当前位置: 仪器信息网 > 行业主题 > >

线阵扫描成像粒子分析仪

仪器信息网线阵扫描成像粒子分析仪专题为您提供2024年最新线阵扫描成像粒子分析仪价格报价、厂家品牌的相关信息, 包括线阵扫描成像粒子分析仪参数、型号等,不管是国产,还是进口品牌的线阵扫描成像粒子分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合线阵扫描成像粒子分析仪相关的耗材配件、试剂标物,还有线阵扫描成像粒子分析仪相关的最新资讯、资料,以及线阵扫描成像粒子分析仪相关的解决方案。

线阵扫描成像粒子分析仪相关的论坛

  • 2016国产磁测量好仪器系列之五:磁场测量扫描成像系统F-30

    2016国产磁测量好仪器系列之五:磁场测量扫描成像系统F-30

    2016国产磁测量好仪器系列之五:磁场测量扫描成像系统F-30原创:李响、杨文振、薜立强、冀石磊、郑文京 工程师,北京翠海佳诚磁电科技有限责任公司推荐:陆俊 工程师,中科院物理所磁学室2016年10月28日一句话推荐理由:国产半导体器件的骄傲之作应用在中强磁场测量上的好仪器。一、引言 磁场无形,但又无处不在,无时无刻不在直接或间接的影响着我们的生活,比如地磁、磁卡、电机、变压充电器、电磁炉、微波炉、手机、磁盘、钞票、耳麦、磁悬浮列车、核磁共振成像仪这些让我们每天都在和各种各样的磁场打交道,然而对于磁场如何衡量,如何产生如何测量恐怕较少有人去关注,简单概括几点:一是磁场的单位,常用的单位是奥斯特,国际单位安每米比较小(1 Oe ~ 79.6 A/m),注意严格来讲不要将单位表达成高斯或特斯拉这两个磁感应强度单位,因为磁场强度和磁感应强度概念上完全不同,尽管二者可根据(经常以空气或真空的)磁导率相互变换,即1奥斯特磁场在真空或空气中诱导的磁感应强度为1高斯或万分之一特斯拉。二是磁场的产生,首先地球是跟我们关系最密切的磁场源,地表磁场大约为0.5奥斯特,随纬度升高有缓慢增强趋势;其次是为了产生变化磁场,可以通过永磁体机械组装的方式,也可以使用线圈中通过电流的方式,根据线圈材料或结构的不同可以形成不同类型的通电线圈磁场源,比如超导线圈在不消耗能量情况下维持100kOe以上的磁场,高强度导电材料及结构制成的1MOe以上的脉冲强磁场;还有一种和磁场产生相反,要尽可能减少磁场,以防止地球磁场或其他干扰磁场对精密传感器造成不利影响,破坏极端条件探索、精密标定测量等任务,这时要用到消磁措施,可以使用主动电流对消与被动屏蔽两种方法,综合利用消磁技术,我们可以获得比地磁场弱10个数量级的洁净磁场环境。三是磁场的测量,相比产生技术方法,磁场测量要复杂得多,其类型有电磁感应、霍尔、磁阻、磁电、磁光、磁致伸缩、磁共振及非线性磁效应等基本原理,其中值得一提的几个包括最通用且测量范围最广的感应线圈磁探测器、前沿科学探索中常用的超导量子干涉仪(SQUID)、地磁或空间磁场探测中常用的磁通门或原子光泵磁力仪、智能手机里植入的各向异性磁阻AMR芯片、磁场计量常用的核磁共振磁力仪以及跟电磁相关的生产及科研任务中常见的中等强度磁场(地磁场上下四个数量级之间)测量上最常见最常用的霍尔磁场计。以上关于磁场的量级、产生与测量方法比较汇总于图1,在中等磁场强度测量应用最广泛的为霍尔传感器,虽然它没有核磁共振磁力仪ppm级的高精度,但它同时具备足够的精密度(通常约千分之一)、高空间分辨、高线性度、单一传感器宽测量范围、成本又相对较低等明显优势,因而市面上高斯计、特斯拉计等中等强度磁场测量仪绝大多数基于霍尔传感器,本文介绍的磁测量产品也基于霍尔磁场计,在前述磁相关的器件及应用产品的质量控制、监护与升级过程中扮演着不可缺少的角色。http://ng1.17img.cn/bbsfiles/images/2016/11/201611101944_616260_0_3.png图1 磁场的量级、不同产生与测量方法比较概览图二、背景中科院半导体所从20世纪80年代始研究高迁移率砷化镓(GaAs)霍尔器件,后来经过两代人的薪火传承克服半导体材料制备、内置温度补偿器件设计与测量数字化采样及软件优化上的技术难题逐渐发展成熟,最终落地北京翠海公司,形成CH-1800,CH3600等被用户认可的高斯计产品。近些年为了配合电磁制造业质量提升的业界需求,为电机磁体、核磁共振磁体空间均匀性、多级磁体分布提供系统的测量方案,翠海公司在高斯计的基础上增加无磁运动机构和软件集成,开发出F-30磁场测量扫描成像仪,照片如图2所示。http://ng1.17img.cn/bbsfiles/images/2016/11/201611101944_616259_0_3.jpg图2 F-30 型磁场测量扫描成像设备照片三、简介F-30由上位机(装有控制软件)、高精度高斯计(一维或者三维)、与高斯计搭配的探头、多维电控位移台以及位移台的控制器组成,如图3所示。简单来说可以分为两个部分,一部分只是用来采集数据,另一部分只是位移,两个部分搭配起来就组成了这个位移采集系统。位移模块由多维电控位移台和位移台控制器组成,通过操作上位机软件给控制器下命令,控制器就根据命令带动电控位移台各个轴运动,这个电控位移台的参数(台面大小、运动轴长度、运动方式、多少维度)用户可定制,即实现在允许范围内的各个角度、各种形状的扫描。 数据采集模块由高精度高斯计和与高斯计配套的探头组成,电控位移台的轴上有固定的探头夹持位置,采集数据时将探头放在夹持位置上,探头测量的数据实时上传到高斯计上,而高斯计与上位机软件通信连接,上位机则根据需要选择是否记录当前位置的数据。通过上位机软件控制位移台控制器和高斯计,可以将位移台上某个位置与高斯计读到的数据值相关联,一维高斯计读到的就是运动到的点对应的某个方向的数据值,三维高斯计则是一个点上 X 方向的值、Y 方向的值、Z 方向的值、此点上的温度(根据需要探头和高斯计中可有温度补偿功能)及三轴中两两矢量和、总矢量和的数值大小和方向夹角,扫描的数据可以导出保存在 EXCEl 中,根据位置和数据值可由软件绘制出各种需要的示意图:二维标准图、二维颠倒图、二维雷达图、三维曲线图、三维网状图、三维立体图、矢量图、圆柱展开图及多条曲线或多个立体图放在同一张图中进行对照比较。软件中还对常见的几种形状(空间磁场分布、矩形图、磁环、同心圆等)的扫描进行了集成化,只需设置几个参数便可以自动进行扫描,自由度高,精准度高,无需看管。http://ng1.17img.cn/bbsfiles/images/2016/11/201611101944_616261_0_3.png图3 F-30型磁场测量扫描成像仪组成框图F-30根据不同的测量件需求可以定制,磁场测量部件的主要技术指标如表1,传感器照片如图4,其测量方向、维度以及尺寸都可以根据需要定制。 关于磁场扫描成像时间,(1)常规扫描:每点扫描时间可设置,一般为保证数据的稳定性,在每点的停留时间为1~2s,总时间由测试工件尺寸和扫描步长决定;(2)快速扫描模式:在位移台运动过程中不做停留,通过高速数据采集获得每点磁场值每点测量可小于0.1s。表1: F-30磁场测量部件主要指标http://ng1.17img.cn/bbsfiles/images/2016/11/201611101944_616269_0_3.jpg运动部件有三个平移与两个旋转自由度,大致示意图如图5,典型测试场景及系统软件照片如图6所示,运动部件指标表2。表2 F-30运动学指标列表http://ng1.17img.cn/bbsfiles/images

