当前位置: 仪器信息网 > 行业主题 > >

多通道自动水浴控制系统

仪器信息网多通道自动水浴控制系统专题为您提供2024年最新多通道自动水浴控制系统价格报价、厂家品牌的相关信息, 包括多通道自动水浴控制系统参数、型号等,不管是国产,还是进口品牌的多通道自动水浴控制系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合多通道自动水浴控制系统相关的耗材配件、试剂标物,还有多通道自动水浴控制系统相关的最新资讯、资料,以及多通道自动水浴控制系统相关的解决方案。

多通道自动水浴控制系统相关的论坛

  • 灵活的自动化解决方案助您简化仪器控制系统的实施

    灵活的自动化解决方案助您简化仪器控制系统的实施

    灵活的自动化解决方案助您简化仪器控制系统的实施仪器设备越来越复杂,自动化程度越来越高,设备体积要求越来越小,定位精度更高、设备更新快,成本控制等一系列新的需求提出,众多仪器设备制造商对控制系统提出了更高的要求。机器制造商现在可轻松搭建自己需要的自动化设备,并实现持续性的更新,运动控制正在迈入“模块化的PC机时代”。传统运动控制的问题就传统运动控制而言,往往基于专用控制器、运动控制模块、运动控制卡,这些带来以下问题:(1)受到轴数限制由于传统PLC连接的运动控制单个控制模块支持有限轴数,而且总线在轴多时会同步性能大幅度降低,即使采用现有的通信,但其软件架构却仍然是制约的瓶颈。(2)需要多个开发环境,费时费力为搭建一套系统,往往需要多个厂商的产品,其编程软件、风格、项目管理均需不同的学习,而且,是否能够互通使得各个组件性能得到最佳发挥—几乎不大可能。整套系统的搭建对研发提出了很高的要求,时效上无法很好的满足。(3)更新维护麻烦,人力成本高设备维护往往无法远程控制和实施,需要技术层次较高的人到用户现场进行故障查找和调试,从而提高了设备制造商的人力成本由于传统的运动控制架构不易于拓展,设备需要更新时,无异于重新开发。(5)设备体积较大使用传统的控制系统,设备体积臃肿不堪,众多的线束导致设备内部管理极为不易。 UIROBOT的一体化控制网络优爱宝公司倡导机器人及自动化系统的模块化设计及制造理念,模块之间采用统一的通信协议,这种机器人积木化的理念为用户提供了前所未有自动化系统设计的人性化和便捷性。可以让不熟悉工控系统底层工作原理用户也能在极短的时间内完成设计和产品化。http://ng1.17img.cn/bbsfiles/images/2014/04/201404201417_496808_2851234_3.jpg它为您带来什么好处?在此统一架构下,可以得到如下的应用收益:(1)搭建周期大幅缩短,研发效率提升对于优爱宝而言,机器的运动控制被分解为不同运动轴之间的协作,每个轴的控制模块均具备智能,能独立处理局部事务。模块之间采用统一的CAN总线相连,主控机只负责协调流程,和用户界面无论系统多么复杂,用户仅需关心协调流程和界面,大幅降低了用户的搭建难度。(2)简单便捷的编程平台UIROBOT提供的STEP EVA软件可让用户方便的实现控制系统的操作和调试,完整的SDK库文件支持涵盖VC.C#.VB. LabVIEW等多平台,用户可便捷实施二次开发。(3)扩展性和升级简化模块化的产品和统一的架构,提升了用户在拓展性和优化升级方面的体验(4)设备体积减小、设备精细化提升一体化的设计,设备体积减小。CAN总线的通信连接,设备内部实现了无板卡化,主网络仅需两根通信线,设备精细化提升http://ng1.17img.cn/bbsfiles/images/2014/04/201404201417_496809_2851234_3.jpg(5)标准化提升设备可靠性(6)远程实施维护,维护难度降低对于UIROBOT而言,远程维护与诊断、信息化接口满足未来机器的互联与信息化管理需求,维护成本降低UIROBOT使得开发自主知识产权的仪器更为便捷与快速

  • 反应装置自动化控制系统

    反应装置自动化控制系统

    一Project 项目 反应装置自动化控制系统 (专利号:201520539855.1 201520444964.5)Time 时间 2012 年 11 月特点:1. 智能化自检和互检主机可对下位机和仪表进行自检,能显示故障类型和故障仪表的编号。上下位机能互检,当上位机或下位机出现故障时能停止加温和加压,能及时有效的避免二次事故的发生。2. 智能化管理本机用电安全,采用了无火花安全保护电路设计,能保障设备的安全可靠运行,不可能再产生二次事故。可实现无纸录仪功能,可记录温度压力流量阀况,对后期分析和改进产品很有帮助。3. 智能化控制当设备附近出现可燃气体超标时或出现了超温超压时,系统可及时自动的停止加热和加压,超压时可打开泄压阀主要参数 Main Date催化剂装填量:0 ~ 10 ml 气体物料: 0 ~ 300ml/min液体物料:0.001 ~ 10ml/min 反应压力: 0 ~ 10MPa反应温度:室温~ 650℃

  • 半导体制冷温度控制系统选择说明

    半导体制冷温度控制系统是无锡冠亚针对半导体行业推出的新型设备,用户在选择半导体制冷温度控制系统的时候,需要考虑半导体制冷温度控制系统主要的性能,设计以及其他,才能更好的选择半导体制冷温度控制系统。  半导体制冷温度控制系统的选用应当依照冷负荷以及准备用于哪方面来思忖。对于低负荷运行工况时间较长的制冷系统,适合选择多机头活塞式压缩机组或螺杆式压缩机组,便于调理和节能,也就是我们常说的双机头半导体制冷温度控制系统,可随着负荷的变化,半导体制冷温度控制系统组自动确定开机的数量,保证开启的压缩机处于工作状态,从而有效节约电能。  选用半导体制冷温度控制系统时,优先考虑性能系数值较高的机组。依照以往资料统计,正常半导体制冷温度控制系统组整年下运行时间约占分运行时间的1/4以下。因此,在选用半导体制冷温度控制系统组时应优先考虑效率曲线比较平坦的半导体制冷温度控制系统型号。同时,在设计选用时应考虑半导体制冷温度控制系统组负荷的调节范围,半导体制冷温度控制系统组部分负荷性能优良,可根据工厂实际情况选用半导体制冷温度控制系统。  选用半导体制冷温度控制系统时,应当留意该型号半导体制冷温度控制系统的正常工作范畴,主要是电机的电流限值是表面工况下的轴功率的电流值。  半导体制冷温度控制系统在选择上无非就是性能、品牌以及价格,在选择合适的半导体制冷温度控制系统的时候,尽量选择高性能的半导体制冷温度控制系统,这样运行更加稳定。

  • CVD和PECVD管式炉真空控制系统的升级改造

    CVD和PECVD管式炉真空控制系统的升级改造

    [color=#ff0000]摘要:本文介绍了根据客户要求对CVD管式炉真空控制系统进行升级改造的过程,分析了客户用CVD管式炉真空控制系统中存在的问题,这些问题在目前国产CVD和PECVD管式炉中普遍存在。本文还详细介绍了改造后的真空压力控制系统的工作原理、结构和相关部件参数等详细内容,改造后的真空压力控制精度得到大幅度提高。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#ff0000]一、背景介绍[/color][/size]客户订购了一台CVD管式炉以进行小尺寸材料的制作,CVD管式炉及其结构如图1所示。在使用中客户发现这台管式炉在CVD工艺过程中无法保证材料的质量和重复性,材料性能波动性较大,分析原因是真空压力控制不准确且不稳定。为解决此问题,客户提出对此CVD管式炉的真空控制系统进行升级改造。[align=center][img=CVD和PECVD管式炉真空控制系统,690,370]https://ng1.17img.cn/bbsfiles/images/2022/06/202206281659560038_5783_3384_3.png!w690x370.jpg[/img][/align][align=center]图1 用户购置的CVD管式炉及其结构内容[/align]我们通过分析图1所示CVD管式炉的整体结构,发现造成真空压力控制效果较差的原因,主要是此管式炉的真空控制系统存在以下几方面的严重问题,而这些问题在目前国产CVD和PECVD管式炉中普遍存在。(1)真空计选择不合理:对于绝大多数的CVD和PECVD管式炉,其真空度的控制范围一般都为1Pa~0.1MPa(绝对压力),并要求实现真空度精确控制。而在客户所购置的CVD管式炉(包括其他品牌产品)中,为了节省造价,管式炉厂家配备了皮拉尼计和皮拉尼+电容真空计,但这种组合式电容真空计在10kPa~95kPa范围内的精度只有±5%,0.1Pa~10kPa范围内的精度则变为±15%,比单纯的薄膜电容真空计的全量程±0.25%精度相差太大。合理的选择是使用单纯的薄膜电容真空计,而且须配置2只真空计才能覆盖整个真空度范围的测量和控制。(2)控制方法错误:对于1Pa~0.1MPa(绝对压力)范围内的真空度控制,需要分别采用上游和下游控制模式进行控制才能达到很好的控制精度。例如,在1Pa~1kPa范围内采用上游控制模式,即固定真空泵抽速而只调节上游进气流量;在1kPa~0.1MPa范围内采用下游控制模式,即固定上游进气流量而只调节下游的排气流量。客户所采用的CVD管式炉则仅采用了调节进气流量的上游控制模式,势必会造成1kPa~0.1MPa范围内的真空度控制波动性很大,同时造成工作气体的极大浪费。(3)多种比例混合气体控制结构错误:在CVD工艺中,反应气体为按比例配置的多种工作气体混合物。尽管CVD管式炉中采用了4只气体质量流量计来配置工作气体,但质量流量计只能保证气体混合比的准确性而无法对真空度进行准确控制,除非是单一气体则可以通过一个质量流量计来调节进气流量来实现真空度控制。综上所述,客户所购置的CVD管式炉存在一些严重影响真空度控制精度的问题,文本将详细介绍解决这些问题的具体方法和升级改造详细内容。改造后的真空度控制系统可在全量程范围内控制精度优于±1%。[size=18px][color=#ff0000]二、升级改造技术指标[/color][/size]对客户的CVD管式炉的真空控制系统进行升级改造,需要达到的技术指标如下:(1)真空度控制范围:1Pa~0.1MPa(绝对压力)。(2)真空度控制精度:±1%(全量程范围)。(3)控制形式:定点控制和曲线控制。(4)输入形式:编程或手动。(5)PID参数:自整定。[size=18px][color=#ff0000]三、升级改造技术方案[/color][/size]针对客户的4通道进气CVD管式炉,为实现真空控制系统的上述技术指标,所采用的技术方案如图2所示。[align=center][img=CVD和PECVD管式炉真空控制系统,690,360]https://ng1.17img.cn/bbsfiles/images/2022/06/202206281700285160_4408_3384_3.png!w690x360.jpg[/img][/align][align=center]图2 CVD管式炉真空度控制系统结构示意图[/align]如图2所示,升级改造的技术方案主要在以下几方面进行了改动:(1)还保留了皮拉尼真空计以对真空度进行粗略的测量,更主要的是采用皮拉尼计可以覆盖0.001Pa~1Pa的超高真空监控。但在1Pa~0.1MPa真空度范围内,增加了两只薄膜电容真空计分别覆盖1Pa~1kPa和10kPa~0.1MPa,以提高CVD工艺过程中的真空度测量精度。(2)对于1Pa~0.1MPa(绝对压力)范围内的真空度控制,分别采用上游和下游控制模式进行控制以实现更高的控制精度。例如,在1Pa~1kPa范围内采用上游控制模式,即固定真空泵抽速而只调节上游进气流量;在1kPa~0.1MPa范围内采用下游控制模式,即固定上游进气流量而只调节下游的排气流量。(3)对于多种比例混合工作气体的CVD工艺,继续保留4路气体质量流量控制器以实现比例准确的工作气体混合,但精密混合后的气体进入一个缓冲罐。缓冲罐内气体进入CVD管式炉的流量通过一个电动针阀进行调节,由此既能保证工作气体的准确混合比,又能实现上游进气流量的精密调节。(4)为实现下游控制模式,在CVD管式炉的排气口处增加一个电动针阀,此电动针阀的作用是调节排气流量。下游控制模式在CVD工艺中非常重要,这种模式可以保证1kPa~0.1MPa范围内真空度的精确控制。如果在1kPa~0.1MPa范围内采用上游控制模式,一方面是真空度控制波动太大,另一方面是会无效损耗大量工作气体。(5)真空度的控制精度,除了受到真空计测量精度和电动针阀调节精度的影响之外,还会受到PID控制精度的严重制约。为此,技术方案中选用了24位AD和16位DA的高精度PID控制器,且具有定点和可编程控制功能,同时PID参数可进行自整定以便于准确确定控制参数。(6)由于采用了两只高精度的电容真空计测量整个量程范围的真空度,在实际真空度控制过程中,就需要根据不同量程选择对应的电容真空计并进行真空度控制。由此,这就要求PID控制器需要具备两只真空计之间的自动切换功能。(7)在CVD和PECVD管式炉真空度控制系统升级改造方案中,使用了上下游两种控制模式,这就要求PID控制器同时具备正向和反向操作功能,也可以采用2通道可同时工作的PID控制器,一个通道对应一个电动针阀。[size=18px][color=#ff0000]四、总结[/color][/size]针对客户的4通道进气CVD管式炉存在的CVD工艺中真空度控制严重不稳定的问题,分析了造成真空度控制不稳定的主要原因是真空计测量精度不够、控制方法不正确、多种工作气体混合结构不正确。为解决上述问题,本文提出了相应的升级改造技术方案,更换了精度更高的薄膜电容真空计,采用了控制精度更高的上下游控制方法,在多种气体混合管路上增加了缓存罐,并使用了调节和控制精度较高的电动针阀和2通道PID控制器。升级改造后的真空控制系统,可在全量程的真空度范围(1Pa~0.1MPa)内实现±1%的控制精度和稳定性。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 干式运输型液氮罐的智能控制系统

    干式运输型液氮罐的智能控制系统

    干式运输型液氮罐在现代物流中扮演着重要的角色。这种特殊的液氮罐能够安全、高效地储存和运输液体氮气,被广泛应用于医疗、化工、半导体等领域。  然而,在使用过程中,液氮罐的温度和压力控制是至关重要的,这直接关系到液氮罐内液氮的稳定性和可靠性。为了提高效率和保障安全,智能控制系统成为必不可少的一部分。本文将探讨干式运输型液氮罐智能控制系统的设计与优化。  首先,我们需要了解液氮罐的基本工作原理。干式运输型液氮罐主要由罐体、内胆、真空绝热层和控制系统组成。当液体氮气进入储罐后,通过真空绝热层的保护,减少了热量的传输,从而保持液态状态。而控制系统则对液氮罐的温度和压力进行监测和控制,以确保液氮罐内的环境始终稳定。[img=液氮罐,400,372]https://ng1.17img.cn/bbsfiles/images/2023/11/202311301123439518_1703_3312634_3.jpg!w400x372.jpg[/img]  传统的液氮罐控制系统通常采用传感器和人工操作的方式来实现温度和压力的监测与调节。然而,这种方式存在着人工操作不准确、反应迟缓等问题,同时也增加了人工成本。因此,智能控制系统应运而生。  智能控制系统通过集成传感器、执行器、控制算法和通信技术,能够实时监测和控制液氮罐的温度和压力。首先,通过温度传感器和压力传感器采集罐内环境的数据,并将其传输给控制器。控制器根据预设的参数和算法进行数据处理,判断罐内环境的状态,并根据需要发送控制信号给执行器。  在控制信号的作用下,执行器可以自动调节液氮罐的温度和压力。例如,当温度过高时,控制系统可以启动冷却装置将温度降低 当压力过大时,控制系统可以通过排气阀门释放部分气体来降低压力。通过智能控制系统的优化和升级,液氮罐的温度和压力控制将更加准确和高效。  此外,智能控制系统还具有远程监控和故障诊断的功能。通过通信技术,控制系统可以与上位机或云平台进行数据交换和传输,实现远程监控。操作人员可以随时查看液氮罐的运行状态和数据,并根据需要进行调整和控制。同时,智能控制系统可以对液氮罐进行故障诊断,及时发现并报警故障,提高维护效率和减少停机时间。  总之,干式运输型液氮罐(www.cnpetjy.com)的智能控制系统在提高效率和保障安全方面具有重要作用。通过集成传感器、执行器、控制算法和通信技术,智能控制系统能够实时监测和控制液氮罐的温度和压力,实现自动化调节 同时,还能够实现远程监控和故障诊断,提高了运行效率和可靠性。未来,随着技术的不断进步,液氮罐智能控制系统的功能和性能还将进一步提升,为物流行业带来更多的便利和效益。

