当前位置: 仪器信息网 > 行业主题 > >

油料多元素发射分析系统

仪器信息网油料多元素发射分析系统专题为您提供2024年最新油料多元素发射分析系统价格报价、厂家品牌的相关信息, 包括油料多元素发射分析系统参数、型号等,不管是国产,还是进口品牌的油料多元素发射分析系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合油料多元素发射分析系统相关的耗材配件、试剂标物,还有油料多元素发射分析系统相关的最新资讯、资料,以及油料多元素发射分析系统相关的解决方案。

油料多元素发射分析系统相关的资讯

  • 珀金埃尔默隆重推出Avio 200电感耦合等离子体发射光谱仪(ICP-OES)能够为多领域应用提供多元素无机分析
    业内最小的电感耦合等离子体发射光谱仪(ICP-OES)能够帮助研究人员检测复杂的食品、工业和环境样品WHAT: 致力于改善人类与环境健康的全球领导企业珀金埃尔默今日宣布推出AvioTM 200电感耦合等离子体发射光谱仪(ICP-OES)。这是目前业内最为紧凑的分析系统,旨在提供高效的多元素无机分析。这项创新技术能够帮助负责无机分析的实验室人员轻松应对更多种类、更复杂的高基体样品的测试,且无需对样品进行稀释。 Avio 200系统所具备的基体耐受性能够处理各种类型的样品,应用范围多种多样,比如营养品标签上营养成分的分析,确保符合RoHS指令(限制在电子电器设备中使用某些有害物质的行业规定),土壤微量元素的分析,水中微量元素的测定,以及玩具中金属含量的评估。 WHY: 珀金埃尔默环境健康总裁Jon DiVincenzo表示:“随着行业规定变得更加复杂,需要测试的元素越来越多,实验室专业人员不得不对更多数量的样品进行管理,进行更加耗时的分析。Avio 200 ICP系统是我们在电感耦合等离子体仪器方面的最新创新成果,能够帮助我们的客户在食品安全、工业和环境应用方面进行可靠高效的多元素分析,得到更好的结果。” HOW: Avio 200系统能够延长正常运行时间,将维护时间降到最低,从而帮助实验室人员提高工作效率。 这套系统采用了垂直等离子体设计,能够满足不同样品的测试灵活性,氩气消耗量低(凭借专利Flat PlateTM等离子体技术),启动快速,从而提高分析效率。此外,这套系统还采用了独特的双光观测技术,具有灵敏度高、分辨率高、线性范围宽等特点。 需要同时对多种元素进行无机分析的实验室人员现在可以利用Avio 200系统进行多元素分析,与与原子吸收(AA)一样简单易用,并且无需使用易燃气体。此外,这套系统还具有与原子吸收(AA)技术相同的成本效率和效益,无需在对新元素进行测试时购买元素灯。与此同时,这套系统还采用原子光谱跨平台SyngistixTM软件,从而实现从原子吸收(AA)到电感耦合等离子体(ICP)软件的无缝切换。 MORE: 如欲了解有关Avio 200系统和电感耦合等离子体(ICP)Syngistix软件的更多信息,请访问(http://www.perkinelmer.com/product/avio-200-icp-optical-emission-spectrometer-avio200)。 珀金埃尔默是一家致力于改善人类与环境健康的全球领导企业。2015年,公司收入约为23亿美元,约8000名员工在全球150多个国家为客户提供服务。珀金埃尔默是标准普尔500指数成分公司。更多信息,请致电1-877-PKI-NYSE或访问www.perkinelmer.com。 媒体联系人:Leanne Highlhigh@apcoworldwide.com919-867-2812
  • 《不锈钢 多元素微量与高含量的测定 火花放电原子发射光谱法》两项CSTM团标立项评估会召开
    中国材料与试验团体标准委员会综合标准领域委员会(FC99)标准立项评估会于4月26日在京召开,会议对《不锈钢 多元素微量与高含量的测定 火花放电原子发射光谱法》和《铌铁 锰含量的测定 高碘酸盐光度法》两项团体标准进行了立项评估。会议由CSTM标准化专家王丽敏教授主持,来自中关村材料试验技术联盟、宝武集团马钢技术中心、钢研纳克检测技术股份有限公司、太原重工轨道交通设备有限公司5位专家出席了会议,标准起草单位太钢不锈钢股份有限公司和钢研纳克检测技术股份有限公司代表以及CSTM标准委员会秘书处等10余人参加了此次立项评估。此次会议采取线上线下的方式进行。会上,专家组听取了标准申报单位对申报标准的情况介绍,汇报人在标准制定的必要性和可行性、现行有关国内外标准情况、项目涉及专利情况、项目的应用前景、项目工作组构成以及标准草案等方面进行了详细汇报。与会专家对标准的具体内容进行了质询,并提出了意见和建议。最后,两项标准一致通过了立项评估。《不锈钢 多元素微量与高含量的测定 火花放电原子发射光谱法》拓展了碳、硅、锰、磷、硫、镍、铜、铝、钼、钒、钛、硼、铌、钴、钨、砷、锡、铅18个元素的高低含量范围,新增锑、铋、钙、锌、钽、氮6个元素的测定。本标准的制定,填补不锈钢光谱分析标准中元素覆盖范围窄、微量和高含量元素分析没有标准可依的空白,为不锈钢产品开发和检测技术进步奠定重要基础,可促进不锈钢冶炼技术创新,增强产品在国内外市场竞争力,为推动产业结构调整与产业优化升级创造条件,加快我国特殊品种不锈钢快速发展具有积极的促进作用。随着冶金工艺水平的提升,尤其是高温合金产品在冶炼原料的选取上会更加精确,对杂质元素的控制要求日益提升。《铌铁 锰含量的测定 高碘酸盐光度法》首次建立高碘酸盐光度法测定铌铁中锰含量的分析方法,是电感耦合等离子体发射光谱法的有效补充,健全了铌铁中锰含量测定的方法体系,能够指导工厂精准控制原料质量,为后续产品的质量控制提供保障。会议现场
  • 中关村材料试验技术联盟发布《钢铁 多元素含量的测定 火花放电原子发射光谱法(常规法)第3部分:不锈钢》征求意见稿
    各位专家、委员及相关单位:中国材料与试验标准化委员会决定对《钢铁 多元素含量的测定 火花放电原子发射光谱法(常规法)第3部分:不锈钢》团体标准征求意见稿公开广泛征求意见。请登录CSTM官网http://www.cstm.com.cn/channel/details/biaozhunzhengqiuyijian查看征求意见通知并下载相关资料附件。CSTM团体标准《钢铁 多元素含量的测定 火花放电原子发射光谱法(常规法)第3部分:不锈钢》征求意见的资料.rar
  • 理学发布理学公司NEX DE能量色散X荧光总硫及多元素分析仪新品
    产品名称:高精度能量色散X荧光总硫及多元素分析仪型 号:NEX DE适用产品:柴油、船用燃料油、蜡油、渣油、原油分析标准:GB/T 17040、ASTM D4294、ASTM D8252、ASTM D6481元素检测范围:钠Na~铀U样 品 量:5ml软 件:QuantEZ分析软件,支持中文分析时间:标准分析时间300秒, 可根据应用在30-900秒自由选择入射光净化:多层复合滤光片环境温度:10 ~ 35°C 相对湿度:小于80%,仪器外表及内部无凝结水其他要求:人类感受不到的振动,无腐蚀性气体、粉尘和颗粒物数据输出:USB及以太Ethernet网线输出 油品分析经典元素检测(ppm):创新点:采用单波长分光技术,将传统能量色散检测下限大大降低,满足用户对多种样品的检测需求。理学公司NEX DE能量色散X荧光总硫及多元素分析仪
  • 多元素形态同时分析:一招搞定砷、铬、溴、碘4种元素11种形态
    多元素形态同时分析:一招搞定砷、铬、溴、碘4种元素11种形态原创 飞飞 赛默飞色谱与质谱中国关注我们,更多干货和惊喜好礼形态分析目前已成为元素分析的新风向,人们逐渐认识到在环境和生命体中同一元素的不同存在形态表现出不同的sheng理活性和毒性,单纯测量一个元素在生命或环境体系种的总量达不到研究元素生物功能的目的。目前对于元素形态分析大多采用单一元素形态分析方法,每种元素具有单独的元素分离分析方法,分析效率较低。思考:ICPMS具有多元素总量同时分析功能,能否也可以实现多元素形态同时分析功能?技术关键词:分离方法、多元素同时采集方案:赛默飞具有业内性能强大的离子色谱和ICPMS,可以提供高效简单的元素形态分离方法和jing准快速的元素信号采集技术。赛默飞iCAP RQ ICPMS与 IC进行联用,性能jue佳的AS19阴离子色谱柱发挥优势,采用梯度淋洗,可实现砷、铬、溴、碘4种元素11种形态同时分离,iCAP RQ ICPMS时间扫描tQuant模式具有多元素采集功能,采用氦气碰撞模式解决去除砷、铬、溴、碘元素多原子离子干扰,实现准确测试。实际应用:实际应用:水中的溴、铬、砷、碘的监测,为安全用水提供必要的ji术支持,具有广泛的检测需求。四种元素流动相、分析柱和检测方法会有所不同,分析流程耗时耗力。本实验采用同一个流动相条件,相同色谱柱在10min之内同时分析水质中As3+,As5+,DMA,MMA,AsC,AsB,BrO3-,Br-, IO3-, I-,Cr6+11种元素形态,大大提高分析效率。砷、铬、溴、碘4种元素11种形态分离图:(点击查看大图)5种市售瓶装饮用水及当地自来水检测结果:(点击查看大图)总结该方法具有简单、快速、稳定、检出限低等特点,完全满足标准限定和检测要求,为环境水质监测11种形态痕量分析提供快速高效的分析手段。如需合作转载本文,请文末留言。
  • 中关村材料试验技术联盟《高速工具钢 多元素含量的测定 火花放电原子发射光谱法(常规法)》和《金属材料 氩含量的测定 脉冲加热惰性气体熔融-质谱法》2项团体标准审查会成功召开
    4月11日,由中国材料与试验标准化委员会综合标准化领域委员会(FC99)对《高速工具钢 多元素含量的测定 火花放电原子发射光谱法(常规法)》和《金属材料 氩含量的测定 惰气脉冲熔融质谱法》2项团体标准以线上+线下形式召开了标准审查会。会议由钢研纳克检测技术股份有限公司首席专家贾云海担任审查专家组长,来自钢铁研究总院有限公司、原武汉钢铁有限公司、中关村材料试验技术联盟、原宝钢股份有限公司、首钢京唐公司、国家钢铁产品质量检验检测中心7位审查专家出席了会议,标准起草单位广东省科学院工业分析检测中心、广东省科学院新材料研究所、广东省珠海市质量计量监督检测所、广州禾信仪器股份有限公司和钢研纳克检测技术股份有限公司代表以及中关村材料试验技术联盟秘书处等10余人参加了此次标准审查。会上,专家组听取了标准申报单位对申报标准的情况介绍,包括文本规范性,技术要素和指标的科学性、合理性及可操作性,与国内外先进标准的比对情况和征询意见汇总情况等方面进行了详细汇报。与会专家对标准的具体内容进行了质询,并提出了意见和建议。最后,两项标准一致通过了审查。《高速工具钢 多元素含量的测定 火花放电原子发射光谱法(常规法)》采用用直读光谱仪测定高速工具钢中C、Si、P、S、Mn、Cr、Ni、Mo、Al、Cu、W、V等元素含量。本标准的制定,检测机构、工厂企业、科研单位可采用此标准快速、准确地测定高速工具钢的化学成分,有利于提高工作效率,降低分析成本,具有广泛的市场应用价值。《金属材料 氩含量的测定 脉冲加热惰性气体熔融-质谱法》采用目前广泛应用的惰气脉冲熔融技术,结合质谱分析技术,研究开发了脉冲加热惰性气体熔融-质谱法测定金属材料中氩元素含量,本标准的制定有利于满足新型材料的研究、生产与应用的迫切需要。
  • JQ-9型电脑多元素一体化分析仪
    南京第四分析仪器有限公司生产的JQ-9型电脑多元素一体化分析仪又叫碳硫分析仪金属元素分析仪 金属材料分析仪 电脑多元素分析仪 钢铁分析仪 化验设备 理化分析仪 元素分析仪 多元素分析仪 材料分析仪 铝合金分析仪 铁合金分析仪 矿石分析仪铁矿石分析仪 有色金属分析仪 合金钢分析仪 不锈钢分析仪 铜合金分析仪 铸铁分析仪 铸造分析仪,是国内最新的一款综合性分析仪,一台仪器即可满足钢铁及其合金材料中的C、S、Mn、P、Si、Cr、Ni、Mo、Cu、Ti、V、Al、W、Nb、Mg、稀土总量、Co、As、Sn等元素含量的检测,共设置有十个大通道,每个大通道内又分别设置有30个小通道,共可贮存300条工作曲线,原则上一套仪器可检测300种元素,采用品牌电脑微机控制,并配备了电子天平,全中文菜单式操作,台式打印机打印结果,可检测的材料有:普碳钢、不锈钢、低合金钢、中合金钢、高合金钢、生铁、灰铸铁、球墨铸铁、耐磨铸铁、铝合金等。JQ-9型电脑多元素一体化分析仪的主要技术参数★测量范围:(因该仪器可检测的元素较多,现以钢中C、S、Mn、P、Si、Cr、Ni等常见元素为例)C:0.010~6.000% S:0.0030~2.0000% Mn:0.010~20.500%P:0.0005~1.0000% Si:0.010~18.000% Cr:0.010~38.000%Ni:0.010~48.000% Mo:0.010~7.000% &Sigma RE:0.0100~0.5000%Mg:0.010~0.800% Cu:0.010~8.000% Ti:0.010~5.000%Al:0.010%~15.000% V:0.010~0. 500%......如改变测试条件,该范围可相应扩大。测量精度:符合GB223.3~5-1988、GB223.68~69-1997、2008等标准。JQ-9型电脑多元素一体化分析仪主要特点★在JQ-8型基础上采用独家开发的、具有知识产权保护的最新检测软件,确保了检测结果的可靠性;★采用国际先进的多项式拟合曲线技术,增加了单点校正等先进的元素理念,自动调整零点、满度;★各元素检测报告一次性打印,不需将C、S的检测结果分开打印,并可根据客户需求设计各种材料牌号自动鉴别系统,可自动鉴别材料牌号;★一台仪器可检测钢铁中所有常规元素C、S、Mn、P、Si、Cr、Ni、Mo、Cu、Ti、Al、W、V、Nb、Fe、&Sigma Re、Mg、Co、Sb、As、Sn、Pb等;★采用品牌电脑微机控制,万分之一克精度电子天平称量,不定量称样检测,台式打印机打印检测结果;★测试软件功能齐全,能完全替代传统化验室的各项手工书写工作,并可根据各单位实际需求,任意设置检测报告格式,并可输入任意检测条件查询历史数据;★检测功能庞大,标准配置即具备检测300个元素的通道空间。
