当前位置: 仪器信息网 > 行业主题 > >

子能带隙光吸收测量系统

仪器信息网子能带隙光吸收测量系统专题为您提供2024年最新子能带隙光吸收测量系统价格报价、厂家品牌的相关信息, 包括子能带隙光吸收测量系统参数、型号等,不管是国产,还是进口品牌的子能带隙光吸收测量系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合子能带隙光吸收测量系统相关的耗材配件、试剂标物,还有子能带隙光吸收测量系统相关的最新资讯、资料,以及子能带隙光吸收测量系统相关的解决方案。

子能带隙光吸收测量系统相关的论坛

  • 物质的吸收光谱曲线及光吸收定律

    内容摘要:根据光吸收定律,在理论上,吸光度对溶液浓度作图所得的直线的截距为零,斜率为£6。实际上吸光度与浓度关系有时是非线性的,或者不通过零点,这种现象称为偏离光吸收.如果溶液的实际吸光度比理论值大,则为正偏离吸收定律;吸光度比理论值小,为负偏离吸收定律。1.物质的吸收光谱曲线物质的吸收光谱曲线是通过实验获得的,具体方法是:将不同波长的光依次通过某一固定浓度和厚度的有色溶液,分别测出它们对各种波长光的吸收程度(用吸光度A表示),以波长为横坐标,以吸光度为纵坐标作图,画出曲线,此曲线即称为该物质的光吸收曲线(或吸收光谱曲线),它描述了物质对不同波长光的吸收程度。图2—21所示为三种不同浓度的 KMnOt溶液的三条光吸收曲线。由图中可以看出:①高锰酸钾溶液对不同波长的光的吸收程度是不同的,对波长为525nm的绿色光吸收最多,在吸收曲线上有一高峰(称为吸收峰)。光吸收程度最大处的波长称为最大吸收波长(常以Amax表示)。在进行光度测定时,通常都是选取在A。。。的波长处来测量,因为这时可得到最大的灵敏度。②不同浓度的高锰酸钾溶液,其吸收曲线的形状相似,最大吸收波长也一样。所不同的是吸收峰峰高随浓度的增加而增高。③不同物质的吸收曲线,其形状和最大吸收波长各不相同。因此,可利用吸收曲线来作为物质定性分析的依据。2.光吸收定律(1)朗伯一比尔定律朗伯定律:当一束平行的单色光垂直照射到一定浓度的均匀透明溶液时,入射光被溶液吸收的程度与溶液厚度的关系为式中,志为另一比例常数,它与入射光波长、液层厚度、溶液性质和温度有关;c为溶液浓度。这就是比尔(Beel’)定律。比尔定律表明;当溶液液层厚度和入射光通量一定时,光吸收的程度与溶液浓度成正比。必须指出的是:比尔定律只能在一定浓度范围内才适用。因为浓度过低或过高时,溶质会发生电离或聚合而产生误差。光吸收定律(朗伯一比尔定律):当溶液厚度和浓度都可改变时,这时就要考虑两者同时对透射光通量的影响,与入射光的波长、物质的性质和溶液的温度等因素有关。这就是朗伯一比尔定律,即光吸收定律。它是紫外一可见分光光度法进行定量分析的理论基础。光吸收定律表明:当一束平行单色光垂直入射通过均匀、透明的吸光物质的稀溶液时,溶液对光的吸收程度与溶液的浓度及液层厚度的乘积成正比。光吸收定律应用的条件:一是必须使用单色光;二是吸收发生在均匀的介质中;三是吸收过程中,吸收物质互相不发生作用。(2)吸光系数K称为吸光系数,其物理意义是:单位浓度的溶液液层厚度为1cm时,在一定波长下测得的吸光度。