当前位置: 仪器信息网 > 行业主题 > >

温控探针台探针外部移动

仪器信息网温控探针台探针外部移动专题为您提供2024年最新温控探针台探针外部移动价格报价、厂家品牌的相关信息, 包括温控探针台探针外部移动参数、型号等,不管是国产,还是进口品牌的温控探针台探针外部移动您都可以在这里找到。 除此之外,仪器信息网还免费为您整合温控探针台探针外部移动相关的耗材配件、试剂标物,还有温控探针台探针外部移动相关的最新资讯、资料,以及温控探针台探针外部移动相关的解决方案。

温控探针台探针外部移动相关的资讯

  • 无形“探针”,“洞见”人体
    更精准地实现人体器官和病灶部位无损害可视化,一直是人们追求的目标。  5月10日,在复旦大学庆祝建校118周年系列学术报告中,复旦大学化学系教授、上海市生物医学检测试剂工程中心主任张凡以《透视人体健康的新技术——近红外光化学探针用于生物医学诊断》为题,分享了自己深耕多年的近红外荧光分子“探针”研究,结合近红外光学成像仪器,该技术可隔着皮肤和肌肉监测体内活动,有望为疾病诊断提供新路径。  发光“探针”为手术精准导航  人们很早就有“洞见”自己的需求,梦想能发明一种无创技术,实现对人体健康的可视化监控。  1895年,德国物理学家伦琴发现X射线,开创医学影像技术的先河,目前我们常用的医学影像检查技术,如CT(电子计算机断层扫描)就与此有关。然而,如何实现无辐射、实时动态的活体成像技术一直存在巨大挑战。  研究人员逐渐发现,活体荧光成像技术,相较于已有的CT、MRI(磁共振成像)、PET(正电子发射型计算机断层显像)等,具有无辐射、高时间和空间分辨率、高特异性等检测优势,能够为精准手术导航技术领域提供较好的应用前景。  在对医学检测方法的优化探索中,张凡团队开发了一种新技术,就像打开一扇观察人体内部的窗口——只需静脉注射会发光的近红外荧光分子“探针”,即可自动定位到某个器官、肿瘤或是血管,再通过对人体没有伤害的光学成像仪器,就能隔着皮肤和肌肉组织直观清晰观察到肠道的蠕动、肿瘤的边缘、细胞的游走等  “而且,我们看到的不是静态‘照片’,是动态的‘视频’。”张凡说。  从自然中寻找答案  “活体荧光成像技术也还有许多问题亟待解决。”张凡说,“荧光虽然没有辐射,可以很快实施动态监测,但是其组织穿透深度较浅一直以来都是限制其应用的关键科学问题。”  此前,光学成像多使用可见光区(400纳米至700纳米)和近红外一区(700纳米至900 纳米)的荧光,但由于这一波段在生物组织中具有较高的吸收和散射,其在活体深组织检测中的应用大大受限。张凡团队专注于在近红外二区窗口(1000纳米至1700 纳米)内探索活体深组织成像窗口,并且根据获得的最优窗口开发对应的长波荧光探针和成像仪器。  到目前为止,张凡团队累计开发了30余种系列近红外二区有机小分子探针,相关荧光成像设备和探针试剂已实现应用转化,在多家科研机构和医院用于基础研究和临床前研究。已经成功获取了生物体内部多个待测物的动态监测。  随着研究进一步深入,研究人员发现,荧光成像往往是利用外部激发光源实时激发荧光探针来获取信号,这就不可避免地会产生生物组织背景荧光,从而影响成像的分辨率和信噪比。  如何寻找优化之法?在张凡看来,最好的答案就在自然里。自然界能自主发光的生物很多,比如鱿鱼、水母、萤火虫等。  “与其受背景荧光干扰,不如尝试将其本身的荧光运用起来。前面提到的‘探针’对人体来说都是‘外来的’,注射到体内后容易被代谢,而如果可以实现近红外生物发光成像就可以更好的实现无激发的高信噪比原位成像追踪。”张凡说。  创新在学科交叉处  思路的转变拓展了张凡的研究视野。他发现除生物医学,近红外荧光分子“探针”还能做很多事儿,比如监测微塑料污染。  微塑料是指直径小于5微米的塑料。张凡认为,长期以来由于分析方法的限制,人类大大低估了微塑料暴露的影响,并且对于微塑料在人体内体液和组织的影响的研究仍然非常粗浅。事实上,直径小于2微米的小尺寸微塑料,就可以穿越细胞膜,并在脏器和脑部富集,极有可能引起氧化应激、炎症以及DNA损伤,是人类健康的严重威胁。  人们认为微塑料的影响只是通过由海洋到人类的食物链传播,其实不然。根据最新研究成果,微塑料会随着大气远程传播,并在淡水环境及陆地上沉积,比如美国西部地区每年就会有120吨微塑料会由大气沉积到陆地。  “微塑料比人们想象中更广泛地存在于生活中,甚至存在于婴儿的奶瓶里。”张凡希望,未来能运用好近红外荧光分子“探针”技术,对微塑料进行活体实时动态追踪,为保卫人类健康贡献更多力量。  张凡一直鼓励学生勇于跨界、主动交叉、全面发展。经过多年积累,他带领的团队已成长为一个典型的学科交叉团队,一批批优秀学子毕业后继续从事相关科研工作。  “创新的机会,就在学科交叉之处。”谈及科研的心得,张凡总结说。
  • 进口率超九成,美日仪器垄断市场——全国共享探针台盘点
    探针台是一种很专业的仪器,它主要的功能就是针对半导体元件进行检测,这里面说的半导体元件指的是集成电路,分立器件,光电器件,传感器等元件以及封装的测试。通过探针台配合测量仪器可完成集成电路的电压,电流,电阻和电容电压特性曲线等参数检测。可以适用于对芯片进行科研分析,抽查检测等;可以保证这些半导体元件的质量,缩短研发时间和器件制作工艺的成本,所以,它的存在对于制造半导体的企业来说是非常重要的。随着半导体市场的逐步开放和增长,作为半导体检测的必备仪器—探针台的市场也在逐年增长和扩大中,不论是海外品牌还是国产品牌,近几年在半导体检测仪器市场中的规模都在逐年扩大。由于高校的管理模式及制度,探针台大多养在“深闺”,大量科研资源潜能没有得到充分发挥。为解决这个问题并加速释放科技创新的动能,中央及各级政府在近几年来制订颁布了关于科学仪器、科研数据等科技资源的共享与平台建设文件。2021年1月22日,科技部和财政部联合发布《科技部 财政部关于开展2021年度国家科技基础条件资源调查工作的通知(国科发基〔2020〕342号)》,全国众多高校和科研院所将各种科学仪器上传共享。其中,对探针台的统计分析或可一定程度反映科研领域相关仪器的市场信息(注:本文搜集信息来源于重大科研基础设施和大型科研仪器国家网络管理平台,部分仪器品牌信息不全则根据型号等信息补全,不完全统计分析仅供读者参考)。不同地区(省/市)仪器分布情况本次统计,共涉及探针台的总数量为235台,涉及20省(直辖市/自治区),84家单位。其中,上海市共享磁测量仪器数量最多达63台,占比29%,涉及17所高校、研究院所和企事业单位等,上海如此高的占比主要是由于其集成电路等半导体产业发达。上海市探针台主要来自于上海华岭集成电路技术股份有限公司,共有25台,占上海市总共享探针台的11%。仪器所属学科领域分布从仪器所属学科领域分布可以看出,探针台主要用于电子与通信技术、物理学和材料科学研究,占比分别为32%、17%和14%。不过,信息科学与系统科学和信息与系统科学相关工程与技术两个学科重合度较高,合计占比达16%,比材料科学略高。需要注意的是,以上统计存在交叉分布的情况,即该仪器同时属于多类学科领域。仪器所属单位性质分布那么这些仪器主要分布在哪些单位呢?统计结果表明,共享探针台主要分布于高校中,占比达60%,这一结果主要是因为共享仪器平台的仪器由高校上传所致,统计结果并不能体现出此类仪器的市场分布。不过共享仪器最多的确实企业中的上海华岭集成电路。而高校和科研院所共享数量TOP5分别为清华大学、苏州大学、中国科学院上海微系统与信息技术研究所、东南大学、北京大学,这些高校院所都具有集成电路研发的基础。探针台主要品牌分布探针台品牌所属地区分布这些探针台主要品牌为美国Cascade、美国Lake Shore和日本东京精密,占比分别为28%、23%和16%。Cascade是全球领先的的探测系统、探针、探测器等产品的设计生产商,公司成立于1983年,总部设在美国俄勒冈州西北部城镇,为全球晶圆级测试的销售、服务和应用而存在,自主拥有150多项专利技术。Lake Shore公司成立于1968年,位于美国俄亥俄州哥伦布市,是低温与磁场科研设备的国际领导者。主要产品包括:振动样品磁强计、低温真空探针台、霍尔效应测量系统、低温控温仪、低温传感器、高斯计、磁通计等。可以看出,目前我国高校院所的探针台仍以进口为主,大部分市场被美日产品垄断,进口产品占比超过90%。此外,在统计过程中,笔者发现探针台常与半导体参数测量仪搭配联用,而搭配的半导体参数测量仪主要是美国Keithley的4200-SCS型号的产品。这是美国泰克旗下的吉时利品牌的一款产品。不过目前该型号已下架,最新款是4200A-SCS型号,4200A-SCS 参数分析仪支持许多手动和半自动晶片探测器和低温控制器,包括 MPI、Cascade MicroTech、Lucas Labs/Signatone、MicroManipulator、Wentworth Laboratories、LakeShore Model 336 低温控制器。Keithley 4200A-SCS 参数分析仪本次共享探针台仪器盘点,涉及等Cascade、Lake Shore、东京精密、MPI、Janis、SUSS、东京电子、奕叶、Signatone、ARS、FORMFACTOR、MPI等三十多家厂商,呈现出三超多强局面。探针台高校院所市场将爆发随着集成电路产业的爆发式发展,2018 年开始,将集成电路设置成一级学科的提案开始出现。2018 年中国科学院院士王阳元在新时期中国集成电路产业论坛中提议,微电子学科提升为一级学科。学术界和产业界对集成电路成为一级学科异常关注。2019 年 10 月 8 日,工信部官网发布《关于政协十三届全国委员会第二次会议第 2282 号(公交邮电类 256 号)提案答复的函》中表示,工信部与教育部等部门将进一步加强人才队伍建设,推进设立集成电路一级学科,进一步做实做强示范性微电子学院。去年12月30日,国务院学位委员会、教育部正式下发关于设置“集成电路科学与工程”一级学科的通知。过去一年来,北京航空航天大学、安徽大学、广东工业大学、中山大学、清华大学等国内多所高校均成立集成电路相关学院。随着集成电路学院的纷纷成立,高校院所对半导体相关仪器设备需求将剧增,探针台作为半导体检测的重要仪器,相关市场将爆发。
  • 200万!清华大学计划采购12寸半自动探针台
    一、项目基本情况项目编号:BIECC-22ZB0922/清设招第2022395号项目名称:清华大学12寸半自动探针台购置项目预算金额:200.0000000 万元(人民币)最高限价(如有):200.0000000 万元(人民币)采购需求:用于微系统研发过程中,外部采购片12寸及以下晶圆电学特性测试,通过自动控制芯片移动检测器件电学参数,实现整晶圆快速检测,快速监控芯片是否正常。晶圆上贴片(D2W)后,全晶圆检测。结合实验室现有仪器,实现SIP封装后混合信号快速准确测试。具体要求详见第四章。包号名 称数量0112寸半自动探针台1套合同履行期限:合同签订后180日内交付。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:通过“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)查询信用记录(截止时点为投标截止时间),对列入失信被执行人、重大税收违法案件当事人、政府采购严重违法失信行为记录名单的供应商,没有资格参加本项目的采购活动;3.本项目的特定资格要求:无三、获取招标文件时间:2022年12月01日 至 2022年12月08日,每天上午9:30至11:30,下午13:30至16:30。(北京时间,法定节假日除外)地点:北京市海淀区学院路30号科大天工大厦B座1703室(北四环学院桥东北角)方式:现场购买(只接受现金)或电汇/网银购买标书售价:¥500.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年12月23日 09点30分(北京时间)开标时间:2022年12月23日 09点30分(北京时间)地点:北京市海淀区学院路30号科大天工大厦B座17层1706第二会议室(北四环学院桥东北角)五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1、疫情期间建议优先选择电汇或网银购买标书,请投标人汇款时务必注明“标号+用途”(比如:22ZB0922保证金或者22ZB0922标书款),以便财务查账及汇总。期满后购买招标文件的潜在投标人不足3家的,采购单位可以顺延招标文件出售时间并另行公告。电汇或网银购买标书,请将电汇底单(网银转账页面)扫描件及以下表格发邮件至jowena@163.com,邮件主题请务必注明“(项目编号)购买标书信息”。项目编号BIECC-22ZB0922包号/单位名称纳税人识别号快递地址联系人联系电话2、账户名称:北京国际工程咨询有限公司开户银行:华夏银行北京学院路支行帐 号:102420000000025463、招标文件电子版文件下载网址:http://www.biecc.com.cn/fushulanmu/Biaoshuxiazai/,无需注册,进入页面找到对应项目,点击查看详情,进入详情页免费下载。4、投标文件请于投标当日投标截止时间之前递交至投标地点,逾期递交的文件恕不接收。疫情防控期间建议采用快递形式递交投标文件。对于采用快递形式递交文件的投标人,应同时随附一份关于认可开标现场内容的承诺书原件(格式自拟,无需密封),并于快递发出后将公司名称、本项目编号、快递单号等信息发送至邮箱bjgjgczb1@163.com,以便代理机构及时查收快递。采用快递形式递交投标文件的(推荐采用顺丰快递),请务必自行掌握投递时间,确保在递交文件截止时间前送达,逾期到达的文件恕不接收。快递信息为:北京市海淀区学院路30号科大天工大厦B座1703室,杨梦雪收,010-82373532。5、评标方法:综合评分法6、采购项目需要落实的政府采购政策:节能产品强制采购;节能产品、环境标志产品优先采购;政府采购促进中小企业发展;政府采购支持监狱企业发展;政府采购促进残疾人就业;进口产品管理;支持脱贫攻坚;扶持不发达地区和少数民族地区;支持自主创新;支持绿色建材等。7、本项目招标公告仅在中国政府采购网及清华大学设备采购信息发布平台上发布。对其他网站转发本公告可能引起的信息误导、造成投标人的经济或其他损失的,采购人及采购代理不负任何责任。8、凡对本次招标提出询问及质疑,请与北京国际工程咨询有限公司联系。有关招标(采购)文件购买、中标(成交)通知书领取及服务费发票、保证金交纳及退还事宜的联系电话:010-8237 0821;有关招标(采购)文件技术部分的问题咨询:因项目经理外出、开标等原因,请优先通过电子邮箱bjgjgczb1@163.com联系,或者联系010-82373532。如需质疑,质疑函请采用政府采购供应商质疑函范本格式,以书面形式一次性提交。详见附件下载七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:清华大学地址:北京市海淀区清华大学,邮编100084联系方式:吴老师 627760002.采购代理机构信息名称:北京国际工程咨询有限公司地址:北京市海淀区学院路30号科大天工大厦A座6层联系方式:王蕾蕾、杨梦雪010-823735323.项目联系方式项目联系人:王蕾蕾、杨梦雪电话:010-82373532
  • 朱幸俊研究员团队:镧系发光纳米温度探针及光学测温技术