  • JQ-9电脑微机多元素一体化分析仪
    南京第四分析仪器有限公司生产的JQ-9型电脑多元素一体化分析仪又叫碳硫分析仪金属元素分析仪 金属材料分析仪 电脑多元素分析仪 钢铁分析仪 化验设备 理化分析仪 元素分析仪 多元素分析仪 材料分析仪 铝合金分析仪 铁合金分析仪 矿石分析仪铁矿石分析仪 有色金属分析仪 合金钢分析仪 不锈钢分析仪 铜合金分析仪 铸铁分析仪 铸造分析仪,是国内最新的一款综合性分析仪,一台仪器即可满足钢铁及其合金材料中的C、S、Mn、P、Si、Cr、Ni、Mo、Cu、Ti、V、Al、W、Nb、Mg、稀土总量、Co、As、Sn等元素含量的检测,共设置有十个大通道,每个大通道内又分别设置有30个小通道,共可贮存300条工作曲线,原则上一套仪器可检测300种元素,采用品牌电脑微机控制,并配备了电子天平,全中文菜单式操作,台式打印机打印结果,可检测的材料有:普碳钢、不锈钢、低合金钢、中合金钢、高合金钢、生铁、灰铸铁、球墨铸铁、耐磨铸铁、铝合金等。JQ-9型电脑多元素一体化分析仪的主要技术参数★测量范围:(因该仪器可检测的元素较多,现以钢中C、S、Mn、P、Si、Cr、Ni等常见元素为例)C:0.010~6.000% S:0.0030~2.0000% Mn:0.010~20.500%P:0.0005~1.0000% Si:0.010~18.000% Cr:0.010~38.000%Ni:0.010~48.000% Mo:0.010~7.000% &Sigma RE:0.0100~0.5000%Mg:0.010~0.800% Cu:0.010~8.000% Ti:0.010~5.000%Al:0.010%~15.000% V:0.010~0. 500%......如改变测试条件,该范围可相应扩大。测量精度:符合GB223.3~5-1988、GB223.68~69-1997、2008等标准。JQ-9型电脑多元素一体化分析仪主要特点★在JQ-8型基础上采用独家开发的、具有知识产权保护的最新检测软件,确保了检测结果的可靠性;★采用国际先进的多项式拟合曲线技术,增加了单点校正等先进的元素理念,自动调整零点、满度;★各元素检测报告一次性打印,不需将C、S的检测结果分开打印,并可根据客户需求设计各种材料牌号自动鉴别系统,可自动鉴别材料牌号;★一台仪器可检测钢铁中所有常规元素C、S、Mn、P、Si、Cr、Ni、Mo、Cu、Ti、Al、W、V、Nb、Fe、&Sigma Re、Mg、Co、Sb、As、Sn、Pb等;★采用品牌电脑微机控制,万分之一克精度电子天平称量,不定量称样检测,台式打印机打印检测结果;★测试软件功能齐全,能完全替代传统化验室的各项手工书写工作,并可根据各单位实际需求,任意设置检测报告格式,并可输入任意检测条件查询历史数据;★检测功能庞大,标准配置即具备检测300个元素的通道空间。
  • 南京麒麟仪器回访多元素分析仪器客户
    南京麒麟仪器回访多元素分析仪器客户 2015年5月份,南京麒麟仪器吕工回访品冠制造公司,前几年引进了一套联测多元素分析仪器,主要检测铸件类材质,该产品是本公司独家拥有、国内最先进的一款多元素联测分析仪,国家重点新产品,可检测普碳钢、低合金钢、高合金钢、生铸铁、球铁、合金铸铁等多种材料中的C、S以及Si、Mn、P、Cr、Ni、Mo、Cu、Ti等多种元素含量。 品冠制造公司主要采用消失模铸造高强度灰铸铁电机类、变速器箱体、发动机涡轮壳体与缸体、内燃机基体及数控机床铸件、球墨铸铁汽车件、球墨铸铁大中型管件及阀体件、中型合金钢阀体铸件、铸造铝合金箱体件、铸造铜合金船舶件,每年向西门子电机、富泰西玛电机、湘电集团、中国北车集团永济电机、法士特集团、康明斯发动机公司等知名电机制造厂商提供15000多吨消失模电机高档铸件等。 该公司生产规模庞大,需要联测多元素分析仪检测设备每天24小时不间断运行,要经常维护与保养,南京麒麟分析仪器驻山西区域经理吕工,定期为老客户上门检查维护,帮助客户提高仪器的使用寿命,免费提技术交流。客户对我们的服务表示非常满意,已定第二套联测多元素分析仪备用检测材料,因公司的发展需要,同时下一步将考虑采用南京麒麟品牌光谱分析仪。 南京麒麟十八年来始终致力于与客户的技术交流与售后服务,为中国制造业核心竞争力的提升贡献力量,赢得了众多老客户的信任与好评。更多产品资料请登陆以下网站高频红外碳硫分析仪 http://www.jqilin.com红外碳硫仪 http://www.qilinyiqi88.com元素分析仪 http://www.qlfxy.com多元素分析仪 http://www.jqilin.net火花直读光谱仪 http://www.njqlyq.com碳硫分析仪器 http://www.njqilin.com 南京麒麟科学仪器集团有限公司检测中心
  • 多元素分析仪针对钢材的化学成分检测优势
    多元素分析仪针对钢材的化学成分检测优势 钢材中除了主要化学成分铁(Fe)以外,还含有少量的碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)、钛(Ti)、钒(V)等元素,这些元素虽然含量少,但对钢材性能有很大影响: 南京麒麟科学仪器集团有限公司专业研发的QL-S3000C型电脑红外全能联测多元素分析仪针对钢铁材料检测,由红外和比色原理的精确检测,将理化实验室的配置搭配得尽善尽美,其对性能、质量及精度的要求完全达到了国际化标准,而投资的总价即实在又超值!采用计算机实现程序控制和数据处理。能快速、准确地测出钢铁和有色金属中多种元素的质量分数,自动化程度高,首创元素分析仪不定量称样功能,准确可靠,方便用户操作。 电脑红外全能联测多元素分析仪钢材的化学成分检测及其对钢材性能的影响1.碳。碳是决定钢材性能的最重要元素。碳对钢材性能的影响如图6-3所示:当钢中含碳量在0.8%以下时,随着含碳量的增加,钢材的强度和硬度提高,而塑性和韧性降低;但当含碳量在1.0%以上时,随着含碳量的增加,钢材的强度反而下降。随着含碳量的增加,钢材的焊接性能变差(含碳量大于0.3%的钢材,可焊性显著下降),冷脆性和时效敏感性增大,耐大气锈蚀性下降。一般工程所用碳素钢均为低碳钢,即含碳量小于0.25%;工程所用低合金钢,其含碳量小于0.52%。多元素分析仪针对钢材的化学成分检测优势2.硅。硅是作为脱氧剂而存在于钢中,是钢中的有益元素。硅含量较低(小于1.0%)时,能提高钢材的强度,而对塑性和韧性无明显影响。3.锰。锰是炼钢时用来脱氧去硫而存在于钢中的,是钢中的有益元素。锰具有很强的脱氧去硫能力,能消除或减轻氧、硫所引起的热脆性,大大改善钢材的热加工性能,同时能提高钢材的强度和硬度。锰是我国低合金结构钢中的主要合金元素。4.磷。磷是钢中很有害的元素。随着磷含量的增加,钢材的强度、屈强比、硬度均提高,而塑性和韧性显著降低。特别是温度愈低,对塑性和韧性的影响愈大,显著加大钢材的冷脆性。 磷也使钢材的可焊性显著降低。但磷可提高钢材的耐磨性和耐蚀性,故在低合金钢中可配合其他元素作为合金元素使用。5.硫。硫是钢中很有害的元素。硫的存在会加大钢材的热脆性,降低钢材的各种机械性能,也使钢材的可焊性、冲击韧性、耐疲劳性和抗腐蚀性等均降低。6.钛。钛是强脱氧剂。钛能显著提高强度,改善韧性、可焊性,但稍降低塑性。钛是常用的微量合金元素。7.钒。钒是弱脱氧剂。钒加入钢中可减弱碳和氮的不利影响,有效地提高强度,但有时也会增加焊接淬硬倾向,钒也是常用的微量合金元素。 南京麒麟科学仪器集团有限公司检测中心2016.06.22更多资料请登陆以下网站高频红外碳硫分析仪 http://www.jqilin.com红外碳硫仪 http://www.qilinyiqi88.com元素分析仪 http://www.qlfxy.com多元素分析仪 http://www.jqilin.net火花直读光谱仪 http://www.njqlyq.com碳硫分析仪器 http://www.njqilin.com
  • 莱伯泰科“单细胞多元素飞行时间质谱智能检测系统研发”喜获顺义区重大科技研发项目立项
    近日,顺义区科委公布了2020年顺义区科技政策第二批支持项目立项结果,北京莱伯泰科仪器股份有限公司申报的“单细胞多元素飞行时间质谱智能检测系统研发” 喜获顺义区重大科技研发项目立项。 该项目旨在通过2年研究,开发基于ICP-Q-TOF-MS的单细胞多元素同时快速智能检测系统,通过研究电感耦合等离子体四极杆质谱(ICP-MS)和飞行时间质谱(TOF)的串级联用技术,开发电感耦合等离子体四极杆传输过滤系统,设计高速TOF检测系统和研制单细胞自动前处理进样系统,实现单个细胞内多种元素的同时快速检测,满足尖端生物医疗领域研究对于检测单个细胞内成分的深切需求,开发智能控制软件系统,实现差异化竞争,完成ICP-Q-TOF-MS单细胞多元素智能检测系统在生物医疗领域的应用示范,并完成工程化和产业化,形成我公司生物医疗领域的拳头产品,填补我国在高端质谱设备的一项空白。 近年来,如何对重大疾病进行有效地早期检测及诊断,降低发病率和死亡率是当今社会非常关注的一个话题,也是众多科学家为之努力的方向。单细胞分析是当今生命分析的重要前沿技术,通过分析检测单细胞,可以获得细胞在微环境中准确的个体信息,对于研究细胞的信号传导、生理病理和重大疾病的早期诊断具有十分重要的意义。单细胞分析对分析技术的定量检测极限、分辨率和精密操控能力要求极高,传统的四极杆等离子质谱(简称ICP-Q-MS或者ICP-MS)只能检测到单细胞中的一个元素,无法判断不同细胞之间的差异。而该项目在传统的ICP-Q-MS上再增加一个飞行时间质谱(TOF)形成ICP-Q-TOF-MS系统,就能对单细胞中的多元素进行同时检测,从而能够了解单细胞更多的详细元素分布,为疾病的早期诊断和治疗提供更多的信息,具有非常广阔的应用前景。 莱伯泰科一直在持续努力加大对于细分领域的专业化研究,积极进行公司战略布局。该项目是继莱伯泰科自主研发ICP-MS之后的又一项高端质谱仪器研发项目,后续将项目研究成果应用于生物医疗检测领域,有望开创国产仪器发展的又一新赛道。 做为顺义区高新技术企业的代表之一,莱伯泰科受到顺义区政府的邀请,将于9月24日参加由科技部、国家知识产权局、中国贸促会和北京市人民政府共同主办的第二十四届中国北京国际科技产业博览会(简称科博会)。科博会期间,莱伯泰科将携带新款质谱LabMS 3000 ICP-MS亮相“智慧科技展区”A112号展位,展示自主可控的关键核心技术和科研成果,发挥示范引领产业高质量发展的效应。 9月27日,莱伯泰科还将“盛装出席”科学仪器届规模最大的展会--第十九届北京分析测试学术报告会暨展览会(BCEIA 2021),观众除了能近距离接触新款质谱LabMS 3000 ICP-MS外,还将收听到ICP-MS在半导体行业和传统行业中的完整解决方案,让观众领略莱伯泰科潜心打造国产ICP-MS品牌的实力和决心。
  • 【安捷伦】ICP-MS 期刊 | 单细胞纳米多元素分析,附送解决方案
    不同元素在细胞中的作用,是目前细胞生物学中前沿的研究领域之一。在相关的研究当中,如果能在一次分析中得到单个细胞中的多个元素的信息,将会在提高实验效率的同时,也为研究人员提供更多的研究空间。本期向您介绍高灵敏度、多元素的单细胞分析方案,为帮助您检测单个细胞中的阿克 (ag, 1.0 × 10-18g) 级的多种元素。本期推荐阅读 使用 Agilent 7900 ICP-MS 在 scICP-MS 模式下进行单细胞分析仅使用 100 μL 样品测量单细胞中的四种元素许多元素对细胞健康至关重要,元素不平衡、缺乏或过量都可能会破坏自然细胞过程。传统细胞中金属元素的分析方法需要进行样品溶解、提取或消解,然后利用原子光谱进行分析。这些样品前处理步骤会破坏细胞结构,使得报告中的金属浓度结果为数千个细胞的平均值。在单细胞 ICP-MS (scICP-MS) 中,样品溶液中包含的完整细胞被雾化,各个细胞悬浮在气溶胶液滴中。之后,使用成熟的单纳米颗粒 ICP-MS (spICP-MS) 分析方法将各个细胞引入等离子体中,即可对单细胞中的金属元素进行有效分析。实验部分本实验使用水溶液配制酵母细胞样品,采用配备可选的集成样品引入系统 (ISIS 3) 的 Agilent 7900 ICP-MS 进行分析,利用 Agilent ICP-MS MassHunter 软件的单纳米颗粒应用模块的快速多元素纳米颗粒分析模式进行方法设置、采集和数据处理。结果与讨论- 细胞雾化和传输效率为确定细胞传输效率,将 ICP-MS 计算得出的细胞数量除以通过显微镜计数得出的细胞数量。使用此方法,得出细胞传输效率为 25%。确保大量细胞得到雾化和分析,可提高数据的准确度。- 信号分布使用 scICP-MS 在多元素模式下分析单细胞。31P+、34S+、56Fe+ 和 66Zn+ 的信号分布如图 1 所示。通过在样品前处理程序的离心和缓冲液置换步骤中充分清洗细胞,可以明确区分单细胞中各种元素的信号与背景信号。图 1. 单细胞中四种分析物的信号分布- 平均质量表 1 所示的 P、S、Fe 和 Zn 的平均质量数据由 ICP-MS MassHunter 软件自动计算得出。除核酸和蛋白质的主要成分 P 和 S 以外,还测量了各个细胞中亚飞克 (fg, 1.0 × 10-15g) 级的 Fe 和 Zn。表 1. 单细胞中各种分析物的平均质量(阿克)和精密度 (n = 3)结论安捷伦多元素 scICP-MS 方法能够用于详细测量和研究多种金属在细胞生物学中的作用。该技术提供了有关单个细胞中固有金属含量和金属缔合物的有价值的信息。scICP-MS 还可用于研究细胞对金属和含金属纳米颗粒的吸收、累积和释放。访问 www.agilent.com/zh-cn/products/icp-ms/icp-ms-systems,详细了解安捷伦 ICP-MS 系统。关注“安捷伦视界”公众号,获取更多资讯。
  • 科研进展 ICP-TOF-MS:高通量单颗粒/单细胞-多元素分析的更优解
