当前位置: 仪器信息网 > 行业主题 > >

全场立体应变测试分析仪

仪器信息网全场立体应变测试分析仪专题为您提供2024年最新全场立体应变测试分析仪价格报价、厂家品牌的相关信息, 包括全场立体应变测试分析仪参数、型号等,不管是国产,还是进口品牌的全场立体应变测试分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合全场立体应变测试分析仪相关的耗材配件、试剂标物,还有全场立体应变测试分析仪相关的最新资讯、资料,以及全场立体应变测试分析仪相关的解决方案。

全场立体应变测试分析仪相关的资讯

  • 刑侦新产品:立体足迹激光扫描采集分析仪
    在近日召开的陕西省刑事新技术培训班上,一款名为“立体足迹激光扫描采集分析仪”的刑事技术新产品在会上进行了功能展示,引起在座基层刑事技术民警的浓厚兴趣,大家在展台亲手操作使用设备,他们认为,推广此项技术对提高办案质量和办案速度势必起到积极作用。此前,该仪器在全国第六届好痕迹检验技术研讨会上得到足迹专家的一致好评,目前已获我国独立知识产权最高级别的发明专利。  以往,在国际上,提取立体足迹通常采用是高灌注法,不但效率低,而且需要操作者具有一定的提取经验,尤其是在针对雪地、灰尘等软基客体的足迹时,难度更大,一单提取失败无法挽救,是现场的重要物证遭受损失。立体足迹激光 扫描采集分析仪的问世,掀开了刑事技术研究崭新的一页,该设备的非接触提取和数字化处理取代了百年来一直靠手工制模提取和经验型检验的模式,为刑侦专家快速有效处置案件事故提供先进实用的科技手段。该分析仪的主要技术特点是:  实现数字化无损提取现场立体足迹  该仪器能够快速、准确、无损地提取现场立体足迹。利用现代激光扫描三位测量和计算机技术,实现了对现场立体足迹原物大、原始形态的数字化采集、存储和传输,直接记录并显示足迹各部位的三维数据,如足迹重压点位置及深度、鞋底磨损形态及范围等。亦可用于提取轮胎等其他立体痕迹。采集设备与足迹不直接接触,从根本上解决了外界对足迹的干扰破坏,真正实现了原始无损提取,避免了“实物填充法”带来的人为破坏和变形,以及后期材料干缩、裂纹等问题,为综合利用提供了条件,为准确 检验鉴定奠定了基础。  多功能数字化辅助检验工具  利用软件模拟比较显微镜原理,研究出立体足迹辅助检验专家传统,设计出双视窗检验、三维重建显示、重压点检验自动搜索、磨损面检验、坐标网络、深度伪彩三维贴图、标注方式长度角度面积的双视窗数据同步对比测量等 一系列专业化设计的辅助检验工具。首次实现了对现场足迹的重压点和磨损变形的辅助检验。使经验专家型进入了数字化定量检验。坐标检验和网络格检验工具,给各类足迹特征检验提供了一个快捷有效的检验手段,尤其是游动式坐标检验工具,可把0点定在任一特征位置,依此扩展进行定量化检验,使检验更加灵活、方便和实用。  机械化还原现场立体足迹  系统根据三维测量数据,直接计算出雕刻机加工代码,利用三维雕刻机,直接对高密度板等板材加工雕刻,实现对立体足迹的加工还原。既可还原造型客体(鞋底)模型,也可还原承受客体(凹痕)模型,还原足迹具有高精度、不变形、易保存,经久、耐磨、抗摔,便于携带等优点。  今年6月,应湖北省公安刑警总队痕迹室之约,研制单位技术人员携带该设备赶到武汉,会同五位全国著名足迹专家,利用该仪器对震惊全国的“12.7”案件的现场证据进行检验分析,因嫌疑人在逃,嫌疑人家里遗留的鞋子与现场遗留的足迹缺乏行走的样本比较,五位足迹专家意见不一致。之前,因该案件现场能提取的足迹痕迹和其他有价值的痕迹、线索有限,使安检一度进展不顺利。技术人员使用该仪器吧现场提取的足迹痕迹检材和嫌疑人家里提取的鞋子进行扫描分析,并把结果送给专家进行研判,使专家意见得到统一,锁定了犯罪嫌疑人。
  • 丹迪发布数字图像相关DIC应变测量仪新品
    仪器简介:DIC(Digital Image Correlation)数字图像相关技术是一种非接触式测量材料全场应变、位移的光学测量技术,该技术几乎适用于任何材料且测试面积广、结果精确。Dantec DIC Q-400丹迪公司研发生产的一款测量材料表面位移与应变的标准DIC设备,该设备不与被测物体表面发生接触,通过追踪物体表面的散斑图像,实现变形过程中物体表面三维坐标、位移场和应变场的测量。该设备几乎适用于任何材料且测量范围广、测量精度高。技术参数:测量维度:二维、三维测量区域:1mm×1mm—1m×1m(该区间外也可测量,但测量精度会相应下降)测量精度:位移(1μm),应变(0.01%)主要特点:精度高、测量范围广、无接触、方便使用创新点:1、新型的光学测量仪器,无接触测量材料的位移和应变2、测量结果准确,每个结果均含有一个置信区间3、测量时间短,系统操作简单、标定程序简单
  • 524项国标计划下达 涉及分析仪器与物性测试仪器、汽车与半导体等行业
    近日,国家标准化管理委员会下达2020年第四批推荐性国家标准计划。本批计划共计524项,其中制定340项、修订184项,推荐性标准517项,指导性技术文件7项。本批524项国家标准计划中,涉及颗粒测试与无损检测仪器,以及试验机等物性测试仪器;色谱、质谱、光谱等多种分析仪器;汽车、半导体与集成电路、增材制造等行业。小编按分类整理如下:颗粒测试序号计划号项目名称标准性质制修订代替标准号采用国际标准项目周期(月)归口单位起草单位3220204663-T-491微细气泡技术 微细气泡使用和测量通则 第1 部分:术语推荐制定ISO 20480-1:201718全国微细气泡技术标准化技术委员会中国科学院过程工程研究所等25220204883-T-469颗粒 激光衍射粒度分析仪 通用技术要求推荐制定24全国颗粒表征与分检及筛网标准化技术委员会中国计量科学研究院等37120205002-Z-469Zeta 电位测量操作指导原则指导制定ISO/TR 19997:201812全国颗粒表征与分检及筛网标准化技术委员会上海第二工业大学、山东理工大学等41520205046-T-606离子交换树脂粒度、有效粒径和均一系数的测定推荐修订GB/T 5758-200118全国塑料标准化技术委员会江苏苏青水处理工程集团有限公司、西安热工研究院有限公司无损检测仪器序号计划号项目名称标准性质制修订代替标准号采用国际标准项目周期(月)归口单位起草单位5220204683-T-604无损检测仪器 相控阵超声设备的性能与检测 第3 部分:组合系统推荐制定ISO 18563-3:201518全国试验机标准化技术委员会汕头市超声仪器研究所有限公司、广东汕头超声电子股份有限公司超声仪器分公司5320204684-T-604无损检测仪器 相控阵超声设备的性能与检验 第2 部分:探头推荐制定ISO 18563-2:201718全国试验机标准化技术委员会广东汕头超声电子股份有限公司超声仪器分公司、汕头市超声仪器研究所有限公司5420204685-T-604无损检测仪器 相控阵超声设备的性能与检验 第1 部分:仪器推荐制定ISO 18563-1:201518全国试验机标准化技术委员会广东汕头超声电子股份有限公司超声仪器分公司、汕头市超声仪器研究所有限公司24820204879-T-469铸钢件 超声检测 第2部分:高承压铸钢件推荐修订GB/T7233.2-2010ISO 4992-2:202018全国铸造标准化技术委员会沈阳铸造研究所有限公司24920204880-T-469铸钢件 超声检测 第1部分:一般用途铸钢件推荐修订GB/T7233.1-2009ISO 4992-1:202018全国铸造标准化技术委员会沈阳铸造研究所有限公司30020204931-Z-469无损检测 自动超声检测总则指导制定ISO/TS 16829:201718全国无损检测标准化技术委员会武汉中科创新技术股份有限公司、上海材料研究所等30220204933-T-469筒形锻件内表面超声波检测方法推荐修订GB/T 22131-200818全国锻压标准化技术委员会北京机电研究所有限公司、二重(德阳)重型装备公司等试验机测试方法序号计划号项目名称标准性质制修订代替标准号采用国际标准项目周期(月)归口单位起草单位13720204768-T-605金属材料 蠕变及蠕变-疲劳裂纹扩展速率测定方法推荐制定24全国钢标准化技术委员会华东理工大学、钢研纳克检测技术股份有限公司等13820204769-T-605金属材料 疲劳试验 应变控制拉-扭热机械疲劳试验方法推荐制定24全国钢标准化技术委员会北京工业大学等20220204833-T-610铝合金断裂韧度试验方法推荐制定24全国有色金属标准化技术委员会西南铝业(集团)有限责任公司、国标(北京)检验认证有限公司等分析仪器检测方法序号计划号项目名称标准性质制修订代替标准号采用国际标准项目周期(月)归口单位起草单位3420204665-T-491纳米技术 表面增强拉曼固相基片均匀性测定 拉曼成像法推荐制定24全国纳米技术标准化技术委员会苏州天际创新纳米技术有限公司、中国科学院苏州纳米技术与纳米仿生研究所、苏州大学等14820204779-T-605石墨材料 当量硼含量的测定 电感耦合等离子体原子发射光谱法推荐制定24全国钢标准化技术委员会中钢集团新型材料(浙江)有限公司、冶金工业信息标准研究院等14920204780-T-605石灰石及白云石化学分析方法 第12部分:氧化钾和氧化钠含量的测定 火焰原子吸收光谱法推荐制定24全国钢标准化技术委员会鞍钢股份有限公司15020204781-T-605钨铁钴、镍、铝含量的测定 电感耦合等离子体原子发射光谱法推荐制定24全国生铁及铁合金标准化技术委员会江西省钨与稀土产品质量监督检验中心、赣州江钨钨合金有限责任公司等15120204782-T-605锰铁、锰硅合金、氮化锰铁和金属锰 锰、硅、磷和铁含量的测定 波长色散X 射线荧光光谱法(熔铸玻璃片法)推荐制定24全国生铁及铁合金标准化技术委员会广东韶钢松山股份有限公司、武汉科技大学、冶金工业信息标准研究院15420204785-Z-605铁矿石 波长色散X 射线荧光光谱仪 精度的测定指导制定ISO/TR 18231:201618全国铁矿石与直接还原铁标准化技术委员会广州海关技术中心18720204818-T-609玻璃纤维及原料化学元素分析方法 电感耦合等离子体发射光谱(ICP-OES)法推荐制定24全国玻璃纤维标准化技术委员会南京玻璃纤维研究设计院有限公司18820204819-T-609玻璃纤维及原料化学元素的测定 X 射线荧光光谱法推荐制定24全国玻璃纤维标准化技术委员会南京玻璃纤维研究设计院有限公司35620204987-T-469金矿石化学分析方法 第15 部分:铜、铅、锌、银、铁、锰、镍、钴、铝、铬、镉、锑、铋、砷、汞、硒、钡和铍含量的测定 电感耦合等离子体质谱法推荐制定24全国黄金标准化技术委员会紫金矿业集团股份有限公司、长春黄金研究院有限公司等37920205010-T-607化妆品中功效组分虾青素的测定 高效液相色谱法推荐制定24全国香料香精化妆品标准化技术委员会北京市产品质量监督检验院39320205024-T-607皮革 化学试验 热老化条件下六价铬含量的测定推荐制定ISO 10195:201818全国皮革工业标准化技术委员会嘉兴市皮毛和制鞋工业研究所、中轻检验认证有限公司41420205045-T-606水处理剂分析方法 第1部分:磷含量的测定推荐制定24全国化学标准化技术委员会中国石油天然气股份有限公司乌鲁木齐石化分公司等47720205108-T-326土壤质量 土壤中22 种元素的测定 酸溶-电感耦合等离子体质谱法推荐制定18全国土壤质量标准化技术委员会中国科学院南京土壤研究所、中国环境科学研究院等48020205111-T-334珠宝玉石鉴定 红外光谱法推荐制定24全国珠宝玉石标准化技术委员会国家黄金钻石制品质量监督检验中心、国家珠宝玉石质量监督检验中心等48120205112-T-334珠宝玉石鉴定 紫外可见吸收光谱法推荐制定全国珠宝玉石标准化技术委员会自然资源部珠宝玉石首饰管理中心(国家珠宝玉石质量监督检验中心)汽车试验方法序号计划号项目名称标准性质制修订代替标准号采用国际标准项目周期(月)归口单位起草单位48920205120-T-339道路车辆 安全玻璃材料电加热玻璃试验方法推荐制定ISO 17449:201518全国汽车标准化技术委员会中国建材检验认证集团股份有限公司、福耀玻璃工业集团股份有限公司等49120205122-T-339汽车通过性试验方法推荐修订GB/T 12541-199018全国汽车标准化技术委员会中国人民解放军63969 部队、中国汽车研究中心有限公司等49320205124-T-339汽车列车性能要求及试验方法推荐修订GB/T 26778-201118全国汽车标准化技术委员会中国汽车技术研究中心有限公司、交通运输部公路科学研究院等49420205125-T-339乘用车后部交通穿行提示系统性能要求及试验方法推荐制定24全国汽车标准化技术委员会中国第一汽车股份有限公司、中国汽车技术研究中心有限公司等49520205126-T-339乘用车车门开启预警系统性能要求及试验方法推荐制定24全国汽车标准化技术委员会吉利汽车研究院有限公司、中国汽车技术研究中心有限公司半导体与集成电路序号计划号项目名称标准性质制修订代替标准号采用国际标准项目周期(月)归口单位起草单位20620204837-T-610半导体封装用键合金及金合金丝推荐修订GB/T 8750-201418全国有色金属标准化技术委员会北京达博有色金属焊料有限责任公司20820204839-T-339集成电路 电磁抗扰度测量 第4部分:射频功率直接注入法推荐制定IEC 62132-4:200618全国半导体器件标准化技术委员会中国电子技术标准化研究院、北京智芯微电子科技有限公司等20920204840-T-339静电放电敏感度试验 传输线脉冲 器件级推荐制定IEC 62615:201018全国半导体器件标准化技术委员会苏州泰思特电子科技有限公司、中国电子技术标准化研究院等21020204841-T-339集成电路 电磁发射测量第4部分:传导发射测量1Ω/150Ω直接耦合法推荐制定IEC 61967-4:200618全国半导体器件标准化技术委员会中国电子技术标准化研究院、北京智芯微电子科技有限公司等21520204846-T-339半导体器件 机械和气候试验方法 第37部分:使用加速度计进行板级跌落试验方法推荐制定IEC 60749-37:200818全国半导体器件标准化技术委员会中国电子科技集团公司第十三研究所等21620204847-T-339半导体器件 机械和气候试验方法 第40部分:采用应变仪的板级跌落试验方法推荐制定IEC 60749-40:201118全国半导体器件标准化技术委员会中国电子科技集团公司第十三研究所等26020204891-T-469硅片表面光泽度的测试方法推荐制定24全国半导体设备和材料标准化技术委员会浙江金瑞泓科技股份有限公司、天津中环领先材料技术有限公司等26120204892-T-469半导体单晶晶体质量的测试 X射线衍射法推荐制定24全国半导体设备和材料标准化技术委员会中国电子科技集团公司第四十六研究所、中国科学院苏州纳米技术与纳米仿生研究所等34020204971-T-469半导体器件 微机电器件第20部分:陀螺仪推荐制定IEC 62047-20:201418全国微机电技术标准化技术委员会苏州市质量和标准化院等34120204972-T-469硅基MEMS制造技术 微结构弯曲强度检测方法推荐制定24全国微机电技术标准化技术委员会北京大学等34220204973-T-469硅基MEMS制造技术 纳米厚度膜抗拉强度检测方法推荐制定24全国微机电技术标准化技术委员会北京大学等34320204974-T-469硅基MEMS制造技术 纳尺度结构冲击实验方法推荐制定24全国微机电技术标准化技术委员会北京大学等34420204975-T-469半导体器件 微机电器件第26部分:微沟槽和针结构的描述和测量方法推荐制定IEC 62047-26:201618全国微机电技术标准化技术委员会苏州市质量和标准化院等增材制造序号计划号项目名称标准性质制修订代替标准号采用国际标准项目周期(月)归口单位起草单位7520204706-T-604增材制造 工艺参数库构建规范推荐制定24全国增材制造标准化技术委员会南京理工大学、中机生产力促进中心等7620204707-T-604增材制造 定向能量沉积-铣削复合增材制造工艺规范推荐制定24全国增材制造标准化技术委员会华南理工大学、中机生产力促进中心等7720204708-T-604增材制造 材料挤出成形用丙烯腈-丁二烯-苯乙烯(ABS)丝材推荐制定24全国增材制造标准化技术委员会华中科技大学、中机生产力促进中心等7820204709-T-604增材制造 激光定向能量沉积用钛及钛合金粉末推荐制定24全国增材制造标准化技术委员会上海材料研究所、国合通用测试评价认证股份有限公司等20420204835-T-610增材制造用高熵合金粉推荐制定24全国有色金属标准化技术委员会江苏威拉里新材料科技有限公司、中国科学院兰州化学物理研究所
  • 课堂 | Leica EM TIC3X应用实例:高应变率作用下高导无氧铜(OFHC)的晶粒细化分析
    通过leica em tic3x 对样品进行离子束切割,样品ebsd mapping解析率得到明显提升,可达80%-90%以上,并且结果稳定可重复,更好地表征了晶粒的变形,以及大小角晶界的转变。实验样品高应变率作用下高导无氧铜(ofhc)实验目的通过电子背散射衍射技术(ebsd)对在高应变率、高温和大变形条件下获得的材料进行晶粒变形细化以及再结晶行为的表征,以期达到表征材料力学属性的目的。实验过程 1 原始样品的制备高速切削是一种集合高应变率、高温和大变形的一种材料变形的复杂材料変形条件,通过改变切削速度来改变上述的变形边界条件,高速切削的过程示意图如下:(图1 高速切削过程示意图)获得的切屑经过金相镶嵌和腐蚀之后的试样如图所示:(图2 经过镶嵌和腐蚀之后的切屑)从图2中可知晶粒已经严重变形,光镜已经无法分辨,而且对于晶粒到底发生了什么变化,光镜也无法做到表征的目的,因此对于材料ebsd表征十分必要。 2 实验样品的制备ebsd制样是本次实验的重中之重,本次实验较难主要体现在3个方面:一是因为经历了严重塑形变形的材料自身的晶粒内部就会存在一定的残余应力,在表征的时候有一定的难度;二是高导无氧铜是一种特别软的材料,在制样的时候非常容易带入应力,或者划伤测试面;三是经过高速切削得到的样品宽度非常细长,不是传统的块体,制样过程比较困难。目前解决方案主要有四种:机械抛光,电解抛光,振动抛光,离子抛光,这几种方法目前都有所尝试,解析率都不太高,究其原因,主要还是因为我的样品细长弯曲的原因,经过镶嵌之后,电解抛光无法满足,机械抛光很容易带入划痕,离子抛光镶嵌之后的样品效果不是十分理想,很多方法都不太适用。通过与徕卡电镜制样技术人员沟通,认为离子切割的方法能比较好的解决目前存在的问题,经过leica em tic 3x离子切割出来的样品解析率超过了80%,部分区域甚至能够达到90%以上,最重要的是这种制样方法非常稳定,实验的结果能够比较方便的被复现出来,可较好地满足我的研究需要。 3 实验观测通过ebsd测试,获得的mapping图的解析率有了较为明显的提升,更高的解析率意味着晶粒的变形,以及大小角晶界的转变也能更好的表征出来。图3 经过振动抛光之后获得的ebsd角度取向分布图图4 经过离子切割之后获得的ebsd角度取向分布图总结通过上述实验的结果可以得出结论,相比于目前主流的振动抛光、电解抛光和离子抛光,在进行一些形状比较特殊的样品的ebsd试样的制备时,离子切割方法所具备的不受样品自身形状限制,效率高,稳定性好,可重复性高等都是目前比较常用的制样方法所不具备的,因此离子切割为ebsd的制样方法做了一个十分重要的扩充!致谢:西安交通大学 机械学院 许祥关于徕卡显微系统leica microsystems 徕卡显微系统是全球显微科技与分析科学仪器之领导厂商,总部位于德国维兹拉(wetzlar, germany)。主要提供显微结构与纳米结构分析领域的研究级显微镜等专业科学仪器。自公司十九世纪成立以来,徕卡以其对光学成像的极致追求和不断进取的创新精神始终得到业界广泛认可。徕卡在复合显微镜、体视显微镜、数码显微系统、激光共聚焦扫描显微系统、电子显微镜样品制备和医疗手术显微技术等多个显微光学领域处于全球领先地位。 徕卡显微系统在全球有七大产品研发与生产基地,在二十多个国家拥有服务支持中心。徕卡在全球一百多个国家设有区域分公司或销售分支机构,并建有遍及全球的完善经销商服务网络体系。
  • 仪器表征,科学家首次揭示微应变对钠分层氧化物正极材料合成的影响!