    镧系发光纳米温度探针及光学测温技术胡倩1 朱幸俊11上海科技大学物质科学与技术学院生物体温度监测在医学诊断和治疗方面有着重要意义。传统的生物体测温方式依赖于侵入式探头或者局限于体表检测的热成像设备。对于体内深层组织的无损温度探测仍然是一项挑战。光学测温技术基于温度敏感的发光材料和器件,以光信号作为输出实现温度检测。在发光材料中,镧系发光纳米材料(LLNs)具有光稳定性好、发射谱带丰富、低自发荧光干扰等独特优点,在体内成像检测和疾病诊断方面具有广泛应用。目前已报道了一系列LLNs的发光信号的强度、寿命等光学性质与温度相关,因此可以作为温度检测探针。与此同时,LLNs本身的纳米级尺寸有别于传统温度检测的宏观设备,因此可以胜任亚细胞级别的微观热效应检测以及热传递过程研究,提升测温的空间精度,借助LLNs的近红外发光,能进一步提高光信号在组织中穿透深度,更好的实现深组织、非侵入性温度检测。(一)LLNs温度探针的测温策略温度可以改变LLNs的发光强度比、带宽、光谱偏移、寿命等方式影响LLNs的发光特性[1]-[3]。其中,发光强度比和发光寿命这两种策略受生理环境的干扰更小,从而具有更高的测温准确性[4]-[5]。基于发光强度比率构建温度探针电子在两个相邻激发能级(能级差一般小于1000 cm-1)中的分布与温度有关,满足Boltzmann分布,因此具有热依赖性的两个能级发光强度比与温度之间的关系可描述为, [6]-[7],其中I2/I1为两个能级的发射强度比;ΔE是两个能级能量差,C是由发光基质材料确定的常数,T为温度,kB为玻耳兹曼常数。因此,通过在不同温度下检测两条发射峰的比值,可得到温度以发射强度比值的关系,作为温度检测的校正曲线。基于发光寿命构建温度探针在LLNs体系中,温度敏感的能量转移也会导致激发态寿命的变化,从而可以测量在脉冲激发下特定能级跃迁的寿命与温度的依赖关系,通过发光衰减曲线推断温度信息[8]-[9]。(二)LLNs测温技术与设备基于发光强度比率的测温技术较为直观,相关设备的设置与光谱检测系统类似,主要特点是恒温控制系统的附加。其装置如图1所示,由半导体激光器、样品台、控温器、滤光片、光谱检测器和计算机组成,其中激光器、样品台、滤光片、光谱检测器用于发光材料的光信号激发与收集,控温器件用于样品的恒温与变温进而得到不同温度的光谱。类似的基于发光强度比率的成像检测设备的光谱检测器被替换为CCD相机,通过滤光片系统采集不同波段的发射带,通过光强度成像图的计算得到温度分布结果。光强比率测温技术的设备较为简单,但这项测温方法易受生物环境引起的光散射或吸收的干扰[4],需在组织或模拟组织的假体中对温度曲线进行校正来减小误差[10];基于发光比率的温度检测其优点是检测速度较快,对于快速变化的温度具有更好的实时跟踪能力。发光寿命作为荧光团固有特性,受环境干扰较小,因此可以提高测量准确性[11]-[12],而且LLNs的发光寿命相对小分子荧光探针更长,对于基于成像的寿命检测系统的构建相对短寿命检测难度较低。具体的设备构建如图2所示,将常规的荧光成像代替为时间门控荧光成像系统,配合波形发生器、斩波器等,对相机的分辨率要求高,并且由于寿命衰减曲线的测试需要借助时间门控单元,对光信号进行多次采集,因此获取完整衰减曲线的图像时间较长,不利于检测快速变化的温度信号[8]。两种发光温度检测技术各有优势,目前研究工作中所报道的比率型温度检测技术较为成熟,寿命检测的测温技术仍然处于优化阶段,主要难点是长波长近红外发射的寿命检测技术尚不成熟。图1. 基于发光强度比率温度计的实验设备图2. 基于发光寿命温度计的实验设备[8](三)LLNs温度探针的生物应用LLNs体内无创温度监测的特性促使了一些新兴的生物医学领域应用,尤其在疾病诊断和指导治疗方面[4],[13]-[16]。我们最近总结了基于镧系发光纳米复合材料的温度检测技术及其生物学应用的研究工作,并梳理了不同测温技术在生物应用上的特点(Chem. Eur. J., 2022, 28, e202104237),希望和大家一起探讨光学测温技术的应用空间以及相关设备的研制。基于LLNs的生物体温度检测,近年来我们开展了一系列的应用。例如我们曾经报道了一种以上转换发光材料为核心(NaLuF4:Yb,Er@NaLuF4),以光热材料(碳)作为外壳的LLNs,其中上转换发光材料的Er3+发光中心特征的525与545 nm发射强度的比值与温度呈现相关性,因此可作为光学温度探针。通过检测光热过程中的微观温度变化,进一步发现光热效应下纳米颗粒的升温幅度和速率大于常规的外部加热方式。利用这一特性,可以实现温和宏观温度下的微观高温,进而在保证光热治疗剂标记的恶性细胞被有效杀伤的同时,减少不必要的热扩散而损伤病灶周边的正常组织,提升治疗的精度(如图3a)[17]。寿命检测技术上,复旦大学李富友课题组利用PAA-PEG包裹的NaNdF4:Yb@CaF2纳米颗粒,此种材料的Yb3+离子能够发射980 nm光信号,由于Nd3+与Yb3+在不同温度下的能量传递效率不同,Yb3+的980 nm发光寿命随着温度发生线性变化。在活体动物光学成像仪上进行了时间门控系统的附加,利用脉冲激光器对材料进行照射,然后采集材料的发光衰减,最终获得温度-寿命曲线,进一步在活体动物的血管部位进行光信号的采集,考察血管内血液温度与血流相关性,为心血管疾病的诊断和疗效评估提供了重要途径(如图3b)[8]。图3. (a)基于强度比率的Er3+掺杂上转换光热LLNs用于光热治疗过程微观温度监测[17]。(b) 基于寿命的Yb3+-Nd3+共掺杂的LLNs温度计用于心血管疾病[8]。(四)LLNs温度探针的展望合成可调控的LLNs温度探针的发展加速了其作为体内潜在温度传感工具的应用,但为了使其具有更准确的读数结果,还需进一步优化。其中,减少外部干扰和校准通过组织的发光衰减是亟待解决的重要问题。同时进一步探索波长更长的光谱区域,可实现更深层次的组织传感,促进LLNs在体内疾病诊断和治疗方面的生物应用。参考文献1. C. D. S. Brites, S. Balabhadra, L. D. Carlos, Adv. Opt. Mater., 2019, 7, 1801239. 2. A. Bednarkiewicz, J. Drabik, K. Trejgis, D. Jaque, E. Ximendes, L. Marciniak, Appl. Phys. Rev., 2021, 8, 011317.3. H. Suo, X. Zhao, Z. Zhang, Y. Wang, J. Sun, M. Jin, C. Guo, Laser Photon. Rev. 2021, 15, 2000319.4. N. Kong, Q. Hu, Y. Wu and X. Zhu, Chem. Eur. J., 2022, 28, e202104237.5. M. Jia, Z. Sun, M. Zhang, H. Xu, Z. Fu, Nanoscale., 2020, 12, 20776-20785.6. J. Zhou, B. Del Rosal, D. Jaque, S. Uchiyama, D. Jin, Nat. Methods., 2020, 17, 967-980.7. A. Bednarkiewicz, L. Marciniak, L. D. Carlos, D. Jaque, Nanoscale., 2020, 12, 14405-14421.8. M. Kong, Y. Gu, Y. Chai, J. Ke, Y. Liu, X. Xu, Z. Li, W. Feng, F. Li, Sci. China Chem. 2021, 64, 974-984.9. L. Marciniak, K. Trejgis, J. Mater. Chem. C., 2018, 6, 7092-7100. 10. L. Labrador-Páez, M. Pedroni, A. Speghini, J. Garcí a-Solé , P. Haro-Gonzá lez, D. Jaque, Nanoscale., 2018, 10, 22319-22328.11. M. Tan, F. Li, N. Cao, H. Li, X. Wang, C. Zhang, D. Jaque, G. Chen, Small., 2020, 16, 2004118. 12. K. Maciejewska, A. Bednarkiewicz, L. Marciniak, Nanoscale Adv., 2021, 3, 4918-4925.13. M. Quintanilla, M. Henriksen-Lacey, C. Renero-Lecuna and L. M. Liz-Marzán, Chem. Soc. Rev., 2022.14. Z. Yi, Z. Luo, X. Qin, Q. Chen, X. Liu, Acc. Chem. Res., 2020, 53, 2692-2704.15. B. del Rosal, E. Ximendes, U. Rocha, D. Jaque, Adv. Opt. Mater., 2017, 5, 1600508.16. M. Tan, F. Li, N. Cao, H. Li, X. Wang, C. Zhang, D. Jaque, G. Chen, Small., 2020, 16, 2004118.17. X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, F. Li, Nat. Commun. 2016, 7, 10437.【作者简介】胡倩 博士研究生2020年毕业于湖南师范大学,获化学专业学士学位。目前是上海科技大学物质科学与技术学院博士研究生,师从朱幸俊教授,主要从事近红外发射镧系纳米复合材料的温度传感和生物成像应用的研究。朱幸俊 研究员上海科技大学物质科学与技术学院研究员、博士生导师。2017年博士毕业于复旦大学生物研究院(导师李富友教授),2017-2019年在美国斯坦福大学材料科学与工程系作为博士后学者从事生物医学成像以及神经调控材料与器件的研发工作。目前已在Nature Communications, Chemical Society Reviews, Nano Letters, ACS Nano, PNAS, Biomaterials等国际著名期刊上发表研究论文30余篇,他引3500余次(H因子26),并持有多项专利。多项研究成果入选科睿唯安ESI化学和材料领域前1%高被引论文(Highly Cited Paper)。研究项目获国家自然科学基金、上海市浦江人才计划资助。课题组致力于发展适用于生物医学的新型纳米材料和技术,通过构建纳米复合材料,利用其光、热、磁、声等性质,实现高选择性、低侵入性的生物成像、疾病治疗和生理功能调控。欢迎感兴趣的同学报考上海科技大学研究生,课题组长期招聘化学、材料学以及生物学相关专业博士后。具体可邮件沟通咨询,zhuxj1@shanghaitech.edu.cn(本文编辑:刘立东)专家约稿招募中若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎自荐或引荐投稿联系人:刘编辑邮箱:liuld@instrument.com.cn微信/电话:13683372576扫码关注【3i生仪社】,解锁生命科学行业资讯!
  • 国内最大探针台企业矽电股份IPO成功过会
    历经近10个月的审核,矽电半导体设备(深圳)股份有限公司(下称“矽电股份”)终于即将在4月13日迎来创业板上市委的关键裁决。作为半导体设备供应商,矽电股份聚焦应用于半导体制造晶圆检测环节的探针测试技术。此番IPO,矽电股份拟发行不超过0.10亿股、募集5.56亿元,投向“探针台研发及产业基地建设”、“分选机技术研发”,“营销服务网络升级建设”以及补充流动资金。矽电股份的报告期业绩一直处于高增长态势——2020年至2022年,营业收入分别为1.88亿元、3.99亿元4.42亿元,同期归母净利润分别为0.34亿元、0.97亿元和1.16亿元。这离不开第一大客户三安光电(600703.SH)的“支持”。三安光电对矽电股份的采购额自2020年的0.57亿元一跃提升至2022年的2.29亿元,期间增长了301.75%,占比更是从30.33%提升至51.85%。三安光电董事长林志强也正是在2020年入股矽电股份,并以2.40%的持股比例成为其第13大股东。若二者合作出现变化,矽电股份的业绩能否维系或是重要的待估风险。在上市前夕,矽电股份此番还吸引了明星资本的突击加盟,华为旗下的深圳哈勃科技投资合伙企业(有限合伙)于矽电股份申报IPO 6个月前的2021年12月,从矽电股份实控人何沁修等人手中以0.80亿元价格受让了4%的股权,按照这一价格估算,华为入股时矽电股份的市值约为20亿元。技术“代差”之争矽电股份应用于晶圆检测环节的探针测试技术,一直是衡量芯片性能与缺陷的关键。据SEMI和CSA Research数据统计,截至2019年底,矽电股份在境内探针设备市场中的份额已达13%,位列中国大陆设备厂商第一名,同期占全球市场份额为3%,位列第五名。矽电股份的核心产品“探针台”按照检测对象可分为晶圆、晶粒两大类。晶圆探针台主要是对未切割晶圆上的器件进行故障检测,尺寸涵盖4英寸至12英寸,2022年创收1.13亿元,贡献了近四分之一的收入。虽然矽电股份是首家实现12英寸晶圆探针台量产的境内企业,不过该环节的收入在2022年占比仍不足2成。值得一提的是,目前A股市场尚无主营业务为检测探针台的企业,矽电股份一旦上市成功则有望成为“半导体探针台第一股。”不过深交所仍要求矽电股份说明核心技术的壁垒及相对优势。“请说明发行人核心技术技术壁垒的具体体现,结合同行业现有技术水平、衡量核心技术先进性的关键指标等,进一步分析核心技术先进性的具体表征及与境内外同行业竞争对手相比的优劣势。”深交所指出。从境外厂商的数据来看,矽电股份与全球龙头东京电子、东京精密等企业确实存在一定的差距,例如定位精度上目前东京电子可达到±0.8um,而矽电股份只有±1.3um。“因为探针台的作用就是对要检测的晶圆进行定位,让晶圆上的器件等可以和探针接触并进行逐个测试,所以精度越高就越不容易出错。如果探针这个环节没有排除出来故障的话,下一个环节成本更高。”北京一位半导体行业人士指出。矽电股份也承认其与国际大厂之间存在较大的差距。“目前,日本厂商探针台综合定位精度已达到±0.80 um水平,占据了12英寸晶圆探针台市场的主要份额。发行人在综合定位精度和12英寸高端市场份额与日本厂商存在一定差距。”矽电股份表示。但矽电股份认为和境内厂商相比,其技术仍处于领先水平。矽电股份将中电科四十五所和长川科技(300604.SZ)披露为境内竞争对手,并指出这两家公司的综合定位精度分别仅为±5um和±1.5um,自身技术相比之下仍具有领先优势。“基于发行人持续的研发投入及形成的核心技术成果,发行人在综合定位精度、机台自动化水平及多种半导体器件适配方面已领先于中国台湾和中国大陆其他厂商。”矽电股份表示。但矽电股份的这番陈述或许并不是目前半导体探针环节的全部事实。信风(ID:TradeWind01)注意到,国内厂商已在半导体探针台领域逐渐发力。早在2020年,中科院长春光机所旗下长春光华微电子设备工程中心有限公司就推出国内首台商用12英寸全自动晶圆探针台;2022年11月,深圳市森美协尔科技有限公司(下称“森美协尔”)推出了可兼容处理12英寸与8英寸标准的全自动晶圆探针台(下称“A12”)。接近森美协尔的相关人士向信风(ID:TradeWind01)确认,A12的定位精度已达到±1um的水平。若这一数据属实,则意味着该数据不仅高于矽电股份,也在接近国际龙头的技术水平。而矽电股份对于境内竞争对手的披露是否完整,或许有待其做出更多解释。大客户助力下暴增矽电股份的报告期业绩可谓“突飞猛进”。2021年,矽电股份的营业收入和归母净利润分别为3.99亿元、0.97亿元,同比增长了112.29%、189.11%。“主要系因下游行业景气度提升、客户资本性支出上升以及公司市场开拓情况良好所致。”矽电股份表示。更为关键的助力或指向了作为矽电股份前五大客户之一的三安光电。三安光电2019年对矽电股份的采购额还只有0.07亿元,但次年却突然提高了采购额——2020年至2022年,三安光电向矽电股份采购晶粒探针台的金额分别为0.57亿元、1亿元和2.29亿元。这意味着,报告期内矽电股份超5成的晶粒探针台主要销往了三安光电,后者成为了主要的收入来源。矽电股份解释称,晶粒探针台主要的应用场景是检测LED芯片,而该市场主要被三安光电所占据。据CSA Research、LEDinside等机构的数据显示,2020年、2021年三安光电在行业总产能中的比例分别为28.29%、31.68%。事实上,二者在2020年达成合作关系还有一个更重要的转折。正是在这一年,三安光电的董事长林志强成为了矽电股份的股东。2020年9月,林志强以0.28亿元认购了矽电股份的股份。截至申报前,其以2.40%的持股比例位居第12大股东,较华为入股时矽电股份20亿元的估值,林志强所持股份市值已增长了74.37%。入股后的当年12月,矽电股份对三安光电实现0.57亿元的销售收入,占当年对后者的销售额比例达到99.69%。对于入股前后猛增的订单金额,矽电股份并不愿意承认这其中可能存在的“股权换订单”交易。“林志强基于对发行人及其所处行业的看好入股发行人,入股后发行人与三安光电的交易规模快速增长是相关客户对发行人设备认可及其自身需求增长的反映。”矽电股份指出,“林志强入股发行人不存在用订单换取股权的情形。”相似情形还发生在另一大客户兆驰股份(002429.SZ)身上。2020年9月,兆驰股份前实控人顾伟之女顾乡参股矽电股份,截至申报前,其持股比例为1.74%,位居第15大股东之列。入股当年,兆驰股份就一跃成为矽电股份第二大客户,贡献了0.27亿元的收入,占比为14.23%;2022年,兆驰股份带给矽电股份0.37亿元的收入。若扣除三安光电、兆驰股份所贡献的收入,矽电股份2020年至2022年的收入分别为1.04亿元、2.97亿元和1.76亿元。以此测算,矽电股份这一期间的营业收入复合增长率仅为30.09%,较未扣除前的复合增长率低了23.23个百分点。身患“大客户依赖症”的矽电股份是否有望顺利过会,其又该如何解释这其中所存在的业绩可持续性问题似乎有待上市委的裁决。
  • 光谱探针在指导手术方面潜力无限!