    人造纳米颗粒应用于各个领域,和天然纳米颗粒一并在环境中广泛分布。纳米颗粒在粒径、形貌、元素组成等物化性质上均存在异质性,这些异质性决定了不同颗粒在材料性能和生物效应上的差异。因此,单颗粒水平的分析在近年来广受关注。类似地,细胞异质性,包括元素和同位素组成的细胞间差异,使单细胞分析成为一个重要的研究主题。近二十年来,电感耦合等离子体质谱(ICP-MS)因其高灵敏度和鲁棒性而成为检测和表征单个颗粒和细胞元素信息的常规技术,被称为单颗粒ICP-MS(spICP-MS)和单细胞ICP-MS(scICP-MS)分析。 多元素纳米颗粒(例如核壳颗粒和复合量子点等)在人造纳米颗粒中占相当大的比重。而在地球化学过程中形成的天然纳米颗粒的元素组成往往更为复杂。这些独特的多元素特征(类似于人体指纹)用途广泛,例如用于人造和天然颗粒的区分和溯源等。细胞的化学成分则更加复杂。细胞内的元素或同位素特征可用于研究细胞与元素/同位素特异性外源性物质的相互作用。简而言之,同时检测单个颗粒/细胞上的多种元素或同位素是相关技术发展的必然趋势。 目前的spICP-MS分析多借助配置四极杆质量分析器的仪器(ICP-Q-MS),难以同时检测单个颗粒/细胞上的多元素/同位素信息。常见的做法是分批次测定不同的元素(图1),然而如此得到的多元素信息无法匹配到同一颗粒/细胞上。已有研究使用“跳峰模式”调节四极杆在两个质量数通道间快速切换实现了单个颗粒/细胞上的双元素/同位素检测(图1)。但由于调整过程中存在不采集信号的稳定阶段,相当一部分的信息会丢失,这也导致了结果的不确定增高。此外,多接收-ICP-MS(MC-ICP-MS)也被用于纳米颗粒的同位素检测。然而法拉第杯检测器对离子云产生的瞬时信号并不敏感,目前难以实现高通量的检测。此外,扇形磁分析器的固有限制决定了只能同时检测质量数接近的元素/同位素,应用范围非常受限。图1:不同单颗粒/单细胞-多元素/同位素分析策略(分批测定、使用ICP-Q-MS“跳峰模式”测定,以及使用ICP-TOF-MS和MC-ICP-MS测定)的示意图。(引自论文1) 新兴的基于飞行时间质量分析器的ICP-MS(即ICP-TOF-MS)克服了上述问题,能够实现高通量、较高灵敏度的单颗粒全元素检测(原理见图2)。和传统的spICP-MS前端一样,合适浓度的纳米颗粒/细胞悬浮液通过雾化引入到ICP焰炬中,颗粒/细胞被完全气化并离子化。每个颗粒/细胞产生的离子云通过离子透镜系统等到达TOF质量分析器。在TOF质量分析器中,离子云中所有的离子被相同的加速电压加速,因此获得了相同的初始动能Ek。根据Ek=1/2(mv2),离子在飞行时间漂移管中的飞行速度的平方与其质量成反比。根据d=vt,在相同的飞行距离d下,离子飞行时间t的平方与质量成正比。因此,依据飞行时间的不同,离子云中的离子将依据质荷比(单电荷下即质量)从轻到重依次到达检测器,产生显著高于背景的峰信号,连同基线信号被仪器电脑完整记录。离子在加速后能够在数十微秒内到达微通道板检测器而产生响应,在如此小的时间尺度下可近似认为颗粒中的所有元素(6-280 Th)被同时检测。图2 单颗粒/单细胞-ICP-TOF-MS检测原理。(引自论文1) 为探究上述单颗粒/单细胞技术的多元素/多同位素分析能力,中科院生态环境研究中心阴永光研究员团队使用ICP-Q-MS、ICP-TOF-MS和MC-ICP-MS检测单个银纳米颗粒和经银暴露的蓝藻细胞上的107Ag和109Ag同位素,将所测同位素比值与天然丰度相比较来定量评估结果的准确性。结果表明,ICP-Q-MS的结果受颗粒/细胞所产生的离子云的持续时间以及驻留时间和稳定时间等多个条件的影响。MC-ICP-MS和ICP-TOF-MS所采集的几乎所有瞬时事件均能同时检测到两种同位素,并且比值的准确性较ICP-Q-MS高(图3A,所测同位素比值分布在天然丰度值109Ag:107Ag=0.929附近)。此外,ICP-TOF-MS的通量较高,每秒可检测10~20个颗粒/细胞。值得一提的是,ICP-TOF-MS能够同时检测全元素(6-280 Th),这在单细胞分析中优势尽显。以本研究为例,分析物为暴露于纳米银颗粒的蓝藻细胞,传统scICP-MS一般只能着眼于单一的Ag信号,无法区分该Ag信号到底是来自游离的纳米颗粒还是吸附或摄入颗粒的细胞。ICP-TOF-MS可在检测Ag的两种同位素的同时监测细胞内源元素,如生物膜和核酸的组成元素P。若检测到Ag峰信号的瞬间同时也检测到P的峰信号,则可认为该信号来自细胞,反之则为游离纳米颗粒。图3C和D为峰信号的强度分布图,可见待测悬浮液中除了含银量较高的细胞外,还存在一些较小的游离纳米颗粒。这一信号筛选方法无需任何的标记处理。除了区分细胞与纳米颗粒之外,基于细胞特征性元素指纹完整与否,该方法还可用于例如完整细胞与细胞碎片等的区分,可在很大程度上提高scICP-MS数据的有效性。图3 (A)单个颗粒/细胞上107Ag和109Ag信号强度之间的相关性。(B)单个颗粒/细胞上109Ag:107Ag比值相对于比值平均值相对偏差(SD)。虚线和实线曲线为基于泊松计数统计的±1SD和±2SD值。(C)和(B) 同时检测到和未检测到31P信号的107Ag峰信号强度分布。(均使用icpTOF 2R ICP-TOF-MS测定,分析物为80 nm 银纳米颗粒和暴露于10 nm银纳米颗粒的蓝藻细胞)。(引自论文2) ICP-MS的检测本质上是对待测分析物产生的离子的计数,在低计数下会受到泊松噪声的影响。简而言之,信号强度是影响结果准确性的一个重要因素。图3B显示,随着峰信号强度的增加,所测得的同位素比值偏差减小。文中研究所使用的TOFWERK公司的 icpTOF 2R ICP-TOF-MS具有高质量分辨率,而灵敏度相对较低。预计具有更高灵敏度的icpTOF S2 ICP-TOF-MS将在单细胞/单颗粒同位素比值结果准确性上拥有更好的表现,同时提供广谱的元素信息。 团队介绍: 中科院生态环境研究中心阴永光研究员团队已于TrAC Trends in Analytical Chemistry,Analytica Chimica Acta和Chemical Communications等著名学术期刊上发表关于单颗粒/单细胞-ICP-TOF-MS的原理、方法及应用的一系列研究成果。博士生田祥伟为第一作者,相关研究受到山东英盛生物技术有限公司崔文斌博士和中科院高能物理所王萌老师的合作支持。参考文献1 Tian et al., Simultaneous multi-element and multi-isotope detection in single-particle ICP-MS analysis: Principles and applications, TrAC Trends in Analytical Chemistry, Volume 157, 2022, 116746https://doi.org/10.1016/j.trac.2022.1167462 Tian et al., Exploring the performance of quadrupole, time-of-flight, and multi-collector ICP-MS for dual-isotope detection on single nanoparticles and cells, Analytica Chimica Acta Volume 1240, 2023, 340756https://doi.org/10.1016/j.aca.2022.3407563 Tian et al., Single-cell multi-element analysis reveals element distribution pattern in human sperm, Chemical communications, Issue 28, 2023https://doi.org/10.1039/D3CC01575K阴永光,中国科学院生态环境研究中心研究员、博士生导师。主要研究方向为有毒金属的形态分析与环境转化。以第一/通讯作者在Chemical Reviews、Nature Communications、ACS Nano、Environmental Science & Technology、 Water Research等杂志上发表论文100余篇。基金委优秀青年基金获得者,获中国分析测试协会一等奖、北京市科学技术奖二等奖、贵州省自然科学一等奖、中国化学会青年环境化学奖等。
  • 宁夏化学分析测试协会关于《枸杞中多元素的测定 电感耦合等离子体质谱法》团体标准立项的通知
    各会员及相关单位:宁夏化学分析测试协会对团体标准申报材料进行审核后,经研究决定,对《枸杞中多元素的测定 电感耦合等离子体质谱法》团体标准批准立项,现予以公示,公示时间:2023年3月15日20日。欢迎与该团体标准有关的科研、生产单位加入该标准的编制工作,有意者请与协会秘书处联系。联系人:张小飞电话: 13995098931地址:宁夏银川市金凤区新田商务中心413室邮箱:1904691657@qq.com宁夏化学分析测试协会2023年3月15日2023团标立项公示3.15.pdf
  • 单细胞分析的丝滑IMAX体验: icpTOF 以多元素指纹量化海藻细胞与纳米颗粒间相互作用为例
    Hendriks L., Skjolding L. M., Robert T., 确定细胞中金属元素的生物利用率的传统方法一般需对细胞进行酸消解,然后利用溶液进样电感耦合等离子体质谱(ICP-MS)进行后续分析。这种方法的缺点是需要大量的细胞,并且只能为给定的细胞群体提供平均值1。众所周知,千人千面,不同群体以及同群体细胞的特异性在文献中也多有报道2。基于这个大前提,使用特定的分析方法对不同群或同群细胞进行逐序单个分析,获取与单个细胞特异性有关的大数据就尤其重要(见图1)。本文中介绍的单细胞-电感耦合等离子体质谱法(sc-ICP-MS)与之前介绍过的单颗粒ICP-MS(sp-ICP-MS)基本类似(微信公共号:粒粒皆信息:什么是单颗粒物ICP-MS质谱分析法?)。事实上,上述两种技术都依赖于相同的基本原理和icpTOF瞬时事件全谱多元素测量能力,从而可以获得由单一个体产生的微秒时间区间内的瞬时信号,例如单个纳米颗粒(NPs)或单个细胞。(译者注:这等同在拍一段有很多快速武术对打的电影场景,需要使用高速摄像机来捕捉每一个武打动作细节和变化,同时也不漏过颜色,声音等关键信息,这样才能最终呈现出高清120Hz的作品。) 单颗粒ICP-MS方法的基础概念和硬件构架3源于2003年Degueldre等发表的第一篇论文。在过去的二十年间,通过进样系统,数据采集硬件和数据处理专用软件的进一步发展和商业化,不断增加的科研文献见证了该技术领域的迅速成熟。在单颗粒ICP-MS上投入的研究和应用开发同样的也使单细胞ICP-MS分析受益。 在单细胞ICP-MS中,细胞悬浮液经超声波雾化后形成的液滴被带入ICP-MS等离子体中。细胞在等离子体中依次被汽化、原子化和最终离子化。每个细胞产生一个含有多种元素的离子云,在仪器上被检测为高于背景的时长几百微秒的单个信号峰。与单颗粒ICP-MS类似,记录到的尖峰频率与细胞数量浓度成正比,这些尖峰的强度则与细胞中该元素质量有关。这种技术已经成功的应用在测定海藻中的镁元素含量4,并进一步用于纳米颗粒物毒理学研究中评估细胞对纳米颗粒物的摄取情况5,6,7。 虽然单细胞ICP-MS的测量方法看起来很简单,但要获得真实可靠的数据,实施起来需要注重的细节很多。除了需要额外注意来自培养基的可能高背景信号和细胞在样品导入系统中的潜在破损,在单细胞研究中反复报道的一个主要瓶颈是细胞进样装置的低运输效率,这是因为与纳米颗粒物相比,细胞的尺寸更大,在传输过程中也更容易损失。事实上,传统的系统通常包括一个旋风式雾化室,是专为引入较小的溶液液滴而设计的,导致细胞传输效率低于10%。而用于单细胞导入的定制系统,包括改进的雾化器或全消耗喷雾室8,9,以及其他创新设计10,11,经过多年反复测试,已被验证可以高效传输单细胞进入ICP-MS。 另一个瓶颈在于质谱仪器质量分析器的性能:传统的ICP-MS仪器具有单四极杆或扇形场质量分析器,在进行单细胞分析时最多只能同时检测一到两种元素信息(只能拍黑白影片)。而在常见的单颗粒分析场景中,比如在纳米毒理学研究中,在试图量化纳米颗粒物(特征金属元素)和细胞(蛋白固有元素)的关联时,需要同时获得单细胞事件内多种元素浓度信息。为了获得微秒级事件信息全貌,快速且广谱分析的质量分析器,如飞行时间质量分析器等高精尖‘摄影器材’是必不可少的(译者注:例如,等同于可提供高清彩色120Hz影片给观众更加真实的IMAX观影体验)。图1:a)在对细胞进行酸消解后,通过传统的雾化法将溶液样品引入ICP-MS,并记录仪器获得的稳态信号。这种整体分析法对初始样品中所包含的数千个细胞获得一个平均值。然而这种实验是基于细胞是均匀的假设,而忽略了细胞具有多样性的事实。因此,少数细胞群(用绿色和紫色表示),在元素组成上虽与主类细胞有差异,却没有被体现在结果中,这完美的诠释了辛普森悖论。b)在单细胞ICP-MS方法中,将细胞悬浮液稀释后,在单位时间内仅有一个细胞个体被引入ICP-MS等离子体。每个细胞产生一个独立的离子云,作为信号峰被ICP-MS仪器记录。这种方法允许检测每一个单独的细胞,从而保证了细胞特异性信息的无损获取和保存。简单来说,在单细胞ICP-MS中,细胞是以个为单位进行分析的,可以根据它们不同的分析物含量识别出不同的群体,而不是仅仅产生一个平均值。icpTOF飞行时间质谱法 在飞行时间质谱法(TOF-MS)中,其基本原理是根据离子到达检测器前通过固定长度的飞行管的飞行时间来精确分辨离子。离子束在脉冲加速电压后具有相同的动能,但轻的离子会比重的离子获得更高的速率,进而更早到达检测器。测量所有离子的陆续到达时间可以得到一个连续时间谱,经过简单的校准和换算后可以得到一张全质谱谱图(一般6-280 Th)。TOF质量分析仪的主要优点是:对分析的元素及同位素的数量没有限制,而且全谱数据采集速度快(通常几十微秒就可以获得一张全元素谱图)。这样的快速全谱数据采集能力在处理单一实体(如单细胞)检测时尤其重要,因为单细胞产生的瞬时事件长度很短,一般在200-500微秒区间。 飞行时间技术在单细胞分析领域并不是一个新概念,最初是由Bandura在2009年提出的,其原型机12用于单个细胞的时间分辨分析13,从而为众所周知的 "质谱流式 "领域打开了大门。