当前位置: 仪器信息网 > 行业主题 > >

多量程纳米显微成像系统

仪器信息网多量程纳米显微成像系统专题为您提供2024年最新多量程纳米显微成像系统价格报价、厂家品牌的相关信息, 包括多量程纳米显微成像系统参数、型号等,不管是国产,还是进口品牌的多量程纳米显微成像系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合多量程纳米显微成像系统相关的耗材配件、试剂标物,还有多量程纳米显微成像系统相关的最新资讯、资料,以及多量程纳米显微成像系统相关的解决方案。

多量程纳米显微成像系统相关的论坛

  • 深圳先进院碳纳米X射线成像技术取得进展

    中国科学院深圳先进技术研究院承担的国家科技支撑计划“基于碳纳米X射线发射源的CT系统研发”课题团队利用自主研发的碳纳米管薄膜成功地获取首张X射线二维成像图。1月17日,科技部组织的专家组在先进院听取了团队工作汇报并现场考察了该成像装置,对该技术表示了充分肯定,这是我国在碳纳米管X射线源成像研究方面取得的突破性进展和成果。 碳纳米管X射线源是最近几年发展起来的被认为是具有革命性的新型X射线源。具有一百年历史的传统X射线源基于热电子发射阴极,而碳纳米管X射线源创新性的用碳纳米管场发射阴极取代热阴极,从而使该X射线源具有可控发射、高时间分辨、低功耗且易于集成等诸多优势。这些优势将给X射线CT带来结构上的突破。其中,最具潜力的方向之一即基于碳纳米管X射线源阵列的静态扫描CT。该CT以电子式的扫描取代传统的机械转动来获取不同角度的图像,可消除机械转动带来的成像伪影,缩短扫描时间,从而减少病人的辐射剂量,有望提高CT扫描的图像精度。 先进院医工所劳特伯医学成像中心研究团队,经近2年的技术攻关,制备出性能优异的碳纳米管薄膜并研制了基于新光源的X射线成像系统。自主研发的碳纳米管薄膜发射电流密度已达到国际先进水平,研制的X射线源成像系统获得了首张X射线二维成像图。团队目前正在进一步提高阴极稳定性、优化射线源结构,以期开展CT的三维成像。 据悉,作为该课题承担单位的深圳先进院在注重自主研发的同时,也重视与国际前沿单位的密切合作。项目团队所在研究影像中心及国家地方联合高端影像工程实验室在CT系统研制方面具有重要的经验和基础,曾成功研发了高分辨显微CT和低剂量口腔CT,显微CT已经成功应用到中国科学院动物研究所,口腔CT已经进入产业化阶段。正在研发的碳纳米管X射线CT作为一项前瞻性的科学研究,为开发新一代的CT系统储备技术,形成自主知识产权。http://www.cas.cn/ky/kyjz/201301/W020130122537020414424.png左:成像装置图              右:成像图

  • 中国科大张斗国教授团队在单个纳米尺度物体无标记光学显微成像方面取得新进展

    近日,中国科学技术大学物理学院光电子科学与技术安徽省重点实验室张斗国教授课题组提出并实现了一种基于矢量光场调控原理的动量空间偏振滤波器件。将该滤波器件安装于传统无标记光学显微镜的出射端,它可以对出射光场的背景噪声进行高效抑制,进而采集到单个纳米尺度物体的高对比度、高信噪比光学显微图像。研究成果以“Cascaded momentum-space-polarization filters enable label-free black-field microscopy for single nanoparticles analysis”为题在线发表在综合性学术期刊《美国国家科学院院刊》(PNAS)。[align=center][img=,600,174]https://img1.17img.cn/17img/images/202403/uepic/18c3b2c4-6d3d-4349-b5d2-5c096ac0f32f.jpg[/img][/align]单纳米级物质的无标记光学成像对于各种生物医学、物理和化学研究极为重要。其中一个核心挑战是背景强度远远大于单个纳米物体的散射光强度。在这里提出了一种由级联动量空间偏振滤波器组成的光学模块,它可以进行矢量场调制,阻挡大部分背景场,使背景几乎变黑;相反,只有一小部分散射被阻挡,从而明显提高成像对比度。为了解决这个问题,张斗国教授课题组设计并实现了一种动量空间偏振滤波器件,它可在动量空间进行矢量场偏振调控,大幅度过滤、抑制各类背景噪声,只有单个纳米尺度物体的光散射信号能透过该滤波器件,被探测器采集到,从而实现了单个纳米尺度物体的高对比度、高信噪比的成像探测。[align=center][img=,500,508]https://img1.17img.cn/17img/images/202403/uepic/b5f63213-6cee-41d0-8519-3a9bc7fc69aa.jpg[/img][/align]作为一种应用展示,该动量空间偏振滤波器件被加载到传统全内反射显微镜(Total internal reflection microscopy, TIRM)的出射端,用于单个纳米尺度物体的成像与传感。加载该滤波器后,TIRM被转化为黑场光学显微镜(Black field microscopy (BFM),相对于常规的无标记暗场光学显微镜,BFM具有更低(更黑)背景噪音,更高探测灵敏度)。BFM可以实时记录了此变化过程,证明BFM可应用于单个纳米颗粒化学反应过程的实时记录,为实时探测单个纳米尺度物体物性演化过程中所发生的物理-化学反应探测提供了新型光子学技术。该动量空间滤波器件的突出特点是:在不改变显微镜内部结构的情况下,它可以使常规的无标记光学显微镜,如表面等离激元共振显微镜、TIRM等近场光学显微镜,具有黑场成像功能,从而大幅度提升其对单个纳米尺度物体的探测灵敏度。本研究工作所发展黑场显微镜为单个纳米颗粒的分析提供了新平台,有望在生物学、物理学、环境科学和材料科学等领域得到广泛应用。该研究工作得到了科技部,国家自然科学基金委、安徽省科技厅、唐仲英基金会等项目经费的支持。相关样品制作工艺得到了中国科学技术大学微纳研究与制造中心的仪器支持与技术支撑。[来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 纳米原子尺度,衬度成像机制,信息提取

    应用透射电子显微镜观察纳米结构在纳米-原子尺度的细节,需要采用何种衬度成像机制;在霍地图像信息的同时,在纳米尺度综合分析方面,还有哪些信息可以同时提取出来?