    帕金森式症又称震颤麻痹,是一种常见的神经退行性疾病,已成为继心脑血管病、肿瘤之后老年人的第三大“杀手”,严重影响患者的生活能力和质量。据统计,我国65岁以上的老年人中约有1.7%患有该症状。而大脑深部刺激(DBS)逐渐成为晚期帕金森患者常见的治疗方法,但是仍具有重大风险。该治疗方式是通过在大脑中放置电极、以破坏导致与晚期帕金森病相关的衰弱性震颤和僵硬的错误信号。对于不再受益于药物治疗的患者来说,这可能是非常有效的治疗方法,但是将电极放在错误位置会降低有效性并导致心理障碍。来自拉瓦尔大学魁北克CERVO脑研究中心的研究小组提出使用两种光谱分析的新探针可以帮助医生更准确地在大脑中导航仪器,从而使手术更安全,并提高成功率。小组成员Mireille Quémener表示:“改善DBS电极插入的神经外科指导将简化手术过程,减少手术时间,降低整体健康治疗成本并防止不良的心理后果。”光谱探针提供实时位置导航DBS手术过程由两部分组成,一部分是将电极放置在大脑特定部位,另一部分是植入电池组,便于将电流输送到电极。传统插入电极的方式是依靠磁共振成像(MRI)扫描来确定位置。然而,在颅骨钻孔的过程中,大脑可能会移动2毫米,导致电极放置位置不准确。基于上述问题,研究人员创建了一个装有光学探针的DBS电极,该电极通过光学探针增强,在插入过程中对脑组织进行相干反斯托克斯拉曼散射光谱(CARS)和漫反射光谱(DRS)。光学探针包含两根用于CARS和DRS照明的光纤和第三根用于收集信号的光纤。然后从组织学切片(HISTO)中目视识别组织类型,以生成由黑色(灰质)和白色(白质)区域组成的条形码。将该条形码与使用光学探针采集的数据进行比较,并使用PCA agorithm(探针条形码)进行分析。一旦电极到达目标位置,光学探针就可以在电极保持在原位的同时进行工作。图1 左半球和右半球的组织切片显示两个电极插入(a)大脑右半球的脱靶部分(使用CARS)和(b)大脑左半球的丘脑下核(STN)(使用DRS)光谱探针在指导手术方面潜力无限为了测试这种新探针,神经外科医生用它来在人类尸体大脑的六个区域植入电极,并沿着大脑两个半球各50mm的总长度收集了CARS和DRS测量值。手术后,研究人员提取大脑并目视识别了探针通过的白质和灰质。将CARS和DRS测量的读数与大脑结构的视觉记录进行比较,研究人员发现CARS和DRS方法非常准确地识别脑组织。这些发现证实,光谱学可能是帮助神经外科医生导航大脑的有用工具。Quémener 表示:“我们的团队目前正在研究调整光学探针,使其用于将接受DBS手术的患者的临床试验。我们相信光学方法在手术指导方面具有巨大的潜力,并希望我们的技术将在临床中出现,以协助外科医生进行各种脑部手术。”
  • 北京2台离子探针仪器全球“最忙”
    在过去10年里,北京离子探针中心的两台高分辨二次离子探针质谱仪(SHRIMP Ⅱ和SHRIMP Ⅱe-MC)或许是全球最忙及成绩最好的科学仪器。在12月18日该中心十周岁庆祝会上,中心主任刘敦一教授表示,以这两台仪器为核心的大型科学仪器共享平台,极大推动了我国地球科学的发展。  过去10年,SHRIMP仪器处于样品分析的机时平均为266.8昼夜/年,开放机时平均为76%。自2007年起,单台SHRIMP仪器的科研论文产出量已连续位居世界同类仪器的第一位。  高效源于中心建立的SHRIMP远程共享控制系统。该网络不仅实现了国内科研人员可实时观测样品图像、在线获取实验数据等应用,还使跨国远程共享科学仪器进入常态,开创了通过远程共享系统共享国外SHRIMP仪器的功能。  “十一五”以来,该中心又联合国内外22家高校及科研院所,在SHRIMP远程共享平台的基础上,整合了一批微束类分析仪器,构建起网络虚拟实验室,为进一步建立以远程操作为主要手段的大型仪器虚拟中心奠定基础。  刘敦一透露,该中心将继续发展以SHRIMP为代表的大型科学仪器远程共享网络,尽快在西班牙和巴西建立服务器系统,在美国华盛顿大学(圣路易斯)建立远程工作站。该中心还将积极投入大型科学仪器自主研发工作,逐步建立起一个具有优秀技术专家和研发设施的科学仪器自主创新基地。  据了解,SHRIMP Ⅱ在锆石微区年龄测定上具有无可替代的优势,引领锆石年代学进入微区、原位分析的新时代。2001年,我国引进第一台该机器,北京离子探针中心也于当年成立。该中心今年被科技部和财政部认定为首批国家级科技基础条件平台。
  • 高鸿钧院士团队成果:多探针扫描隧道显微镜分时复用切换技术
    科学仪器的发展,不断促进对新材料的探索,从而直接或间接影响各科技领域的方方面面。工欲善其事必先利其器,深化与落实科学仪器的自主研发,更是科技攻关的桥头堡。扫描隧道显微镜(STM),及一系列扫描探针显微镜(SPM) :原子力显微镜(AFM)、扫描近场光学显微镜(SNOM) 等,掀起一场纳米技术革命,广泛应用于材料表面纳米尺度局域电子态、形貌以及分子振动等丰富物性的研究。电输运性质作为材料的关键参数,被广泛关注。集成多个独立STM的多探针STM系统,通过施加电/力等调控手段,实现纳米尺度、原位表征材料局域电子态与局域电输运性质,有望加速后摩尔时代新器件的基础研究。四探针 STM 可实现微观体系的四端法测量,有效消除接触电阻带来的测量误差,获得材料的本征电导率。多个独立探针的协同操纵和成像,往往需要相同数量的多套STM控制系统。随着STM探针/压电驱动部件的增加,多探针控制系统的成本和复杂度急剧增加。因此,发展低成本、高效率、可扩展的通用控制解决方案,实现STM控制系统分时操纵多个探针、乃至探针阵列的技术十分必要。中国科学院物理研究所/北京凝聚态物理国家研究中心高鸿钧研究团队多年来一直致力于扫描探针显微学及其在低维量子结构方面的应用,在前沿科学研究取得一系列重要成果。同时,他们也在相关高精尖仪器自主研制方面不断积累,奠定了扎实的基础。物理所技术部郇庆/刘利团队一直致力于科研仪器设备的自主研发,与所内外多个课题组紧密合作,在核心关键部件、成套系统等方面取得了一系列成果(包括一台商业化四探针系统的彻底升级改造【Review of Scientific Instruments, 88(6):063704, 2017】、光学-低温扫描探针显微镜超高真空联合系统【Review of Scientific Instruments 89, 113705 (2018)】和新一代高通量薄膜制备及原位表征系统【Review of Scientific Instruments 91, 013904 (2020)】的自主研制)。两个团队再次密切合作、联合攻关,共同指导N04组博士生严佳浩(已毕业,爱尔兰科克大学博士后)、马佳俊、王爱伟(已毕业,国家纳米中心博士后)、马瑞松(已毕业,物理所关键技术人才)等同学成功研制并搭建了一台多探针STM分时复用切换系统,完成单个STM控制系统依次操纵多个探针在纳米尺度下的成像与定位,以及维持探针位置后的局域电输运测量。该系统采用的核心思路为研发团队首次提出,软硬件均完全自主研发,采用了ARM + DSP + FPGA多核数字平台来兼备复杂切换逻辑、多路高精度高速并行采样与数据处理,涉及C/C++与Verilog HDL编程语言,并提供图形操作界面以提高易操作性,具备多项独特优点:1)单个探针内大、小扫描管及多个探针间的无缝切换,无瞬态抖动;2)皮安级电流切换;3)任意单个探针具备毫米级移动范围与原子级空间分辨;4)多个探针可无限靠近,最小距离仅取决于针尖曲率半径;5)原位、纳米尺度、相同区域内,STM成像与电输运测量。该联合研发团队用6年多时间对系统进行了反复地设计优化和改进,并进行了全面性能测试。该研发成果所涉及的多项关键技术,如微弱信号的放大与切换、高稳定电压保持、复杂控制逻辑等,是未来大规模探针阵列应用的重要技术基础。分时切换的核心思路具有可扩展性强、成本低廉的特点,有望在材料基因组研究高通量表征领域有广泛的应用。该系统的详细介绍发表在近期的《科学仪器评论》杂志上【Review of Scientific Instruments 92, 103702 (2021) doi: 10.1063/5.0056634】。该工作得到了中国科学院关键技术研发团队项目(GJJSTD20200005)、国家自然科学基金国家重大科研仪器研制项目(11927808)和国家自然科学基金委青年基金项目(12004417)等的支持。图1:分时复用切换方案图2:分时复用系统硬件设计图3:分时复用切换系统软件架构图4:分时复用切换系统部分图形用户界面图5:单STM探针空间定位图6: 多探针切换与空间定位附:Rev. Sci. Instrum. 92, 103702 (2021).pdf
  • 我国引进首台纳米离子探针通过验收
    我国引进的第一台NanoSIMS 50L型纳米离子探针验收会于近日在中国科学院地质于地球物理研究所召开。中国科学院地质于地球物理研究所副所长吴福元研究员为组长的专家组认真听取了法国CAMECA公司纳米离子探针设计师、Franç ois Hillion博士所作的验收报告。专家组对仪器的验收指标有关问题进行了提问,一致认为该仪器的技术参数不仅全部达到合同要求,大部分还优于合同要求的验收指标。纳米离子探针  纳米离子探针具有极高的空间分辨率(Cs+源束斑小于 50nm,O-源束斑小于200nm),与我所已有的CAMECA ims 1280高精度离子探针互补,构成国际上非常先进的的离子探针分析平台。新引进的NanoSIMS 50L型纳米离子探针配置了7个信号检测器(每个配置法拉第杯和电子倍增器),可以同时测量7个同位素(或元素),分析精度好于千分之一。该仪器可以分析除稀有气体以外,元素周期表中从H至U的全部同位素(元素),并能获取同位素分布的高分辨图像。纳米离子探针的引进,为我国比较行星学、地球科学、材料科学、以及生命科学等领域提供了新的大型实验分析平台。
  • 北京离子探针中心离子探针质谱仪器研发进入攻坚阶段
    2010年1月16-17日,由北京离子探针中心主办的“2009北京SHRIMP成果报告会”在京隆重举行。中国科学院多位院士、政府相关部门负责人以及来自全国各地的地学界同仁等约100人出席了开幕式。自2002年起,一年一度的“北京SHRIMP成果交流会”已经成为中国地学界同仁们进行学术交流、展示成果的一个重要平台,其在学界的地位得到了业内人士越来越高的重视。  2010年1月16-17日的“2009北京SHRIMP成果报告会”开幕式上,“中心”主任刘敦一研究员向与会领导及来宾总结汇报了“中心”2009年度的主要工作进展 ,其中他也谈到了北京离子探针中心自主研发离子探针质谱类大型科学仪器的相关情况:  目前,在科技部和财政部的支持下,该项建议已在“十一五”国家科技支撑计划重大项目《科学仪器设备研制与开发》中立项,其中《二次离子质谱仪器核心技术及关键部件的研究与开发》子项目由北京离子探针中心牵头负责并开始实施。在各协作单位的共同努力下,课题的各项研究工作进展顺利,对主要关键技术的攻关有了突破进展;完成了TOF-SIMS和Trap-TOF的整机设计、气体离子源的整体设计,加工了部分关键部件;液体金属源创新研究顺利进行,样品台三维微聚焦系统完成了方案设计及关键部件选型;离子光学系统、二次离子源及质谱接口完成了理论模拟、方案设计及优化;TOF专用高速数字转换器(ADC)已完成方案设计,实现了部分电路子系统;实现了飞行时间质谱模块和模拟电路系统模块、数字测控模块及软件系统模块;搭建了离子阱离子反应器实验装置,完成了角反射式TOF系统的设计及关键器件的研制。  而据“中心”近期透露,仪器研发项目的最新进展是:已经进入攻坚阶段,并已显示出中心在技术创新方面具有雄厚的基础和发展前景。
  • “荧光探针”点亮细胞世界
    p style="text-indent: 2em text-align: justify "走进山东师范大学化学化工与材料科学学院实验室,在激光显微镜下,“荧光探针”使细胞呈现出色彩斑斓的效果,形态各异的图案仿佛将人带入鲜花与极光交融的海洋。然而,你能想象这不起眼的“荧光探针”通过成像监测,便能实现尽早地发现和预防重大疾病吗?/pp style="text-indent: 2em text-align: justify "山东师范大学化学化工与材料科学学院唐波、董育斌、李平、王鹏、李娜等领衔的科研团队,经过近二十年的刻苦攻关,有效地解决了细胞成像这一难题,极大地推动了该领域的国际研究步伐,他们完成的“细胞稳态调控活性分子的荧光成像研究”项目于近日获得2018年度国家自然科学二等奖,成为首个以第一完成单位获得国家自然科学奖的山东省省属高校。/pp style="text-indent: 2em text-align: justify "早在2000年前后,当时国内的生命科学和光学成像等研究领域刚刚兴起,团队领头人唐波教授便敏锐地意识到分析化学和生命科学的紧密结合,必将推动一个新型交叉研究领域的兴起。从此,一个以化学、生物学、医学等多学科为支撑,以揭示重大疾病的发现和治疗为使命的团队应运而生。/pp style="text-indent: 2em text-align: justify "2013年初,以山东师范大学为项目牵头单位、唐波为首席科学家的国家重大科学研究计划(973)项目“重大疾病相关的若干重要难检活性小分子细胞内纳米传感研究”正式启动。“一定要把目光瞄准国际科研领域的最前沿,只有站位高、视野宽、反应快,才能把握住科研领域的时代脉搏,产出高质量的研究成果。”唐波不仅自己以此为标杆,还将这一理念植入了全体科研团队的“基因”之中。/pp style="text-indent: 2em text-align: justify "自然科学奖评审的核心指标就是原创性,而这正是“细胞稳态调控活性分子的荧光成像研究”项目的“撒手锏”。该项目在国际上率先构建成多种新型发光材料,解决了材料量子产率低与波长不可调的关键问题,为研制具有高灵敏度与光谱空间可分辨探针的筛选、设计、构建奠定了重要的理论基础。/pp style="text-indent: 2em text-align: justify "“在原有的检测方法中,荧光信号灵敏度差、转换效率较低,会直接影响成像质量,从而会导致医生对病人的病情错判。我们的成果创新性地运用特异性识别活性分子的机理与能量转移、电子转移等光信号转换机制,成功实现了对糖蛋白、葡萄糖、microRNA等活性分子的高选择性识别,检测速度和准确性都得到了极大提高。”长江学者董育斌教授说。/pp style="text-indent: 2em text-align: justify "“在疾病发生之前,我们可以通过细胞内特定指标的变化来作出预警,从而尽早地预防和治疗。而这种指标变化,需要找到特殊的化合物即‘探针’,注入活体细胞后,用高能荧光显微镜来检测‘探针’光学信号的改变来确定。”为团队作出重要贡献的徐克花教授介绍说,他们的工作就是寻找化合物、研发新材料“探针”,实现高准确度和超高灵敏检测的突破。/pp style="text-indent: 2em text-align: justify "“这与现阶段医学临床上采用的肿瘤检测方式不同。传统的血液检测,可能因样本离开人体而导致准确性下降,假阳性比例很高,比如前列腺癌的假阳性比例最高达60%。而使用CT检查,当发现病灶时,病情一般已进入中晚期。”青年长江学者李娜教授说,“因此,使用荧光成像方法,通过新材料‘探针’在活细胞里面检测活性物质,且是在体外保真环境进行,无创伤,无伤害。”/pp style="text-indent: 2em text-align: justify "目前,团队师生所在的化学学科近十年来稳居ESI全球前1%,团队成员均有稳定的国家级课题作为依托,堪称精兵强将。“我们研究团队,不仅有化学专家,还引进了生物、医学、物理等方面的人才。大家学术背景非常多元,团队在开拓新的研究领域和方向时也非常方便。”泰山学者青年专家高雯说。/p
  • 东南大学116.00万元采购探针台
    详细信息 8寸探针台(第三次)(SEU-ZB-220931(第三次))采购公告 全国 状态:公告 更新时间: 2023-04-19 招标文件: 附件1 附件 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:探针台 开标时间:2023-05-12 00:00 预算金额:116.00万元 采购单位:东南大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:江苏省华采招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 8寸探针台(第三次)(SEU-ZB-220931(第三次))采购公告 全国 状态:公告 更新时间: 2023-04-19 招标文件: 附件1 附件