  • 摩擦磨损试验机的控制系统

    摩擦磨损试验机的控制系统是连接试验人员与设备主机之间的纽带,用于对试验的进行控制与数据的显示,今天介绍的控制系统是济南凯锐公司自主研发,其不仅操作简单,而且功能齐全,还可以根据客户的需要量身定做。另外像电子万能试验机和液压万能试验机的控制系统其功能跟该系列产品大体也类似,具体看参照其他相关文章。1.摩擦磨损试验机的控制系统依托于windows控制系统,一切功能的实现都是在此基础上进行的,其全部内容所占空间也不过几百兆。控制系统相比较电脑系统来说,升级更容易,也更好操作。2.系统实现了分级别管理,控制系统的全部数据对于高权限的操作来说是完全公开的,不仅包括试验操作部分还包括设备的检定标定等功能。而对于普通的使用者来说也能对完全满足试验进行操作,即常规的试验操作部分。这样就保证系统的安全性,避免了因其他人对系统的操作造成系统的紊乱。3.控制系统具有完善的功能模块,有菜单栏,数据显示区(试验力显示区、摩擦力显示区、时间控制区、转速显示区、温度显示区、报警提示),曲线显示区(试验力-时间、摩擦力-时间-摩擦系数、摩擦系数-时间、转速-时间、温度-时间、摩擦力矩-时间),试验控制部分等思达部分组成。每个部分所能实现的功能还有很多,这里不一一介绍,详情可咨询凯锐的其他相关资料。4.该控制系统支持各种品牌商业用打印机,类似于三星、联想、爱普生等,兼容性高。5.操作功能不仅包括自动操作还可以进行手动操作,手动操作弥补了自动操作的一些缺点。适合用户进行各类复杂的数据分析。

  • 微激光束焊接中真空控制系统的压力调节解决方案

    微激光束焊接中真空控制系统的压力调节解决方案

    [color=#990000]摘要:本文针对微激光束焊接中真空控制系统的压力调节,介绍了相应的解决方案。具体实施方案是配备不同量程的真空计、进气电动针阀、排气电动球阀和双通道高精度PID控制器,并采用上游和下游控制模式可实现全量程范围内的气压调节和恒定控制。此解决方案可在全量程范围内任意设定点的真空度恒定控制达到波动率小于±1%。[/color][align=center][color=#990000]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/align][color=#990000] [size=18px]一、背景介绍[/size][/color]微激光束焊接 (LBW) 也称为微焊接,是通过投射出的微小直径激光光束,产生微观焊缝将不同金属熔合在一起。最近有客户提出定制要求,要求在微激光束焊接的系统中,配备用于精确压力调节的真空控制系统。具体要求是焊接腔室内充入惰性气体,焊接腔室内的绝对气压在10Pa至一个大气压(0.1MPa)的真空范围内精确恒定控制,在任意控制点上的气压波动小于±1%。本文将针对上述客户对微激光束焊接中真空控制系统的压力调节技术要求,提出相应的解决方案。具体实施方案是配备不同量程的真空计、进气电动针阀、出气电动球阀和双通道高精度PID控制器,并针对不同真空度量程分别采用上游和下游控制模式实现全量程范围内的气压调节和恒定控制。此解决方案可在全量程范围内任意设定点的真空度恒定控制达到波动率小于±1%。[size=18px][color=#990000]二、解决方案[/color][/size]微激光束焊接 (LBW) 真空控制系统的压力调节解决方案如下图所示。[align=center][img=微激光束焊接中的真空控制系统,400,555]https://ng1.17img.cn/bbsfiles/images/2022/09/202209201618016926_439_3221506_3.png!w590x819.jpg[/img][/align]由于微激光束焊接所要求的气压调节范围(绝对压力)为10Pa~0.1MPa的真空度,并实现全量程任意设定真空度在恒定过程中的波动率小于±1%,而且还要求对焊接过程中所引起的气压波动进行快速调节并恒定能力,故本解决方案采用两个控制回路来覆盖全量程。第一个控制回路负责控制1kPa~101kPa范围的高气压,采用了1000Torr量程的薄膜电容真空计作为传感器。此真空计连接PID控制器的第一通道,PID控制器通过接收到的真空度信号与设定值进行比较来调节电动球阀,使得焊接室内的气压快速达到设定值并保持恒定。第二个控制回路负责控制10Pa~1kPa范围的低气压,采用了10Torr量程的薄膜电容真空计作为传感器。此真空计连接PID控制器的第二通道,PID控制器通过接收到的真空度信号与设定值进行比较来调节电动针阀,使得焊接室内的气压快速达到设定值并保持恒定。为保证控制精度和稳定性,此解决方案中要求电动针阀和球阀需要具有1秒以内的响应速度,并要求双通道PID控制器具有24位AD和16位DA的高精度。此解决方案已成功得到广泛应用。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 基于FPGA智能变送器控制系统总体方案

    随着工业自动化控制技术的发展,自控水平越来越高,对过程参数控制精度要求越来越严,要求变送器表不仅精度高,而且要功能多、稳定可靠、能准确传送过程参数(压力、差压、绝压、流量)、抗干扰能力强、使用维护简单,并能与控制器、执行器等设备组成功能强大的控制系统,实现通讯和过程的自动控制。所以,过去的变送器由于受测量原理和通讯所限,很难实现这种高精度控制要求,因此,自然而然地产生了原理先进具有通讯功能的智能变送器。这类先进的智能变送器集现代科技与一身,是微电子技术、精密机械加工技术、计算机技术和现代通讯技术完美结合的产物,能实现过程控制的多种要求,推动了整个自控技术的向前发展。先进的智能变送器是工业过程控制技术发展的需要,也是工艺过程实现高精度控制的必须,具有很好的市场前景。    本文根据工业应用的实际需要以及网络通信发展的功能要求,提出了基于FPGA智能变送器控制系统的总体方案,硬件系统设计、软件设计。该设计实现了系统MCU主控模块、数据采集模块、电源控制模块、数据处理模块、数据通信模块等硬件电路,并给出了系统软件流程图,重点论述了数据采集和数据模拟输出控制电路的FPGA实现,详细阐述了系统各模块电路的组成原理和实现方法,给出了整个电路系统的原理图,并制作了印刷电路板。结合XILINX公司的ISE10.1设计软件给出了模/数转换、数/模转换的仿真结果,验证了系统功能。    1、智能变送器的总体设计    本智能变送器由前端信号调理电路、高速A/D采样电路、数字信号处理电路、模拟输出电路和数字输出电路组成。如图1所示。    分析不同类型的传感器,其输出信号可分为电流信号、电压信号和电荷信号3大类,相应地设计了3种信号调理电路。以大型设备振动监测项目为例,县体的传感器有加速度、速度和位移传感器。选择不同的前端信号调理电路,变成统一规格的电压信号供后面的A/D采样。    A/D采样部分对前端电路的输出电压信号进行采样。A/D采样芯片采用ADI公司的AD7264,AD7264是双通道同步采样、14-bit、高速、低功耗、逐次逼近型模数转换器,采用5V单电源供电,采样速率高达1MSPS。A/D采样电路与前端信号调理电路用同一隔离电源供电,与后级数字信号处理电路隔离。AD7264的数据接口为串行接口,便于隔离处理。    数字信号处理电路选择带有CPU软核的FPGA。FPGA是智能式变送器的核心,它不但能对采样数据进行计算、存储和数据处理,还可以通过反馈回路对传感器进行调节。在整个系统中,FPGA主要实现对系统的控制和数据的预处理。    智能式变送器有两种输出方式:模拟输出和数字输出。数字输出将处理后的信号直接输出,通过CAN接口、TCP/IP接口传给上位机。模拟输出通过DAC芯片将信号转换成标准电压电流信号输出。    2、系统硬件设计与实现    智能变送器具有采集、处理、指示、通讯等功能,其硬件设计围绕功能进行。整个智能变送器单元根据所完成的功能分为以下几个主要功能模块:信号采集模块(传感器放大电路)、信号转换模块(模/数转换和数/模转换电路)、FPGA控制模块、通信模块(以太网和CAN总线通信)以及为整个系统提供电源的电路部分等。其中FPGA系统为整个控制器单元的核心,是变送器实现数字智能化的标志。    智能变送器的硬件总体结构框图如图2所示。变送器工作时,由传感器把被测量转变为电信号,然后将信号作A/D转换,把模拟信号变换成数字信号,送入到FPGA(XC3S4005PQ205)控制模块,FIGA通过FIR滤波器核对信号进行滤波,并通过查表法对信号进行自动补偿,然后根据实际需要。经数/模转换后将数据传给下级电路,同时也可能通过以太网或CAN总线传给局域网,实现智能变送功能。系统PCB板实物图如图3所示。    3、系统软件设计与仿真    该系统以XILINX公司的XC3S4005PQ208C作为中央处理器,整个系统主要包括初始状态(Initialization)、数据采集状态(Data_Sample)、数据处理状态(Data_Processing)、以太网传输状态(Enet_Transfers)、CAN总线传输状态(CAN_Transfers)、和模拟输出状态(Analog_Transfers)等6种状态,因此,可以利用有限状态机的设计方案来实现。其状态转换图如图4所示,通过开发工具ISE10.1对各个模块的VHDL源程序及顶层电路进行编译、逻辑综合,电路的纠错、验证、自动布局布线及仿真等各种测试,最终将设计编译的数据下载到芯片中即可。    初始状态:实现系统初始化;数据采集状态:完成数据采集过程;数据处理状态:对采集的信号进行一系列的滤波处理,非线性校正等;以太网传输状态,CAN总线传输状态:根据实际需要将信号数字输出;模拟输出状态:进行数模转换,输出标准的电压电流信号。    3.1数据采集的FPGA设计    数据采集是工业测量和控制系统中的重要部分,它是测控现场的模拟信号源与上位机之间的接口,其任务是采集现场连续变化的被测信号。对数字系统来说,数据采集主要由传感器放大电路和A/D转换电路构成,由硬件电路可见,系统通过AD7264模/数转换器来实现模/数转换。AD7264内含6个寄存器,分别是A/D转换器的结果寄存器、控制寄存器、A/D转换器A和B的内部失调寄存器、A/D转换器A和B通道的外部增益寄存器。由于XC3S4005PQ208C和AD7264都兼容SPI接口,两者的编程只需按照时序图进行即可。AD7264与FPGA的接口主要包括PD0数据输入选择端:DoutA(DoutB)两路数据输出端;OUTa(OUTb)两路数据输入端;CoutA(CoutB、CoutC、CoutD)比较器输出;G3(G2、G1、G0)四路增益控制输入信号。增益由控制寄存器的低四位控制;ADSCLK时钟信号;ADCS片选信号,低电平有效。AD7264工作频率为20MHz,在CS下降沿,跟踪保持器处于保持模式。此时,采样、转换同时被初始化模拟输入。这需要至少19个SCLK周期。第19个SCLK的下降沿到来时。AD7262恢复至跟踪模式,并设置DOUTA、DOUTB为使能。数据流由14位组成,MSB在前。图5为AD7264读寄存器时序仿真图。    3.2数据输出的FPGA实现    智能化信号调理器的输出分为数字输出和模拟输出,数字输出通过CAN接口和TCP/IP输出到上位机,或者通过总线方式输出;模拟输出通过DA转换成标准的电压电流信号输出。系统选用ADI公司AD5422数/模转换器来实现数/模转换。AD5422通过数据移位寄存器输入数据,数据在串行时钟输入SCLK的控制下首先作为24位字载入器件MSB中。数据在SCLK的上升沿逐个输入。该24位字在LATCH引脚的上升沿无条件锁存,然后数据继续逐个输入,此时与LATCH的状态无关。图6为AD5422写操作时序仿真图。    4、结束语    采用XILINX公司的ISE10.1设计软件及MODELSIM软件对系统进行反复调试仿真,给出了试验结果,验证了系统功能。并运用美国PCB公司的608A11作为加速度传感器。对设备的振动进行监测,其模拟输出的测试结果如表1所示。    最终的调试结果表明,本文所设计的智能变送器器能够稳定的实现温度、压力等变量的变送,并且频率、幅值的调节精度等技术指标均达到了预期的设计要求。

  • 液氮罐中如何应对控制系统失效

    应急反应和安全措施  在控制系统失效的情况下,首要任务是通过手动操作关闭罐体的出液阀门,以防止液氮的过度流动。这样可以避免罐体内压力突然升高而引发其他安全隐患。同时,操作人员需要穿戴适当的防护装备,如手套和护目镜,以应对可能的液氮泄漏或喷溅情况。[img=,690,788]https://ng1.17img.cn/bbsfiles/images/2024/08/202408051007272164_2545_6088378_3.jpg!w690x788.jpg[/img]  控制系统恢复策略  一旦安全措施得以落实,接下来的关键步骤是评估控制系统的具体故障原因。这可能涉及到检查传感器、执行器或电子控制单元等关键部件。操作人员可以利用备用的手动控制功能,例如手动阀门和调节装置,来恢复对液氮罐的基本控制。  温度和压力监测  控制系统失效后,温度和压力的实时监测尤为重要。通过罐体内部的温度传感器和压力传感器,操作人员能够及时掌握液氮的工作状态。监测数据可以帮助确定液氮的液位和温度变化,从而指导后续的操作调整和安全措施。[img=,685,1140]https://ng1.17img.cn/bbsfiles/images/2024/08/202408051008031830_7644_6088378_3.png!w685x1140.jpg[/img]  调整液氮供给量  失效的控制系统可能导致液氮的供给量异常波动,甚至中断。为了维持罐体内液氮的稳定工作状态,操作人员需要根据实时监测的数据,逐步调整液氮的供给量。这需要精确的调节和操作技巧,以避免过度补充或供给不足的情况发生。  紧急联系和报告  在应对控制系统失效的过程中,保持紧急联系通道的畅通是非常关键的。操作人员应当及时向相关管理人员和技术支持团队报告故障情况,并请求必要的紧急维修和支持。及时沟通和反馈能够有效减少事故的影响和扩散范围。  系统维修和恢复  最后,一旦故障原因明确并得到解决,操作人员和技术人员需进行系统的全面维修和恢复。这可能涉及到更换损坏的控制单元、传感器或执行器等关键部件,确保液氮罐的控制系统能够再次安全、稳定地运行。  通过以上详细的步骤和应对策略,[url=http://www.yedanguan001.com/]东亚液氮罐厂家[/url]在面对控制系统失效时能够有效地应对,最大限度地保障设备的安全运行和液氮的稳定供应。这些措施不仅需要操作人员具备高超的技术操作能力,还需要具备快速应对紧急情况的能力和严谨的操作态度。在液氮应用领域,安全始终是第一优先级,只有通过科学合理的应对措施,才能有效降低事故风险,保障生产工作的顺利进行。

  • 西门子EM223模块用耐特PLC模块自动控制系统污水处理要点

    在城镇污水处理厂的PLC自动控制系统中主要采用集中监测方式,并辅以分散控制方式,终控室可以实时监控整个污水处理厂的工作运行状况,具体的生产工艺控制采用就地站点单独控制的方式。1.耐特PLC自动控制系统的特点污水处理自动控制系统比较复杂,实际生产过程中需要采集并控制的数据量也比较多,所以上位端要用到监控软件或者移动端APP,生产站点端要用到耐特PLC ST-200 CPU226XP主机模块ST-200 EM231 16I/16O开关量模块ST-200 EM232 4AO 模拟量模块ST-200 EM231 4AI 模拟量模块同时控制方式也多种多样,包括实时控制和顺序控制等,还有闭环控制和开环控制。其最终控制对象是CODCr、BOD5、SS、pH值、氨氮、总磷等参数,这不同于一般控制系统。为了使污水处理过程中的上述参数合格,需要对处理设备的运行状态、进泥量和排泥量、各工艺段的处理时间、加药量、进水量及排水量等进行综合控制,这些都大大增加了自动控制系统的复杂性。目前,污水处理自动控制系统已经由简单的逻辑控制发展到更为发展的分散控制阶段。2.耐特PLC自动控制系统的功能污水处理控制系统的功能包括:生产过程自动控制、实时在线监视、故障显示报警、联锁保护、自动生成报表等。这些功能能够提高污水厂的处理效率,提高企业的管理水平和劳动生产率,保证设备正常运行,减轻工人的劳动强度和人工成本。耐特PLC自动控制系统与传统的人工控制方式相比,大大提高了污水处理自动化水平和管理水平,同时也大大提高了污水处理的质量、减少了有害物质的排放,产生了很好的经济效益和社会效益。