  • 美国研发新型X光纳米显微镜成功

    据美国物理学家组织网近日报道,美国加利福尼亚大学圣地亚哥分校物理学家开发出一种新型X光显微镜,不仅能透视材料内部结构,而且洞察之细微达到了纳米水平。该显微镜有助于开发更小的数据存储设备,探测物质化学成分,拍摄生物组织结构等。研究论文发表在《美国国家科学院院刊》上。X光纳米显微镜不是通过透镜成像,而是靠强大的算法程序计算成像。“这种数学运算方法相当复杂,其原理有点像哈勃太空望远镜,就是让最初看到的模糊图像变得清晰鲜明。”领导该研究的加州大学圣地亚哥分校副教授奥里格·夏佩克解释说,X光探测到物质的纳米结构后,会生成衍射图案,计算机按照运算法则将这种衍射图案转化为可辨认的精细图像。为了测试显微镜透视物体的能力和分辨率,研究小组用钆和铁元素制作了一种层状膜。目前信息技术行业多用这种膜来开发高容高速、更微小的内存设备和磁盘驱动器。“这两种都是磁性材料,如果结合成一体,就会自然地形成纳米磁畴。”夏佩克说,在显微镜下面,能看到它们形成的磁条纹。层状的钆铁膜看起来就像一块千层酥,层层褶皱形成了一系列的磁畴,就好像一圈圈指纹的凸起。

  • 【2014诺奖回顾】光学显微纳米新时代

    【2014诺奖回顾】光学显微纳米新时代

    http://ng1.17img.cn/bbsfiles/images/2014/12/201412191620_527962_2972800_3.jpg 1873年,显微学家厄恩斯特•阿贝提出“传统光学显微镜分辨率为不会超过0.2微米”的物理限制。大约一个半世纪之后,来自美国的埃里克•白兹格(Eric Betzig)和威廉姆•莫尔纳尔(William Moerner)以及德国的斯特凡•赫尔(Stefan Hell)成功突破了这一限制,他们利用荧光分子,发明了一种超级分辨率荧光显微镜,从此开启了光学显微镜的纳米时代,正因如此,三人荣获2014年诺贝尔化学奖。 该显微镜融合了另外两种显微镜的成像原理,其一是2000年斯特凡•赫尔发明的受激发射损耗(STED)显微镜,其原理是利用两条激光束,一条激发荧光分子使其发出荧光,另一条抵消除纳米级荧光外的所有荧光;这样一纳米一纳米地扫描样品,所得图像的分辨率突破了阿贝的物理限制。其二是2006年埃里克•白兹格和威廉姆•莫尔纳尔发明的单分子显微镜,其工作原理是开关单分子荧光,科学家们反复多次对扫描同一样品,每次只让几个分子发出荧光,叠加所有图像后得到的致密图像就有纳米级分辨率。如今,纳米显微学已经广泛用于全世界,深入人们生活的各个方面,科学家们从此能了解更多活细胞中分子的细节,从而为改善人类生存环境做出更大贡献。

  • 【分享】英研制分辨率最高光学显微镜 可观测50纳米物体

    【分享】英研制分辨率最高光学显微镜 可观测50纳米物体

    http://ng1.17img.cn/bbsfiles/images/2011/03/201103062216_281178_2193245_3.jpg英研制分辨率最高光学显微镜 可观测50纳米物体  英国曼彻斯特大学科学家近期研制出了世界上分辨率最高的光学显微镜,能够观测50纳米大小的物体。这是世界上第一个能在普通白光照明下直接观测纳米级物体的光学显微镜。  他们的成果发表在最新一期的《通信与自然》杂志上。由于光的衍射特性的限制,光学显微镜的观测极限通常约为1微米。研究人员通过为光学显微镜添加一种特殊“透明微米球透镜”,克服了上述障碍,使这一极限达到50纳米,观测能力提高了20倍。(注:1微米等于1000纳米)  这项成果的核心是利用物体发散出的一种逐渐消失的“隐失波”。顾名思义,“隐失波”是一种逐步消失的光波,但很重要的是,它不受限于光的衍射极限,所以如果我们能捕捉住这种光,就很有希望观测到比传统成像办法高清许多的图像。曼彻斯特大学科研人员在“透明微米球透镜”的帮助下,收集到“失波”并把它转到传统显微镜,这样科学家用肉眼就可看到通常需要其它间接方法才能观测到的细微之处,譬如通过原子力显微镜或扫描电子显微镜观测。  曼彻斯特大学激光加工研究中心的李琳教授认为,这项技术在生物学研究方面的应用前景广阔,特别是对细胞、细菌甚至是病毒的研究。  李琳教授表示:“目前应用于生物学研究领域的显微镜技术特别费时,举个例子,如果我们用荧光显微镜进行观测,需要花两天时间准备一个观测所需的样品,而这些准备好的样品只有10%到20%有用。因此,直接观察细胞技术的引进将能带来潜在的收益。”

  • 神奇的微生物纳米线

    神奇的微生物纳米线

    http://ng1.17img.cn/bbsfiles/images/2015/01/201501091358_531780_2972800_3.jpg 科学界关于“微生物纳米线”的争论已经存在了十年,近日,美国麻州大学阿默斯特分校的德里克•洛弗利研究小组利用新的成像技术——静电力显微镜(EFM)从物理学上证明了地杆菌微生物体内“微生物纳米线”的存在,这是一项极具环境和现实意义的发现,微生物纳米线是潜在的“绿色”的电子元件,可再生、无毒、可基因操控,未来将广泛用于工程微生物传感器和生物计算设备等领域。 “微生物纳米线”是一种线状纤维蛋白,它们就像安在微生物身体上的微小电线一样,可以传输电荷。“图像显示电流沿着微生物纳米线流动,眼见为实,能在分子水平上将纳米线传输电荷的机制可视化是非常令人振奋的。”洛弗利激动地说。纳米线证明了地杆菌以土壤中的铁和其他金属为生,这将使其在改变土壤化学状况以及环境净化中发挥重要作用。 这一发现不仅在生物学上,也在材料学上提出了一项重要的新原理:当设置正确时,天然氨基酸可像碳纳米管等分子导体一样传输电荷。它为蛋白质纳米电子学开辟了前所未有的前景。目前正在开发应用程序有两个:一是把地杆菌集成到电子传感器中来监测环境污染物,二是基于地杆菌的微生物计算机。“我期望这项技术未来可以应用于更多物理学和生物学交叉的领域。”洛弗利说。

  • 神奇的微生物纳米线

    神奇的微生物纳米线

    http://ng1.17img.cn/bbsfiles/images/2015/01/201501091400_531781_2972800_3.jpg 益择网讯(慕雪/编译)科学界关于“微生物纳米线”的争论已经存在了十年,近日,美国麻州大学阿默斯特分校的德里克•洛弗利研究小组利用新的成像技术——静电力显微镜(EFM)从物理学上证明了地杆菌微生物体内“微生物纳米线”的存在,这是一项极具环境和现实意义的发现,微生物纳米线是潜在的“绿色”的电子元件,可再生、无毒、可基因操控,未来将广泛用于工程微生物传感器和生物计算设备等领域。 “微生物纳米线”是一种线状纤维蛋白,它们就像安在微生物身体上的微小电线一样,可以传输电荷。“图像显示电流沿着微生物纳米线流动,眼见为实,能在分子水平上将纳米线传输电荷的机制可视化是非常令人振奋的。”洛弗利激动地说。纳米线证明了地杆菌以土壤中的铁和其他金属为生,这将使其在改变土壤化学状况以及环境净化中发挥重要作用。 这一发现不仅在生物学上,也在材料学上提出了一项重要的新原理:当设置正确时,天然氨基酸可像碳纳米管等分子导体一样传输电荷。它为蛋白质纳米电子学开辟了前所未有的前景。目前正在开发应用程序有两个:一是把地杆菌集成到电子传感器中来监测环境污染物,二是基于地杆菌的微生物计算机。“我期望这项技术未来可以应用于更多物理学和生物学交叉的领域。”洛弗利说。

  • 纳米纤维的表征

    请教各位大虾们,纳米纤维的具体表征方法,有哪些需要特别表示的,我的纤维是纳米级的纤维。谢谢!!