    【科学背景】随着高能量密度和长寿命电池的需求不断增加,研究人员越来越关注电池材料的微应变及其对电池性能的影响。微应变是由结构缺陷(如位错和堆垛层错)引起的,这对能源材料的机械强度和循环稳定性产生了重大影响。尤其在钠分层氧化物正极材料中,微应变被认为是导致容量衰退和结构破坏的关键因素。然而,微应变在电池材料合成过程中的起源和影响仍未完全明确,这成为了当前研究的一个挑战。为了解决这一问题,布鲁克海文国家实验室(美国能源部的实验室) Xianghui Xiao, 美国阿贡国家实验室Gui-Liang Xu & Khalil Amine教授合作进行了一系列原位和实时的多尺度表征,包括同步辐射X射线衍射和显微镜观察,来探讨过渡金属在前体颗粒中的空间分布对微应变的影响。研究发现,过渡金属的空间分布对纳米尺度的相变、局部电荷异质性以及微应变的积累有着强烈的调控作用。这一意外发现揭示了缺陷从核心向外壳的反直观传播模式,并为优化合成策略提供了新方向。通过这些研究,科学家们提出了基于微应变筛选的合成策略,以减少晶格中的微应变和结构缺陷,从而显著提升了电池材料的结构稳定性。这些成果标志着向设计无缺陷电池材料的合成方法迈出了关键一步。【科学亮点】1. 实验首次在钠分层氧化物正极的实际合成过程中,系统地进行微应变筛选,并应用了多尺度原位同步辐射X射线衍射(SXRD)和显微镜表征技术。2. 实验通过结合原位SXRD和全场X射线显微镜的观察,揭示了过渡金属在前体颗粒中的空间分布对纳米尺度相变、局部电荷异质性和微应变积累的强烈影响。3. 实验结果:&bull 过渡金属的空间分布:发现过渡金属的空间分布在钠分层氧化物正极的合成过程中扮演了关键角色,主导了相变机制。&bull 微应变的积累:在合成过程中,微应变在颗粒内部积累,导致了缺陷的形成和增长,其传播方式呈现出反直观的外向模式。&bull 结构稳定性的改善:通过对微应变的深入分析,提出了一种更为合理的合成路线,能够显著减少晶格中的微应变和晶体缺陷,从而提升结构稳定性。【科学图文】图1: 前驱体的形貌和化学性质。图2:固态合成过程中的结构演变。图3:合成过程中的结构缺陷和化学演变。。图4:颗粒裂纹及其消除。图5:电化学性能。 图6:测试分析。【科学结论】本文揭示了过渡金属在钠分层氧化物正极合成过程中对微应变的显著影响。通过原位同步辐射X射线衍射和显微镜技术的多尺度表征,研究发现,过渡金属在前体颗粒中的空间分布对纳米尺度的相变、局部电荷异质性以及微应变的积累有着关键的调控作用。这一发现颠覆了传统观念,揭示了缺陷的成核和生长在颗粒内部向外传播的反直观现象。这种对微应变的深刻理解指导了更加合理的合成策略,即通过优化合成条件来减轻微应变和晶体缺陷,从而显著提高电池材料的结构稳定性。这一研究成果不仅提供了新思路来改善电池材料的性能,还为无缺陷电池材料的设计合成奠定了重要基础,为未来高能量密度和长寿命电池的研发提供了有力支持。参考文献:Zuo, W., Gim, J., Li, T. et al. Microstrain screening towards defect-less layered transition metal oxide cathodes. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01734-x
  • 基于面投影微立体光刻3D打印技术的共形压电传感器设计与制造
    随着柔性电子领域的快速发展和物联网技术的普及,能够用来监测人类生理指标(如心跳、脉搏、运动周期、血压等)和机械运行状态(如主轴跳动、机器人运动状态感知等)信号的可穿戴电子器件逐渐应用到社会生活中。可穿戴电子器件的共形设计和制造使其在电子皮肤、柔性传感和人工智能中具有潜在的应用前景。当前,大多数电子器件是利用光刻、压印技术和电子束在硅表面进行制备。然而由于缺乏弯曲表面的加工工艺,要制备与复杂曲线表面(例如人体关节)共形的电子器件尤为困难。面投影微立体光刻3D打印技术(PμSL)可快速制造并成型任意形状和可设计的结构,为三维共形柔性电子器件的制造提供了灵活性和简便性。然而,考虑到柔性材料的成型工艺与功能特性,传统的制造工艺限制了功能材料的设计范围,降低了微结构的设计与成型尺度,制约了功能器件的成型和性能提升的范围。图1 论文工作的摘要图近日,西安交通大学机械工程学院陈小明、李宝童、邵金友教授等研究人员,从功能压电纳米复合材料的改性与压电器件的微结构拓扑优化等两方面出发,利用面投影微立体光刻3D打印技术(nanoArch S140,10μm精度,深圳摩方),通过设计并调节压电氮化硼纳米管材料(BNNTs)和光敏聚合物树脂的界面相容性,结合拓扑优化微结构方法,实现了具有高灵敏度、宽响应,且结构可覆形的柔性压电传感器制造。该研究以“3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors”为题发表在国际高水平期刊《Nano Energy》上,为高性能可穿戴柔性压电传感器件的设计与制造提供了新思路。工作要点一:功能纳米复合材料(BNNTs)的表面改性与材料制备,超低负载量(0.2wt%)的纳米复合材料表现出出色的压电性能:图2 功能纳米复合材料(BNNTs)的设计、改性与表征:a)BNNTs表面功能化工艺;(b)原始BNNTs/功能化BNNTs和树脂基体界面力学行为示意图;(c)极化与未极化BNNTs等压电输出信号为了提高压电纳米填料在有机聚合物溶液中的相容性和分散性,以及纳米复合材料的压电性能,通过用硝酸处理来实现纳米管表面的氧化和羟基形成,在超声处理下,官能化分子(TMSPM)与BNNT-OH表面的官能团嫁接,生成化学官能化的纳米管(F-BNNTs)。同时,纳米管上的丙烯酸酯基团显着提高了BNNTs在聚合物基体溶液中的分散性及压电输出;实验表明:相对于原始BNNTs,基于F-BNNTs的复合压电聚合物的压电输出提高了140% (见图2)。工作要点二:结构拓扑优化显著提高了复合材料的压电性能,微结构的纳米复合膜在较宽的响应区域上展现出高灵敏度; 课题组研究人员的前期研究工作表明,微结构化能显著提升压电器件的输出信号(Small 13 (23), 1604245;Nano Energy 60, 701等)。因此为了实现器件电信号输出的最大化,本文采用结构拓扑优化的方法优化压电膜的微观结构,并利用高精度面投影微立体光刻3D打印的微尺度加工能力,实现拓扑微结构的制造。数值模拟结果表明,微结构的引入能显著提高压电输出,并且具有优化微结构(struct B-P 和struct C-P)的压电薄膜能进一步提高信号输出(见图3)。图3 平面和微图案化压电薄膜的设计和仿真结果通过微结构3D打印拓扑结构及压电信号测试,表明F-BNNTs /树脂复合膜的最大输出电压记录为4.7 V,与原始的平面F-BNNTs压电膜相比,输出提高了4.3倍,比未官能化的BNNTs基复合膜高出10倍。这种显著增强主要归因于聚合物和压电填料之间有效应力传递,以及复合膜的拓扑微结构设计。图4 (a-f)不同微结构压电薄膜;(g)薄膜压电输出;(h)压电微结构薄膜的压电输出实验与仿真对比工作要点三:基于PμSL技术实现共形压电器件制造与应用;与传统的微加工方法相比,面投影微立体光刻3D打印技术在设计和制造具有复杂几何形状的共形电子器件上具有更大的灵活性,如图5所示,曲面形状和微结构的制造证实了功能材料在复杂表面上的非平面制造能力。图4 (a)面曝光3D打印原理;(b)微结构化的共形薄膜示意图可打印压电材料被用于构造机器人手的智能触觉应变传感器。为了确保压电器件在弯曲或不平坦表面上的功能性,根据机械手的表面设计了合适的3D模型,然后将共形器件打印并安装到机械手不同的指骨上,通过建立应变感应电压与特定手部姿势的映射关系,手指上的应变传感器阵列可为机械手提供触觉感测的能力。图5(a–d)机械手上的共形应变传感器可转换不同的姿势,例如松弛(a),抓取(b),吊勾(c)和托平(d);(e)从托举球到抓紧球的姿势以及相应的电压响应(f)。如图5所示,手指上的应变传感器阵列可以使用14个压电应变传感器直接转换手的姿势,当用手握住不同结构的物体时,应变传感器会记录弯曲手指的不同输出信号。从预定义的传感器中获得的针对这种姿势的力的大小及其空间分布。3D打印的共形柔性压电传感器件可用于捕获接触区域上的力分布并监视机械手的不同运动,使其更能像人手一样具备相关功能,在人机交互中应用。本研究提出了一种面投影微立体光刻3D打印功能化纳米复合材料实现功能器件制造的方法,并通过材料改性与微结构设计两方面协同提升信号输出。研究结果表明:在光固化聚合物树脂中掺杂低负载量(0.2 wt%)的功能化氮化硼纳米管,并进行微结构拓扑优化,可实现高性能压电器件的制造。该方法制备的传感器在智能机器人、仿生电子皮肤、曲面结构件健康检测与人机接口等领域有广泛的应用前景。 论文链接:https://www.sciencedirect.com/science/article/abs/pii/S2211285520308776官网:https://www.bmftec.cn/links/10
  • 基于面投影微立体光刻3D打印技术的共形压电传感器设计与制造
    随着柔性电子领域的快速发展和物联网技术的普及,能够用来监测人类生理指标(如心跳、脉搏、运动周期、血压等)和机械运行状态(如主轴跳动、机器人运动状态感知等)信号的可穿戴电子器件逐渐应用到社会生活中。可穿戴电子器件的共形设计和制造使其在电子皮肤、柔性传感和人工智能中具有潜在的应用前景。当前,大多数电子器件是利用光刻、压印技术和电子束在硅表面进行制备。然而由于缺乏弯曲表面的加工工艺,要制备与复杂曲线表面(例如人体关节)共形的电子器件尤为困难。面投影微立体光刻3D打印技术(PμSL)可快速制造并成型任意形状和可设计的结构,为三维共形柔性电子器件的制造提供了灵活性和简便性。然而,考虑到柔性材料的成型工艺与功能特性,传统的制造工艺限制了功能材料的设计范围,降低了微结构的设计与成型尺度,制约了功能器件的成型和性能提升的范围。图1 论文工作的摘要图近日,西安交通大学机械工程学院陈小明、李宝童、邵金友教授等研究人员,从功能压电纳米复合材料的改性与压电器件的微结构拓扑优化等两方面出发,利用面投影微立体光刻3D打印技术(nanoArch S140,10μm精度,深圳摩方),通过设计并调节压电氮化硼纳米管材料(BNNTs)和光敏聚合物树脂的界面相容性,结合拓扑优化微结构方法,实现了具有高灵敏度、宽响应,且结构可覆形的柔性压电传感器制造。该研究以“3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors”为题发表在国际高水平期刊《Nano Energy》上,为高性能可穿戴柔性压电传感器件的设计与制造提供了新思路。工作要点一:功能纳米复合材料(BNNTs)的表面改性与材料制备,超低负载量(0.2wt%)的纳米复合材料表现出出色的压电性能:图2 功能纳米复合材料(BNNTs)的设计、改性与表征:a)BNNTs表面功能化工艺;(b)原始BNNTs/功能化BNNTs和树脂基体界面力学行为示意图;(c)极化与未极化BNNTs等压电输出信号为了提高压电纳米填料在有机聚合物溶液中的相容性和分散性,以及纳米复合材料的压电性能,通过用硝酸处理来实现纳米管表面的氧化和羟基形成,在超声处理下,官能化分子(TMSPM)与BNNT-OH表面的官能团嫁接,生成化学官能化的纳米管(F-BNNTs)。同时,纳米管上的丙烯酸酯基团显着提高了BNNTs在聚合物基体溶液中的分散性及压电输出;实验表明:相对于原始BNNTs,基于F-BNNTs的复合压电聚合物的压电输出提高了140% (见图2)。工作要点二:结构拓扑优化显著提高了复合材料的压电性能,微结构的纳米复合膜在较宽的响应区域上展现出高灵敏度; 课题组研究人员的前期研究工作表明,微结构化能显著提升压电器件的输出信号(Small 13 (23), 1604245;Nano Energy 60, 701等)。因此为了实现器件电信号输出的最大化,本文采用结构拓扑优化的方法优化压电膜的微观结构,并利用高精度面投影微立体光刻3D打印的微尺度加工能力,实现拓扑微结构的制造。数值模拟结果表明,微结构的引入能显著提高压电输出,并且具有优化微结构(struct B-P 和struct C-P)的压电薄膜能进一步提高信号输出(见图3)。图3 平面和微图案化压电薄膜的设计和仿真结果通过微结构3D打印拓扑结构及压电信号测试,表明F-BNNTs /树脂复合膜的最大输出电压记录为4.7 V,与原始的平面F-BNNTs压电膜相比,输出提高了4.3倍,比未官能化的BNNTs基复合膜高出10倍。这种显著增强主要归因于聚合物和压电填料之间有效应力传递,以及复合膜的拓扑微结构设计。图4 (a-f)不同微结构压电薄膜;(g)薄膜压电输出;(h)压电微结构薄膜的压电输出实验与仿真对比工作要点三:基于PμSL技术实现共形压电器件制造与应用;与传统的微加工方法相比,面投影微立体光刻3D打印技术在设计和制造具有复杂几何形状的共形电子器件上具有更大的灵活性,如图5所示,曲面形状和微结构的制造证实了功能材料在复杂表面上的非平面制造能力。图4 (a)面曝光3D打印原理;(b)微结构化的共形薄膜示意图可打印压电材料被用于构造机器人手的智能触觉应变传感器。为了确保压电器件在弯曲或不平坦表面上的功能性,根据机械手的表面设计了合适的3D模型,然后将共形器件打印并安装到机械手不同的指骨上,通过建立应变感应电压与特定手部姿势的映射关系,手指上的应变传感器阵列可为机械手提供触觉感测的能力。图5(a–d)机械手上的共形应变传感器可转换不同的姿势,例如松弛(a),抓取(b),吊勾(c)和托平(d);(e)从托举球到抓紧球的姿势以及相应的电压响应(f)。如图5所示,手指上的应变传感器阵列可以使用14个压电应变传感器直接转换手的姿势,当用手握住不同结构的物体时,应变传感器会记录弯曲手指的不同输出信号。从预定义的传感器中获得的针对这种姿势的力的大小及其空间分布。3D打印的共形柔性压电传感器件可用于捕获接触区域上的力分布并监视机械手的不同运动,使其更能像人手一样具备相关功能,在人机交互中应用。本研究提出了一种面投影微立体光刻3D打印功能化纳米复合材料实现功能器件制造的方法,并通过材料改性与微结构设计两方面协同提升信号输出。研究结果表明:在光固化聚合物树脂中掺杂低负载量(0.2 wt%)的功能化氮化硼纳米管,并进行微结构拓扑优化,可实现高性能压电器件的制造。该方法制备的传感器在智能机器人、仿生电子皮肤、曲面结构件健康检测与人机接口等领域有广泛的应用前景。 论文链接:https://www.sciencedirect.com/science/article/abs/pii/S2211285520308776官网:https://www.bmftec.cn/links/10
  • Nano Energy:基于面投影微立体光刻3D打印技术的共形压电传感器设计与制造
    随着柔性电子领域的快速发展和物联网技术的普及,能够用来监测人类生理指标(如心跳、脉搏、运动周期、血压等)和机械运行状态(如主轴跳动、机器人运动状态感知等)信号的可穿戴电子器件逐渐应用到社会生活中。可穿戴电子器件的共形设计和制造使其在电子皮肤、柔性传感和人工智能中具有潜在的应用前景。当前,大多数电子器件是利用光刻、压印技术和电子束在硅表面进行制备。然而由于缺乏弯曲表面的加工工艺,要制备与复杂曲线表面(例如人体关节)共形的电子器件尤为困难。面投影微立体光刻3D打印技术(PμSL)可快速制造并成型任意形状和可设计的结构,为三维共形柔性电子器件的制造提供了灵活性和简便性。然而,考虑到柔性材料的成型工艺与功能特性,传统的制造工艺限制了功能材料的设计范围,降低了微结构的设计与成型尺度,制约了功能器件的成型和性能提升的范围。图1 论文工作的摘要图近日,西安交通大学机械工程学院陈小明、李宝童、邵金友教授等研究人员,从功能压电纳米复合材料的改性与压电器件的微结构拓扑优化等两方面出发,利用面投影微立体光刻3D打印技术(nanoArch S140,10μm精度,深圳摩方),通过设计并调节压电氮化硼纳米管材料(BNNTs)和光敏聚合物树脂的界面相容性,结合拓扑优化微结构方法,实现了具有高灵敏度、宽响应,且结构可覆形的柔性压电传感器制造。该研究以“3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors”为题发表在国际高水平期刊《Nano Energy》上,为高性能可穿戴柔性压电传感器件的设计与制造提供了新思路。工作要点一:功能纳米复合材料(BNNTs)的表面改性与材料制备,超低负载量(0.2wt%)的纳米复合材料表现出出色的压电性能:图2 功能纳米复合材料(BNNTs)的设计、改性与表征:a)BNNTs表面功能化工艺;(b)原始BNNTs/功能化BNNTs和树脂基体界面力学行为示意图;(c)极化与未极化BNNTs等压电输出信号为了提高压电纳米填料在有机聚合物溶液中的相容性和分散性,以及纳米复合材料的压电性能,通过用硝酸处理来实现纳米管表面的氧化和羟基形成,在超声处理下,官能化分子(TMSPM)与BNNT-OH表面的官能团嫁接,生成化学官能化的纳米管(F-BNNTs)。同时,纳米管上的丙烯酸酯基团显着提高了BNNTs在聚合物基体溶液中的分散性及压电输出;实验表明:相对于原始BNNTs,基于F-BNNTs的复合压电聚合物的压电输出提高了140% (见图2)。工作要点二:结构拓扑优化显著提高了复合材料的压电性能,微结构的纳米复合膜在较宽的响应区域上展现出高灵敏度; 课题组研究人员的前期研究工作表明,微结构化能显著提升压电器件的输出信号(Small 13 (23), 1604245;Nano Energy 60, 701等)。因此为了实现器件电信号输出的最大化,本文采用结构拓扑优化的方法优化压电膜的微观结构,并利用高精度面投影微立体光刻3D打印的微尺度加工能力,实现拓扑微结构的制造。数值模拟结果表明,微结构的引入能显著提高压电输出,并且具有优化微结构(struct B-P 和struct C-P)的压电薄膜能进一步提高信号输出(见图3)。图3 平面和微图案化压电薄膜的设计和仿真结果通过微结构3D打印拓扑结构及压电信号测试,表明F-BNNTs /树脂复合膜的最大输出电压记录为4.7 V,与原始的平面F-BNNTs压电膜相比,输出提高了4.3倍,比未官能化的BNNTs基复合膜高出10倍。这种显著增强主要归因于聚合物和压电填料之间有效应力传递,以及复合膜的拓扑微结构设计。图4 (a-f)不同微结构压电薄膜;(g)薄膜压电输出;(h)压电微结构薄膜的压电输出实验与仿真对比工作要点三:基于PμSL技术实现共形压电器件制造与应用;与传统的微加工方法相比,面投影微立体光刻3D打印技术在设计和制造具有复杂几何形状的共形电子器件上具有更大的灵活性,如图5所示,曲面形状和微结构的制造证实了功能材料在复杂表面上的非平面制造能力。图4 (a)面曝光3D打印原理;(b)微结构化的共形薄膜示意图可打印压电材料被用于构造机器人手的智能触觉应变传感器。为了确保压电器件在弯曲或不平坦表面上的功能性,根据机械手的表面设计了合适的3D模型,然后将共形器件打印并安装到机械手不同的指骨上,通过建立应变感应电压与特定手部姿势的映射关系,手指上的应变传感器阵列可为机械手提供触觉感测的能力。图5(a–d)机械手上的共形应变传感器可转换不同的姿势,例如松弛(a),抓取(b),吊勾(c)和托平(d);(e)从托举球到抓紧球的姿势以及相应的电压响应(f)。如图5所示,手指上的应变传感器阵列可以使用14个压电应变传感器直接转换手的姿势,当用手握住不同结构的物体时,应变传感器会记录弯曲手指的不同输出信号。从预定义的传感器中获得的针对这种姿势的力的大小及其空间分布。3D打印的共形柔性压电传感器件可用于捕获接触区域上的力分布并监视机械手的不同运动,使其更能像人手一样具备相关功能,在人机交互中应用。本研究提出了一种面投影微立体光刻3D打印功能化纳米复合材料实现功能器件制造的方法,并通过材料改性与微结构设计两方面协同提升信号输出。研究结果表明:在光固化聚合物树脂中掺杂低负载量(0.2 wt%)的功能化氮化硼纳米管,并进行微结构拓扑优化,可实现高性能压电器件的制造。该方法制备的传感器在智能机器人、仿生电子皮肤、曲面结构件健康检测与人机接口等领域有广泛的应用前景。 论文链接:https://www.sciencedirect.com/science/article/abs/pii/S2211285520308776
  • 分析仪器电源的核心技术指标及测试方法