  • 有关扫描电镜的扫描成像问题

    扫描电镜号称扫描与成像是同步的,就是扫一个点存一个点,但它成像后的图像存储又有1024、3072、甚至32k等多种分辨率,那究竟电镜的扫描分辨率是多少

  • 【原创大赛】扫描电镜中扫描旋转及对非导电样品的成像应用探讨

    【原创大赛】扫描电镜中扫描旋转及对非导电样品的成像应用探讨

    扫描电镜是材料学研究中的常用仪器,通过入射电子轰击样品,激发和收集二次电子以获得样品表面形貌像。虽然扫描电镜相对透射电镜对样品要求不高且制样简单,但为保证在真空条件下获得清晰的样品表面形貌像,对待测样品的基本要求为不挥发且易导电。不导电的样品因在电子束轰击区域易产生荷电形成电场,影响二次电子成像效果,因此对此类样品往往采用溅射一层非常薄的导电膜C或金属(如Au、Pt)提高导电性,改善成像效果。但对于样品表面起伏较大,以及需拍摄截面外侧的样品往往效果有限,主要会通过改变加速电压(Accelerating voltage),改变束流(Beam current)以及工作距离(Work distance)的方式进行成像调整,有时调整效果也是非常有限。通过日常的积累探索,本文以容易被忽略的扫描旋转(Scan rotation)对非导电样品的扫描电镜成像应用进行探讨。一、什么是扫描旋转? 电子束从极靴中出射后汇聚到样品为一个仅有数纳米的大小的束斑,再通过逐点移动实现对样品整个目标区域的扫描成像。逐点移动的方向由扫描线圈控制,可在平面内360度旋转可调。由于扫描线圈调整电子束偏转使得扫描方向发生改变,但成像时仍然按照水平的方式给与图像展现,直接体现为图像以中心为轴,进行了一定角度的旋转,此即为扫描旋转。扫描旋转感觉似乎是样品在旋转,实际上此时样品位置并未移动,仅仅是成像的视角发生了角度的改变。以图1中系类示意图为例:图1-1中的五角星以及四个方向的4个三角形为一个样品。扫描电镜在成像时往往会按照一定的长宽比进行某个区域的成像,如图1-2所示的方框为成像区域,即在电脑屏幕上可见的图像。图中示意的绿色的点为逐点扫描的起点,箭头为扫描方向,红色点为图像的中心。当扫描角度改变时,以90度为例,如图1-3所示。此时是仍以红色为中心点,扫描的起始点(绿色)和扫描方向发生了改变,但仍然按照固定的长宽比进行扫描区域成像,即虚线框范围,成像仍然按照水平方向展示,即在电脑屏幕上展现的图像为图1-4所示,与图1-2中方框内图像相比似乎旋转的90度。[img=,690,563]https://ng1.17img.cn/bbsfiles/images/2021/08/202108241611580279_4828_1613111_3.jpg!w690x563.jpg[/img]二、扫描旋转在样品表面形貌成像中应用 扫描旋转方向的改变基本应用是为获得某个好看的目标物的图像,例如使得目标物的图像横平竖直,或者沿一定角度的趋势。在特殊情况下如当样品导电性差形成荷电,成像时容易产生明或暗条纹时,有时通过调整扫描方向,改变荷电分布区域,可以对成像效果有一定的改善。如下列图2系列图为同一位置不同扫描旋转角度的成像图。其中图2-1,图2-2,图2-3均在不同位置不同深浅度的黑色条纹,图2-4相对成像效果较好。由于荷电分布完全由所观测的样品的成像区域特性决定,即使同一样品不同区域荷电分布也不一致,难以总结出特定的一致规律,因此扫描旋转的改变对于成像的效果目前只能通过不同角度进行不断的尝试。[img=,690,522]https://ng1.17img.cn/bbsfiles/images/2021/08/202108241612532956_154_1613111_3.jpg!w690x522.jpg[/img]三、扫描旋转在截面样品形貌成像中应用 在特殊样品的情况下,尤其对导电性差的截面外侧成像时,通过扫描旋转方向的改变可以显著提升成像效果。当侧面为水平时与扫描点移动方向一致,在侧面边缘易形成荷电场,对图像的扭曲非常明显。如下列图3系列图所示。图3-1中黄色标记线上侧为样品截面外侧,可见有一定的拉伸。进一步通过轻微角度调整,如图3-2和图3-3黄色线标记指示区,两者为同一样品区域,可见截面外侧的一层膜,由于荷电的作用造成图像扭曲非常明显。当将扫描方向调整为90度(图3-4),此时扫描点移动方向与样品截面外侧垂直,局部荷电得到一定改善,因此得到的图像未拉伸。如图3-1和图3-4两图绿色指示区为同一区域,可见图3-1中外侧区域成像时受到了严重压缩,经调整扫描方向得到了图3-4样品截面外侧的真实形貌图。[img=,690,604]https://ng1.17img.cn/bbsfiles/images/2021/08/202108241614424860_7131_1613111_3.jpg!w690x604.jpg[/img] 又如下列组合图(图4),以样品截面水平为0度,分别逆时针旋转角度(30,60,90)和顺时针旋转角度(-30,-60)。可见在截面垂直(90)时为无变形成像。[img=,690,351]https://ng1.17img.cn/bbsfiles/images/2021/08/202108241616295560_4109_1613111_3.jpg!w690x351.jpg[/img]四、结论 通过简单的扫描旋转改变电子束移动方向,对非导电性样品来说,有时可以获得意向不到的成像效果。

  • 材料表征仪器之扫描电镜

    材料表征仪器之扫描电镜

    扫描电子显微镜(scanning electron microscope),简称扫描电镜(SEM)。是一种利用电子束扫描样品表面从而获得样品信息的电子显微镜。它能产生样品表面的高分辨率图像,且图像呈三维,扫描电子显微镜能被用来鉴定样品的表面结构。http://ng1.17img.cn/bbsfiles/images/2013/09/201309221547_465885_2063536_3.jpg扫描电镜是利用细聚焦电子束在样品表面扫描时激发出来的各种物理信号来调制成像的扫描电镜主要有真空系统,电子束系统以及成像系统。1、真空系统  真空系统主要包括真空泵和真空柱两部分。  真空柱是一个密封的柱形容器。  真空泵用来在真空柱内产生真空。有机械泵、油扩散泵以及涡轮分子泵三大类,机械泵加油扩散泵的组合可以满足配置钨枪的扫描电镜的真空要求,但对于装置了场致发射枪或六硼化镧枪的扫描电镜,则需要机械泵加涡轮分子泵的组合。成象系统和电子束系统均内置在真空柱中。真空柱底端即为右图所示的密封室,用于放置样品。之所以要用真空,主要基于以下两点原因:电子束系统中的灯丝在普通大气中会迅速氧化而失效,所以除了在使用扫描电镜时需要用真空以外,平时还需要以纯氮气或惰性气体充满整个真空柱。  为了增大电子的平均自由程,从而使得用于成象的电子更多。2、电子束系统  电子束系统由电子枪和电磁透镜两部分组成,主要用于产生一束能量分布极窄的、电子能量确定的电子束用以扫描成象。  电子枪:用于产生电子,主要有两大类,共三种。一类是利用场致发射效应产生电子,称为场致发射电子枪。这种电子枪极其昂贵,在十万美元以上,且需要小于10-10torr的极高真空。但它具有至少1000小时以上的寿命,且不需要电磁透镜系统。另一类则是利用热发射效应产生电子,有钨枪和六硼化镧枪两种。钨枪寿命在30~100小时之间,价格便宜,但成象不如其他两种明亮,常作为廉价或标准扫描电镜配置。六硼化镧枪寿命介于场致发射电子枪与钨枪之间,为200~1000小时,价格约为钨枪的十倍,图像比钨枪明亮5~10倍,需要略高于钨枪的真空,一般在10-7torr以上;但比钨枪容易产生过度饱和和热激发问题。  电磁透镜:热发射电子需要电磁透镜来成束,所以在用热发射电子枪的扫描电镜上,电磁透镜必不可少。通常会装配两组:  汇聚透镜:顾名思义,汇聚透镜用汇聚电子束,装配在真空柱中,位于电子枪之下。通常不止一个,并有一组汇聚光圈与之相配。但汇聚透镜仅仅用于汇聚电子束,与成象会焦无关。  物镜:物镜为真空柱中最下方的一个电磁透镜,它负责将电子束的焦点汇聚到样品表面。3、成像系统  电子经过一系列电磁透镜成束后,打到样品上与样品相互作用,会产生次级电子、背散射电子、欧革电子以及X射线等一系列信号。所以需要不同的探测器譬如次级电子探测器、X射线能谱分析仪等来区分这些信号以获得所需要的信息。虽然X射线信号不能用于成象,但习惯上,仍然将X射线分析系统划分到成象系统中。  有些探测器造价昂贵,比如Robinsons式背散射电子探测器,这时,可以使用次级电子探测器代替,但需要设定一个偏压电场以筛除次级电子工作原理  下图是扫描电镜的原理示意图。由最上边电子枪发射出来的电子束,经栅极聚焦后,在加速电压作用下,经过二至三个电磁透镜所组成的电子光学系统,电子束会聚成一个细的电子束聚焦在样品表面。在末级透镜上边装有扫描线圈,在它的作用下使电子束在样品表面扫描。http://ng1.17img.cn/bbsfiles/images/2013/09/201309221549_465886_2063536_3.jpg  由于高能电子束与样品物质的交互作用,结果产生了各种信息:二次电子、背反射电子、吸收电子、X射线、俄歇电子、阴极发光和透射电子等。这些信号被相应的接收器接收,经放大后送到显像管的栅极上,调制显像管的亮度。由于经过扫描线圈上的电流是与显像管相应的亮度一一对应,也就是说,电子束打到样品上一点时,在显像管荧光屏上就出现一个亮点。扫描电镜就是这样采用逐点成像的方法,把样品表面不同的特征,按顺序,成比例地转换为视频信号,完成一帧图像,从而使我们在荧光屏上观察到样品表面的各种特征图像性能参数放大倍数  扫描电镜的放大倍数M定义为:在显像管中电子束在荧光屏上最大扫描距离和在镜筒中电子束针在试样上最大扫描距离的比值 M=l/L式中l指荧光屏长度;L是指电子束在试样上扫过的长度。这个比值是通过调节扫描线圈上的电流来改变的。景深  扫描电镜的景深比较大,成像富有立体感,所以它特别适用于粗糙样品表面的观察和分析。分辨率  分辨本领是扫描电镜的主要性能指标之一。在理想情况下,二次电子像分辨率等于电子束斑直径。场深  在SEM中,位于焦平面上下的一小层区域内的样品点都可以得到良好的会焦而成象。这一小层的厚度称为场深,通常为几纳米厚,所以,SEM可以用于纳米级样品的三维成像。作用体积  电子束不仅仅与样品表层原子发生作用,它实际上与一定厚度范围内的样品原子发生作用,所以存在一个作用“体积”。  作用体积的厚度因信号的不同而不同:  欧革电子:0.5~2纳米。  次级电子:5λ,对于导体,λ=1纳米;对于绝缘体,λ=10纳米。  背散射电子:10倍于次级电子。  特征X射线:微米级。  X射线连续谱:略大于特征X射线,也在微米级。