这项应用使用稳定的稀土金属同位素来标记细胞,从而允许通过其金属标记物来检测相应细胞14。除了展现了生物研究和药物筛选应用中的巨大潜力,质谱流式也被用于检测细菌细胞中的银纳米颗粒15。然而,由于质量检测范围有限(80 Da)和涉及染色的样品制备程序,质谱流式细胞技术无法检测许多固有元素。 与质谱流式不同的,如图2a) 所示的ICP-TOF (TOFWERK AG, 瑞士) 可以测量从质荷比6到280的全谱图16,从而可以覆盖轻质元素,如Na, Mg, P, S, K, Ca, Mn, Fe, Cu, Zn等。这些元素是活细胞的固有元素,它们的分布(也被称为细胞离子组17)可以作为细胞发育状态的指标18。例如,磷存在于核酸(DNA和RNA)中,也是ATP、CTP、GTP和UTP等能量化合物的重要成分。钠和钾在电信号的传输中起作用,而锌被不同的生物过程中的多种酶用作催化剂。由于ICP-TOF-MS的同时多元素检测能力,可以在多种元素的相关分析基础上进行指纹识别19。如图2b) 所示,镁、磷、锰、铁、铜和锌被鉴定为被分析藻类的本征指纹元素。不需要标记或染色,即可依据细胞的 "天然 "元素指纹来进行单细胞分析20,21。通过测量特定细胞类型的金属微量元素,则可以获得更细致的指纹信息。例如,海藻细胞富含镁等金属微量元素,镁是叶绿素的核心组成部分,对光合作用至关重要。因此,金属微量元素的组成可以作为一种独特的指纹来明确识别不同的细胞种类。通过测量单细胞的金属元素组分,可更好地了解由金属蛋白和金属酶调节的基本生物过程,从而解密细胞生命周期不同状态22。尽管细胞的生物化学并不完全反映在其离子组上,但通过监测其金属含量的变化,可以确定地获得对细胞状况和生物过程的更深入了解。 通过使用TOF质量分析仪作为检测器,可以动态系统地获得完整的质谱数据,从而可以对发现特定实体本身及其所处环境进行连续或高通量表征。因此在纳米毒理学背景下,人们可以很容易地确定纳米颗粒物是否与细胞相关联。图2:a) icpTOF仪器(TOFWERK AG, Thun, Switzerland)的示意图:在iCAP Q(Thermo Scientific, Bremen, Germany)的框架上搭配一套高分辨率飞行时间质量分析器。因此,ICP-TOF受益于与iCAP Q相同的ICP离子源、离子光学、碰撞/反应池技术和样品引入设备。b) 用48 µ s时间分辩率采集的淡水藻类细胞raphidocelis subcapitata的瞬时信号速率。c) 藻类细胞通常用于毒理学风险评估研究,这里在暴露于金纳米颗粒一段时间后进行分析,以调查其摄取情况。在ICP-TOF的全质量数范围内,可以根据检测细胞的本征元素指纹对细胞进行追踪,并能直接定量测量纳米颗粒物-细胞的关联。icpTOF单细胞分析应用实例 单一实体分析,与批量样品测量相比,能产生信号的质量相对有限,这对仪器灵敏度要求更高。下面的应用案例研究展示了icpTOF S2仪器(TOFWERK AG,瑞士)的性能指标:具有与单四极杆ICP-MS类似的高灵敏度,又可同时快速检测全谱信号,特别适合分析单一实体,如单细胞或纳米颗粒(NPs)等。随着工业和日常生活中纳米颗粒物的广泛使用,纳米安全和纳米毒理学在过去20年一直是深入研究的课题。纳米颗粒物的安全评估研究中的一个重要参数是其在细胞摄取的分析和量化。 透射电子显微镜(TEM)和扫描电子显微镜(SEM)具有高空间分辨率,它们经常被用于细胞内纳米颗粒物的分析23,24。尽管有令人印象深刻的成像能力,基于电子显微镜方法的一个主要缺点是对样品制备的繁琐要求。此外,由于没有额外的元素定量或自动图像分析,获得的图像是定性的且结果较难被解读25,26。如前所述,单细胞ICP-MS也可用于量化细胞对纳米颗粒物的摄取,根据观察到的信号峰的强度大小,提供与细胞相‘关联’的纳米颗粒数量的信息5,6。这类实验通常有以下三个明显的观察结果: 只检测到纳米颗粒物中的特征元素,表明溶液中存在纳米颗粒物 只检测到细胞固有元素而没有任何纳米颗粒物中的元素,表明细胞并没有与纳米颗粒物相关联 同时检测到细胞固有元素和纳米颗粒物中的元素,意味着两者有关联 根据观察到的相关联的纳米颗粒/细胞峰的频率和幅度,可以确定摄取了纳米颗粒物的细胞的百分比以及与每个藻类细胞相关的纳米颗粒数量的估计值。在理想的情况下,可以根据浓度和暴露时间动态地对海藻细胞和纳米颗粒数量的相关性的进行评估。 在本案例研究中,将海藻细胞暴露在BaSO4(NM-220)溶液中72小时,接着按照Merrifield等人提出的程序进行清洗5,去除未与细胞结合的纳米颗粒。在暴露后并在ISO8692藻类培养基中进行冲洗后27,样品中预计只包含与藻类细胞相关联的纳米颗粒物。随后,样品被储存在15毫升的试剂管中,用锡纸包裹,等待分析。 在使用四极杆ICP-MS进行单细胞的初始研究中,我们发现清洗后的细胞悬浮液中仍存在BaSO4纳米颗粒,如图3a所示。有学者认为未关联的纳米颗粒已经去除,而这些检测到的纳米颗粒是与海藻细胞相关联的。然而由于只测量了一种元素138Ba,并不能完全证实这一猜想。 我们使用单细胞ICP-TOF-MS(见图2a)重复了一个类似的实验。从图2b中我们可以知道被分析的藻类细胞的本征元素指纹,即只有同时检测到Mg、P、Mn和Fe等元素时才被认为检测到了藻类细胞。令人惊讶的是,即使暴露72小时后,BaSO4 纳米颗粒与水藻细胞的指纹信号没有显著关联(图3b)。可以看到,Ba仅与Mg和Fe的信号同时被检测到,而没有水藻的其他指纹信号同时出现。虽然缺失的元素信号强度有可能是低于仪器检测极限,但至少这说明检测到的元素与藻类细胞的本征元素指纹不一致。然而在检测到藻类细胞的指纹信号中,没有观测到Ba元素信号。综上所述,如果没有icpTOF瞬时多元素检测能力,在清洗后细胞悬浮液中检测到的纳米颗粒的Ba信号很容易被误解为是与藻类细胞相关联的颗粒物。图3:a)实验流程图。在样品暴露于纳米颗粒物72小时后,细胞被清洗以去除上清液中游离态的纳米颗粒物。b) 通过使用飞行时间质谱仪重复单细胞测量,可以跟踪细胞的元素指纹,以验证纳米颗粒物信号和细胞信号的是否同时出现。结果显示虽然纳米颗粒物和细胞没有直接关联,但Ba信号与Mg和Fe信号是一起出现的。 这些结果导致了对可能引发该现象的机制的讨论。一个合理的解释是海藻细胞通过释放胞外聚合物物质(EPS)来清除粘附在细胞表面的纳米颗粒物。EPS被认为是影响藻类细胞对纳米颗粒的生物利用率的关键因素28,29。EPS产量的增加可使藻类细胞主动脱落纳米颗粒,从而减轻摄取或吸附到细胞外部,而纳米颗粒仍然以被包含在EPS中的形式存在于溶液中。虽然缺乏关于这种行为的定量数据,但足以解释BaSO4纳米颗粒信号与Mg和Fe信号的契合。当然Fe与Ba信号的同时出现还可以被解释为溶解的Ba与ISO 8692培养基中的EDTA络合在了一起,而EDTA被添加在溶液中以保持Fe的生物可利用率。要回答这个问题,我们使用TEM观察到EPS聚集体中包裹有纳米颗粒(图4)。由于TEM局限于定性分析,再加上EPS结构微妙,这种包裹的确切机制和发生频率很难被量化。然而单细胞ICP-TOF-MS则可以直接对这一现象进行定量分析,而不需要对样品进行复杂的制备,同时还可以在较短的时间内分析更多的藻类细胞及EPS聚集体,提供更可靠的统计数据。此外,单细胞ICP-TOF-MS可以动态地从藻类悬浮液中不间断取样,评估这种清除行为的发生频率与样品浓度和时间的关系,进一步了解藻类细胞和纳米颗粒之间的相互作用。这种利用ICP-TOF研究动态摄取和清除行为的研究思路不仅限于藻类细胞,还可以扩展到纳米医学或纳米生物技术的其他类型细胞,如哺乳动物细胞或细菌。图4:一个藻类细胞(Raphidocelis subcapitata)的透射电子显微镜图像,该细胞之前暴露在银纳米颗粒物中,脱落的细胞外聚合物物质(EPS)含有银纳米颗粒。(由Louise H. S. Jensen和Sara N. Sø rensen提供)。 正如本研究强调的那样,尽管传统的四极杆质谱(sc-ICP-Q-MS)可以测量单细胞,但它最多只能同时测量一种或两种元素或同位素,所以即使检测到纳米颗粒信号也不能100%确定其与细胞直接关联。另外还需要TEM来确定颗粒物是否被藻类吸收在内部或简单附着在细胞外部。然而使用ICP-TOF-MS可以将被暴露在纳米颗粒物中藻类的离子组与对照藻类的离子组进行比较,从而评估它们的状况。这些信息对于从机理上理解海藻细胞与纳米颗粒物的相互作用非常有价值,并可以进一步促进开发以生理学为基础的纳米颗粒物风险评估工具。icpTOF结论与展望 单细胞ICP-TOF-MS是一个新兴的、令人兴奋且快速发展的研究领域。虽然尚需数年时间才能达到质谱流式技术在单细胞多参数分析方面的水平,但ICP-TOF-MS得益于灵敏度的提高和同时全谱检测能力,能够基于元素指纹检测未被标记的细胞,从而为新的实验设计创意提供可能性。例如,除了测量纳米颗粒物和细胞的相关性外,ICP-TOF-MS记录的多元素数据可用于评估细胞在纳米颗粒介导毒性影响下的不同状态。 除了液体样品引入方法之外,也可以使用激光剥蚀(LA)-ICP-TOF-MS进行单细胞分析30,31。通过将制备有细胞的载玻片放在样品台上并使用激光扫描,可以产生单个完整细胞层面上的元素分布二维图像,其中每个像素包含一个完整的全元素谱图。LA-ICP-TOF-MS成像的高空间分辨率对纳米毒理学研究特别有意义,因为它可以观察和定位纳米颗粒物在亚细胞结构中的聚集,以进一步了解和解释各种现象(如摄取、积累和释放纳米颗粒)。 此外,所生成的大量数据可以通过降维技术进行处理,如主成分分析(PCA)或机器学习工具,并提取与细胞状态和类型有关的信息,从而使细胞的分类变得更容易。这在质谱流式工作流程中是常见的处理方法。这项技术不仅限于纳米毒理学研究,还可以扩展到金属组学和细胞生物学中。无论如何,我们将继续努力改进飞行时间质谱ICP-TOF-MS技术,使其在更广阔的应用领域发挥作用。icpTOF致谢作者感谢Olga Meili和Aiga Mackevica校对本文并提供反馈。Lars M. Skjolding得到了PATROLS – Advanced Tools for NanoSafety Testing项目资助(760813)。感谢Louise Helene Sø gaard Jensen和Sara Nø rgaard Sø rensen允许使用图4中的TEM图像。最后特别感谢Robert Thomas邀请在Spectroscopy杂志中的 "原子视角专栏 "刊登此文。原文链接:Hendriks L., Skjolding L. M., Robert T., Single-Cell Analysis by Inductively Coupled Plasma–Time-of-Flight Mass Spectrometry to Quantify Algal Cell Interaction with Nanoparticles by Their Elemental Fingerprint, Spectroscopy, 2020, Volume 35, Issue 10, Pages 9–16https://www.spectroscopyonline.com/view/single-cell-analysis-by-inductively-coupled-plasma-time-of-flight-mass-spectrometry-to-quantify-algal-cell-interaction-with-nanoparticles-by-their-elemental-fingerprint (请点击左下角“阅读原文”跳转)本文由TOFWERK中国-南京拓服工坊科技编译,结论以英文原文为准。参考文献1 S. J. Altschuler and L. F. Wu, Cell, 2010, 141, 559–563.2 W. M. Elsasser, Proc. Natl. Acad. Sci. U. S. A., 1984, 81, 5126–5129.3 C. Degueldre and P. Y. Favarger, Colloids Surfaces A Physicochem. Eng. Asp., 2003, 217, 137–142.4 K. S. Ho and W. T. Chan, J. Anal. At. Spectrom., 2010, 25, 1114–1122.5 R. C. Merrifield, C. Stephan and J. R. Lead, Environ. Sci. Technol., 2018, 52, 2271–2277.6 F. Abdolahpur Monikh, B. Fryer, D. Arenas-Lago, M. G. Vijver, G. Krishna Darbha, E. Valsami-Jones and W. J. G. M. Peijnenburg, Environ. Sci. Technol. Lett., 2019, 6, 732–738.7 I. L. Hsiao, F. S. Bierkandt, P. Reichardt, A. Luch, Y. J. Huang, N. Jakubowski, J. Tentschert and A. Haase, J. Nanobiotechnology, 2016, 14, 1–13.8 A. S. Groombridge, S. I. Miyashita, S. I. Fujii, K. Nagasawa, T. Okahashi, M. Ohata, T. Umemura, A. Takatsu, K. Inagaki and K. Chiba, Anal. Sci., 2013, 29, 597–603.9 M. Corte-Rodríguez, R. Á lvarez-Fernández García, P. García-Cancela, M. Montes-Bayón, J. Bettmer and D. . Kutscher, Curr. Trends