    摘要:电源是各类分析仪器最重要的、最常用的关键部件之一;本文重点讨论了分析仪器中使用最多的空心阴极灯、氘灯、钨灯等的直流电源、交流电源、脉冲电源等及其核心技术指标的测试方法和有关问题;这些问题对有关仪器的研发者、制造者、维修者、使用者都有非常重要的参考意义。0、前言目前,国内外许多科技工作者对分析仪器中最重要的的电光系统(包括电源和灯泡)普遍重视不够;大家认为只要灯泡好就行。其实不然,如果电源不好,仪器灯泡再好对仪器整机是没有用的[1];当然如果灯泡不好,电源再好也同样是不行的。本文只讨论有关电源;例如:原子吸收分光光度计(AAS)、原子荧光光度计(AFP)、紫外可见分光光度计(UVS)、旋光分光光度计(ORD)、高效液相色谱(HPLC)等仪器中使用最多的空心阴极灯、氘灯、钨灯等电源;如果这些仪器中的电光系统(灯泡和电源)中有一个元件不稳定或出现故障,整个仪器就不可能稳定。特别是电光源系统中,所有灯泡都依赖于电源,没有电源,灯泡就不能发光;即使有了电源,如果电源的核心性能指标不好,整个分析仪器就不可能稳定可靠。例如:各类空心阴极灯、氘灯的电源的触发电压、工作电压、工作电流、预热时间、电源的纹波、电流调整率等核心指标中,只要某一个指标出现问题,灯泡就不能发出稳定可靠的光。所以,AAS、AFP、UVS、ORD、HPLC等所有光谱仪器和色谱仪器的研发者、制造者、维修者、使用者,都必须高度重视分析仪器的电光源系统中的电源。本文将对各类光谱、色谱仪器中使用最多的空心阴极灯、氘灯、钨灯等的电源组成及其核心性能技术指标的测试方法和有关问题进行讨论。一、空心阴极灯电源1、直流电源空心阴极灯系统发光的稳定性,既依赖于灯泡的质量,又依赖于电源的稳定性。空心阴极灯必须要求电源有足够高的起辉(又称触发)电压(250~500V)才能点亮,同时必须要有足够高的工作电压(150~300V)和工作电流(4~20mA)才能维持正常工作。 空心阴极灯的电源分直流电源和交流(脉冲)电源两类。目前,空心阴极灯在大多数情况下,都是使用脉冲电源。但是也有人使用直流电源;如果使用直流电源,对其稳定性要求很高。通常采用如下图所示的空心阴极灯恒流电源,并要求电流稳定性(电流调整率)达到(或优于)0.05%以上。 空心阴极灯的恒流电源组成图2、交流电源或脉冲电源一般来讲,空心阴极灯的电源如果是采用直流电源,其发光效率低,并且电流大到一定程度时,会产生自吸现象,同时还容易受到干扰。因此。为了提高空心阴极灯的输出效率,减少自吸现象、谱线变宽和减少干扰,目前,国内外的大多数的AAS都普遍采用脉冲电源供电。脉冲电源的脉冲调制频率和占空比根据不同仪器各异;一般都是采用400Hz以上的调制频率,例如作者使用过的TAS-986/990仪器的空心阴极灯电源的调制频率就是400Hz、其占空比为 4:1。一般空心阴极灯的脉冲供电电流波形如下图所示。 空心阴极灯的脉冲供电电流波形图 脉冲供电方式可使用很大的峰值电流,但是平均电流很小。这样,可以延长空心阴极灯的寿命。例如:作者的实践表明:假设采用400Hz的脉冲供电,脉冲宽度为15µ s,峰值电流300mA,则可得到比直流供电时大150倍的输出光强度;但是,自吸现象和谱线宽度并无明显增加。这足已说明脉冲供电的优越性。二、 氘灯恒流电源及其性能技术指标的测试方法1、电路组成氘灯及其电源是UVS的电光系统的关键部件(对AAS仪器而言,氘灯主要用来扣背景,也非常重要)。氘灯的好坏直接影响UVS整机质量和AAS扣背景的能力,影响仪器整机的灵敏度和质量。所以,对氘灯电源要认真测试;特别是用直流恒流电源的氘灯,更加要注意重视对有关核心性能指标的测试。众所周知,氘灯属于气体放电的光源,它需要一个稳定的氘灯恒流电源,其输出电流一般为100-500mA。而氘灯工作时,其工作额定电流一般恒定为300mA,所以称为氘灯恒流电源。氘灯恒流电源是UVS和AAS(一般5mA)的关键部件之一。下图为作者研制的一种非常适用于高精度氘灯恒流电源的电路组成图。氘灯恒流电源的原理图目前,我国的许多计量部门,经常在有关的光谱仪器检定标准中规定:电源波动对测试结果影响的技术指标;如:1990年9月1日开始实施的中华人民共和国国家计量检定规程-JJG682-90中,明确提出“电源电压变化的影响:外电电源电压在220±22V范围内改变,仪器100%透射比的最大变化应小于0.5%”。又如:1997年6月1日开始实施的中华人民共和国国家计量技术规范,JJG375-96中,提出“电源电压的影响:电源电压(220±22)V变化时对仪器的影响应符合具体规定的要求”。而该要求示值变化只允许±0.5%(对A级光栅式的仪器要求示值变化±0.3%;B级要求±0.5%)。这样规定的技术指标一是太低,二是不大科学。因为外电电源就产生±0.5%的分析误差,如果再加样品前处理、噪声、光谱带宽、环境干扰等引起的误差,仪器的分析测试结果总误差就会大得惊人,连一般分析工作的最低要求也达不到。这种技术指标的仪器根本不能满足使用要求。我们说这种技术指标不科学,主要是指它是一个电子学的技术指标,应该用电子学的指标(电流调整率、纹波系数、漂移等)来衡量,而不应该用“示值变化±0.3%”等来表示。当然也可以归一到吸光度(Abs)来表示。作者在实践中,计算了自己研发的AAS和UVS在紫外区工作时微光信号的大小,发现AAS、UVS的光信号在紫外区一般为毫微流明(nLm)级;所以,AAS、UVS属于微光测试范畴。为了保证AAS、UVS仪器的稳定性,一般高质量的AAS和UVS,其氘灯恒流电源的电流调整率要求达到0.05%,纹波系数要求在0.5% 以内。作者曾研究过一种高性能的氘灯恒流电源(DLPS-3型氘灯恒流电源),其电流调整率达到0.0006%,获得了上海市的科技进步奖。为了延长氘灯的寿命,在点燃氘灯以前,氘灯的灯丝一定要事先经过预热;预热时间可以从10秒到30秒均可,使用者可以自选。但一般科技工作者大都取10秒左右的预热时间。否则,如果氘灯不经过预热而直接点亮,氘灯的寿命肯定会缩短。作者在实践中发现,一般国产氘灯的氘灯触发电压为200到400伏,最低170伏也能点亮;一般进口氘灯的触发电压为350伏到650伏。如果一开机,氘灯不经过预热,氘灯的触发电压一下就直接加到阳极上,就会严重缩短氘灯寿命。氘灯电源向氘灯提供的灯丝电压和灯丝电流,一定要与氘灯灯泡的要求相一致。目前国际上一般都是两种类型;一种是2.5V(伏),4A(安培);一种是10V,0.8A。从氘灯电源的制作来讲,因为电流小,10V,0.8A比较好作。而2.5V(伏),4A(安培)的灯丝供电,因电流很大,氘灯的电源比较难制作,同时,因为电流大,容易因为发热而产生漂移。所以,作者认为在AAS中,最好不要选用2.5V(伏),4A(安培)的灯丝供电的氘灯。为了延长氘灯的寿命,还可将氘灯用在半功率点上;即将氘灯恒流电源的工作电流调节到180mA左右。作者的实践证明,最好使用在150到200mA范围内。这样作可大大延长氘灯寿命。有时可使氘灯的寿命延长好几倍。本人研制的优质氘灯电源,在中国科学院组织的专家鉴定会上,用户使用“坏了”的废弃氘灯带到现场当场测试,都可以点亮,并且很稳定!使用者可以对氘灯恒流电源的稳定性作简单的测试,以便判断氘灯电源的稳定性是否合格。最重要的是测试三个指标;其一是电流调整率。其二是漂移,其三是纹波系数目前国际上几种高水平的氘灯电源及其主要技术指标2、氘灯恒流电源的电流调整率的测试方法氘灯是分析仪器中使用最多的光源之一,氘灯也是对电源要求最高的光源之一。因此,对氘灯电源的指标测试也要求非常严格。特别是对电流调整率的测试更是如此;其测试方法如下:通过一只0.5KV的调压变压器,将交流电源引入恒流电源;通过恒流电源点亮氘灯,在氘灯电源的输出端用分压器取采样电压约取1.8V左右(直流信号电压),用数字电压表监控。氘灯电源预热半小时后,调节调压变压器,分别记录198V、220V、242V所对应的1.8V直流电压的变化(即记录交流供电电压220V变化±10%时,所对应的输出直流电压的变化值)。例如:作者在研制DLPS-3型氘灯恒流电源时,实际测量数据的结果如下表所示:DLPS-3型氘灯恒流电源时的实际测量数据 VS V0 V0 V0 V0 V01981.74801.74781.74791.74781.74792201.74791.74791.74791.74791.74792421.74791.74791.74791.74791.7480由上表可计算出,作者研制的氘灯恒流电源的电流调整率为:SI=ΔV0/ V0=0.0001/1.7479=0.0000572=5.72×10-5式中:ΔV0=V0242-V0198差值中的最大者;即1.7479-1.7478=0.0001V0为220V对应的直流输出电压根据国际微光测试协会的建议:用于微光测试仪器的电源,一般要求电流调整率SI达到0.05% (即 5.0×10-4)。3、氘灯恒流电源漂移的测试方法首先点亮氘灯,电源预热半小时后,在上述电流调整率测试的条件下,固定输入电压为220V左右,用高精度的数字电压表记录1.8V左右的直流输出电压在一小时内的变化值V0,即是氘灯电源的漂移。目前国际上氘灯电源的漂移一般为1×10-3~5×10-4。4、氘灯恒流电源的纹波系数(或纹波电压)的测试方法在点亮氘灯或假负载的情况下,用交流毫伏表或示波器直接测量。作者采用的氘灯恒流电源的纹波系数的简单测试方法有两种:第一,点亮氘灯,预热半小时后,用示波器或交流真空毫伏表,直接在氘灯的阴极和阳极之间测试。例如:作者[2]在研制DLSP-3型氘灯恒流电源时,曾采用这种方法测得纹波电压15mV,测得氘灯两端的直流工作电压为69.11V;由此计算出纹波系数SR=15mV/69.11V=2.17×10-4。第二,点亮氘灯,预热半小时后,用示波器或交流真空毫伏表,在采样电阻上测得纹波电压3mV,测得采样电阻上的直流工作电压为1.7675V;由此计算出纹波系数SR=3mV/1.7675V=1.7×10-3;但是,这是一个假数据;如果采样电压变为为69.11V(增大39倍),则纹波电压也增大到117mV。纹波系数还是一样的。作者的实践表明,在一般情况下,第一种方法较接近实际,比较可靠。一般要求氘灯电源的纹波系数在0.5%以内。三、开关电源的核心技术指标及其测试方法目前,很多企业采用开关电源做氘灯供电电源;其测试方法如下:目前很多科技工作者们,经常使用开关电源。但是,不注重对开关电源的性能技术指标的测试,这是很不妥当的;因为开关电源的组成主要包括:输入电网滤波器、输入整流滤波器、电压变换器、输出整流滤波器、控制电路、保护电路等。开关电源的工作原理是将220V的市电(交流电)先变成直流,而后通过变换器将直流变成交流,再将交流变成直流。它有体积小、重量轻(只有线性电源的25%左右)、功耗小、转化效率高(一般为60-79%;而线性电源一般只有30-40%)等优点。但是,它的输入电压调整率、纹波电压、电流调整率、漂移等指标也很重要,如果不经过测试,不知道这些性能技术指标的情况,就会影响正确使用 ,或者说不能将开关电源用在最佳状态;特别是输入电压调整率、纹波电压、电流调整率和漂移这四项核心性能技术指标,会影响开关电源的使用质量。直至影响仪器的整机的稳定性、噪声和漂移,影响整台仪器的质量。开关电源的输入电压调整率、电流调整率(负载调整率)、纹波电压、漂移和噪声的测试方法简述如下:1、电压调整率测试方法:输入电压调整率是指的输入交流电压变化时,输出电压相应变化的情况(或变化率)。其测试方法如下式所述: LRV=(V242-V198)/V220;式中:LRV为输入电压调整率;V242为输入电压为交流242V时的输出电压(直流);V198为输入电压为交流198V时的输出电压(直流);V220为输入电压为交流220V时的输出电压(直流);只要测出相应的交流电压、直流电压,代入式中,就可算得输入电压调整率。具体操作方法如下:开关电源的输入交流电压通过一只0.5KV(或1 KV)的调压变压器;采用假负载,在电源的输出端用分压器取采样电压约取1.5V-1.8V的直流信号电压,用4位半以上的数字电压表监控。冷态开机预热半小时后,调节调压变压器,分别记录198V、220V、242V所对应的直流电压(即记录交流供电电压220V变化±10%时,所对应的输出直流电压),代入上式即可得到电压调整率。根据国际微光测试协会的建议:用于微光测试仪器的电源,一般要求电压调整率SV达到0.05% (即5.0×10-4)。2、电流调整率(负载调整率)的测试方法氘灯的电流调整率(负载调整率)是指输出电流在额定范围变化时(一般在测试时采用假负载,取工作电流为50mA-350mA变化),输出电压的变化率。其测试方法如下式所述: LRI=(V50-V359)/VH;×100%;式中:LRI为电流调整率(负载调整率);V50为最小负载时(50mA时)的输出电压(直流);V350为最大负载时(350mA时)的输出电压(直流);VH为半载时(200 mA时)的输出电压(直流)。只要测出V50、V359和VH等相应的直流电压,代入式中,就可算得电流调整率LRI。根据国际微光测试协会的建议:用于微光测试仪器的电源,一般要求电流调整率SI达到0.05%(即5.0 × 10-4)。3、纹波电压的测试方法 所谓纹波电压,就是指直流电压上叠加的50-100Hz的交流电压的最大值(P-P值或有效值);因此,可以用交流毫伏表直接测量。一般用LR表示。是指的在负载电流为350mA时,叠加在负载上的直流电压上的交流电压值。纹波电压还可以用示波器直接测量。纹波指标也可以用纹波系数表示;其测量方法如下式所述:SR=LR/V直;式中:SR为纹波系数;LR为直流电压上叠加的交流电压的最大值,即纹波电压值;V直(又有人叫V0)为最大负载时的直流电压值(也可以采用额定电压75V)。根据作者的实践经验,一般光学类分析仪器的纹波系数要求得到1.0*10-3左右。4、漂移、噪声的测试方法:漂移和噪声是开关电源最重要的关键核心性能技术指标之一,它直接影响开关电源的质量。目前国内外的科技工作者,对各类分析仪器的漂移和噪声的定义、测试方法的理解尚未完全统一。尤其对开关电源的测试,很多科技工作者都较陌生。作者在总结目前国内外科技工作者对各类电子仪器的漂移、噪声测试方法的基础上,提出了对开关电源的漂移、噪声的测试方法如下: 冷态开启开关电源,预热2小时后,在开关电源的输出端采用假负载(电阻),从分压电阻上采取取样电压约1.8V(直流信号电压)左右,用4位半以上的数字电压表监控。连续测试1小时;取这一小时里的最大值与最小值之差,即是漂移。在这一小时内任取10分钟(哪里最差取哪里;或者说哪里的峰-峰值最大取哪里;总共有无数个10分钟),在这10分钟里的峰-峰值(最大值减最小值),前面加“”符合,即是噪声。我们还必须记住:噪声不同于纹波。纹波是出现在输出端子之间的一种与输入频率和开关频率同步的成分,一般指50周或50周的倍频,用峰-峰(P-P)值表示。而噪声是出现在输出端子之间的纹波以外的一种高频成分;也用峰-峰(P-P)值表示。但是,二者的数值不会相同,肯定是噪声大于纹波。也有很多科技工作者采用脉冲电源给氘灯供电,因篇幅所限,此不赘述。主要参考文献[1] 李昌厚,略论光谱色谱仪器五大系统的创新切入点,仪器信息网,2024-4-25.[2] 李昌厚,DLPS-2型多功能氘灯恒流电源,《电子科学技术》,1987,第5期.[3] 李昌厚,仪器学理论与实践,北京:科学出版社,2008.[4] 李昌厚,紫外可见分光光度计仪器及其应用,北京:化学工业出版社,2010. [5] 李昌厚,原子吸收分光光度计仪器及其应用,北京:科学出版社,2006.[6] 李昌厚,高效液相色谱仪器及其应用,北京:科学出版社,2014.[7] 李昌厚,分析仪器应用中常见的12个有关技术问题的探讨,仪器信息网,2023-05-31作者简介李昌厚,男,1963年毕业于天津大学精密仪器系光学仪器专业;中国科学院上海营养与健康研究所原仪器分析室主任、生命科学仪器及其应用研究室主任、教授、博士生导师、华东理工大学兼职教授、天津大学兼职教授;国务院政府特殊津贴终身享受者。主要研究方向:长期从事分析仪器研究开发和分析仪器应用研究。主要从事光谱仪器(紫外吸收光谱、原子吸收光谱、旋光光谱、分子荧光光谱、原子荧光、拉曼光谱等)、色谱仪器(液相色谱、气相色谱等)及其应用研究;特别对《仪器学理论》和分析仪器指标检测等方面有精深研究;以第一完成者身份,完成科研成果15项。由中科院组织专家鉴定,其中13项达到鉴定时国际上同类仪器的先进水平,2项填补国内空白;以第一完成者身份获得国家发明奖和省部级(中国科学院、上海市、科技部)科技成果奖5项;发表论文280篇,出版《仪器学理论与实践》、光谱和色谱仪器及其应用等专著5本。曾任中国仪器仪表学会理事、中国仪器仪表学会分析仪器分会第五届、第六届副理事长兼光谱仪器、高速分析等多个专业委员会的副主任;国家认监委计量认证/审查认可国家级常任评审员、国家科技部“十五”、“十一五”、“十二五”和“十三五”重大仪器及其应用专项的技术专家组组长、上海市科学仪器专家组成员、《生命科学仪器》副主编、《光学仪器》副主编、《光谱仪器与分析》副主编、上海化工研究院院士专家工作站成员等数十个学术团体和专家委员会成员,和北京瑞利、北京普析、上海科哲、美国ISCO等十多家公司的技术顾问或专家组组长等职务。
  • 网络讲座|实体瘤微环境和类器官分析——三维立体成像成新趋势
    图像数据采集和分析为深入分析高度异质的肿瘤细胞和可塑多变的肿瘤微环境提供了宝贵的空间分布信息,这是传统组化或2D成像的方法无法企及的,伴随样本前期制备必需步骤切片而带来伪信号、人为偏碍和后期数据叠加拟合引入误差等因素带来巨大局限性。三维整体光片成像该技术为肿瘤免疫治疗药物开发早期阶段开展药物递送途径、监测免疫细胞浸润等研究提供更直观的数据依据。光片成像与免疫细胞浸润示踪以CAR-T细胞用于实体肿瘤治疗为例,CAR-T细胞向肿瘤实体内部有效浸润、分布及持续存在时间是开发构建CAR-T细胞早期的重要评价依据,但现有研究技术缺乏能获取相关数据的方案,更无法使之可视化。在用于胰腺癌细胞治疗方案前期开发中,科学家构建了CD66c-LNGFR+ 的二代CAR T细胞,并采用较长波长可激发的荧光染料Vio 667 Dye对之进行标记(可有效提升光片成像信号强度并降低信噪比)。三维成像图中可清晰观察到实体肿瘤内部坏死区域(黑色无信号),CD66c-LNGFR+ CAR-T治疗可令肿瘤血管化程度明显提高(Rhodamin-Lectin标记血管)但该CAR-T细胞不具备较好浸润肿瘤实质的作用(Vio667仅位于肿瘤表层的信号分布)。三维立体成像效果:类器官3D光片成像在当前领先的肿瘤类器官在个体化治疗的药物筛选应用中,类器官鼻祖Hans Clevers也极为认同三维整体成像技术能更好提取类器官立体空间中特定细胞位置与分化的关系,是类器官研究的技术趋势。同时结合高通量成像方法,可有效降低不同实验批次的组内差异,为获得治疗有效性预测提供稳定可靠的依据。网络直播课程作为目前较领先的成像技术,完整组织三维光片成像技术尚未普及。基于当前最先进光片成像系统美天旎UltraMicroscope和在肿瘤免疫学的专业积淀,我们将介绍当前最为领先的完整组织三维立体成像的方法实现高分辨率的实体肿瘤微环境可视化分析。此次网络课程包含如下内容:大样本组织三维立体光片成像的基本原理满足光片成像的样本制备解析大样本组织三维立体光片成像技术在肿瘤免疫学中的应用概述如何针对多个肿瘤样本进行图像采集及数据分析实例展示光片成像在细胞浸润肿瘤实体并进行示踪的应用识别描下方二维码免费注册观看直播(可收看直播和回放)
  • 三思纵横上海分公司成功研发专用扩展型应力应变测试仪
    为了解决客户在试验机使用过程中不方便使用引伸计而必须粘贴应变电阻片(应变计)进行应变测试的问题,近日,三思纵横上海公司成功研发了DSCC-5000K专用扩展型应力应变测试仪。  应力应变测试仪DSCC-5000K是与试验机配套的高速静态应变数据采集仪,同步采样频率60Hz,最小应变分辨率0.1&mu m,广泛应用于拉伸、压缩或弯曲等试验,能够精确测量材料变形,绘制力-变形、变形-时间、变形-变形等曲线。  该设备既可用于液压试验机,也可用于电子试验机,并可满足多通道应变采集与试验机加载力值采集同步。  三思纵横上海分公司研制成功的应力应变测试仪已经成功地应用于多家建筑工程质检公司。  更多新品资讯,请咨询三思纵横驻各地办事处销售人员或服务热线:400-882-3499。
  • 徕卡(LEICA)最新立体显微镜将亮相中国半导体封装测试技术研讨会
    江文公司将在5月13日-5月16日举办的第六届中国半导体封装测试技术与市场研讨会(大连)展出LEICA以下最新产品:1,ZAPO亚微米级立体显微镜2,神龙系列立体显微镜M205C,变倍比1:20.5同时将介绍电子行业用电镜和光镜一体化制样设备TXP系列.