  • 东南大学116.00万元采购探针台
    详细信息 8寸探针台(SEU-ZB-220931)采购公告 江苏省-南京市 状态:公告 更新时间: 2023-02-14 招标文件: 附件1 附件 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:探针台 开标时间:2023-03-07 00:00 预算金额:116.00万元 采购单位:东南大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:江苏省华采招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 8寸探针台(SEU-ZB-220931)采购公告 江苏省-南京市 状态:公告 更新时间: 2023-02-14 招标文件: 附件1 附件
  • 我国科学家利用聚集体调控探针实现多种细胞器动态超分辨成像
    近日,中科院大连化学物理研究所研究员徐兆超团队发展了聚集体调控探针,解决了以往蛋白标签荧光探针在超分辨成像应用中缺乏对多种细胞器通用性标记的问题。相关研究成果已发表于《聚集体》。  纳米尺度下细胞器与亚细胞器动态行为的监测与解析对于生命进程的解密至关重要。徐兆超团队前期针对溶酶体内酸性微环境设计合成了溶酶体自闪染料,并借助单分子定位显微镜(SMLM)实时监测了溶酶体运动并发现4种溶酶体间相互作用模式,针对脂滴内部高度疏水环境设计了缓冲脂滴探针,实现了脂滴的稳定超分辨成像并发现脂滴融合的新模式。该团队构建的SNAP蛋白标签探针还克服了传统线粒体探针易受电位波动而脱靶的问题,实现了对线粒体的稳定标记和动态超分辨成像。  然而,蛋白标签荧光探针依然面临细胞渗透性差的问题,特别是探针在细胞内局域分布使得单一探针难以具有对多种细胞器广谱性标记的性能。对此,该团队发展了具有“单体—二聚体—聚集体”多体系动态调控的SNAP蛋白标签探针BGAN-Aze,该探针在细胞外形成荧光淬灭的纳米聚集体而具有快速穿透细胞膜和在细胞内广泛分布的能力,在细胞内以单体的形式与目标蛋白共价连接,并伴随荧光的恢复,最终实现细胞内多种细胞器选择性荧光识别与细胞器亚结构的动态超分辨成像。  此外,研究发现BGAN-Aze为不带电荷的中性分子,可保持高度的细胞渗透性与生物相容性,能够实现纳米尺度下对细胞膜、线粒体、细胞核等多种细胞器亚结构的长时间追踪。  该探针基于遗传编码技术,实现了细胞内多种细胞器选择性荧光识别的广谱应用性,并且实现了细胞器亚结构的动态超分辨成像,进而揭示了多种未见报道的细胞器结构动态变化,为进一步研究不同细胞器的功能提供工具。
  • 大陆探针台设备厂商第一名冲刺创业板IPO
    近日,国内最大的半导体探针台生产商矽电半导体设备(深圳)股份有限公司(下称“矽电半导体”或“公司”)向创业板递交招股书,保荐机构为招商证券。据了解,矽电半导体主要从事半导体专用设备的研发、生产和销售,专注于半导体探针测试技术领域,系境内领先的探针测试技术系列设备制造企业。探针测试技术主要应用于半导体制造晶圆检测(CP, Circuit Probing)环节,也应用于设计验证和成品测试(FT, Final Test)环节,是检测芯片性能与缺陷,保证芯片测试准确性,提高芯片测试效率的关键技术。公司自主研发了多种类型应用探针测试技术的半导体设备,产品已广泛应用于集成电路、光电芯片、分立器件、第三代化合物半导体等半导体产品制造领域。公司已成为中国大陆规模最大的探针台设备制造企业。招股说明书显示,矽电半导体核心技术团队拥有超过 30 年的探针测试技术研发经验,自设立以来立足技术创新,掌握了探针测试核心技术,打破了海外厂商垄断,在探针台领域成为中国大陆市场重要的设备厂商。公司的探针测试系列产品已应用于士兰微、比亚迪半导体、燕东微、华天科技、三安光电、光迅科技、歌尔微等境内领先的晶圆制造、封装测试、光电器件、分立器件及传感器生产厂商。根据SEMI 和 CSA Research 统计,2019 年矽电股份占中国大陆探针台设备市场 13%的市场份额,市场份额排名第四,为中国大陆设备厂商第一名。此外,矽电半导体还是中国大陆首家实现产业化应用的12英寸晶圆探针台设备厂商,产品应用于境内领先的封测厂商和12英寸芯片产线。公司搭载自主研发光电测试模块的晶粒探针台,已应用于境内多家领先的光电芯片制造厂商,满足新一代显示技术 Mini/Micro LED 芯片测试环节设备需求。基于公司在探针测试技术领域的积累和半导体专用设备行业的经验,公司研发并量产了分选机、曝光机和AOI 检测设备等其他半导体专用设备。在营收数据上,2019年至2021年,矽电半导体营收分别为9331.73万元、1.88亿元和3.99亿元,2019年至2021年的复合增长率为106.82%,同期净利润分别为528.38万元、3285.38万元和9603.97万元,年复合增长率为326.34%。
  • 中国地学界电子探针分析技术平台2023年度交流会顺利召开
    为进一步促进国内电子探针新技术发展和交流、拓展电子探针新技术应用,中国地学界电子探针分析技术平台2023年度交流会于6月2日-6月3日在中国地质科学院京区地质科研实验基地顺利举行。本次会议由中国地质科学院矿产资源研究所(以下简称“资源所”)承办,资源所宋扬副所长出席会议并讲话,中国地质调查局科技外事部康磊副处长、资源所周剑雄研究员、南京大学张文兰教授级高工、中国有色桂林矿产地质研究院有限公司董事长/党委书记朱景和同志、中国科学院地质与地球物理研究所陈意研究员等作为特邀嘉宾出席会议。本次会议共有19位来自国内外地学界电子探针的专家报告各自的最新研究成果,其中有5个是特邀报告,包括4个来自国外专家和1个国内专家的特邀报告。来自美国威斯康辛大学的John Fournelle通过视频连线方式作了题为“EPMA: Three easy-to-make errors”的线上报告,来自美国俄勒冈大学的John Donovan作了题为“Best Practices in Modern EPMA Microanalysis”的线上报告,来自瑞士伯尔尼大学的Pierre Lanari作了题为“Quantitative compositional mapping by EPMA”的线上报告,来自美国密苏里大学-堪萨斯城分校的赵东高教授来到现场作了题为“Quantitative electron probe microanalysis of strategic uranium mineral resources: analytical procedures and standard reference materials”的报告,来自中国科学院地质与地球物理研究所陈意研究员在现场作了题为“面向月球和行星科学研究的电子探针分析技术”的报告。其他报告的内容包括电子探针技术方法和应用的最新进展,主要涉及超轻元素分析、微量元素分析、变价元素分析、稀土矿物分析、新矿物分析研究、标样研发等。另外还有5个来自显微分析仪器厂商的最新产品和分析技术报告。本次会议采用线下参会+线上直播同时进行的方式,吸引来自全国有关高校、科研院所、显微分析仪器厂商60余人现场参会,同时有累计4000余人通过学术直播平台参与会议。本次会议使得地学界电子探针分析技术平台的影响力进一步扩大,对国内电子探针技术的发展和交流起到了重要的促进作用。 当前,自然资源部和中国地质调查局正在紧锣密鼓的实施新一轮找矿突破战略行动,同时推进构建以星空地海井多维、高分辨率、高精度探测观测监测“三测体系”为突破口的现代化地质调查技术体系,打造国家地质调查科技创新“火车头”。资源所正在深入学习贯彻党的二十大精神,认真落实全国自然资源工作会议和中国地质调查局工作会议部署,以“地质找矿重大突破的引领者,矿产资源安全保障的支撑者”为使命,聚焦铜、铁、钾盐、锂等紧缺战略性矿产,加大制约找矿突破的关键科学问题和“卡脖子”技术难题的攻关,以科技创新引领推动实现找矿新突破。矿产资源研究所的矿物研究室是国内最早引进电子探针仪器并开展相关研究的实验室之一。经过几十年来实验室研究人员和技术人员的不懈努力,在利用电子探针进行基础地质和矿床地质研究、微束分析标准化研究等方面都取得了许多重要的成果。矿物室近年来承担了《系统矿物学》修编、《中国矿物志》研编、国家重点研发计划项目课题、自然科学基金项目、地质调查项目以及白云鄂博找矿勘查等不同类型的项目,地调、科研和横向项目齐头并进,并且都取得了不错的成果。在川西甲基卡、湖南仁里、江西宜丰、冀北窟窿山等稀有金属矿床中,通过详细的矿物学研究示踪成岩成矿过程,并提出了硬岩型锂铍铌钽资源工艺矿物学评价指标体系;在白云鄂博,不但取得了铁和萤石找矿的突破,还发现了新矿物“白鸽矿”;另外,实验室在技术研发方面也一直积极探索,在金红石、石英微量元素分析、铀矿物电子探针测年、铍矿物电子探针分析、稀土矿物电子探针分析等方面都建立了自己的方法。实验室仪器使用效率一直保持国内领先,为所内外的科研和生产提供了重要的支撑作用。本次会议上,我国电子探针领域著名的先驱级人物,也是资源所矿物室的元老周剑雄老师也来到了现场并讲话。周老师对矿物学的热爱和电子探针技术发展的关切激励着我国年轻的电子探针工作者不断努力进取。矿物学是矿产资源研究领域重要的基础学科,电子探针分析技术是支撑矿物学发展的核心关键技术,是矿物学、岩石学、矿床学、地球化学、天体学和其他相关学科领域必不可少的研究工具。随着国家对基础研究和矿产勘查的高度重视,相信矿物学和电子探针分析技术共同进入了前所未有的发展机遇期,相信在新时代基础地质研究和新一轮找矿突破战略行动中,电子探针分析技术也将进一步发挥重要作用。中国地学界电子探针分析技术平台自2019年建立以来,得到众多同行的支持和广大用户的欢迎;2020年平台启动交流会在地学电子探针界引起巨大反响,2022年的技术交流会更是吸引了累计4500余人通过学术直播平台观看会议;而本次会议采用了线下+线上联合的方式,一方面方便现场的充分交流,另一方面也方便了更多人的参与,极大加强了技术人员和科研人员之间的经验交流和信息共享。捷欧路(北京)科贸有限公司、岛津企业管理(中国)有限公司、牛津仪器科技(上海)有限公司、布鲁克(北京)科技有限公司、超微动力科技(香港)有限公司、北京普瑞赛司仪器有限公司、北京金竟科技有限责任公司、北京格微仪器有限公司、北京中科矿研检测技术有限公司等多家厂商和公司代表参加了本次会议。厂商人员和技术、科研人员之间的交流通过本次会议也得到了增强。(供稿:陈振宇、孔维刚)会议合影周剑雄老师致辞陈振宇研究员主持会议开幕式会场情况
  • 扫描探针显微镜(Scanning Probe Microscope--SP
    什么是扫描探针显微镜(Scanning Probe Microscope--SPM)? SPM是一个大的种类,目前,SPM家族中已经产生了二三十种显微镜,如扫描隧道显微镜STM)、原子 (力显微镜(AFM)、磁力显微镜(MFM)、静电力显微镜(EFM)、近场光学显微镜(SNOM)等等。 SPM的工作原理是基于微观或介观范围的各种物理特性,通过原子线度的极细探针在被研 究物质的表 面上方扫描时检测探针&mdash 样品两者之间的相互作用,以得到被研究物质的表面特性,不同类型的SPM之间 的主要区别在于它们的针尖特性及其相应的针尖----样品相互作用方式的不同。   扫描隧道显微镜模块:   STM(Scanning Tunneling Microscope的简称)的工作原理来源于量子力学中的隧道效应原理。 当金属探针在与导电样品非常接近时(小于1nm),控制探针在样品表面进行逐行扫描,检测探针与样 品间隧道电流的变化来获取样品表面形貌、I-Z、I-V曲线等其它特性。 由于要在探针和样品间产生并传输隧道电流,所以只能检测导电 样品。   什么是原子力显微镜(Atomic Force Microscope -- AFM)? AFM是SPM最重要的发展。它控制一个微悬臂探针在样品表面进行逐行扫描,当探针在与样品非 常接近时(小于1nm),由于两者间原子的相互作用力,使对微弱力极敏感的微悬臂发生偏转,再 通过光杠杆作用将微小偏转放大,用四象限光电探测器检测,以获取样品表面形貌和其它物理、化 学特性。AFM按照其成像模式和检测信号的不同,有多种不同的工作模式,适用于不同性质的材料. 样品。 由于AFM对样品没有导电性的要求,应用范围十分广泛,弥补了STM只能观察导电样品的不足。   原子力显微镜基础模块:   该模块包含原子力显微镜接触模式和横向力模式。 模式 接触模式:微悬臂探针紧压样品表面,扫描过程中与样品保持接触。该 时探 模式分辨率较高,但成像针对样品作用力较大,容易对样品表面形 测表 成划痕,或将样品碎片吸附在针尖上,适合 检测强度较高、结构 稳定的样品。 横向力模式:是接触模式的扩展技术,针尖压在样品表面扫描时,与起 伏力方向垂直的横向力使微悬臂探针左右扭曲,通过检测这种扭 曲,获得样品纳米尺度局域上探针的横向作用力分布图。 原子力显微镜专业模块:   该模块包含原子力显微镜轻敲模式和相移模式。 轻敲模式:在扫描过程中微悬臂被压电驱动器激发到共振振荡状态,样 品表面的起伏使微悬臂探 针的振幅产生相应变化,从而得到样品 的表面形貌。 由于该模式下,针尖随着悬臂的振荡,极其短暂地对样品进行&ldquo 敲 击&rdquo ,因此横向力引起的对样品的破坏几乎完全消失,适合检测粉体颗 粒、生物样品及其它柔软、易碎、易吸附的样品,但分辨率接触模式低。 相移模式:是轻敲模式的扩展技术,通过检测微悬臂实际 振动与其驱动信 号源的相位差的变化来成像。引起相移的因素很多,如样品的组分、 硬度、粘弹性、环境阻尼等。因此利用相移模式,可以在纳米尺度上 获得样品表面局域性质的丰富信息。 液相模式:(选配)配有液体池,工作时探针和样品都在液体环境中, 适用于生物样品 摩擦力显微镜模块:   原子力显微镜基础模块中的横向力模式可以获得样品与探针的横向作用力分布图。由于影响 横向力的因素很多,主要包括样品移动方向与针尖悬臂角度、样品晶格排列角度、摩擦力、台阶扭动、 粘弹性等,因此,如果能够基本确定其它因素,利用横向力模式可以对样品纳米级摩擦系数进行间接测 量,进行表面裂缝及粘弹性分析等。 摩擦力显微镜是用于定量评价极轻载荷下(10^-7&mdash 10^-9N)薄膜材料的摩擦学特性,通过对针 悬臂 尖及悬臂的力学特性准确标定,能够获取微观摩擦系数,为纳米摩擦学研究提供依据。利用我们独创的 对分模式扫描,可以准确标定针尖悬臂与扫描方向的90度角,以消除针尖放置角度的不准确和扫描器 误安装位置的差;通过设定正压力的变化范围,可以连续改变正压力, 几分钟内就可完成几小时才能 完成的测量过程,而且系统状态变化很小, 使得测量更准确;由于有4通道同步采集,在所有的力测量过程中,我们 可以同时采集到样品的起伏、针尖所受到的起伏力、横向力,可以准确 分析针尖的状态,为精确分析摩擦力提供了更为详实的数据。   磁力/静电力显微镜模块:   抬起模式:该工作模式分两个阶段,第一阶段与普通原子力显微镜形貌成像一样,在探针与样品间 距1nm以内成像,然后,将探针抬起并一直保持相同距离,进行第二次扫描,该扫描过程可以对一些 相对微弱但作用程较长的作用力进行检测,如磁力或静电力。 磁力显微镜(Magnetic Force Microscope -- MFM):控制磁性 探针在磁性样品表面进行逐行扫描,利用抬起模式进行二次成像,获得样 品纳米尺度局域上磁畴结构及分布图。 静电力显微镜(Electrostatic Force Microscope -- EFM): 控制导电探针在样品表面进行逐行扫描,利用抬起模式二次成像,获得 样品纳米尺度局域上静电场分布图。   扫描探针声学显微镜模块: 扫描探针声学显微镜(SPAM,Scanning Probe Acoustic Microscope)是将原子力显微镜与电声成 像技术相结合,采用声学成像模式,借用声波记录下物质的内部模样,建立了低频(30kHz)高分 辨率(~10nm)扫描探针声学显微成像技术。其特点是能够获得反映材料亚表面纳米尺度结构的声 学像和性能的原位检测,克服了现有SPM只能获得材料表面结构和性质的不足。