  • 电阻管式炉真空控制系统技术升级改造解决方案

    电阻管式炉真空控制系统技术升级改造解决方案

    [align=center][img=高温石英管式炉及其真空控制系统,600,391]https://ng1.17img.cn/bbsfiles/images/2023/11/202311281102414320_6035_3221506_3.jpg!w690x450.jpg[/img][/align][size=16px][color=#990000][b]摘要:针对用户提出的高温石英管加热炉真空度控制系统的升级改造,以及10~100Torr的真空度控制范围,本文在分析现有真空控制系统造成无法准确控制所存在问题的前提下,提出了切实可行的解决方案。解决方案对原有的无PID控制功能的压强自动控制仪和慢速大口径电动蝶阀进行了更换,采用了高精度可编程PID真空压力控制器,采用了口径较小响应速度更快的电动球阀。此解决方案已在多个真空领域得到应用,并可以达到±1%的高精度控制。[/b][/color][/size][align=center][size=16px][color=#990000][b]~~~~~~~~~~~~~~~~~~[/b][/color][/size][/align][size=18px][color=#990000][b]1. 项目背景[/b][/color][/size][size=16px] 高温石英管式炉广泛用于陶瓷、冶金、电子、玻璃、化工、机械、耐火材料、新材料开发、特种材料和材等领域。石英管式炉的加热元件一般为NiCrAl电阻丝,并采用双层壳体结构,并带有风冷,使得壳体表面的温度小于70℃。保温材料采用高纯氧化铝纤维,环保节能,可以最大程度的减少热量的损失。为了进行各种气氛环境下的高温反应和研究,并避免高温产出物对加热丝的腐蚀影响,石英管式炉中普遍安装了一根高纯石英管用来作为炉膛,且石英管两端可固定金属密封法兰,从而可在石英管内形成密闭真空环境。[/size][size=16px] 最近有用户提出了对在用的石英管式炉进行技术改造,此卧式高温石英管式炉如图1所示。[/size][align=center][size=16px][color=#990000][b][img=需进行升级改造的高温石英管式炉及其真空控制系统,690,286]https://ng1.17img.cn/bbsfiles/images/2023/11/202311281105026257_5413_3221506_3.jpg!w690x286.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 需进行改造的真空石英管式炉及其真空控制系统[/b][/color][/size][/align][size=16px] 用户对现有石英管式炉进行技术改造的内容是要实现管式炉真空度的精密控制,如图1所示,现有的真空度控制系统采用了电容薄膜真空规作为真空度传感器,传感器配套有真空显示仪进行真空度测试值显示并输出信号,压强自动控制仪接收传感器信号,然后驱动电动蝶阀进行开度变化,以实现真空度的自动控制。但此真空度控制系统在调试过程中,完全无法实现真空度的自动控制,这主要是现有真空度控制系统存在以下几方面的问题:[/size][size=16px] (1)现有真空控制系统所采用的压强自动控制仪并不具备PID控制功能,所以有时候会出现某些真空度区间无法准确控制的现象。[/size][size=16px] (2)所采用的电动蝶阀响应速度太慢,而且口径太大,很难对压强自动控制仪输出的控制信号做出快速响应,对如此小内径的石英管腔体很难进行真空度的准确控制。[/size][size=16px] 为了彻底解决现有真空度控制系统存在的上述问题,本文提出了如下技术升级改造方案。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 首先,按照用户要求,解决方案拟达到的技术指标如下:[/size][size=16px] (1)真空度控制范围:10~100Torr(绝对压力)。[/size][size=16px] (2)真空度控制精度:读数的±%。[/size][size=16px] (3)控制功能:PID自动控制,多个设定点可编程自动控制。[/size][size=16px] 为了实现上述技改指标,本解决方案所设计的高精度真空度控制系统如图2所示。[/size][align=center][size=16px][color=#990000][b][img=改造升级后的真空控制系统结构示意图,690,292]https://ng1.17img.cn/bbsfiles/images/2023/11/202311281105266047_8320_3221506_3.jpg!w690x292.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图2 改造升级后的真空控制系统结构示意图[/b][/color][/size][/align][size=16px] 改造升级后的真空控制系统还是沿用下游控制模式,即对排气流量进行调节,同时还继续使用原有的电容真空计,但在以下几方面做出了改进:[/size][size=16px] (1)真空度测量和控制仪表的改进:解决方案中采用了超高精度VPC2021-1型真空压力控制器,其具有24位AD、16位DA和0.01%最小输出百分比,可直接用来接收电容真空计输出的真空度电压信号并按照真空度单位进行显示,无需再使用原有的真空显示仪。此真空压力控制器是一款超高精度的PID控制器,充分发挥了PID自动控制的强大功能,且PID参数可进行自整定,是实现真空度高精度控制的重要保证。另外,此真空压力控制器具有多个设定点编程控制功能,可按照设定折线和真空度变化速率对石英管内的真空度进行自动程序控制。[/size][size=16px] (2)排气阀门的改进:解决方案中将原有的慢速和大口径电动蝶阀更换为响应速度更快和口径更小的电动球阀,在减小排气调节口径提高阀门开度调节效率的同时,能更快的响应真空压力控制器给出的控制信号,极大减小了控制的滞后性,保证了控制的准确性。[/size][size=16px] 图3给出解决方案中真空度控制系统的接线图。[/size][align=center][size=16px][color=#990000][b][img=真空控制系统接线图,600,191]https://ng1.17img.cn/bbsfiles/images/2023/11/202311281105446783_3371_3221506_3.jpg!w690x220.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图3 真空度控制系统接线图[/b][/color][/size][/align][size=16px] 解决方案中所配置的VPC2021-1真空压力控制器具有标准MODBUS通讯协议的RS485接口,并配置了计算机软件,可通过在计算机上运行软件完成控制器的参数设置、远程控制操作、控制过程参数和曲线的显示和存储。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 本解决方案将彻底解决了管式炉真空度的高精度控制问题,并具有以下特点:[/size][size=16px] (1)解决方案的下游真空度控制不受上游进气流量大小的影响,在调节的恒定进气流量下,石英管内的真空度可以自动控制在设定值上。[/size][size=16px] (2)本解决方案具有很强的灵活性,目前本解决方案所控制的是10~100Torr真空度范围,如果要进行0.1~10Torr范围的真空度控制,则通过在进气端口增加一个电动针阀,通过恒定排气流量的同时调节针阀开度,则可实现高真空度精密控制。同样,更换更大量程的真空计,还可以在石英管内实现微正压控制。[/size][size=16px] (3)本解决方案具有很强的适用性,在排气端增加真空进样装置,可将石英管加热炉内高温下产生的气体导入到质谱仪或与其他仪器联用进行产物分析。[/size][size=16px] (4)本解决方案中的真空压力控制器是一款通用性PID控制器,除了具有高精度真空压力控制功能之外,更换温度传感器和流量计后也可以用于温度和流量控制。[/size][size=16px][/size][align=center][size=16px][b][color=#990000]~~~~~~~~~~~~~~~[/color][/b][/size][/align]

  • 详细介绍高低温试验室控制系统

    高低温试验室是帮助一些大型产品进行试验箱的大型试验设备,通常是模拟产品在高温或是低温环境下的使用状态,然后能够快速的得出产品在经过多年使用之后的性能以及参数。不过现在有很多使用这款试验箱的用户对设备的控制系统完全不了解,所以小编下面就为大家详细介绍一下,希望能够帮大家更好的使用这款设备。很多用户都不是特别了解控制系统和控制器之间有什么区别,不过这两者名字虽然相近,但是区别还是非常大的,就比如控制器只是用户在使用过程中用来协助下达命令以及记录、导出试验数据的,而控制系统是在设备运行过程中调整设备状态的。不过现在很多用户都认为这两者是相同的,所以在选购时就只注意了控制器的选择而忽视了试验箱的控制系统。而且目前国内很多厂家现在选用的都是控制器中自带的系统,虽然他们能够实现的性能和选用优质系统的设备差不多,但是在运行过程中的消耗也更大,如果一直这样长时间使用,那么这样的试验箱也更加容易报废。其实在高低温试验室控制系统这方面,多禾真的占据了非常大的优势,因为他们的控制系统是专门从德国引进的,是可以和进口试验箱选用的控制系统相媲美的,再加上多禾在生产设备时使用的都是最好的零配件以及制造技术,保证了试验箱超长的使用寿命以及极低的故障频率。http://www.doaho.com

  • 【原创】中真空控制系统

    一、操作便捷性:1、抽气口及气路连接口采用KF式快速连接结构。简化安装过程,只需一支卡箍便可完成连接,方便操作。2、配置两种电源连接线,即可直接与我公司的产品直接连接组合使用,也可单独连接独立使用。二、控制智能化:1、采用数显真空计,配合热偶规管采集数据。测量精度高、稳定性好、抗干扰能力强。真空度显示采用科学计数法,数字显示,使用方便直观。2、自动控制与手动控制切换功能。自动控制模式能通过设定值自动开启/关闭真空泵,时容器内保持在一定的真空压力范围内。手动控制模式使用户通过真空泵开启/关闭按钮直接操作真空泵。以满足不同实验的需要。3、电磁阀缓启动技术,使电磁阀在真空泵开启10秒钟后打开,使炉管内压力保持准确,也保证了废气不会返回到容器内影响实验效果。三、结构实用性:1、内置双极旋片式机械真空泵,有效的提高了抽气效率。2、内置压差式防返油机构,使真空泵中的油不会返出。结合气镇阀在使用时更加安全可靠。3、本身作为真空控制系统的同时,也可作为活动平台使用,方便放置电炉及其它设备。

  • 西门子EM232模块用国产耐特PLC模块自动控制系统恒压供水特点

    西门子EM232模块用国产耐特PLC模块自动控制系统恒压供水特点

    PLC恒压供水广泛用于高楼层生活、消防等供水系统。功能特点:1.将PLC、压力传感器、变频器、上位机等集成一个闭环控制系统。2.能保障系统管网的恒压,减少供水欠压和过压不合理现象。3.能用于诸多供水系统中,设备投资少,占地面积小,节水节电,操作控制自动。4.系统主要有:耐特ST-200系列PLC、变频器、上位监控PC机、压力传感器、液位传感器、控制接触器、软启动器及储水罐等组成。耐特PLC主机为STCPU226AC/DC/RLY,模拟量扩展模块为STEM235+STEM232耐特PLC应用于恒压供水设备控制系统产品功能特点:1、可采用USS通信或MODBUS通信方式控制变频器进行拖动水泵工作,也可采用模拟量控制方式通过变频器对水泵输出负载平滑调节;2、实时管网压力监测反馈,通过PID运算对水泵转速进行平滑连续性调节,减小对电网、电气设备、以及机械设备的冲击;3、备用水泵根据负荷需求智能介入工作,实现更大功率的调节周期,以及安全冗余;4、接入耐特智能网关模块,将管网压力、工作状态及故障报警信息上传到自来水公司或相关单位,达到快速响应快速维护,减少设备故障给终端用户带来的不便;5、本系统控制部分采用耐特PLCST-200CPU224XP+智能网关模块+压力仪表的配置进行控制,配合云服务器使用,控制灵活,安全可靠,对管网改造、管网压力监测等应用有先天优势。控制系统架构图[img=,554,397]http://ng1.17img.cn/bbsfiles/images/2018/08/201808071558374043_8916_3418314_3.png!w554x397.jpg[/img]

  • 气相色谱仪机械控制系统简述

    气相色谱仪机械控制系统简述

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]机械控制系统简述[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体][font=宋体]随着色谱分析应用要求的日益提高,并且伴随着现代机械[/font][font=Times New Roman]-[/font][font=宋体]电子技术的发展,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]([url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url])色谱仪逐渐成为复杂的机械[/font][font=Times New Roman]-[/font][font=宋体]光学[/font][font=Times New Roman]-[/font][font=宋体]电子[/font][font=Times New Roman]-[/font][font=宋体]化学分析系统。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]([url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url])系统中安装的自动进样器单元(包括液体自动进样器、自动阀进样器、顶空进样器、热解析进样器、吹扫捕集进样器、热裂解进样器等)、自动阀切换单元、风扇和柱温箱后开门部分在仪器运行工作中都需要进行精确地机械控制,这些单元需要精确控制的物理量有机械位置、机械位移、旋转角度、速度和加速度等。本文对机械控制系统的基本原理和方法给予简单叙述,希望对色谱工作者和色谱维修工作者的日常工作给予一定帮助。[/font][/font][align=center][font=宋体][font=宋体]简述[/font] [font=宋体]开环和闭环控制[/font][/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url](或[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url])分析系统中存在较多机械运动部件,系统需要根据分析方法的要求,在合适的时间和状态下对运动部件进行合适的控制,例如部件的空间位置和位移、部件的运行速度和角度以及部件运行的加速度。[/font][font=宋体][font=宋体]常见情况下,部件的基本控制方式分开环控制和闭环控制两种,图[/font][font=Times New Roman]1[/font][font=宋体]为开环控制的基本原理框图,控制系统由控制器、执行器(一般为电机或气缸)、传动机构和目标部件组成。信号由输入端向输出端单向传递,没有信号反馈形成闭环的回路,此种控制方式的特点为,输出量不会对输入量产生任何影响。[/font][/font][font=宋体]开环控制方式结构较为简单、调节方便、故障率低,控制器直接给出系统输入量,对系统中可能产生的干扰或者系统中参数变化均不给出补偿,在精度要求不高或者扰动影响较小的场合下较为适用。例如[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱温箱后开门角度的控制、柱温箱或其他部件风扇运转速度的控制或者色谱柱切换阀旋转控制,一般采用开环控制方式。[/font][font=宋体]开环控制方式的缺陷较为明显,当系统出现故障时,目标部件不能完成控制目标,单系统不能识别此故障。例如在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]柱温箱后开门控制系统中,当执行器(电机)不能运转致使柱箱后开门不能开启,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱温箱温度将会产生降温速度异常降低的故障,但系统并不会给出硬件报警信息。[/font][img=,483,40]https://ng1.17img.cn/bbsfiles/images/2023/10/202310242115130118_3723_1604036_3.jpg!w690x57.jpg[/img][font=Calibri] [/font][align=center][font=宋体][font=宋体]图[/font][font=Calibri]1 [/font][font=宋体]开环控制系统原理框图[/font][/font][/align][font=宋体][font=宋体]图[/font][font=Calibri]2[/font][font=宋体]为闭环控制系统原理框图,与开环系统相比,该系统增加了传感器测量回路,使闭环控制系统有较高的精度,但结构更为复杂,系统的分析与设计相应较为困难。[/font][/font][font=宋体]闭环控制的工作原理是基于偏差的控制,在系统工作过程中,系统将传感器反馈的目标部件的实际位置传递给比较器,控制系统将反馈量与设定量进行比较,如果发生正向偏差,系统将向执行器(电机)给出命令,使其旋转或者降低速度,最终减小偏差。[/font][img=,503,114]https://ng1.17img.cn/bbsfiles/images/2023/10/202310242115216501_132_1604036_3.jpg!w690x157.jpg[/img][font=宋体] [/font][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]闭环控制系统原理框图[/font][/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url](或[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url])的温度、流量、进样器位置、角度、速度的控制一般采用闭环控制方式,用以实现高稳定性、高速、高准确性的控制。例如某些型号的自动进样器,可以对进样针的空间位置实现[/font][font=Times New Roman]0.01mm[/font][font=宋体]精度的控制。[/font][/font][font=宋体] [/font][font='Times New Roman'] [/font]

  • 半导体封装工艺用固晶炉的正负压力PID控制系统

    半导体封装工艺用固晶炉的正负压力PID控制系统

    [size=16px][color=#990000]摘要:真空压力除泡机和除泡烤箱在电子行业的应用十分广泛,但现有除泡机存在的最大问题是选择了开关式阀门,无法实现真空和压力既准确又快速的控制。为此,本文提出了升级改造技术方案,即采用双向PID控制器和快速电动球阀开度大小的连续调节,可在各种规格尺寸的除泡机上实现真空压力的快速准确控制。[/color][/size][align=center] [img=,690,439]https://ng1.17img.cn/bbsfiles/images/2023/04/202304231446478656_8396_3221506_3.jpg!w690x439.jpg[/img][/align][size=16px][/size][size=18px][color=#990000][b]1. 问题的提出[/b][/color][/size][size=16px] 真空压力除泡烤箱常用于半导体、5G通讯、新能源、汽车电子、消费电子、航天军工等领域的芯片黏结(DAF)、屏幕贴合(OCA)、底部填充胶(Underfill)、灌封胶(Potting)或印刷涂覆胶(Printing)等工艺制程中,可有效消除气泡,增加粘附力和密封性,提高产品良率、一致性和可靠性。真空处理是为了防止粘结剂受热氧化,加压充气是将粘结剂内的气泡压除,避免气泡的产生,使得半导体芯片与片材在后续的回焊过程中不会受到较大的应力而避免损坏。[/size][size=16px] 真空压力除泡的典型过程如图1所示,首先对载有半导体芯片以及片材的烤箱抽真空并充氮气的冲洗循环,尽可能减少腔室内的氧分子,然后将腔室内压力控制在微负压状态,使腔室内氮气体积为箱体体积的60%~70%。随后控制加热器加热使腔室内部环境温度升高到80℃,并将加热器周围的热气吹至半导体芯片上,防止将半导体芯片以及片材粘结剂固化。随后再次通入氮气在腔室内形成高压环境,高压氮气将粘结剂内的气泡压除清理,完成气泡的清除工作,同时将腔室内部环境加热至150℃并保持恒定,使得粘结更加稳定,半导体芯片的质量更好。最后停止加热和通过水冷机构将箱体内部的温度降低,泄压后完成工作。[/size][align=center][size=16px][color=#990000][b][img=01.除泡过程中的真空压力和温度变化曲线示意图,550,294]https://ng1.17img.cn/bbsfiles/images/2023/04/202304241456550094_8341_3221506_3.jpg!w690x369.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 除泡过程中真空压力和温度的典型变化曲线[/b][/color][/size][/align][size=16px] 从图1所示过程可以看出,整个除泡过程需要包含以下几方面的内容:[/size][size=16px] (1)真空压力的变化过程需要准确的可编程程序控制,可使整个处理过程完全自动运行。[/size][size=16px] (2)所配置的真空压力装置能被来自控制器的电子信号精细调节和控制以满足精度要求,而且还需满足一定的变化速度要求。[/size][size=16px] (3)需要合适的控制方法和结构,控制真空和压力的连续变化。[/size][size=16px] 尽管目前大多除泡机都标称具有真空压力控制功能,但由于都是采用开关式阀门进行真空和压力的调节控制,这种开关式控制方法存在以下两个问题:[/size][size=16px] (1)如果阀门口径较大,则真空压力的控制稳定性较差,但好处是控制速度较快。[/size][size=16px] (2)如果阀门口径较小,尽管能改善控制精度,但劣势则是控制速度很慢。[/size][size=16px] 由此可见,现有真空压力除泡机存在的最大问题是选择了开关式阀门进行真空压力控制,无法对抽气和进气流量进行精细调节。为此,本文提出了升级改造技术方案,通过采用快速电动阀门的开度大小调节,可准确且快速实现除泡机的真空压力控制。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 为了在除泡机上实现快速准确的真空压力控制,本文提出的具体解决方案如图2所示。[/size][align=center][size=16px][color=#990000][b][img=02.除泡机真空压力控制系统结构示意图,690,342]https://ng1.17img.cn/bbsfiles/images/2023/04/202304241457199993_3223_3221506_3.jpg!w690x342.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图2 除泡机真空压力控制系统结构示意图[/b][/color][/size][/align][size=16px] 除泡机的新型真空压力控制系统主要包括高压气源、电动调节阀、真空压力传感器、双向控制器和真空泵等,其真空压力控制基于动态平衡法,即通过调节进入和流出除泡烤箱的气体流量实现真空和压力的准确控制。当进行真空控制时,自动减小进气调节阀开度但增大出气调节阀开度;当进行压力控制时,自动增大进气调节阀开度但减小出气调节阀开度。由此可实现真空压力的全量程自动平滑控制。[/size][size=16px] 此新型的除泡机真空压力控制系统主要有以下功能和特点:[/size][size=16px] (1)采用通径为10mm的快速电动球阀,工作压力1MPa以下,极小的真空漏率,开关速度小于7秒,0~10V模拟控制信号,这样既可以快速抽取真空和加载高压气体,又能进行快速调节实现真空压力的稳定控制。[/size][size=16px] (2)采用了真空和压力双传感器,可以覆盖真空压力的全量程测量和控制。[/size][size=16px] (3)采用具有分程控制功能的双向PID控制器实现进气和出气阀门的同时调节,可在真空压力全量程范围内进行自动控制。[/size][size=16px] (4)PID控制器具有双传感器自动切换功能,可根据控制要求自动选择相应的传感器。[/size][size=16px] (5)PID控制器具有可编程功能,可支持20条工艺曲线。控制器具有PID参数自整定功能,支持20组分组PID参数。[/size][size=16px] (6)PID控制器具有RS485通讯接口和标准的MODBUS协议,可与上位机连接。自带的控制软件可直接运行控制器,并设置、数字显示、曲线显示和存储控制器参数的变化过程。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本文详细介绍了用于除泡机的新型真空压力控制系统,控制系统所采用的电动球阀和双向PID控制器,使得此系统可实现真空压力全范围内快速准确的可编程控制。[/size][size=16px] 另外,控制系统所用的PID控制器,是一种通用性PID调节器,也完全可以用于除泡机的温度控制。特别是具有两路独立的PID控制通道,可对两组发热体进行控制,更能保证除泡机内的温度均匀性。[/size][align=center][size=16px]~~~~~~~~~~~~~~~~~~~[/size][/align]