Mass Spectrom., 2020, 18, 6–10.10 K. Shigeta, H. Traub, U. Panne, A. Okino, L. Rottmann and N. Jakubowski, J. Anal. At. Spectrom., 2013, 28, 646–656.11 P. E. Verboket, O. Borovinskaya, N. Meyer, D. Günther and P. S. Dittrich, Anal. Chem., 2014, 86, 6012–6018.12 D. R. Bandura, V. I. Baranov, O. I. Ornatsky, A. Antonov, R. Kinach, X. Lou, S. Pavlov, S. Vorobiev, J. E. Dick and S. D. Tanner, Anal. Chem., 2009, 81, 6813–6822.13 K. R. Atkuri, J. C. Stevens and H. Neubert, Drug Metab. Dispos., 2015, 43, 227–233.14 S. D. Tanner, V. I. Baranov, O. I. Ornatsky, D. R. Bandura and T. C. George, Cancer Immunol. Immunother., 2013.15 Y. Guo, S. Baumgart, H. J. Stä rk, H. Harms and S. Müller, Front. Microbiol., 2017, 8, 1–9.16 L. Hendriks, A. Gundlach-Graham, B. Hattendorf and D. Günther, J. Anal. At. Spectrom., , DOI:10.1039/c6ja00400h.17 M. Malinouski, N. M. Hasan, Y. Zhang, J. Seravalli, J. Lin, A. Avanesov, S. Lutsenko and V. N. Gladyshev, Nat. Commun., , DOI:10.1038/ncomms4301.18 D. E. Salt, I. Baxter and B. Lahner, Annu. Rev. Plant Biol., 2008, 59, 709–733.19 A. Praetorius, A. Gundlach-Graham, E. Goldberg, W. Fabienke, J. Navratilova, A. Gondikas, R. Kaegi, D. Günther, T. Hofmann and F. Von Der Kammer, Environ. Sci. Nano, 2017, 4, 307–314.20 O. Borovinskaya, S. Aulakh and R. Markus, Tofw. appilcation note, 2019, 1–3.21 M. von der Au, O. Borovinskaya, L. Flamigni, K. Kuhlmeier, C. Büchel and B. Meermann, Algal Res., 2020, 49, 101964.22 L. Mueller, H. Traub, N. Jakubowski, D. Drescher, V. I. Baranov and J. Kneipp, Anal. Bioanal. Chem., 2014, 406, 6963–6977.23 F. Piccapietra, C. G. Allue, L. Sigg and R. Behra, Environ. Sci. Technol., 2012, 46, 7390–7397.24 F. Perreault, A. Oukarroum, S. P. Melegari, W. G. Matias and R. Popovic, Chemosphere, 2012, 87, 1388–1394.25 L. H. S. Jensen, L. M. Skjolding, A. Thit, S. N. Sø rensen, C. Kø bler, K. Mø lhave and A. Baun, Environ. Toxicol. Chem., , DOI:10.1002/etc.3697.26 C. Brandenberger, M. J. D. Clift, D. Vanhecke, C. Mühlfeld, V. Stone, P. Gehr and B. Rothen-Rutishauser, Part. Fibre Toxicol., , DOI:10.1186/1743-8977-7-15.27 ISO, International Organization for Standarization. ISO 8692. Water quality - Fresh water algal growth inhibition test with unicellular green algae., 2012.28 J. Zhao, X. Cao, X. Liu, Z. Wang, C. Zhang, J. C. White and B. Xing, Nanotoxicology, , DOI:10.1080/17435390.2016.1206149.29 F. Chen, Z. Xiao, L. Yue, J. Wang, Y. Feng, X. Zhu, Z. Wang and B. Xing, Environ. Sci. Nano, 2019, 6, 1026–1042.30 S. Theiner, A. Schoeberl, S. Neumayer and G. Koellensperger, J. Anal. At. Spectrom., 2019, 34, 1272–1278.31 S. Theiner, A. Schweikert, C. Haberler, A. Peyrl and G. Koellensperger, Metallomics, , DOI:10.1039/d0mt00080a.
  • 水质安全守护者| ICP-MS 助力生活饮用水多元素含量测定
    引言生活饮用水是指供人生活的饮水和生活用水。如果生活饮用水受到污染,将会直接危害到人们的身体健康,致使居民用水被迫中断,并且被污染的水源需要更多的时间进行恢复,将会造成严重的经济损失。所以为了确保人们用水安全和减少经济损失,要对饮用水进行严格的检测。 标准2006年底,卫生部会同各有关部门完成了对1985年版《生活饮用水卫生标准》的修订工作,并正式颁布了新版《生活饮用水卫生标准》(GB5749-2006),规定自2007年7月1日起全面实施,其中涉及水质106项检测,GB5749-2006规定生活饮用水水质检验应按照GB/T5750(所有部分)执行,而对于元素检测,按照GB/T5750.6-2006《生活饮用水标准检验方法 金属指标》方法进行。 仪器特点 iCAP RQ ICP-MS质量选择器及检测器:最宽质量数范围,双模式长寿命检测器专利平面四极杆碰撞反应池设计:提供强大的干扰消除效果RAPID 90°偏转技术:优质离子偏转和聚焦特性,提高信噪比全新接口设计:提供更稳定的复杂基体样品分析性能,提高整机灵敏度水平全新RF发生器设计:保证长时间样品分析的稳定性和可靠性快速连接、自动准直进样系统:令维护工作简单、高效 结果对末梢水样品进行不同浓度加标回收的测试以证实仪器对样品干扰的消除能力和方法准确性,同时通过钝化锥和配制合适浓度和酸度的内标溶液来获得稳定的内标回收率。结果表明iCAP RQ ICP-MS可对生活饮用水的多元素进行一次性快速、准确的测量。 数据末梢水样品不同浓度加标回收率在95%-105%之间。 内标元素2h稳定性在90%-110%之间。 Thermo Scientific iCAP RQ ICP-MS,具备autotune一键自动优化功能,快速优化仪器参数。实验所有元素均采用KED模式(氦气碰撞)测试,可有效消除多原子离子干扰。测试样品的不同浓度加标回收率均在95%-105%之间,内标回收率稳定,方法准确,高效简单,适合饮用水样品中多元素同时检测。实验数据表明,赛默飞的iCAP RQ ICPMS能够完全满足此类样品的分析测试要求。
  • 应对新国标——ICP-MS 助力生活饮用水多元素含量测定
    安全的饮用水是人类健康的基本保障,是关系国计民生的重要公共健康资源。GB 5749-2022《生活饮用水卫生标准》已于2023年4月1日正式实施,GB/T 5750-2023《生活饮用水标准检验方法》作为GB 5749配套的检验方法,也于2023年10月1日正式实施。新标准将原标准中的“非常规指标”调整为“扩展指标”,以反映地区生活饮用水水质特征及在一定时间内或特殊情况的水质特征。指标数量由原标准的106项调整为97项,包括常规指标43项和扩展指标54项。与原标准相比,新标准的变化主要有以下几个方面:①更加关注感官指标;②更加关注消毒副产物;③更加关注风险变化;④提高部分指标限值。在标准检验方法中也大幅增加了高通量的分析方法和质谱技术的应用范畴。仪器信息网特别建立“《生活饮用水标准检验方法》——质谱篇”话题,聚焦质谱技术在生活饮用水检测工作相关的最新应用解决方案,以增强业界质谱专家和技术人员、疾控中心相关机构工作者之间的信息交流,同时向仪器用户提供饮用水检测领域更丰富的质谱产品、技术解决方案。本文邀请到赛默飞分享生活饮用水检测中ICP-MS相关的技术及解决方案。表1总结了GB 5749-2022中涉及到的元素和限量以及GB/T 5750-2023的检测方法,可以看出,主要包含的仪器方法有分光光度计、AFS、AAS、ICPOES、ICPMS、LC-ICPMS法等,而ICP-MS作为无机元素检测分析的主要方法之一,因其灵敏度高、动态线性范围宽、检出限低而越来越多的被使用,同时,GB/T 5750-2023还新增了砷、硒、汞、铬四种元素形态分析检验方法,均涉及到LC-ICP-MS联用。表1 GB/T 5750-2023中无机元素推荐检测方法案例分析——ICPMS对地表水和饮用水进行可靠性分析01 仪器参数氩气稀释功能(AGD):AGD 所使用的氩气由仪器直接供应,并使用质量流量计进行精确调节。采用低、中、高三档预设的智能化在线氩气稀释模式,确保仪器性能的可靠性,实现卓越的长期稳定性分析。iSC-65 自动进样器:通过 LED 面板实现仪器状态可视化,具备独特的“Step ahead”功能,使两个相邻样品的分析时间重叠,最终缩短每个样品的周转时间。单位样品分析时间(对共 46个元素进行3次重复分析,包括提升和清洗时间 )为2分38秒。ICPMS参数:自动进样器参数:样品和有证标准物质:与水样分析相关的一个主要挑战是高度可变的基质负荷。尽管饮用水中主要分析物(如碱性和碱土元素)的浓度可能大有不同,但河水、湖水或井水等地表水也可能含有大量的过渡金属,特别是铁。此外,溶解有机物和微生物可能影响分析,导致基质效应增加,进而导致信号抑制和漂移。为了覆盖广泛的潜在样品基质,共采集并分析了七份水样(包括一份有证标准物质CRM)。标准溶液及其浓度:根据不同水质样品中元素的预期浓度,对这些元素进行分组,分析范围很广(从 0.001 mg L -1到500 mg L-1),只需一次分析即可获得有毒元素和营养元素含量。(浓度单位为mgL-1)02实验结果检出限:通过测量试剂空白溶液(与样品并行制备),确定溶液检出限 (DL)。对于所有元素,达到的检出限显著低于法规通常要求的限值。准确度和稳定性:分析有证标准物质(CRM) 样品SLRS-5(天然河水),CRM的结果与参考值非常一致。每天在 12 小时内连续采集 300 份饮用水和地表水样品,并在10个工作日内重复该操作,共分析约 3000份样品,10个工作日内的质量控制(QC)标准品重复140 次的平均回收率在90%-120%的范围内,证明系统具有稳健且可靠的分析性能。03元素形态分析不同元素形态分析的流动相和分析柱都会有所不同,所以分析流程耗时耗力。赛默飞可以提供采用同一个流动相条件,相同色谱柱在10min之内同时分析溴、碘、铬、砷不同形态,提高了分析效率。色谱条件:采用高效能AG19和AS19阴离子色谱柱、梯度洗脱的方式ICPMS仪器参数:iCAP RQplus ICPMS时间扫描tQuant模式具有多元素采集功能,采用氦气碰撞模式解决砷、铬、溴、碘元素多原子离子干扰问题砷、铬、溴、碘4种元素11种形态分离图:5种市售瓶装饮用水及当地自来水检测的加标回收率在85.6%到121.6%之间,完全满足分析需求。饮用水元素分析特点1. 测试高低含量的元素---要求仪器线性范围宽、准确度高2. 多样品多元素分析---要求仪器稳定性好、效率高3. 元素形态分析---要求仪器联机方便、色谱柱性能强使用 iCAP RQplus ICP-MS 结合 iSC-65 自动进样器就可轻而易举地对水质元素进行快速、准确且稳定的常规监测,也可以与LC/IC联用进行多元素形态的分析。更多关于GB/T 5750-2023《生活饮用水标准检验方法》的质谱检测技术与解决方案请点击》》》
  • 单细胞icpTOF揭示精子细胞多元素分布规律