K值的大小取决于吸光物质的性质、入射光波长、溶液温度和溶剂性质等,与溶液浓度大小和液层厚度无关。但K值大小因溶液浓度所采用的单位不同而异。①摩尔吸光系数e。当溶液的浓度以物质的量浓度(mol/L)表示,液层厚度以厘米(cm)表示时,相应的比例常数K称为摩尔吸光系数。以e表示,其单位为L/(m01.cm)。这样,可以改写成A—abe’.摩尔吸光系数的物理意义是:浓度为ltool/L的溶液,于厚度为1cm的吸收池中,在一定波长下测得的吸光度。摩尔吸光系数是吸光物质的重要参数之一,它表示物质对某一特定波长光的吸收能力。e愈大,表示该物质对某波长光的吸收能力愈强,测定的灵敏度也就愈高。因此,测定时,为了提高分析的灵敏度,通常选择摩尔吸光系数大的有色化合物进行测定,选择具有最大e值的波长作入射光。一般认为s6×10。L/(。mol·cm)属高灵敏度。摩尔吸光系数由实验测得。在实际测量中,不能直接取1mol/L这样高浓度的溶液去测量摩尔吸光系数,只能在稀溶液中测量后,换算成摩尔吸光系数。已知含Fe。+浓度为500tzg/L溶液用KCNS显色,在波长480nm处用2cm吸收池测得A—O.197,计算摩尔吸光系数。②质量吸光系数。质量吸光系数适用于摩尔质量未知的化合物。若溶液浓度以质量浓度p(g/L)表示,液层厚度以厘米(cm)表示,相应的吸光度则为质量吸光度,以n表示,其单位为L/(g·cm)。这样可表示为A—n(3)吸光度的加和性在多组分体系中,在某一波长下,如果各种对光有吸收的物质之间没有相互作用,则体系在该波长处的总吸光度等于各组分吸光度的和,即吸光度具有加和性,称为吸光度加和性原理。各吸光度的下标表示组分1,2,…,n。吸光度的加和性对多组分同时定量测定、校正干扰等都极为有用。(4)影响吸收定律的主要因素根据光吸收定律,在理论上,吸光度对溶液浓度作图所得的直线的截距为零,斜率为£6。实际上吸光度与浓度关系有时是非线性的,或者不通过零点,这种现象称为偏离光吸收.如果溶液的实际吸光度比理论值大,则为正偏离吸收定律;吸光度比理论值小,为负偏离吸收定律。引起偏离光吸收定律的原因主要有下面几方面。①入射光非单色性引起偏离。吸收定律成立的前提是:入射光是单色光。但实际上,一般单色器所提供的入射光并非是纯单色光,而是由波长范围较窄的光带组成的复合光。而物质对不同波长光的吸收程度不同(即吸光系数不同),因而导致了对吸光定律的偏离.入射光中不同波长的摩尔吸光系数差别愈大,偏离光吸收定律就愈严重。实验证明,只要所选的入射光,其所含的波长范围在被测溶液的吸收曲线较平坦的部分,偏离程度就要小。②溶液的化学因素引起偏离。溶液中的吸光物质因离解、缔合,形成新的化合物而改变了吸光物质的浓度,导致偏离吸收定律。因此,测量前的化学预处理工作是十分重要的,如控制好显色反应条件,控制溶液的化学平衡等,以防止产生偏离。③比尔定律的局限性引起偏离。严格说,比尔定律是一个有限定律,它只适用浓度小于O.01 mol/I。的稀溶液。因为浓度高时,吸光粒子问平均距离减小,以致每个粒子都会影响其邻近粒子的电荷分布。这种相互作用使它们的摩尔吸光系数e发生改变,因而导致偏离比。尔定律。为此,在实际工作中,待测溶液的浓度应控制在0.01 mol/L以下。