  • 正确选择适合的实验室成像仪

    作为实验室里最为常用的仪器之一,成像设备直接为您的论文提供影像。而这些影像质量的好坏,有时候甚至决定着您的论文能否发表。当然,拥有一台好的、运行稳定的设备也是老板和技术主管的心愿。那么,如何从纷繁的市场上选择到一款好的成像设备呢?很多号称“王牌”的设备是否真的能够打满分呢?下面的文章就向您介绍选择成像系统的“四项基本原则”。有了这些原则,您在选择成像仪时自然成竹在胸,无往不胜。原则一:“只选对的,不选贵的”市场上各品牌、各型号的成像仪林林种种,但是从成像原理上可以分成两大类,分别是拍照成像和扫描成像。拍照成像简单说就是样品和相机的相对位置不动,可以进行单次成像或多次成像;而扫描成像则是相机对样品进行局部成像,然后通过样品或相机的移动对整个样品进行成像。拍照成像目前主要采用CCD相机成像,由于可以设置不同的曝光时间,常被用来进行微弱的化学发光及生物发光的成像。而扫描成像则由于精度高、重复性好被广泛用于大型样品以及多通道成像中。可以说,对于大型样品或多通道应用,能选择扫描成像的,尽量不要选择拍照成像。原理搞清楚了,选择起来就简单了。不同的原理导致了不同应用的最佳选择,所以千万不要相信什么“全能王”之类的鬼话,没有任何一款机器可以通吃所有应用领域。下面就实验室最常见的一些应用简单的说明选择的依据:核酸电泳凝胶:一般此类凝胶都采用EB染色、紫外激发,而且凝胶较小。推荐采用一般的凝胶成像设备即可完成。蛋白电泳凝胶:一般此类凝胶采用考染或银染,白光透射成像。对于小型凝胶您可以选择一般的凝胶成像设备,但是对于大型凝胶,特别是双向电泳凝胶,由于CCD拍照成像会有几何扭曲,而且透镜效应也会导致不同区域的信号强度差异,另外CCD拍照也无法保证不同凝胶的成像参数保持一致,因此扫描成像是最好选择。转印膜:这个稍微有些复杂。一般转印膜有比色法显色、同位素、化学发光和荧光等不同检测手段。比色法显色就是产生有颜色的条带或斑点,一般采用普通的凝胶成像设备即可;同位素可以采用压胶片曝光的方法,但是费时、费力而且容易过饱和,比较通用的方法是由FujiFilm在1981年发明的磷屏成像技术,获得信号潜影的磷屏通过激光扫描就可以获取同位素的信号。而化学发光是目前最常用的蛋白印迹的检测手段,无疑,冷CCD拍照成像对这种微弱的光信号是最合适的。荧光是所有这些检测手段中最令人赞叹的和最有前景的。这不仅仅是因为荧光染料具有最宽的动态范围,而且还在于它能够为我们提供多通路的检测途径(同样适用于凝胶,通用电气公司的2D DIGE技术就是采用三种荧光染料标记蛋白而形成多通路检测的)。当然,您可以使用单一荧光检测,这时您对凝胶成像设备的要求就包括了新的激光光源和相应的滤光片。如果您是一个完美主义者,或者您需要对邻近或重叠的目标分子进行成像,那么多通道荧光检测是您的不二之选。这时扫描成像绝对是最佳选择,这样选择不仅仅是因为扫描成像能够带来更高的灵敏度和分辨率,更重要的是,不同通道之间没有几何扭曲,拟合性好。微孔板及其他特殊需求:对于拍照成像而言,由于几何扭曲的问题,对微孔板成像就变得比较复杂了,一般必须一个专用的校正装置才可完成。当然,如果采用扫描成像一般不需要任何额外附件。很多实验室现在都对小动物成像非常感兴趣,然而对小动物进行真的不是一件简单的事,一方面小动物需要进行麻醉和固定;另一方面还需要对信号位置进行三维定位。因此,能同时提供功能、代谢和解剖图像的PET/CT是进行这类成像的最有力的工具。限于篇幅,这部分将不做更多介绍。原则二:实践是检验真理的唯一标准这可不是在上政治课,每个厂家都对自己的产品是“王婆卖瓜,自卖自夸”,经常给您上两个小时课中间还不用休息,什么“专利技术”、“人性化设计”、“生命科学产业大奖”。只有您想不到的,没有他做不到的。可是,这些东西对用户到底有什么意义?就没有几个人说得清了。好用才是硬道理。任凭你说得天花乱坠,拿来我试试,不就什么都清楚了。现在多数厂商都提供Demo机服务,还有技术人员现场答疑解惑,那就请各位上场,真刀真枪的拼一下,谁的性能好,价格优,那我就要谁的。当然,我们的实际测试结果仅仅是针对我们自己的样品和现场demo的机器而已。我们不能据此对相关品牌和相关型号做太多评判。由于具体应用的限制、操作技巧的差异以及可能的仪器状态的区别,我们有可能没有给出公允的评价。但无论如何,这些讯息对我们采购者和使用者来说都是非常重要的。

  • 【分享】图像分析仪在金相分析中的应用2

    一、图像分析仪的原理及功能简介  图像分析仪的系统由金相显徽镜和宏观摄像台组成的光学成像系统,其用途是使金相试样或照片形成图像。金相显微镜可直接对金相试样进行定量金相分析;宏观摄像台适用于分析金相照片、底片及实物等。  为了能用计算机存贮、处理和分析图像,首先需将图像数字化。一帧图像是由不同灰度的一种分布所组成,用数学符号表示为j=j(x,y),x、y为图像上像素点的坐标,j则表示其灰度值。所以,一帧图像可以用一个m×n阶矩表示,矩中每个元素对应于图像中一像素点,aij的值即表示图像中属于第i行第j列的像素点的灰度值。CCD摄像机(电荷耦合器件摄像机)就是一种图像数字化设备。金相试样上的显微特征经过光学系统后在CCD上成像并由CCD实现光电转换和扫描,然后作为图像信号取出,由放大器进行放大,并量化成灰度级以后贮存起来,从而得到数字图像。  计算机根据数字图像中需测量特征的灰度值范围,设定灰度值阈值T。对于数字图像中任何一个像素点,若其灰度大于或等于T,则用白色(灰度值255)来代替它原来的灰度;若小于T则用黑色(灰度值0)来代替原来的灰度,可以把灰度图像转化为只有黑、白两种灰度的二值图像,然后再对图像进行必要的处理,使计算机能方便对二值图像进行粒子计数、面积、周长测量等图像分析工作。若采用伪彩色处理,则可把256个灰度级转换成对应的彩色,使灰度很接近的细节和其周围环境或其他细节易于识别,从而改善图像,更利于计算机处理多特征物图像。

  • 【创新】SSRM用一个扫描探针二维成像和大规模集成电路领域取得突破

    日本东芝公司(Toshiba Corp.)于4月16日宣布,他们在电子载体通道以及半导体中的杂质成像方面取得了重大突破,这使得在1纳米尺度上的分析技术首次变得可能。这一基于扫描电阻显微镜(SSRM)的技术是实现下一代45纳米级别大规模集成芯片(LSI)等的关键性一步。  东芝公司将在国际可靠性物理年会(IRPS)上宣布他们的这一发现,这是目前正在美国Arizona凤凰城举行的国际半导体可靠性的大型会议。东芝计划在会议最后一天,当地时间4月19日发表这一突破性成果。  扫描电子显微镜是一种用来分析半导体表面的局域性二维电阻的理想方法,它能用于分析电子载体以及杂质。目前对于45纳米级别LSI的需求使得了解载体通道内的电子载体密度非常重要,而且需要能达到1纳米级别的精度,这是由于电特性方面的微小改变都会导致泄露和短路。  SSRM用一个扫描探针对半导体器件的载体进行二维成像。这些图像反映了导致电阻变化的杂质,并使得对电流路径分析变得可能。但是通过传统探针的高分辨SSRM精度只能维持在5纳米左右。  问题来源于两个方面:样品的水蒸气将影响成像精度,而且维持样品和探针间的稳定也很困难。为了克服以上问题,东芝将SSRM置于真空中,并精确定位了探针位置。这使得东芝公司达到了目前最高的分析精度:1纳米,这将用于45纳米LSI制造。教育部科技发展中心

  • 对电泳胶上的斑点做定量,用凝胶成像分析系统好,还是用薄层扫描仪好?

    我在做一个课题,将糖类用琼脂糖凝胶电泳分离后,染色,再定量。现在的问题是到底用凝胶成像系统准确些,还是用薄层扫描仪效果好些?看国外的文献,用的是一种叫做“光密度计”的设备,国内难以找到。我的老板曾去相关实验室访问,他说对方用的是薄层扫描仪。我在想是否凝胶成像系统会更好些。不知各位高人有无好的建议给我?

  • 磁共振成像(MRI)行李扫描仪--磁在防爆中的应用

    这种设备也是采用医用上的磁共振人体扫描技术发展的。这种新型扫描仪采用一种称为“四磁极共振分析”的变型MRI,从被检物品的分子结构来识别各种材料。首先用一台发射机向行李上发射低频无线电波,瞬间扰乱物品内部的核子排列。当核子自身重新排列时,它们发射信号,这些信号即刻由系统的计算机进行分析。由于每种类型的材料发射一种独特的信号,没有两种化合物的信号是相同的。因此,使之易于查出爆炸物或违禁毒品。它还可以检测液体炸弹、神经毒气及其他化学武器。这种磁共振炸药探测系统QScan-1000和Line231X 射线安全检查系统结合可以获得最佳探测效果。目前在洛杉矶国际机场和英国的多个国际机场已有使用。

  • 选购热分析仪或差式扫描热量计(DSC)

    本人欲选购一台热分析仪或差式扫描热量计(DSC),用于测量聚乙烯(PE)原料及产品的氧化诱导期,因本人不懂这方面测试,希望有熟悉相关设备的朋友帮忙。也希望设备厂家介绍或寄资料并报价。E-mail:xatwa@sohu.com

  • 三维光声超声成像系统特点

    [b][url=http://www.f-lab.cn/vivo-imaging/nexus128.html]三维光声超声成像系统Nexus128[/url][/b]是全球首款成熟商用的[b]3D光声成像系统[/b]和[b]3D光声CT系统[/b]和[b]3D光声断层扫描成像系统[/b],具有更高灵敏度和各向同性分辨率,提高光声图像质量,具有更快的扫描时间和更高光声成像处理能力。三维光声超声成像系统利用内源性或外源性对比产生层析吸收的断层图像,适用于近红外吸收染料或荧光探针进行对比度增强和分子成像应用。三维光声超声成像系统应用分子探针的吸收和分布肿瘤血管-血红蛋白浓度肿瘤缺氧-二氧化硫[img=三维光声超声成像系统]http://www.f-lab.cn/Upload/photo-acoustic-CT-Nexus128.png[/img]三维光声超声成像系统Nexus128特点预定义的肿瘤生物学和探头吸收协议先进灵活的研究模式的扫描参数先进的重建算法易于使用的图形用户界面紧凑,方便的现场系统强大的查看和分析软件易于使用的图形用户界面数据可视化与分析三维光声数据从三维光声超声成像系统传输到工作站进行观察和分析。工作站上的数据具有与三维光声超声成像系统相同的结构/组织。独立的工作站允许调查员分析数据,而另一个操作员正在获取数据。前置像头具有强大的内置工具Endra 可以为特殊定量数据应用提供OsiriX 插件三维光声超声成像系统Nexus128:[url]http://www.f-lab.cn/vivo-imaging/nexus128.html[/url]

  • 基于共振扫描的显微成像技术及系统研究

    [b][font=宋体][color=black]【序号】:1[/color][/font][font='微软雅黑',sans-serif][color=black][/color][/font]【作者】:[b][b]杨欣[/b][/b][/b][font=&]【题名】:[b][b][b]基于共振扫描的显微成像技术及系统研究[/b][/b][/b][/font][font=&]【期刊】:cnki[/font][b][color=#545454]【链接]: [url=https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CDFD&dbname=CDFDLAST2016&filename=1015712320.nh&uniplatform=NZKPT&v=g8fPyqfSNBIZFLi6JV5IjwK9gKCSBCEvUuN3dTxvKpYlXKEQlXfSHL3OoehSZY07]基于共振扫描的显微成像技术及系统研究 - 中国知网 (cnki.net)[/url][/color][/b]