迄今为止,反映材 料亚表面纳米尺度结构及有关物性的声学功能模式的SPM在国内外报道甚少。   样品定位辅助模块:   该模块包含高分辨CCD光学显微系统和高精度电控样品移动平台。 高分辨CCD光学显微系统:在计算机上成像,用于观察探针和样 品,放大80&mdash 600倍。 高精度电控样品移动平台:计算机自动控制,配合 光学显微系统 进行精确样品移动和定位的装置。移动范围5mm*5mm,单步移动步长最小 85nm。   纳米加工模块:   SPM的纳米加工技术是纳米科技的核心技术之一,常用的加工方法包括机械刻蚀、电致/场致刻 润笔 蚀、浸润笔(Dip-Pen Nano-lithography,DNP)等。其基本原理是利用SPM针尖在样品表面准确移动, 与样 同时控制针尖-样品间的相互作用,就可完成所需的加工过程。 常用的移动方法包括矢量和点阵。矢量法通过矢量产生插件建立矢量数据文件,然后进行刻蚀。 使用这种方法,线条连续,刻蚀速度快,但矢量编辑较为麻烦。点阵法通过插件自动分析需要刻蚀的图 象,在样品上边扫描边刻蚀。这种方法不用编辑矢量,与原图像几乎不失真,但刻蚀速度慢,线条不连 续。可以根据需要选择不同的方法。   SPM通用平台开放式开发系统模块:   SPM通用平台开放式开发系统是一套完整的SPM模块化开发平台,简称&ldquo 开发系统&rdquo 。包括软件 板和 开发模硬件开发套件。如果您需要在已有的SPM功能上开发特殊要求的功能模块,就需要购买开发系 统。目前,离线软件开发模板我们都免费赠送,鼓励用户亲自开发,或者提出详细要求和算法,委托我 们为SPM定制1-2个特殊功能的处理插件,这都是免费的服务。 软硬件结合的特殊功能的SPM开发就要使用&ldquo 开发系统&rdquo 了。这套系统具体包括软件开发模板、硬件 扩展接口测试箱(硬件扩展实验板组)、硬件接口插件模板、开发手册。该系统的设计充分考虑了用户级 二次开发的方便性、可行性和可靠性。当然,您也可以购&ldquo 开发系统&rdquo ,然后提出IDEA,由我们来帮您 合作完成。 在您了解了各个功能模块后,您可以选型了,我们为了您搭建了四种机型,它们的外形都基本 一样,那是因为这样便于您今后无障碍模块化升级。 模块/型号 ZL STM-II 型 扫描隧道显微镜 ZLAFM-II型 原子力显微镜 ZLAFM-III型 扫描探针显微镜 ZL3000型扫 描探针显微镜 扫描隧道 显微镜模块         原子力显微镜 基础模块         原子力 显微镜 专业模块         摩擦力 显微镜模块     可选配    磁力/静电力 显微镜模块         样品定位 铺助模块   可选配     纳米 加工 模块   可选配 可选配 可选配 SPM通用平台 开发系统     可选配 可选配 扫描探针 声学模块     可选配 可选配 各功能模块介绍摘要: 1.扫描隧道显微镜只能检测 导电样品,因其有样品的局限性,所以通常作为教学仪器。 2.原子力显微镜对样品没有导电性的要求,应用范围十分广泛。AFM基础模块包括接触模式和横 向模式;AFM专业模块包括轻巧和相移模式。 3.接触模式AFM适合检测表面强度较高、结构稳定的样品。 4.横向力模式AFM可以获得样品纳米尺度局限上探针的横向作用力分布图。 5.轻敲模式AFM适合检测粉体颗粒、生物样品及其它柔软、易碎、易吸附的样品,但分辨率比接 触模式较低。 6.相移模式AFM对不同组分材料的组分变化比较敏感。 7.磁力显微镜可以获得样品纳米尺度局域上磁畴结构及分布图。 8.静电力显微镜可以获得样品纳米尺度局域上静电场分布图。 9.样品定位辅助模块用于实现样品在毫米量级范围内以纳米精度搜寻定位。 10.纳米加工模块用于实现矢量刻蚀和图形刻蚀方法的纳米加工。 11.如需开发特殊功能SPM,需要购买SPM通用平台开放式开发系统。 配置/型号 ZL STM-II ZL AFM-I ZL AFM-II ZL AFM-III ZL 3000 主机 可扩展式电子学控制机箱 多模式扫描探针显微镜组合式探头 扫描隧道显微镜 原子力显微镜 接触/横向力 模式 原子力显微镜 轻敲/相移 模式 摩擦力显微镜 磁力/静电力显微镜 针尖粗调/自动趋近机构 扫描器(单一多量程自适应扫描器不更换技术) 针尖架 扫描隧道模式针尖架 原子力基础模式针尖架 原子力专业模式针尖架 磁力模式针尖架 静电力模式针尖架 组合式纳米级减振系统 1个 包含 包含 包含 包含 包含                     1套 6&mu m 6&mu m 50&mu m 50&mu m 100&mu m 1个 2个 3个 5个 1个       1套 软件 系统   在线控制软件 1套 离线图像处理/分析软件 离线软件开发模板 摩擦力分析软件         网络实验室远程控制软件       培训课件/实验教材/科普教材/说明书光盘   附件 标准样品 1套 样品载片 5片 5片 10片 10片 15片 STM探针 Pt-Ir 20 20cm   20cm AFM接触/横向力/摩擦力模式探针(进口)   10枚 AFM轻敲/相移模式探针(进口)       10枚 MFM磁力探针(进口)         5枚 EFM导电探针(进口) 5枚 专用工具(镊子、针尖剪刀、玻璃皿 等) 1套 样品 定位 模块 高分辨CCD光学显微系统 可选配 高精度电控样品移动平台     纳米加工模块 SPM通用平台开放式开发系统       什么是扫描探针显微镜(Scanning Probe Microscope--SPM)? SPM是一个大的种类,目前,SPM家族中已经产生了二三十种显微镜,如扫描隧道显微镜STM)、原子 (力显微镜(AFM)、磁力显微镜(MFM)、静电力显微镜(EFM)、近场光学显微镜(SNOM)等等。 SPM的工作原理是基于微观或介观范围的各种物理特性,通过原子线度的极细探针在被研 究物质的表 面上方扫描时检测探针&mdash 样品两者之间的相互作用,以得到被研究物质的表面特性,不同类型的SPM之间 的主要区别在于它们的针尖特性及其相应的针尖----样品相互作用方式的不同。   扫描隧道显微镜模块:   STM(Scanning Tunneling Microscope的简称)的工作原理来源于量子力学中的隧道效应原理。 当金属探针在与导电样品非常接近时(小于1nm),控制探针在样品表面进行逐行扫描,检测探针与样 品间隧道电流的变化来获取样品表面形貌、I-Z、I-V曲线等其它特性。 由于要在探针和样品间产生并传输隧道电流,所以只能检测导电 样品。   什么是原子力显微镜(Atomic Force Microscope -- AFM)? AFM是SPM最重要的发展。它控制一个微悬臂探针在样品表面进行逐行扫描,当探针在与样品非 常接近时(小于1nm),由于两者间原子的相互作用力,使对微弱力极敏感的微悬臂发生偏转,再 通过光杠杆作用将微小偏转放大,用四象限光电探测器检测,以获取样品表面形貌和其它物理、化 学特性。AFM按照其成像模式和检测信号的不同,有多种不同的工作模式,适用于不同性质的材料. 样品。 由于AFM对样品没有导电性的要求,应用范围十分广泛,弥补了STM只能观察导电样品的不足。   原子力显微镜基础模块:   该模块包含原子力显微镜接触模式和横向力模式。 模式 接触模式:微悬臂探针紧压样品表面,扫描过程中与样品保持接触。该 时探 模式分辨率较高,但成像针对样品作用力较大,容易对样品表面形 测表 成划痕,或将样品碎片吸附在针尖上,适合 检测强度较高、结构 稳定的样品。 横向力模式:是接触模式的扩展技术,针尖压在样品表面扫描时,与起 伏力方向垂直的横向力使微悬臂探针左右扭曲,通过检测这种扭 曲,获得样品纳米尺度局域上探针的横向作用力分布图。 原子力显微镜专业模块:   该模块包含原子力显微镜轻敲模式和相移模式。 轻敲模式:在扫描过程中微悬臂被压电驱动器激发到共振振荡状态,样 品表面的起伏使微悬臂探 针的振幅产生相应变化,从而得到样品 的表面形貌。 由于该模式下,针尖随着悬臂的振荡,极其短暂地对样品进行&ldquo 敲 击&rdquo ,因此横向力引起的对样品的破坏几乎完全消失,适合检测粉体颗 粒、生物样品及其它柔软、易碎、易吸附的样品,但分辨率接触模式低。 相移模式:是轻敲模式的扩展技术,通过检测微悬臂实际 振动与其驱动信 号源的相位差的变化来成像。引起相移的因素很多,如样品的组分、 硬度、粘弹性、环境阻尼等。因此利用相移模式,可以在纳米尺度上 获得样品表面局域性质的丰富信息。 液相模式:(选配)配有液体池,工作时探针和样品都在液体环境中, 适用于生物样品 摩擦力显微镜模块:   原子力显微镜基础模块中的横向力模式可以获得样品与探针的横向作用力分布图。由于影响 横向力的因素很多,主要包括样品移动方向与针尖悬臂角度、样品晶格排列角度、摩擦力、台阶扭动、 粘弹性等,因此,如果能够基本确定其它因素,利用横向力模式可以对样品纳米级摩擦系数进行间接测 量,进行表面裂缝及粘弹性分析等。 摩擦力显微镜是用于定量评价极轻载荷下(10^-7&mdash 10^-9N)薄膜材料的摩擦学特性,通过对针 悬臂 尖及悬臂的力学特性准确标定,能够获取微观摩擦系数,为纳米摩擦学研究提供依据。利用我们独创的 对分模式扫描,可以准确标定针尖悬臂与扫描方向的90度角,以消除针尖放置角度的不准确和扫描器 误安装位置的差;通过设定正压力的变化范围,可以连续改变正压力, 几分钟内就可完成几小时才能 完成的测量过程,而且系统状态变化很小, 使得测量更准确;由于有4通道同步采集,在所有的力测量过程中,我们 可以同时采集到样品的起伏、针尖所受到的起伏力、横向力,可以准确 分析针尖的状态,为精确分析摩擦力提供了更为详实的数据。   磁力/静电力显微镜模块:   抬起模式:该工作模式分两个阶段,第一阶段与普通原子力显微镜形貌成像一样,在探针与样品间 距1nm以内成像,然后,将探针抬起并一直保持相同距离,进行第二次扫描,该扫描过程可以对一些 相对微弱但作用程较长的作用力进行检测,如磁力或静电力。 磁力显微镜(Magnetic Force Microscope -- MFM):控制磁性 探针在磁性样品表面进行逐行扫描,利用抬起模式进行二次成像,获得样 品纳米尺度局域上磁畴结构及分布图。 静电力显微镜(Electrostatic Force Microscope -- EFM): 控制导电探针在样品表面进行逐行扫描,利用抬起模式二次成像,获得 样品纳米尺度局域上静电场分布图。   扫描探针声学显微镜模块: 扫描探针声学显微镜(SPAM,Scanning Probe Acoustic Microscope)是将原子力显微镜与电声成 像技术相结合,采用声学成像模式,借用声波记录下物质的内部模样,建立了低频(30kHz)高分 辨率(~10nm)扫描探针声学显微成像技术。其特点是能够获得反映材料亚表面纳米尺度结构的声 学像和性能的原位检测,克服了现有SPM只能获得材料表面结构和性质的不足。迄今为止,反映材 料亚表面纳米尺度结构及有关物性的声学功能模式的SPM在国内外报道甚少。   样品定位辅助模块:   该模块包含高分辨CCD光学显微系统和高精度电控样品移动平台。 高分辨CCD光学显微系统:在计算机上成像,用于观察探针和样 品,放大80&mdash 600倍。 高精度电控样品移动平台:计算机自动控制,配合 光学显微系统 进行精确样品移动和定位的装置。移动范围5mm*5mm,单步移动步长最小 85nm。   纳米加工模块:   SPM的纳米加工技术是纳米科技的核心技术之一,常用的加工方法包括机械刻蚀、电致/场致刻 润笔 蚀、浸润笔(Dip-Pen Nano-lithography,DNP)等。其基本原理是利用SPM针尖在样品表面准确移动, 与样 同时控制针尖-样品间的相互作用,就可完成所需的加工过程。 常用的移动方法包括矢量和点阵。矢量法通过矢量产生插件建立矢量数据文件,然后进行刻蚀。 使用这种方法,线条连续,刻蚀速度快,但矢量编辑较为麻烦。点阵法通过插件自动分析需要刻蚀的图 象,在样品上边扫描边刻蚀。这种方法不用编辑矢量,与原图像几乎不失真,但刻蚀速度慢,线条不连 续。可以根据需要选择不同的方法。   SPM通用平台开放式开发系统模块:   SPM通用平台开放式开发系统是一套完整的SPM模块化开发平台,简称&ldquo 开发系统&rdquo 。包括软件 板和 开发模硬件开发套件。如果您需要在已有的SPM功能上开发特殊要求的功能模块,就需要购买开发系 统。目前,离线软件开发模板我们都免费赠送,鼓励用户亲自开发,或者提出详细要求和算法,委托我 们为SPM定制1-2个特殊功能的处理插件,这都是免费的服务。 软硬件结合的特殊功能的SPM开发就要使用&ldquo 开发系统&rdquo 了。这套系统具体包括软件开发模板、硬件 扩展接口测试箱(硬件扩展实验板组)、硬件接口插件模板、开发手册。该系统的设计充分考虑了用户级 二次开发的方便性、可行性和可靠性。当然,您也可以购&ldquo 开发系统&rdquo ,然后提出IDEA,由我们来帮您 合作完成。 在您了解了各个功能模块后,您可以选型了,我们为了您搭建了四种机型,它们的外形都基本 一样,那是因为这样便于您今后无障碍模块化升级。 模块/型号 ZL STM-II 型 扫描隧道显微镜 ZLAFM-II型 原子力显微镜 ZLAFM-III型 扫描探针显微镜 ZL3000型扫 描探针显微镜 扫描隧道 显微镜模块         原子力显微镜 基础模块         原子力 显微镜 专业模块         摩擦力 显微镜模块     可选配    磁力/静电力 显微镜模块         样品定位 铺助模块   可选配     纳米 加工 模块   可选配 可选配 可选配 SPM通用平台 开发系统     可选配 可选配 扫描探针 声学模块     可选配 可选配 各功能模块介绍摘要: 1.扫描隧道显微镜只能检测 导电样品,因其有样品的局限性,所以通常作为教学仪器。 2.原子力显微镜对样品没有导电性的要求,应用范围十分广泛。AFM基础模块包括接触模式和横 向模式;AFM专业模块包括轻巧和相移模式。 3.接触模式AFM适合检测表面强度较高、结构稳定的样品。 4.横向力模式AFM可以获得样品纳米尺度局限上探针的横向作用力分布图。 5.轻敲模式AFM适合检测粉体颗粒、生物样品及其它柔软、易碎、易吸附的样品,但分辨率比接 触模式较低。 6.相移模式AFM对不同组分材料的组分变化比较敏感。 7.磁力显微镜可以获得样品纳米尺度局域上磁畴结构及分布图。 8.静电力显微镜可以获得样品纳米尺度局域上静电场分布图。 9.样品定位辅助模块用于实现样品在毫米量级范围内以纳米精度搜寻定位。 10.纳米加工模块用于实现矢量刻蚀和图形刻蚀方法的纳米加工。 11.如需开发特殊功能SPM,需要购买SPM通用平台开放式开发系统。 配置/型号 ZL STM-II ZL AFM-I ZL AFM-II ZL AFM-III ZL 3000 主机 可扩展式电子学控制机箱 多模式扫描探针显微镜组合式探头 扫描隧道显微镜 原子力显微镜 接触/横向力 模式 原子力显微镜 轻敲/相移 模式 摩擦力显微镜 磁力/静电力显微镜 针尖粗调/自动趋近机构 扫描器(单一多量程自适应扫描器不更换技术) 针尖架 扫描隧道模式针尖架 原子力基础模式针尖架 原子力专业模式针尖架 磁力模式针尖架 静电力模式针尖架 组合式纳米级减振系统 1个 包含 包含 包含 包含 包含                     1套 6&mu m 6&mu m 50&mu m 50&mu m 100&mu m 1个 2个 3个 5个 1个       1套 软件 系统   在线控制软件 1套 离线图像处理/分析软件 离线软件开发模板 摩擦力分析软件         网络实验室远程控制软件       培训课件/实验教材/科普教材/说明书光盘   附件 标准样品 1套 样品载片 5片 5片 10片 10片 15片 STM探针 Pt-Ir 20 20cm   20cm AFM接触/横向力/摩擦力模式探针(进口)   10枚 AFM轻敲/相移模式探针(进口)       10枚 MFM磁力探针(进口)         5枚 EFM导电探针(进口) 5枚 专用工具(镊子、针尖剪刀、玻璃皿 等) 1套 样品 定位 模块 高分辨CCD光学显微系统 可选配 高精度电控样品移动平台     纳米加工模块 SPM通用平台开放式开发系统