    不孕不育影响了全球约6-8千万夫妇。男性因素导致了约半数的不孕不育病症,精子质量差的是主要问题。因此,深入了解精子质量有助于男性不育症的预防和对应治疗。以往研究表明,多种化学元素(如Zn,Cu,Se等)在精液中发挥着重要的生理功能。相关的元素分析主要集中在精液或精浆上,而很少着眼于精子细胞。此外,常规的批量分析无法提供单个细胞的特定元素信息,模糊了细胞之间的异质性。单细胞电感耦合等离子体质谱法(scICP-MS)作为一种成熟的技术,能够填补这一信息空白。通过采用配备飞行时间分析器的ICP-TOF-MS,可以高通量且高灵敏地检测单个细胞的全谱元素含量(微信公共号‘单细胞分析的丝滑IMAX体验: icpTOF 以多元素指纹量化海藻细胞与纳米颗粒间相互作用为例’)。 近期中科院生态环境研究中心阴永光研究员与中科院高能物理研究所王萌副研究员以及同济医院靳镭教授合作,使用scICP-TOF-MS(仪器型号:TOFWERK icpTOF 2R)实现了单个精子细胞的高通量全元素检测.icpTOF实验方法 研究人员首先通过离心分离细胞。再使用不含磷盐的有机缓冲液和多聚甲醛等渗固定剂清洗和固定细胞。之后再用纯水进一步清洗细胞,以去除干扰离子(主要是Na和Cl)。经处理的精子细胞在显微镜下形态完整,无基质干扰,因此提高了信噪比,也避免了ICP-TOF-MS仪器检测器饱和。icpTOF结果与讨论 在scICP-TOF-MS中,由于可以实现同时的多元素检测,研究人员将内源性元素作为细胞信号,同时分析其他信息,如外源性元素信息。磷元素(31P)在精子细胞中含量丰富,可作为细胞信号指示元素。在scICP-TOF-MS分析中,细胞信号和背景信号的P强度分布均可明确区分(图2A和图2B)。高时间分辨率的单细胞检测中,ICP-TOF-MS的P的信号峰和基线相比有明显且相对固定的信噪比。(编者注:如图1所示,icpTOF 2R的强大质量分辨率可更好区分干扰信号,有利于P元素的准确检测。在icpTOF全谱测量,没有为低质量数P元素灵敏度专门优化的大前提下,仍能取得较好的信噪比)。图1 icpTOF 2R ICP-TOF-MS可区分P信号和其他干扰信号。 该实验中,结合高时间分辨的连续单细胞实验结果,作者推断假阳性的信号大多来自细胞碎片,主要基于下列实验结果:1, 峰信号的元素组成特征更符合细胞碎片的特征,且有P信号存在时检测到的其他(内源性)元素质量显著高于没有P信号时的相应元素质量(图2C);2,流式细胞仪也证实精子细胞悬浮液中存在相当数量的细胞碎片。编者注:另外还可能有套实验数据可以用来辅助证明,细胞碎片的瞬时事件时长应该显著小于完整单细胞。TOFWERK icpTOF S2的超高时间分辨率在后续实验中可以用来验证这一点。通过计算细胞碎片率,相对于高质量精子,研究发现低质量精子样品中含更多的细胞碎片(图2D),这可能跟低质量精子细胞的形态异常等相关。图2 (A)scICP-TOF-MS测得的P信号分布图;(B)单细胞进样条件下,scICP-TOF-MS测得的实时P信号;(C)有P信号和无P信号同时检测到的Zn质量;(D)高质量和低质量精子细胞中的细胞碎片比例 细胞中元素的含量普遍表现出细胞异质性。该研究使用scICP-TOF-MS揭示了细胞中不同元素的异质性差异。结果表明,大多数元素表现出较高的异质性,而细胞的大量元素如P、Zn含量稳定,异质性则较低(图3A)。不同元素之间异质性的差异进一步凸显了多元素同时检测的重要性。 基于数以千计的单细胞事件,研究人员使用降维分析和分层聚类来提取每个样本中关键信息。降维分析的可视化展示直观地展示了多种元素在单细胞中分布规律或生理功能的相似性(图3B)。例如P、Zn、Cu在精子细胞中含量很高,是基本的组成元素,因此相似性很高。而蓝圈中的元素大多没有生理功能。聚类分析也为这些相似性提供了客观性证据(图3C)。图3 (A)异质性系数热图;(B)元素相关性降维分析投影图;(C)元素相关性的分层聚类图icpTOF总结这是第一份报告了使用scICP-TOF-MS在单细胞水平对动物细胞进行多元素分析的研究。该分析方法利于更好地了解细胞中元素分布的规律,以及细胞性质和元素分布之间的关联。参考文献原文:Tian et al., Single-cell multi-element analysis reveals element distribution pattern in human sperm, Chemical communications, 2023, DOI: 10.1039/d3cc01575k作者团队简介:阴永光,中国科学院生态环境研究中心研究员、博士生导师。主要研究方向为有毒金属的形态分析与环境转化。王萌,中国科学院高能物理研究所副研究员。现主要开展基于质谱技术的单细胞分析和生物成像方法及应用研究。靳镭,华中科技大学同济医院附属同济医院生殖医学专科主任,二级教授,主任医师,博士生导师。主要擅长生殖医学、男女性不孕症等。
  • 北京检疫局科技周“多元素”打造互动平台
    日前,2009年北京检验检疫局科技周圆满落幕。在此次科技周活动中,一系列展板、一本发展报告、一个揭牌颁奖仪式、两场讲座等“多元素”打造的科技互动平台,让该局职工津津乐道。  北京局本次科技周活动的主题是:加强科技创新,打造科技精品,推动北京局科技工作实现新跨越。在该局综合实验楼一楼大厅,37块科技成果展板分别从科研成果、科研平台、机构改革、实验室能力建设等方面全面、直观地展示了近年来北京局依靠科学技术发展检验检疫事业所取得的成果和发展状况。  科技周活动中,令人印象最深的要数国家纳米科学中心研究员刘前的“纳米科技与检测技术”和国家标准化管理委员会总工程师于欣丽的“标准与技术创新”专题讲座。通过讲座,北京局科研人员及时了解了前沿科技的国际国内发展趋势,更好地了解了检验检疫需求与现代科学技术与标准的紧密结合点,解决了科研人员在研究和管理过程中遇到的一些问题。  据北京局相关部门负责人介绍,下一步该局将在总结科技活动周经验的基础上,不断改进、完善工作方法,落实工作措施,进一步尝试和实践科技宣传活动的多种形式和多种途径,进一步提高活动的针对性和有效性。
  • 解决方案 | ICP-OES法分析玻璃粉及高纯石英粉末中多种元素
    玻璃粉主要组成为PbO 、 SiO2 、 TiO2及其他杂质元素,是一种重要的半导体材料,主要应用于制造电子浆料和其它电子元器件行业。其中组成的变化会影响元器件的性能,因此对玻璃粉中各组分含量的分析具有重要的意义。高纯石英主要矿物成分是SiO2,因具有耐高温、耐腐蚀、低热膨胀性、高度绝缘性和透光性等优异物理化学特性,广泛应用于LED照明、光伏和半导体等高新技术产业。《矿产资源工业要求手册》中,根据石英中SiO2、Fe2O3及污染元素(Al、Ti、Na、K、Li、Ca、Fe、P、B)的含量,划分为不同纯度等级。因此对石英粉末中各组分含量的分析对实现不同纯度石英砂的级别划分具有重要的意义。技术难点玻璃粉及高纯石英中多元素分析存在以下技术难点:种类多待测元素种类多,需实现多元素同时检测,常规分析方法(如容量法、比色法)不能满足其检测需求。差异大待测元素含量差异大,需满足高低浓度元素同时检测的需求,对仪器检测准确度、线性范围提出了更大挑战。含量低高纯石英粉末中杂质元素含量低,要求仪器具有高灵敏度和低检出限。谱育优势谱育科技 EXPEC 6000 R型 电感耦合等离子体发射光谱仪(ICP-OES)具备高灵敏度、低检出限、宽线性范围、多元素同时测定的特点,可解决上述困难,实现玻璃粉、高纯石英中Al、Na、K、Li、Cr、Fe、Mg、Ba、Ti、Ca、Mn、Mi、Cu、Mo 14种元素的分析。EXPEC 6000 R型电感耦合等离子体发射光谱仪EXPEC 790s超级微波化学工作站多元素同时分析全谱直读数据采集,实现多元素同时性分析。宽线性范围测定谱线的线性动态范围:≥105,实现高低浓度同时检测。高灵敏度百万像素科研级防溢出面阵CCD检测器,实现低含量元素的高灵敏响应。应用案例仪器与试剂仪器:EXPEC 6000 R型、EXPEC 790s主要试剂:氢氟酸 ;盐酸;去离子水测定参数分析结果玻璃粉使用 EXPEC 790s 对样品进行微波消解,应用 EXPEC 6000 R型 测定玻璃粉末标准品中Al2O3、CaO、Fe2O3、K2O、MgO、Na2O 6种金属氧化物含量,结果表明:该方法测定方法精密度均小于3%,其测量结果与该样品的的标准值比对其偏差在6%以内,说明了 EXPEC 6000 R型 测定结果的准确性。玻璃粉标准品中样品测试结果高纯石英使用 EXPEC 790s 对样品进行微波消解,应用 EXPEC 6000 R型 测定4种高纯石英粉末中Al、Na、K、Li、Cr、Fe、Mg、Ba、Ti、Ca、Mn、Mi、Cu、Mo 14种元素的含量,目标元素均有良好的线性,空白低,样品中常量及微量元素均能满足低浓度的检出。使用 ICP-OES 法测定石英样品中的微量元素的测试方法基体效应小,精密度高,检出限较低,较传统方法效率较高,结果可信度高,可满足石英样品中多元素快速、精确检测的要求。高纯石英粉末中样品测试结果EXPEC 6000 R型 电感耦合等离子体发射光谱仪(ICP-OES),统一了高可靠性的射频电源、稳固的恒温二维分光系统、制冷的防溢出高速CCD传感器、易用的炬室与进样系统,结合独创的FSC光谱校正技术,配合 EXPEC 790s 使用,大大提高了样品处理效率。目前,EXPEC 6000 R型 已成功应用于环境检测、材料、冶金、食品安全和化工等领域,有效满足多种元素检测需求,致力于为用户带来良好的性能和使用体验。
  • 广东省农业标准化协会立项《肥料中多元素的测定电感耦合等离子体质谱法》团体标准
    各相关单位:根据《广东省农业标准化协会团体标准管理办法》的相关要求,2023年5月31日-6月5日,广东省农业标准化协会对《肥料中多元素的测定电感耦合等离子体质谱法》团体标准进行了立项审查,经协会技术专家认真研究与审核,上述所申报的团体标准符合立项条件,现批准立项。请制标单位严格按照相关要求抓紧组织实施,严把标准质量关,切实提高标准编制的质量和水平,增强标准的适用性和有效性。同时欢迎与立项标准有关的高校、科研机构、相关企业、使用单位等加入该标准的起草编制工作。有意参与标准起草工作的请与协会秘书处联系。特此公告。联系人:钱波 电 话:020-85161829 电子邮箱:gdnybzh@163.com 广东省农业标准化协会2023年6月5日
  • 中国土壤学会发布团体标准《土壤中有效态多元素的测定电感耦合等离子体质谱法》(征求意见稿)
    根据团体标准制修订计划和标准起草有关规定,经制订《土壤中有效态多元素的测定电感耦合等离子体质谱法》标准项目起草组认真研究、讨论,并开展调研,现已完成征求意见稿编制工作。现在网上公开征求意见,请于2024年5月1日前将修改意见填写在《意见反馈表》中,并将反馈表电子版(PDF签字扫描件和word版)发至联系人邮箱。逾期视为无意见。联系人:张标金联系电话:18579069525联系邮箱:zhangbiaojin@126.com中国土壤学会2024年4月1日附件1 《土壤中有效态多元素的测定电感耦合等离子体质谱法》征求意见稿.pdf附件2 《土壤中有效态多元素的测定电感耦合等离子体质谱法》编制说明.pdf附件3 《土壤中有效态多元素的测定电感耦合等离子体质谱法》意见反馈表.docx
  • 广东省农业标准化协会发布肥料中多元素的测定 电感耦合等离子体质谱法》团体标准征求意见稿
    各有关单位及专家:由深圳市质量安全检验检测研究院等单位提出的《肥料中多元素的测定 电感耦合等离子体质谱法》项团体标准已完成征求意见稿,为保证团体标准的科学性、实用性及可操作性,现公开征求意见。请有关单位及专家认真审阅标准文本,对标准的征求意见稿(见附件1)进行审查和把关,提出宝贵意见建议,并将意见反馈表(见附件2)于2024年2月9前以邮件或传真的形式反馈至协会秘书处,逾期未回复按无意见处理。感谢您对协会工作的大力支持!附件1:《肥料中多元素的测定 电感耦合等离子体质谱法》征求意见稿附件2:团体标准征求意见反馈表(联系人:钱波;电话/传真:020-85161829;邮箱:gdnybzh@163.com) 广东省农业标准化协会2024年1月10日附件1:肥料中多元素的测定 电感耦合等离子体质谱法-征求意见稿.pdf附件2: 团体标准征求意见反馈表.doc
  • 地矿行业4项元素分析新标准发布
    2024 年 4 月 1 日,全国自然资源与国土空间规划标准化技术委员会发布4项地矿行业标准的征求意见稿。征求意见截止日期至2024年5月1日。序号国/行计划号项目编号标准名称征求意见稿以及编制说明1行业标准202313013DZ20236827卤水分析方法 第1部分:钙、镁、钾、钠、锂和总硼含量的测定 电感耦合等离子体原子发射光谱法 征求意见稿编制说明2行业标准202313024DZ20236826离子型稀土矿化学分析方法 第1部分:15个稀土元素含量的测定 硫酸铵溶液提取-电感耦合等离子体质谱法征求意见稿编制说明3行业标准202313025DZ20236834钨矿石、钼矿石化学分析方法 第2部分:钨、钼、铜和锌含量的测定 封闭酸溶-电感耦合等离子体原子发射光谱法征求意见稿编制说明4行业标准202313014DZ20236938卤水分析方法 第2部分:锂、铷、铯、锶和总硼含量的测定 电感耦合等离子体质谱法征求意见稿编制说明卤水资源在中国具有重要的战略地位,其中富含的钾、镁、锂、硼等可用于军工、化工、电子、制药等领域。电感耦合等离子体光谱法(ICP-AES)具备广泛的波长范围选择能力、高灵敏度和高分辨率以及快速扫描和数据处理能力,已大量应用于地质样品、水质样品的测定,具备夯实的应用基础。用 ICP-AES 替代分析卤水样品中钙、钾、镁、钠、锂、硼、锶等元素的传统化学方法,可大幅度提升分析效率。建立电感耦合等离子体光/质谱测定卤水中多元素定量分析的标准方法,可为研究卤水的起源、演化和物源等相关信息,深入开发和利用卤水资源,评估其开发利用前景提供数据支撑,具有一定的社会、经济和生态效益。中国是稀土资源最丰富的国家,稀土资源广泛分布于全国二十多个地区。根据稀土类型不同,我国稀土资源分为南北两大区域。南方重稀土矿,是中国特有的离子吸附型稀土矿,多为花岗岩风化矿产,主要集中在江西、广东等地。对于离子吸附型稀土矿,一般用浸出相稀土氧化物量来估算风化壳离子吸附型稀土矿的矿产资源及储量。在分馏作用等因素的影响下,离子吸附型稀土矿的稀土配分多种多样,缺少各稀土分量的评价指标,可能会漏掉矿体,影响资源储量评价。因此,现阶段对离子吸附型稀土矿开展偏提取研究,并对单元素进行分析评估十分必要。随着离子型稀土资源勘查和开发程度的加大,对稀土分析测试的准确性要求提高,对更接近实际样品矿物组成的标准样品的需求加大,这都迫切需要明确淋滤过程、建立离子吸附型稀土淋滤规范和制备新型离子吸附型稀土标准物质。钨矿石、钼矿石是重要而宝贵的战略资源,已被国家列为保护性开采的特定矿种,与稀土等成为我国的战略资源。钨和钼都是稀有高熔点金属,具有高硬度、良好的高温强度和导电、传热性能,常温下化学性质稳定,耐腐蚀,不与盐酸或硫酸起作用,是现代工业、国防及高新技术应用中的极为重要的功能材料之一,广泛应用于机械加工、军事、航空航天、原子能、船舶、汽车工业、核能、冶金、石油等诸多领域。中国钨矿、钼矿资源虽有巨大的潜力,属于优势矿种,但随着我国工业化进程的加速,对钨、钼需求量呈递增趋势,一种行之有效且元素分析范围较广的现代化仪器快速分析方法的建立,对钨矿石、钼矿石的勘查评价具有重要意义,开展对钨矿石、钼矿中主要金属元素及伴生矿产元素的分析方法进行研究,对促进我国综合勘查评价工作全面发展,实现充分利用矿产资源、保护生态环境和提高经济效益及社会效益具有重要意义。