  • 【分享】图像分析仪在金相分析中的应用

    图像分析仪在金相分析中的应用近年来,随着计算机技术和体视学的发展,图像分析仪被广泛地应用于金相分析中,使传统的金相分析技术从定性或半定量的工作状态逐步向定量金相分析方向发展。 金相工作者多年来一直从金相试样抛光表面上通过显微镜观察来定性地描述金属材料的显微组织特征或采用与各种标准图片比较的方法评定显微组织、晶粒度、非金属夹杂物及第二相质点等,这种方法精确性不高,评定时带有很大的主观性,其结果的重现性也不能令人满意,而且均是在金相试样抛光表面的二维平面上测定,其测量的结果与三维空间真实组织形貌相比有一定差距。现代体视学的出现为人们提供了一种由二维图像外推到三维空间的科学,即将二维平面上所测定的数据与金属材料的三维空间的实际显微组织形状、大小、数量及分布联系起来的一门科学,并可使材料的三维空间组织形状、大小、数量及分布与其机械性能建立内在联系,为科学地评价材料提供了可靠的分析数据。 由于金属材料中的显徽组织和非金属夹杂物等并非均匀分布,因此任何一个参数的测定都不能只靠人眼在显微镜下测定一个或几个视场来确定,需用统计的方法对足够多的视场进行大量的统计工作,才能保证测量结果的可靠性。如果仅靠人的眼睛在显微镜上进行目视评定,其准确性、一致性和重现性都很差,而且测定速度很慢,有些甚至因工作量过大而无法进行。图像分析仪以先进的电子光学和电子计算机技术代替人眼观察及统计计算,可以迅速而准确地进行有统计意义的测定及数据处理,同时具有精度高、重现性好,避免了人为因素对金相评定结果的影响等特点,而且操作简便,可直接打印测量报告,目前已成为定量金相分析中不可缺少的手段。 图像分析仪是对材料进行定量金相研究的强有力工具,也是日常金相检验的好帮手,可以避免人工评定带来的主观误差,从而也避免了扯皮现象。虽然在日常金相检验中,不可能也不必每次都使用图像分析仪,但当产品质量出现异常或金相组织级别处于合格与不合格之间而无法判别时,则可以借助图像分析仪对其进行定量分析,得出准确结果,确保产品质量。图像分析仪在金相分析中的应用,拓展了金相检验的检测项目,促进了检测水平的提高,对于提高检测人员的素质也是十分有益的。 图像分析仪的系统由金相显徽镜和宏观摄像台组成的光学成像系统,其用途是使金相试样或照片形成图像。金相显微镜可直接对金相试样进行定量金相分析;宏观摄像台适用于分析金相照片、底片及实物等。 为了能用计算机存贮、处理和分析图像,首先需将图像数字化。一帧图像是由不同灰度的一种分布所组成,用数学符号表示为j=j(x,y),x、y为图像上像素点的坐标,j则表示其灰度值。所以,一帧图像可以用一个m×n阶矩表示,矩中每个元素对应于图像中一像素点,aij的值即表示图像中属于第i行第j列的像素点的灰度值。CCD摄像机(电荷耦合器件摄像机)就是一种图像数字化设备。金相试样上的显微特征经过光学系统后在CCD上成像并由CCD实现光电转换和扫描,然后作为图像信号取出,由放大器进行放大,并量化成灰度级以后贮存起来,从而得到数字图像。 计算机根据数字图像中需测量特征的灰度值范围,设定灰度值阈值T。对于数字图像中任何一个像素点,若其灰度大于或等于T,则用白色(灰度值255)来代替它原来的灰度;若小于T则用黑色(灰度值0)来代替原来的灰度,可以把灰度图像转化为只有黑、白两种灰度的二值图像,然后再对图像进行必要的处理,使计算机能方便对二值图像进行粒子计数、面积、周长测量等图像分析工作。若采用伪彩色处理,则可把256个灰度级转换成对应的彩色,使灰度很接近的细节和其周围环境或其他细节易于识别,从而改善图像,更利于计算机处理多特征物图像。 图像分析仪通常都具有下列基本图像处理、分析功能:图像采集。 图像增强和处理:包括阴影校正,伪彩色处理,灰度变换,平滑、锐化;图像编辑等。 图像分割。 二值图像处理:包括形态学处理(腐蚀、膨胀、骨胳化等),二值图像的算术运算、联接、自动修补等。 测量:包括特征物统计,对其周长、面积、X/Y投影、轴长、取向角等参数进行统计测量。 数据输出。

  • 转载:磁共振成像中的生物指纹

    转载:磁共振成像中的生物指纹

    来自凯斯西储大学和凯斯西储大学医院医学中心的研究人员在《自然》(Nature)杂志上报告称,他们开发了一种磁共振成像(MRI)新方法,可以早期常规筛查某些特异的癌症、多发性硬化症、心脏病及其他疾病。http://ng1.17img.cn/bbsfiles/images/2013/03/201303191704_431210_2698941_3.jpg科学家们说,每个身体组织和疾病都具有一种独特的指纹,可用于快速诊断问题。利用新的MRI技术可以同时扫描不同的物理特性,研究小组在12秒钟的时间内区分出了大脑中的白质、灰质和脑脊髓液,有希望在不久的将来更快速地完成这一工作。作者们认为,该技术有潜力使得MRI扫描成为年度体检的标准程序。全身扫描仅需几分钟,将提供更多的信息,且无需放射科医师注释这些数据,相比于现在的扫描,其可使诊断变得更加便宜。“我们的总目标在于明确鉴别个体的组织和疾病,有望在它们变成问题之前看到及定量一些东西。然而要试图达到这一目标,我们不得不放弃我们所知道的一切关于MRI的东西,重新开始,”凯斯西储大学医学院和凯斯西储大学医院医学中心放射学教授Mark Griswold说。10年来,Griswold和凯斯西储大学的放射性助理教授Vikas Gulani,以及生物医学工程学助理教授Nicole Seiberlich一直致力于实现这一目标。在过去的3年里,他们与协作者们开发了这一技术,并证实了概念。磁共振成像仪是利用磁场和无线电波脉冲来生成身体组织和结构的图像。相比于传统的MRI,磁共振指纹法(Magnetic resonance fingerprinting,,MRF)每次测量可以获取更多的信息。Griswold将技术中的差异比作两个不同的合唱队。“传统的MRI,是每个人都唱着同一首歌,你可以说出谁唱得更响亮,谁跑调了,谁唱得更柔和。但也就是这样。”大声、柔和和跑调的歌声由扫描中的黑点、轻微的亮点和明亮点表示,放射科医生必须对其进行注释。例如,生化试剂中MRI显示肿胀为明亮区。但亮度并不一定等同于严重或病因。Griswold说:“利用MRF,我们希望能够一步告知疾病的严重程度,以及在这些区域确切发生的事件。”因此,身体内的每个组织、每种疾病以及每种物质的指纹就是一首不同的歌。在MRF中,每个合唱队成员都同时唱着不同的歌。“整个听起来就像随机一团糟。”研究人员通过同时改变标记组织的输入电磁场的不同部分,生成一些独特的歌曲。这些变化生成了对随组织而异的4种物理特性敏感的接收信号。当在面孔识别软件中利用数学模式识别程序时,这些差异会变得明显。随后这些模式被制成图表。Griswold说,检测的不是来自图像的相对测量值,而是通过定量评估区分一种组织与另一种。随着这一技术不断进步,这些结果将确定组织是否健康,严重程度以及凭据。科学家们相信他们将能够查询总共8个或9个物理特性,使得他们能够推导出来自大量组织、疾病和物质的歌曲。对于患者而言,MRF看起来就像一个快速MRI。当完成扫描后,将患者的所有歌曲与乐曲库相比较,就可以为医生提供一套诊断信息。“如果结肠癌是‘生日快乐’歌,我们没有听到‘生日快乐’,就意味着患者没有结肠癌,”Griswold说。其他一些研究人员曾尝试利用MRI的多个参数,而研究人员能够比以前尝试做到的更敏感及快速地进行扫描。“这一研究给予了我们希望,我们可以看到MRI有可能能够看到各种东西。”研究小组期望在接下来的几年里,能够减少扫描时间,继续建设乐曲库,或是指纹库

  • 【分享】如何判断激光粒度分析仪的优劣

    判断激光粒度分析仪的优劣,主要看其以下几个方面:  1、粒度测量范围粒度范围宽,适合的应用广。不仅要看其仪器所报出的范围,而是看超出主检测器面积的小粒子散射如何检测。  最好的途径是全范围直接检测,这样才能保证本底扣除的一致性。不同方法的混合测试,再用计算机拟合成一张图谱,肯定带来误差。  2、激光光源一般选用2mW激光器,功率太小则散射光能量低,造成灵敏度低;另外,气体光源波长短,稳定性优于固体光源。检测器因为激光衍射光环半径越大,光强越弱,极易造成小粒子信噪比降低而漏检,所以对小粒子的分布检测能体现仪器的好坏。检测器的发展经历了圆形,半圆形和扇形几个阶段。  3、是否使用完全的米氏理论  因为米氏光散理论非常复杂,数据处理量大,所以有些厂家忽略颗粒本身折光和吸收等光学性质,采用近似的米氏理论,造成适用范围受限制,漏检几率增大等问题。  4、准确性和重复性指标  越高越好。采用NIST标准粒子检测。  5、稳定性  仪器稳定性包括光路的稳定性和分散系统的稳定性和周围环境的影响。一般来讲选用气体激光器,使用光学平台,有助于光路的稳定。内部发热部件(如50瓦的钨灯)将影响光路周围环境。  稳定性指标在厂家仪器说明中没有,用户只能凭对于仪器结构的判断和参观或询问其他长时间使用过的用户来判断。  6、扫描速度  扫描速度快可提高数据准确性,重复性和稳定性。  不同厂家的仪器扫描速度不同,从1次/秒到1000次/秒。一般来讲,循环扫描测试次数越多,平均结果的准确性越好,故速度越高越好;喷射式干法和喷雾更要求速度越高越好;自由降落式干法虽然速度不快,但由于粒子只通过样品区一次,速度也是快一些好。  用户每天需要处理的样品量,也是考虑速度的因素。  可自动对中,无需要换镜头,可自动校正。  7、使用和维护的简便性  关于这一点,在购买之前往往被忽视,而实际上直接决定了仪器使用效率和寿命。了解的方法是对仪器结构的了解和其他已有用户的反映。  拆卸、清洗是否方便:粒度仪分为主机和分散器两部分。而样品流动池总是需要定期清洗的,清洗间隔视样品性质而定。将主机和分散器合二为一的仪器往往将样品池深置于仪器内部,取出和拆卸均很繁琐,且极易碰坏光路系统。  8、是否符合国际标准标准  ISO13320标准是对激光粒度分析仪的基本要求。但并不是所有制造商都按照该标准执行。在测量亚微米粒子分布过程中,采用非激光衍射方法是不符合标准的。