  • PET薄膜的紫外可见光吸收光谱?

    看文献中将PET溶解后旋涂在石英载玻片上得到PET薄膜,然后在紫外可见分光光度计上测量薄膜的紫外可见光吸收光谱。后面这一步从载玻片上的膜得到吸收光谱就木有详细解释了,不知道这种几十微米的薄膜如何用普通的分光光度计测量吸收光谱?我也看到很多公司的仪器介绍说有什么支架的,但是还是不是很清楚。这里牛人比较多。请问谁做过薄膜的紫外可见光吸收光谱呢?还请点拨一二。初来论坛,多多指教~

  • 薄膜样品如何测紫外可见光吸收光谱

    薄膜样品如何测紫外可见光吸收光谱?直接测量就可以吗?好像看文献都是把薄膜样品刮下来,溶解在溶液里然后再测,是不是这样?另外看到紫外吸收光谱图,横坐标为wavelength/nm是波长,纵坐标是Reflectance /a.u.作何解呢?单位是什么?本人对分析化学实在不是很懂,忘大侠们指教,多谢!

  • [求助]新手关于聚氨酯紫外-可见光吸收谱图 问题!

    [求助]新手关于聚氨酯紫外-可见光吸收谱图 问题!

    新手第一次发帖求助,谢谢各位帮忙[img]http://ng1.17img.cn/bbsfiles/images/2006/06/200606091005_19871_1659951_3.jpg[/img]上图是聚氨酯薄膜本体紫外-可见光吸收,可不知为什么没有吸收峰,只是在313nm处就直接降到了0, 不知道是什么原因啊?膜太厚?仪器出问题?[img]http://ng1.17img.cn/bbsfiles/images/2006/06/200606090955_19869_1659951_3.jpg[/img]上图是聚氨酯的四氢呋喃溶液做的紫外-可见光吸收谱,参比是四氢呋喃,但不知为什么280nm以下吸收峰很乱?上面两图是同一仪器做的,是不是仪器有问题了啊,作出来的谱线太差了。自己是新手,第一次做紫外,还请大家帮忙,谢谢了~

  • 【求助】请问如何测量多层薄膜的紫外可见吸收

    请教各位,我想测量一个不透光薄膜的光吸收,但薄膜很难与基底分离。我是利用积分球,扫描完光吸收曲线后,再扫一遍薄膜生长的基底的吸收曲线,然后将其做为背底直接扣掉,这样得到的薄膜光吸收曲线数据可以用么?不对的话,应该怎么做?或者一般大家是怎么处理类似的数据的。谢谢了

  • [求助] 到那里找光吸收曲线

    尿常规干化学试纸条与尿液发生颜色反应后,每项物质(胆红素,白细胞。。。。。)它们可见光吸收曲线怎么找呢???

  • 一种基于紫外—可见光吸收光谱的COD在线监测方法

    【题名】:一种基于紫外—可见光吸收光谱的COD在线监测方法【期刊】:【年、卷、期、起止页码】:【全文链接】:https://t.cnki.net/kcms/detail?v=kxaUMs6x7-4I2jr5WTdXti3zQ9F92xu0jPYZ-6FemR80TpIUx9Y4vpRh2vkVskFh1PV5ClLEPJEf0KYBVfy9JBKrm74m79Y-&uniplatform=NZKPT

  • 1.1 原子吸收光谱研究的历史

    人们对光吸收现象的研究始于18世纪初叶。光吸收现象是指光辐射在通过晶体或液体介质后,其辐射的强度和方式会发生变化的现象。通过研究这种光辐射吸收现象,人们注意到:原始的光辐射在经过吸收介质后,能量可以分为三个部分:(1)散射的,(2)被吸收的,(3)发射的辐射。根据粒子从基态到激发态对辐射的吸收原理可以建立各种吸收光谱法,如分子、[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析;相反,根据粒子从激发态到基态的光能辐射可以建立各种荧光发射光谱分析,只是在测量方向上和光路垂直。

  • 原子荧光法和原子吸收法有何异同?

    原子吸收分光光度法是基于基态原子对共振光的吸收:而原子荧光光度是处于激发态原子向基态跃迁,并以光辐射形式失去能量而回到基态。  而且这个激发态是基态原子对共振光吸收而跃迁得来的。因此,原子荧光包含了两个过程:吸收和发射。  色散系统:较之原子吸收荧光谱线更少,光谱干扰也少,所以可以用低分辨力的分光系统甚至于非色散系统。  光学排列:对于原子吸收,检测器必须观察初级光源(HCL),因为需要测量的是原子对光源特征辐射的吸收;而原子荧光的光学排列与原子吸收不同,往往要避开初级光源的直接射入,而以一定角度去观察原子化器,测定其向2pi立体角辐射的荧光。在有的资料上可以看到right angle view(直角观察)和front view(正面观察)这样的光学排列。