  • 空气网格化监管系统进入立体化监测时代
    p style="text-align: right "  i——北京伟瑞迪科技有限公司、国信聚远科技服务(北京)有限公司和山东山宇环境科技公司联合推出大气环境立体化网格监管系统/i/pp  为切实推进生态环境攻坚专项行动,打好重点区域大气污染综合治理攻坚战,强化督查已经成为新的环境执法长效机制。环境治污,监测先行。在推进环境管理从污染防治向环境质量管理转变、努力满足人民群众对生态环境质量更高期待和要求的新形势下,致力于国内城市精准治污的高效网格化环境监管系统应运而生。因其精准、科学,能有效提升治理区域大气污染的工作效率,能为环境监管提供数据和技术支持等优势,成为城市环境监测的新主流,也备受一些地方政府的喜爱。/pp  目前,主流网格化环境监管系统的解决方案是将某个城市以乡镇、社区(村)为单元,分级划定大气污染防治管理网格,大范围、高密度的布点,建设基于传感器技术的空气质量监测“微站”,做到城市区域网格全覆盖,实时监测每个网格内主要污染物的动态变化和趋势,客观真实反映污染现状,快速捕捉污染异常排放行为并自动报警,形成一张空气监测的“天网”。/pp  除此之外,网格化环境监管系统可同步将“微站”和现有的空气质量标准站点结合起来,进行监测数据叠加、对比分析和校准,从而获取全城市高密度、高频度的空气污染物浓度监测数据,运用基于GIS的后台数据分析系统,进行监测数据的筛查校准、统计分析和动态图绘制,实现城市区域大气污染物浓度的时空动态变化趋势分析,对污染源起到最大程度的监管作用,为环境执法和决策提供直接依据。/pp  然而,现有网格化环境监管系统仅能提供近地面的“微站”监测数据,无法获取不同高度层的污染变化趋势,只能依靠污染物扩散趋势进而去判断、追溯污染来源 “微站”监测数据准确度相对较低,在监测数据质量控制上大都采用监控平台与标准的常规大气自动监测站数据进行比对和基因算法校准的方式。总之,现有网格化监管系统还有不少亟须提升、完善的地方。/pp  针对现有网格化监管系统之不足,北京伟瑞迪科技有限公司、国信聚远科技服务(北京)有限公司和山东山宇环境科技公司强强联合,综合利用“微站”技术、傅里叶变换红外光谱技术和激光雷达探测技术,以提升网格化环境监管系统效能为中心,开放融合,集众所长,集成天地一体化立体监测、精准溯源、靶向管控及科学评估等最先进的物联网理念和技术,既将“精准”放在对污染源的精准把控上,又追求对数据的监测精准上,鼎力推出城市大气环境立体化网格监管系统,可实现对城市空气VOCs等有害气体、细颗粒物、臭氧的立体化、网格化、全方位、全过程监控。/pp  该系统根据城市无组织排放源的分布特点,在城区、商业餐饮、工地、环路和主干道、工业园区、工矿企业边界等敏感区域,构建以傅里叶变换红外光谱技术和激光雷达探测技术为网格中心,以“微站”为网格高密度监测点的立体化、网格化、全方位实时监测网络。/pp  平台包括网格监测、空气质量监控预警、污染溯源、趋势分析、应急响应、决策支持等功能模块 拥有在线监测、执法监督、精细管理、精准溯源、统计应用、在线指挥功能,成为集众所长、多项融合、开放包容的的环保大数据平台。通过物联网技术手段,实现生态环境攻坚的精准施策和靶向管控。具备以下特点:/pp  1、“立体式”协同监测网络和专业性的数据校准体系。充分考虑城市产业结构和排污强度,针对不同地区不同排污特点,通过科学合理的“组合布点”适当细化网格,“微站”与“边界站”相结合,组成“立体式”协同监测网络和专业性的数据校准体系。/pp  2、地面污染源监测无死角,智能高效的溯源解析。除网格化监测数据之外,系统还可收集气象数据、重点污染源在线监测数据、空气质量标准化监测站点数据,根据浓度水平和变化数据,为精准治理提供依据,为治理考核提供技术支撑。消除监管盲区,提升环境监管效能。/pp  3、多种污染物实时快速分析,三维空间数据精准展示:可同时监测多种污染气体,时间分辨率精确到1min。采用遥感傅里叶变换红外光谱技术,远距离对气体多组份混合排放物进行实时监测、连续自动快速分析,可获得地面或高空大区域三维空间数据。可测定大气中污染物的总携载量、污染源排放量、烟羽的动态分布、大气扩散参数及进行定量研究点源、监测优化选点等,实现环境监测数据模型化、精细化、准确化。/pp  4、监测与监管的协同联动,便捷、综合化的监管。系统发现异常排放,可自动报警并将报警信息发送至相关责任单位,实现监测与监管协同联动。污染物数据可通过监控中心、手机APP等管理平台实时查看,科学分析,实时捕捉和快速锁定主要污染排放来源。/pp  5、基于空气质量监测数据,进行定量化、精细化分析。建立气体污染快速决策与评估体系,分析城区的污染来源及贡献,并提出不同的污染减排建议,对产生的环境影响进行评估,弄清大气重污染的成因和来源,为城区及时了解污染现状及污染物来源提供技术支撑,同时为城市大气污染防治提供科学有效的综合解决方案。/pp  istrong关于伟瑞迪/strong/i:北京伟瑞迪科技有限公司是以国家重点高等院校研究技术成果为基础成立的创新型高科技企业,致力于提供智慧环保、环境监测、污染防控、安全管理等系统解决方案和专业的技术应用服务。先后推出工业园区气体污染在线立体防控系统、城市空气质量实时多尺度智能分析决策系统、LDAR综合管理系统和噪声扬尘在线监测系统等,可真正实现工业园区和城市污染源的实时精细网格化管理,快速有效提升区域空气质量。/pp  istrong关于国信聚远/strong/i:国信聚远科技服务(北京)有限公司是我国环境光学领域高科技创新企业,构建了基于傅里叶变换红外光谱、紫外差分吸收光谱和激光雷达等为核心的多种技术平台,可提供区域环境监测、化工园区环境监测、安全预警应急监测、污染源在线监测和区域无组织排放实时监测等多种技术设备与解决方案。/p
  • 盘点2020年央企科技创新成果中的分析测试仪器
    5月30日,国务院国资委确定并发布了《中央企业科技创新成果推荐目录(2020年版)》(以下简称《目录》)。本次《目录》发布的成果涉及22项核心电子元器件、14项关键零部件、8项分析测试仪器 、10项基础软件、41项关键材料、12项先进工艺、53项高端装备和18项其他类型成果,共计178项成果,相关成果主要来自54家央企。《目录》中涉及的8项分析测试仪器成果如下,37分布式光纤传感系统航天科技分析测试仪器38全视角高精度三维测量仪航空工业集团分析测试仪器39色度亮度计兵器工业集团分析测试仪器40短波长X射线衍射仪兵器装备集团分析测试仪器414051系列信号/频谱分析仪中国电科分析测试仪器42汽车变速器齿轮试验测试装备机械总院集团分析测试仪器43电感耦合等离子体质谱仪中国钢研分析测试仪器44分布式高精度应变、温度、振动光纤传感测试仪中国信科分析测试仪器据了解,航天科技的分布式光纤传感系统是一种集光、机、电、算于一体的高性能新型传感系统,可以实现对探测目标的连续不间断测量,并形成全面的、精细的、准确的数字化描述。分布式光纤传感系统利用光纤后向散射效应与光时域反射技术,实现对应变/温度场的连续测量与定位 传感光纤既是传感介质也是传输媒介,是一宗集待测物理量感知和信号传输于一体的传感手段。传感光纤本身无源、抗干扰、耐腐蚀,是一种本征安全的材料,并且在性能指标和产品功能上均优于传统的电学传感技术。分布式光纤传感系统特别适用于易燃易爆场合;典型的应用领域包括长输油气管线的安安防监测、基础设施的结构健康监测、火灾预警、电缆效率分析、地热开采分析等。井下温度分布测量应用场景(图源 国资委)航空工业集团的这款全视角高精度三维测量仪,针对大部件变形和大空间内运动体参数实时监控的迫切需求,突破大视场、超清晰、高精度光学测量关键技术,解决测量距离大、精度要求高、测量环境复杂等技术难点,研制全视角高精度三维测量仪,填补国内空白,并在航空、航天等领域进行了应用验证。全视角高精度三维测量仪(图源 国资委)亮度色度计采用三色值过滤的测定方法,可测定亮度、色度、色温cielab、cieluv、色差等,4个量测角度可以切换。可适用于需要小范围量度角度(0.1°/0.2°)的低亮度领域的测定场合,若作远距离量测可选用延长线将主机与感应器分开进行测量。仪器附加键盘(选配)可作多种功能使用,包括输入颜色系数和亮度偏差。另外,也可在计算机中的进行数据的存储、分析、打印,在照明工程、电影和电视、建筑等领域中有较为广泛的应用。而兵器工业集团的色度亮度计可测量亮度范围为(1~3000)cd/m2,亮度测量精度为±4%,色度测量精度为(x,y)≤±0.004(10cd/m2以上,标准A光源。色度亮度计(图源 国资委)短波长X射线衍射仪是拥有自主知识产权的短波长特征X射线衍射技术产品,首先解决了我国无损测定厘米级厚度工件内部(残余)应力、织构、物相、晶界缺陷及其分布的难题,填补了国内外无损检测分析内部衍射信息的小型化仪器设备空白。该仪器利用重金属靶X射线管作为辐射源,采用光量子能量分析的无强度衰减单色化、精密测量分析等技术,最大可测厚度达40mm铝当量,晶面间距测试误差小于±0.00006nm,内部(残余)应力测试误差小于±25MPa。可应用于先进材料、先进制造和基础研究领域,如预拉伸铝板、涡轮叶片、装配件、焊接件、热处理件等控形控性的加工工艺优化和制造,以及材料/工件内部应力及其分布等的演变规律研究。短波长X射线衍射仪(图源 国资委)4051系列信号/频谱分析仪重点突破了110GHz超宽频带、大带宽、高灵敏度接收技术以及宽带信号高速处理技术,实现了最高同轴测试频率110GHz、最大分析带宽550MHz、显示平均噪声电平≤-135dBm/Hz@110GHz等核心指标,且具有全频段信号预选能力,打破了国外技术封锁,总体性能达到国际先进水平,在高精尖测量仪器方面实现了自主可控和自主保障,在航空航天、通信、雷达、频谱监测等军民领域得到广泛应用,为我国“载人航天”、“探月工程”、“北斗导航”等国家重大工程做出了重要贡献,解决了宽带卫星通信系统功放模块数字预失真测试、新型预警和跟踪雷达脉冲信号测试、超宽频带频谱测量等测试难题。4051系列信号/频谱分析仪(图源 国资委)汽车变速器齿轮试验测试装备是国家重点支持的发展专项;测试技术含量和技术水平高,创新性强,属国内首创;突破了汽车变速器传递误差测试方面的技术壁垒,解决了汽车变速器急需解决的啸叫难题;扭转了汽车变速器测试台架主要依赖进口的局面。试验台既可实现单对齿轮又可以实现变速器总成传递误差的测量,可以模拟齿轮啮合错位量工况,使得传递误差测量结果更具实际意义,可以更有效指导齿轮修形设计,达到减振降噪目的。试验台角度测量精度1ʺ,加载扭矩最大20000Nm。汽车变速器齿轮试验测试装备(图源 国资委)ICP-MS技术是将ICP的高温电离特性与四极杆质谱计的灵敏快速扫描的优点相结合而形成一种新型的最强有力的元素分析、同位素分析和形态分析技术。该技术具有检出限低、动态线性范围宽、干扰少、分析精度高、速度快、可进行多元素同时测定等优异的分析性能,已从最初在地质科学研究的应用迅速发展到环境保护、半导体、生物、医学、冶金、石油、核材料分析等领域。电感耦合等离子体质谱仪(图源 国资委)分布式高精度应变、温度、振动光纤传感测试仪主要用途是为石油天然气管线、高速铁路、高速公路、电力输送线路等大型基础设施的状态监测与安全管理提供完整先进的分布式高精度应变、温度、振动光纤传感测试仪,显著提升相关大型基础设施的运营能力、安全管理水平与应急管理能力。其基于光栅阵列的新一代光纤传感技术具有网络容量大、探测精度高、传感距离长、响应速度快、可靠性好等方面的突出优点,可实现超大容量、超长距离、超高精度的应变、温度、振动传感监测。光纤分布式温度探测器(图源 国资委)附件:中央企业科技创新成果推荐目录(2020年版).doc
  • 济南初步建成温室气体“天空地”一体化立体监测网络
    在位于山东省济南市槐荫区的“黄河河务局”点位,记者看到高大的铁塔顶端探出了一根横梁,温室气体采样头就固定在上面,距离地面大约50多米。山东省济南生态环境监测中心(以下简称山东省济南中心)预报室副主任付华轩告诉记者:“黄河河务局点位属于济南市高精度温室气体自动监测网,配置高精度二氧化碳、一氧化碳、甲烷、氧化亚氮、气象参数监测设备,可实现对空气中温室气体的实时高精度自动监测,于今年1月建成并与中国环境监测总站完成数据联网,由山东省济南中心负责日常管理,监测数据上传中国环境监测总站。”据悉,像这样的温室气体高精度监测站点,济南市已建成8个。济南市通过利用高塔高精度监测、中精度监测、卫星遥感、无人机、走航、地基遥感和手工监测等多种方式,实现温室气体“天空地”一体化立体监测。山东省济南中心党委书记、主任潘光对记者说:“济南市自2021年9月承担碳监测评估试点工作以来,投资近4000万元,初步建成温室气体‘天空地’一体化立体监测网络,创新开展重点区域、重点污染源温室气体多维立体协同观测,点面结合、动静结合,实现对温室气体全市域、多指标、长时间智能跟踪监测,科学支撑济南市碳减排工作成效评估和降碳增汇潜力预测。”开展地面大气主要温室气体浓度监测,支撑城市碳排放核算校验山东省济南中心综合室主任王兆军告诉记者:“济南市开展城市温室气体监测评估工作的主要目标,就是通过开展地面大气主要温室气体浓度监测,探索自上而下的碳排放反演方法,初步形成技术指南,做好可推广、可应用、可示范的技术储备,为城市碳排放核算结果提供校验参考。”为加快推进碳监测评估试点工作,济南市成立了碳监测评估试点工作领导小组和技术小组。其中,技术小组由技术支持单位中国环境监测总站、生态环境部卫星环境应用中心、中国科学院大气物理研究所、山东省生态环境监测中心等单位的专家和山东省济南中心技术骨干组成,对试点工作关键内容如技术路线、项目招标等,持续加强技术研讨,做好技术支撑。山东省济南中心碳监测工作专班成员、综合室副主任刘杨告诉记者:“碳监测工作专班建立了‘围绕一个中心目标,开展四项基本工作,建立一个技术支撑体系,形成一个业务化工作机制’的相对清晰、完善的技术路线。”据了解,“一个中心目标”就是支撑城市碳排放核算校验,科学评估城市碳减排工作成效及降碳增汇潜力;“四项基本工作”是开展大气主要温室气体浓度与通量监测,编制“自下而上”高空间分辨率温室气体清单,开展生态系统碳汇、碳储量调查与监测,开展“自上而下”碳排放同化反演;“一个技术支撑体系”是建立城市“天空地”一体化碳监测评估技术支撑体系;“一个业务化工作机制”是持续开展“业务化”碳监测评估工作,服务支撑“双碳”战略目标实施。加大温室气体中精度和高精度监测力度,深化数据分析围绕“测什么?在哪测?怎么测?”三个问题,济南市坚持“摸着石头过河”,着力探索碳监测评估试点的“济南经验”。在山东省济南中心院内,一辆车顶戴着方盒“帽子”、标注着“生态环境走航监测”字样的走航车格外引人关注。进入走航车,记者看到车里配置有高精度CO2/CO气体分析仪等,能够实时捕捉多项污染物的高值及其他异常情况,查溯污染源。山东省济南中心生态与遥感室副主任杨晓钰对记者说:“我们充分发挥卫星遥感、地基遥感、无人机、走航车各自优势,搭载温室气体监测仪、气象集成设备等,在高精度站点和重点工业园区范围内及周边开展协同监测,获取了二氧化碳、一氧化碳、甲烷、氧化亚氮、挥发性有机物的浓度情况和气象参数。通过将遥感数据算法反演结果与实时浓度监测结果进行比对校验,了解在局地平面涉及区域和垂直高度上的浓度分布;将碳立体遥感监测结果与高精度点位监测的结果进行比对,为济南市碳排放及通量的核算提供有效的数据支撑。”据了解,济南市与中国科学院大气物理研究所签署碳中和战略合作框架协议,率先引进研究所自主研发的二氧化碳中精度监测设备,目前,已建成20个二氧化碳中精度监测站点和35个甲烷中精度监测站点。中精度监测结果为探究济南市二氧化碳浓度时间和空间分布特征提供第一手资料,规划建设的9个温室气体高精度监测站点目前已经建成8个。上万次测试寻找最优解,精准分析温室气体组分走进山东省济南中心的中心实验室,只见一个个装有温室气体样本的银色“苏玛罐”整齐排放着。拿起一个“苏玛罐”,工作人员娴熟地用扳手将其安装到自动进样器上,再通过气相色谱仪,就能够准确检测出样本中含有的5种温室气体。一次进样,同时分析CO2、CH4、N2O、SF6、CO共5种气体组分,山东省济南中心创新研究的这种温室气体仪器分析方法在全国处于领先水平。温室气体手工监测实验平台也成为国内首家能够对5种温室气体同时进行分析的手工监测实验室。采用气相色谱法达到高精度要求非常困难,没有现成的手工监测经验可以借鉴。中心实验室高级工程师葛璇对采样过程和每一个分析条件进行了上万次测试和条件优化,才摸索出了气相色谱法测定温室气体更为精准的分析方法,并与高精度监测设备比较,达到高精度误差分析要求。济南市还自我加压,创新做实做优“自选动作”。在重点行业企业试点开展温室气体自动监测,并依托现有环境监测监控平台,开发温室气体管理模块,实现温室气体数据自动联网传输。同时,创新开展重点行业基于排放因子法和在线监测法CO2排放量的核算校验工作,探索建立重点行业温室气体排放因子。山东省济南中心监控与统计室主任闫学军告诉记者:“我们依据不同行业特点和企业现有烟气排放连续监测系统现状,设计了‘原有设备软硬件升级’等3种不同的改造路径,最终在生活垃圾焚烧、火电、碳素、钢铁4个行业完成了10家企业25个点位的温室气体连续自动监测。固定源温室气体连续自动监测工作的开展,为企业温室气体排放量的核算提供了一种新的方法,为企业温室气体排放管理提供重要的数据支持。”此外,为推动碳污协同管控,济南市将常态化污染源清单编制工作与温室气体清单编制一同推进。编制完成2020年、2021年济南市温室气体排放清单,并完成1km×1km网格化分配,明确了温室气体区域和行业排放特征。引入中国科学院大气物理研究所的两套城市碳同化系统,具备城市尺度1km逐小时的碳同化能力;积极协调国家超级计算济南中心服务器资源,完成同化反演系统的本地化安装调试,初步得到了碳排放同化反演结果。
  • 上海精科参加分析仪器学会年会暨中国分析仪器30年回顾展
    30年来,我国分析仪器产业在快速发展,近几年平均增长率大于25%,呈现充满生机,富有活力的奋进景象。一批优秀企业和具有知识产权的民族品牌产品不断涌现。随着科技发展和市场新的需求,分析仪器在食品安全、环境监测、检验检疫、科研教育、医疗卫生等许多领域起到&ldquo 尖兵、卫士&rdquo 的独特作用,产生极大的影响和显著社会效益。 2009 中国仪器仪表学会分析仪器学会年会暨中国分析仪器30年回顾展,于11月21日至22日在北京北科大厦隆重举行,刘长宽秘书长主持了会议,中国仪器仪表学会副理事长兼秘书长吴幼华、分析仪器分会理事长闫成德作了开幕致辞。陆婉珍院士、庄松林院士、张玉奎院士、陈洪渊院士、金国藩院士等纷纷发来贺词。 陆婉珍院士、金钦汉教授、李昌厚教授、袁洪福教授、孙素琴教授分别作了精彩的大会报告。上海精科总工程师殷传新在大会上作了题为《科技传新,精诚奉献》的演讲,殷总首先澄清了近期在个别网站上关于上海飞乐1.9亿转让上海精科100%股权消息的不正确言论的报道,阐明了上海精科在新一轮的发展战略中,将进一步增加资源投入,更专注于科学仪器的发展,并不断开拓科技领先的尖端产品,增强企业的综合竞争能力,继续保持国内领先的地位。随后,殷总从①紧跟科学仪器发展趋势,确定科技创新目标;②加强产学研结合,促进科技创新体系建设;③以市场为导向,加强科技创新成果转化;④展望未来,寻求技术突破。四个方面阐述了上海精科发展的历程,取得的成绩。展望未来,公司将利用产品门类齐全的优势,发展色质、热质类等先进连用仪器,发展包括多种分析测试方法的分析测试系统。研制自动测试和调试系统,提高仪器产品的制造水平,使产品在技术和工艺稳定性上都取得突破,努力实现&ldquo 为提高人们的生活质量,提供高科技产品和优质服务&rdquo 的目标。 会议同期还举办中国分析仪器30年回顾展,精科公司占据展厅最佳位置,展示了GC126气相色谱仪、DZS-708多参数分析仪、YLS16A应变式卤素水分测定仪等一批新产品。科技部、国家质检总局的领导参观了公司的展台。展会上公司还获得&ldquo 中国分析仪器发展贡献奖&rdquo 。 图为:殷传新总工程师在会上演讲图为:公司获得中国分析仪器发展贡献奖证书
  • 中国计量测试学会发布《铜(铁)分析仪校准方法》团体标准征求意见稿
    各有关单位:根据国家标准化管理委员会、民政部印发的《团体标准管理规定》及《中国计量测试学会团体标准管理办法》有关规定,经中国计量测试学会批准立项,由河北中测计量检测有限公司等单位牵头起草的《铜(铁)分析仪校准方法》团体标准现已完成征求意见稿的编制,为保证标准的科学性、严谨性和适用性,现面向社会广泛公开征求意见。请各有关单位及专家对上述标准提出宝贵意见和建议,于2024年4月26日前将《征求意见反馈表》反馈至以下联系方式。联系人:周建林 电 话:13630813838地 址:石家庄市红旗大街 333 号河北工院大学科技园邮编:050051 电子邮箱:9570407@qq.c om附件3 征求意见反馈表.doc附件2 《铜(铁)分析仪校准方法》编制说明.pdf附件1 《铜(铁)分析仪校准方法》征求意见稿.pdf
  • 伟瑞迪 I 空气网格化监管系统进入立体化监测时代
    导读:构建以傅里叶变换红外光谱技术和激光雷达探测技术为网格中心,以“微站”为网格高密度监测点的立体化、网格化、全方位实时监测网络。——北京伟瑞迪科技有限公司、国信聚远科技服务(北京)有限公司和山东山宇环境科技公司联合推出大气环境立体化网格监管系统  为切实推进生态环境攻坚专项行动,打好重点区域大气污染综合治理攻坚战,强化督查已经成为新的环境执法长效机制。环境治污,监测先行。在推进环境管理从污染防治向环境质量管理转变、努力满足人民群众对生态环境质量更高期待和要求的新形势下,致力于国内城市精准治污的高效网格化环境监管系统应运而生。因其精准、科学,能有效提升治理区域大气污染的工作效率,能为环境监管提供数据和技术支持等优势,成为城市环境监测的新主流,也备受一些地方政府的喜爱。目前,主流网格化环境监管系统的解决方案是将某个城市以乡镇、社区(村)为单元,分级划定大气污染防治管理网格,大范围、高密度的布点,建设基于传感器技术的空气质量监测“微站”,做到城市区域网格全覆盖,实时监测每个网格内主要污染物的动态变化和趋势,客观真实反映污染现状,快速捕捉污染异常排放行为并自动报警,形成一张空气监测的“天网”。  除此之外,网格化环境监管系统可同步将“微站”和现有的空气质量标准站点结合起来,进行监测数据叠加、对比分析和校准,从而获取全城市高密度、高频度的空气污染物浓度监测数据,运用基于GIS的后台数据分析系统,进行监测数据的筛查校准、统计分析和动态图绘制,实现城市区域大气污染物浓度的时空动态变化趋势分析,对污染源起到最大程度的监管作用,为环境执法和决策提供直接依据。然而,现有网格化环境监管系统仅能提供近地面的“微站”监测数据,无法获取不同高度层的污染变化趋势,只能依靠污染物扩散趋势进而去判断、追溯污染来源 “微站”监测数据准确度相对较低,在监测数据质量控制上大都采用监控平台与标准的常规大气自动监测站数据进行比对和基因算法校准的方式。总之,现有网格化监管系统还有不少亟须提升、完善的地方。  针对现有网格化监管系统之不足,北京伟瑞迪科技有限公司、国信聚远科技服务(北京)有限公司和山东山宇环境科技公司强强联合,综合利用“微站”技术、傅里叶变换红外光谱技术和激光雷达探测技术,以提升网格化环境监管系统效能为中心,开放融合,集众所长,集成天地一体化立体监测、精准溯源、靶向管控及科学评估等最先进的物联网理念和技术,既将“精准”放在对污染源的精准把控上,又追求对数据的监测精准上,鼎力推出城市大气环境立体化网格监管系统,可实现对城市空气VOCs等有害气体、细颗粒物、臭氧的立体化、网格化、全方位、全过程监控。  该系统根据城市无组织排放源的分布特点,在城区、商业餐饮、工地、环路和主干道、工业园区、工矿企业边界等敏感区域,构建以傅里叶变换红外光谱技术和激光雷达探测技术为网格中心,以“微站”为网格高密度监测点的立体化、网格化、全方位实时监测网络。  平台包括网格监测、空气质量监控预警、污染溯源、趋势分析、应急响应、决策支持等功能模块 拥有在线监测、执法监督、精细管理、精准溯源、统计应用、在线指挥功能,成为集众所长、多项融合、开放包容的的环保大数据平台。通过物联网技术手段,实现生态环境攻坚的精准施策和靶向管控。具备以下特点:  1、“立体式”协同监测网络和专业性的数据校准体系。充分考虑城市产业结构和排污强度,针对不同地区不同排污特点,通过科学合理的“组合布点”适当细化网格,“微站”与“边界站”相结合,组成“立体式”协同监测网络和专业性的数据校准体系。  2、地面污染源监测无死角,智能高效的溯源解析。除网格化监测数据之外,系统还可收集气象数据、重点污染源在线监测数据、空气质量标准化监测站点数据,根据浓度水平和变化数据,为精准治理提供依据,为治理考核提供技术支撑。消除监管盲区,提升环境监管效能。  3、多种污染物实时快速分析,三维空间数据精准展示:可同时监测多种污染气体,时间分辨率精确到1min。采用遥感傅里叶变换红外光谱技术,远距离对气体多组份混合排放物进行实时监测、连续自动快速分析,可获得地面或高空大区域三维空间数据。可测定大气中污染物的总携载量、污染源排放量、烟羽的动态分布、大气扩散参数及进行定量研究点源、监测优化选点等,实现环境监测数据模型化、精细化、准确化。  4、监测与监管的协同联动,便捷、综合化的监管。系统发现异常排放,可自动报警并将报警信息发送至相关责任单位,实现监测与监管协同联动。污染物数据可通过监控中心、手机APP等管理平台实时查看,科学分析,实时捕捉和快速锁定主要污染排放来源。  5、基于空气质量监测数据,进行定量化、精细化分析。建立气体污染快速决策与评估体系,分析城区的污染来源及贡献,并提出不同的污染减排建议,对产生的环境影响进行评估,弄清大气重污染的成因和来源,为城区及时了解污染现状及污染物来源提供技术支撑,同时为城市大气污染防治提供科学有效的综合解决方案。关于伟瑞迪:北京伟瑞迪科技有限公司是以国家重点高等院校研究技术成果为基础成立的创新型高科技企业,致力于提供智慧环保、环境监测、污染防控、安全管理等系统解决方案和专业的技术应用服务。先后推出工业园区气体污染在线立体防控系统、城市空气质量实时多尺度智能分析决策系统、LDAR综合管理系统和噪声扬尘在线监测系统等,可真正实现工业园区和城市污染源的实时精细网格化管理,快速有效提升区域空气质量。  关于国信聚远:国信聚远科技服务(北京)有限公司是我国环境光学领域高科技创新企业,构建了基于傅里叶变换红外光谱、紫外差分吸收光谱和激光雷达等为核心的多种技术平台,可提供区域环境监测、化工园区环境监测、安全预警应急监测、污染源在线监测和区域无组织排放实时监测等多种技术设备与解决方案。