  • 新疆理化所在ESIPT探针调控检测高锰酸钾方面取得进展
    高锰酸钾(KMnO4)是制作简易爆炸装置常用的氧化剂原料之一,同时也被广泛用于医药消毒、水质净化、工业生产等领域,其过量摄入或排放会对人体及环境造成严重的危害。因此,实现对微量高锰酸钾的超灵敏、特异性、快速检测对维护公共安全和环境保护具有重要意义。近年来,激发态分子内质子转移(ESIPT)类分子因具有大的斯托克斯位移、强的光稳定性、高的量子产率和对周围介质的光敏感性等特点,被广泛用于反应型荧光探针的设计。ESIPT探针的发光性能可通过溶剂氢键作用、分子异构化、介质酸/碱度和化学修饰等来调节。目前,大多数化学修饰策略主要集中于研究分子性质和ESIPT变化过程,而关于分子对目标分析物传感性能影响的研究很少被应用于实际检测。因此,是否可以采用化学修饰策略来提高ESIPT探针的传感性能尚不清楚,而该方面的研究将对理性设计高效探针具有重要意义。基于此,中国科学院新疆理化技术研究所痕量化学物质感知团队提出了识别基团对位取代基吸电子强度精确调控提升ESIPT荧光探针反应活性及产物荧光稳定性的探针分子设计策略。基于KMnO4氧化不饱和烯烃的性质,以2-(2’-羟基苯基)苯并恶唑(HBO)为荧光团,采用缩合反应将识别位点丙烯酰基接枝于HBO的质子给体-OH上以抑制ESIPT过程的发生,在识别位点的对位引入不同吸电子强度的取代基团(-F、-CHO、-H、-CH3),设计合成了四种ESIPT基荧光探针(BOPA-F, BOPA-CHO, BOPA-H, BOPA-CH3)。当检测KMnO4时,可以打断碳碳双键形成邻二羟基,随后酯键断裂释放质子给体,ESIPT过程被激发,进而实现对KMnO4的荧光点亮检测。进一步研究发现,取代基吸电子强度调控可显著地提升探针检测KMnO4时的荧光强度及荧光稳定性。理论计算结果表明,取代基的改变有效调节了探针对KMnO4的反应活性及产物的振子强度。以具有较强吸电子能力的-CHO作为取代基的探针BOPA-CHO对KMnO4具有最佳检测效果,检测限为0.96 nM,响应时间 3 s,对21种其它氧化剂及常见的阴/阳离子表现出优异的特异性,反应产物荧光稳定时间至少可达7天。此外,以聚氨酯海绵作为传感基底,构建了探针BOPA-CHO-海绵基测试笔,对KMnO4微粒的检测限可达11.62 ng,且对土壤中含量为1%的KMnO4微粒及手套表面63 ng/cm2的残留颗粒仍可观察到特征蓝色荧光,充分验证了探针BOPA-CHO在实际应用场景中的适用性。   该工作提出的吸电子强度精确调控提升ESIPT探针反应活性及产物荧光稳定性的探针分子设计策略,被证明是一种可用于在复杂场景下识别痕量KMnO4溶液、固体微粒和残留物的可靠、有效的方法。更重要的是,它将有助于促进化学科学、分子工程以及先进传感技术等领域的快速发展。   相关成果以“Precise Electron-Withdrawing Strength Modulation of ESIPT Probes for Ultrasensitive and Specific Fluorescence Sensing”为题发表于《分析化学》(Analytical Chemistry)期刊。论文第一作者为中北大学与中国科学院新疆理化技术研究所联合培养硕士研究生郭延文,通讯作者为中国科学院新疆理化技术研究所蔡珍珍副研究员、窦新存研究员和中北大学张树海教授。该工作得到了国家自然科学基金、中国科学院青年创新促进会、中科院从0到1原始创新等项目的资金支持。吸电子强度调控ESIPT探针构筑策略、响应机制及海绵基测试笔实际场景检测示意图
  • 新疆理化所等在ESIPT探针调控检测高锰酸钾方面取得进展
    高锰酸钾(KMnO4)广泛用于医药消毒、水质净化、工业生产等领域,但过量摄入或排放会对人体及环境造成危害。因此,实现对微量高锰酸钾的超灵敏、特异性、快速检测具有重要意义。近年来,激发态分子内质子转移(ESIPT)类分子因具有大的斯托克斯位移、强的光稳定性、高的量子产率以及对周围介质的光敏感性等特点,被用于反应型荧光探针的设计。ESIPT探针的发光性能可通过溶剂氢键作用、分子异构化、介质酸/碱度和化学修饰等来调节。目前,多数化学修饰策略集中于研究分子性质和ESIPT变化过程,而关于分子对目标分析物传感性能影响的研究较少被应用于实际检测。因此,是否可以采用化学修饰策略来提高ESIPT探针的传感性能尚不清楚,而该方面的研究将对理性设计高效探针具有重要意义。中国科学院新疆理化技术研究所痕量化学物质感知团队提出了识别基团对位取代基吸电子强度精确调控提升ESIPT荧光探针反应活性及产物荧光稳定性的探针分子设计策略。研究基于KMnO4氧化不饱和烯烃的性质,以2-(2’-羟基苯基)苯并恶唑(HBO)为荧光团,采用缩合反应将识别位点丙烯酰基接枝于HBO的质子给体-OH上以抑制ESIPT过程的发生,在识别位点的对位引入不同吸电子强度的取代基团(-F、-CHO、-H、-CH3),设计合成了四种ESIPT基荧光探针(BOPA-F、BOPA-CHO、BOPA-H、BOPA-CH3)。当检测KMnO4时,可以打断碳碳双键形成邻二羟基,随后酯键断裂释放质子给体,ESIPT过程被激发,进而实现对KMnO4的荧光点亮检测。进一步的研究发现,取代基吸电子强度调控可显著地提升探针检测KMnO4时的荧光强度及荧光稳定性。理论计算结果表明,取代基的改变有效调节了探针对KMnO4的反应活性及产物的振子强度。以具有较强吸电子能力的-CHO作为取代基的探针BOPA-CHO对KMnO4具有最佳检测效果,检测限为0.96 nM,响应时间<3 s,对21种其他氧化剂及常见的阴/阳离子表现出优异的特异性,反应产物荧光稳定时间至少可达7天。此外,研究以聚氨酯海绵作为传感基底,构建了探针BOPA-CHO-海绵基测试笔,对KMnO4微粒的检测限可达11.62 ng,且对土壤中含量为1%的KMnO4微粒及手套表面63 ng/cm2的残留颗粒仍可观察到特征蓝色荧光,验证了探针BOPA-CHO在实际应用场景中的适用性。该工作提出的吸电子强度精确调控提升ESIPT探针反应活性及产物荧光稳定性的探针分子设计策略,被证明是可用于在复杂场景下识别痕量KMnO4溶液、固体微粒和残留物的可靠、有效的方法。同时,该策略将有助于促进化学科学、分子工程以及先进传感技术等领域的快速发展。相关研究成果以Precise Electron-Withdrawing Strength Modulation of ESIPT Probes for Ultrasensitive and Specific Fluorescence Sensing为题,发表在《分析化学》(Analytical Chemistry)上。研究工作得到国家自然科学基金、中国科学院青年创新促进会、中国科学院基础前沿科学研究计划从0到1原始创新项目等的支持。该工作由新疆理化所和中北大学合作完成。吸电子强度调控ESIPT探针构筑策略、响应机制及海绵基测试笔实际场景检测示意图
  • 国产高端扫描探针显微镜突破,北大江颖团队实现成果转化
    近日,北京大学物理学院、轻元素先进材料研究中心江颖教授课题组与刘开辉教授课题组合作,自主研发了一台qPlus型光耦合扫描探针显微镜。该显微镜性能达到国际最好水平,其中原子力传感器振幅噪音和品质因子国际领先。相关技术细节发表在国际著名科学仪器杂志《科学仪器评论》(Review of Scientific Instruments)。相关专利技术已经成功实现转让,并完成了首台商业化样机。有望打破长期的国际垄断局面。图1. 自行研制的qPlus型光耦合扫描探针显微镜商业化样机由于技术受限和经验缺乏,我国的高端扫描探针显微镜多年来一直严重依赖进口。在这种被动的局面下,江颖课题组十多年来一直致力于研发扫描探针显微镜的核心部件以及高分辨成像和谱学技术,不断挑战扫描探针技术的探测极限。尤其是成功研发出一套具有自主知识产权的基于qPlus传感器的非侵扰式扫描探针显微术,该技术通过探测极其微弱的高阶静电力,刷新了扫描探针显微镜的空间分辨率,国际上首次实现了水分子中氢原子的直接成像,将水的微观实验研究带入一个全新的时代。图2. 自制qPlus型光耦合扫描探针显微镜的核心部件。A和B,光耦合扫描探头的三维设计图和实物图。C,qPlus原子力传感器。D,聚焦离子束刻蚀后的针尖。在关键技术获得突破的基础上,江颖课题组的程博伟博士、博士研究生吴达和边珂副研究员进一步与刘开辉课题组紧密合作,成功搭建了一台qPlus型光耦合扫描探针显微镜商业化样机(专利1)。该设备兼容超高真空和低温(液氦)环境,电路噪音背底低至5 fA/Hz1/2,针尖高度振动噪音峰小于200 fm/Hz1/2,热漂移小于0.1 pm/min,各项指标达到国际最好水平。同时,该设备的qPlus传感器具有极低的背底振幅噪音(~2 pm)和优异的品质因数(最高140000),达到国际领先水平。此外,该显微镜系统还具备独特性设计,其扫描探头上直接集成了可驱动光学透镜的三维纳米定位器(专利2),大幅提升了光激发与光收集效率,避免了激光聚焦光斑的微抖动问题,使得该显微镜兼备十分优异的光学兼容性,是研究多种分子和材料体系的结构、化学成分及动力学行为的理想工具。图3. 自制qPlus型光耦合扫描探针显微镜的原子力显微成像测试结果。A,qPlus力传感器频率扫描曲线。B和D,不同针尖高度下Au(111)表面二维冰的恒高原子力显微图像(频移图)。C,二维冰表面不同位置的力谱。E和F,二维冰的原子结构图。相关论文:Bowei Cheng, Da Wu, KeBian, Ye Tian, Chaoyu Guo, Kaihui Liu, Ying Jiang, A qPlus-based scanning probe microscope compatible with optical measurements. Review of Scientific Instruments 93, 043701 (2022).(https://doi.org/10.1063/5.0082369)相关专利:[1] 江颖、程博伟、边珂、吴达,一种基于qPlus的光耦合扫描探针显微镜,中国,202121333378.5,2021-09-03。[2] 江颖、程博伟、吴达、边珂,一种透镜三维移动装置,中国,202120697032.7,2021-05-07
  • 上海药物所光致变色荧光糖探针光控识别细胞内靶物质研究获进展
    style type="text/css".TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }/stylestyle type="text/css".TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }/stylep  近日,中国科学院上海药物研究所和华东理工大学合作研究,以“光致变色荧光糖探针光控识别细胞内靶物质”为题的论文,在线发表在《自然-通讯》上,该研究为细胞的靶向、精准功能标记研究提供了新的光可控化学探针工具。/pp  可靶向、精准探测不同细胞生命和疾病过程的荧光探针技术,对生命科学的发展和疾病早期诊断具有重要意义。传统荧光探针易受生物背景光干扰,且通常只能通过被动扩散进入细胞产生待测物识别信号,造成了探测的低精确性。为解决这一关键问题,研究人员通过将螺吡喃光致变色分子、1,8–萘酰亚胺荧光团与具备膜受体主动靶向功能的半乳糖分子共价连接,创制了可通过远程光控实现细胞精准定位及靶标识别的光致变色荧光探针。初步研究发现,通过紫外/可见光的循环照射可实现对探针螺吡喃/部花青结构的可逆调控,进而实现探针萘酰亚胺荧光发射的循环“开/关”控制。此外,探针的螺吡喃态与细胞内广泛存在的硫化物不发生相互作用,而当远程光激活其部花青态时,探针可迅速与亚硫酸根阴离子发生化学反应,从而阻断探针的光致变色活性,使荧光处于恒定的“开启”状态。/pp  基于其独特的光学性质,研究人员进一步应用所构建探针实现了细胞精准荧光标记及光控靶标识别:首先,探针可在水相中形成双亲性胶束,从而通过糖簇与一种膜受体的高亲和力识别实现主动细胞定位。随后,通过紫外/可见光的循环调控,探针可在细胞内执行多次可重复的“荧光闪烁”现象,从而提升了荧光探针在复杂细胞内环境中的定位精准度。最终,探针可通过远程光激活策略(即螺吡喃向部花青结构的光调变)实现细胞内源性亚硫酸根阴离子的灵敏探测与定量。/pp  研究工作得到国家重点基础研究发展计划(973计划)、国家自然科学基金重点项目、国家自然科学基金优秀青年科学基金、高等学校学科创新引智计划(111计划)的资助。/ppbr//pp style="text-align:center "img alt="" oldsrc="W020171107525632911367.png" src="http://img1.17img.cn/17img/images/201711/uepic/74f6b9bf-6e50-4459-9c17-bdff754781c0.jpg"//pp style="text-align: center "光致变色荧光SP-Gal的分子设计及其在溶液和细胞内的作用机制/p
  • 科学家通过扫描探针并行化,提高AFM成像的吞吐量
    近日,研究人员在Nature Communications发表相关论文,提出了一种方法来实现AFM大面积高分辨率的成像。在显微镜中,分辨率和视野通常是互相矛盾的。以原子力显微镜(AFM)为例,悬臂探针在扫描基板时,在局部力的影响下会发生偏转,因此高分辨率成像很大程度上会局限于小区域。尽管原子力显微镜在材料科学、生物学和表面科学等领域产生了巨大的影响,但成像领域的局限性仍然是研究复杂层次结构样品的关键障碍。针对于此,研究人员通过结合无悬臂梁探针结构和用于检测探针-样品接触的可伸缩光学方法,证明了具有1000个探针的大规模平行AFM是可能的。具体而言,发现相对柔顺薄膜上的光学反射锥形探针包含分布式光学杠杆,该杠杆将探针运动转换为提供低于10 nm垂直精度的光信号。这种方法的可扩展性使得它非常适合需要大面积高分辨率的成像应用。原子力显微镜(AFM)自1986年发明以来,已成为获取微纳米尺度表面形貌和功能特性信息的主要方法。为了检测尖端和基底之间的微小力,AFM通常使用在局部力的影响下偏转的微悬臂,产生可以使用光学杠杆检测到的运动。然而,由于基于探针的成像的串行性,只能以较小的视场为代价来获得更高的空间分辨率。目前正在努力解决这一挑战,包括设计具有更高带宽的探测器,以及采用诸如IBM千足虫之类的探测器阵列。然而,现代成像阵列只有30个探头,突出了有效并行悬臂梁传感的困难。虽然AFM界对探针阵列的采用受到限制,但是探针阵列被广泛用于扫描探针光刻(SPL),或者通过机械变形、阳极氧化和直接材料沉积等多种方式使用纳米级物理探针来定义图案的过程。为了解决串行图形固有的有限吞吐量,研究人员探索了一种无悬臂梁结构,其中探针阵列位于刚性表面上的顺应膜上。虽然这种结构赋予了探针所需的柔顺性探针-样品接触和可扩展性提供多达数百万探头,但悬臂梁提供的力感应能力丧失。如果这种无悬臂梁的探针阵列能够被修改以实现探针-样品接触的并行检测,那么它们就可以提供一种大规模并行化AFM的方法,并且可以革命性地增加这种有影响力的成像工具系列的吞吐量。a.实验装置侧视图,探针-样品接触导致弹性体薄膜变形。b.通过蓝宝石晶圆观察弹性薄膜变形时的光学对比度图示。反射光强度I随位置变化x而变化。探针运动的光学特征称为分布光学杠杆。c.用于实现用于成像的探针阵列的微加工工艺,涉及蓝宝石晶片、聚二甲基硅氧烷(PDMS)背衬层、刚性聚合物探针和铝反射涂层。探针阵列的扫描电子显微镜(SEM)图像和比例尺分别为60µm和3µm的阵列d和单个探针e的图像。科研人员在成果中展示了由无悬臂结构中的探针阵列实现的大规模并行原子力显微镜,这些探针通过被称之为分布式光学杠杆的可伸缩光学机制提供局部形貌信息。通过建立分布式光学杠杆的模型,利用配位力和光学显微镜对其进行系统的研究,研究人员发现光学对比度在力和变形方面呈线性关系,能够提供低于10 nm的垂直精度。基于这种结构和成像机制的探针阵列,研究人员同时在阵列中使用1088个探针成像,并以100纳米横向分辨率和9纳米垂直精度在0.5毫米范围内绘制样本高度。该系统的高通量特性使其在高分辨率大面积的领域具有重要的应用前景,如集成电路计量、光学亚表面表征和生物组织的多尺度研究。通过设计分布式光学杠杆来测量每个探针的变形,科研人员证明了扫描探针可以并行化,从而提高AFM成像的吞吐量。在最初的演示中,1088个探针被并行使用,以纳米级分辨率成像5毫米宽的表面。由于其结构简单且与现有的光刻系统兼容,这些探针阵列可以作为独立的成像工具或作为大规模并行光刻系统的补充,以实现纳米组合实验中的同时光刻和成像。并行化在增加成像带宽的同时,也加强了这种方法的主要局限性,即探头无法独立移动以调节探头-样本力或容纳非常高的特征。在这里讨论的探针阵列中,这将对样品平面度和垂直范围施加限制。然而,值得强调的是,显示无悬臂梁阵列不必是被动的,因为扫描探针光刻实验表明,这种阵列可以使用光、热或气动系统进行独立调制,这可能为克服并行化带来的挑战提供了一条途径。有趣的是,亚波长光阑阵列与无悬臂梁结构相结合,实现了无衍射光刻。如果目前的CF-AFM方法可以与这种孔径阵列结合使用,它就有可能实现大规模并行扫描近场光学显微镜(SNOM)。因此,这种成像方法为从组织工程到光学超表面和集成电路的检测等多种应用的表面形貌的快速和高分辨率查询打开了大门。原文链接:https://www.nature.com/articles/s41467-020-20612-3