  • 【二虎笔记11】紫外与可见光吸收光谱的形成

    [size=5][b][font=宋体][/font][/b][/size][color=black][font=宋体]原子或分子中的电子,总是处在某一种运动状态之中。每一种状态都具有一定的能量,属于一定的能级。这些电子由于各种原因(如受光、热、电的激发)而从一个能级转到另一个能级,称为跃迁。当这些电子吸收了外来辐射的能量就从一个能量较低的能级跃迁到一个能量较高的能级。因此,每一跃迁都对应着吸收一定的能量辐射。具有不同分子结构的各种物质,有对电磁辐射显示选择吸收的特性。正像我们在光度分析中经常见到的,有色物质的溶液对不同波长的入射光线有不同程度的吸收。吸光光度法就是基于这种物质对电磁辐射的选择性吸收的特性而建立起来的,它属于分子吸收光谱。分子吸收光谱形成中所吸收的能量与电磁辐射的频率成正比,符合普朗克条件:[/font][/color]

  • 【资料】原子吸收与紫外可见分光光度计的原理有什么相同和不同

    [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]观察的是构成物质的元素(或曰原子)中的电子在原子轨道中的跃迁;而紫外可见光吸收观察的是构成物质的分子中的电子在分子轨道中的跃迁。两者有所同,有所不同。定量分析的原则同,而测量所需的光能量不同:[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]为X光,能量大,可激发电子从低的原子轨道向高的原子轨道跃迁;而紫外可见吸收为紫外光及可见光,能量小,只能激发电子从分子轨道向最低(或次低)的空的分子轨道跃迁。

  • 【求助】紫外测量时吸收波长的选择问题

    大家好,最近做实验遇到一个问题,想请教一下:我所测量的化合物A最大吸收位于264 nm。该化合物在215 nm处也有较强吸收,但是并非特征吸收。样品溶液中除A外,还有一种基质,在215 nm也有吸收。在测量过程中使用的空白溶液为精确测量的相同浓度的基质溶液。我准备同时测量264 nm及215 nm处的紫外吸收,通过标准曲线分别测得A的含量,并比较含量的高低。结果发现化合物A的回收率在264nm处接近100 %,而在215 nm处不太稳定,为88-93%。我知道一般做紫外吸收时都会选择最大吸收峰,但是为什么在215nm处的回收率会不正常呢?应该说基质的吸收已经全部被扣除掉了。各位能否解答一下,不胜感谢!

  • 哪些物质或有些什么结构的物质有紫外吸收

    因为在研发,经常莫名的接到样品把个样品走下液相看看,有没有峰 及几个锋想向各位请教下 哪些物质有紫外吸收?这些物质除了有共轭双键和苯环 还有其他的什么结构使物质有紫外吸收吗?顺便问下 哪些结构的物质有荧光吸收呢

  • 如何测定薄膜的日光吸收率

    制备了一种镀金属的碳纤维布,对方要求给出该材料的日光吸收率,请教各位如何测定它的日光吸收率?用什么仪器测?

  • 测量的罗丹明B的紫外吸收光谱

    [color=#444444]我在网上查的罗丹明B的最大吸收峰在554nm,但是测量的罗丹明B的紫外吸收光谱在500nm~600nm处是锯齿状的封,就像一条锯的齿一样,而且波动幅度很小,请问这是为什么?[/color][color=#444444]还有就是我想问一下,测量镉(二价)、碘化钾、和罗丹明B的三元缔合物的吸收光谱可以用高效液相色谱测吗?他们形成的缔合物为(RhB)2(CdKI4)[/color][color=#444444]为什么我测得三元缔合物的紫外最大吸收峰也在554nm处?[/color][color=#444444]十分感谢!!!![/color]