  • 动态热机械分析仪原理简介
    p  动态热机械分析(或称动态力学分析)是在程序控温和交变应力作用下,测量试样的动态模量和力学损耗与温度或频率关系的技术,使用这种技术测量的仪器就是动态热机械分析仪(Dynamic mechanical analyzer-DMA)。br//pp  DMA仪器的结构及重要部件如图所示:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/26b5a0aa-c61a-4937-9512-91ce4103c5fd.jpg" title="DMA结构.jpg" width="400" height="238" border="0" hspace="0" vspace="0" style="width: 400px height: 238px "//pp style="text-align: center "strongDMA的结构示意图(左:一般DMA的结构 右:改进型DMA的结构)/strong/pp style="text-align: center "1.基座 2.高度调节装置 3.驱动马达 4驱动轴 5.(剪切)试样 6.(剪切)试样夹具 7.炉体 8.位移传感器(线性差动变压器LVDT) 9.力传感器/pp  DMA核心的部件有驱动马达、试样夹具、炉体、位移传感器、力传感器。/ppstrong驱动马达/strong—以设定的频率、力或位移驱动驱动轴/ppstrong试样夹具/strong—DMA依据所选用夹具的不同,可采用如图所示的不同测量模式:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/18bffd85-0be9-4361-927f-8be409b209c8.jpg" title="DMA测量模式.jpg" width="400" height="152" border="0" hspace="0" vspace="0" style="width: 400px height: 152px "//pp style="text-align: center "strongDMA测量模式/strong/pp style="text-align: center "1.剪切 2.三点弯曲 3.双悬臂 4.单悬臂 5.拉伸或压缩/ppstrong炉体/strong—控制试样服从设定的温度程序/ppstrong位移传感器/strong—测量正弦变化的位移的振幅和相位/ppstrong力传感器/strong—测量正弦变化的力的振幅和相位。一般DMA没有力传感器,由传输至驱动马达的交流电来确定力和相位/ppstrong刚度、应力、应变、模量、几何因子的概念:/strong/pp  力与位移之比称为刚度。刚度与试样的几何形状有关。/pp  归一化到作用面面积A的力称为机械应力或应力σ(单位面积上的力),归一化到原始长度Lsub0/sub的位移称为相对形变或应变ε。应力与应变之比称为模量,模量具有物理上的重要性,与试样的几何形状无关。/pp  在拉伸、压缩和弯曲测试中测得的是杨氏模量或称弹性模量,在剪切测试中得到的是剪切模量。/pp  在动态力学分析中,用力的振幅FA和位移的振幅LA来计算复合模量。出于实用的考虑,用所谓的几何因子g将刚度和模量两个量的计算标准化。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/feb82561-d2c4-43db-a8c4-44864e46f3b1.jpg" title="DMA-1.jpg"//pp可得到/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/c69705fc-1d40-430b-ab24-80b16e80df41.jpg" title="DMA-2.jpg"//ppFsubA/sub/LsubA/sub为刚度。所以测定弹性模量的最终方程为/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/08ff85ae-0c32-4333-a18d-1aef926a698d.jpg" title="DMA-3.jpg"//pp模量由刚度乘以几何因子得到。/pp  各种动态热机械测量模式及几何因子的计算公式见下表:/pp style="text-align: center "表1 DMA测量模式及其试样几何因子的计算公式/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/1a1ebfe9-d3d3-4205-b263-c6348668361f.jpg" title="DMA测量模式及其试样几何因子的计算公式.jpg" width="400" height="276" border="0" hspace="0" vspace="0" style="width: 400px height: 276px "//pp  注:表中b为厚度,w为宽度,l为长度。/ppstrongDMA测试的基本原理:/strong/pp  试样受周期性(正弦)变化的机械振动应力的作用,发生相应的振动应变。测得的应变往往滞后于所施加的应力,除非试样是完全弹性的。这种滞后称为相位差即相角δ差。DMA仪器测量试样应力的振幅、应变的振幅和应力与应变间的相位差。/pp  测试中施加在试样上的应力必须在胡克定律定义的线性范围内,即应力-应变曲线起始的线性范围。/pp  DMA测试可在预先设定的力振幅下或可在预先设定的位移振幅下进行。前者称为力控制的实验,后者称为位移控制的实验。一般DMA只能进行一种控制方式的实验。改进型DMA能在实验过程中自动切换力控制和位移控制方式,保证试样的力和位移变化不超出程序设定的范围。/ppstrong复合模量、储能模量、损耗模量和损耗角的关系:/strong/pp  DMA分析的结果为试样的复合模量Msup*/sup。复合模量由同相分量M' (或以G' 表示,称为储能模量)和异相(相位差π/2)分量M' ' (或以G' ' 表示,称为损耗模量)组成。损耗模量与储能模量之比M' ' /M' =tanδ,称为损耗因子(或阻尼因子)。/pp  高聚物受到交变力作用时会产生滞后现象,上一次受到外力后发生形变在外力去除后还来不及恢复,下一次应力又施加了,以致总有部分弹性储能没有释放出来。这样不断循环,那些未释放的弹性储能都被消耗在体系的自摩擦上,并转化成热量放出。/pp  复合模量Msup*/sup、储能模量M' 、损耗模量M' ' 和损耗角δ之间的关系可用下图三角形表示:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/51080aa0-2961-4541-81f5-b04011690e46.jpg" title="复合模量三角形关系.jpg" width="400" height="191" border="0" hspace="0" vspace="0" style="width: 400px height: 191px "//pp  储能模量M' 与应力作用过程中储存于试样中的机械能量成正比。相反,损耗模量表示应力作用过程中试样所消散的能量(损耗为热)。损耗模量大表明粘性大,因而阻尼强。损耗因子tanδ等于黏性与弹性之比,所以值高表示能量消散程度高,黏性形变程度高。它是每个形变周期耗散为热的能量的量度。损耗因子与几何因子无关,因此即使试样几何状态不好也能精确测定。/pp  模量的倒数成为柔量,与模量相对应,有复合柔量、储能柔量和损耗柔量。对于材料力学性能的描述,复合模量与复合柔量是等效的。/pp 通常可区分3种不同类型的试样行为:/pp纯弹性—应力与应变同相,即相角δ为0。纯弹性试样振动时没有能量损失。/pp纯粘性—应力与应变异相,即相角δ为π/2。纯粘性试样的形变能量完全转变成热。/pp粘弹性—形变对应力响应有一定的滞后,即相角δ在0至π/2之间。相角越大,则振动阻尼越强。/pp DMA分析的各个物理量列于下表:/pp style="text-align: center "表2 DMA物理量汇总/ptable border="1" cellspacing="0" cellpadding="0" align="center"tbodytr class="firstRow"td width="284" style="border-right: none border-bottom: none border-left: none border-top: 1px solid windowtext padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"应力/span/p/tdtd width="284" style="border-right: none border-bottom: none border-left: none border-top: 1px solid windowtext padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "σ(t)=σsubA/subsinωt=FsubA/sub/Asinωt/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"应变/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "ε(t)=εsubA/subsin(ωt+δ)=LsubA/sub/Lsub0/subsin(ωt+δ)/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"模量/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "M*(ω)=σ(t)/ε(t)=M’sinωt+M’’cosωt/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"模量值/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "|M*|=σsubA/sub/εsubA/sub/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"储能模量/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "M’(ω)=σsubA/sub/εsubA/subcosδ/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"损耗模量/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "M’’(ω)=σsubA/sub/εsubA/subsinδ/span/p/td/trtrtd width="284" style="border-top: none border-right: none border-left: none border-bottom: 1px solid windowtext padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"损耗因子/span/p/tdtd width="284" style="border-top: none border-right: none border-left: none border-bottom: 1px solid windowtext padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "tanδ=M’’(ω)/M’(ω)/span/p/td/tr/tbody/tablepstrong温度-频率等效原理/strong/pp  如果在恒定负载下,分子发生缓慢重排使应力降至最低,材料因此而随时间进程发生形变 如果施加振动应力,因为可用于重排的时间减少,所以应变随频率增大而下降。因此,材料在高频下比在低频下更坚硬,即模量随频率增大而增大 随着温度升高,分子能够更快重排,因此位移振幅增大,等同于模量下降 在一定频率下在室温测得的模量与在较高温度、较高频率下测得的模量相等。这就是说,频率和温度以互补的方式影响材料的性能,这就是温度-频率等效原理。因为频率低就是时间长(反之亦然),所以温度-频率等效又称为时间-温度叠加(time-temperature superposition-TTS)。/pp  运用温度-频率等效原理,可获得实验无法直接达到的频率的模量信息。例如,在室温,几千赫兹下橡胶共混物的阻尼行为是无法由实验直接测试得到的,因为DMA的最高频率不够。这时,就可借助温度-频率等效原理,用低温和可测频率范围进行的测试,可将室温下的损耗因子外推至几千赫兹。/ppstrong典型的DMA测量曲线:/strong/pp  DMA测量曲线主要有两大类,动态温度程序测量曲线和等温频率扫描测量曲线。/pp  动态温度程序测量曲线,是在固定频率的交变应力条件下,以一定的升温速率(由于试样较大,通常速率较低,以1~3K/min为佳),进行测试。得到的是以温度为横坐标、模量为纵坐标的图线,图中可观察储能模量G' ,损耗模量G' ' ,和损耗因子tanδ随温度的变化曲线,反应了试样的次级松弛、玻璃化转变、冷结晶、熔融等过程。/pp  等温频率扫描测量曲线,是在等温条件下,进行不同振动频率应力作用时的扫描测试。得到的是以频率为横坐标、模量为纵坐标的图线,图中可观察储能模量G' ,损耗模量G' ' ,和损耗因子tanδ随频率的变化曲线。等温测试的力学松弛行为与频率的关系又称为力学松弛谱,依据温度-频率等效原理,可将不同温度条件下的力学松弛谱沿频率窗横向移动,来得到对应于不同温度时的模量值。/p
  • 海兰达尔:高精度温室气体分析仪或将成环境监测市场下一个刚需
    随着双碳政策的逐步推进,从碳达峰碳中和目标的提出,再到“十四五”生态环境监测规划、碳监测评估试点工作方案的发布,国家政策明确提出开展温室气体监测和评估,推进碳排放实测技术发展和信息化水平提升等内容。习总书记讲话中提出,中国二氧化碳的碳排放力争于2030年前达到峰值,努力争取到2060年前实现“碳中和”。在双碳战略下,温室气体监测将成为未来一段时期环境监测的重点,也将为整个环境监测市场带来新的增长点。但是,这个新的增长点如何把控?立足当下,各个企业又有怎样全新的布局?仪器信息网今天就机遇、市场、技术、产品、销售、发展六大模块采访了江苏海兰达尔环境科技有限公司(以下简称“海兰达尔”),海兰达尔环境是否会在将来有全新的布局呢——仪器信息网:当前双碳等一系列政策出台将给环境监测市场带来哪些热点机遇?这对温室气体监测仪器有怎样新的要求?海兰达尔:自《碳监测评估试点工作方案》发布以来,碳监测工作已在重点行业、城市、区域三个层面如火如荼地开展,旨在探索建立碳监测评估技术方法体系,形成业务化运行模式,总结经验做法,发挥示范效应,为应对气候变化工作成效评估提供数据支撑。当下的市场条件,对于环境监测行业来说是重要的机遇。碳监测工作的有效开展,离不开高性能环境监测仪器提供的保障。对于各个重点行业(火电,钢铁,石油天然气开采,煤炭开采和废弃物处理),需要分别开展CO2和CH4的监测;对于试点城市,则需要根据情况,开展高精度CO2,N2O,CH4浓度,CO2/H2O通量,碳同位素(13CO2,14CO2)等要素的监测。这些监测需求除了要求温室气体分析仪能满足高精度地面原位测量,还对监测方法的适应性提出了很高的要求。当下的碳监测朝着 “天空地一体化”的方向发展,地面、船舶、走航、无人机都是很好的监测手段。同时,原位和移动测量的数据还可与卫星遥感监测的结果相互验证,从而评估监测手段的科学性。高精度温室气体分析仪未来会成为环境监测市场的下一个刚需,与环境大气污染物分析仪形成协同观测,发挥重要的监测作用。另一方面,温室气体不断升高是全球面临的问题,国际社会的协作也是非常重要的一环。因此国内外监测网络数据的兼容性就非常重要,这就要求在监测技术和方法上、质量控制以及质量保证方面尽可能一致或相近。为了满足野外站点长期无人值守的监测需求,这要求温室气体分析仪在保证高精度,低漂移,长期稳定性的基础上,更加注重坚固耐用,简单便携,易于安装,便于维护的特性。仪器信息网:关于温室气体监测,目前国内外市场发展态势如何?目前主流市场有怎样的竞争格局?海兰达尔:目前高精度的温室气体监测仪器仍以进口为主,进口仪器技术已经相当成熟,在国际上多个重要的温室气体监测网络(如中国气象局温室气体观测网,世界气象组织(WMO)GAW,欧洲综合碳观测系统(ICOS)等)都有广泛的应用和部署。国产化的温室气体监测设备还在发展中,仪器的性能(包括精度,漂移等)和稳定性还需要有效地验证。当前的主流技术和品牌有:光腔衰荡光谱法(美国Picarro品牌),离轴积分腔输出光谱法,以及传统的非分散红外光谱法和傅里叶变换红外光谱法等。其中首屈一指的技术就是Picarro的CRDS光谱技术,仪器测量的性能和稳定性均为最佳,是高精度监测的首选设备,被誉为温室气体监测的黄金标准,也已经被广泛应用在多个试点城市,占据了高精度温室气体监测的主要市场。仪器信息网:贵公司销售的温室气体监测仪与市场上同类品牌相比有什么优势?海兰达尔:海兰达尔是美国Picarro公司在国内的授权销售和售后服务商,所提供的Picarro分析仪是世界上最顶尖的高精度温室气体监测设备。Picarro的所有产品均基于其核心技术-光腔衰荡光谱(CRDS)技术,拥有超过45个光腔衰荡光谱专利。不同于其它光谱技术,CRDS 技术并不通过测量光强经样品后的变化来测得样品的吸收度,而是测量光强在光腔内的衰荡时间,这样可以使其不像传统光谱技术那样受到光源干扰而造成的测量偏差。同时Picarro仪器光腔内部进行精确的温度和压强控制,保证光腔内环境的稳定性,从而最大程度地减小测量中分析仪对环境的依赖效应。高精度的温室气体分析仪会自动进行水汽校正,排除掉水汽对CO2,CH4浓度测量的影响,这也是其如此高精度的最重要保证和Picarro产品区别于同类产品的最大特点。Picarro产品与同类品牌相比的优势有以下这些:高精度(满足WMO和ICOS以及国内环境监测部门对于数据质量的要求)低漂移,长期稳定性好;专利技术,已被众多国际监测网络认可并大量应用操作简单,无耗材,维护频率低;具有独特的水汽校正,精确报告待测气体的干气摩尔分数。简单便携,易于安装,便于维护,可在野外或实验室部署;仪器信息网:贵公司在温室气体检测产品线方面是如何布局的?目前有哪些产品或者成果?海兰达尔:我司销售的温室气体分析仪以Picarro高精度温室气体浓度和同位素产品为主,主要有:高精度温室气体浓度分析仪:G2301(CO2,CH4),G2401(CO2,CH4和CO),G5310(N2O,CO),G4301(便携式测量CO2,CH4)。温室气体稳定碳同位素和浓度分析仪:G2131-i(CO2,CH4浓度,δ13C-CO2), G2201-i(CO2,CH4浓度,δ13C-CO2,δ13C-CH4)。同时我司配合Picarro产品自主研发了配套的温室气体监测预处理系统,包括多通道进样系统(GHG-PRE系列)和样气冷凝除湿系统(GHG-CT系列冷阱),GHG-CT系列冷阱能将样气降低至-50℃甚至-70℃条件下进行除水,使其符合国标和WMO对于温室气体样气除水效率的要求。GHG-PRE系列除实现样气和标气的自动切换以外,还能对冷阱进行控制,包括制冷温度、切换温度、除霜温度、除霜时间、A/B双通道冷阱切换等,这使得样气除水通道的A和B分别处于冷凝除水和加热除霜状态,并定时进行状态切换,以实现冷阱的免维护。此外,除水通道状态切换能配合前端的多路选择阀进行设置,这保证了冷阱的无盲点运行,使得样气始终处于冷凝除湿状态。目前这套预处理系统通过了国内第三方检测机构多项测试和检验,配合Picarro高精度温室气体分析仪,已在多个高精度温室气体监测站点实现安装运行,突破性的设计和鲜明的技术特点使其非常适合高精度温室气体监测对于样气除水的要求。高精度温室气体监测系统安装应用案例海兰达尔预处理系统通过检测报告仪器信息网:目前,贵公司温室气体监测仪的销售情况如何?有哪些典型的应用单位?从对未来的预期来说,哪些单位会是仪器使用大户?海兰达尔:目前我司销售的高精度温室气体分析仪在全国多个环境监测部门、气象部门和科研机构都有广泛应用。典型应用单位有:无锡市生态环境局,江苏省环境监测中心,中国环境监测总站,广州市环境监测中心站,深圳市环境监测中心站,中国气象局,浙江省气象局,安徽省气象局,山西省气象局,中国科学院青藏高原研究所,北京大学,集美大学,西北大学等。对于中国市场,我司除了在现有的环境监测和气象行业继续深耕以外,会更加拓展其它行业的业务机会,如石油石化等重点行业和生态监测行业等,这些行业都有潜在的温室气体监测需求。在未来,气象行业、生态环境监测行业等相关领域会是使用大户。仪器信息网:贵公司将来重点关注和拓展的方向是什么?目前已经在开展或将开展哪些气体监测创新仪器/应用的研究? 海兰达尔:我司未来会更加关注温室气体稳定碳同位素的应用,寻求利用稳定碳同位素进行碳源汇监测的市场机会,另外关注生态监测中碳通量监测。同时,拓展温室气体分析仪移动监测业务,比如车载,船载和无人机等方式,形成立体化监测的网络。