  • 【分享】巧夺天工!纤维纳米发电机(图)

    【分享】巧夺天工!纤维纳米发电机(图)

    [img]http://ng1.17img.cn/bbsfiles/images/2017/10/2008441608_01_1633307_3.jpg[/img]图:(a)低倍扫描电子显维照片显示两个互相缠绕的、表明长有氧化锌纳米线阵列的纤维,其中一个镀有金。(b)高倍扫描电子显维照片显示两纤维界面处的纳米线对纳米线结构。(c)显示多根纤维组成的纤维纳米发电机的串/并连式连接来提高输出电压/电流。(图片来源:王中林实验室) 从2006年开始,王中林小组相继发明了纳米发电机、直流发电机。在2006年他首次提出了压电电子学(Piezotronics)的概念和新研究领域。由于氧化锌具有独特的半导体和压电性质,弯曲的氧化锌纳米线能在其拉伸的一面产生正电势,压缩的一面产生负电势。氧化锌半导体和金属电极之间的肖特基势垒则能控制电荷的积累与释放,从而实现机械能到电能的转化,并有效释放。   2007年初,基于压电电子学原理,王中林研究小组用超声波带动纳米线阵列运动,研制出能独立从外界吸取机械能、并将之转化为电能的纳米发电机模型。在超声波带动下,这种纳米发电机已能产生上百纳安的电流。但是,在实际环境中,机械能主要以低频震动形式存在,如空气的流动、引擎的震动等。要让纳米发电机能广泛应用于各方面,一个关键的问题就是要降低纳米发电机的响应频率,让纳米线阵列在几个赫兹的低频震动下也能将机械能转化为电能。   为了实现这一目标,王中林教授和王旭东博士及秦勇博士组成研究小组。利用溶液化学方法,他们将氧化锌纳米线沿径向均匀生长在纤维表面,然后用两根纤维模拟了将低频震动转化为电能的这一过程。为了能实现电极与氧化锌纳米线之间的肖特基接触,他们采用磁控溅射在一根纤维表面镀了一层金膜作为电极,而另一根表面是未经处理的氧化锌纳米线。当两根纤维在外力作用下发生相对运动时,表面镀有金膜的氧化锌纳米线像无数原子力显微镜探针一样,同时拨动另外一根纤维上的氧化锌纳米线;所有这些氧化锌纳米线同时被弯曲、积累电荷,然后再将电荷释放到镀金的纤维上,实现了机械能到电能的转换。   相对于之前的直流纳米发电机,新成果实现了如下突破:首先,通过让氧化锌纳米线在纤维之上生长,为实现柔软,可折叠的电源系统(如“发电衣”)等打下了基础;其次,基于纤维的纳米发电机能在低频震动下发电,这就使得步行、心跳等低频机械能的转化成为可能;再次,由于其合成方法简单,条件温和,这就大大扩展了基于氧化锌纳米线的纳米发电机的应用范围。根据目前的实验数据,他估计,如果能用这些纤维编织成布在极端优化的条件下,每平方米这样的布可能输出大约20-80毫瓦的电能。   王中林说,目前这种由两根纤维组成的纳米发电机的输出功率还很小,这主要是由于纤维的内阻较大以及纤维之间接触面积较小造成的。目前,他们正努力提高这种基于纤维的纳米发电机的输出能量。例如,通过在纤维上预先镀一层导电材料然后生长氧化锌纳米线,可以明显降低纳米发电机的内阻,进而可提高纤维基纳米发电机的输出电流;也可以通过增加纤维的数量来提高纳米发电机的输出能量。   文章的审稿人认为:“这是一项很有创意、具有突破性的研究……作者的思路是革命性的。”王中林认为,新成果将为纳米发电机在生物技术、纳米器件、个人携带式电子设备以及国防技术等领域的应用开拓更为广泛的空间。    “今天,纳米科技已经从早期对纳米材料结构和基本物理化学特性的研究,发展到利用纳米材料的优良特性有目的地制造纳米器件,各种各样的纳米器件被纷纷制造出来,如纳米传感器、纳米电动机甚至纳米机器人等。”王中林说,“但与此同时,为这些微型化、集成化的纳米器件提供能量的仍是传统电源,如电池。因此,迫切需要开发出纳米尺度的电源系统,为纳米器件的进一步小型化、集成化提供基本能源。”   目前,已经有BBC、NBC、PBS、《国家地理》等多家国际权威新闻媒体对这一重要的科学成果进行了报道。

  • 纳米纤维素做TEM

    纳米纤维素做TEM

    第一次做的纳米纤维素的TEM(醋酸双氧铀染色)还能看到纤维丝状的缠绕结构,但是今天做的纳米纤维素TEM的时候,看的很模糊,测试老师说是染色的问题,我这次是重新买的醋酸双氧铀配成跟以前那瓶浓度一样的2%,染色方法没变,可就是很模糊,背景不明显,请问大家做纳米纤维素TEM是怎么做的?http://ng1.17img.cn/bbsfiles/images/2016/05/201605041546_592245_3049796_3.jpg

  • 【分享】纳米几何结构标准装置——计量型原子力显微镜

    [align=center][font=Verdana](2007 国社量标计证字第040号)[img]http://www.zgjljs.com/eWebEditor/UploadFile/2010815111612501.jpg[/img][/font][/align] 该装置是国内首个纳米计量标准,它是依托中国计量科学研究院长度所研制的计量型原子力显微镜纳米测量系统而建立的,而原子力显微镜的计量化是通过固接在其上的一体化无阿贝误差布局的三维激光干涉系统来实现测量结果直接溯源到激光波长和国际单位制的。该系统在测量原理、测量精度、可溯源性方面均达到了国际先进水平。 该标准主要用于承担我院参加国际计量局组织的纳米国际比对,并为国内微电子、集成电路行业提供关键量值溯源,为科研院所的纳米研究提供技术支持等任务,为我国纳米技术的研究和生产提供了有力的技术保障。[b]该标准的主要技术指标为:[/b]系统测量范围(x, y, z)=(70μm, 15μm, 15μm)系统测量分辨力(x, y, z)=(1nm, 0.25nm, 0.12nm)对台阶和线间隔类纳米几何结构参数的建标范围:台阶类及其它垂直结构:(0~2000) nm 线间隔类及其它水平结构:(0~20)μm对台阶和线间隔类纳米几何结构参数的测量不确定度:台阶类:U=1nm +2×10[sup]-4[/sup]×H,k=2 (H为台阶高度,H-nm)线间隔类:U=1nm +2×10[sup]-4[/sup]×L,k=2 (L为线间隔距离,L-nm)[font=宋体, MS Song] [/font]