  • 布鲁克获130万美元元素分析仪器大单
    继布鲁克能源与超导技术(BEST)部门与亚洲磁共振成像磁体制造商签订一项4000万美元的低温超导体大单后,2012年1月16日,布鲁克公司再次宣布,已与阿拉巴马州卡尔维特的蒂森克虏伯美国不锈钢公司签订一项130万美元的仪器供销合同。  据悉,此项仪器合同的内容主要是指向蒂森克虏伯新成立的先进不锈钢熔体中心提供元素分析系统及自动化设备。包括工业分析自动系统、X射线荧光仪( XRF)、火花激发光学发射光谱分析(OES)系统,以及一套个性化实验室仪器装备包括可燃气体分析仪(氧、碳、氮、硫),用于渣测定的X射线荧光光谱等。  布鲁克元素部门工业销售及市场营销副总裁Georg Schick表示:“我们很高兴成为蒂森克虏伯美国不锈钢公司旗下大项目的实验室仪器供应商。我们将从单一的仪器供应商转为向对方提供综合多元素分析技术产品,为客户寻找完整的解决方案。
  • 岛津全新全谱直读型ICPE上市,引领元素分析新时代
    近日,岛津发布了全新ICPE-9800系列全谱直读型电感耦合等离子发射光谱仪,多项升级和创新领跑ICP-OES领域。ICPE-9800能够实现更大浓度跨度的多元素精确、 快速、同时分析。友好的ICPEsolution工作站软件让分析过程倍感轻松。这一全新系统能为环境、医药、食品安全、化学、金属材料等领域元素分析的提供业界领先水准的分析工具。 ICPE-9800系列全谱直读型电感耦合等离子体发射光谱仪 ICPE-9800系列创新设计了Eco运行模式,在样品之间的待机过程中可进一步降低氩气流量到5L/min。结合岛津已经应用多年的Mini炬管系统、真空光室以及99.95%纯度氩气稳定运行技术,四项技术联合使用可节约70%氩气成本。 图注:待机时,仪器可自动转入Eco模式。高频功率降低到0.5kW, 等离子体气流量降低 到5 L/min,显著节省能耗。 ICPE-9800系列具有如下特点:l 省时高效的分析? 百万像素CCD真正的二维全谱数据获取,无需再次测定样品即可实现事后元素及波长的追加和更改。? 真空光室系统无需开机吹扫等待。CCD冷却温度为-15℃,从冷开机到稳定工作所需冷却时间极大缩短。? 垂直放置的炬管可有效减少样品在炬管壁的吸附沉积,从而降低记忆效应,减少冲洗时间。? 轴向、径向自动切换可轻松实现低浓度和高浓度样品同时分析,将高灵敏度和宽动态线性范围完美结合。l 极为易用的软件? 分析助手功能内置含11万条谱线的光谱干扰数据库,可自动分析选择最优谱线,使条件优化更简单,样品分析更高效。l 超低运行成本? 引领潮流的4项气体成本节省技术:Eco模式、Mini炬管系统、真空光室以及99.95%纯度氩气稳定运行技术。? 标准配置为文氏进样系统,无需蠕动泵,免除了频繁更换蠕动泵泵管的烦恼。? 垂直炬管设计使炬管寿命延长数倍,炬管维护频度也显著降低。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • 从原理到应用,6大类元素分析仪大比拼
    p  元素定义:是strongspan style="color: rgb(0, 0, 0) "具有相同质子数(核电荷数)的同一类原子的总称/span/strong,到目前为止,人们在自然中发现的元素有90余种,人工合成的元素有20余种./pp  元素(element)又称化学元素,指自然界中一百多种基本的金属和非金属物质,它们只由几种有共同特点的原子组成,其原子中的每一原子核具有同样数量的质子,质子数来决定元素是由种类。/pp  明白了我们要检测的东西是什么,接下来就进入正题,看看各元素分析仪器的分析过程及性能对比。/pp style="text-align: center "strongspan style="text-align: center color: rgb(0, 112, 192) "主要元素分析仪器/span/strong/pp  strongspan style="color: rgb(0, 0, 0) "1.紫外\可见光分光光度计(UV) /span/strong/ppstrongspan style="color: rgb(0, 0, 0) "  2.原子吸收分光光度计(AAS) /span/strong/ppstrongspan style="color: rgb(0, 0, 0) "  3.原子荧光分光光度计(AFS) /span/strong/ppstrongspan style="color: rgb(0, 0, 0) "  4.原子发射分光光度计(AES) /span/strong/ppstrongspan style="color: rgb(0, 0, 0) "  5.质谱(MS) /span/strong/ppstrongspan style="color: rgb(0, 0, 0) "  6.X射线分光光度计(XRF ) /span/strong/pp  常见分析仪器的归属类型:/pp  ICP-OES:是原子发射光谱的一种,原名ICP-AES后改名为ICP-OES /pp  ICP-MS: 无机质谱(MS),用于分析元素含量,也用于同位素分析 /pp  FAAS、GAAS和 HGAAS(HAAS):火焰原子吸收、石墨炉原子吸收和氢化物原子吸收,都属于原子吸收一类。/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "各种元素分析仪器分析过程、特点及应用/span/strong/pp  strongspan style="color: rgb(192, 0, 0) "紫外\可见光分光光度计(UV)/span/strong/pp  strong1.分析过程:/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/e2fdc87e-0993-48a6-befd-0ce8f87e01a0.jpg" title="1.jpg" alt="1.jpg"//pp  strong2.原理:/strong/pp  利用比耳定律(A=ξbC),其中ξ为摩尔吸光系数,对于固定物质为常数 b为样品厚度 C为样品浓度 A为吸光度。很明显,在样品厚度和摩尔吸光系数一定的情况下A与样品浓度成正比。/pp  strong3.主要特点/strongstrong:/strong/pp  (1)灵敏度高/pp  (2)选择性好/pp  (3)准确度高/pp  (4)适用浓度范围广/pp  (5)分析成本低、操作简便、快速、应用广泛/pp  strongspan style="color: rgb(192, 0, 0) "原子吸收和荧光分光光度计/span/strong/pp  strong1.分析过程:/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/4893d001-558b-4388-a325-5cf4e753ce51.jpg" title="2.jpg" alt="2.jpg"//pp  strong2.原子吸收光谱法原理:/strong/pp  原子吸收光谱法 (AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。/pp  公式:A=KC/pp  式中K为常数 C为试样浓度 K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础。/pp  原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。所用仪器与原子吸收光谱法相近。/pp  strong3.原子吸收主要特点:/strong/pp  (1)灵敏度高FAAS可以测试ppm-ppb级的金属 /pp  (2)原子吸收谱线简单,选择性好,干扰少。/pp  (3)操作简单、快速,自动进样每小时可测定数百个样品 /pp  (4)测量精密度好,火焰吸收精密度可以达到1-2%,非火焰可以达到5-10%/pp  (5)测定元素多,可测试70多种元素,利用化学反应还可间接测试部分非金属。/pp  strong4.原子荧光主要特点:/strong/pp  (1)有较低的检出限,灵敏度高。/pp  (2)干扰较少,谱线比较简单。/pp  (3)仪器结构简单,价格便宜。/pp  (4)分析校准曲线线性范围宽,可达3~5个数量级。/pp  (5)由于原子荧光是向空间各个方向发射的,比较容易制作多道仪器,因而能实现多元素同时测定。/pp  strongspan style="color: rgb(192, 0, 0) "原子发射分光光度计/span/strong/pp  strong1.分析过程:/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/3f0e5fdc-f945-4e01-9c4f-7238f511c132.jpg" title="3.jpg" alt="3.jpg"//pp style="text-indent: 2em "strong2.原理/strong/pp  原子的核外电子一般处在基态运动,当获取足够的能量后,就会从基态跃迁到激发态,处于激发态不稳定(寿命小于10-8 s),迅速回到基态时,就要释放出多余的能量,若此能量以光的形式出显,即得到发射光谱(线光谱)。/pp  发射的光波长为:/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/465515c6-4eaa-4a6b-b16a-785849c6c925.jpg" title="0.png" alt="0.png"//pp  每个元素有自己独特的特征光谱,从而进行元素定性分析。/pp  strong3.主要特点/strong/pp  (1)高温,104K /pp  (2)环状通道,具有较高的稳定性 /pp  (3)惰性气氛,电极放电较稳定 /pp  (4)具有好的检出限,一些元素可达到10-3~10-5ppm /pp  (5)ICP稳定性好,精密度高,相对标准偏差约1% /pp  (6)基体效应小 /pp  (7)光谱背景小 /pp  (8)自吸效应小 /pp  (9)线性范围宽。/pp  span style="color: rgb(192, 0, 0) "strong质谱分析法/strong/span/pp  strong1.分析过程:/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/389e5ec2-0606-4be5-bad8-d1e0e9dd7a52.jpg" title="4.jpg" alt="4.jpg"//pp  strong2.原理/strong/pp  使试样中各组分电离生成不同荷质比的离子,经加速电场的作用,进入质量分析器,通过电磁场按不同m/e的变化,分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息。/pp  strong3.主要特点:/strong/pp  (1)质量测定范围广泛 /pp  (2)分辨高 /pp  (3)绝对灵敏度,可检测的最小样品量。/pp  strongspan style="color: rgb(192, 0, 0) "X荧光光度计(XRF)/span/strong/pp  strong1.分析过程:/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/908c4b76-7454-4801-876b-f21696fadca4.jpg" title="5.jpg" alt="5.jpg"//pp  strong2.原理:/strong/pp  受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量。/pp  strong3.主要特点:/strong/pp  (1)快速,测试一个样品只需2min-3min /pp  (2)无损,测试过程中无需损坏样品,直接测试 /pp  (3)含量范围广 /pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "几种元素分析仪器对比/span/strong/pp  strong1.工作范围/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/1eceb58a-ba37-4cb0-b29a-24f3ef593b8a.jpg" title="6.jpg" alt="6.jpg"//pp  strong2.无机分析产品的检出限/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/d55d223e-1a23-4835-af62-3185baa3e6b5.jpg" title="7.jpg" alt="7.jpg"//pp  strong3.干扰/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/4958e1cd-ea8c-4447-bf43-4ce9ce5b38b4.jpg" title="8.jpg" alt="8.jpg"//pp  strong4.费用/strong/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201902/uepic/72e71f99-335a-49ba-85f8-7a850e6b86e4.jpg" title="9.jpg" alt="9.jpg"/  /pp style="text-indent: 2em "a href="https://www.instrument.com.cn/zc/818.html" target="_self" style="color: rgb(192, 0, 0) text-decoration: underline "span style="color: rgb(192, 0, 0) "医用原子吸收光谱仪会场/span/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/zc/646.html" target="_self" style="color: rgb(192, 0, 0) text-decoration: underline "span style="color: rgb(192, 0, 0) "金属多元素分析仪会场/span/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/zc/476.html" target="_self" style="text-decoration: underline color: rgb(192, 0, 0) "span style="color: rgb(192, 0, 0) "有机元素分析仪会场/span/a/p