  • HEPS首批X射线拉曼散射谱仪分析晶体完成在线测试
    近日,中科院高能所自主研制的球面弯曲分析晶体取得突破性进展,助力高能同步辐射光源(HEPS)高能量分辨谱学线站建设。针对国内高压科学、能源材料等多学科的学科优势,为满足广大用户需求,HEPS高能量分辨谱学线站正在设计建造一台具有先进国际水平的X射线拉曼散射(XRS)谱仪—“乾坤”。其中,球面压弯分析晶体基于罗兰圆几何条件,将特定能量的X射线聚焦至探测器上,是XRS谱仪的核心光学部件。聚焦面形精度和高能量分辨是球面弯曲分析晶体的两项极为关键,又互相影响的技术指标,因而极具挑战性。“乾坤”谱仪采用6组模组化分析晶体阵列,由90余块半径1m的分析晶体构成,其晶体能量分辨的设计指标与电子-空穴态寿命展宽数量级相当,达到ΔE/E~10-5,球面弯曲面形精度满足1:1聚焦需求。在HEPS工程指挥部的部署下,HEPS高能量分辨谱学线站团队与光学设计、光学机械、光束线控制系统相关人员,联合多学科中心晶体实验室积极攻关。线站核心成员郭志英、多学科中心晶体实验室刁千顺,经过多年技术攻关和反复尝试,不断改进优化分析晶体制备工艺,最终探索出兼顾能量分辨与聚焦特性于一体的球面弯曲分析晶体制备方法。今年10月2日-5日,项目团队在北京同步辐射装置(BSRF)1W2B线站上,采用Si(111)双晶单色器Si(220)切槽单色器两次单色化、毛细管微聚焦的光学配置,利用自研三元谱仪样机,对谱仪单模组内15块分析晶体(图1),采用EPICS-Bluesky控制系统实现单色器联动扫描,开展了批量、高精度指标测试(装置见图2)。优化后入射能量带宽实现高分辨,达到半高全宽0.8eV@9.7keV,分析晶体自身能量分辨(图3)达到半高全宽~1eV@9.7keV,与理论预测值相当,聚焦特性得到充分验证(图3、图4),各项指标全部满足工程设计需求。HEPS高能量分辨谱学线站是我国首条专注于硬X射线非弹性散射谱学实验的线站,聚焦核能级超精细结构、声子态密度、芯能级电子跃迁和价电子激发的探测,主要提供核共振散射(NRS)、XRS、共振非弹性散射(RIXS)等谱学方法,服务于量子科学、能源科学、材料科学、凝聚态物理、化学、生物化学、地学、高压科学、环境科学等多学科前沿研究。其中,XRS是一种基于X射线非弹性散射原理的先进谱学实验技术,欧洲ESRF (72块分析晶体)、美国APS(19块分析晶体)、日本SPring-8(12块分析晶体)、法国SOLEIL(40块分析晶体)、英国Diamond光源等光源已建成或规划建设XRS旗舰线站。由于非弹性散射截面极小,比X射线吸收截面小4~5个量级,XRS实验技术需要高亮度光源以增加入射光子通量,同时也需要大立体角谱仪提高探测效率,而大立体角探测需要多块发现晶体实现。首批分析晶体的指标通过在线测试,将满足大批量分析晶体加工的工程需求,对HEPS“乾坤”谱仪、高能量分辨谱学线站的实施都具有里程碑意义。值得一提的是,该类型分析晶体的工艺也已经用于多种类型谱仪分析晶体的研制。接下来,该团队将高质量完成其余模组分析晶体的批量加工,同时,将致力攻关无应力高能量分辨分析晶体的研制。晶体研发工作还获得先进光源技术研发与测试平台PAPS的支持,BSRF-1W2B、3W1、4W1A、4W1B线站提供机时。图1. HEPS自研分析晶体图2. 分析晶体测试装置,其中,左图给出了散射光和分析晶体分析光路示意图图3 分析晶体测试结果,左上为4#晶体能量分辨率实验结果和拟合曲线,左下为三块晶体在探测器上的聚焦光斑,右侧为分析晶体能量分辨率批量测试结果图4 扫描单色器能量时探测器上的光斑变化情况图5 测试人员合影
  • 8项分析测试仪器上榜!国资委发布2020央企科技创新成果推荐目录
    近日,国资委发布《中央企业科技创新成果推荐目录(2020年版)》,以促进科技成果向现实生产力转化,加快中央企业科技创新成果应用推广。在此次发布的央企科技创新成果中,其中有8项为分析测试仪器,包含电感耦合等离子体质谱仪、短波长X射线衍射仪、色度亮度计等,涉及单位包括中国电科、中国钢研、兵器工业集团等。中央企业科技创新成果推荐目录(2020年版 分析测试仪器)序号技术产品名称企业名称所属领域37分布式光纤传感系统航天科技分析测试仪器38全视角高精度三维测量仪航空工业集团分析测试仪器39色度亮度计兵器工业集团分析测试仪器40短波长X射线衍射仪兵器装备集团分析测试仪器414051系列信号/频谱分析仪中国电科分析测试仪器42汽车变速器齿轮试验测试装备机械总院集团分析测试仪器43电感耦合等离子体质谱仪中国钢研分析测试仪器44分布式高精度应变、温度、振动光纤传感测试仪中国信科分析测试仪器
  • Xylem分析仪器集团将参加3月IE Expo中国环博会
    Xylem分析仪器集团作为全球著名的分析仪器供应商,将参加2012年3月7日到9日在上海新国际博览中心举行的中国环博会。为适应品牌长期发展需要,更好地整合双方品牌资源、营销资源和客户资源,为环保行业打造一个更加高效的交流和贸易平台,主办方决定,自2012年起将IFATCHINA +EPTEE+CWS更名为 &ldquo IE expo,中国国际环保博览会(简称&ldquo 中国环博会&rdquo )&rdquo ,英文名为&ldquo IE expo&rdquo ,该展会将由双方最优秀项目团队组建而成的合资公司管理运营。IE expo 2012将在品牌、阵容、模式、展品布局等方面全面升级,于2012年3月7-9日继续在上海新国际博览中心举办。一场亚洲规模最大、国际化程度最高的环保行业盛会将以全新的面貌呈现给业界。 我们的展台面积32平米,位于全场的核心位置(N5馆5219),展台风格凸现简洁大气、以人为本的设计理念并设置了舒适典雅的商务洽谈区域。这次我们将重点展示WTW在线多参数监测系统IQ Sensor Net,OxiTop BOD测试仪,photolab 6600分光光度计以及其它众多手持和实验室测试仪;YSI先进的水质测试仪;Sontek流速流量计;挪威AADI专用海水测试系统;美国OI优秀的TOC分析仪。 我们欢迎并诚邀各位同仁、分销商以及广大客户莅临参观。
  • 热机械分析仪原理简介
    p  热机械分析是在程序控温非振动负载下(形变模式有膨胀、压缩、针入、拉伸或弯曲等不同形式),测量试样形变与温度关系的技术,使用这种技术测量的仪器就是热机械分析仪(Thermomechanical analyzer-TMA)。/pp  热机械分析仪的结构如图所示。试样探头上下垂直移动,探头上的负载由力发生器产生,探头由固定在其上面的悬臂梁和螺旋弹簧支撑,通过加马力马达对试样施加载荷,位移传感器测量探头的位置。探头直接放置于试样上,或者放置于试样上的石英圆片上 测量试样温度的热电偶置于试样下。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/b6873b57-b49c-48ca-813d-250f596f2cd4.jpg" title="热机械分析仪结构示意图.jpg" width="400" height="339" border="0" hspace="0" vspace="0" style="width: 400px height: 339px "//pp style="text-align: center "strong热机械分析仪结构示意图/strong/pp style="text-align: center "1.气体出口旋塞 2.螺纹夹 3.炉体加热块 4.水冷炉体加套 5.试样支架 6.炉温传感器 7.试样温度传感器 8.反应气体毛细管 9.测量探头 10.垫圈 11.恒温测量池 12.力发生器 13.位移传感器(LVDT) 14.弯曲轴承 15.校正砝码 16.保护气进口 17.反应气进口 18.真空连接与吹扫气入口 19.冷却水 20.试样/pp  TMA的核心部件是LVDT位移传感器,LVDT(Linear Variable Differential Transformer)是线性可变差动变压器缩写,属于直线位移传感器。LVDT的结构由铁心、衔铁、初级线圈、次级线圈组成。初级线圈、次级线圈分布在线圈骨架上,线圈内部有一个可自由移动的杆状衔铁。当衔铁处于中间位置时,两个次级线圈产生的感应电动势相等,这样输出电压为0 当衔铁在线圈内部移动并偏离中心位置时,两个线圈产生的感应电动势不等,有电压输出,其电压大小取决于位移量的大小。为了提高传感器的灵敏度,改善传感器的线性度、增大传感器的线性范围,设计时将两个线圈反串相接、两个次级线圈的电压极性相反,LVDT输出的电压是两个次级线圈的电压之差,这个输出的电压值与铁心的位移量成线性关系。线圈系统内的铁磁芯与测量探头连接,产生与位移成正比的电信号。电磁线性马达可消除部件的重力,保证探头传输希望的力至试样。使用的力通常为0~1N。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/633cd90b-c338-4e46-9cce-ad33b88907d8.jpg" title="TMA常用测量模式示意图.jpg" width="400" height="134" border="0" hspace="0" vspace="0" style="width: 400px height: 134px "//pp style="text-align: center "strongTMA常用测量模式示意图/strong/ppstrong压缩或膨胀/strong/pp  两面平行的试样上覆盖一片石英玻璃圆片,以使压缩应力均匀分布。膨胀测试时,作用在圆柱体试样上力仅产生很小的压缩应力。/ppstrong针入模式/strong/pp  这种模式通常用来测定试样在负载下软化或形变开始的温度。通常用球点探头作针入测试,开始时球点探头仅与试样上的很小面积接触,加热时如果试样软化,则探头逐渐深入试样,接触面积增大,形成球星凹痕,导致测试过程中压缩应力下降。/ppstrong三点弯曲/strong/pp  这种模式非常适合在压缩模式中不会呈现可测量形变的硬材料如纤维增强塑料或金属。/ppstrong拉伸模式/strong/pp  适合薄膜或纤维。/pp style="text-align: center "strongspan style="color: rgb(255, 0, 0) "典型的TMA测量曲线/span/strong/ppstrong热膨胀系数测量曲线/strong/pp  热膨胀系数(coefficient of thermal expansion,CTE)也简称为膨胀系数。/pp  大多数材料在加热时膨胀。线膨胀系数α定义如下:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/774dbd00-e900-436f-b22e-2a114baf6286.jpg" title="TMA-1.jpg"//pp式中,dL为由温度变化dT引起的长度变化 Lsub0/sub为温度Tsub0/sub(通常为室温25℃)时的原始长度 α单位为10sup-6/supKsup-1/sup。/ppstrong玻璃化转变的TMA测量曲线/strong/pp  测定玻璃化转变温度是TMA最常进行的测试之一。在玻璃化转变处,由于热膨胀系数增大,导致膨胀测量曲线斜率明显增大。通过外推两段具有不同斜率热膨胀系数曲线所得到的焦点,即为玻璃化转变温度。/ppstrong测量杨氏模量的DLTMA曲线/strong/pp  如果采用振动负载,即负载呈周期性变化,则称为动态负载热机械分析(dynamic load thermomechanical analysis-DLTMA),该模式为TMA的扩展功能,可测量试样的杨氏模量。如果能确保在测试过程中施加在整个试样上的机械应力相同,就可由DLTMA曲线测定杨氏模量(弹性模量)。/pp  从原理上来说,DLTMA曲线类似于DMA曲线,傅里叶分析可得到应力应变之间的关系,可将复合模量分成储能模量和损耗模量。然而由于若干原因,这些计算并不准确,特别是用弯曲模式。因此,若想测定储能模量和损耗模量,最好用动态热机械分析DMA。/p
  • 广西大学315.10万元采购脑立体定位仪
    基本信息 关键内容: 脑立体定位仪 开标时间: 2022-03-15 09:00 采购金额: 315.10万元 采购单位: 广西大学 采购联系人: 张文华 采购联系方式: 立即查看 招标代理机构: 广西科文招标有限公司 代理联系人: 梁伟贞 代理联系方式: 立即查看 详细信息 广西科文招标有限公司关于科研设备采购(GXZC2022-G1-000169-KWZB)的公开招标公告 广西壮族自治区-南宁市-西乡塘区 状态:公告 更新时间: 2022-02-21 项目概况 科研设备采购招标项目的潜在投标人应在政采云平台获取招标文件,并于 2022年03月15日 09:00(北京时间)前递交投标文件。 一、项目基本情况 项目编号:GXZC2022-G1-000169-KWZB 项目名称:科研设备采购 预算总金额(元):3151000 采购需求: 标项名称:广西大学脑立体定位仪系统数量:12预算金额(元):3151000简要规格描述或项目基本概况介绍、用途:序号 标的的名称 单项预算(万元) 数量 单位 简要技术需求或者服务要求1 小动物呼吸麻醉系统 9 1 套 流量可控范围0.1--4L/min,5个分支独立控制2 小动物微量给药系统 9.8 1 套 夹持注射器量程范围0.5-1000ul,线性推力: 11lbs/min 3 脑立体定位仪系统 18 1 套 操作臂上下、左右、前后移动范围80mm,搭配高精度丝杆,运行精度1μm4 机械痛测定仪 13.7 1 台 使用高精确度和高灵敏度压力传感器,可施加的压力范围0-450g,分辨率0.1g。5 红外热痛测试仪 9.7 1 台 允许支架容纳6只大鼠或12只小鼠进行测试。6 冷热盘测痛仪 9.6 1 台 温度可在 0-65℃范围内进行调节,调节精度为 0.1℃7 甩尾测痛仪 8.8 1 台 数字控制程序 用户可自定义“cut-off”时间。8 大、小鼠条件性位置偏爱系统 38 1 套 尺寸约总长60cm*中间长12cm*总宽31cm*中间宽10cm*高 31cm。9 小动物行为视频分析系统 98 1 套 采用模块化设计,可以处理并分析实时影像,也可以处理已经录制好的影像,影像视频格式必须支持常见的MPG、MPEG、AVI、DIVX、VOB等格式。10 大、小鼠转棒仪 18.5 1 台 加速设定范围5-70rpm可调16cm降落高度。11 步态记录分析系统 68 1 套 动物跑道前后墙壁长度范围7.6cm-61cm可调,以及130cm x 68cm固定跑道。12 大、小鼠跑步机 14 1 台 跑带速度3-80m/min可调,步进量1m/min。 最高限价(如有):/ 合同履约期限:详见采购文件 本标项(否)接受联合体投标备注: 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:无 3.本项目的特定资格要求:无 三、获取招标文件 时间:2022年02月21日至2022年03月15日 ,每天上午00:00至12:00 ,下午12:00至23:59(北京时间,法定节假日除外) 地点(网址):政采云平台 方式:供应商登录政采云平台https://www.zcygov.cn/在线申请获取采购文件(进入“项目采购”应用,在获取采购文件菜单中选择项目,申请获取采购文件) 售价(元):0 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年03月15日 09:00(北京时间) 投标地点(网址):“政采云”平台 开标时间:2022年03月15日 09:00 开标地点:“政采云”平台 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、投标保证金(人民币):30000元。保证金专用银行账号:开户名称:广西科文招标有限公司开户银行:广西北部湾银行南宁分行营业部银行账号:01010120906156892、单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。为本项目提供过整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加本项目上述服务以外的其他采购活动。3、根据财政部《关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库〔2016〕125号)的规定,对在“信用中国”网站(www.creditchina.gov.cn) 、中国政府采购网(www.ccgp.gov.cn)被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单及其他不符合《中华人民共和国政府采购法》第二十二条规定条件的供应商,不得参与政府采购活动。4、网上查询地址:中国政府采购网(www.ccgp.gov.cn)、广西政府采购网(zfcg.gxzf.gov.cn)。5、本项目需要落实的政府采购政策:(1)政府采购促进中小企业发展。(2)政府采购支持采用本国产品的政策。(3)强制采购节能产品;优先采购节能产品、环境标志产品。(4)政府采购促进残疾人就业政策。(5)政府采购支持监狱企业发展。(6)扶持不发达地区和少数民族地区政策6、投标注意事项:(1)投标文件提交方式:本项目为全流程电子化政府采购项目,通过“政采云”平台(http://www.zcygov.cn)实行在线电子投标,供应商应先安装“政采云电子交易客户端”(请自行前往“政采云”平台进行下载),并按照本项目招标文件和“政采云”平台的要求编制、加密后在投标截止时间前通过网络上传至“政采云”平台,供应商在“政采云”平台提交电子版投标文件时,请填写参加远程开标活动经办人联系方式。(2)供应商应及时熟悉掌握电子标系统操作指南(见政采云电子卖场首页右上角—服务中心—帮助文档—项目采购):https://service.zcygov.cn/#/knowledges/tree?tag=AG1DtGwBFdiHxlNdhY0r;及时完成CA申领和绑定(见广西壮族自治区政府采购网—办事服务—下载专区-政采云CA证书办理操作指南)。(3)未进行网上注册并办理数字证书(CA认证)的供应商将无法参与本项目政府采购活动,潜在供应商应当在投标截止时间前,完成电子交易平台上的CA数字证书办理及投标文件的提交。完成CA数字证书办理预计7日左右,投标人只需办理其中一家CA数字证书及签章,建议各投标人抓紧时间办理。(4)为确保网上操作合法、有效和安全,请投标人确保在电子投标过程中能够对相关数据电文进行加密和使用电子签章,妥善保管CA数字证书并使用有效的CA数字证书参与整个采购活动。注:投标人应当在投标截止时间前完成电子投标文件的上传、递交,投标截止时间前可以补充、修改或者撤回投标文件。补充或者修改投标文件的,应当先行撤回原文件,补充、修改后重新上传、递交。投标截止时间前未完成上传、递交的,视为撤回投标文件。投标截止时间以后上传递交的投标文件,“政采云”平台将予以拒收。7、CA证书在线解密:供应商投标时,需携带制作投标文件时用来加密的有效数字证书(CA认证)登录“政采云”平台电子开标大厅现场按规定时间对加密的投标文件进行解密,否则后果自负。8、若对项目采购电子交易系统操作有疑问,可登录“政采云”平台(https://www.zcygov.cn/),点击右侧咨询小采,获取采小蜜智能服务管家帮助,或拨打政采云服务热线400-881-7190获取热线服务帮助。 七、对本次采购提出询问,请按以下方式联系 1.采购人信息 名 称:广西大学 地 址:广西南宁市西乡塘区大学东路100号广西大学 项目联系人:张文华 项目联系方式:0771-3274121 2.采购代理机构信息 名 称:广西科文招标有限公司 地 址:广西南宁市民族大道141号中鼎万象东方D区五层 项目联系人:梁伟贞 项目联系方式:0771-2023650 附件信息: 569.0K × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:脑立体定位仪 开标时间:2022-03-15 09:00 预算金额:315.10万元 采购单位:广西大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:广西科文招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 广西科文招标有限公司关于科研设备采购(GXZC2022-G1-000169-KWZB)的公开招标公告 广西壮族自治区-南宁市-西乡塘区 状态:公告 更新时间: 2022-02-21 项目概况 科研设备采购招标项目的潜在投标人应在政采云平台获取招标文件,并于 2022年03月15日 09:00(北京时间)前递交投标文件。 一、项目基本情况 项目编号:GXZC2022-G1-000169-KWZB 项目名称:科研设备采购 预算总金额(元):3151000 采购需求: 标项名称:广西大学脑立体定位仪系统数量:12预算金额(元):3151000简要规格描述或项目基本概况介绍、用途:序号 标的的名称 单项预算(万元) 数量 单位 简要技术需求或者服务要求1 小动物呼吸麻醉系统 9 1 套 流量可控范围0.1--4L/min,5个分支独立控制2 小动物微量给药系统 9.8 1 套 夹持注射器量程范围0.5-1000ul,线性推力: 11lbs/min 3 脑立体定位仪系统 18 1 套 操作臂上下、左右、前后移动范围80mm,搭配高精度丝杆,运行精度1μm4 机械痛测定仪 13.7 1 台 使用高精确度和高灵敏度压力传感器,可施加的压力范围0-450g,分辨率0.1g。5 红外热痛测试仪 9.7 1 台 允许支架容纳6只大鼠或12只小鼠进行测试。6 冷热盘测痛仪 9.6 1 台 温度可在 0-65℃范围内进行调节,调节精度为 0.1℃7 甩尾测痛仪 8.8 1 台 数字控制程序 用户可自定义“cut-off”时间。8 大、小鼠条件性位置偏爱系统 38 1 套 尺寸约总长60cm*中间长12cm*总宽31cm*中间宽10cm*高 31cm。9 小动物行为视频分析系统 98 1 套 采用模块化设计,可以处理并分析实时影像,也可以处理已经录制好的影像,影像视频格式必须支持常见的MPG、MPEG、AVI、DIVX、VOB等格式。10 大、小鼠转棒仪 18.5 1 台 加速设定范围5-70rpm可调16cm降落高度。11 步态记录分析系统 68 1 套 动物跑道前后墙壁长度范围7.6cm-61cm可调,以及130cm x 68cm固定跑道。12 大、小鼠跑步机 14 1 台 跑带速度3-80m/min可调,步进量1m/min。 最高限价(如有):/ 合同履约期限:详见采购文件 本标项(否)接受联合体投标备注: 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:无 3.本项目的特定资格要求:无 三、获取招标文件 时间:2022年02月21日至2022年03月15日 ,每天上午00:00至12:00 ,下午12:00至23:59(北京时间,法定节假日除外) 地点(网址):政采云平台 方式:供应商登录政采云平台https://www.zcygov.cn/在线申请获取采购文件(进入“项目采购”应用,在获取采购文件菜单中选择项目,申请获取采购文件) 售价(元):0 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年03月15日 09:00(北京时间) 投标地点(网址):“政采云”平台 开标时间:2022年03月15日 09:00 开标地点:“政采云”平台 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、投标保证金(人民币):30000元。