  • 一文解读扫描探针显微镜拓展模式(一)
    01MFM(Magnetic Force Microscopy,磁力显微镜)磁力显微镜(Magnetic Force Microscopy,MFM)是一种专门用于成像样品表面的磁性分布的扫描探针显微镜,通过探针和样品之间的磁力相互作用来获得信息。MFM应用MFM主要用于研究材料的磁性特征,广泛应用于物理学、材料科学、电子学等领域。常见的应用包括:磁记录介质:研究硬盘、磁带等磁记录设备的磁性结构和缺陷;磁性材料:分析磁性薄膜、纳米颗粒、磁性多层膜等材料的磁畴结构;生物磁性:研究生物组织中天然存在的磁性物质,如磁性细菌。应用实例在自旋存储研究中,以斯格明子的研究为例,传统的磁存储单元受限于材料性质,显著影响自旋存储的高密度需求。斯格明子是一种具有拓扑性质的准粒子,其最小尺寸仅为3nm,远小于磁性隧道结,是理想的信息载体,有望突破信息存储密度的瓶颈。下图为通过MFM表征获取的斯格明子图像。[1]标准斯格明子M-H曲线 斯格明子图像在磁盘研究中,通过MFM可以获取磁盘表面的高分辨率磁性图像,详细了解其磁畴结构和分布情况。MFM具有高空间分辨率和灵敏度,为磁盘材料的研究和优化提供了重要的数据支持。下图展示了通过MFM测试获取的磁盘表面磁畴结构图像。电脑软盘磁畴图像02PFM(Piezoresponse Force Microscopy,压电力显微镜)压电力显微镜(Piezoresponse Force Microscopy,PFM)是一种用于研究材料压电性质的扫描探针显微镜,利用探针与样品表面之间的逆压电效应来成像和测量材料的压电响应。材料由于逆压电效应产生形变示意图 [2]PFM应用PFM广泛应用于材料科学和电子学领域,尤其是在研究和开发新型压电材料和器件方面。具体应用包括:铁电材料:研究铁电材料的畴结构、开关行为和退极化现象。压电器件:分析压电传感器、致动器和存储器件的性能。生物材料:研究生物组织中的压电效应,例如骨骼和牙齿。应用实例具有显著的压电效应,即在外加机械应力作用下产生电荷。这使其在超声波发生器、压电传感器和致动器中具有重要应用。在研究PbTiO3样品时,通过PFM,可以获取PbTiO3表面的高分辨率压电响应图像,详细了解其畴结构和分布情况,为PbTiO3材料的研究和优化提供了重要的数据支持。下图展示了通过PFM测试获取的PbTiO3样品表面压电力图像。PbTiO3垂直幅度图PbTiO3垂直相位图03EFM(Electrical Force Microscopy,静电力显微镜)静电力显微镜是一种用于测量成像样品表面的电静力特性的扫描探针显微镜。EFM通过探针与样品表面之间的静电力相互作用,获取表面电荷分布和电势信息。静电力显微镜(抬起模式)[3]EFM应用EFM广泛应用于材料科学、电子学和纳米技术等领域,常见的应用包括:电荷分布:测量和成像材料表面的电荷分布。表面电势:研究材料表面的电势分布和电特性。半导体器件:分析半导体器件中的电特性和缺陷。纳米电子学:研究纳米级电子器件的电性能。应用实例Au-Ti条带状电极片静电力04KPFM(Kelvin Probe Force Microscopy,开尔文探针力显微镜)KPFM是一种通过探针与样品之间的接触电势差来获取样品功函数和表电势分布的扫描探针显微镜。KPFM广泛应用于金属、半导体、生物等材料表面电势变化和纳米结构电子性能的研究。KPFM 获取 Bi-Fe薄膜样品表面电势 [4]KPFM应用KPFM在材料科学、电子学和纳米技术等领域具有广泛的应用,常见的应用包括:表面电势分布:测量和成像材料表面的局部电势分布。功函数测量:研究材料的功函数变化,特别是对于不同材料的界面和缺陷。半导体器件:分析半导体器件中的电势分布和电学特性。有机电子学:研究有机半导体和有机电子器件的表面电势。应用实例Au-Ti条带状电极片表面电势05SCM(Scanning Capacitance Microscopy,扫描电容显微镜)扫描电容显微镜(Canning Capacitance Microscopy,SCM)是一种用于测量和成像样品表面的电容变化的扫描探针显微镜。SCM能够通过探针与样品表面之间的电容变化,提供高分辨率的局部电学特性图像。这种显微镜适用于研究半导体材料和器件的电学特性,如掺杂浓度分布、电荷分布和界面特性等。SCM在半导体工艺和材料研究、故障分析以及器件优化中发挥着重要作用。通过SCM,研究人员能够获得纳米尺度的电学特性信息,从而推动半导体技术的发展和创新。SCM原理示意图 [5]SCM应用SCM主要应用于半导体材料和器件的研究,广泛应用于电子学和材料科学领域。具体应用包括:掺杂分布:测量和成像半导体材料中的掺杂浓度分布。电荷分布:研究半导体器件中的电荷分布和电场。材料特性:分析不同材料的电容特性和介电常数。06致真精密仪器自主研发的原子力显微镜科研级原子力显微镜AtomEdge产品介绍利用微悬臂探针结构对导体、半导体、绝缘品等固体材料进行三维样貌表征,纵向噪音水平低至0.03 nm(开环),可实现样品表面单个原子层结构形貌图像绘制。可以测量表面的弹性、塑性、硬度、黏着力、磁性、电极化等性质,还可以在真空,大气或溶液下工作,在材料研究中获得了广泛的使用。设备亮点● 多种工作模式● 适配环境:空气、液相● 多功能配置● 稳定性强● 可拓展性良好典型案例晶圆级原子力显微镜Wafer Mapper-M产品介绍利用微悬臂探针结构可对导体、半导体、绝缘品等固体材料进行三维样貌表征。样品台兼容12寸晶圆,电动样品定位台与光学图像相结合,可在300X300mm区域实现1μm的定位精度,激光对准,探针逼近和扫描参数调整完全自动化操作。可用于产线,对晶圆粗糙度进行精密测试。设备亮点● 多种工作模式● 适配环境:空气、液相● 可旋转式扫描头● 多功能配置● 稳定性强、可拓展性良好典型案例参考文献:[1]Li S, Du A, Wang Y, et al. Experimental demonstration of skyrmionic magnetic tunnel junction at room temperature[J]. Science Bulletin, 2022, 67(7): 691-699.[2]Kalinin SV, Gruverman A, eds. Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale. Springer 2007.[3] https://www.afmworkshop.com/products/modes/electric-force-microscopy[4] https://www.ornl.gov/content/electrostatic-and-kelvin-probe-force-microscopy[5] Abdollahi A, Domingo N, Arias I, et al. Converse flexoelectricity yields large piezoresponse force microscopy signals in non-piezoelectric materials[J]. Nature communications, 2019, 10(1): 1266.本文由致真精密仪器原创,转载请标明出处致真精密仪器拥有强大的自主研发和创新能力,产品稳定精良,多次助力中国科研工作者取得高水平科研成果。我们希望与更多优秀科研工作者合作,持续提供更加专业的技术服务和完善的行业解决方案!欢迎联系我们!致真精密仪器一直以来致力于实现高端科技仪器和集成电路测试设备的自主可控和国产替代。通过工程化和产业化攻关,已经研发了一系列磁学与自旋电子学领域的前沿科研设备,包括“原子力显微镜、高精度VSM、MOKE等磁学测量设备、各类磁场探针台、磁性芯片测试机等产线级设备、物理气相沉积设备、芯片制造与应用教学训练成套系统等”等,如有需要,我们的产品专家可以提供免费的项目申报辅助、产品调研与报价、采购论证工作。另外,我们可以为各位老师提供免费测试服务,有“磁畴测试”、“SOT磁畴翻转”、“斯格明子观测”、“转角/变场二次谐波”、“ST-FMR测量”、“磁控溅射镀膜”等相关需求的老师,可以随时与我们联系。
  • 化学发光探针检测技术速查病原菌
    吉林检验检疫局建立的金标法检测单核细胞增生性李斯特氏菌技术作为当今检测病原体和诊断疾病方面最为敏感的免疫学技术之一,不仅操作简便、快速、特异,更为重要的是适用于广大基层食品监管部门的现场检测和诊断,这些特点都是其他免疫学方法所无法比拟的。  该技术不仅具有巨大的发展潜力,而且还具有广阔的市场和应用前景,如可适用于医疗卫生行业,出入境食品口岸抽查和鉴定、流通领域卫生监督和工商行政部门和质监部门的食品企业监管等,甚至可以走进餐馆、家庭进行简易的食品自控和检测等。  由吉林出入境检验检疫局承担的国家质检总局科研课题《应用化学发光探针及免疫金标法检测食品中多种致病菌的研究》在2011年获得了国家质检总局“科技兴检”三等奖。该课题建立的化学发光探针检测技术能够快速检测食品中常见的四种病原菌:空肠弯曲菌、单核细胞增生性李斯特氏菌、大肠杆菌O157和金黄色葡萄球菌。其中对单核细胞增生性李斯特氏菌还建立了应用免疫胶体金试纸条的快速检测方法。  急需速测技术  我国的食品生产加工企业数量多,规模小,较分散,而且为数较多企业过分追求利润法律意识淡薄,社会责任心不强导致其产品质量良莠不齐。  据报道,我国45万个食品生产企业中,员工人数10人以下的食品生产加工小作坊就有35万家,约占80%,因而导致食品安全事故时有发生,给社会和消费者的健康造成了巨大危害。  而目前的食品卫生监管的检测手段主要依据国家标准或行业标准规定方法进行,虽然这些方法准确可靠,但这些方法一般都需要建设专门的微生物检测实验室,配备专业的检测技术人员,需要较长的检测周期,由此造成的检测成本过高,缺乏时效性等问题,使一些突发的食品安全事件不能迅速得以解决。因此发展和建立一种快速、简便、灵敏准确的检测技术,作为标准检测方法的初筛技术,是解决上述问题的有效手段之一。  食品检验新兵  化学发光探针技术的原理是互补的核酸单链会特异性识别并结合成稳定的双链复合物。这一检测系统利用一个标记有化学发光物的单链DNA探针,可以特异性的识别和结合目标微生物的核糖体RNA。微生物中的核糖体RNA释放出来后,化学发光标记的DNA探针就与之结合形成稳定的DNA-RNA杂合体。标记的DNA-RNA杂合体会与非杂交探针分离,并在化学发光检测仪中进行测量。样本的检测结果通过计算与阴性对照进行比较得出结果。利用化学发光剂标记和检测核酸使得许多非放射性标记检测的灵敏度达到甚至超过了同位素标记测定。  在众多的化学发光体系中,应用最多的化学发光体主要有三类:增强鲁米诺发光体系、吖啶类化合物发光体系和碱性磷酸酶催化的1,2-二氧环己烷发光体系。吉林检验检疫局建立的化学发光技术使用吖啶酯标记核酸探针。  利用化学发光杂交保护分析的原理检测空肠弯曲菌、单核细胞增生性李斯特氏菌、大肠杆菌O157和金黄色葡萄球菌4种致病菌特异性RNA序列,这种方法无需物理分离,利用吖啶酯标记DNA探针,通过核酸杂交保护分析法,即应用人工合成的靶DNA保守区的寡核苷酸,在合成时引入一个烷氨基的手臂,经活化后接上吖啶酯,制成化学发光探针。  杂交后无需分离步骤,而是利用差分水解来鉴别,即加入碱性溶液,游离的发光探针遇碱水解失去发光特性,而与特异性目的片段结合的探针形成DNA-RNA杂交体,由于吖啶酯是平面结构很容易进入双螺旋的内部而获得杂交保护,水解速度缓慢(半衰期达10分钟以上),仍有发光性能,可以在发光仪上显示化学发光信号,从而实现对病原菌的检测。  应用前景广阔  该项目利用胶体金技术研制了胶体金检测试纸条,用于单核细胞增生性李斯特氏菌的快速检测,该检测试纸条的灵敏度高,具有很强的特异性,不同批次生产的免疫胶体金具有良好的检测重现性,稳定性好,操作简单,检测时间只需10至20min即可报告结果,胶体金法无污染,不会危害操作者以及环境。胶体金抗体复合物在冻干状态下室温储存相当稳定,有效期长 此外胶体金技术还具有检测迅速、灵敏、不需要复杂仪器设备、产品永不褪色等优点,适合于食品中单核细胞增生性李斯特氏菌的初筛检验。  吉林检验检疫局建立的基因探针化学发光检测方法可在30分钟内快速确定病原体,并可直接于固体或液体培养基上鉴定目标微生物。该方法可直接应用于国外生产的LEADER 50i检测仪上,仪器自动注入检测试剂,立刻测量标记物所产生化学反应的化学发光强度,并自动计算结果及打印报告,该检测方法敏感性高,特异性强,检测成本低,操作简便、快速,对我国食品安全快速检测和监控工作具有重要意义,具有广泛的推广前景。胶体金快速检测试纸
  • 新疆理化所基于探针结构精细调控实现高氯酸盐可视化检测
    高氯酸盐具有强氧化性和高稳定性,是广泛应用于固体推进剂、军工生产、航天器材、烟花爆竹等领域的重要含能材料之一。据美国爆炸数据中心统计,以高氯酸盐/氯酸盐作为原料直接或间接参与的爆炸案达全球爆炸案总量的63.4%。因此,开展对痕量高氯酸盐固体的高灵敏、准确的现场检测对保障国家公共安全具有重要的现实意义。中国科学院新疆理化技术研究所爆炸物传感检测团队长期致力于痕量危化品检测方法研究,在危爆品、特别是非制式爆炸物的高灵敏、快速、识别检测原理和器件设计方面发展了系列新的解决方案(Adv. Mater. 2020, 32, 1907043、Adv. Sci. 2020, 2002991、Angew. Chem. Int. Ed. 2022,DOI: 10.1002/anie.202203358等)。近期在高氯酸盐现场可视化检测方面取得进展,提出了一种基于自组装配合物探针与水凝胶耦合作用协同调控的超高灵敏比色-荧光双模可视化传感新策略,成功实现了超痕量高氯酸盐的现场双模可视化检测。该团队以三联吡啶铂(II)辅助配体为切入口,结合量子化学计算,系统研究了不同辅助配体对水溶液中三联吡啶铂(II)自组装产物Pt-Pt金属作用导致的MMLCT态光谱能量和发光稳定性的影响,阐明了辅助配体调控高氯酸根诱导聚集产物发光性质的一般性规律。研究发现,异硫氰酸根为辅助配体时,高氯酸根诱导聚集的三联吡啶铂(II)自组装产物具有能量最低且最稳定的MMLCT吸收/发射光谱,而溴为辅助配体时,自组装产物的MMLCT发生强度最高。因此,结合反阴离子调控,获得了具有良好水溶性的三联吡啶铂(II)配合物高氯酸盐比色-荧光双模可视化探针,实现了对高氯酸盐的高灵敏、高特异、快速、双模可视化传感。在此基础上,该团队提出了利用水凝胶反应介质与探针之间的耦合效应对传感材料发光信号局域增强的提升策略。通过将该铂(II)配合物探针与具有均一网络结构的PVA水凝胶耦合,利用自组装生成的微米级一维纤维状聚集体与水凝胶网络的相互作用,实现了对发光产物的完全锚定,实现了对0.75 μm(0.73 fg)高氯酸盐单颗粒的比色-荧光双模传感信号的直接观测,对空气中高氯酸盐悬浮微粒的检测限低至0.02 fg。该研究提出的辅助配体精细调控提升自组装阴离子探针双模可视化传感性能的策略,不仅可为具有特异双模光学响应信号的阴离子探针设计提供指导,还发展了基于单颗粒响应信号直接观测的超灵敏嗅觉传感方法,可为其他超痕量难挥发化学物质传感提供借鉴。此外,爆炸物传感检测团队以该研究为核心,与新疆公安厅共同发布自治区地方标准1项(DB 65/T 4451-2021《氯酸盐和高氯酸盐的检测目视化学比色法》),为相关行业提供了高氯酸盐检验鉴定操作规范。系列研究成果分别发表在《Journal of Materials Chemistry A》(杂志封底)和《Sensors and Actuators B: Chemical》上,博士研究生苏珍为第一作者,导师窦新存研究员和李毓姝副研究员为共同通讯作者,相关理论计算部分与太原科技大学李坤教授合作完成。研究工作得到国家自然科学基金委、中国科学院及自治区相关项目的资助。论文链接:https://pubs.rsc.org/en/content/articlelanding/2022/ta/d2ta00843bhttps://www.sciencedirect.com/science/article/pii/S0925400521002975封底链接:https://pubs.rsc.org/en/content/articlelanding/2022/ta/d2ta90087d