  • 【分享】MAT-271质谱计进样控制系统改造

    针对MAT-271质谱计进样控制系统老化,操作方式繁琐的问题,提出一种基于Linux和MiniGUI的进样控制系统解决方案。利用PC/104主板控制PC/104总线规范的A/D及I/O驱动接口板,在Linux操作系统下,采用MiniGUI设计图形控制界面,通过大尺寸液晶触摸屏控制进样,并实时显示多个参数,实现对现有质谱计进样控制系统的升级改造。应用表明本系统不仅操作简便,而且显示直观,实现进样系统的自动化控制。

  • 【原创大赛】烟气脱硝测试装置控制系统改造

    [font='宋体'][size=13px][color=#333333]烟气脱硝测试装置是模拟燃煤电厂烟气条件进行脱硝催化剂测试的非标装置,测试装置的参数按照[/color][/size][/font][font='宋体'][size=13px][color=#333333]DT/L1286要求进行控制。整个测试系统主要有:配气系统、制氮系统、反应器、控制系统、测试系统、取样系统等构成。[/color][/size][/font][font='宋体'][size=13px][color=#333333]1.控制系统作用及问题[/color][/size][/font][font='宋体'][size=13px][color=#333333]控制系统单元主要由电源模块、传感器模块、质量流量计、继电器、电磁阀、P[/color][/size][/font][font='宋体'][size=13px][color=#333333]LC[/color][/size][/font][font='宋体'][size=13px][color=#333333]控制器等组成,主要[/color][/size][/font][font='宋体'][size=13px][color=#333333]作用是[/color][/size][/font][font='宋体'][size=13px][color=#333333]对系统参数的采集、控制及报警。全尺寸平台使用P[/color][/size][/font][font='宋体'][size=13px][color=#333333]LC[/color][/size][/font][font='宋体'][size=13px][color=#333333]进行控制,通过控制电脑提供人机交互界面,并结合软件平台实现控制元件参数的设定和自动化运行。随着对设备[/color][/size][/font][font='宋体'][size=13px][color=#333333]使用的不断积累[/color][/size][/font][font='宋体'][size=13px][color=#333333],以及检测能力扩大迫切的要求,伴随着多项技术改造,原始控制系统已经无法满足使用要求[/color][/size][/font][font='宋体'][size=13px][color=#333333]。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.系统改造[/color][/size][/font][font='宋体'][size=13px][color=#333333]为完善自动控制功能,增强控制系统运行安全性和稳定性,对控制系统采取[/color][/size][/font][font='宋体'][size=13px][color=#333333]了如下的[/color][/size][/font][font='宋体'][size=13px][color=#333333]技术改造[/color][/size][/font][font='宋体'][size=13px][color=#333333]。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.1[/color][/size][/font][font='宋体'][size=13px][color=#333333]对P[/color][/size][/font][font='宋体'][size=13px][color=#333333]LC[/color][/size][/font][font='宋体'][size=13px][color=#333333]进行升级,增加一套冗余P[/color][/size][/font][font='宋体'][size=13px][color=#333333]LC[/color][/size][/font][font='宋体'][size=13px][color=#333333]专门用于分布式控制温控系统和电加热系统[/color][/size][/font][font='宋体'][size=13px][color=#333333]。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.2[/color][/size][/font][font='宋体'][size=13px][color=#333333]对模拟量数据采集和阀的控制等实现全局掌控,避免发生卡顿、宕机等隐患。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.3[/color][/size][/font][font='宋体'][size=13px][color=#333333]在空压机和制氮机端增加双绞屏蔽电缆和电脑通讯,既可以远程启停设备,还可以监视设备运行各项参数及状态,对冷干机使用基于L[/color][/size][/font][font='宋体'][size=13px][color=#333333]oRa[/color][/size][/font][font='宋体'][size=13px][color=#333333]技术的远程控制方式。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.4[/color][/size][/font][font='宋体'][size=13px][color=#333333]对所有软件平台进行优化,整合线路,更换软件架构,采用无线与网线相结合的传输模式配合分布式多中央控制系统,增加系统运行的安全性。对设备控制根据各系统进行模块化布置,对测试过程按照逻辑顺序进行显示和监控。在保留和优化原有重要报警及保护程序的基础上,增加各系统分部锁定、多分布连锁,以及分布复位和总复位功能。有效发挥数据库管理系统作用,为组分配置提供数据参考[/color][/size][/font][font='宋体'][size=13px][color=#333333]。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.5[/color][/size][/font][font='宋体'][size=13px][color=#333333]对供气系统软件程序根据气源变化重新编辑公式以满足自动配气功能。根据管道加热器控制柜的改造,设计研发独立的控制软件,既能设定温度,还能控制交流接触器开断,实时监控温控表、电力调整器的各项参数,具备储存报警信息、三相电流异常数据、操作记录等功能。[/color][/size][/font][font='宋体'][size=13px][color=#333333]经过上述技术改造,控制系统更合理,可靠性和稳定性进一步增强,提高了测试效率。[/color][/size][/font]

  • 真空压力控制系统中关键部件的国内外产品介绍

    真空压力控制系统中关键部件的国内外产品介绍

    [align=center][img=真空控制系统中关键技术和产品的国产化替代现状,600,362]https://ng1.17img.cn/bbsfiles/images/2023/09/202309260956335616_6667_3221506_3.jpg!w690x417.jpg[/img][/align][size=16px][color=#990000][b]摘要:真空度控制技术关键部件主要有真空计、进气流量调节装置、排气流量调节装置和真空度控制器四大类。本文在真空度控制技术基本概念和技术要求基础上,详细介绍了真空度控制技术关键部件国外产品的分布和类型,特别介绍了相关的国产产品现状。总之,除了高端电容真空计之外,真空度控制技术中的绝大多数关键部件已实现了国产化,并已得到广泛应用,后续的国产化重点将主要集中在开发MOCVD工艺中的受控蒸发混合器。[/b][/color][/size][align=center][b][color=#990000]=============================[/color][/b][/align][size=18px][color=#990000][b]1. 真空度控制技术简述[/b][/color][/size][size=16px] 在长、热、力、电这些基本物理量中,真空度作为力学领域内的一个物理量通常是各种生产工艺和科学研究中的一个重要环境参数,真空度的控制也基本都采用闭环控制模式。典型的真空度控制系统结构如图1所示,其特征如下:[/size][align=center][size=16px][color=#990000][b][img=01.真空度控制系统典型结构,400,275]https://ng1.17img.cn/bbsfiles/images/2023/09/202309260959279297_7143_3221506_3.jpg!w690x476.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 真空度控制系统典型结构[/b][/color][/size][/align][size=16px] (1)系统构成:如其他物理量的闭环控制回路一样,真空度控制回路由传感器、控制器和执行器三部分组成。对于真空度控制,执行器还包括进气流量调节装置和排气流量调节装置两部分。[/size][size=16px] (2)控制方法:真空度的控制方法一般都采用动态平衡法,即使得进气流量和出气流量达到某一平衡状态,从而实现不同真空度的准确控制。[/size][size=16px] (3)控制模式:真空度的具体控制模式有上游控制和下游控制之分。在绝对压力1kPa~100kPa的低真空度范围内,需采用下游控制模式,即恒定进气流量的同时,调节排气流量。在绝对压力小于1kPa的高真空度和超高真空度范围内,需采用上游控制模式,即恒定排气流量的同时,调节进气流量。[/size][size=16px] 在真空度控制技术的具体应用中,很多生产工艺和科学实验要求真空度控制需要达到一定的控制精度和响应速度,这些技术要求往往由以下几方面的综合精度和速度决定:[/size][size=16px] (1)传感器精度和速度:具体测量中会根据真空度工作范围选择不同测量原理的真空度传感器,如电容真空计、皮拉尼计和电离规等。其中电容真空计的精度最高,一般为0.2%或更高0.01%精度,且真空度和输出信号为线性关系。皮拉尼计和电离规的精度较差,最高精度一般也只能达到15%,且真空度和输出信号为非线性关系。特别需要注意的是,在较高精度真空度控制过程中,需要对这些非线性信号进行线性处理。真空度传感器的响应速度普遍都很高,一般都在毫秒量级,基本都能满足测控过程中对响应速度的要求。[/size][size=16px] (2)执行器精度和速度:在真空度控制系统中,执行器一般是各种阀门以及集成了阀门的各种气体质量流量控制器,因此阀门的精度和速度是执行器的重要技术指标。执行器的精度和速度主要由真空工艺容器决定,对于小于1立方米的真空容器,一般要求执行器的精度较高,特别是要求具有小于5秒以内的开闭合速度,真空容器越小要求响应速度越快,在大多数半导体材料制备所用的高温和真空腔体的真空控制中,基本都要求响应速度小于1秒,由此来快速消除温度和气压波动带来的影响而实现真空度准确控制。[/size][size=16px] (3)控制器精度和速度:[/size][size=16px]控制器精度的速度是充分利用真空度传感器和执行器精度和速度的重要保证,因此要求控制器具有足够高的AD采集精度、DA输出精度和数值计算精度。一般要求是至少16位AD采集、16位DA输出和0.1%最小输出百分比,控制速度在50毫秒以内。[/size][size=18px][color=#990000][b]2. 真空度控制系统关键部件的主要国外产品介绍[/b][/color][/size][size=16px] 在真空度控制系统中,如图1所示,关键部件主要分为真空计、进气流量调节装置、排气流量调节装置和真空度控制器四大类别。这些关键部件很多都是国外产品,特别是一些高端部件基本都是国外产品,图2为这些关键部件的国外典型产品示意图。[/size][align=center][size=16px][color=#990000][b][img=02.国外真空度控制相关典型产品,690,491]https://ng1.17img.cn/bbsfiles/images/2023/09/202309260959592438_3991_3221506_3.jpg!w690x491.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图2 国外真空度控制系统中的各种典型产品[/b][/color][/size][/align][size=18px][color=#990000][b]3. 真空度控制系统关键部件的国产化现状[/b][/color][/size][size=16px] 随着近几年的国产化浪潮的兴起,真空度控制系统关键部件的国产化进程也在快速发展,以下将按照四个大类对国产化现状进行详细介绍。[/size][size=16px][color=#990000][b]3.1 真空计的国产化现状[/b][/color][/size][size=16px] 真空计作为真空领域的传感器,多年来一直有大量的国产产品,但绝大多数集中在皮拉尼计和电离规等这些真空度测量精度较差的真空计领域,对于测量精度较高的薄膜电容真空计国内产品基本都是购买国外OEM核心部件后进行组装和拓展。国内目前只有个别机构开发出了薄膜电容核心探测部件并已能批量生产电容真空计,但存在成品率低和货期长问题,国内也有其他研究机构在进行薄膜电容真空计的技术攻关。[/size][size=16px] 如图3所示国内现状,国内真空计目前基本能够满足工业生产的需要,但对于一些需要高精度(0.01%)真空计的测量和控制场合,国内还无法生产,有些更高端的国外产品对国内还处于禁运状态。对于皮拉尼计和电离规这些大多已经国产化的真空计,国产真空计还缺乏具有线性处理能力的高级功能,这使得国产真空计普遍只能在真空度测控精度要求不高的场合下使用。[/size][align=center][size=16px][color=#990000][b][img=03.真空计国产化相关产品示意图,690,166]https://ng1.17img.cn/bbsfiles/images/2023/09/202309261000162441_9663_3221506_3.jpg!w690x166.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图3 真空计国产化现状示意图[/b][/color][/size][/align][size=16px][color=#990000][b]3.2 进气流量调节装置的国产化现状[/b][/color][/size][size=16px] 进气流量调节装置主要用来调节真空容器的进气流量以实现不同工艺气体的流量要求和相应真空度的高精度控制。如图4所示,目前国外进气流量调节装置主要有电磁或电机型流量调节阀、气体质量流量控制器和微小流量控制器三大品类以满足从各种流量量程气体输入控制要求。[/size][size=16px] 在进气流量调节装置的国产化方面,目前国内产品无论在品类和技术指标方面都已达到国外产品水平,完全可以替代国外产品,并已开始得到广泛应用。[/size][align=center][size=16px][color=#990000][b][img=04.进气流量调节装置国产化相关产品示意图,690,164]https://ng1.17img.cn/bbsfiles/images/2023/09/202309261000271489_6174_3221506_3.jpg!w690x164.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图4 进气流量调节装置国产化现状示意图[/b][/color][/size][/align][size=16px] 在小型快速电控调节阀门的国产化方面,国产产品已采用微型步进电机技术,直接跨越电磁阀结构,开发出了高精度、低磁滞和高线性度的系列规格的电控针型阀门,响应速度达到了1秒以内,具有超低漏率且阀门不受工作气体类型的限制,还可以用于液体流量的调节,同时还具有强耐腐蚀性。目前这种电控针阀已广泛用于真空度控制领域和流体流量精密控制领域,正逐步取代以INFICON、PFEIFFER、VAT和MKS公司为代表的进气流量调节阀产品。[/size][size=16px] 在气体质量流量控制器的国产化方面,近两年内已有许多国内公司完成了国产化,技术指标已于国外产品相差无几,目前已在各个领域内进行着国产化替代。[/size][size=16px] 微小流量控制器主要用于高真空和超高真空条件下的微小进气流量控制,且要求具有超低漏率,以往只有国外AGILENT和VATAGILENT公司生产这种可变泄漏阀,且价格昂贵和货期漫长。最近国内公司在微小流量控制方面已取得突破,采用了与国外产品不同的技术路线,在同样实现国外产品功能、技术指标和自动控制的前提下,大幅降低的成本,已可以完全替代进口产品。[/size][size=16px][color=#990000][b]3.3 排气流量调节装置的国产化现状[/b][/color][/size][size=16px] 排气流量调节装置主要用来调节真空容器的排气流量以实现相应真空度的高精度控制。如图5所示,目前国外排气流量调节装置主要有分体式和集成式电动蝶阀,其中集成式电动蝶阀(又称下游排气节流阀)是在蝶阀上集成了高速电机和PID控制器。[/size][size=16px] 在排气流量调节装置的国产化方面,目前国内产品无论在品类和技术指标方面都已达到国外产品水平,且更具有灵活的不同口径规格系列,完全可以替代国外产品,并已得到广泛应用。[/size][align=center][size=16px][color=#990000][b][img=05.排气流量调节装置国产化相关产品示意图,690,164]https://ng1.17img.cn/bbsfiles/images/2023/09/202309261000430375_6356_3221506_3.jpg!w690x164.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图5 排气流量调节装置国产化现状示意图[/b][/color][/size][/align][size=16px] 在排气流量调节装置国产化过程中,我们发现绝大多数真空工艺腔体的体积较小,在真空度精密控制过程中无需使用较大口径的蝶阀结构,仅通过较小口径的电动球阀极可很好的进行控制。另外,很多工艺设备自带控制系统而无需在电动阀门再集成PID控制器。为此,国内公司在国产化过程中开发了独立结构的电动球阀,有7秒和1秒两种规格,如图5所示。这种独立结构的电动球阀可由任何外部PID调节器进行控制,具有很好的灵活性且降低成本,同时还具有极小的真空漏率,非常适合真空设备的排气流量和低真空度的精密控制,并已在各种真空工艺设备和科学仪器设备中得到了广泛应用。[/size][size=16px] 对于大口径蝶形压力控制阀,国内有机构也完成了国产化,模仿国外电动蝶阀结构将PID控制器与蝶阀进行了集成,并配有相应的计算机操作软件,但在价格上对国外产品的冲击有限。[/size][size=16px][color=#990000][b]3.4 真空度控制器的国产化现状[/b][/color][/size][size=16px] 真空度控制器作为一种典型的PID控制器,主要用来检测真空计的输出信号,并与设定值进行比较和PID计算后输出控制信号,驱动外部进气或排气调节阀开度进行快速变化,最终实现真空度测量值与设定值达到一致。目前国内外生产真空计的厂家普遍都提供真空度控制器产品,但这些真空度控制器普遍存在以下问题,而国内产品的问题则略显严重。[/size][size=16px] (1)国内外真空度控制器的共性问题是测量和控制精度不高,普遍采用较低精度的AD和DA转换器,无法发挥真空计(特别是电容真空计)的高精度优势,国内产品这方面的问题尤为严重。能实现高精度测量和控制的国外产品,则价格昂贵。[/size][size=16px] (2)国产真空度控制器大多为单通道形式,无法进行全真空度范围精密控制中进气和排气流量的同时调节,而国外的高端真空度控制器多为2通道以上结构。[/size][size=16px] (3)对于皮拉尼计和电离规这样的非线性输出信号,国产真空度控制器缺乏线性化处理功能,而国外高端真空度控制器基本都具有线性化处理功能,能更好保证真空度测量和控制精度。[/size][size=16px] (4)国产真空度控制器普遍缺乏计算机控制软件,无法简便和直观的进行过程参数的设置、显示、存储和调用。国外高端真空度控制器基本都配有相应的计算机软件。[/size][size=16px] 为了解决上述问题,目前新型的国产真空度控制器已经开发成功,如图6所示,已可以生产工业用单通道和双通道两个规格系列的多功能型真空压力控制器,基本可以替代国外高端产品。[/size][align=center][size=16px][color=#990000][b][img=06.真空度控制器国产化相关产品示意图,690,164]https://ng1.17img.cn/bbsfiles/images/2023/09/202309261000588787_2774_3221506_3.jpg!w690x164.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图6 真空度控制器国产化相关产品示意图[/b][/color][/size][/align][size=16px] 在国产化的单通道和双通道系列控制器中,采用了目前国际上工业用控制器最高精度的芯片电路,即24位AD、16位DA和0.01%最小输出百分比,可充分发挥高精度真空计和精密电动阀门的测控优势,已实现0.1%的真空压力控制精度。这种新型真空压力控制器的重要特点之一是带有线性化处理功能,通过八点最小二乘法拟合来提高非线性信号的测量精度。[/size][size=16px] 这种新型真空压力控制器是一种多功能控制器,除了可以进行真空压力控制之外,更可以进行各种温度和张力控制,同时还具有串级控制、分程控制、比值控制和远程设定点等高级复杂控制功能。控制器系列具有标准的工业控制器小巧尺寸,面板安装方式,并配备了计算机软件。[/size][size=18px][color=#990000][b]4. 总结[/b][/color][/size][size=16px]综上所述,在真空度控制系统关键部件的国产产品中,除了高端电容真空计之外,绝大多数部件已实现了国产化。后续的国产化重点将主要集中在受控蒸发混合器的开发,以在各种化学[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]沉积CVD工艺中,如ALD、APCVD、MOCVD和PECVD等,实现前驱体流量的精密控制。[/size][align=center][b][color=#990000][/color][/b][/align][align=center][b][color=#990000]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 分布式控制系统适用的仪器讨论~