保证金专用银行账号:开户名称:广西科文招标有限公司开户银行:广西北部湾银行南宁分行营业部银行账号:01010120906156892、单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。为本项目提供过整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加本项目上述服务以外的其他采购活动。3、根据财政部《关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库〔2016〕125号)的规定,对在“信用中国”网站(www.creditchina.gov.cn) 、中国政府采购网(www.ccgp.gov.cn)被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单及其他不符合《中华人民共和国政府采购法》第二十二条规定条件的供应商,不得参与政府采购活动。4、网上查询地址:中国政府采购网(www.ccgp.gov.cn)、广西政府采购网(zfcg.gxzf.gov.cn)。5、本项目需要落实的政府采购政策:(1)政府采购促进中小企业发展。(2)政府采购支持采用本国产品的政策。(3)强制采购节能产品;优先采购节能产品、环境标志产品。(4)政府采购促进残疾人就业政策。(5)政府采购支持监狱企业发展。(6)扶持不发达地区和少数民族地区政策6、投标注意事项:(1)投标文件提交方式:本项目为全流程电子化政府采购项目,通过“政采云”平台(http://www.zcygov.cn)实行在线电子投标,供应商应先安装“政采云电子交易客户端”(请自行前往“政采云”平台进行下载),并按照本项目招标文件和“政采云”平台的要求编制、加密后在投标截止时间前通过网络上传至“政采云”平台,供应商在“政采云”平台提交电子版投标文件时,请填写参加远程开标活动经办人联系方式。(2)供应商应及时熟悉掌握电子标系统操作指南(见政采云电子卖场首页右上角—服务中心—帮助文档—项目采购):https://service.zcygov.cn/#/knowledges/tree?tag=AG1DtGwBFdiHxlNdhY0r;及时完成CA申领和绑定(见广西壮族自治区政府采购网—办事服务—下载专区-政采云CA证书办理操作指南)。(3)未进行网上注册并办理数字证书(CA认证)的供应商将无法参与本项目政府采购活动,潜在供应商应当在投标截止时间前,完成电子交易平台上的CA数字证书办理及投标文件的提交。完成CA数字证书办理预计7日左右,投标人只需办理其中一家CA数字证书及签章,建议各投标人抓紧时间办理。(4)为确保网上操作合法、有效和安全,请投标人确保在电子投标过程中能够对相关数据电文进行加密和使用电子签章,妥善保管CA数字证书并使用有效的CA数字证书参与整个采购活动。注:投标人应当在投标截止时间前完成电子投标文件的上传、递交,投标截止时间前可以补充、修改或者撤回投标文件。补充或者修改投标文件的,应当先行撤回原文件,补充、修改后重新上传、递交。投标截止时间前未完成上传、递交的,视为撤回投标文件。投标截止时间以后上传递交的投标文件,“政采云”平台将予以拒收。7、CA证书在线解密:供应商投标时,需携带制作投标文件时用来加密的有效数字证书(CA认证)登录“政采云”平台电子开标大厅现场按规定时间对加密的投标文件进行解密,否则后果自负。8、若对项目采购电子交易系统操作有疑问,可登录“政采云”平台(https://www.zcygov.cn/),点击右侧咨询小采,获取采小蜜智能服务管家帮助,或拨打政采云服务热线400-881-7190获取热线服务帮助。 七、对本次采购提出询问,请按以下方式联系 1.采购人信息 名 称:广西大学 地 址:广西南宁市西乡塘区大学东路100号广西大学 项目联系人:张文华 项目联系方式:0771-3274121 2.采购代理机构信息 名 称:广西科文招标有限公司 地 址:广西南宁市民族大道141号中鼎万象东方D区五层 项目联系人:梁伟贞 项目联系方式:0771-2023650 附件信息: 569.0K
  • 纳米压痕仪NHT³ | 焊接的应力应变研究
    焊接质量一般是通过焊缝质量好坏来做评定,而焊缝质量取决于所焊接的物体、焊接填充物以及所选用的焊接工艺及参数。为了更好地去优化和改善焊接工艺,对于焊缝及其热影响区进行力学性能表征是极其有意义的。对局部弹塑性特性的兴趣导致了一种新检测技术的发展,该技术使用球形压头对焊缝及其热影响区进行局部应力应变性能表征,加载期间使用振动的压痕允许非常局部地确定试验材料的代表性应力-应变曲线。简单的应力应变分析在Anton-Paar压痕软件中实现。该方法可适用于焊缝及其附近不同区域的局部力学性能的表征。01焊缝裂纹尖端附近的弹塑性行为研究纳米压痕仪 NHT3通过展示仪器化纳米压痕测试方法获得低合金钢焊缝中裂纹尖端附近区域和远离裂纹尖端区域的应力应变行为。焊缝出现裂纹通常是由焊接过程中焊缝快速凝固产生的热应力引起的,或由内部显微结构的发生改变所引起的,导致硬度和屈服强度增加,但抗断裂性降低。为了了解局部区域的应力应变行为,仪器化纳米压痕法是能够提供此信息的少数方法之一,局部应力应变测量的目的是帮助理解焊缝开裂的原因。图1 : 靠近或远离焊缝裂纹尖端局部区域的仪器化压痕测试使用Anton-Paar纳米压痕仪NHT3搭载半径为20 µm球型针尖对两个已经存在焊缝裂纹的样品进行测试,以获得局部的应力应变行为;与传统的静态测试方法不同的是,在这次的应用案例中将采用在加载过程增加正弦波加载方式的动态测试方法 (Sinus),选取最大载荷为500 mN,加载卸载速率为1000 mN/min,动态加载振幅为50 mN,频率为5 Hz。图2:载荷位移曲线图3:应力应变曲线图2和图3显示了动态加载测试下获得的压痕曲线,以及从两个区域的压痕曲线中获得的应力应变曲线。可以看出裂纹尖端附近区域的屈服强度远高于远离裂纹尖端的区域。屈服强度的增加通常与延展性的降低有关,这可能对焊缝的抗断裂韧性产生至关重要影响。在外部荷载作用下,靠近裂纹尖端的材料屈服强度增加,往往会出现比基材更早断裂的情况,因此在整个结构中是个力学薄弱点。焊缝中的断裂会导致整个部件失效,因此应该去调整焊接参数,使裂纹尖端附近的材料具有较低的屈服应力和较高的抗断裂性。02焊接铝合金的应力应变行为研究仪器化纳米压痕测试方法中应力应变分析的另一个经典应用是研究金属焊缝周围的弹塑性,尤其是软金属,例如铝合金。铝合金比钢对高温更敏感,因此,研究铝合金的焊接热效应尤为更重要。在本应用所提及的研究中,在加载过程中使用正弦波动态加载模式,利用球形纳米压痕针尖的特性对两种不同的铝合金焊缝附近的弹塑性行为进行局部表征。球形纳米压痕针尖用于确定靠近焊缝(区域A)且距离焊缝约2mm(区域B)的应力应变特性。图4:对比距离焊缝近的区域A和距离焊缝2mm处区域B的应力应变行为使用NHT3纳米压痕仪搭载半径20µm球型针尖作为表征手段,选取的最大载荷为300 mN、加载卸载速率为600 mN/min。在加载过程中采用正弦波的动态加载模式,振幅为30 mN,频率为5 Hz。图4展示了区域A和区域B的应力应变曲线的比较。两个区域表现出相类似的弹塑性行为,屈服应力约为0.3 GPa。这表明焊接过程中加热和冷却对材料的弹塑性性能的影响可以忽略不计。然而,并非所有情况下都是如此,焊接区域的局部应力应变行为仍然是优化焊接参数的重要信息。03搅拌摩擦焊接铝合金的应力应变研究搅拌摩擦焊(FSW)通常是铝合金焊接工艺更好地选择,而传统电弧焊由于铝的高导热性而容易产生较大的热影响区。FSW中的焊接温度远低于中心接触点,因此热效应的传导不如弧焊中明显。在这种情况下,将两种不同的铝合金AA6111-T4(T4)和AA6061-T6(T6)焊接在一起,并在距离熔核中心位置的1.1 mm、2.2 mm和3.3 mm处研究硬度、弹性模量和屈服应力。以下参数用于压痕:最大载荷300 mN,加载速率600 mN/min,动态加载模式下选取振幅30 mN,频率5 Hz。图5的结果表明随着距熔核距离的增加,所表现出的应力应变行为大致一样,仅存在微小差异。在所有的三个区域的屈服应力大约为0.33 GPa(两种基材中的屈服应力大约为0.27 GPa,图中未显示)。母材的硬度为0.8 GPa(T4合金)和1.1 GPa(T6合金)。所有三个区域(距焊缝熔核1.1 mm、2.2 mm和3.3 mm)的硬度均为1.1 GPa,这证实焊缝附近的弹塑性能并没有发生显著变化。图5:距熔核不同位置的应力应变曲线Aoton-Paar自研自产的纳米压痕仪能非常好地去胜任微观局部的应力应变分析,新一代的检测手段的开发有助于焊接行业的进一步发展。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 气相、液相分析仪器现场全程培训服务
    气相、液相分析仪器现场全程培训服务,我们致力于让实验工作更加高效、便捷、规范!2020年9月9日,经过标准的清理清洁、性能测试和配置清点, 1套LC和1套GCMS 打包发货准备中...打包的仪器有:1,GCMS气质联用 品牌:安捷伦, 型号:7890A-5975C+150位7693自动进样器2,HPLC液相色谱 品牌:安捷伦, 型号:1200+DAD+FLD配四元泵和自动进样器 9月15日,接到客户的收货通知,工程师即刻出发,当天就到达客户现场,实验室宽敞明亮。 我们和客户经过初步的沟通交流后,拆箱清点,并确认安装位置。 按照客户的要求,两台靓机归位,即刻点亮了全场。\ 安装就绪后,再确认一下仪器性能。 确认仪器正常后,开始基本的操作和使用培训。 精彩还在继续,除了常规的安装调试,我们的工程师也是应用高手,陪同客户一起逐一完成了即将开展项目的方法开发和培训。 大家是不是觉得咱工程师的工作就到此为止了?接下来是时候展示真正的技术了,仪器的维护保养以及故障处理边学边练,一组大师即将诞生的节奏。 相聚总是太匆匆,一眨眼四天时间已经过去了,工程师即将离开执行新的任务,几天的相处,大家已经由当初的陌生变成了很好的朋友,合影留个纪念吧 各位未来的大师们,继续消化熟悉这几天的内容吧,期待来谱标技术中心参加进阶培训的时候再相聚!
  • 海外直播丨实现高精度CAE分析实验的材料评价案例?技术介绍
    岛津制作所生产试验机已经有100多年的悠久历史,基于丰富的材料测试经验研发的新型AGX-V型试验机采用高刚性框架、智能横梁、多处理器和控制单元实现了高速采样和高精度自动控制。智能操作手柄和直观便捷的试验软件,可方便地创建试验条件和对试验结果进行数据处理。配置新型的行程限位开关和安全防护罩,有效地保证了试验操作安全。 复合材料以其优异的力学性能获得越来越广泛的关注和应用,其在宏观上表现出明显的不均匀性和各向异性的材料特性,而这种特性直接影响了复合材料的宏观力学性能表现,准确地测量这种不均匀和各向异性材料的力学性能是复合材料设计和应用的重要实验数据。本次报告采用在岛津AGX-V试验机上搭载非接触式引伸计TRViewX和DIC分析软件,以高数据密度的全场测量方法,准确获取复合材料的不均匀和各向异性的力学性能数据。 12月,我们有幸邀请到日本岛津制作所村上岳先生,为我们带来《实现高精度CAE分析实验的材料评价案例?技术介绍》"为了降低以汽车为首的运输机器的环境负荷,寻求车体的轻量化,CFRP等复合材料的活用也陆续开始了。复合材料与以往的材料不同,由于内部结构的复杂,需根据应力负荷主轴方向来显示较复杂的破坏行为,因此是较难看到高精度结构分析模型的一种材料。本次会介绍通过实际试验和数值分析模拟的比较,来验证热塑性CFRP拉伸行为的案例。除此之外,我会结合安装在最新的材料试验机上的多通道应变测量功能、和利用格子法的应变测量系统的应变分布可视化方法等事例, 来介绍实现高精度CAE分析的有效试验解决方案。"
  • 热分析钱义祥老先生:热分析仪器(方法)选择的哲理
    p span style="color: rgb(112, 48, 160) "(本文系仪器信息网独家约稿,未经许可,其它媒体不得转载)  /span/pp 应用先进仪器和方法进行科学与技术的基础研究和应用开发。如何选用近代先进仪器和科学方法呢?钱义祥老先生的这篇“热分析仪器(方法)选择的哲理”将有助你选择先进仪器和科学方法。帮助你从多种备选对象中进行挑选与确定,使你学会择优选择。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/25eddf60-8d71-4ed7-b6ac-1205345e0568.jpg" title="" style="width: 450px height: 503px " height="503" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "strong钱义祥老先生某次出差夜晚其学生拍摄/strong/pp  strong1.1 " 选择" 的哲理/strong/pp  人,不由自己的选择而出生,朦胧地踏上漫长的选择之路。选择伴随科学人的一生,渐进渐行,格物致理(探究事物的原理法则,而总结为理性知识并加以运用)。人是选择的主体,“选择”是一个最易产生共鸣的话题。/pp  从哲学的角度看,选择是反映主体与客体关系的一个范畴,主体与客体在相互作用过程中,主体根据其自身的存在现状、目的需要、价值尺度,对依赖主体活动而存在的事物的多种可能性关系进行分析、比较,抉择。它是主体积极能动、自觉自由的本质力量的一种表现。这种力量存在于人的一切活动过程中,既存在于人的思维过程中,也存在于人的实践行为中。/pp  1.1.1研究方法是一个不断发展的动态过程。/pp  科学研究是一个动态的永无止境的探索过程。研究方法总是以符合研究需要为前提,与科学研究相适应,因此研究方法也是一个不断发展的更新过程。/pp  前人的研究成果,概括地说,无非是资料、研究方法和结论三个方面。我们研究前人的研究成果,主要目的是了解他获得的结论及获得这个结论的方法。科学史的书籍记录了科学家的发现和科学家获得发现的方法。可见研究方法及其选择在科学研究中的重要性。方法的选择要具有合理性、新颖性、独创性、可实现性。为避免选择性偏差,对研究课题和热分析方法了解得越深越多,选择热分析方法就越有依据,就越合理和适用,越能满足科学研究的需要。/pp  1.1.2热分析方法选择的主体是人/pp  选择是一个词语,这个词语主要是指一个人要挑选什么,要做出什么决定,选取什么.这是一个很重要的字眼。“选择”是存在于人的思维和实践行为方式中的积极能动的能力。/pp  热分析方法选择的主体是人,是人的实践行为。人的具体行为方式是由人的选择来确定的。选择决定于主体,并不是说主体可以随意选择。主体的选择不仅受到客观外部条件的制约,也受到主体自身存在状况的限制。/pp  在一定的外部条件下,人的能力是选择的关键。应该培养,发展、完善主体, 提高主体的选择能力。成功的选择,能最大限度地实现目的,满足主体的需要。/pp  热分析方法的选择不仅受到主体自身存在状况的限制,也受到客观外部条件的制约。受仪器的制约和限定的典型事例是微重力下的热分析研究。微重力科学作为一门近代科学,是随着载人航天活动的发展而迅速发展的。微重力的热分析研究有望应用于空间材料科学,其研究障碍乃在于缺乏研究仪器和研究方法。目前商品化的热分析仪器仅适用于在万有引力条件下进行热分析实验,微重力条件下的热分析仪器尚待开发。微重力的热分析研究必定伴生新的研究方法的创立。方法的创立反过来又指导微重力的热分析研究。/pp  选择意味着在多种事物中挑选一种事物或多种事物。热分析方法选择过程中,选择本身也是一种探索,乃是对人的选择能力的一种检验。/pp  选择是一个过程,有可能在弹指一瞬间完成;有时通过“试错”来选择热分析方法和实验方法 某些特例,也有可能永远选择不到一个好的方法来研究你的问题。如热分析动力学研究,要从诸多的热分析动力学方法中选择、修改或建立新的动力学方程并非是件容易的事。实验、选择和修改动力学方程常常耗费几个月或更长的时间。/pp  1.1.3高分子物理近代研究方法/pp  选择正如人要走路,面对多条路,走哪条路?如何走这条路?便是你的选择了。科学研究亦如此。“高分子物理近代研究方法”是一本如何选择科学研究方法进行高分子物理研究的参考资料。/pp  “高分子物理近代研究方法”由高分子物理和近代研究方法二个词复合组成。“高分子物理”的研究内容是高分子的结构、高分子材料的性能和分子运动的统计学 近代研究方法有高分子光谱及波谱分析、X射线分析、高聚物热分析、高聚物显微分析。人们选择近代研究方法研究高分子物理中的诸多问题。选择过程是属于人的行为活动,需要宽厚、交叉的基础知识和精深的专业知识,而且要有丰富的实践活动。由具有高分子物理背景和科学分析仪器背景的复合型人才担当高聚物结构(性能)的表征和研究是最佳的选择。因为他们具有“多种学科在他头脑里汇合”的优势。/pp  strong1.2热分析方法选择/strong/pp  “热分析方法选择”是在第二届江苏省热分析技术应用与进展学术研讨会(2008年—扬州)上提出来的。是几十年的热分析实践中悟出的一个概念,是关于“热分析方法选择”问题的哲学思考。/pp  “热分析方法选择”有二层意思:/pp  第一层意思是:“选择”是一个哲学问题(概念),是一种思维方式。“热分析方法选择”是“选择”的哲学思想在科学研究中的应用实例。/pp  第二层意思是:“选择”是一种行为活动,贯穿于热分析方法选择和实验条件选择的全过程。/pp  1.2.1科学研究与方法的关系:/pp  每一项科学技术研究成果的取得,都是运用一定的研究方法的结果。而每一项重大的科学理论或技术突破,往往伴生新的研究方法的创立。方法的创立来源于实践,反过来又指导科学技术研究实践活动。/pp  科学研究是一个艰苦的探索过程,没有行之有效的方法,就无法达到研究的目的。方法的选择和应用是否适当是决定研究工作是否有成效的一项关键性因素。/pp  方法是指用于完成一个既定目标的具体技术和工具。要方法行之有效,就必须对方法进行有选择的、合理的运用。/pp  方法问题是解决实际问题不可逾越的现实问题,方法的选择很大程度上决定着研究的进展和效果。要针对具体问题,有目的地选择适用的方法。对于方法选择的准则依次是适用,高效简单、完美。在科学研究中选择热分析方法时可参考这个标准。/pp  1.2.2热分析仪器(方法)选择/pp  热分析方法是近代研究方法之一,它在科学研究中有极为广泛的应用。在对热分析方法已基本掌握的基础上,讨论这些方法的优缺点和适用范围, 择优选择。/pp  在科学研究中,“热分析方法选择”突出体现了“选择”的哲学思想的普适性。它包括二个内容:热分析方法(仪器)选择和实验方法(条件)建立。/pp  热分析方法包括 DSC、TG/DTA、TMA、DMA 和热分析+。各种方法有各自的特点和适用范围,同时它们之间又存在密切的联系。不同的热分析仪器(方法)应用在不同的研究领域。科研人员根据研究内容,选择合适的热分析方法,如下图。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/30e9b3e7-7048-4006-ae95-bae75680a739.jpg" title="1.png"//pp  上图表明:热分析应用是按转变、反应与热物性参数进行分类。这种分类/pp  方法具有很强的概括性。可以囊括各个学科领域的所有应用。热分析应用进一/pp  步细分,并选择相应的热分析方法。/pp  物理转变:/pp  涵盖结晶、晶型转变、汽化、升华、吸附、解吸附、吸水、居里点转变、玻璃化、液晶转变、热容转变等。/pp  化学反应:/pp  涵盖分解、氧化、还原、固态反应、燃烧、聚合、树脂固化、橡胶硫化、催化反应等。/pp  物质特性参数:/pp  比定压热容、纯度、膨胀系数、热导率等。/pp  热分析是一种解决问题的实用技术。“热分析怎样来解决你的问题?你的问题怎样用热分析来解决?”,你面临的就是选择热分析仪器(方法)来解决你的问题。选择先于实验,贯穿于科学研究的整个过程。根据研究内容,选择热分析仪器(方法)。选择活动的主体是科研人员,要体现主体的能动性,即体现科研人员的能力和特有的积极能动的自由本质力量。在选择过程中,科研人员对研究内容和热分析仪器(方法)进行分析、比较,然后做出合理有效的选择。针对具体问题,有目的地选择合适的热分析方法。/pp  列举几个实例:/pp  1. 玻璃化转变测量方法的选择/pp  高分子物理中有一个重要的转变—玻璃化转变。研究玻璃化转变有三种热分方法:DSC、TMA、DMA。哪种方法好呢?根据样品的特性,你要做出合理的选择。一般情况下,粉末样品通常选用DSC方法; 树脂固化样品通常选用TMA方法 成型制品通常选用DMA方法。/pp  DSC、TMA、DMA测量玻璃化转变的方法原理及灵敏度不同,如下表:/pp  DSC:检测的物理量是比热容 Cp 比热容变化约30%/pp  TMA:检测的物理量是膨胀系数 α 膨胀系数增加多至300%/pp  DMA:检测的物理量是模量 E 模量变化高达3个数量级/pp  由上表可知:仪器灵敏度DSC TMA DMA。 测量高聚物的玻璃化转变,DSC方法制样方便。但玻璃化转变的信号很微弱时,那么就要改为选用TMA、DMA方法。封装材料使用的环氧树脂,通常选用TMA测定固化产物的玻璃化转变温度Tg和△Tg。/pp  2. 高聚物次级转变的热分析方法选择/pp  为什么要选择DMA方法来研究次级转变呢?/pp  从被选择的客体及其特性说起。被选择的客体是DMA方法和次级转变。/pp  用DSC方法测量高聚物的热性能,能够检测到高聚物的Tg,但检测不到高聚物的次级转变Tβ。因而研究工作就在玻璃化转变层面戛然而止。仅仅测量玻璃化转变满足不了材料力学性能研究的需要。/pp  DMA方法研究高聚物在交变应力作用下的力学状态和热转变。非晶高聚物力学性质随温度变化,它的力学状态是玻璃态、玻璃化转变区、高弹态及黏流态;发生的转变有次级转变、玻璃化转变、流动转变。DMA方法方便地测试到高聚物的次级转变、玻璃化转变、流动转变,因此用DMA方法研究次级转变打破了高聚物研究止步于玻璃化转变的现状。/pp  高聚物发生的次级转变和玻璃化转变都是松弛过程。玻璃化转变是高聚物中链段由冻结到自由运动的可逆转变。次级转变是高聚物中小尺寸运动单元由冻结到自由运动的可逆转变。从材料结构、分子运动角度进行逻辑推理,潜意识感到次级转变和玻璃转变存在一定的关联性。但高分子物理和研究报告中,很少有人提及次级转变和玻璃转变的关联性,故只能淡墨轻描。选择DMA方法测试次级转变、玻璃化转变及其关联性就有它的现实价值。DMA方法测量高分子材料的玻璃化转变和次级转变,获得与材料的结构、分子运动、加工与应用有关的特征参数。因而在评价材料的耐热性与耐寒性、共混高聚物的相容性、树脂-化剂体系的固化过程、复合材料中的界面特性和高分子的运动机理等方面具有非常重要的实用与理论意义。研究高聚物次级转变和玻璃化转变都很重要,都是不容忽视的。选择DMA方法研究高聚物的玻璃化转变、次级转变和Tβ-Tg是一个富有创造性的想象力。/pp  高聚物在玻璃化温度以下,链段运动是冻结的,但更小的运动单元仍然可以发生运动,出现多个次级转变。高聚物次级转变之一是Tβ,它是一个非常有用的参数:它表征材料韧-脆转变,是材料的脆化温度和低温使用的极限温度;Tβ-Tg是高聚物发生物理老化的温度区间;β转变时力学内耗峰tanδ值与材料的冲击强度有对应关系;Tβ-Tg是屈服冷拉的温度区间,是加工工艺的必须控制的参数之一。/pp  DMA是利用分子运动由局部原子振动变为区域的链段运动及更小的运动单元的运动引起高聚物的黏弹性大幅变化的原理测量高聚物的热转变。DMA方法的灵敏度高,它不仅可测定玻璃化转变温度Tg,还可测定次级转变温度Tβ。