  • 新上讲座:扫描电化学显微镜在多个尖端技术应用领域的科研实例

    新上讲座:扫描电化学显微镜在多个尖端技术应用领域的科研实例

    http://simg.instrument.com.cn/bbs/images/default/em09504.gif2017年05月18日 14:00开讲!!!http://ng1.17img.cn/bbsfiles/images/2017/04/201704131643_01_1785258_3.jpg报名链接:file:///C:\Users\zhangyan\AppData\Roaming\Tencent\QQEIM\Temp\8LDO48C$8@http://www.instrument.com.cn/webinar/Meeting/meetingInsidePage/2568主讲人:王竞鹏(Frank Wang) 博士现任Harvard Bioscience Inc. 旗下德国HEKA Elektronik品牌的高级应用技术科学家,职责覆盖北美,欧洲和亚洲区HEKA电化学仪器技术的应用研发和推广支持。王博士本科毕业于天津南开大学分析化学专业,在加拿大完成的博士和博士后研究期间, 师从于多位国际著名的电化学家,致力于广泛的活性纳米材料在多个电化学应用领域内的研究。王博士拥有10年以上的使用HEKA电化学仪器技术及扫描探针显微镜(SPM)技术的科研经验。本次报告会将详细介绍HEKA ElProScan(扫描电化学显微镜)系列产品平台在多个尖端技术应用领域的科研实例。ElProScan凭借德国电化学工业界的开放扫描平台设计以及HEKA全球领先的小电流放大检测技术, 具有一机多用的鲜明独家特点 - 利用HEKA自主研发40多年的一套可高度定制的硬件/软件平台全面支持SECM/SICM/SECCM/SMCM,以及同步荧光微观成像,同步剪切力感应微观形貌成像 和 同步光电化学微观成像等亚微米/纳米尺寸的扫描成像技术。这次报告将深入浅出的介绍ElProScan平台使用微电极(microelectrode)和玻璃微毛细管(micropipette)作为电化学扫描探针,在多种跨学科的前沿科学领域的科研实例,涵盖了生物细胞功能及形貌成像,导电高分子材料/光电半导体材料/锂离子电池材料的微观电化学及形貌表征,防腐蚀材料的微区表征研究等等热门课题。http://simg.instrument.com.cn/bbs/images/default/em09504.gif

  • 通过对人面部温度进行测量对比 热成像扫描仪可快速找出醉酒者

    中国科技网讯 过度饮酒不但会损害自身健康,也会危害公共安全,当醉酒者出现在飞机上或是其他公共场所时就更是如此,因此,安保人员一直在寻找一种能够快速准确地从人群中发现醉酒者的方法。据物理学家组织网近日报道,日前,希腊的科学家开发出一种新技术,能够借助红外线热成像扫描仪实现这一目的,帮助执法者和工作人员轻松地从人群中发现那些过度饮酒的人。相关论文发表在《电子安保和数字取证》杂志上。 负责该项研究的希腊帕特雷大学电子学实验室乔治亚·库克和瓦西里斯·阿纳斯塔索普洛斯解释说,该技术主要通过对人们面部的温度进行测量对比发现醉酒者。目前他们已经开发出两种算法,只需通过红外线热成像仪对人脸进行扫描就能确定他们是否过量饮酒。 第一种算法会对人脸特定的点进行扫描,以获取其图像和温度信息,而后在数据库中将其与未饮酒的人进行对比。由于酒精能够引起皮肤表面的血管膨胀,借助红外线热成像设备,很容易就能发现醉酒者。类似的技术目前已经在边界巡查等领域获得应用,以确定一个人是否感染流感或SARS等病毒。 第二种算法能计算出脸部不同部位的热差值,并对其进行评估。通过对红外图像的分析,研究人员发现醉酒者往往鼻部温度较高,而额头较为冰凉。这种算法能够帮助计算机“理解”红外线热成像图像中不同的脸部部位。与第一种方法相比,其优势在于不需要通过对数据库中未饮酒的人脸进行对比就能发现醉酒者。研究人员称,这两种算法既可以单独工作也可以并行工作,而在并行运行时其效率更高,识别速度更快。 这种技术为执法和管理人员从公共场所中发现醉酒者提供了一种更为准确的判断手段,此外,相对于主观判断,这种方法更为快捷,作为证据也更为可靠。(王小龙) 《科技日报》(2012-9-11 二版)

  • 现代分析技术 用文物“说话“ 让历史“发声”

    文物保护,是对具有历史价值、文化价值、科学价值的历史遗留物通过现代科技手段采取的一系列防止其受到损害的措施。从一把洛阳铲,纵横考古界的“泰斗级”工具,于泥土之间可打出数米的深孔;一颗遥感卫星,飞行于浩瀚苍穹,可拍摄跨越山川河海的图景、从“手铲释天书”到“慧眼览古幽”,科技赋予考古的能量越来越大。计算机、生物学、化学、地学等前沿学科的最新技术被引入到遗址发掘、研究分析、文物修复、展示传播等考古“全链条”,发挥着日益显著的支撑推动作用。现化分析技术在考古中的应用,为文物安装“慧眼“,让文物”说话“,让历史”发声“。现代分析技术针对文物材质、表面形貌、化学成分、内部结构等利用现代技术手段全方面开展研究。常用分析仪器技术包括红外成像、红外光谱、拉曼光谱、X射线荧光能谱、X射线荧光扫描成像、质谱、核磁等。随着科学技术的飞速发展,现代分析仪技术在文物科学保护、科技考古领域的应用日益深入,为文物的鉴定、分析与保护提供了科学依据,即使那些人类肉眼无法可见的“存在”,科技之光也有可能将其照亮,科技助力解开更多历史谜团。仪器信息网为广大文物分析及保护工作者策划组织了本次“现代分析测试技术在文物科学保护中的应用”主题网络研讨会将于12月6日以网络会议的形式召开,会议将围绕瓷器、铁器、染物、漆器、陶器等现代分析方法,为广大用户群体提供交流学习的平台。[align=center]会议日程[img=1.png]https://img1.17img.cn/17img/images/202212/uepic/1c2a48fa-15ea-4a7b-9206-39e402222c38.jpg[/img][/align][align=center][font=等线][size=14px] [img=2.png]https://img1.17img.cn/17img/images/202212/uepic/4d476b40-b000-4362-83a4-ec2a057b6784.jpg[/img][/size][/font][/align][align=center]扫码免费参会[/align]

  • 新X光乳腺成像法可使辐射剂量降低25倍

    中国科技网讯 据物理学家组织网10月22日报道,一个国际研究小组开创了一种新型X光乳腺成像方式,能够以比现在常用的二维放射摄影术低出约25倍的辐射剂量拍摄乳房的三维X光图像。同时,新方法还能使生成的三维高能X射线计算机断层扫描(CT)诊断图像的空间分辨率提升2倍至3倍。相关研究论文发表在同日的美国《国家科学院学报》在线版上。 目前常用的乳腺癌扫描技术是“双重视图数字乳腺摄影术”,它的缺陷在于只能提供两幅乳腺组织的图像,这就解释了为何10%至20%的乳腺肿瘤都无法被探测到。此外,这种摄影术偶尔也会出现异常,造成乳腺癌的误诊。 而CT这种X射线技术虽能生成精确的人体器官三维可视图像,但却不能经常应用于乳腺癌的诊断之中,因为其对于乳房等对辐射敏感的器官而言,可能造成长期影响的风险过高。 新技术则有望克服上述限制。目前科研人员正在利用同步加速器X光对这一技术进行测试,其一旦在医院投入使用,将使CT扫描成为能够补充双重视图数字乳腺摄影术的诊断工具之一。 高能X射线和相衬成像技术的使用,再加上复杂的新型EST数学算法,能够基于X光数据重建CT图像,使CT扫描有望用于早期的乳腺癌排查,成为抗击乳腺癌的强大工具。身体组织将在高能X射线的照射下变得更加透明,因此所需的辐射剂量能够显著降低6倍左右。相衬成像也允许在拍摄同样的照片时使用更少的X射线,EST算法也可在降低4倍辐射的情况下获得相同的图像质量。研究团队以这种方式从多个不同角度拍摄了512张乳房图片,并据此形成了比传统乳腺摄影清晰度、对比度和整体图像品质更高的三维图像。 科研人员称,这些高质量的高能X射线CT图像是欧洲同步加速器辐射源(ESRF)研究中心10年的奋斗成果,同样付出努力的还有德国慕尼黑大学以及美国加州大学洛杉矶分校。他们还表示,下一步的研究目标是基于此项技术实现其他人类疾病的早期可视化,并开发出大小适合的X射线源,力图早日实现该技术的临床应用。(张巍巍) 《科技日报》(2012-10-24 二版)

  • 生物分子相互作用分析仪简介说明

    [b][url=http://www.f-lab.cn/biosensors/mx96.html]生物分子相互作用分析仪[/url][/b]是采用[b]阵列成像SPR[/b]技术的[b]生物分子相互作用传感仪[/b]器和[b]成像SPR仪[/b],是全球领先的多重[b]生物分子相互作用分析[/b]的[b]SPR成像系统[/b]。生物分子相互作用分析仪mx96可监测传感器表面上高达96个配点,使用生物分子相互作用分析仪mx96温度控制96位微孔板自动进样,样品在芯片系列注射,每次注产生96个相互作用。它是可以无人执行的从96孔板在一个完整的运行多达10000个传感由此产生以及包括控制的任务。生物分子相互作用分析仪具有样品注射的来回流动,只有100µ L的样品也能检测由生物分子相互作用分析仪与CFM标准生物传感器相结合,可以从较低的吞吐量机转换成更高的吞吐量阵列系统。对于多路复用非常重要的应用程序,阵列可能非常强大,因为随着实验规模的增大,在其他平台上的采样消耗和仪器运行时间可以迅速扩展。例如,数组可以两两竞争96单克隆抗体的-几乎10000个人相互作用-只使用200每个单抗µ L和一个24小时运行的几天到几个月持续运行的平台。[img=生物分子相互作用分析仪]http://www.f-lab.cn/Upload/MX96.jpg[/img]生物分子相互作用分析仪:[url]http://www.f-lab.cn/biosensors/mx96.html[/url]