  • 纳米纤维素膜SEM

    [font=&]电镜下观察纳米纤维素膜(样本经乙醇梯度脱水,自然干燥),看不到纳米纤维丝,感觉都缠结成网状了?是铺膜的时候浓度太高了吗?[/font]

  • 如何用sCMOS相机优化显微成像

    [align=center][b][size=14.0pt]如何用sCMOS相机优化显微成像[/size][/b][/align][align=center][size=11.0pt]会议时间:2020年3月20日10:00[/size][/align][b][size=12.0pt]内容介绍:[/size][/b]本次报告从灵敏度、成像视野、成像速度、成像特性等参数方面全面解读来自牛津仪器Andor的全新背照式、高分辨sCMOS相机。首先,介绍相机的成像结构和数据读出原理;第二,重点介绍Andor背照式SCMOS相机,分析相机参数对显微成像的影响;第三,以单分子成像为例,比较背照式sCMOS相机和EMCCD相机,给出各自成像优势;最后,展示sCMOS相机在具体科研上的应用。[b][size=12.0pt]讲师介绍:[/size][size=11.0pt]王坤:[/size][/b][size=11.0pt]2009[/size][size=11.0pt]年中科院国家纳米科学中心获得凝聚态物理博士,目前在牛津仪器Andor公司担任应用科学家,近十年来一直从事高端显微成像系统的相关科研及应用工作,参与过科技部重大仪器专项、中科院仪器专项、中科院仪器功能开发项目、上海市自然科学基金等科研项目,熟悉各类高端显微成像系统的原理,在各类生物样本成像上具有丰富的经验。[/size][font=等线][size=10.5pt]报名地址:[url]https://www.instrument.com.cn/webinar/meeting_12626.html[/url][/size][/font]

  • 纳米纤维素做SEM

    纳米纤维素做SEM

    纳米纤维素喷金后看不到纳米纤维丝,看到的都是块状和颗粒状,这是为什么,是喷的金的尺寸太大还是应该换别的材料?

  • 【原创大赛】扫描探针显微镜在纳米力学测试中的应用

    【原创大赛】扫描探针显微镜在纳米力学测试中的应用

    [b] [/b][color=windowtext][b] 扫描探针显微镜在纳米力学测试中的应用[/b][/color][b] [/b][color=windowtext][b] [/b][/color][b] [/b][color=windowtext][b]一、什么是扫描探针显微镜[/b][/color][b] [color=windowtext] 扫描探针显微镜([/color][color=windowtext]Scanning Probe Microscope, SPM[/color][color=windowtext])是在扫描隧道显微镜基础上发展起来的各种新型探针显微镜的统称。是国际上近年发展起来的表面分析仪器,其分辨率高、实时、实空间、原为成像,对样品无特殊要求,可在大气、常温环境甚至溶液中成像,同时具备纳米操纵及加工功能等。广泛应用于纳米科技、材料科学、物理、化学和生命科学等领域,并取得许多重要成果。[/color][color=windowtext] [/color][color=windowtext]二、扫描探针显微镜特点[/color]1、 [color=windowtext]SPM[/color][color=windowtext]具有极高的分辨率[/color]2、 [color=windowtext]SPM[/color][color=windowtext]得到的是实时的、真实的样品表面的高分辨三维图像。[/color]3、 [color=windowtext]SPM[/color][color=windowtext]可以观察单个原子层的局部表面结构。而不是体相或整个表面的平均性质。[/color]4、 [color=windowtext]SPM[/color][color=windowtext]使用环境宽松,可在大气、低温、常温、高温下工作。[/color] [/b][color=windowtext][b]三、扫描探针显微镜在纳米力学测试中原位成像的应用[/b][/color][b] [/b][color=windowtext][b]下面以某系非晶材料为例,说一说扫描探针显微镜的具体应用[/b][/color][b] 1、 [color=windowtext]采用某公司超纳米压痕仪对非晶样品表面纳米压入[/color][/b][color=windowtext][b][/b][/color][color=windowtext][b]压入参数:[/b][/color][b] [/b][table][tr][td][b] [/b][color=windowtext][b] [/b][/color][b] [/b][/td][td][b] [color=windowtext]加载速率[/color][color=windowtext](mN/min)[/color] [/b][/td][td][b] [color=windowtext]保载时间[/color][color=windowtext](S)[/color] [/b][/td][td][b] [color=windowtext]卸载速率[/color][color=windowtext](mN/min)[/color] [/b][/td][td][b] [color=windowtext]最大载荷([/color][color=windowtext]mN)[/color] [/b][/td][/tr][tr][td][b] [color=windowtext]点[/color][color=windowtext]1[/color] [/b][/td][td][b] [/b][color=windowtext][b]60[/b][/color][b] [/b][/td][td][b] [/b][color=windowtext][b]10[/b][/color][b] [/b][/td][td][b] [/b][color=windowtext][b]60[/b][/color][b] [/b][/td][td][b] [/b][color=windowtext][b]30[/b][/color][b] [/b][/td][/tr][/table][b] [color=windowtext]加卸载曲线[/color][color=windowtext]图[/color][color=windowtext]([/color][color=windowtext]一[/color][color=windowtext])[/color][/b][color=windowtext][b][/b][/color][color=windowtext][b][img=,690,563]http://ng1.17img.cn/bbsfiles/images/2017/09/201709300951_01_2224533_3.jpg[/img][/b][/color][b][color=windowtext]通过[/color][color=windowtext]SPM[/color][color=windowtext]原位成像[/color][color=windowtext]图(二、三)[/color][/b][color=windowtext][b][/b][/color][color=windowtext][b][/b][/color][color=windowtext][b][img=,401,470]http://ng1.17img.cn/bbsfiles/images/2017/09/201709300951_02_2224533_3.jpg[/img][img=,690,442]http://ng1.17img.cn/bbsfiles/images/2017/09/201709300951_03_2224533_3.jpg[/img][/b][/color][b] [/b][color=windowtext][b] [/b][/color][b] [color=windowtext] SPM[/color][color=windowtext]原位成像压痕图明显看到三角形边出现似有规律性台阶堆积现象,然而加载曲线比较光滑,丝毫没有异像。于是通过改变在加载速率[/color][/b][color=windowtext][b][/b][/color][color=windowtext][b]压入参数:[/b][/color][b] [/b][table][tr][td][b] [/b][color=windowtext][b] [/b][/color][b] [/b][/td][td][b] [color=windowtext]加载速率[/color][color=windowtext](mN/min)[/color] [/b][/td][td][b] [color=windowtext]保载时间[/color][color=windowtext](S)[/color] [/b][/td][td][b] [color=windowtext]卸载速率[/color][color=windowtext](mN/min)[/color] [/b][/td][td][b] [color=windowtext]最大载荷([/color][color=windowtext]mN)[/color] [/b][/td][/tr][tr][td][b] [color=windowtext]点[/color][color=windowtext]2[/color] [/b][/td][td][b] [/b][color=windowtext][b]3[/b][/color][b] [/b][/td][td][b] [/b][color=windowtext][b]10[/b][/color][b] [/b][/td][td][b] [/b][color=windowtext][b]60[/b][/color][b] [/b][/td][td][b] [/b][color=windowtext][b]30[/b][/color][b] [/b][/td][/tr][/table][b] [color=windowtext]加载曲线[/color][color=windowtext]图(四)[/color][/b][color=windowtext][b][/b][/color][color=windowtext][b][/b][/color][color=windowtext][b][img=,690,567]http://ng1.17img.cn/bbsfiles/images/2017/09/201709300952_01_2224533_3.jpg[/img][/b][/color][color=windowtext][b][/b][/color][color=windowtext][b][/b][/color][b] [color=windowtext]SPM[/color][color=windowtext]原位成像[/color][color=windowtext]图(五、六)[/color][img=,401,469]http://ng1.17img.cn/bbsfiles/images/2017/09/201709300953_01_2224533_3.jpg[/img][img=,690,437]http://ng1.17img.cn/bbsfiles/images/2017/09/201709300953_02_2224533_3.jpg[/img][/b][color=windowtext][b] [/b][/color][b] [color=windowtext]四、结论[/color][color=windowtext] 图(五、六)图(二、三)现象基本一致,然而采用低速率的加载曲线,出现了明显小平台,在排除外界震动等因素的情况下,我认为在采用仪器压入法研究材料的纳米力学性能时,常规加载速率很可能由于仪器的灵敏度导致无法捕捉到更多的微观信息,如果没有借助[/color][color=windowtext]SPM[/color][color=windowtext]成像(为什么没有推荐扫描电镜的原因,因为扫描电镜属于二次电子成像,无法得到样品表面凹凸高度信息)很可能就发现不了非晶材料的这种滑移等微观信息,不能更深入的研究材料的纳米力学性能。这就是为什么在仪器压入法进行纳米力学性能测试的时候引入[/color][color=windowtext]SPM[/color][color=windowtext]原位成像技术。[/color] [color=windowtext]SPM[/color][color=windowtext]在纳米尺度上是人类观察、改造世界的一种新工具,目前被广发应用于教学、科研及工业领域,特别是半导体集成电路、光盘工业、胶体化学、医疗检测、存储磁盘、电池工业、光学晶体等领域;随着[/color][color=windowtext]SPM[/color][color=windowtext]的不断发展,它正在进入食品、石油、地质、矿产及计量领域。[/color][/b][color=windowtext][b][/b][/color][color=windowtext][b][/b][/color][color=windowtext][/color]