    覆盖全系统的交叉索引,增强了过程控制的智能性,可帮助改进与生产相关的决策。PlantStruxure PES具有以下性能特点:统一数据库PlantStruxure PES 为工厂的设计、运营和维护提供了单个统一的软件环境,使您的自动化系统更简便易用。您可以通过一个统一的管理界面配置过程自动化应用和网络拓扑(控制器、远程输入/输出、操作员工作站和现场设备)。通过采用PlantStruxure PES控制设施过程,您可以访问智能设备和电表中的能耗数据,并根据已完成的生产目标来审核这些数据,从而智能的实现高能效运营。PlantStruxure PES可以自动创建所有的变量、通信、警报和趋势……这项工作非常繁重复杂,以前我们都是手动配置完成,非常耗时耗力,而现在它帮助我们在操作员界面开发方面节省了大量时间。内置能效管理系统通过将能源和过程控制数据整合到一个系统中,PlantStruxurePES实现了过程控制中管理型节能增效的自动化。您可以通过彼此对照的方式查看数据,并在能源消耗过快的地点减少能源浪费PlantStruxure PES中的集成式能源管理库可将来自整个工厂中所有用电设备的数据汇总,通过提供能源使用的全局视图,使您对能耗状况一目了然。并且,根据自定义的负载优先等级,系统在能源成本超出KPI时执行减载。同时,还可利用专门的仪表盘,操作员可以将能源作为一种过程的对象对其进行跟踪。施耐德电气法国执行团队为我们在法国的一个玻璃熔炉工厂选择了PlantStruxurePES ,目的是将能源管理功能嵌入工厂的控制架构中。工厂控制架构改造的开支全部由玻璃熔炉所节省的能源成本支付。对象库PlantStruxure PES提供专门面向特定应用(设备、过程设备)和行业(矿、水泥、食品饮料、水)的预定义、可扩展对象库,减少项目开发的时间、成本和风险。PlantStruxure PES内置了一个标准的对象库,其中包含所有主流的过程对象,如阀门、电机、泵等。您可以在过程中直接使用这些对象,或根据特定要求配置这些对象。PlantStruxure PES还集成了标准的行业过程库,可满足具体行业的需求,包括水泥、食品饮料和水等。这些库是基于我们广泛的过程经验开发而成,可以帮助在多个地点运营的公司保持统一性和一致性。此外,由于我们考虑到了标准的过程要求,因此使开发时间大大缩短。通过对应用中的所有对象实例化,我们生成了90%的项目内容,因此显著缩短了工程设计时间。支持及服务我们遍布全球的支持中心提供全套支持及服务,确保在工厂生命周期的各个阶段都能为PlantStruxure PES提供可靠的支持。我们提供行业领先的创新支持计划,其中的主要服务将为您带来极大获益。这一计划包括一个内容丰富的知识库和经由一个专用的支持门户提供的综合数字化服务。该门户提供在线案例管理以及由我们的支持专家、解决方案架构师和开发团队协作开发的内容,如白皮书和设计指南等。对于技术支持人员可以迅速解决问题,我感到非常满意。通过电话咨询,技术支持立刻给予我正确的解决方案,并告诉我查找所需信息的支持网页,更难得的是,还将这些信息和我需要的其他可下载资料的信息发给我。总之,我对在CSR上获得的这次支持服务非常满意。标准以太网PlantStruxure PES基于标准以太网和EtherNet/IP,将PLC/SCADA 架构的灵活性和开发性优势扩展到了DCS领域。这意味着系统在支持可定制应用的同时,还继续保有其标准化方法和强大的集成功能。水处理和能源管理是施耐德电气的战略性业务领域。西班牙进行的一个脱盐厂项目为我们提供了一次展示自身实力的绝佳机会,借此项目,我们完美展示施耐德电气的一体化分布式控制系统如何控制所有的能源管理子系统。PlantStruxure PES的标准以太网面向所有的核心过程,集成了仪表检测、电机管理和电力管理功能,这最终促使客户选择PlantStruxure PES。施耐德电气开发构建了一种高效的控制系统,并设计了一个使用通用机柜(即服务器机架、通信柜、控制器和输入/输出柜)和全以太网网络架构的解决方案,从而控制并节省了此项目必需的投资开支。对象模型作为新一代的分布式控制系统,PlantStruxurePES提供了一个独特的对象模型,用户可以选择性地使用其结构中的各个组件,更加具有灵活性。而且用户可以只下载必要的组件,因此可以有效优化源程序代码。该模型还支持对象整个生命周期内的变更传播,为未来的扩展和定制预留了充足的空间,此外,还允许同时运行同一对象的不同版本,并支持更改的可追踪性。PlantStruxure PES提供面向对象的数据库,这意味着您可以在开发了一个过程对象之后,根据需要多次重复使用此对象。这样不仅可以节约系统开发的时间和成本,还能确保在整个项目的各个阶段运用和在其他应用的推广。由于以上原因,PlantStruxure PES 为巴西一个覆盖50个城市的大型水资源项目提供了完美的解决方案。PlantStruxure PES最吸引人的地方是在完成对象实例化之后如何在区块之间创建链接;它大大简化了我的日常工作。全面开放性PlantStruxure PES的开放性不只针对于一种标准。您能够以全新方式,开发一个真正开放的过程自动化系统,这其中不仅包括操作人员电脑,还包括对象模型和对象库、控制网络,甚至系统设计与集成的理念。PlantStruxure PES提供所需的一切,使DCS系统达到全新层次的开放性——譬如,您可根据需求调整对象模型,针对过程调节对象库,向第三方系统开放的控制网络,向任何IT 厂商开放的控制室等等。还有很重要的一点是,功能先进、即插即用、向第三方设备和应用开放的平台,借助它,施耐德电气及其联盟合作伙伴能够全方位满足客户需要。在我们的第一个项目部署完成后,我们不禁要由衷地赞叹PlantStruxurePES。有了它,使我们感到一切皆有可能。无论如何,我们都能够部署符合项目规范灵活变通的方案。可扩展硬件平台PlantStruxure PES支持各类不同的控制器,满足您的过程需要。这些控制器平台采用模块化、可扩展和冗余设计,能够在线增删硬件。它们支持多种输入/输出模块,以及专用通信模块和现场总线模块,提供电机控制,并

  • 恒温恒湿老化箱控制系统的重要性

    恒温恒湿老化箱控制系统的重要性

    控制系统可以说是恒温恒湿老化箱中最重要的部分之一,因为控制系统相当于我们的大脑,是控制其他部分运行的关键。如果控制系统发生故障,那么整台试验设备就会停止使用,只有将故障解决之后才可以重新运行。不过现在还有非常多的厂家没有意识到这一点,依然采用控制仪表中自带的系统,导致设备使用寿命受到非常大的影响。不过这种现象并不存在于国内所有的恒温恒湿老化箱厂家中,就比如一实仪器就不是这样的。[align=center][img=,400,400]http://ng1.17img.cn/bbsfiles/images/2018/03/201803121531163480_7662_3222217_3.jpg!w400x400.jpg[/img][/align] 就比如国内有些厂家的恒温恒湿老化箱使用寿命大致在25年左右,能够媲美许多进口试验设备品牌,这是现在国内众多环境试验设备厂家难以达到的。不过其实一实生产的试验箱能够达到这样的程度,也少不了精准的控制系统帮助。如果没有这个专门从德国引进的控制系统,那么在使用的过程中产生的磨损一定会比现在严重很多。不过也有的用户觉得试验箱的磨损并不是什么严重的事情,但其实现在市面上出售的试验设备短期使用过程中不会出现什么问题,但是随着使用时间的延长,出现的故障会越来越多、越来越严重,所以最近需要购买这款设备的大家还是慎重一些吧。 不过除了控制系统以外,恒温恒湿老化箱上的其他几个系统也是非常重要的,能够对试验箱的质量和性能产生非常大的影响。但是大家是为了顺利的使用或是购买的一台优质的试验箱,都不能忽视了试验箱上登的任何一个细节。

  • 用于微流控芯片的多通道正负压力控制器解决方案

    用于微流控芯片的多通道正负压力控制器解决方案

    [color=#000099]摘要:在微流控芯片进样、化学反应进样和长时间药物注射领域,都需要能提供正负气压可精密控制的压力控制器。本文特别针对微流控芯片进样对多通道压力控制器的技术要求,提出了相应的解决方案,并详细介绍了方案中多通道气路结构、控制方法、气体流量调节阀、压力传感器和PID控制器等内容和技术指标。通过此解决方案,完全能够满足各种微流体控制对多通道压力控制器的要求。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#000099]一、背景介绍[/color][/size]在微流控芯片进样、化学反应进样和长时间药物注射领域,都需要能提供正负气压可精密控制的多通道压力控制器,并且通过气体压力来控制流体的流量或流速。图1所示为这种压力控制器在微流控芯片进样中的典型应用。[align=center][img=微流控芯片用压力控制器,690,318]https://ng1.17img.cn/bbsfiles/images/2022/06/202206271559098143_8354_3384_3.png!w690x318.jpg[/img][/align][align=center]图1 多通道压力控制器在微流控芯片进样中的典型应用[/align]在微流控芯片进样中,要求压力控制器需具备以下几方面的功能:(1)多通道,每个通道可独立控制和操作。(2)每个通道都可按照编程设定输出相应的正负压力。(3)正负压力控制范围:绝对压力1Pa~0.5MPa(表压-101kPa~0.6MPa)。(4)压力控制精度:0.1%~1%。 针对上述微流控芯片进样对压力控制器要求,本文提出了相应的解决方案,并详细介绍了方案中多通道气路结构、控制方法、气体流量调节阀、压力传感器和PID控制器等内容和技术指标。通过此解决方案,完全能够满足各种微流体控制对多通道压力控制器的要求。[size=18px][color=#000099]二、解决方案[/color][/size]本文所提出的解决方案是实现在1Pa~0.7MPa绝对压力范围内的精密控制,控制精度极限可达到0.1%。即提供一个可控气压源解决方案,采用双向控制模式的动态平衡法,结合高精度步进电机和微小流量电动针阀、高精度压力传感器和多通道PID控制器,气压源可进行高精度的各种真空压力的可编程输出,同时也可用于控制不同的流体流量。本文所涉及的解决方案,主要针对用于微流控芯片进样用多通道正负压力控制器,这主要是因为微流控芯片所用压力基本在一个标准大气压附近变化,相应的多通道压力控制器相对比较简单。而对于更低压力,如气压小于1kPa绝对压力的多通道控制,要实现精密控制则整个压力控制器将十分复杂。微流控芯片进样用多通道压力控制器工作原理如图2所示。[align=center][img=微流控芯片用压力控制器,690,350]https://ng1.17img.cn/bbsfiles/images/2022/06/202206271559436818_6219_3384_3.png!w690x350.jpg[/img][/align][align=center]图2 微流控芯片进样用多通道压力控制器工作原理图[/align]微流控芯片进样用多通道压力控制器的工作原理为:(1)多通道压力控制包括多个控制通道,每个控制通道包括正压气源、进气调节阀、出气调节阀、抽气泵和PID控制器单元。其中的正压气源和抽气泵提供足够的负压和正压能力,并且可以多通道公用。同样,多通道压力控制器也公用一个进气调节阀。需要注意的是,由于微流控进样所需的负压气压值较大并接近一个标准大气压,对于微流控芯片进样的压力控制,只需固定进气调节阀的开度,近靠调节出气阀开度极可实现正负压的精密控制,因此可以公用一个进气调节阀。如果要进行较低负压气压值(较高真空度)的精密控制,配置恰恰相反,每一通道配置的进气阀进行调节,但可以公用一个抽气阀。(2)精密压力控制原理基于密闭空腔进气和出气的动态平衡法。多通道压力控制器的每一个通道都是典型闭环控制回路,其中PID控制器的每一通道采集相应通道的真空压力传感器信号并与此通道的设定值进行比较,然后调节相应通道的进气和抽气调节阀开度,最终使此通道传感器测量值与设定值相等而实现该通道真空压力的准确控制。(3)为了覆盖负压到正压的所要求的真空压力范围,需要配置一个测试量程覆盖要求范围内的高精度绝对压力传感器,如果一个压力传感器无法覆盖全量程,则需要增加压力传感器数量来分段覆盖。采用绝对压力传感器的优势是不受各地大气气压变化的影响,无需采取气压修正,更能保证测试的准确性和重复性。(4)绝对压力传感器对应所覆盖的真空压力范围输出数值从小到大变化的直流模拟信号(如0~10VDC)。此模拟信号输入给PID控制器,由PID控制器调节进气阀和排气阀的开度而实现压力精确控制。(5)当控制是从负压到正压进行变化时,一开始的进气调节阀开度(进气流量)要远小于抽气调节阀开度(抽气流量),通过自动调节进出气流量达到不同的平衡状态来实现不同的负压控制,最终进气调节阀开度逐渐要远大于抽气调节阀开度,由此实现负压到正压范围内一系列设定点或斜线的连续精密控制。对于从正压到负压压的变化控制,上述过程正好相反。[size=18px][color=#000099]三、方案具体内容[/color][/size]解决方案中所涉及的正负压力控制器的具体结构如图3所示,主要包括正压气源、电动针阀、密闭空腔、压力传感器、高精度PID控制器和抽气泵。[align=center][img=微流控芯片用压力控制器,690,393]https://ng1.17img.cn/bbsfiles/images/2022/06/202206271602023624_9954_3384_3.png!w690x393.jpg[/img][/align][align=center]图3 微流控芯片进样用多通道正负压力控制器结构示意图[/align]在图3所示的正负压力控制器中,每个通道都对应一密闭空腔,每个密闭空腔上的外接接口作为此通道的压力输出口。密闭空腔左右安装两个NCNV系列的步进电机驱动的微型电动针阀,电动针阀本身就是正负压两用调节阀,其绝对真空压力范围为0.0001mbar~7bar,最大流量为40mL/min,步进电机单步长为12.7微米,完全能满足小空腔的正负压精密控制。由此,压力控制器中的每个通道可实现正负压任意设定点的精确控制,也可以从正压到负压的压力线性变化控制,也可以从负压到正压的压力线性变化控制。微流控芯片进样过程中一般要求微小正负压控制,要求是在标准大气压附近的真空压力精确控制,如控制精度为±0.5%甚至更小,一般都需要采用调节抽气阀的双向动态模式,即通过控制器使得进气口处电动针阀的开度基本不变,同时根据PID算法来调节排气口处的电动针阀开度。由于进气阀的开度基本处于固定状态,使得微流控芯片进样所用的多通道压力控制器可以公用一个调节进气流量的电动针阀。另外,所有通道都需要具备抽气功能,抽速也是一固定值,因此多通道压力控制器也可以公用一个抽气泵。在微流控芯片进样过程中压力控制,除了上述恒定进气流量调节抽气流量的控制方法之外,决定压力控制精度的因素还有压力传感器、PID控制器和电动针阀的精度。本方案中的PID控制器采用的是24位AD和16位的DA,电动针阀则是高精度步进电机,因此本解决方案的测试精度主要取决于压力传感器精度,一般至少要选择0.1%精度的压力传感器。在微流控芯片进样过程中,往往会要求密闭容器在正负压范围内进行多次往复变化和按照设定曲线进行控制,因此本方案采用了可存储多个编辑程序的PID控制器,每个设定程度是一条多个折线段构成的曲线,由此可实现正负压往复变化的自动程序控制。在本文所述的解决方案中,为实现正负压的精密控制,如图3所示,针对负压的形成配置了抽气泵。抽气泵相当于一个负压源,但采用真空发生器同样可以达到负压源的效果,负压源采用真空发生器的优点是整个系统只需配备一个正压气源,减少了整个系统的造价、体积和重量,真空发生器连接正压气源即可达到相同的抽气效果。[size=18px][color=#000099]四、总结[/color][/size]本文所述解决方案,完全可以实现微流控芯片进样系统中压力的任意设定点和连续程序形式的精密控制,并且可以达到很高的控制精度和速度,全程自动化。本方案除了自动精密控制之外,另外一个特点是系统简单,正负压控制范围也可以比较宽泛,整个系统小巧和集成化,便于形成小型化的检测仪器。本文解决方案的技术成熟度很高,方案中所涉及的电动针阀和PID控制器,都是目前特有的标准产品,其他的压力传感器、抽气泵、真空发生器和正压气源等也是目前市场上常见的标准产品。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 快速温变试验箱电气控制系统原理