  • 《自然—通讯》:中国团队开发出新型荧光探针
    论文截图9月12日,中国科学院深圳先进技术研究院医工所生物医学光学与分子影像研究中心储军课题组的最新成果发表于《自然—通讯》。研究人员研发了在活细胞内具有12倍荧光变化的高性能基因编码的cAMP绿色荧光探针(命名为G-Flamp1)。该研究结合显微成像和光纤记录等技术,实时高灵敏监测了果蝇和小鼠等模式生物在特定行为过程中特定神经元的cAMP信号时空动力学变化,探索了cAMP动力学与动物行为之间的内在关联。Nature Methods的审稿人在审稿过程中对该成果给予了高度评价,认为G-Flamp1探针具有非常棒的性质,在荧光探针的性能上具有很大的提升,该探针打开了很多有趣的cAMP信号研究的大门,是非常及时和高质量的研究成果。深圳先进院储军研究员为该论文的通讯作者,深圳先进院助理研究员王亮博士及北京大学邬春灵博士为该论文的共同第一作者。细胞是包括人类在内的绝大部分生命体结构和功能的基本单位。细胞不断地接受周围环境的信号,并将其转变为细胞内相应分子(如蛋白质、有机小分子、离子、DNA和RNA等)的数量、分布和活性状态的变化,从而改变细胞的形态和生物学功能等。该过程的异常则与疾病的发生发展相关。因此,科学家们往往通过检测上述关键分子的时空变化来理解细胞的功能,并阐明相关疾病的发生机制。在该研究中,研究人员选取细胞内重要的第二信使分子环磷酸腺苷(cAMP)作为研究目标。cAMP可传递细胞表面多种G蛋白偶联受体(GPCR)的信息,在学习与记忆、药物成瘾、运动控制、免疫、肿瘤、代谢等过程中发挥重要作用。“活细胞和活体水平的cAMP分子浓度变化的高时空分辨率荧光成像是解析cAMP信号通路及其生物学功能的重要基础。因此,开发高灵敏的cAMP荧光探针成为研究复杂生物过程的关键。”论文通讯作者储军研究员表示。与非基因编码探针(染料和材料类)相比,基因编码探针像正常蛋白质一样,可以定位到生物体特定细胞或特定细胞亚结构,具有低毒性、低背景、可遗传等优点,在生命科学基础研究中具有无可比拟的优势。然而,现有的50多个基因编码的cAMP荧光探针要么灵敏度低(荧光变化最大只有1.5倍),要么荧光亮度较暗,很难监测活体中微弱的内源性cAMP变化,极大地限制了生理和病理状态下cAMP分子调控机理和功能的研究。为了开发适用于活体检测的高灵敏度探针,研究人员将环化重排绿色荧光蛋白(cpGFP)插入细菌MlotiK1通道蛋白的cAMP结合结构域(mlCNBD)中。经过插入位点筛选、连接肽优化、荧光蛋白及感应模块优化,得到了具有高亮度、高灵敏度、合适亲和力和快响应速度等特征的高性能基因编码cAMP绿色荧光探针G-Flamp1。特别的,该探针在活细胞中的荧光变化可达12倍,是目前少数几个在10倍以上的荧光探针之一。随后,研究人员将G-Flamp1探针应用在果蝇这一模式生物中。果蝇脑部蘑菇体(mushroom body)的Kenyon细胞中cAMP信号通路在气味相关的记忆中发挥关键作用。研究人员首先获取了Kenyon细胞中表达G-Flamp1探针的转基因果蝇,然后利用双光子成像发现,果蝇受到气味或电击刺激时,蘑菇体不同子区域呈现不一样的cAMP信号时空变化,暗示不同子区域可能在联想性学习中起着相对独立的作用。为验证G-Flamp1探针在活体动物中检测cAMP 动态变化的实用性,研究人员利用腺相关病毒在小鼠运动皮层中共表达绿色G-Flamp1探针和红色jRGECO1a钙探针。活体双光子成像揭示了跑步运动中细胞特异性的cAMP信号,并与钙信号无明显相关性。这反映了小鼠运动时大脑皮层M1神经元反应的异质性。最后,研究人员在小鼠大脑深部的伏隔核(NAc)脑区中表达G-Flamp1探针,并利用光纤记录听觉巴甫洛夫条件反射任务中该脑区cAMP信号的变化。结果表明,随着训练的熟练,小鼠得到奖赏时cAMP信号幅度在降低,而听到相应声频信号时cAMP信号幅度在升高;该特性与多巴胺信号类似,暗示多巴胺释放引起了cAMP信号。因此,G-Flamp1探针的高信噪比和高时间分辨率能够高灵敏检测到活体小鼠中内源性cAMP信号的动态变化。综上所述,该研究开发了一种适用于活体检测的cAMP荧光探针,并初步揭示了果蝇和小鼠等模式生物在特定行为过程中特定神经元的cAMP信号变化的规律,为进一步理解cAMP信号的调控和功能奠定了基础。“与广泛使用的钙离子探针GCaMP相比,G-Flamp1才仅仅只是开始,目前已有几十家国内外实验室在使用G-Flamp1,未来将会有更多实验室利用G-Flamp1来研究复杂的生物学问题。”论文通讯作者储军研究员表示。在未来研究中,研究团队将进一步提高探针性能,开发适用于不同应用场景的下一代高灵敏cAMP探针,并利用其揭示活细胞和活体中cAMP信号的规律、调控机制及生物学功能。与此同时,结合高内涵药物筛选平台,研究团队开发的新型探针也将尝试应用于针对GPCR受体的药物筛选,以期发现更多的具有临床价值的GPCR药物。
  • 新型高性能基因编码的环磷酸腺苷荧光探针
    近日,中国科学院深圳先进技术研究院生物医学与健康工程研究所生物医学光学与分子影像研究中心研究员储军课题组在《自然-通讯》(Nature Communications)上,发表了题为A high-performance genetically encoded fluorescent indicator for in vivo cAMP imaging的研究论文,报道了高性能基因编码的环磷酸腺苷(cAMP)荧光探针及其应用。  cAMP是细胞内关键第二信使,可整合来自多种G蛋白偶联受体(GPCR)的信号,在学习与记忆、药物成瘾、运动控制、免疫、肿瘤、代谢等过程中发挥重要作用。活细胞和活体水平的cAMP分子浓度变化的高时空分辨率荧光成像是解析cAMP信号通路及其生物学功能的重要基础。因此,开发高灵敏的cAMP荧光探针成为研究复杂生物过程的关键。与非基因编码探针(染料和材料类)相比,基因编码探针具有低毒性、低背景、可遗传、可定位特定细胞亚结构或特定细胞等优点,在生命科学基础研究中具有优势。然而,现有的50多个基因编码的cAMP荧光探针或灵敏度低(荧光变化最大只有1.5倍),或荧光亮度较暗,较难监测活体中微弱的内源性cAMP变化,限制了生理和病理状态下cAMP分子调控机理和功能的研究。  为了开发适用于活体检测的高灵敏度探针,研究人员将环化重排绿色荧光蛋白(cpGFP)插入细菌MlotiK1通道的cAMP结合结构域(mlCNBD)中。经过插入位点筛选、连接肽优化、荧光蛋白及感应模块优化,研究得到了具有高亮度、高灵敏度、合适亲和力和快响应速度等特征的高性能基因编码cAMP绿色荧光探针(G-Flamp1)。晶体结构显示G-Flamp1探针的连接肽具有独一无二的结构:其中一个连接肽是一个非常刚性的 β-strand 结构,这在其他晶体结构已知的环化重排荧光蛋白探针中是不存在的,为开发其他高性能探针提供了新思路和新方法。  在体外实验中,结合/未结合cAMP的G-Flamp1有不同发色团环境。G-Flamp1在450 nm(单光子)或者900-920 nm(双光子)激发下,动态范围达最大,即ΔF/F0约为13。G-Flamp1与cAMP亲和力适中,其解离常数Kd值为2.17 μM。G-Flamp1可在亚秒时间分辨率上检测cAMP动态变化。在培养细胞中,该探针均匀分布在细胞质和细胞核中,本底荧光亮度介于同类探针cAMPr和Flamindo2之间。G-Flamp1探针在活细胞中的动态范围达到了12倍,是目前少数几个动态范围在10倍以上的荧光蛋白探针之一。同时,该探针具有良好的特异性和可逆性(图1)。  研究人员将G-Flamp1探针应用在果蝇这一模式生物中。果蝇脑部蘑菇体(mushroom body)的Kenyon细胞中cAMP信号通路在气味相关的记忆中发挥关键作用。研究首先获取了Kenyon细胞中表达G-Flamp1探针的转基因果蝇,而后利用双光子成像发现,果蝇受到气味或电击刺激时,蘑菇体不同子区域呈现不一样的cAMP信号时空变化(图2),暗示不同子区域可能在联想性学习中起着相对独立的作用。  为验证G-Flamp1探针在活体动物中检测cAMP 动态变化的实用性,研究人员利用腺相关病毒在小鼠运动皮层中共表达绿色G-Flamp1探针和红色jRGECO1a钙探针。活体双光子成像揭示了跑步运动中细胞特异性的cAMP信号,并与钙信号无明显相关性(图3)。这反映了小鼠运动时大脑皮层M1神经元反应的异质性。  研究人员在小鼠大脑深部的伏隔核(NAc)脑区中表达G-Flamp1探针,并利用光纤记录听觉巴甫洛夫条件反射任务中该脑区cAMP信号的变化。结果表明随着训练的熟练,小鼠得到奖赏时cAMP信号幅度在降低,而听到相应声频信号时cAMP信号幅度在升高(图4);该特性与多巴胺信号类似,暗示多巴胺释放引起了cAMP信号。综上,G-Flamp1探针的高信噪比和高时间分辨率能够高灵敏检测到活体小鼠中内源性cAMP信号的动态变化。  该研究开发了一种适用于活体检测的cAMP荧光探针,并初步揭示了果蝇和小鼠等模式生物在特定行为过程中特定神经元的cAMP信号变化的规律,为进一步阐释cAMP信号的调控和功能奠定了基础。结合高内涵药物筛选平台,该探针将尝试应用于针对GPCR受体的药物筛选,以期发现更多的具有临床价值的GPCR药物。  研究工作得到国家重点研发计划、国家自然科学基金等项目的资助,并获得北京大学、中科院神经科学研究所、中山大学附属第五医院、美国堪萨斯州立大学、华中科技大学等的支持。
  • 我司在上海某高校成功安装基于Janis 探针台和Keithley 4200半导体特性仪的测试系统。
    我司于2017年1月在上海某高校成功安装基于Janis 探针台和Keithley 4200半导体特性仪的测试系统。该探针台配置四个三同轴探针臂和两个光纤探针臂,漏电流优于50fA。该探针台变温范围大(8K-675K)。我司提供Keithley 4200半导体特性仪,并提供集成变温IV、CV和输运和转移特性等测试软件 变温测量IV和VI曲线 变温场效应管(横坐标Vgs,纵坐标Ids, 不同曲线代表不同的Vds和温度) 变温场效应管(横坐标Vds,纵坐标Ids, 变温CV测试(横坐标偏压,纵坐 不同曲线代表不同的Vgs和温度) 标电容,不同曲线代表不同温度)
  • 世界上首个高精度离子探针设备在澳建成
    一个能够检测武器级的铀(signs of weapons-grade uranium)、新的矿石储量和验证地球上早期生命的科研实验设备最近在西澳大利亚大学建设成功。  这个建于该大学显微研究中心,带有超灵敏微型离子探针(ultra sensitive microprobe)的高灵敏度显微镜,具有独特的描述和分析功能。该中心是目前世界上唯一能够安放两台此类实验装置的实验室。在启动仪式上,创新、工业与科研部长Kim Carr说,这种超灵敏的微型离子探针将会极大地提高该设备开展世界领先科研的能力。  新的微型探针通过打在检测样本上的高能量离子束,有能力检测出各种不同物质之间的化学特性的差异。它能用来追踪远古已灭绝动物的迁移轨迹,从而搜寻它们灭亡的原因。  其它应用还包括研究珊瑚的生长规律,以便更好地了解澳大利亚大堡礁珊瑚白化病的成因和气候变化问题,以及区分造成危害的污染来源。  微型探针也能够被用于研究远古的陨石, 帮助我们了解太阳系是如何形成的。  这种新型微型探针在南半球目前只有一个,而全世界也只有15个。  Kim Carr部长,这个设备的潜力是广阔和巨大的, 来自全国各地的研究人员将会非常渴望使用这一新设备。对于600万澳元的微型探针的高投入,澳大利亚政府已经投入了150万澳元经费支持。政府还将继续投资新的大型科研设备。
  • 世界最先进离子探针质谱仪将落户山东 可用于探月工程
    p  8月14日上午,经过一年多的努力,在山东省国土资源厅的领导下,在北京离子探针中心的大力支持和帮助下,山东省地质科学研究院与澳大利亚科学仪器公司签约,世界上最先进的高分辨二次离子探针质谱仪(SHRIMP V)将落户山东,这是全世界第一台第五代离子探针仪,是国际上最先进的微区原位轻同位素分析仪器,将来可为探月工程做贡献。/pp style="text-align: center "img title="1.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/181eda97-f10d-44dc-9871-e108305c44f1.jpg"//pp  strong山东省地质科学院与澳大利亚科学仪器公司签约,订购全世界第一台第五代离子探针仪/strong/pp strong 多次调研,决定引进/strong/pp  2016年6月3日,山东省地质科学研究院与国家科技基础条件平台——北京离子探针中心达成战略合作协议,建设山东离子探针中心,拟引进世界上最先进的高分辨二次离子探针质谱仪。当年10月26日,山东离子探针中心建设项目顺利通过了包括5位院士在内的专家委员会的可行性论证;10月27日,省国土资源厅副厅长宋守军带队赴北京离子探针中心调研,为在省地科院成立山东离子探针中心做准备。/pp  离子探针分析仪是一种分析“神器”,它最擅长的是测定岩石年龄,对石油、大气、地质构造、地震等学科的研究也大有用处。但设备昂贵,目前我国仅有2台Ⅱ代产品。在通过院士、专家论证及广泛调研基础上,山东省地科院做出了一个惊人之举,决定花3000余万元订购目前世界上最先进、最高分辨率的第V代离子探针分析仪。这台离子探针,比北京离子探针中心的还要先进三代。/ppstrong  为新旧动能转换打造科技平台/strong/pp  8月14日上午10点,山东省地质科学院与澳大利亚科学仪器公司签约,订购全世界第一台第五代离子探针仪。离子探针仪将于两年后完成生产,运抵济南,在山东离子探针中心投入使用。/pp  这台离子探针仪将是全世界第一台第五代离子探针仪,是目前国际上最先进的微区原位轻同位素分析仪器,将来,我国探月工程采集的月岩样品有可能会拿到山东离子探针中心,通过这台仪器来进行年代学研究。/pp  省地科院党委书记、理事长于学峰说,“山东离子探针中心的建设将有助于创新地学研究的新技术和新方法,促进金矿资源领域国家重点实验室建设,完善我省国土资源创新平台体系,更是贯彻落实国家和省创新驱动发展战略、有效推动新旧动能转换的重要举措。”/pp  strong培养人才,用五年打造国际影响力/strong/pp  作为山东离子探针中心项目的促成者——北京离子探针中心主任刘敦一教授介绍,之所以选择与山东省地科院合作,促成第五代离子探针仪的引进,就是看重了山东省地科院积极向上的科研追求精神,“这种主动性非常可贵,而且山东省国土资源厅又特别支持科技创新,将来的山东离子探针中心成就显而易见。”/pp  “引进第五代离子探针仪只是关键一步,与之配套的实验室建设、人才培养都要跟上。”在签约仪式上,山东省国土资源厅副厅长宋守军表示,离子探针仪是世界领先的高精尖科技仪器,仪器引进来从使用到维修保养都需要专业人才,省地科院要加快人才培养,在五年的时间里将山东离子探针中心建设成一个方向明确、特色突出、技术先进、向全国和国际开放的国际化实验室,尽快将山东离子探针中心推向国际地学研究的舞台前沿。/pp /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制