图中蓝颜色框中的tanδ即为高聚物的次级转变温度Tβ。均相非晶态高聚物的/pp  DMA曲线如图所示。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/fe1a822b-e30b-4dce-a087-c79623b71406.jpg" title="2.jpg"//pp style="text-align: center "strong均相非晶态高聚物的DMA曲线/strong/pp  3. 物理老化和化学老化研究的热分析方法选择/pp  高聚物在使用过程中,会发生化学老化、物理老化和光老化。它们发生在不同的温度区间,测定这些特征温度是必须的。/pp  化学老化通常发生在Tg以上,采用DSC、TMA、DMA方法测定得到玻璃化转变温度Tg。/pp  物理老化通常发生在Tβ-Tg之间,采用DSC、TMA、DMA方法测定得到玻璃化转变温度Tg。选择DMA方法测量得到次级转变温度Tβ。/pp  膜的物理老化研究选择调制DSC和TMA、DMA方法。膜的调制DSC曲线和应力-温度曲线如图所示:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/1209b375-4e9a-4bcc-b5db-4ec484081cc2.jpg" title="3.jpg"//pp style="text-align: center "strong分子链残留内应力和热焓松弛的MDSC曲线/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/bc98072a-f72a-4853-a5b2-1e02ad87eb7d.jpg" title="4.jpg"//pp style="text-align: center "strong  膜的物理老化涂层的应力-温度曲线/strong/pp style="text-align: center "strong  未物理老化涂层A/strong/pp style="text-align: center "strong  物理老化涂层B/strong/pp  涂层温度低于Tg时,发生物理老化。由于物理老化涂层的应力对温度的依赖性,用Tg曲线区域内的极小值表征(图中B线2点处),其幅度的大小与物理老化程度有关。物理老化影响材料的机械、热和电性能。一般来说,弹性模量和硬度随着物理老化而增大,而应力松弛速率变化使玻璃态的膨胀性降低。/pp  光老化选择光化学反应量热仪PDC方法。PDC的结构示意图如下:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/d33624e5-302b-4758-a971-9a1d491bff47.jpg" title="5 (2).jpg"//pp style="text-align: center "  strongPDC的结构示意图 光化学反应量热仪PDC/strong/pp  光化学反应量热仪PDC的原理:是将不同波长、不同照射强度下的紫外光照射在试样上,测量热效应。它既可进行光固化实验,也可以进行高聚物的光老化研究。/pp  4. 选用多种热分析方法,全面表征高聚物的热性能。/pp  为了全面表征高聚物的热性能,“全选”不失为一种很好的选择。就是选择DSC、TG、TMA、DMA方法,全面表征高聚物的热性能。/pp  成功的科学家往往把所需要的各种方法巧妙地结合起来综合运用。这也是常见的方法选择。如热分析与FTIR、GC/MS、MS联用。/pp  5. 绝热材料的热分析方法选择/pp  温石棉是导热性极差的绝热材料。/pp  温石棉中含有Mg(OH)2。Mg (OH)2脱水方程式如下:/pp style="text-align: center "  Mg(OH)2 → MgO + H2O↑-△H/pp  由方程式可知:Mg (OH)2脱水时,它既有重量损失,而且伴有能量吸收。因此Mg(OH)2含量可用TGA方法定量,也可以用DSC方法测定。/pp  由于温石棉导热性差,选用DSC方法,依吸热峰面积定量Mg(OH)2含量,误差较大。而选用TGA方法,TG曲线上显现的失重台阶就是氢氧化镁的脱水量。根据失重台阶计算Mg(OH)sub2/sub的含量,数据准确,重复性好。/pp  6. 标准试验方法/pp  鉴于热分析方法的结果受诸多实验因素的影响,为利于热分析的学术交流/pp  和相互间的数据比较,国际标准化组织就几种主要热分析方法及应用制定了一系列标准和规范。如差示扫描量热法(仪)的标准和规范、热重法的标准、热机械分析的标准、动态力学性能的标准。实验都要按标准和规范执行。如玻璃化温度测定、熔融-结晶过程测量、比热容测定、氧化诱导期测定、结晶动力学测定、分解温度和分解速率测定、分解动力学测定、线性膨胀系数测定、针入度测定、模量、损耗因子、应力-应变曲线等。/pp  研究材料和制造产品时,有相应的国际标准、国家标准、行业标准,产品标准。按标准试验方法进行实验是一种强制性的选择。如封装材料T260/T288/T3O0(Time to Delaminate)热分层时间或称“爆板时间”测定必须按规定的标准方法进行。/pp  借鉴热分析文献综述中提及的热分析方法和实验方法也是一种选择。/pp  开发新的热分析方法和实验方法,适应研究的需要。/pp  7. 改造已有的方法以适应解决实际问题的需要/pp  外加电场、拱形铜片、夹具组合等DMA实验是夹具适应性改造的实例。/pp  外加电场的DMA实验/pp  外加电场:将外加电场加在样品两端,测定试样在外加电场的条件下,实时原位研究纳米复合材料的电刺激--形状记忆效应。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/a874a62b-fbcd-4369-826c-51f93a236e14.jpg" title="6.jpg"//pp style="text-align: center "strong拱形铜片的应变—应力曲线测试/strong/pp  选用压缩夹具。样品嵌在自制的限止长度变化的试样固定器上,整体置放在下探头。上探头临界接触试样的弧形部位,如图所示。/pp  采用应力控制模式,测定应力 —应变曲线。就得到了客户要求的规定形变量下的应力值。它是挠度测定的反过程。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/6567bd82-1dbb-4380-9fdf-8ae80e26e752.jpg" title="7.jpg"//pp style="text-align: center "strong夹具组合 —“蹦床夹具”实验/strong/pp  标准夹具组合使用:上夹具用压缩夹具,下夹具用双悬臂夹具。/pp  用下夹具夹持薄膜试样。薄膜试样上固定放置一个直径6mm的氧化锆圆柱体。然后将上夹具(压缩夹具)压在氧化锆圆柱体上。/pp  循环加载/下载应力,进行应力—应变循环实验。/pp  测定试样蹦床落点的力学性能。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/96453279-d8d2-424c-b8af-b3ea6b5d214e.jpg" title="8.jpg"//pp style="text-align: center "strongDMA模拟蹦床实验示图/strong/pp  8. 移植方法/pp  移植方法是当前科学方法发展的重要方面。移植包括科学概念、原理、方/pp  法以及技术手段等,从一个领域移植到另一个领域,或科学方法相互渗透和转移,多种方法形成一个新的方法。移植方法是科学整体化趋势的表现之一。热重/差热分析-固相微萃取-气相色谱-质谱联用系统是移植方法的实例。/pp  固相微萃取(SPME)是一种广泛使用的集萃取、浓缩、解吸、进样于一体的样品前处理新技术。将其移植到“热重/差热分析--气相色谱-质谱联用系统”中,即将固相微萃取(SPME)接入到“热重/差热分析--气相色谱-质谱联用系统”中去,改造成“热重/差热分析-固相微萃取-气相色谱-质谱联用系统。” 实验时划分温度段取样,解决逸出气取样问题,该系统已应用于原儿茶醛热解行为的研究。/pp  1.2.3选择实验条件,建立实验方法/pp  热分析实验结果常常依赖于实验条件,因此根据样品的特点选择实验条件,建立试验方法。strong见下图。/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/55058ec9-039f-4514-a5b4-52594968ae1a.jpg" title="9.jpg"//pp  列举几个实例:/pp  1. 含能材料的热分析方法和试验方法的选择/pp  热性能是含能材料的非常重要的性能之一,热分析能全面地表征含能材料的热性能,它在含能材料研究中得到了广泛的应用。由于含能材料分解过程的复杂性,要遵循“选择先于实验”的原则,切忌拿到一个含能材料的样品,随手称取10mg样品,冒失地进行TG实验或DSC实验。这将可能发生爆炸,损坏仪器和造成人员伤害。/pp  含能材料的热分析实验前,你必须先了解含能材料的分解特性和爆炸特性,谨慎地选择实验条件。试样量是致关重要的,因含能材料分解时放热量大,特别是有强烈自加热的分解过程。为防止峰的扭曲,试样量应尽量少,如0.05-0.3mg。然后谨慎地进行TG实验。如选择DSC方法,实验时要防止试样溢出,污染传感器。含能材料的TG/DTA曲线和DSC曲线如图所示:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/6ea118da-ce02-4330-ae46-1e021cd8c1c1.jpg" title="10.jpg"//pp style="text-align: center "  strong含能材料的TG/DTA曲线 含能材料的DSC曲线/strong/pp  含能材料的TG/DTA曲线上的失重和放热峰呈歪斜型,是强放热造成的扭曲。样品量减少到0.3mg以下,峰型趋于正常。/pp  2. 聚丙烯玻璃化温度测定/pp  选择是目的性很强的实践行为。按选定的热分析方法和实验条件进行热分析实验,常常是一次或多次“试错”的选择过程。当实验结果达不到主体的要求时,可选择另一种热分析方法或更改实验条件,再次进行实验。多次试错,直至你得到了满足需要的结果。例如选择DSC方法测定聚丙烯玻璃化温度。升温速率选用10℃/min时,弱小的热效应难以被发现,DSC曲线上未见玻璃化转变峰。随着升温速率的提高,仪器灵敏度大大提高, 当升温速率达到150℃/min时,其玻璃化转变过程中的台阶状变化变得明显strong,/strong如图所示。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/17f85e3d-9bde-4dce-ba00-bdb474182035.jpg" title="11.png"//pp  3. 选择真空或加压条件解决热分析峰的分离问题/pp  热分析峰的分离问题常常是通过改变实验条件来解决的。例如塑料中增塑剂的挥发和塑料分解,在常压条件下,两种效应可能在相同的温度区间发生。而减压条件下,塑料中添加的增塑剂在塑料分解之前挥发,那么实验就可选择在真空条件下进行。多种热分析仪器可在真空条件下进行实验。/pp  如果在常压下发生两个重叠的化学反应,其中一个反应可能受压力升高的影响比另一个反应大。在这种情况下,可以选择压力DSC将两个反应进行分离。例如有机物的分解温度随惰性气体压力的增大而提高。/pp  4. 选择“强化影响因素”的实验条件/pp  有多种因素影响热分析的测量结果。可以使用简化、纯化、强化实验影响因素的方法,加速现象的进程。当然它与在自然条件下获得的结果是有差别的。可进行科学、合理的补偿和修改。在纯氧条件下进行氧化诱导期测定,是强化实验影响因素的实例之一。/pp  1.2.4热分析方法的取代和重新选择/pp  热分析方法随研究“需要”而“变”。物质热性能研究的深入,促进热分析方法的发展。热分析方法的发展,又促使研究工作顺利进行。/pp  批判性思维是以逻辑思维为基础。以一种批判、分析和评价的方式思考热分析方法的选择。被选择的热分析方法不是凝固不变的,而是随着研究实践出相应的改变或重新选择。/pp  “问题-方法-标准”的思维模式具有普适性。研究不同的问题选择不同的热分析方法,探索问题的本质和规律。对方法规范化的表述可制订为标准。制订的标准也是不断修订。/pp  实例1:选择热分析方法测定药物熔点/pp  热分析方法介入药物熔点测定。选择热分析方法测定药物熔点,取代毛细管法,已成趋势。/pp  在药品检验中,药物的熔点是鉴别药物真伪和衡量质量优劣的重要指标。药物熔点通常是用经典的毛细管法测定,人为视觉误差大,初熔点难以判别。2015中国药典推荐热分析方法取代毛细管法。/pp  选择DSC或DTA方法测量药品熔融的全过程,可提供准确的熔化温度,熔程、熔融焓及多晶型、纯度等信息。对那些熔融伴随分解、熔距较长,用毛细管法测定较困难的样品,选择热分析方法则能取得较理想的结果。选择几种热分析方法如DSC与TGA相结合的方法可给出更准确地判断。/pp  实例2:热分析方法自身在发展,方法选择也在演变。/pp  热重法是热分析技术中发明最早的。常常选择TG研究高聚物的热分解。随着TG技术的发展,新的功能不断出现,研究内容也不断深化。选择的TG方法也随科学研究的深化而演变。/pp  TG方法的演变,促使高聚物热分解的研究不断深化,如下表:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/f1f85a2e-ad5d-413f-abfe-9890dfc34bff.jpg" title="12.jpg"//pp  表中提及了观察系统。观察系统是热分析的新功能,引入图形思维概念。热分/pp  析实验同时得到热分析曲线和形貌图像。对热分析曲线和观察到的形貌图像同/pp  步进行解析,追溯热变化的物理-化学过程。/pp  1.2.5方法选择中的创造性思维和批判性思维/pp  创造性思维是能引发新的和改进解决问题方法的思维方式。创造性思维引发新观念的产生,批判性思维是对所提供的解决问题的方式进行检验,以保证其有效性的思维方式。批判性思维包含了几个核心要素:解读、分析、评价、推理等。在方法选择中,要批判性地思考热分析方法问题。/pp  热分析方法选择过程中,要求创造性思维和批判性思维平衡发展。创造性思/pp  维和批判性思维将推动热分析方法和仪器的发展。/pp  实例1:骤冷PET初始结晶度测定/pp  选择传统DSC测定骤冷PET的初始结晶度。DSC曲线表明:通过熔融焓与结晶焓的焓值之差计算得到初始结晶度,热焓值之差为50.77-36.59=14.18J/g,表明它是部分结晶高聚物。而广角X射线衍射测定的结论:骤冷PET是无定形,与DSC结果相矛盾。这个矛盾逼迫科研人员以一种批判、分析和评价的方式去思考。科研人员凭借辨析和判断能力,判明数据真伪。/pp  温度调制DSC方法的创新思维是对传统DSC方法局限性的批判。温度调制DSC选择了一种特殊的升温方式:在一般线性加热或冷却的基础上,叠加了一个正弦的加热速率,这是创新;以基础升温的慢的升温速率来改善分辨率,并以瞬时快速升温速率提高灵敏度,这是对升温速率影响分辨率与灵敏度规则的遵循。从而使调制DSC将高分辨率与高灵敏度巧妙地结合在一起,实现了在同一个实验中既有高的灵敏度,又有高的分辨率。温度调制DSC既有创造性,创造性中又包括对规则遵循。温度调制DSC是对规则遵循中孕育创造性的范例/pp  创新,就是选择方法,创造新的可能性。温度调制DSC使可逆峰与不可逆峰的分离成为可能。温度调制DSC利用傅里叶变换的叠加法,得到可逆热流和不可逆热流,可逆峰与和不可逆峰被区分开来,从而显著提高微弱转变、多相转变和定量测定结晶度的可信度。选择温度调制DSC ( MTDSC )方法测定骤冷PET的初始结晶度。如图所示:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/bd043b05-4380-4e3a-8a5a-c8de6e507766.jpg" title="13.jpg"//pp  温度调制DSC曲线显示:骤冷PET初始结晶焓值由冷结晶焓与熔融焓之差得到,其值为134.3-134.6=-0.3 J/g,表明骤冷PET初始结晶度极低,基本上为无定形形态。温度调制DSC的实验结果和广角X射线衍射测定的结果相符合。/pp  实例2:油品氧化诱导期测定/pp  常压下测定油品的氧化诱导期,由于油品蒸(挥)发,导致数据波动。基于高压能延迟挥发。创造性思维引发新观念的产生,高压DSC仪器出现了。人们放弃常压下测定油品的氧化诱导期的方法,而选择高压DSC测定油品的氧化诱导期,并编制了油品的氧化诱导期测定的相关标准。/pp  strong1.3“热分析方法选择”的编辑/strong/pp  全球无数台的热分析仪器每天都在运行,专业人员实时解析由实验得到的热分析曲线,并撰写成成千上万篇的研究报告发表在科学杂志上。这是科学研究中运用热分析方法的成果积累和沉淀。整理、编辑这些对科学有价值的资料,进而建立“热分析方法选择”的数据库和检索系统是人们的期盼。编写“热分析方法选用实例”是一项聚沙成塔的工作,编辑工作只有起点没有终点。/pp  “热分析方法选择”表格可以由实验室(个人)编辑。“热分析方法选择”的数据库和检索系统,必须由图书馆、出版社和专业技术学会编辑。/pp  1.3.1实验室编辑“热分析方法选用”/pp  热分析的专业工作者和科研人员,每天都在选择热分析方法,设计试验方法,进行大量的热分析实验。积累的资料如淙淙的小溪,常流不断,常流常新。经常翻一翻、查一查积攒下的实验资料,从自己的实验实践中,寻找研究内容和热分析方法的对应性,有助于今后热分析方法选择。将你的热分析实践活动用表格记录下来,成为自己编写的“热分析方法选用”的实例,供自己查用。/pp  “热分析方法选用实例”示意如表1:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/8f3c3f0a-65cc-4c71-8dd5-e22d63225641.jpg" title="14.jpg"//pp  每个实验室都可以绘制一张“热分析方法选择”实例的表格。天天填写新的实例,就像每天记日记一样,持之以恒。当表格内储存量足够丰富时,就成了个人的数据库,可把它当作个人的手册查询。当你拿到一个样品或欲进行一项科学研究时,你可以从“热分析方法选择”实例的表格中检索到你所需要的热分析方法和实验条件。/pp  某实验室绘制的“热分析方法选用”实例的表格,如表2示例。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/b92eb8d6-f844-424f-b9cd-fe4b33fa3934.jpg" title="15.jpg"//pp  “热分析方法选择”和“热分析应用”是孪生的文本。“热分析方法选用”和“热分析应用”的内容是互通的。编辑“热分析应用”的表格或文本,与“热分析方法选择”相对应。/pp style="text-align: center "  strong表三 热分析应用的文本格式/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/0c1dab46-ea77-47b9-8e36-0e674fbdabb1.jpg" title="16.jpg"//pp  每个实验室编辑、制作“热分析方法选择”表格,各具特色,绽放选择之美。/pp  1.3.2“热分析方法选择”的检索系统建立/pp  热分析主要学术刊物与著作有热分析杂志、热化学学报、热分析文摘、热分析文献综述及刘振海等人的学术著作和热分析国际会议和国内的热分析专业会议的论文集。在网上和文库可搜索到更多的选择热分析方法进行科学研究的科学论文。按美国科学信息研究所的科学网站统计,每年仅就报道DSC一种技术用于结晶过程的论文就超过1100篇。/pp  以“热分析文献综述”为例。“热分析文献综述”是从二年间发表的几千篇热分析文献中,收录其中的200篇。“热分析综述”涵盖包括热分析方法和校准、热力学、动力学、以及热分析在无机物、聚合物、含能材料药物、生物化学和生物学方面的应用。“热分析文献综述”既阐述了科学研究的内容,也涉及热分析方法的选择。/pp  文献综述和科技论文的基本内容是:谁,研究了什么问题、选择了什么方法、得到了什么结论。将热分析文献综述和科技论文的文体转换为以“研究内容”和“热分析方法选择”为关键词的文本形式,就成为“热分析方法选用”的文本系统,如表四示例。/pp style="text-align: center "  strong表四 研究报告的文本转换/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/e806a669-89d1-4099-9c64-5cb3e577b9c1.jpg" title="17.jpg"//pp  “热分析方法选用”索引分类,可以按材料分类;也可以按物理转变、化学反应、热物性参数测定分类;或者按时间顺序排列。编辑数据库和检索系统的意义是能够满足研究方法选择的需要,根据研究内容,快速地选择到相应的热分析方法。/pp  “热分析方法选择”数据库和检索系统的编辑非个人能力所能担当。应由自然科学资金资助,委托图书馆、档案馆、出版社和热分析专业学会进行。/pp  1.3.3选择云端中“热分析”那朵云/pp  在当今大数据时代里,云端飘浮朵朵云彩,我选择“热分析”那朵。利用云端的热分析资料,对热分析数据进行计算、解析,实现它的科学价值。/pp  耄耋之年仰望科学的天空,浏览“云数据”,好似天真的玩童仰望令人神往的宇宙星空一样,托腮观测无边无界的边际,享受浩瀚之美!/p
  • 济南计量测试学会发布《便携式碳排放分析仪校准方法》等五项团体标准征求意见稿
    各有关单位:由济南计量测试学会批准立项的《便携式碳排放分析仪校准方法》《碳排放在线监测系统校准方法》、《加氢站用氢气卸气柱校准方法》、《微量氢气检测报警仪校准方法》、《氢中氧氧中氢分析仪校准方法》五项团体标准已完成征求意见稿,根据《团体标准管理规定》和《济南计量测试学会团体标准管理办法》的相关要求,现面向社会公开征求意见。团体标准征求意见材料见附件。请各相关单位及专家提出宝贵意见,于2024年7月29日前将团体标准的意见反馈表反馈至济南计量测试学会秘书处,逾期未反馈意见视为无意见。 学会秘书处联系人:陈振卓 联系电话:0531-89738281 济南计量测试学会2024年6月28日关于《便携式碳排放分析仪校准方法》等五项团体标准征求意见的通知.pdf2-《便携式碳排放分析仪校准方法》-征求意见稿.docx3-《便携式碳排放分析仪校准方法》-编制说明.docx4-《便携式碳排放分析仪校准方法》-征求意见汇总表.doc2-《碳排放在线监测系统校准方法》-征求意见稿.docx3-《碳排放在线监测系统校准方法》-编制说明.docx4-《碳排放在线监测系统校准方法》征求意见汇总表.doc2-《加氢站用氢气卸气柱校准方法》-征求意见稿.docx3-《加氢站用氢气卸气柱校准方法》-编制说明.docx4-《加氢站用氢气卸气柱校准方法》-征求意见汇总表.doc3-《微量氢气检测报警仪校准方法》-编制说明.docx2-《微量氢气检测报警仪校准方法》-征求意见稿.docx4-《微量氢气检测报警仪校准方法》-征求意见汇总表.doc2-《氢中氧(氧中氢)分析仪校准方法》-征求意见稿.docx3-《氢中氧(氧中氢)分析仪校准方法》-编制说明.docx4-《氢中氧(氧中氢)分析仪校准方法》-征求意见汇总表.doc
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制