  • 【分享】紫外吸收法测蛋白质含量

    蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质。吸收高峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。此外,蛋白质溶液在238nm的光吸收值与肽键含量成正比。利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定。紫外吸收法简便、灵敏、快速,不消耗样品,测定后仍能回收使用。低浓度的盐,例如生化制备中常用的(NH4)2SO4等和大多数缓冲液不干扰测定。特别适用于柱层析洗脱液的快速连续检测,因为此时只需测定蛋白质浓度的变化,而不需知道其绝对值。此法的特点是测定蛋白质含量的准确度较差,干扰物质多,在用标准曲线法测定蛋白质含量时,对那些与标准蛋白质中酪氨酸和色氨酸含量差异大的蛋白质,有一定的误差。故该法适于用测定与标准蛋白质氨基酸组成相似的蛋白质。若样品中含有嘌呤、嘧啶及核酸等吸收紫外光的物质,会出现较大的干扰。核酸的干扰可以通过查校正表,再进行计算的方法,加以适当的校正。但是因为不同的蛋白质和核酸的紫外吸收是不相同的,虽然经过校正,测定的结果还是存在一定的误差。此外,进行紫外吸收法测定时,由于蛋白质吸收高峰常因pH的改变而有变化,因此要注意溶液的pH值,测定样品时的pH要与测定标准曲线的pH相一致。1.280nm的光吸收法因蛋白质分子中的酪氨酸、苯丙氨酸和色氨酸在280nm处具有最大吸收,且各种蛋白质的这三种氨基酸的含量差别不大,因此测定蛋白质溶液在280nm处的吸光度值是最常用的紫外吸收法。测定时,将待测蛋白质溶液倒入石英比色皿中,用配制蛋白质溶液的溶剂(水或缓冲液)作空白对照,在紫外分光度计上直接读取280nm的吸光度值A280。蛋白质浓度可控制在0.1~1.0mg/ml左右。通常用1cm光径的标准石英比色皿,盛有浓度为1mg/ml的蛋白质溶液时,A280约为1.0左右。由此可立即计算出蛋白质的大致浓度。许多蛋白质在一定浓度和一定波长下的光吸收值(A1%1cm)有文献数据可查,根据此光吸收值可以较准确地计算蛋白质浓度。下式列出了蛋白质浓度与(A1%1cm)值(即蛋白质溶液浓度为1%,光径为1cm时的光吸收值)的关系。文献值A1%1cm,λ称为百分吸收系数或比吸收系数。蛋白质浓度= (A280´10 )/ A1%1cm,280nm (mg/ml)(Q 1%浓度»10mg/ml)

  • 紫外可见吸收光谱仪测量固体材料吸收率

    [color=#444444]请问哪位国内外课题组有紫外可见吸收光谱仪,需要测量一种固态材料的吸收光谱特性,可见光谱范围,所以detector和light source需要都在试样的上面,望知道的亲告知一下,谢谢![/color]

  • 【分享】紫外可见吸收光谱法

    利用物质分子对紫外可见光的吸收光谱,对物质的组成含量和结构进行分析测定的方法。  该方法具有灵敏度高、准确度好、选择性优操作简便、分析速度好、应用广泛等特点。  其测定波长范围为200-1000nm。原理:物质的分子的电子能级、振动能级都是量子化的,只有当辐射光子的能量恰好等于两能级间的能量差(两能级间的能量差与分子中价电子的结构有关)时,分子才能吸收能量。  某一种分子的结构是确定的,所以一种分子只能吸收波长在一定范围内光子。我们就可以通过测量分子对其所吸收的光子的波长范围,来确定分子的结 构。分子光谱特点:  分子光谱与原子光谱不同,它是一种连续的宽的吸收带,而不是简单的锐线光谱。  紫外可见吸收光谱仪的基本结构一般由:光学系统、机械系统和电学系统三部分组成。应用: 紫外可见分光光度法在有机物定性分析中有着广泛的应用,在无机物方面用于矿物、半导体、天然产物和化合物的研究。紫外可见分光光度法在定性方面主要依靠化合物的光谱特征,如吸收锋数目、位置、形状与标准光谱相比较,来确定某些基因的存在。 尽管紫外可见分光光度法是一种比较常用的方法,但是,在一些情况下它不能单独用来确定一个未知化合物,还要与其它方法连用,才能实现准确分析紫外可见分光光度法发展:小型化、便携式、智能化。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制