  • 听清华大学朱永法教授和国家纳米科学中心刘忍肖老师在线讲述“纳米材料的形貌及粒度表征”,网络讲座不容错过!

    听清华大学朱永法教授和国家纳米科学中心刘忍肖老师在线讲述“纳米材料的形貌及粒度表征”,网络讲座不容错过!

    ”纳米材料的形貌及粒度表征“网络主题研讨会会议时间:2015年12月9日 14:00-17:00报告日程:报告一:纳米材料的形貌和粒度分析方法及应用报告人:朱永法清华大学化学系教授、博导,分析化学研究所副所长,国家电子能谱中心副主任。从事半导体薄膜材料的表面物理化学、纳米材料的合成与性能、环境催化以及光催化的研究工作。报告概要:主要讲述了纳米材料最常用的三种形貌分析方法的原理和应用特点以及粒度分析的方法和在纳米材料研究方面的应用实例。目前最常用的形貌分析方法是扫描电子显微镜、透射电子显微镜和原子力显微镜。扫描电镜视场广,样品制备简单,不会产生信息失真,可以观察形貌以及实现颗粒大小的分布统计。透射电镜可以观察纳米材料的形貌和颗粒大小,但视野范围小,样品制备过程容易产生大颗粒的丢失现象,但可以区分聚集态和一次粒子的信息。原子力显微镜可以观察薄膜的颗粒大小,也可以观察分散态的纳米材料的形貌及大小。此外,还可以测量颗粒的厚度以及薄膜的粗糙度分布。激光粒度仪是测量颗粒大小常用的方法,但无法观察纳米材料的形貌,是一种统计颗粒直径分布,容易失真。此外,很多纳米材料分散在溶液中,可能是水合方式存在,获得的是水合颗粒大小的分布,并不是真实的材料颗粒大小,但可以获得粒度分布的信息。此外,通过XRD和拉曼光谱还可以获得纳米材料晶粒大小的数据。报告二:基于PeakForce Tapping模式的纳米材料表征报告人: 孙昊布鲁克中国北方区客户服务主管报告提纲:PeakForce Tapping是由Bruker公司发明的一种新的基本成像模式。与传统的Contact、Tapping模式相比,PeakForce Tapping具有探针-样品作用力小、能够自动优化反馈回路、能够进行定量力学成像等优点。基于PeakForce Tapping模式,Bruker公司发展了一系列扩展成像技术,如智能成像(ScanAsyst),它可以轻易实现绝大部分常见样品的扫描参数自动优化,使刚入门的客户也能非常容易地得到专家级的图像;定量纳米力学成像(PeakForce QNM)可以在扫描形貌的同时实时定量地分析出样品的模量与粘滞力,为纳米力学测量带来了革新;峰值力表面电势测量(PFKPFM)与峰值力导电性测量(PFTUNA)使得在软样品表面同时的电学和力学测量成为可能。在这个Webinar中,我们将介绍基于PeakForce Tapping的一系列新的成像技术在纳米表征中的应用。报告三:纳米材料的粒度表征报告人:方瑛HORIBA 应用工程师报告概要: 颗粒的尺寸会影响纳米材料的各种性能,而溶液的电位则会影响纳米乳液的稳定性。纳米颗粒分析仪可以表征纳米颗粒的粒径和电位,报告会介绍粒径和Zeta电位的测试原理,重点会介绍颗粒分析在纳米材料中的应用。报告四:尺度表征用纳米标准样品报告人:刘忍肖博士,高级工程师,国家纳米科学中心/中科院纳米标准与检测重点实验室,主要工作领域为纳米技术标准化,承担了十余项纳米技术标准制修订、纳米标准物质/标准样品的研制工作;从事与纳米技术相关的标准化科研工作,参与两项国家重大科学研究计划项目和一项质检公益性行业科研专项,承担国家自然科学基金和北京市自然科学基金项目。报告提纲:纳米标准样品概况;尺度表征用纳米标准样品;示例:粒度、台阶高度纳米标准样品。报名条件:仪器信息网个人用户,自助报名当天参会。报名方式:扫描下方二维码或点击链接。http://ng1.17img.cn/bbsfiles/images/2015/11/201511231436_574762_2507958_3.png仪器信息网“纳米材料的形貌及粒度表征”网络主题研讨会http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1749