    快速温变试验箱电气控制系统原理 快速温变试验箱电气系统设有手动和自动控制;具有温度测控、实时数据显示、参数设定、记录打印、报警、故障显示等功能,快速温变试验箱电气控制系统基本构成:  系统配置压缩机高、低压力开关,用于系统运行故障报警和保护压缩机作用。系统还为压缩机设有超压、过载、过热、缺相保护。风机设有热保护功能快速温变试验箱电气系统分强电和弱电两部分。强电部分主要由控制R404A压缩机的起停、箱内风机运行的交流接触器、热继电器;控制辅助加热器的固态继电器及线路保护的断路器等器件组成。弱电部分由日本优易1100型彩色液晶触摸屏及配套PLC(带USB接口1个,RS232接口1个,可与电脑连接,可与电脑进行数据通讯)和人机界面触摸屏、温度传感器组成。温度测量传感器为:Pt100铂电阻,通过Pt100铂电阻把温度信号送入PLC的A/D转换模块,实现试验箱内的温度的控制和显示,Pt100选用进口A级元件。http://www.whgt17.com/uploads/allimg/160817/1-160QG515350-L.jpg

  • 锅炉水位检测与控制系统

    锅炉水位检测与控制系统主要包括水位的检测、显示、排污阀门和报警控制等环节。锅炉水位测控过程主要有:锅炉水位进入磁翻板接液内层、磁浮子的检测和进水阀门控制。系统通过磁翻板或翻柱主体检测锅炉内液位。当锅炉内水位下降至设定的下限水位值时,启动翻板显示报警系统;反之,水位上升超过上限水位设定值时,则启动上限报警,该磁浮子液位计可设置多个报警点,满足系统上多方面控制要求。该水位系统采用磁敏液位传感器测量锅炉内水位。磁敏液位传感器(UHZ-10C00液位计)的输出端可外接PC+PCL机自动化控制设备,驱动LED显示器,并可向远传装置发出4~20mA电信号或无线通讯输出信号。经过处理后,反馈给报警系统通过继电器动作控制电磁阀并报警。 燃气锅炉是一个大惯性、大滞后系统,为验证确保锅炉水位控制效果,在系统完成后通过数据进行验证,控制过程中响应初始阶段的超调大约12%,响应速度快,在300s内达总测量峰值,随后420s后达稳态。水位期望值与实际值最大误差为0.15cm,最大相对误差在0.5%以内,满足精度要求。通过试验证明,该磁浮子液位传感器具有良好稳态性能和动态性能。 测试次数 期望数位/cm 实测水位/cm 误差/cm 1 20 20.12 +0.12 2 25 25.07 +0.07 3 30 29.98 -0.02 4 35 35.09 +0.09 5 40 40.15 +0.15 表中 水位期望值和实测值及其误差本文提出一种用于锅炉水位智能控制系统,可达到水位控制的预期要求,能够实现锅炉水位实时显示、控制及报警,且该装置测量量程宽泛、准确度高、性能稳定、重复性好、操作简单、界面直观,完全可满足液位量值化传递需要。

  • 串级、分程、比值、前馈、选择性和三冲量六种复杂控制系统概述

    串级、分程、比值、前馈、选择性和三冲量六种复杂控制系统概述

    [size=14px][color=#990000]摘要:本文主要针对各种工业生产和仪器设备中的温度、流量、真空、压力和张力等参数的高精度自动控制,介绍了几种常用的复杂控制系统,如串级、分程、比值、前馈-反馈、选择性以及三冲量控制系统。本文主要目的是展示这些复杂控制技术基本概念和结构框图,为后续推出的各种复杂控制用PID调节器做基础技术讲解,以便在实际自动化控制中能充分发挥复杂控制用PID调节器的强大功能。[/color][/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000][b]一、概述[/b][/color][/size][size=14px]控制系统一般又可分为简单控制系统和复杂控制系统两大类,所谓复杂,是相对于简单而言的。凡是多参数,具有两个以上传感器、两个以上调节器或两个以上执行器组成多回路的自动控制系统,通称为复杂控制系统。[/size][size=14px]如图1所示,目前常用的复杂控制系统有串级、分程、比值、前馈-反馈、选择性以及三冲量等几种形式,并且随着生产发展的需要和科学技术进步,还会陆续出现了许多其他新型的复杂控制系统。[/size][align=center][size=14px][img=01.复杂控制器构成,690,187]https://ng1.17img.cn/bbsfiles/images/2022/10/202210141044037509_6178_3221506_3.png!w690x187.jpg[/img][/size][/align][size=14px][/size][align=center]图1 常用的几种复杂控制系统[/align][size=14px][/size][size=14px]本文将针对上述几种复杂控制系统,重点介绍这些复杂控制系统中使用的超高精度PID控制器和典型应用案例,以期提高工程应用的设计效率、提高控制效果和降低成本造价。[/size][size=14px][/size][b][size=18px][color=#990000]二、串级控制(Cascade Control)系统[/color][/size][/b][size=14px][/size][size=14px]串级控制系统是应用最早和最广泛的一种复杂控制系统,它是根据系统结构命名。串级控制系统由两个或两个以上的控制器串联连接组成,一个控制器的输出作为另一个控制器的设定值,这类控制系统称为串级控制系统。[/size][size=14px][/size][size=14px]串级控制系统的特点是将两个PID调节器相串联,主调节器的输出作为副调节器的设定,当被控对象的滞后较大,干扰比较剧烈、频繁时,可考虑采用串级控制系统。特别是需要进行超高精度控制,以及跨参数和跨量程控制时,串级控制系统则能重复发挥其优势。[/size][size=14px][/size][size=14px]串级控制系统广泛应用于温度、真空、流量、压力和张力控制等方面,典型的串级控制系统结构如图1所示。[/size][size=14px][/size][align=center][size=14px][img=02.串级控制系统结构示意图,550,220]https://ng1.17img.cn/bbsfiles/images/2022/10/202210141044355064_2880_3221506_3.png!w690x276.jpg[/img][/size][/align][size=14px][/size][align=center]图2 串级控制系统结构示意图[/align][size=14px][/size][size=14px]如图2所示,串级控制系统包括副控回路(由副调节器、执行器和传感器1组成)和主控回路(由主调节器、副控回路和传感器2组成),主控回路和副控回路以串联形式与被控对象连接,其中副控回路相当于主控回路中的执行器。以下是串级控制系统中各部分的主要功能:[/size][size=14px][/size][size=14px](1)主调节器(主控制器):根据主参数(传感器2测量值)与设定值的偏差而进行PID调节,其输出作为副调节器的设定值。[/size][size=14px][/size][size=14px](2)副调节器(副控制器):其设定值由主调节器的输出决定,并根据副参数(传感器1测量值)与给定值(即主调节器输出)的偏差进行PID调节。[/size][size=14px][/size][size=14px](3)副回路(内回路):由副参数(传感器1)、副调节器及所包括的一部分被控对象所组成的闭环回路(随动回路)[/size][size=14px][/size][size=14px](4)主回路(外回路):将副回路看做是一个执行器,则主参数(传感器2)、主调节器、副回路及被控对象组成的闭环回路(主动回路)。[/size][size=14px][/size][size=14px](5)主对象(被控对象、惰性区):主参数(一般为传感器2)所处的那一部分工艺设备,它的输入信号为副变量,输出信号为主参数(主变量)。[/size][size=14px][/size][size=14px](6)副对象(导前区):副参数所处的那一部分工艺设备,它的输入信号为主调节量,其输出信号为副参数(副变量)。[/size][size=14px][/size][size=14px]串级控制系统是在单回路控制结构上增加了一个随动的副回路,因此,与单回路控制相比有以下几个特点:[/size][size=14px][/size][size=14px](1)对进入副回路的扰动具有较迅速和较强的克服能力。[/size][size=14px][/size][size=14px](2)可以改善对象特性,特别是能提高控制精度和工作效率。[/size][size=14px][/size][size=14px](3)可消除副回路的非线性特性的影响。[/size][size=14px][/size][size=14px](4)可实现夸参数和夸量程的控制。[/size][size=14px][/size][size=14px](5)串级控制系统具有一定的自适应能力。[/size][size=14px][/size][size=14px]二、分程控制(Split-Range Control)系统[/size][size=14px][/size][size=14px]简单控制系统就是一个调节器的输出驱动一个执行器动作,而分程控制系统的特点是一个调节器的输出同时驱动几个工作范围不同的执行器。[/size][size=14px][/size][size=14px]通常,在一个简单控制系统中,一个调节器的输出信号只控制一个执行器,其结构与特性如图3(a)所示。如果一个调节器的输出信号同时送给两个执行器,这就是一种分程控制系统。这里两个执行器并联使用,其工作特性如图3(b)所示。[/size][size=14px][/size][align=center][size=14px][img=03.分程控制系统结构和特性示意图,690,310]https://ng1.17img.cn/bbsfiles/images/2022/10/202210141045391335_1640_3221506_3.png!w690x310.jpg[/img][/size][/align][size=14px][/size][align=center]图3 简单(a)和分程(b)控制系统结构和特性示意图[/align][size=14px][/size][size=14px]分程控制已经广泛应用在温度、流量和压力控制等工业流程当中,也通常用来控制双模式的运行场合。例如,分程控制被用在保持一个既有加热控制又有冷却控制的容器内的温度。当其温度(单一测量值)低于目标温度设定值时,首先关闭冷却装置,然后开始打开加热装置。当温度上升到设定值以上时,首先关闭加热装置,然后开始打开冷却装置。另外一种分程控制方式是,采用分段量程控制来调整两个执行器从而实现更大范围内的操作。一个执行器控制低量程范围,另一个执行器控制高量程范围。以上两种应用场合都要求在每一个流程管线上配备一个执行器。[/size][size=14px][/size][size=14px]分程控制的典型应用是聚合反应工艺、冷热循环浴、TEC半导体温度控制、动态平衡法的真空和压力控制等。[/size][size=14px][/size][b][size=18px][color=#990000]三、比值控制(Ratio Control)系统[/color][/size][/b][size=14px][/size][size=14px]为保持两种或两种以上变量比值为恒定的控制叫比值控制。在炼油、化工、燃烧、制药、造纸和晶体生长等生产过程中,经常要求两种或两种以上的物料或工作气体按一定比例混合后进行工作。一旦比例失调,就会影响生产的正常运行,影响产品质量,甚至发生生产事故。[/size][size=14px][/size][size=14px]在比值控制系统中,一个变量需要跟随另一变量变化。前者称为从动量S,后者称为主动量M,比值K=M/S。通常选择的主动量应是系统中主要的物料或关键物料的相关变量,它们通常是可测不可控。常见的比值控制系统有单闭环比值、双闭环比值、串级比值(变比值)三种。[/size][size=14px][/size][size=14px][color=#990000][b]3.1 单闭环比值控制系统[/b][/color][/size][size=14px][/size][size=14px]单闭环比值控制系统结构如图4所示。[/size][size=14px][/size][align=center][size=14px][img=单闭环比值控制系统结构框图,600,236]https://ng1.17img.cn/bbsfiles/images/2022/10/202210141046030140_8657_3221506_3.png!w690x272.jpg[/img][/size][/align][size=14px][/size][align=center]图4 单闭环比值控制系统结构框图[/align][size=14px][/size][size=14px]单闭环比值控制系统的优点是不但能实现从动量跟踪主动量变化,而且能克服从动量干扰等。结构简单,能确保比值不变,是应用最多的方案。但缺点是主动量不受控。[/size][size=14px][/size][size=14px]如图2和图4所示,单闭环比值控制系统与串级控制非常相似,但它们的不同之处在于:[/size][size=14px][/size][size=14px](1)单闭环比值控制系统无主对象,即主动量不受控,并且从动量不会影响主动量。[/size][size=14px][/size][size=14px](2)串级控制系统中,副变量是操纵变量到被控变量之间总对象的一个中间变量,该副变量是主对象的输入,通过改变副被控变量来调节主被控变量。[/size][size=14px][/size][size=14px](3)串级控制的副控回路与比值控制系统的从动量控制子系统都是随动控制系统。[/size][size=14px][/size][size=14px](4)比值控制系统中,从动量控制系统是随动控制系统,其设定值由系统外部的主调节器提供,其任务就是使从动量尽可能地保持与设定值相等,随着主动量的变化,始终保持主动量与从动量的比值关系。[/size][size=14px][/size][size=14px](5)在系统稳定时,该比值是比较精确的,在动态过程中,比值关系相对不够精确。[/size][size=14px][/size][size=14px](6)当主动量处于不变状态时,从动量控制系统又相当于一个定值控制系统。[/size][size=14px][/size][size=14px][b][color=#990000]3.2 双闭环比值控制系统[/color][/b][/size][size=14px][/size][size=14px]在主动量也需要控制时,增加一个主动量闭环控制系统,单闭环比值控制系统成为双闭环比值控制系统,双闭环比值控制系统结构如图5所示。[/size][size=14px][/size][align=center][size=14px][img=双闭环比值控制系统结构框图,600,313]https://ng1.17img.cn/bbsfiles/images/2022/10/202210141046526180_3146_3221506_3.png!w690x360.jpg[/img][/size][/align][size=14px][/size][align=center]图5 双闭环比值控制系统结构框图[/align][size=14px][/size][size=14px]双闭环比值控制系统的优点是:能克服主动量扰动,实现其定值控制。从动量控制回路能抑制作用于副回路中的扰动,使从动量与主动量成比值关系。当扰动消除后,主动量和从动量都恢复到原设定值上,其比值不变,并且主动量和从动量都变化平稳。当系统需要改变时,只要改变主动量的设定值,主动量和从动量就会按比例同时增加或减小,从而克服了上述单闭环比值控制系统的缺点。[/size][size=14px][/size][size=14px]双闭环比值控制系统常用于主动量和从动量扰动频繁,工艺参数经常需要改变,同时要求系统总参数恒定的工艺过程,如无此要求,可采用两个单独的闭环控制系统来保持比值关系。[/size][size=14px][/size][size=14px]在采用双闭环比值控制方案时,对主动量控制器的参数整定应尽量保证其输出为非周期变化,以防止共振的产生。[/size][size=14px][/size][size=14px][b][color=#990000]3.3 变比值控制系统[/color][/b][/size][size=14px][/size][size=14px]当系统中存在着除主动量和从动量干扰外的其他干扰,为了保证产品质量,必须适当修正两变量的比值。因此,出现了按照一定工艺指标自动修正比值系数的变比值控制系统。变比值控制系统要求两个变量的比值能灵活低地随第三变量的需要而进行调整,由此可见,变比值控制系统是一个以第三个变量为主变量、以其他两个变量比值为副变量的串级控制系统,有时变比值控制系统也成为串级比值控制系统。在变比值控制系统中,比值只是一种手段,不是最终目的,而第三变量往往是产品质量或工艺指标。[/size][size=14px][/size][size=14px]同样,变比值控制系统也可以有单闭环和双闭环形式,如图6所示。[/size][size=14px][/size][align=center][size=14px][img=变比值控制系统结构示意图,650,717]https://ng1.17img.cn/bbsfiles/images/2022/10/202210141048070661_493_3221506_3.png!w690x762.jpg[/img][/size][/align][size=14px][/size][align=center]图6 变比值控制系统结构框图:(a)单闭环结构;(b)双闭环结构[/align][align=center][size=14px][/size][/align][b][size=18px][color=#990000]四、前馈控制(Feedforward Control)系统[/color][/size][/b][size=14px][/size][size=14px]简单控制系统一般都属于反馈控制(feedback control),是按被控变量与设定值的偏差进行控制,因此只有在偏差产生后,调节器才对操纵变量进行控制,以补偿扰动变量对被控变量的影响。若扰动已经产生,而被控量尚未发生变化,反馈控制作用是不会产生的,所以,这种控制作用总是落后于扰动作用的,是不及时的控制。[/size][size=14px][/size][size=14px]由此,依据预防控制策略设计的控制系统称为前馈控制系统。前馈控制系统是根据扰动或给定值的变化按补偿原理来工作的控制系统,其特点是当扰动产生后,被控变量还未变化以前,根据扰动作用的大小进行控制,以补偿扰动作用对被控变量的影响。前馈控制系统运用得当,可以使被控变量的扰动消灭在萌芽之中,使被控变量不会因扰动作用或给定值变化而产生偏差,它较之反馈控制能更加及时地进行控制,并且不受系统滞后的影响。采用前馈控制系统的条件是:[/size][size=14px][/size][size=14px](1)扰动可测但不可控。[/size][size=14px][/size][size=14px](2)变化频繁且变化幅度大的扰动。[/size][size=14px][/size][size=14px](3)扰动对被控变量的影响显著,反馈控制难以及时克服,且过程控制精度要求又十分严格的情况。[/size][size=14px][/size][size=14px]前馈控制的好处是直接控制无滞后,可以提高系统的响应速率,但是需要比较准确地知道被控对象模型和系统特性。而反馈控制的优点是不需要知道被控对象的模型即可实现比较准确的控制,但是需要偏差发生之后才能进行调节,具有滞后性。所以,理论上把前馈和反馈结合起来,既能实现较高的控制精度,也能提高系统响应速度。需要注意的是:前馈控制属于开环控制,反馈控制属于闭环控制。[/size][size=14px][/size][size=14px]前馈反馈控制系统有两种结构形式,一种是前馈控制作用与反馈控制作用相乘;另一种是前馈控制作用与反馈控制作用相加,这是前馈反馈控制系统中最典型的结构形式。典型的前馈-反馈控制系统结构如图7所示。[/size][size=14px][/size][align=center][size=14px][img=前馈-反馈控制系统结构框图,550,251]https://ng1.17img.cn/bbsfiles/images/2022/10/202210141048430650_3026_3221506_3.png!w690x315.jpg[/img][/size][/align][size=14px][/size][align=center]图7 前馈-反馈控制系统结构框图[/align][size=14px][/size][size=14px]在高精度控制中,前馈控制可用来提高系统的跟踪性能。经典控制理论中的前馈控制设计是基于复合控制思想,当闭环系统为连续系统时,使前馈环节与闭环系统的传递函数之积为1,从而实现输出完全复现输入。从图7中可以发现,前馈环节的传递函数是被控对象的倒数。那么就是在使用前馈控制前需要对被控对象的模型有了解,才能有针对性的设计出合适的前馈控制器。也就说,每个系统的前馈控制器都是不一样的,每个前馈控制器都是专用的。[/size][size=14px][/size][b][size=18px][color=#990000]五、选择性控制(Selective Control)系统[/color][/size][/b][size=14px][/size][size=14px] 选择性控制系统也叫超驰控制系统,也可称为自保护系统或软保护系统。选择性控制是把生产过程中对某些工业参数的限制条件所构成的逻辑关系迭加到正常的自动控制系统上去的组合控制方案。系统由正常控制部分和取代控制部分组成,正常情况下正常控制部分工作,取代控制部分不工作;当生产过程某个参数趋于危险极限时但还未进人危险区域时,取代控制部分工作,而正常控制部分不工作,直到生产重新恢复正常,然后正常控制部分又重新工作。这种能自动切换使控制系统在正常和异常情况下均能工作的控制系统叫选择性控制系统。[/size][size=14px][/size][size=14px]通常把控制回路中有选择器的控制系统称为选择性控制系统。选择器实现逻辑运算,分为高选器和低选器两类。高选器输出是其输入信号中的高信号,低选器输出是其输入信号中的低信号。根据选择器在系统结构中的位置不同,选择性控制系统可分为两种:[/size][size=14px][/size][size=14px](1)选择器位于两个调节器和一个执行器之间,选择器对两个调节器输出信号进行选择,如图8(a)所示。这种选择性控制系统的主要特点是:两个调节器共用一个执行器。在生产正常情况下,两个调节器的输出信号同时送至选择器,选出正常调节器输出的控制信号送给执行器,实现对生产过程的自动控制,此时取代调节器处于开路状态,对系统不起控制作用。当生产不正常时,通过选择器选出取代调节器代替正常调节器对系统进行控制。此时,正常调节器处于开路状态,对系统不起控制作用。当系统的生产情况恢复正常,通过选择器的自动切换,仍由原正常调节器来控制生产的正常进行。[/size][size=14px][/size][align=center][size=14px][img=选择性控制系统结构框图,690,547]https://ng1.17img.cn/bbsfiles/images/2022/10/202210141049190661_493_3221506_3.png!w690x547.jpg[/img][/size][/align][size=14px][/size][align=center]图8 选择性控制系统结构框图[/align][size=14px][/size][size=14px](2)选择器位于调节器之前,对传感器输出信号进行选择的系统,如图8(b)所示。该选择性系统的特点是几个传感器合用一个调节器。通常选择的目的有两个,其一是选出最高或最低测量值;其二是选出可靠测量值。[/size][size=14px][/size][size=14px]在图8(a)所示的选择性控制系统中,由于系统中总有一台控制器处于开环状态,因此易产生积分饱和。防积分饱和有限幅法、外反馈法、积分切除法三种。[/size][size=14px][/size][b][size=18px][color=#990000]六、三冲量控制(Three Impulse Control)系统[/color][/size][/b][size=14px][/size][size=14px]三冲量控制系统是来自电厂锅炉给水自动调节系统的一个名词,是根据汽包液位、给水流量和蒸汽流量三冲量经PID计算来调节给水阀门开度,从而达到自动控制汽包液位的目的。[/size][size=14px][/size][size=14px]所谓冲量,实际就是变量,多冲量控制中的冲量,是指控制系统的测量信号。三冲量控制意味着对三个变量进行测量和控制从而使得其中一个变量达到稳定。[/size][size=14px][/size][size=14px]一般而言,如图9所示,三冲量控制系统从结构上来说,是一个带有前馈控制的串级控制系统。以液位控制为例,主调节器(液位控制器)与副调节器(流量控制器)构成串级控制系统。汽包液位(传感器2)是主变量、给水流量(传感器1)是副变量。副变量的引入使系统对给水压力的波动有较强的克服能力。蒸汽流量(传感器3)的波动是引起汽包液位变化的因素,是干扰作用,蒸汽波动时,通过引入前馈调节器,使给水流量(传感器1)作相应的变化,所以这是按干扰进行控制的,是把蒸汽流量信号作为前馈信号引入控制的。[/size][size=14px][/size][align=center][size=14px][img=三冲量控制系统结构框图,690,371]https://ng1.17img.cn/bbsfiles/images/2022/10/202210141049398083_4900_3221506_3.png!w690x371.jpg[/img][/size][/align][size=14px][/size][align=center]图9 三冲量控制系统结构框图[/align][size=14px][/size][b][size=18px][color=#990000]七、总结[/color][/size][/b][size=14px][/size][size=14px]综上所述,在复杂控制系统中可能有几个过程测量值、几个PID控制器以及不止一个执行器;或者尽管主控制回路中被控量、PID控制器和执行器各有一个,但还有其他的过程测量值、运算器或补偿器构成辅助控制系统,这样主、辅控制回路协同完成复杂控制功能。复杂控制系统中有几个闭环回路,因而也是多回路控制系统。[/size][size=14px][/size][size=14px]另外,随着技术的进步,越来越多的生产、工艺和设备仪器对自动化控制要求越来越高,对于被控对象比较特殊,被控量不止一个,生产工艺对控制品质的要求比较高或者被控对象特性并不复杂,但控制要求却比较特殊,如超高精度,这些都需要复杂控制系统予以解决。[/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size][size=14px][/size]