  • 加速电压对扫描电镜成像影响

    加速电压对扫描电镜成像影响

    [color=#ff0000][b]此为分享引用,所有权归原微信公众号,原文链接:[url]https://mp.weixin.qq.com/s/lDVTic2etkUd7drsNrdJNw[/url][/b][/color][font=&]扫描电镜是材料学研究中的常用仪器设备,通过入射电子轰击样品,激发和收集二次电子获得样品表面形貌像,以及通过特征X射线进行样品成分分析。在仪器测试使用时,加速电压(HV/ETH)为常用参数中调节最为普遍的一个。那么加速电压是如何影响成像的效果呢?本短文将以我校常见样品的实际图片结合简短的原理来与大家共同分享和探讨一下在扫描电镜成像中应如何调整加速电压。[/font][size=17px]入射电子影响的范围[/size][font=&]加速电压越高,入射电子的能量能越高,在样品中可穿透和散射的范围越大,伴随着产生的信号范围也越大。如下图模拟,入射电子在1kV加速电压时,在硅中散射范围主要在20nm区域内;在5kV时,散射的主要范围扩大到300nm区域,因此5kV时二次电子可产生的范围从入射点扩大到数百纳米。[/font][align=center][img=,690,223]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171507293110_4689_1613111_3.jpg!w690x223.jpg[/img][/align][size=17px]样品表面细节的分辨[/size][align=left]如上模拟所示,由于加速电压增加,入射电子散射的范围增加,使得产生的二次电子区域扩大,样品表面细节分辨率降低。如下图对比,在1kV条件下颗粒表面附着的碳纳米管比5kV条件下更加显著可见。[/align][align=center][font=&] [/font][img=,690,222]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171508305861_6609_1613111_3.jpg!w690x222.jpg[/img][/align][align=center][/align][font=&]如下图在1kV下可见颗粒表面为更小的颗粒组成,而在5kV时仅能看到大颗粒的宏观轮廓。因此对追求纳米级的表面细节分辨建议选择低电压比较合适。[/font][align=center][img=,690,250]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171513118873_2060_1613111_3.jpg!w690x250.jpg[/img][/align][size=17px]辐射损伤[/size]有些样品易受辐射损伤,如有机高分子,金属有机框架,生物组织等。辐射损伤的机理比较复杂原因也多,本短文不再深入探讨。在扫描电镜成像时,有没有简单的办法判断当前加速电压有没有造成辐射损伤?在实践发现,采用较低的加速电压,例如5kV及以下的电压,拍一张图后,原地再拍一张即可,对比前后两张图有没有裂纹、收缩等。如下图,原地再拍一张后的样品前后图明显出现了收缩,说明在此加速电压下样品受到了损伤,应当降低入射电子能量。[align=center][font=&][img=,690,233]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171514256752_1419_1613111_3.jpg!w690x233.jpg[/img] [/font][/align][font=&]加速电压越高,所携带能量越高,热损伤和轰击损伤都会增加。因此对于易受辐射损伤的样品建议使用较低电压。如下图所示在1kV下,PMMA球体表面圆润饱满,在2kV球体出现了收缩的凹陷;在1kV下,MOF表面平滑,在2kV条件表面出现收缩。[/font][align=center][font=&] [img=,690,514]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171515150790_4421_1613111_3.jpg!w690x514.jpg[/img][/font][/align][size=17px]非导电样品的荷电[/size][font=&]为避免非导电样品出现荷电影响成像效果,对于此类样品一般会在表面溅射一层几纳米厚的导电薄膜,如C,Au,Pt等,但对于有的样品效果也有限。出现荷电的直接体现为成像时明暗度明显失调或者出现条纹,根本原因在于电子输入和逸出的数量不平衡。不同的样品有不同的平衡电压,但对于大部分绝缘样品平衡电压[i]E[sub]2[/sub][/i]在1-3kV内,因此可以通过在此低电压范围内适当尝试。此外,采用低电压同时也减少了电子输入,对减弱和改善区域范围内的荷电有较好的效果。如下图所示,在1kV时图像明暗度较均匀,在5kV时存在明显异常亮的荷电影响区域。[/font][align=center][img=,690,234]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171515420931_1042_1613111_3.jpg!w690x234.jpg[/img][/align][size=17px]成像的信噪比[/size][font=&]加速电压越高,入射电子所携带的能量越高,因此轰击到样品产生的二次电子越多,信号越强,信噪比得到提高,成像的直观感觉图像更清楚了。如下图在5kV时,相对1kV图像的成像视觉效果更为清楚。对于微米级的较大颗粒,在不追求表面细节时,提高加速电压有利于提高信噪比,获得成像效果更为清楚的图片。[/font][font=&] [/font][align=center][img=,690,255]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171516056033_5181_1613111_3.jpg!w690x255.jpg[/img][/align][font=&] [/font][size=17px]混嵌的样品[/size]如果所要观察的目标物包裹或者嵌入在其他物质里面,一般建议高加速电压以提高测试深度。此仅针对高原子序数目标物质有效,且一般范围在1-2um深度以内。如下图,1kV仅能看见高分子样品表面有颗粒起伏,在15kV下明显可见包裹的Fe氧化物颗粒。但如果两物质原子序数接近或者目标物原子序数较低则很难实现成像区分,如在有机高聚物里添加纳米薄层石墨烯。[align=center][img=,690,259]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171516295430_4956_1613111_3.jpg!w690x259.jpg[/img][/align][align=center][/align][font=&] 以上加速电压选择简单整理为下表:[/font][align=center][img=,690,319]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171516468545_8504_1613111_3.jpg!w690x319.jpg[/img][/align][font=&]本短文抛开了复杂的机理讨论,以简洁的方式分享了我校常测样品对加速电压高低选择的一般原则。[/font][font=&]由于样品的不同及分析目标不同,在测试中需要根据实际情况配合其他参数进行调整,感兴趣的读者可以参阅以下文中引用的参考资料。[/font]参考文献[font=Optima-Regular, PingFangTC-light]1. 李超.电子束辐照致荷电效应的Monte Carlo模拟研究.中国科学技术大学博士学位论文,2020[/font][font=Optima-Regular, PingFangTC-light][size=14px]2. 周莹,王虎,吴伟,刘紫微, 林初城,华佳捷.加速电压的选择对 FESEM 图像的影响.实验室研究与探索,2012,31(10):227-230.[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px]3. 吴东晓,张大同,郭莉萍.扫描电镜低电压条件下的应用,2003,电子显微学报,22(6):[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px]655-656.[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px]4. 曹水良,梁志红,尹平河.不同加速电压对不导电样品扫描电镜图像的影响.暨南大学学报( 自然科学与医学版),2014,35(4):357-360.[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px]5. 华佳捷,刘紫微,林初城,吴伟,曾毅.场发射扫描电镜中荷电现象研究.电子显微学报,2014,33(3):226-232.[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px]6[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px]. 程彬杰,刘学东,唐天同,王莉萍.电子束中Boersch效应的实验研究.真空科学与技术,1998,18(5):364-368.[/size][/font]