  • 纳米纤维素做TEM以及制样

    纳米纤维素做TEM以及制样

    第一次做的纳米纤维素的TEM(醋酸双氧铀染色)还能看到纤维丝状的缠绕结构,但是今天做的纳米纤维素TEM的时候,看的很模糊,测试老师说是染色的问题,我这次是重新买的醋酸双氧铀配成跟以前那瓶浓度一样的2%,染色方法没变,可就是很模糊,背景不明显,请问大家做纳米纤维素TEM是怎么做的?这是我没换染色剂之前拍出来的纳米纤维素TEM照片http://ng1.17img.cn/bbsfiles/images/2016/05/201605041552_592247_3049796_3.jpg

  • Nature Communications:纳米级光学显微镜问世

    英国和新加坡研究人员1日报告说,他们制造出能够观测50纳米大小物体的光学显微镜,这是迄今观测能力最强的光学显微镜,也是世界上第一个能在普通白光照明下直接观测纳米级物体的光学显微镜。http://www.bioon.com/tech/UploadFiles_3081/201103/2011030214521841.jpg英国曼彻斯特大学研究人员和新加坡同行当天在新一期《自然·通信》杂志上报告了这项成果。由于光的衍射特性的限制,光学显微镜的观测极限通常约为1微米。研究人员通过为光学显微镜添加一种特殊的“透明微米球透镜”,克服了上述障碍,使这一极限达到50纳米,观测能力提高了20倍。论文第一作者王增波博士告诉新华社记者:“这是目前世界上唯一能在普通白光照明下直接观测纳米级物体的光学显微镜,是一个新的世界纪录。”

  • 实时超分辨率显微成像系统特点介绍

    [url=http://www.f-lab.cn/microscopes-system/storm.html][b]实时超分辨率显微成像系统[/b][/url]突破了光学显微镜的半波长分辨率极限,提供了比宽视场,共聚焦显微镜更好分辨率。实时超分辨率显微成像系统采用尼康或奥林巴斯显微镜,Chroma 滤波片,Andor公司EMCCD相机以及独特的照明系统,为客户提供全球同步的超分辨率成像系统。[img=实时超分辨率显微成像系统]http://www.f-lab.cn/Upload/storm-2.JPG[/img][b]实时超分辨率显微成像系统特点[/b]横向分辨率可达20nm,轴向分辨率可达40nm实时和线下图像重建GPU加速处理图像先进的自动聚焦硬件高分辨率X-Y-Z工作台灵活的配置[img=实时超分辨率显微成像系统]http://www.f-lab.cn/Upload/storm-1.JPG[/img]实时超分辨率显微成像系统:[url]http://www.f-lab.cn/microscopes-system/storm.html[/url]

  • 【求助】纳米碳纤维的xps实验

    各位老师和朋友,小虫子我明天去参加学校(日本信州大学)的xps的实验的学习。但是我刚来日本没几个月,还基本大会讲日语,多亏了我们的论坛和朱永法老师的“纳米材料的表征与测试技术”一书,我才对xps所有了解。我明天带的样品是 纳米碳纤维 和 酸化纳米碳纤维(可能有羧基)。我的目的是要证明酸化酸化纳米碳纤维有羧基。想请教大家的问题如下:1.在做粉末状样品的实验时,应该注意一些什么问题2.在拟和处理时,碳和氧能拟合出几个峰及其位置先谢谢大家哈[em04]

  • 【转帖】世界上第一双纳米纤维手套日本问世

    [table=96%][tr][td][table=96%][tr][td]世界上第一双纳米纤维手套日本问世(2010-5-13 中国纺织经济信息网) [/td][/tr][tr][td][table=96%][tr][td][align=center][url]http://news.ctei.gov.cn/236876.htm[/url][/align][align=left] 日本帝人纤维公司(TEIJIN FIBERS:TFJ)开发出世界上首例高尔夫球聚酯纳米纤维手套。位于日本东京的帝人纤维制品有限公司,早在2009年11月就对世界宣布,世界上第一双纳米高尔夫球手套即将问世。并且他们委托日本一家网络公司开始对外招标。这种手套用于打高尔夫球时穿戴。根据帝人公司,这种手套的品牌名称叫“FootJoy”,属于世界上第一双用纳米纤维制造出来的高尔夫球手套。它是用纳米纤维材料做成,具有无以伦比的柔软、耐滑和高吸水和高散热性能。   日本帝人纤维公司开发出来的超细纤维厚度只有700纳米,是一般的头发丝细度的1/7500,表层却要比一般纤维更具有柔韧性。根据该公司报告,这类纳米纤维具有很强的防冲撞能力,表层耐摩擦力性能也无以伦比,还有防滑性能。  该公司宣布这种产品不久,位于日本大阪的帝人纤维公司就开始正式投产这种手套,同时也开始将这种高强度材料用于其它领域。日本网络推销公司Acushnet Japan Inc以FootJoy品牌为名,成为帝人公司的首席代理商。截至今天,日本几乎所有的高尔夫球场已用上了这种手套。  原先的传统高尔夫手套使用天然纤维或人造革制造而成。它本身可防水,表面有涂层;然而最新推出的这种手套所不同的是,它具有防滑性、柔软性、也具有高度吸水性和散热性。这种手套可排除因打高尔夫球而产生的汗液。其原理是,它与手掌接触的面积与原来的传统手套相比,增加了十余倍。并且,这种纳米手套的伸缩性也十分神奇,并且不透明。  帝人公司确信,这种材料可很快普及用于其它商业领域,可用来开发内衣、运动衣和其他工业材料。他们预计,由于这种新品,帝人公司在未来三年内将新增30亿元的收入。  日本帝人公司之所以能开发出这种高科技产品,是因为凭借刻苦的钻研精神以及高超的技术水平不断地研发新型材料,他们确信能够利用现有技术制造出更纤细、更强韧、更柔软、更轻等高性能产品。这绝非只是现有技术的单纯延伸,与之同时,世界上在不断涌现出具有重大突破的新型材料及新技术。  早在2008年7月,具有优异实用性能的高强度涤纶纳米纤维“NANOFRONT”已开始商业化生产。其实,帝人纺织公司大约40年前已经开始研发可以用于人造皮革等领域的超级细纤维,最初开发成功并进行商品化生产的产品其粗细程度达到头发的1/100。本次公布的纳米纤维比之更细,是其超级细纤维的1 /100。超级细纤维一经上市,为人造皮革、擦拭型布料等复合纤维开辟了新用途、领域。同样,对本次研发成功的纳米纤维能够在多大程度上带动现有技术的飞跃性发展,大家翘首以待。  但由于近期对于纳米材料的期待越发高涨,激发研发积极性,如果成功将纤维的单位缩至革命性的纳米水平,对于“纳米式效果”(在吸引/分离/分散功能、表面积大小等方面可开拓空间)所隐含的新型高性能原料的出现将大受瞩目。但是,就算纳米纤维得以研发成功,在批量生产的时候经常会出现韧性不够、只能形成较短的纤维长度等问题,一直都无法实现长纤维的商品化生产。面对这种情况,TFJ新近开发出“海岛型复合纺纱技术”,为高强度纳米涤纶纤维“NANOFRONT”(长纤维)的成功研发和实现商品化生产打下了坚实基础。  由于纳米纤维的纱线直径非常细,因此,纤维表面上纳米尺寸的凹凸会产生大量的摩擦力。同时,由于提高了毛细管现象以及纤维的吸附功能,拥有优异的吸水性、扩散、保水性以及蒸发面积较大等特点,它可极大地发挥冷却性能。另外,柔软度以及比油分子和微细尘粒更小的纤维直径双重作用,擦拭污渍将变得更加轻松,比使用以往超细纤维的产品擦拭性能提高30~40%。适用于对防滑要求严格的手套、功能内衣、安全护身服、利用其对肌肤摩擦伤害极小的特点可广泛应用于护肤产品、汗衫,而对吸水性、扩散性以及保水性有一定要求的冷却功能运动服却具有意想不到的作用。并且它还可应用于擦拭布料、利用其高摩擦系数的特点应用于精密擦拭布等各个不同领域。(中国非织造材料网 )[/align][/td][/tr][/table][/td][/tr][/table][/td][/tr][tr][td][img=1,1]http://www.intertek.com.cn/images/spacer.gif[/img][/td][/tr][/table]