  • 变温PID串级控制系统提高膜分离制氮机产量的解决方案

    变温PID串级控制系统提高膜分离制氮机产量的解决方案

    [size=16px][color=#990000]摘要:膜分离制氮过程中需要将干燥空气进行加热才能使产品氮气纯度满足要求。目前各种制氮机为了保证氮气纯度,往往都将加热温度控制在较高水平,无法根据氮气纯度实时改变工作温度,从而造成氮气产量小、效率低现象。本文提出的解决方案则以氮气纯度作为主控参数,而将温度作为次控参数,由两个具有变送和远程设定点功能的PID控制器组成串级控制系统来进行变温调节,将氮气纯度始终控制在设定值附近,在满足纯度要求的前提下可有效降低膜组件的工作温度,并显著提高产品氮气产量。[/color][/size][align=center][img=高精度温度串级控制器在空气膜分离制氮中的应用,650,353]https://ng1.17img.cn/bbsfiles/images/2023/04/202304040954565083_2140_3221506_3.jpg!w690x375.jpg[/img][/align][size=16px][/size][size=18px][color=#990000][b]1. 问题的提出[/b][/color][/size][size=16px] 氮气作为一种常用的惰化气体,其制作方法主要有变压吸附法、膜分离法和深冷法,而膜分离制氮[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]对于其他两种方法具有系统简单、 体积小、操作简便、可靠性高、便于操作和维护的优点。膜分离法制备氮气的设备在运行过程中需要加热空气才能使产品氮气纯度达到 99.0%以上,而在目前很多膜分离制氮机的温度控制方面,还存在以下工程实际问题需要解决:[/size][size=16px] 目前大多数膜分离制氮机的温度控制还是采用固定温度下的PID控制方式,如有些制氮机的膜组件需要将空气加热到49℃恒定温度。但当设备更换新膜组件时,膜性能比较好时,则只需较低温度(例如 35℃)就可以使产出的氮气纯度达到 99.0%,氮气流量也能够满足用户使用要求。如果膜组件入口气体温度仍然控制在 49℃,则膜组件产品氮气的纯度会升高很多,回收率下降,即氮气产量就下降很多,难以满足用户要求。 [/size][size=16px] 由此可见,在膜分离制氮设备中,真正需要的是能根据产出氮气的纯度要求来实时调节空气加热温度,这样才能保证产品氮气的纯度和流量同时满足用户要求。为了解决此问题,本文将提出采用串级控制器的膜分离制氮解决方案,在氮气纯度满足要求的前提下提高氮气产量。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 膜分离制氮的一般工艺流程如图1所示, 空气经空压机压缩和调节阀后形成高压压缩气体,经过空气预处理装置去除固体颗粒油分和水分,成为高度洁净的压缩冷空气后,再经过电加热器将其加热到设定温度。 高温压缩空气进入膜组件,膜组件将分离出高纯氮气和富氧气体。[/size][align=center][size=16px][color=#990000][b][img=01.膜分离制氮气工艺控制系统示意图,650,207]https://ng1.17img.cn/bbsfiles/images/2023/04/202304040957161940_2313_3221506_3.jpg!w690x220.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 膜分离制氮气工艺流程示意图[/b][/color][/size][/align][size=16px] 膜分离制氮系统的温度控制多采用工业用PID控制方式,并由人工设定系统的工作温度。PID控制器调节加载给加热器的电功率,从而实现膜分离制氮系统恒温工作。温度控制系统结构如图2所示。[/size][align=center][size=16px][color=#990000][b][img=02.恒定温度PID控制示意图,500,137]https://ng1.17img.cn/bbsfiles/images/2023/04/202304040957420919_8350_3221506_3.jpg!w690x190.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图2 恒定温度PID控制示意图[/b][/color][/size][/align][size=16px] 图2所示的采用恒定温度PID控制方式存在膜组件老化时无法保证产氮气纯度稳定以及产量降低的缺点,本文的解决方案则采用了PID串级控制方式,其结构如图3所示。[/size][align=center][size=16px][color=#990000][b][img=03.变温度PID串级控制示意图,690,189]https://ng1.17img.cn/bbsfiles/images/2023/04/202304040958060588_9122_3221506_3.jpg!w690x189.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图3 变温度PID串级控制示意图[/b][/color][/size][/align][size=16px] 在图3所示的串级控制系统中包含了主和次两个闭环控制回路:[/size][size=16px] (1)次控制回路包括温度传感器、电加热器和次PID控制器,其中将进入膜组件的空气温度作为次回路的控制参数。[/size][size=16px] (2)主控制回路则包括了氮气分析仪、次控制回路、膜组件和主PID控制器,其中将膜组件产出氮气的纯度作为主回路的控制参数。[/size][size=16px] 解决方案中串级控制系统的主要特征是将主控制回路的输出值(即温度值)作为次控制回路的设定值,从而控制电加热器的加热功率来调整进入膜组件的空气温度。尽管串级控制系统中用到了两个PID控制器,但要实现串级控制功能,相应的PID控制器需要具备以下功能:[/size][size=16px] (1)在次控制回路中,所用的PID控制器输入信号为标准的热电偶或热电阻信号,输出信号是4~20mA或0~10V标准的模拟信号,控制器具有PID自动控制和PID参数自整定功能。而重要的是这个次PID控制器的设定值是主PID控制器的输出值,且不是固定值,而且设定值信号类型和量程要与所接入的温度传感器完全保持一致。[/size][size=16px] (2)在主控制回路中,主PID控制器需要具有标准的PID自动控制和PID参数自整定功能之外,还需具有接收氮气分析仪输出的4~20mA或0~10V模拟信号或其他形式信号的能力。最重要的是主PID控制器要具有输出温度传感器(热电偶或热电阻)信号的能力,而且所输出信号完全能被次PID控制器接收。[/size][size=16px] 由此可见,要真正在工程上实现膜分离氮气的串级控制,关键是要解决以下三个问题:[/size][size=16px] (1)增加一个氮气纯度测量装置。此装置可以是氮气纯度传感器或分析仪等,氮气测量装置的输出信号最好是4~20mA或0~10V等形式的标准模拟信号,以便主PID控制器接收。[/size][size=16px] (2)主PID控制器的输出信号需要与次PID控制回路中所用温度传感器的类型和量程始终保持一致,由此使得此输出信号便于被次PID控制器接收后作为设定值来进行温度控制。[/size][size=16px] (3)次PID控制器要具有自动可变设定值功能,即能够接收主PID控制器的控制输出信号作为随时改变的设定值,次PID控制器随时根据接收到的设定值进行温度控制。[/size][size=16px] 由此可见,串级控制的核心是解决主PID控制器输出和次PID控制器的输入问题,采用一般的工业用PID控制器很难实现上述复杂的功能,如果采用PLC控制也需要复杂编程和相应硬件支持。为此,本解决方案采用了两台标准化的,且高精度多功能的PID控制器(VPC2021-1系列),具体接线如图4所示。[/size][align=center][size=16px][color=#990000][b][img=04.串级控制PID调节器接线示意图,690,190]https://ng1.17img.cn/bbsfiles/images/2023/04/202304040958225065_8103_3221506_3.jpg!w690x190.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图4 串级控制系统PID调节器接线示意图[/b][/color][/size][/align][size=16px] 如图4所示,具有变送功能的主PID控制器,在主输入端口接收氮气纯度传感器测量信号,然后根据所设置的氮气纯度固定值进行PID自动控制,相应的控制输出信号(输出值或偏差值)经过变送转换为4~20mA, 0~10mA, 0~20mA, 0~10V, 2~10V, 0~5V和1~5V七种模拟信号中的任选一种,并传送给次PID控制器的次输入端。[/size][size=16px] 具有远程设定点功能的次PID控制器,在次输入端口接收主PID控制器的变送信号作为变化的设定值,然后根据主输入端口接收到的温度传感器信号,进行PID自动控制,控制信号经主输出端口连接电加热器执行机构,对空气加热温度进行自动调节。[/size][size=16px] 需要提醒的是,如果主PID控制器输出的控制信号能被次PID控制器次输入通道接收,且输入信号类型和量程与主输入通道接入的温度传感器一致,也可采用普通PID控制器作为主控制器。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 本文提出的解决方案,可以很好的解决空气膜分离中纯度稳定的氮气输出,从而提高产品氮气的产量。同时通过降低了的空气加热温度,可以达到节能效果。[/size][size=16px] 此解决方案不仅可以应用于空气膜分离制氮领域,也可以在其他串级控制方面得到应用。不仅可以进行温度参数的串级控制,也可以进行位移、真空、压力和张力等其他参数的串级控制。[/size][size=16px] 在此解决方案的串级控制系统中,分别采用了多功能PID控制器中的变送和远程设定点功能,这是一般工业用PID控制器无法具备的高级功能。方案中所用的PID控制器不仅功能强大和具有RS485通讯接口,还具有很高的测控精度,如24位AD、16位DA和0.01%最小输出百分比。随机配备的计算机软件,可直接通过计算机进行相应的参数设置和控制运行。[/size][align=center][size=16px][color=#990000][/color][/size][/align][align=center][size=16px][color=#990000]~~~~~~~~~~~~~~~~~~[/color][/size][/align][size=16px][/size]

  • 反应釜温度控制系统中为何存在空气?