  • 开局小目标,做油料光谱仪领域隐形冠军——“创新100”访广东中科谛听科技有限公司
    为助力国产科学仪器发展,筛选和扶持一批优秀的科学仪器产品和企业,在中国仪器仪表行业协会、中国仪器仪表学会、北京科学仪器装备协作服务中心等单位的支持下,由仪器信息网主办、我要测网协办的“国产科学仪器腾飞行动”于2013年9月5日正式启动。秉承“国产科学仪器腾飞行动”宗旨,仪器信息网于2018年启动“国产科学仪器腾飞行动”之“创新100”项目,通过筛选一批具备自主创新能力的中小仪器厂商,借助报道、走访、调研等方式,在企业发展的关键时期“帮一把”。本期“创新100”访谈,仪器信息网走进广东中科谛听科技有限公司(简称“中科谛听”),带大家了解这家初创型成果转化企业。广东中科谛听科技有限公司总经理 罗国浪仪器信息网:请介绍一下中科谛听,公司经历了怎样的发展历程?中科谛听:中科谛听是经广东省科学院批准,由广东省科学院测试分析研究所(中国广州分析测试中心)研发及管理团队、广东省科学院佛山产业技术研究院有限公司发起成立的成果转化企业,致力于打造精密仪器成果转化大平台,服务全院乃至全省相关科研团队。发展历程如下:60年代,国内第一代光谱仪器专家在中国广州分析测试中心开展原子光谱仪器研发工作;2000年以来,逐步取得了若干项基于旋盘电极原子发射光谱仪(油料光谱仪)的关键专利;2014年,油料光谱仪经科技部评审被列为国家重大科学仪器设备开发专项拟立项项目;2015年,广东省财政厅设立专项研发项目;2018年,油料光谱仪样机通过华南国家计量测试中心及中国赛宝实验室(工信部电子五所)第三方测试;2020年,广东省科学院批准成立成果转化企业——广东中科谛听科技有限公司。仪器信息网:请重点介绍一下贵公司的研发团队?中科谛听:公司的研发团队起源于广东省科学院测试分析研究所(中国广州分析测试中心),从上世纪60年代便从事光谱仪器的研发工作。目前,公司已配备一批长期专业从事分析仪器研发、生产和销售的人才,具有深厚的客户问题解决能力,以满足市场不断变化的客户需求为己任,努力创造优质的产品和服务。2022年,公司创始人、科学家钟金钢教授因在相关领域的杰出贡献入选斯坦福大学发布的全球前2%顶尖科学家榜单。仪器信息网:贵公司当前主推的产品及型号是什么,该产品主要应用于哪些领域?中科谛听:新一代OA800油料光谱仪。该仪器满足美国标准ASTM D6595《所用磨损金属和污染物的测定 旋转盘式润滑油或用过的液压油电极原子发射光谱法》、美国标准ASTM D6728《转盘电极原子发射光谱法测定燃气轮机和柴油发动机燃料中污染物的标准测试方法》、国家能源局标准NB/SH/T 0865《在用润滑油中磨损金属和污染物元素测定 旋转圆盘电极原子发射光谱法》、国内进出口行业标准SN/T 1652《进出口燃气轮机和柴油发动机燃料油中污染物检测方法 旋转盘电极原子发射光谱法》等。适用于润滑油、液压油、机油、汽轮机燃油等油料中磨损金属、污染物、冷却液及添加剂等各种金属元素的多元素同时测定。标配同时测定24种元素(Ag、Al、Ba、Ca、Cd、Cr、Cu、Fe、K、Li、Mg、Mn、Mo、Na、Ni、P、Pb、Sb、Si、Sn、Ti、V、Zn、Bi),根据不同需求可灵活增加检测通道(B、As、In、Co、Zr、W、Sr、Ce),添加元素无需硬件改变。新一代OA800油料光谱仪仪器信息网:请问贵公司的主要竞争优势有哪些,增长点在哪里?中科谛听:中科谛听主要从事以光谱技术为核心的科学仪器产业化工作,主营转盘电极原子发射光谱仪等光谱仪器及专业技术服务,是一家拥有完全自主知识产权的企业。其中,转盘电极原子发射光谱仪采用双向激发高重复率火花光源等技术,能快速有效的测定大型装备的油液(润滑油、液压油、燃料油)中所含金属磨损颗粒的成分与含量信息。该产品的研发有效打破了相关油液检测技术在国内市场的垄断,更是处于行业的领先水平。以往用户主要购买进口的油料光谱仪,未来或替换为中科谛听研发的油料光谱仪产品。仪器信息网:贵公司下一步在市场和产品方面有何计划?中科谛听:目前,中科谛听正稳步推进市场,得到各行业用户的认可和肯定。打破国外“卡脖子”进口垄断,为中国军队产业集群提供所有的油料光谱仪,是公司的发展目标;成为“油料光谱仪领域冠军企业”,是公司的发展愿景。下一步,中科谛听将继续集中力量发展油料光谱仪在军队产业集群中的应用,同时关注新能源产业集群、绿色石化产业集群、电力产业集群、铁路产业集群、高端装备产业集群相关领域的需求来扩展产品。
  • 光谱分析:智慧化、高通量、多元素测定是发展趋势——访北京矿冶研究总院研究员冯先进
    仪器信息网讯 原子光谱的发现,最早可追溯到16世纪,在1666年牛顿进行了一个关键性实验,发现了光的色散现象,解释了原子光谱的本质。第二次世界大战期间,光谱分析获得极大的发展,战争结束后,一批阐述光谱分析应用和光谱仪器的专著相继问世,光谱分析成为分析化学的前沿。此后,光谱仪器的进步推动了光谱分析技术的不断发展。在原子光谱分析的发展过程中,人们从光谱仪器的光谱、分光系统和检测器等方面,不断加以改进,发展了火花/电弧、等离子体、辉光放电等不同特点的光谱分析方法和现代仪器。这些新光源的开发,使光电光谱仪的应用从常量元素分析扩展到高含量元素分析、痕量元素分析和表面逐层分析。  因此,光谱仪不仅在采矿、冶金、石油、燃化、机械制造等工业中作为定性和定量分析的工具,而且在农业、食品工业、生物学、医学、核能以及环保领域发挥着重要的作用。据相关报告显示,2020年全球原子光谱市场规模约为390亿美元,且每年以5%的速度增长,相关仪器企业也在不断开发新产品新应用。  近日,在仪器信息网光谱网络会议(iCS2021)十周年之际,我们特别采访了北京矿冶研究总院冯先进研究员,请他谈谈对近十年光谱技术发展以及未来趋势的看法。  为促进中国科学仪器行业健康快速发展,进一步提升光谱技术及相关应用的专业水平,促进各相关单位的交流与合作,仪器信息网将于2021年5月25-28日举办“第十届光谱网络会议, 简称iCS2021)”。本次会议由江苏省分析测试协会、中国仪器仪表学会近红外光谱分会、中国生物物理学会太赫兹生物物理分会等协办。  光谱网络会议依托成熟的网络会议平台,以网络在线报告交流的形式,针对当下光谱相关研究热点进行探讨,报告专家和用户可通过视频、音频、文字等多种方式进行实时交流。2012年,由仪器信息网主办的第一届光谱网络会议(iCS 2012)成功举办。之后,保持每年一届的节奏。专家报告阵容不断壮大,参会规模也达到了同类型会议中的最大。其中,第九届光谱网络会议(iCS 2020),报名参会规模已经突破3000人。  2021年,正值光谱网络会议的十周年。iCS 2021不仅聚焦最新、最前沿的光谱技术及应用,而且将就食品、制药、环境、生命科学、材料、文保等目前最热门的应用领域进行深入探讨,为国内外光谱科研工作者及专业技术人士提供一个全新、高效的沟通交流平台,以促进业内交流,提高光谱研究及应用水平。  点击报名:
  • 脱颖而出——岛津携手三星SDI天津工厂锁定锂电池元素分析
    为了确保材料性能和电池安全性,元素分析一直是锂电企业的重点检测项目。等离子体发射光谱(ICP-OES)作为兼具灵敏度和基体耐受性的多元素分析技术,是锂电企业元素分析的顶梁柱。天津三星视界有限公司,也称三星SDI天津工厂,于2019年10月导入了岛津ICPE-9820用于正负极材料的分析。两年多来,小I(ICPE-9820)在三星SDI工厂鉴比例、控杂质,严把质量关。今天,我们来聊聊小I与三星SDI的结缘故事。 三星SDI之天津三星视界有限公司 目前,全球锂离子电池行业(本文中所提到锂电池均指锂离子电池)呈现中、日、韩三足鼎立的格局。作为韩国锂电池三强之一,三星SDI在锂电领域的成绩颇为突出。根据韩国市场研究机构SNE Research制作的2021年11月全球动力电池企业榜数据,三星SDI动力电池装机量排名第六。 图1 三星SDI天津工厂 三星SDI天津工厂,成立于1996年9月,由三星SDI和天津市电子仪表工业总公司合资成立。作为成熟的锂离子电池生产企业,天津工厂业务涵盖显示和电池领域,尤其消费电池多年居全球前列。 小I与三星SDI之缘起 为了保证电池安全性和性能,生产中对材料和工艺均有严格的监控指标。电池材料中,正极、负极、隔膜和电解液是关键组成部分,直接影响电池安全、寿命和能量密度。其中主体元素配比和杂质含量对产品质量控制与产品性能具有重要影响。因此,元素分析是锂电池企业日常检测的重要项目。 在三星SDI天津工厂,电池产线参考韩国总部配套了两台ICP用于主量元素和杂质元素的分析。由于样品量大,小I的两台同行有时会出现故障,所以迫切需要新成员来分担检测压力。 小I与三星SDI之结缘 灵敏度和精密度评估 2019年8月,三星SDI天津工厂启动了新的仪器评估计划。小I(ICPE-9820)代表岛津参加了本轮比对测试,对给定溶液中的Cr、Fe、Ni和Zn元素进行测试,评估灵敏度和精密度。 表1 灵敏度评估结果 在灵敏度和精密度评估中,小I的各项数据均优于客户现有仪器:标液回收率为98.8%-101%,优于97.2%-103%;RSD值<0.99%,优于<3.67%. 表2 精密度评估结果 注:带*的数据由已有品牌ICP-OES测定,标液浓度为0.25mg/L. 图2 岛津ICPE-9800系列电感耦合等离子体发射光谱仪 未知样测试评估 在两个未知样品的测试中,两台仪器所得结果相近,但小I仍表现出更好的精密度。 表3 样品分析结果注:带*的数据由已有品牌ICP-OES测定。2#样品Ni的分析结果偏高,可能是样品运输中污染导致。N.D.代表未检出。 出色的表现让小I在本轮评估中脱颖而出。2019年10月,三星SDI天津工厂与岛津完成合作,小I入驻天津,开始承担起锂电正负极材料的品质监控任务。 小I与三星SDI之驻厂体验 初一入厂,小I就迅速进入角色,与其它两位ICP伙伴一同分担正极中主量元素、正负极和电解液中杂质的检测,丝毫不显新人的青涩,在主量元素和P、S等深紫外杂质元素的分析上甚至承担了更多的工作量。 不过,厂内的工作确实很辛苦,小I和小伙伴们都是24h连轴转,因为不管白天还是晚上,产线上的样品都是间隔一段时间就送来一批。小I因为是真空光室,轻装上阵不需要吹扫,晚间的样品常常以它作为主力军,小I从不挑拣拉胯,照单全测,体现出应对复杂基体的耐受性。更难能可贵的是,小I的状态很好,入厂至今,“身体”一直倍儿棒,测嘛嘛香。 小I优秀背后的坚持 小I出色的表现,得益于它的自身条件,独特的真空光室,赋予了它对P、S等深紫外区元素的高灵敏度和稳定性,更无需吹扫,运行起来经济又方便。而垂直炬管和CCD检测器的设计则让它对各种基体都能适用,而且数据处理上十分灵活。 图3 岛津ICPE-9800性能特点 当前锂电行业发展如火如荼,小I系列在锂电材料检测上的应用也越来越广泛,例如以标准加入法测试三元材料元素杂质和内标法测试主量成分(表4),在对正负极材料中S元素的测试上表现尤其出色(图4)。 表4 三元材料中杂质元素检测备注:*样品结果浓度单位%;N.D.-未检出。 图4 负极材料中S元素分析稳定性 用户心声 2019年10月至今,两年多的时间里,小I在三星SDI天津工厂坚守岗位,稳定发挥,获得了用户的一致好评。让我们听听来自用户的声音—— “我们以前有两台其它品牌的ICP,但有时候会出故障。我们这儿是24h三班倒的,仪器一坏就麻烦了。所以19年导入新ICP的时候,我们也经过了全面的考察,比如标准曲线线性、检出限、稳定性、测样速率等,最后选择了参数更好的岛津ICPE-9820。但故障率还是用久了才能体现,所以刚安装时候也担心。现在两年多用下来,都没出过什么问题,而且数据比那两台还稳定,我们很满意。现在主要就用这台的数据,它还有一点挺方便的,不用吹扫,稳定得很快,我们都爱用!” 图5 三星SDI天津工厂的岛津ICP-9820运行中 结语 ICP-OES作为兼具灵敏度和基体耐受性的多元素分析技术,对锂电池行业原材料和正负极材料、电解液等主量成分和杂质元素检测分析均具有良好适用性。岛津ICPE-9800系列在性能比对中脱颖而出,顺利入驻三星SDI天津工厂,更在两年多的使用中表现出优越的稳定性和耐受性,为锂电产品保驾护航,助力锂电行业稳健发展。 撰稿人:张敏 *本文内容非商业广告,仅供专业人士参考。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制