  • 苏州纳米所等在硫化银近红外量子点活体成像研究中获进展

    随着生物医学影像技术的不断发展,近红外荧光成像技术在生物医学研究领域得到了越来越多的关注和应用。其中,近红外二区(1000 nm-1400 nm)荧光对生物组织穿透能力强,成像信噪比高,该区域荧光成像技术在生物活体成像领域已展现出巨大潜力。量子点(Quantum dots, QDs)作为一种新型的纳米荧光探针,具有亮度高、光稳定性强、光谱可调等传统荧光染料不可比拟的优势,在生物标记、成像与传感等方面得到了广泛应用,而开发具有近红外二区荧光发射、生物相容性好、量子产率高的QDs是当前其用于活体荧光成像所面临的重要挑战。 中科院苏州纳米技术与纳米仿生研究所王强斌研究员课题组在“单源前驱体制备Ag2S近红外量子点”(J. Am. Chem. Soc. 2010, 132, 1470–1471)的基础上,进一步优化制得了量子产率更高、生物相容性更好、尺寸均匀可控的Ag2S近红外QDs。通过与美国斯坦福大学戴宏杰教授课题组合作,利用Ag2S QDs进行了细胞成像与毒性研究。结果表明,在水溶性Ag2S QDs表面修饰不同的生物识别分子,可实现对不同细胞系的特异性标记,并且该Ag2S QDs几乎没有细胞毒性(ACS Nano 2012, 6, 3695–3702)。 在上述工作基础上,王强斌课题组与戴宏杰教授课题组继续合作,进一步将Ag2S QDs用于动物活体成像研究。结果表明,因肿瘤组织对大分子的高通透性和滞留效应(简称EPR效应),肿瘤对QDs具有很高的摄取(图2),该现象为肿瘤早期诊断以及手术的可视化提供了重要的技术基础。同时,他们对导入小鼠体内QDs的命运进行了追踪,发现除了富集于肿瘤部位的QDs外,其它QDs大部分在注射24小时后不断的随粪便和尿液排出;一周后,体内各个器官(肝和脾除外)的QDs均已基本排出(图3)。 该工作已在国际著名杂志Angewandte Chemie International Edition上发表。对Ag2S QDs的长期体内代谢、分布和毒理研究正在进行之中。 此项工作得到中科院“百人计划”、中科院先导专项、国家自然科学基金委和科技部等的大力支持。 原文链接http://www.cas.cn/ky/kyjz/201209/W020120921399246236683.gif 图1:(a)Ag2S QDs成像示意图,(b)和(c)分别为Ag2S QDs的实物和暗场中的荧光照片,(d)和(e)分别为吸收和荧光光谱,(f)为Ag2S QDs的TEM照片。http://www.cas.cn/ky/kyjz/201209/W020120921399246247360.gif图2:4T1肿瘤对Ag2S QDs的高效摄取http://www.cas.cn/ky/kyjz/201209/W020120921399246242640.gif图3:Ag2S QDs的活体滞留和排泄情况

  • 【原创】综述:原子力显微镜在大气和液体中的原子分辨和亚纳米分辨研究进展

    该综述是我今年刚发表的,希望对作AFM高分辨工作的同仁有所帮助,也欢迎讨论!论文题目:Atomic and Subnanometer Resolution in Ambient Conditions by Atomic Force Microscopy作者:Yang Gan(甘阳)作者单位:哈尔滨工业大学期刊:Surface Science Reports年/卷期/页:2009, vol. 64, 99-121DOI:http://dx.doi.org/10.1016/j.surfrep.2008.12.001全文:请见附件内容介绍:该综述就应用原子力显微镜(AFM)在常温常压下进行表面的原子、亚纳米分辨成像的理论和实验基础进行了详细介绍,并对已发表的相关研究成果作了全面深入的总结和分析,引用相关参考文献220篇。综述全文由10个部分组成:前言,AFM的原理和工作模式,AFM的分辨率,针尖-表面作用力,实现原子、亚纳米分辨成像的条件,假相和重现性,常温常压下原子分辨结果一览和分析,AFM晶格分辨成像-如何获得有用信息,生物样品的表面亚纳米分辨成像概述,展望。摘要:This article reviews the achievements of both atomic resolution and subnanometer (molecular) resolution in ambient conditions by atomic force microscopy (AFM). The principles of AFM and AFM operation modes are first introduced. The concept of resolution is then discussed. Various types of tipsurface forces, particularly the forces prominent in liquid and in air, are introduced. Different viewpoints on the conditions for achieving atomic/subnanometer resolution are reviewed. The important issues of reproducibility and artifacts are discussed in depth, with many examples from the literature. The central portion of this article is a critical review of the published results of atomic resolution, dating from 1993 up to 2007. The achievements of subnanometer resolution on biological samples are then briefly overviewed. Examples are given to demonstrate how to obtain reliable structural information from lattice resolution or pseudo-atomic resolution topographs. Finally, the challenges of AFM as a trustworthy high resolution technique are discussed.[~151407~]

  • 【原创】如何选购显微数码成像分析系统?