    在制药化工行业中,反应釜温度控制系统是经常需要使用的,但是由于反应釜温度控制系统存在一定的空气、氢气、氮气、润滑油蒸汽等一些气体,这些气体是不利于反应釜温度控制系统运行的,那么到底是怎么一回事呢?反应釜温度控制系统中这些杂质气体是使制冷系统冷凝压力升高,从而使冷凝温度升高,压缩机排气温度升高,耗电量增加,制冷效率降低,同时由于排气温度过高可能导致润滑油碳化,影响润滑效果,严重时会烧毁制冷压缩机电机。反应釜温度控制系统中的这些气体产生可能是漏入的空气,可能是在充注制冷剂、加注润滑油的时候,外界空气趁机进入,或者反应釜温度控制系统密封性不严密导致空气进入系统内部。此外,冷冻油的分解、制冷剂不纯以及金属材料的腐蚀等原因也会产生气体。当然,无锡冠亚在反应釜温度控制系统上采用的是全密闭的循环系统,避免这些空气进入反应釜温度控制系统中。一般来说,反应釜温度控制系统中的气体表现在反应釜温度控制系统压缩机的排气压力和排气温度升高,冷凝器(或储液器)上的压力表指针剧烈摆动,压缩机缸头发烫,冷凝器壳体很热;反应釜温度控制系统蒸发器表面结霜不均匀,反应釜温度控制系统存在大量气体时,因装置的制冷量下降而使环境温度降不下来,压缩机运转时间长,甚至因高压继电器动作而使压缩机停车。反应釜温度控制系统是否存在这些气体的话,可以用压力表实测制冷系统的冷凝压力与当时环境气温下的饱和压力作比较。如果实测压力大于环境温度下的饱和压力,则说明该系统中含有气体了。如果发现了反应釜温度控制系统中存在上述的这些气体的话,就需要及时排除这些气体,及时解决故障。

  • 气相色谱仪流量控制原理与维护 —— 手工流量控制系统和电子流量控制系统

    气相色谱仪流量控制原理与维护 —— 手工流量控制系统和电子流量控制系统

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][/font][font=宋体]手工流量控制系统和电子流量控制系统[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体]稳定可靠、精确度良好的气体流量(压力)控制对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析结果的准确性和可靠性而言至关重要。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]工作时需要稳定可靠、精确度良好的气体流量(压力)控制,包括载气、检测器气体和其他辅助气体流量控制,以获得良好的保留时间和峰面积的重现性。[/font][font=宋体]目前实验室常见的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量系统,分为手工流量控制和电子流量控制两种形式,在实际使用场合下各有其优劣。电子流量控制因其高精度、高重复性、易用性、可编程等特性,在现代的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]气体控制系统中的使用日益广泛。[/font][align=center][font=宋体]手工流量(压力)控制系统优势和缺点[/font][/align][font=宋体]手工流量控制系统一般由恒压阀、恒流阀、针型阀、背压阀、压力表、流量计和阻尼器等部件组成。需要通过色谱工作者手工操作,调节各种阀针旋钮,读取压力表数值和使用流量计辅助工作,以实现系统气体流量的控制。[/font][font=宋体]手工流量控制系统的优势:制造成本较低,工作可靠性较好,对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]实验室环境要求不高、维护和维修成本较低、系统抗污染能力较强,可以在无电源状态下工作。[/font][font=宋体]手工流量控制系统使用的各种阀,机械结构较为坚固,色谱工作者只需要保证气源清洁干净,阀本身不容易损坏。装备有手工流量控制系统的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量部分的常见故障往往与气源不良有关,例如气源中含有水、固体颗粒物或油污等。[/font][font=宋体]实验室空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量较差、灰尘严重或者存在一定腐蚀性气体时,对于手工流量控制系统的影响不大。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]分流出口连接的针型阀或者背压阀,可能有样品流过内部,如果维护不足,可能会造成污染。采用手工流量控制方式的仪器,针型阀或背压阀的清洗维护方法较为简单,如果需要更换,维修成本也比较低。[/font][font=宋体][font=宋体]某些意外情况下例如实验室意外断电时,装备有手工流量控制系统的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]载气并不会停止工作,可以保护色谱柱和检测器,例如[/font][font=Times New Roman]ECD[/font][font=宋体]、[/font][font=Times New Roman]TCD[/font][font=宋体]、强极性色谱柱。但是需要注意[/font][font=Times New Roman]FID[/font][font=宋体]、[/font][font=Times New Roman]FPD[/font][font=宋体]火焰的问题,如果意外断电情况下,检测器容易发生积水问题,会造成检测器内部发生锈蚀或者损坏喷嘴等后果。[/font][/font][font=宋体]手工流量控制系统的缺陷:[/font][font=宋体][font=宋体]一、[/font] [font=宋体]重现性差,调控精度低[/font][/font][font=宋体] [font=宋体]手工流量控制系统使用的机械部件控制精度较低,并且由于螺杆调节存在间隙、机械磨损、弹性元件疲劳等问题,该系统难以获得良好的重复性,面临复杂样品或复杂分析系统,手工流量控制系统往往难以应对。机械阀调节联合压力表指示的调控方式也难以实现较高的调节精度。[/font][/font][font=宋体][font=宋体]例如精密多阀多柱分析系统、反吹系统、中心切割分析系统、[/font][font=Times New Roman]PONA[/font][font=宋体]分析等,这些系统要求保留时间的重复性较高,往往要求[/font][font=Times New Roman]0.01min[/font][font=宋体]范围的偏差,这些情况下手工流量控制器难以达到要求。[/font][/font][font=宋体][font=Times New Roman]1.1 [/font][font=宋体]螺纹间隙造成调节问题。[/font][/font][font=宋体][font=宋体]机械阀一般采用螺杆的方式实现阀调节,但是由于螺纹存在间隙将会造成调节问题,如图[/font][font=Times New Roman]1[/font][font=宋体]所示,螺杆顺时针旋转和逆时针旋转到相同角度时,螺杆在左右方向上移动距离存在一定程度的偏差。[/font][/font][font=宋体]色谱工作者旋转阀旋钮时需要注意操作手法,尽量减弱此现象造成的调节偏差。以带有刻度盘的稳流阀为例,建议规定阀旋钮的操作方向,例如逆时针。如果当前刻度低于设定值,可以直接逆时针旋转至设定刻度;如果当前刻度高于设定值,需要顺时针旋转至旋钮刻度低于设定值,然后再逆时针旋转旋钮。[/font][align=center][img=,424,165]https://ng1.17img.cn/bbsfiles/images/2022/11/202211161434357590_9342_1604036_3.jpg!w690x269.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]螺杆转动存在间隙问题[/font][/font][/align][font=宋体][font=Times New Roman]1.2 [/font][font=宋体]机械部件磨损[/font][/font][font=宋体]阀部件由于机械运动,总是不可避免的存在磨损问题,造成调节偏差。[/font][font=宋体][font=Times New Roman]1.3 [/font][font=宋体]弹性元件的机械变形或疲劳[/font][/font][font=宋体]压力表和机械阀中存在弹簧管或弹性膜之类的弹性元件,长期受压使用后会发生机械变形,造成弹性变化,最终造成偏差。[/font][align=center][img=,268,190]https://ng1.17img.cn/bbsfiles/images/2022/11/202211161434421573_5012_1604036_3.jpg!w615x435.jpg[/img][font='Times New Roman'] [/font][/align][font=宋体]一般情况下,仪器停机之后,需要将机械阀调节至关机状态,有些气路中安装有泄压阀以保护压力表和调节阀。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]配套的气源钢瓶,分析结束关闭[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统之后,建议将所有压力表泄压为零,并关闭减压阀。[/font][font=宋体]二、 [/font][font=宋体]调节不方便、调节速度慢。[/font][font=宋体]流量或压力的修改,靠色谱工作者手工操作完成,最终的精度和稳定性与操作习惯相关。如果某台[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]需要开展多个分析项目,需要修改不同分析条件时,流量的调节比较费时费力。[/font][font=宋体]机械阀旋钮的调节位置一般不能与输出压力或流量直接相关,某些机械阀设计有刻度盘,但是不能彻底解决问题,调节螺杆注意手法。[/font][font=宋体]恒流阀的调节惯性较大,调节速度较慢。[/font][font=宋体]三、体积笨重[/font][font=宋体]各种阀一般不能单独工作,稳压阀和背压阀一般需要压力表协助工作,稳流阀、针型阀一般需要流量计辅助工作,才可以保证调节的准确性。调节和显示部件较多,手工流量控制系统体积较大,系统较笨重。[/font][font=宋体]三、 [/font][font=宋体]无法编程工作[/font][font=宋体]手工流量控制系统难以实现程序升压(程序升流)或程序降压(程序降流)功能。[/font][font=宋体] [/font][align=center][font=宋体]电子流量控制系统的优势的缺陷[/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]电子流量控制系统一般由比例电磁阀,电子压力传感器、电子流量传感器,控制线路和阻尼器等部件组成,基于传感器和计算机技术,在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]中央处理器([/font][font=Times New Roman]CPU[/font][font=宋体])的程序控制下协同工作,实现高精度的流量(压力)控制,现代[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]装备有高精度电子流量控制器是总体发展趋势。[/font][/font][font=宋体]电子流量控制系统的优势:可以编程控制,调节方便快速,精度和重现性好。[/font][font=宋体][font=Times New Roman]1 [/font][font=宋体]重现性好[/font][/font][font=宋体][font=宋体]随着现代电子技术和计算机技术的发展,采用电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]可以达到较高的保留时间和峰面积重复性性能,高端的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]保留时间重复性指标一般[/font][font=Times New Roman]RSD[/font][font=宋体]小于[/font][font=Times New Roman]0.01%[/font][font=宋体],峰面积相对标准偏差一般小于[/font][font=Times New Roman]1%[/font][font=宋体],并且可以长期稳定运行。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统重新开关机,无需校准和调节也可以达到开关机之前的稳定状态。[/font][/font][font=宋体][font=Times New Roman]2 [/font][font=宋体]调节精度高[/font][/font][font=宋体][font=宋体]以进样口为例,现代的高端[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]可以实现[/font][font=Times New Roman]0.01kPa[/font][font=宋体]的压力或[/font][font=Times New Roman]0.01ml/min[/font][font=宋体]的流量控制精度。[/font][/font][font=宋体][font=Times New Roman]3 [/font][font=宋体]调节方便、速度快[/font][/font][font=宋体]色谱工作者可以简单的在色谱数据工作站输入目标流量和压力,电子流量控制器可以在数秒的时间范围内完成调节。[/font][font=宋体][font=Times New Roman]4 [/font][font=宋体]体积小,重量轻[/font][/font][font=宋体][font=宋体]电子流量控制器([/font][font=Times New Roman]EPC[/font][font=宋体]、[/font][font=Times New Roman]AFC[/font][font=宋体]或者[/font][font=Times New Roman]EFC[/font][font=宋体])是现代机械、电子计算机技术的结晶,所有的流量控制部件可以集成在在几十[/font][font=Times New Roman]cm[/font][font=宋体]见方,重量不超过[/font][font=Times New Roman]1kg[/font][font=宋体]的模块中。[/font][/font][font=宋体][font=Times New Roman]5 [/font][font=宋体]可以编程[/font][/font][font=宋体]安装有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],可以方便的实现程序升压(程序升流)、程序降压(程序降流)或者定时开关等复杂气流控制功能。[/font][font=宋体]电子流量控制器的缺陷:制造成本高,实验室环境要求高,维护和维修成本高,必须在有电源的状态下工作,需要经常校准。[/font][font=宋体]装备有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]对气源要求较高。一旦发生气源不良问题,例如气源含水、固体颗粒物或油污,会造成电子流量控制器输出流量发生错误,甚至造成流量控制器损坏。实验室湿度较大,存在较多灰尘、有机蒸汽或者腐蚀性气体都可能会对电子流量控制器造成不良影响。[/font][font=宋体]安装于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]分流出口的电子流量控制器对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的维护有更高的要求,如果样品沸点较高并且浓度较大,分流出口捕集阱需要加强维护,否则可能造成电子流量控制器的污染或者损坏。该类型的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]总体维护和维修的成本较高。[/font][font=宋体]由于电子元器件的特性,某些压力或流量传感器会发生电气性能变化,造成输出流量或压力的不正确,需要经常进行校准。[/font][align=center][font=宋体]小结[/font][/align][font=宋体]综述手工流量控制系统和电子流量控制系统的优势和缺陷。[/font]

  • 【原创大赛】第六届原创——发酵控制系统的整体设计

    【原创大赛】第六届原创——发酵控制系统的整体设计

    发酵控制系统的整体设计一、控制系统功能设计为了提高发酵过程的自动化水平,增加发酵产物产量,改善发酵工艺,该发酵控制系统主要完成以下功能:1) 发酵过程完全自动化,包括每阶段的操作动作的实现,即按照工艺要求或者随动控制蠕动泵分别补充碳氮、调整搅拌转速以调整溶氧量浓度,同时当达到发酵要求后,自动切换到下一个阶段;2) 当脱离上位机后,下位机也能够实现简单控制,增加系统的稳定性;3) 对发酵环境敏感因素,即温度T、溶解氧DO、搅拌转速v、酸碱度PH的实时采集,现场和远程显示,Excel文件记录,以及这些数据的历史曲线回顾。二、发酵罐的外围设备该发酵系统除了发酵罐外,还包括辅助的外围设备,对于发酵控制系统开发来说主要有:发酵罐的执行器系统、传感器系统等。1发酵罐的执行器系统发酵罐的执行器系统主要有:1) 搅拌电机转速控制,该电机是交流变频马达,功率1千瓦,电机转速范围是50-1500转/分,变频器的输入信号是4-20 mA直流电流;2) 罐体温控及灭菌,罐体具有双夹套结构,用自带的小型蒸汽发生器产生蒸汽进入外夹套,间接加热罐内发酵液,降温采用市政自来水在内夹套循环的方式;温度范围自来水温度-150摄氏度;3) 酸碱度调节,采用蠕动泵间断加入氨水或氢氧化钠溶液的方式调整;补C、补N,采用蠕动泵分别加入葡萄糖溶液和????溶液的方式来补给;该蠕动泵参数,固定转速50转/分,50 Hz交流230 V供电,功率11W;4) 进气和排气系统为全自动系统。对于本控制系统设计有关的控制量、执行器及控制信号,见下表,表控制量、控制信号与执行器控制量[font=

  • 老化房整体结构设计与控制系统介绍

    [color=#717271] 老化房整体结构设计与控制系统介绍[/color][color=#717271]老化房整体结构设计 [/color][color=#717271]1、主体部分 [/color][color=#717271]2、显示控制部分[/color][color=#717271] 3、加温部分 [/color][color=#717271]4、安全保护措施部分 室体分为五个室体面及一扇单开式室体大门,尺寸为1000×1800mm,室体材料采用双面彩钢组合式岩棉库板拼装,彩钢板0.5mm厚,固定支撑铝材横梁,铝型材板包边,质轻耐抗击,隔热性能佳,大门拉手为内外开启式,以便于试验人员从封闭的室内自由开启大门。[/color][color=#717271] 1、箱门设置一个透明窗口,用以观测室内试样的变化。观察窗采用多层中空钢化玻璃,具有透明、隔热等优点;[/color][color=#717271] 2、设备的门与室体之间采用双层耐高温之高张性密封条以确保测试区的密闭。大门采用无反作用门把手,操作更容易;[/color][color=#717271] 3、搅拌系统采用长轴风扇电机,耐高低温之多翼式叶轮,以达强度对流垂直扩散循环,使实验室内的温度均匀并保持稳定[/color][color=#717271] 4、空气调节柜,此柜为试验室温度调节,循环的主体,使用材料为优质不锈钢板,本试验室的加热系统、温度循环风机及温度进出风口均安装在空气调节柜中。 老化房控制系统 电气控制部分: 配置功能控制电柜一个,老化所需时间、温度、各类操作开关可在控制柜上操作, 为确保长期运转的可靠性,本设备均采用已经多年使用,质量可靠的进口法国“施奈德”交流接触器、空气开关、按钮、小型继电器等国际名牌产品。测温体为PT100温度传感器。[/color][color=#717271] 韩国进口可编程温度控制器 液晶触摸屏可编程控制仪表,程式编辑容易, 操作简单方便(R232通讯口);[/color][color=#717271] 1、精度:0.1℃(显示范围);[/color][color=#717271] 2、解析度:±0.1℃; [/color][color=#717271]3、温度控制采用P . I . D+S.S.R系统同频道协调控制;[/color][color=#717271] 4、控制方式:热平衡调温调湿方式; [/color][color=#717271]5、感温传感器:PT100铂金电阻测温体;[/color][color=#717271] 6、资料及试验条件输入后,控制器具有荧屏锁定功能,避免人为触摸而停机;[/color][color=#717271] 7、控制器操作界面设中英文可供选择,实时运转曲线图可由屏幕显示;[/color][color=#717271] 8、具有自动演算的功能,可将温度变化条件立即修正,使温度控制更为精确稳定;[/color][color=#717271] 9、具有RS-232或RS-485通讯界面,可在电脑上设计程式,监视试验过程并执行自动开关机、打印曲线、数据等功能;[/color]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制