  • 【推荐】《分析仪器手册》内容简介

    《分析仪器手册》    主编:朱良漪,副主编:孙亦梁 陈耕燕,化学工业出版社出版 本书旨在给广大操作和使用分析仪器人员提供一本参考书籍。从形式上看,本书不能算是典型手册,它所包含的表格比一般手册为少,文字叙述部分所占的比得较大;从内容上看,本书既有分门别类的仪器介绍,具有查阅价值,又有涉及大家共同感兴趣的问题,具有很强的可读性。本书主要有三大特色:一是有很宽的涵盖面,介绍很多的分析仪器;二是除介绍仪器外,还收集了一些总论性的文章;三是所有文章全部由第一线工作的专家执笔,他们的专业背景很不同,有属化学或物理领域的,也有属电子学、计算机或机械领域的,恰好反映分析仪器这一专业的多学科交叉性特点。 本书没有象传统介绍分析仪器的书籍那样,把视野局限在孤立的一个个仪器上,而是首先把分析仪器作为一个整体来介绍,这体现在本书前五章的总论部分。分析仪器的作用、发展、其科学与技术基础和类系,这是本书第一章的内容。没有物理学和化学的发展无法产生现代仪器分析,同样,没有电子学和计算机科学技术的发展以及作为应用数学与化学的交叉产物的化学计量学的发展也无法产生现代仪器分析,这些将在第二章里介绍。分析过程通常包括采样、样品预处理、仪器校正、测量或表征(一般要利用敏感元件、检测器或分析元件)和分析信号与数据处理等五个环节。采样原理的样品预处理,标准物质及其概念和分析信号与数据处理分别在本书第三、四、五章介绍。 本书第二部分仪器分论自第六章起直到第十八章,形成全书的主体部分。所涉及的仪器包括紫外、可见、红外、拉曼、X射线等光学分析仪;各种电化学分析仪;色谱与电泳等分离分析仪;核磁与顺磁共振波谱仪;质谱仪及有关联用分析仪;热分析仪;核分析仪;表面和微区分析仪等。这些大体属于通用性仪器。另外,还包括环境保护、临床医学、工业流程方面的专用性分析、测试仪器。对于每类仪器,本书都从原理、结构、生产厂家、操作要点和应用实列等多方面依次介绍,其内容以实用为主,力求品种全、内容新、概念与引用资料准。本书还收集、整理了一批国内分析仪器的行业标准和有关分析仪器及分析方法的期刊杂志等列于附录中。参加撰写的同行总共有90多人,其中有几位是国外工作或在国外收集资料撰写的。因此,本书所涉及的内容其涵盖面之广,似乎超过国内外现有的同类书籍。 目录索引:第一章 概论   第一节 分析仪器的作用与发展史   第二节 分析仪器的基础   第三节 分析仪器类系 第二章 电子学、计算机和化学统计学在分析仪器中的应用   第一节 电子学在分析仪器中的应用   第二节 计算机在分析仪器中的应用   第三节 化学统计学在分析仪器中的应用 第三章 采用原理与样品预处理   第一节 采样原理   第二节 样品制备及前处理技术 第四章 标准物质   第一节 标准物质的基本概念   第二节 标准物质的作用   第三节 标准物质研究工作要点   第四节 正确选用标准物质   第五节 标准物质的应用方法   第六节 标准物质的发展 第五章 分析数据的处理   第一节 分析数据的特性与分布   第二节 测试数据的统计检验   第三节 一元线性回归   第四节 质量控制   第五节 分析方法的评价与分析结果的表示   第六节 分析仪器常用分析信号处理方法 第六章 光学分析仪器   第一节 概述   第二节 分子吸收分光光度计 第三节 荧光计与磷光计   第四节 红外光谱仪   第五节 傅里叶变换红外光谱仪器的新进展   第六节 拉曼光谱仪   第七节 旋光分析仪   第八节 圆二色光谱仪   第九节 光声光谱仪   第十节 光热光谱仪   第十一节 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计   第十二节 原子发射光谱仪   第十三节 光量计   第十四节 散射(漫射)法分析仪   第十五节 原子荧光光谱计   第十六节 激光光谱 第七章 X射线分析仪器   第一节 概述   第二节 单晶X射线衍射仪   第三节 多晶(粉末)X射线衍射仪   第四节 能量色散X射线荧光分析仪 第八章 磁共振波谱仪   第一节 顺磁共振波谱仪   第二节 核磁共振波谱仪   第三节 脉冲电子顺磁共振波谱仪   第四节 核磁共振在固体研究中的新进展 第九章 色谱分析仪与电泳仪   第一节 前言   第二节 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]   第三节 高效液相色谱仪   第四节 凝胶色谱仪  第五节 薄层色谱扫描仪   第六节 超临界流体色谱仪   第七节 [url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]   第八节 氨基酸分析仪   第九节 逆流色谱仪   第十节 电泳仪   第十一节 毛细管电泳仪   第十二节 场流分离仪   第十三节 ***色谱仪   第十四节 联用技术(有机分析)   第十五节 色谱与毛细管电泳 第十章 电子束、粒子束微区分析仪   第一节 概述   第二节 电子显微镜   第三节 扫描隧道显微镜   第四节 电子探针   第五节 俄歇能谱仪   第六节 X射线光电子能谱仪   第七节 二次离子质谱仪   第八节 离子散射谱仪   第九节 离子探针 第十一章 质谱仪   第一节 概述   第二节 同位素质谱仪   第三节 无机质谱仪   第四节 有机质谱仪   第五节 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用仪   第六节 质谱-质谱联用仪   第七节 液相色谱-质谱联用仪  第八节 [url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]计   第九节 三维四极离子耕   第十节 傅里叶变换回旋共振质谱计   第十一节 氦质谱检漏仪   第十二节 残余气体分析器 第十二章 电化学仪器   第一节 概述   第二节 电化学滴定分析仪   第三节 极谱及伏安法   第四节 电解分析仪   第五节 库仑分析仪   第六节 恒电位分析仪   第七节 电位分析仪器与离子选择电极   第八节 液-液界面电化学用仪器   第九节 微机化电分析仪器   第十节 扫描电化学显微镜 第十三章 热分析仪   第一节 概述   第二节 热重分析仪   第三节 差热分析仪和差示扫描量 第十四章 核分析仪器   第一节 概述   第二节 g-射线能谱分析仪   第三节 g-射线灰分分析仪   第四节 中子水分分析仪   第五节 g-射线免疫计数器   第六节 β、g-放射性薄层色谱自动扫描仪   第七节 液体闪烁计数仪   第八节 穆斯堡尔谱仪 第十五章 生物化学与医学专用分析仪器   第一节 概述   第二节 动态心电图仪的工作原理与临床应用   第三节 超声诊断仪器   第四节 磁共振成像系统   第五节 血气和酸碱分析仪   第六节 生化分析仪   第七节 血细胞分析仪   第八节 临床微生物分析仪器   第九节 免疫分析仪器 第十六章 环境监测用分析测试仪器   第一节 概述   第二节 空气和废气监测仪器   第三节 水和废水监测仪器   第四节 噪声与振动的测量仪器   第五节 环境污染连续自动监测系统 第十七章 其它实验室分析仪器   第一节 流动注射分析仪   第二节 化学传感器   第三节 生物传感器   第四节 生化分析离心机   第五节 有机物元素分析仪   第六节 天平 第十八章 过程分析仪器   第一节 概述   第二节 过程分析仪器的取样与预处理   第三节 常用工业过程分析仪器   第四节 工业用色谱仪   第五节 工业用质谱仪 展望——概述分析仪器的未来 附录 中文索引

  • 【资料】激光共聚焦扫描显微镜一些介绍

    激光共聚焦扫描显微镜简介一、 激光共聚焦显微镜的基本组成激光扫描共聚焦显微镜(laser scanning confocal microscope LSCM)是20世纪80年代发展起来的一项具有划时代意义的高科技新产品,是当今世界最先进的细胞生物学分析仪器。激光共聚焦显微镜利用激光作为光源,在传统光学显微镜基础上采用共轭聚焦的原理和装置,以及通过针孔的选择和PMT的收集,并带有一套对其所观察到的对象进行数字图像分析处理的系统软件。与传统光学显微镜相比,它具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点。所以它问世以来在生物学的研究领域中得到了广泛应用。激光共聚焦显微镜主要有四部分组成:1、显微镜光学系统。2、扫描装置。3、激光光源。4、检测系统。整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地进行。1.1 显微镜光学系统  显微镜是LSCM的主要组件,它关系到系统的成象质量。显微镜光路以无限远光学系统可方便地在其中插人光学选件而不影响成象质量和测量精度。物镜应选取大数值孔径平场复消色 差物镜,有利于荧光的采集和成象的清晰。物镜组的转换,滤色片组的选取,载物台的移动调节,焦平面的记忆锁定都应由计算机自动控制。1.2 扫描装置  LSCM使用的扫描装置在生物领域一般为镜扫描。由于转镜只需偏转很小角度就能涉及很大的扫描范围,图象采集速度大大提高,512×512画面每秒可达4帧以上,有利于那些寿命短的离子作荧光测定。扫描系统的工作程序由计算机自动控制。1.3 激光光源  LSCM使用的激光光源有单激光和多激光系统。多激光器系统在可见光范围使用多谱线氩离子激光器,发射波长为457nm、488nm和514nm的蓝绿光,氦氖绿激光器提供发射波长为543nm的绿光,氦氖红激光器发射波长为633nm的红光,新的405nm半导体激光器的出现可以提供近紫外谱线,但是小巧便宜而且维护简单。1.4 检测系统  LSCM为多通道荧光采集系统,一般有三个荧光通道和一个透射光通道,能升级到四个荧光通道,可对物体进行多谱线激光激发,样品发射荧光的探测器为感光灵敏度高的光电倍增管PMT,配有高速12位A/D转换器,可以做光子计数。PMT前设置针孔,由计算机软件调节针孔大小,光路中设有能自动切换的滤色片组,满足不同测量的需要,也有通过光栅或棱镜分光后进行光谱扫描功能的设置。二、激光共聚焦显微镜的特点以及在生物领域的应用传统光学显微镜相比,激光共聚焦显微镜具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点,在对生物样品的观察中,激光共聚焦显微镜有如下优越性:1、对活细胞和组织或细胞切片进行连续扫描,可获得精细的细胞骨架、染色体、细胞器和细胞膜系统的三维图像。2、 可以得到比普通荧光显微镜更高对比度、高解析度图象、同时具有高灵敏度、杰出样品保护。3、***图象的获得,如7 维图象(XYZaλIt): xyt 、xzt 和xt 扫描,时间序列扫描旋转扫描、区域扫描、光谱扫描、同时方便进行图像处理。 4、细胞内离子荧光标记,单标记或多标记,检测细胞内如PH和钠、钙、镁等离子浓度的比率测定及动态变化。5、荧光标记探头标记的活细胞或切片标本的活细胞生物物质,膜标记、免疫物质、免疫反应、受体或配体,核酸等观察;可以在同一张样品上进行同时多重物质标记,同时观察; 6、对细胞检测无损伤、精确、准确、可靠和优良重复性;数据图像可及时输出或长期储存。 由于共聚焦显微镜的以上优点,激光共聚焦显微镜在以下研究领域中应用较为广泛:1、细胞生物学:如:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化、细胞凋亡机制;各种细胞器、结构性蛋白、DNA、RNA、酶和受体分子等细胞特异性结构的含量、组分及分布进行定量分析;DNA、RNA含量、利用特定的抗体对紫外线引起的DNA损伤进行观察和定量;分析正常细胞和癌细胞细胞骨架与核改变之间的关系;细胞黏附行为等 2、生物化学:如:酶、核酸、受体分析、荧光原位杂交、杂色体基因定位等,利用共聚焦技术可以取代传统的核酸印迹染交等技术,进行基因的表达检测,使基因的转录、翻译等检测变的更加简单、准确。3、药理学:如:药物对细胞的作用及其动力学;药物进入细胞的动态过程、定位分布及定量 4、生理学、发育生物学:如:膜受体、离子通道、离子含量、分布、动态;动物发育以及胚胎的形成,骨髓干细胞的分化行为;细胞膜电位的测量.荧光漂白恢复(FRAP)、荧光漂白丢失(FLIP)的测量等。 5、遗传学和组胚学:如:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断; 6、神经生物学:如:神经细胞结构、神经递质的成分、运输和传递; 7、微生物学和寄生虫学:如:细菌、寄生虫形态结构; 8、病理学及病理学临床应用:如:活检标本的快速诊断、肿瘤诊断、自身免疫性疾病的诊断; 9、免疫学、环境医学和营养学。如:免疫荧光标记(单标、双标或三标)的定位,细胞膜受体或抗原的分布,微丝、微管的分布、两种或三种蛋白的共存与共定位、蛋白与细胞器的共定位;对活细胞中的蛋白质进行准确定位及动态观察可实时原位跟踪特定蛋白在细胞生长、分裂、分化过程中的时空表达,荧光能量共转移(FRET)。