    一、前沿2009年10月6日,瑞典皇家科学院宣布,将2009年诺贝尔物理学奖的一半授予美国科学家威拉德• 博伊尔和乔治• 史密斯,因为他们于1969年发明了半导体集成电路成像技术,CCD感应器。经过四十年的发展,CCD技术由实验室逐步走向了市场,具有越来越广阔的应用。CCD数码成像对摄影产生了革命性的影响。在感光胶片之外,人们可以通过电子电路捕捉图像,这些以数字形式存在的图像更加易于处理和分发。数字图像已经成为许多研究领域中不可替代的重要工具。数码成像技术应用到显微镜上,以替代以往的胶卷拍摄,现在已经广泛应用了。以前我们用胶卷来进行显微拍摄,要等一卷拍完,冲洗出来才能确定拍摄的图像是否清晰,如果拍摄的图像不理想,而显微观察的样品又失效了,就需要重新制作样品,给研究工作带来很大的不便,而现在使用显微数码相机来拍摄显微图像,所见即所得,当时就是保存处理,甚至统计分析,极大的提高了工作效率。二、显微数码成像系统的组成显微数码成像系统包括CCD/CMOS专业相机,图像采集处理软件,显微镜接口,数据传输线等,其中最核心的设备是CCD和CMOS图像传感器,前者由光电耦合器件构成,后者由金属氧化物器件构成。两者都是光电二极管结构感受入射光并转换为电信号,主要区别在于读出信号所用的方法。CCD(Charge Coupled Device ,感光耦合组件)上感光组件的表面具有储存电荷的能力,并以矩阵的方式排列。当其表面感受到光线时,会将电荷反应在组件上,整个CCD上的所有感光组件所产生的信号,就构成了一个完整的画面。CCD的结构分三层 ,第一层“微型镜头”“ON-CHIP MICRO LENS”,这是为了有效提升CCD的总像素,又要确保单一像素持续缩小以维持CCD的标准面积,在每一感光二极管上(单一像素)装置微小镜片。CCD的第二层是“分色滤色片”,目前有两种分色方式,一是RGB原色分色法,另一个则是CMYG补色分色法。原色CCD的优势在于画质锐利,色彩真实,但缺点则是噪声问题。第三层:感光层,这层主要是负责将穿过滤色层的光源转换成电子信号,并将信号传送到影像处理芯片,将影像还原。数码成像的核心器件除CCD,现在越来越多的使用CMOS(Complementary Metal-Oxide Semiconductor,互补性氧化金属半导体,CMOS和CCD一样同在数码相机中可记录光线变化的半导体。CMOS传感器中每一个感光元件都直接整合了放大器和模数转换逻辑,当感光二极管接受光照、产生模拟的电信号之后,电信号首先被该感光元件中的放大器放大,然后直接转换成对应的数字信号。CMOS的优势在于成本低,耗电需求少,便于制造, 可以与影像处理电路同处于一个芯片上,缺点是较容易出现杂点。三 显微镜成像系统相关参数对CCD/CMOS数码成像系统的结构和原理有了一个基本了解后,我们再对成像系统的一些基本参数作一个说明。在实际应用中,很多用户对像素多少很敏感,一上来就提到我要多少万像素的成像系统,其实在专业成像应用中,像素多少只是影响成像的一个因素,还有其他很多指标,包括分辨率,感光器件大小,动态范围,灵敏度,量子效率,信噪比等。感光器件的面积大小是衡量显微成像系统质量的一个重要指标,感光器件的面积越大,捕获的光子越多,感光性能越好,信噪比越低。当前数码成像系统中较常应用的感光器件规格如下:1英寸(靶面尺寸为宽12.7mm*高9.6mm,对角线16mm),2/3英寸, 1/2英寸,1/3英寸,另外有时也用到1/1.8英寸,1/2.5英寸的CCD/CMOS感光器件。 像素是CCD/CMOS能分辨的最小的感光元件,显微数码成像系统的像素由低到高有:45万左右,140万左右,200万左右,300万左右,500万左右,900万像素,甚至还有更高的达到2000万像素以上。一般来说,像素越高,图像分辨率越高,成像也就越清晰,但有时候图像分辨率达到一定程度后,就不是影响成像质量的主要指标了。比如图像分辨率高,噪声也很高时,成像质量也不会很好。暗电流是导致CCD噪音的很重要的因素。暗电流指在没有曝光的情况下,在一定的时间内,CCD传感器中像素产生的电荷。我们在做荧光拍摄的时候,需要的曝光的时候比较长,这样导致CCD产生较多的暗电流,对图像的质量影响非常大。通常情况下通过降低CCD的温度来最大限度的减少暗电流对成像的影响。Peltier制冷技术一般可将CCD温度降低5-30°C,在长时间拍摄或一次曝光超过5-10秒,CCD芯片会发热,没有致冷设备的芯片,“热”或者白的像素点就会遮盖图像,图像会出向明显的雪花点。CCD结构设计、数字化的方法等都会影响噪音的产生。当然通过改善结构、优化方法,同样能减少噪音的产生。显微荧光或其他弱光的拍摄对CCD噪音的降低要求很高,应选用高分辨率数字冷却CCD成像系统,使其能够捕获到信号极其微弱的荧光样品图像,并且能够最大程度的降低噪音,减少背景,提供出色的图像清晰度。所以一般在荧光及弱光观察时需要选择制冷CCD。在显微数码成像过程中,对于荧光及弱光的拍摄,除了制冷降低热噪声外,还可使用 BINNING技术提高图像的灵敏度,BINNING像素合并是一种非常有用的功能,它可被用来提高像素的大小和灵敏度,比如摄像头像素大小为5u,当经过2x2合并后,像素大小为10u,3X3合并后,像素大小为15u, 这是图像的整体像素变少了,但成像的灵敏度可提高9倍。动态范围表示在一个图像中最亮与最暗的比值。12bit表示从最暗到最亮等分为212=4096个级别,16bit即分为216个级别,可见bit值越高能分出的细微差别越大,一般CMOS成像系统动态范围具有8-10bit, CCD以10-12bit为主,少部分可达16bit。对动态范围进行量化需要一个运算公式,即动态范围值 = 20 log (well depth/read noise),动态范围的值越高成像系统的性能就越好。量子效率也称像素灵敏度,指在一定的曝光量下,像素势阱中所积累的电荷数与入射到像素表面上的光子数之比。不同结构的CCD其量子效率差异很大。比如100光子中积累到像素势阱中的电荷数是50个,则量子效率为50%(100 photons = 50 electrons means 50% efficiency)。值得注意的是CCD 的量子效率与入射光的波长有关。对显微数码成像系统的参数有了整体认识后,在实际应用中选择合适型号的产品就比较容易了。高分辨率显微数码成像技术在国外已有二十来年的发展历史,产品目前已比较成熟。国外的专业数码产品有多个品牌,比较著名的有德国的ProgRes,美国Roper Scientific的系列产品,另外OLYMPUS、NIKON、LEICA、ZEISS等显微镜厂家也有一些配套的专业数码成像系统 。其中CCD成像系统主要采用SONY及KODRA公司的芯片,因此相关产品性能差别不是很大。国内专业数码成像产品的设计制造时间还不长,但随着配套技术的成熟,100万像素以上的CCD/CMOS专业数码成像产品开始陆续推出,主要的专业厂家有北京的大恒、微视、杭州欧普林,广州明美等企业。北京大恒早期主要研发生产图像采集卡,目前可以量产140万像素的CCD摄像头,130万/200万/320万/500万像素CMOS摄像头,主要用到工业领域。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制