始发展起来的一项样品前处理技术。由液固萃取和液相色谱技术相结合发展而来。主要用于样品的分离,净化和富集。主要目的在于降低样品基质干扰,提高检测灵敏度。SPE技术基于液-固相色谱理论,采用选择性吸附、选择性洗脱的方式对样品进行富集、分离、净化,是一种包括液相和固相的物理萃取过程;也可以将其近似地看作一种简单的色谱过程。SPE是利用选择性吸附与选择性洗脱的液相色谱法分离原理。较常用的方法是使液体样品溶液通过吸附剂,保留其中被测物质,再选用适当强度溶剂冲去杂质,然后用少量溶剂迅速洗脱被测物质,从而达到快速分离净化与浓缩的目的。也可选择性吸附干扰杂质,而让被测物质流出;或同时吸附杂质和被测物质,再使用合适的溶剂选择性洗脱被测物质。填料保留杂质固相萃取操作一般有三步(见图2):l活化--除去柱子内的杂质并创造一定的溶剂环境。l上样--将样品转移入柱,此时大部分目标化合物会随样品基液流出,杂质被保留在柱上,l故此步骤要开始收集l洗脱---用小体积的溶剂将组分淋洗下来并收集,合并收集液。此种情况多用于食品或农残分析中去除色素

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制