  • 扫描电子显微镜(ScanningElectronMicroscope)基础知识

    扫描电子显微镜(ScanningElectronMicroscope)基础知识一、 扫描电子显微镜的工作原理 扫描电镜是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗 粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要 的成像信号。由电子枪发射的能量为 5 ~ 35keV 的电子,以其交 叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度 和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺 序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射(以及其它物 理信号),二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集 转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的 显像管亮度,得到反映试样表面形貌的二次电子像。二、扫描电镜具有以下的特点(1) 可以观察直径为0 ~ 30mm的大块试样(在半导体工业可以观察更大直径),制样方法简单。(2) 场深大、三百倍于光学显微镜,适用于粗糙表面和断口的分析观察;图像富有立体感、真实感、易于识别和解释。(3) 放大倍数变化范围大,一般为 15 ~ 200000 倍,对于多相、多组成的非均匀材料便于低倍下的普查和高倍下的观察分析。(4) 具有相当高的分辨率,一般为 3.5 ~ 6nm。(5) 可以通过电子学方法有效地控制和改善图像的质量,如通过调制可改善图像反差的宽容度,使图像各部分亮暗适中。采用双放大倍数装置或图像选择器,可在荧光屏上同时观察不同放大倍数的图像或不同形式的图像。(6) 可进行多种功能的分析。与 X 射线谱仪配接,可在观察形貌的同时进行微区成分分析;配有光学显微镜和单色仪等附件时,可观察阴极荧光图像和进行阴极荧光光谱分析等。(7) 可使用加热、冷却和拉伸等样品台进行动态试验,观察在不同环境条件下的相变及形态变化等。三、扫描电镜的主要结构1.电子光学系统:电子枪;聚光镜(第一、第二聚光镜和物镜);物镜光阑。2.扫描系统:扫描信号发生器;扫描放大控制器;扫描偏转线圈。3.信号探测放大系统:探测二次电子、背散射电子等电子信号。4.图象显示和记录系统:早期SEM采用显象管、照相机等。数字式SEM采用电脑系统进行图象显示和记录管理。5.真空系统:真空度高于 10 -4 Torr 。常用:机械真空泵、扩散泵、涡轮分子泵6.电源系统:高压发生装置、高压油箱。 四、扫描电镜主要指标1.放大倍数 M=L/l 2.分辨率(本领)影响分辨本领的主要因素:入射电子束斑的大小,成像信号(二次电子、背散射电子等)。 3.扫描电镜的场深扫描电镜的场深是指电子束在试样上扫描时,可获得清晰图像的深度范围。当一束微细的电子束照射在表面粗糙的试样上时,由于电子束有一定发散度,除了焦平面处,电子束将展宽,场深与放大倍数及孔径光阑有关。 五、试样制备1 .对试样的要求:试样可以是块状或粉末颗粒,在真空中能保持稳定,含有水分的试样应先烘干除去水分,或使用临界点干燥设备进行处理。表面受到污染的试样,要在不破坏试样表面结构的前提下进行适当清洗,然后烘干。新断开的断口或断面,一般不需要进行处理,以免破坏断口或表面的结构状态。有些试样的表面、断口需要进行适当的侵 蚀,才能暴露某些结构细节,则在侵蚀后应将表面或断口清洗干净,然后烘干。对磁性试样要预先去磁,以免观察时电子束受到磁场的影响。试样大小要适合仪器专用样品座的尺寸,不能过大,样品座尺寸各仪器不均相同,一般小的样品座为Φ3~5mm,大的样品座为Φ30~50mm,以分别用来放置不同大小的试样,样品的高度也有一定的限制,一般在5~10mm左右。2 .扫描电镜的块状试样制备是比较简便的。对于块状导电材料,除了大小要适合仪器样品座尺寸外,基本上不需进行什么制备,用导电胶把试样粘结在样品座上,即可放在扫描电镜中观察。对于块状的非导电或导电性较差的材料,要先进行镀膜处理,在材料表面形成一层导电膜。以避免电荷积累,影响图象质量。并可防止试样的热损伤。 3 、粉末试样的制备:先将导电胶或双面胶纸粘结在样品座上,再均匀地把粉末样撒在上面,用洗耳球吹去未粘住的粉末,再镀上一层导电膜,即可上电镜观察。4 、镀膜:镀膜的方法有两种,一是真空镀膜,另一种是离子溅射镀膜。离子溅射镀膜的原理是:在低气压系统中,气体分子在相隔一定距离的阳极和阴极之间的强电场作用下电离成正离子和电子,正离子飞向阴极,电子飞向阳极,二电极间形成辉光放电,在辉光放电过程中,具有一定动量的正离子撞击阴极,使阴极表面的原子被逐出,称为溅射,如果阴极表面为用来镀膜的材料(靶材),需要镀膜的样品放在作为阳极的样品台上,则被正离子轰击而溅射出来的靶材原子沉积在试样上,形成一定厚度的镀膜层。 离子溅射时常用的气体为惰性气体氩,要求不高时,也可以用空气,气压约为 5 X 10 -2 Torr 。离子溅射镀膜与真空镀膜相比,其主要优点是:( 1 )装置结构简单,使用方便,溅射一次只需几分钟,而真空镀膜则要半个小时以上。( 2 )消耗贵金属少,每次仅约几毫克。( 3 )对同一种镀膜材料,离子溅射镀膜质量好,能形成颗粒更细、更致密、更均匀、附着力更强的膜。

  • 【转帖】扫描电子显微镜(Scanning Electron Microscope)基础知识

    [color=#00008B]一、 扫描电子显微镜的工作原理 扫描电镜是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗 粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要 的成像信号。由电子枪发射的能量为 5 ~ 35keV 的电子,以其交 叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度 和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺 序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射(以及其它物 理信号),二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集 转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的 显像管亮度,得到反映试样表面形貌的二次电子像。[/color]

  • 扫描电子显微镜(ScanningElectronMicroscope)基础知识

    一、 扫描电子显微镜的工作原理 扫描电镜是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗 粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要 的成像信号。由电子枪发射的能量为 5 ~ 35keV 的电子,以其交 叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度 和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺 序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射(以及其它物 理信号),二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集 转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的 显像管亮度,得到反映试样表面形貌的二次电子像。二、扫描电镜具有以下的特点(1) 可以观察直径为0 ~ 30mm的大块试样(在半导体工业可以观察更大直径),制样方法简单。(2) 场深大、三百倍于光学显微镜,适用于粗糙表面和断口的分析观察;图像富有立体感、真实感、易于识别和解释。(3) 放大倍数变化范围大,一般为 15 ~ 200000 倍,对于多相、多组成的非均匀材料便于低倍下的普查和高倍下的观察分析。(4) 具有相当高的分辨率,一般为 3.5 ~ 6nm。(5) 可以通过电子学方法有效地控制和改善图像的质量,如通过调制可改善图像反差的宽容度,使图像各部分亮暗适中。采用双放大倍数装置或图像选择器,可在荧光屏上同时观察不同放大倍数的图像或不同形式的图像。(6) 可进行多种功能的分析。与 X 射线谱仪配接,可在观察形貌的同时进行微区成分分析;配有光学显微镜和单色仪等附件时,可观察阴极荧光图像和进行阴极荧光光谱分析等。(7) 可使用加热、冷却和拉伸等样品台进行动态试验,观察在不同环境条件下的相变及形态变化等。三、扫描电镜的主要结构1.电子光学系统:电子枪;聚光镜(第一、第二聚光镜和物镜);物镜光阑。2.扫描系统:扫描信号发生器;扫描放大控制器;扫描偏转线圈。3.信号探测放大系统:探测二次电子、背散射电子等电子信号。4.图象显示和记录系统:早期SEM采用显象管、照相机等。数字式SEM采用电脑系统进行图象显示和记录管理。5.真空系统:真空度高于 10 -4 Torr 。常用:机械真空泵、扩散泵、涡轮分子泵6.电源系统:高压发生装置、高压油箱。 四、扫描电镜主要指标1.放大倍数 M=L/l 2.分辨率(本领)影响分辨本领的主要因素:入射电子束斑的大小,成像信号(二次电子、背散射电子等)。 3.扫描电镜的场深扫描电镜的场深是指电子束在试样上扫描时,可获得清晰图像的深度范围。当一束微细的电子束照射在表面粗糙的试样上时,由于电子束有一定发散度,除了焦平面处,电子束将展宽,场深与放大倍数及孔径光阑有关。 五、试样制备1 .对试样的要求:试样可以是块状或粉末颗粒,在真空中能保持稳定,含有水分的试样应先烘干除去水分,或使用临界点干燥设备进行处理。表面受到污染的试样,要在不破坏试样表面结构的前提下进行适当清洗,然后烘干。新断开的断口或断面,一般不需要进行处理,以免破坏断口或表面的结构状态。有些试样的表面、断口需要进行适当的侵 蚀,才能暴露某些结构细节,则在侵蚀后应将表面或断口清洗干净,然后烘干。对磁性试样要预先去磁,以免观察时电子束受到磁场的影响。试样大小要适合仪器专用样品座的尺寸,不能过大,样品座尺寸各仪器不均相同,一般小的样品座为Φ3~5mm,大的样品座为Φ30~50mm,以分别用来放置不同大小的试样,样品的高度也有一定的限制,一般在5~10mm左右。2 .扫描电镜的块状试样制备是比较简便的。对于块状导电材料,除了大小要适合仪器样品座尺寸外,基本上不需进行什么制备,用导电胶把试样粘结在样品座上,即可放在扫描电镜中观察。对于块状的非导电或导电性较差的材料,要先进行镀膜处理,在材料表面形成一层导电膜。以避免电荷积累,影响图象质量。并可防止试样的热损伤。 3 、粉末试样的制备:先将导电胶或双面胶纸粘结在样品座上,再均匀地把粉末样撒在上面,用洗耳球吹去未粘住的粉末,再镀上一层导电膜,即可上电镜观察。4 、镀膜:镀膜的方法有两种,一是真空镀膜,另一种是离子溅射镀膜。离子溅射镀膜的原理是:在低气压系统中,气体分子在相隔一定距离的阳极和阴极之间的强电场作用下电离成正离子和电子,正离子飞向阴极,电子飞向阳极,二电极间形成辉光放电,在辉光放电过程中,具有一定动量的正离子撞击阴极,使阴极表面的原子被逐出,称为溅射,如果阴极表面为用来镀膜的材料(靶材),需要镀膜的样品放在作为阳极的样品台上,则被正离子轰击而溅射出来的靶材原子沉积在试样上,形成一定厚度的镀膜层。 离子溅射时常用的气体为惰性气体氩,要求不高时,也可以用空气,气压约为 5 X 10 -2 Torr 。离子溅射镀膜与真空镀膜相比,其主要优点是:( 1 )装置结构简单,使用方便,溅射一次只需几分钟,而真空镀膜则要半个小时以上。( 2 )消耗贵金属少,每次仅约几毫克。( 3 )对同一种镀膜材料,离子溅射镀膜质量好,能形成颗粒更细、更致密、更均匀、附着力更强的膜。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制