当前位置: 仪器信息网 > 行业主题 > >

微模式生物自动分选系统

仪器信息网微模式生物自动分选系统专题为您提供2024年最新微模式生物自动分选系统价格报价、厂家品牌的相关信息, 包括微模式生物自动分选系统参数、型号等,不管是国产,还是进口品牌的微模式生物自动分选系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微模式生物自动分选系统相关的耗材配件、试剂标物,还有微模式生物自动分选系统相关的最新资讯、资料,以及微模式生物自动分选系统相关的解决方案。

微模式生物自动分选系统相关的论坛

  • 流式细胞胞仪的分析及分选原理

    流式细胞胞仪的分析及分选原理流式细胞仪由液流系统、光学与信号转换测试系统和数字信号处理及放大的计算机系统三大基本结构组成。在对细胞悬液中的单个细胞或其超微结构进行多参数快速自动分析过程中,每秒钟能测量数千个至数万个细胞,能在分析过程中按实验设计要求对特定细胞进行分析,带细胞分选系统的流式细胞仪还可按实验设计要求分选出具相同特征的同类型细胞,用于培养或进一步研究。一、工作原理流式细胞仪的工作原理借鉴了荧光显微镜技术,将荧光显微镜的激发光源改为激光,使其具有了更好的单色性与激发[/

  • 【分享】全自动微生物鉴定系统在临床微生物检验中的应用

    [size=4] 传统的微生物分离、鉴定方法操作繁杂,周期长,准确性差,灵敏度低,对实验室技术人员的专业技术、操作技能、工作经验要求极高,快速和准确获得细菌的鉴定及药敏结果是非常必要的。近年来随着计算机的发展及广泛应用,微生物鉴定的自动化技术近十几年得到了快速发展。先后出现了许多全自动细菌鉴定与药敏系统,比如VITEK 系统、MicroScan WaikAway系统、MicroScan AS-4 微生物分析仪、PHOENIXTM系统等。这些技术的应用,为医学微生物检验工作提供了一个简便、科学的细菌鉴定程序,大大提高了细菌鉴定的准确性,在很大程度上提高了工作效率,但同时也应注意一些问题,本文对几种常用的鉴定系统在临床微生物检验中的应用情况做一综述。[back=rgb(243, 40, 255)]1 全自动微生物鉴定系统的基本原理 [/back] 全自动微生物鉴定系统是基于生物信息编码(数码)鉴定细菌的新方法。数码鉴定是指通过数学的编码技术将细菌的生化反应模式转换成数学模式,给每种细菌的反应模式赋予一组数码,建立数据库或编成检索本。通过对未知菌进行有关生化试验并将生化反应结果转换成数字(编码),查阅检索本或数据库,得到细菌名称。其基本原理是计算并比较数据库内每个细菌条目对系统中每个生化反应出现的频率总和。 鉴定系统的工作原理因不同的仪器和系统而异。不同的细菌对底物的反应不同是生化反应鉴定细菌的基础,而试验结果的准确度取决于鉴定系统配套培养基的制备方法、培养物浓度、孵育条件和结果判定等。大多鉴定系统采用细菌分解底物后反应液中pH的变化,色原性或荧光原性底物的酶解,测定挥发或不挥发酸,或识别是否生长等方法来分析鉴定细菌。 药敏试验分析系统的基本原理是将抗生素微量稀释在条孔或条板中,加入菌悬液孵育后放入仪器或在仪器中直接孵育,通过测定细菌生长的浊度,或测定培养基中荧光指示剂的强度或荧光原性物质的水解,观察细菌的生长情况。在含有抗生素的培养基中,浊度的增加提示细菌生长,根据判断标准解释敏感或耐药。[/size]

  • 循环肿瘤细胞(CTCs)检测分选进样系统微小正负压精密控制的解决方案

    循环肿瘤细胞(CTCs)检测分选进样系统微小正负压精密控制的解决方案

    [align=center][img=压力驱动分选进样系统,690,371]https://ng1.17img.cn/bbsfiles/images/2022/06/202206231002395286_2664_3384_3.png!w690x371.jpg[/img][/align][color=#000099]摘要:在循环肿瘤细胞等细胞分选进样系统中,需要在一个标准大气压附近很小的正负压范围对压力进行精密控制,这就对控制方法、气体流量调节阀、压力传感器和控制器提出了更高的要求。本文将针对这些技术问题,提出高精度正负压精密控制解决方案,并详细介绍控制方法和其中软硬件的功能和技术指标,由此可实现0.5%的控制精度。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#000099]一、问题的提出[/color][/size]循环肿瘤细胞(Circulating Tumor Cells,CTC)分选已被认为是癌症诊断和预后的有效工具,要求相应的检测装置能够执行所有实验过程而无需任何人工干预的自动、快速且灵敏。对于一些基于压力驱动液体流动原理的进样系统,要求通过精确控制气体的压力, 确保进样过程中流量稳定并实现自动反馈调节,并需要气压供应装置提供正压和负压以使检测装置中的泵及阀门动作。但在目前的CTC检测装置进样系统中,气压的精密控制还存在以下几方面的问题需要解决:(1)现有的气压供应装置无法提供微小的气压,常会导致泵的薄膜破损而无法使用,且现有的气压供应装置亦无法提供常压,使泵的薄膜在检测过程中无法回到平坦状态,造成细胞破损,故需要有可以提供微气压及常压至检测装置的气压供应装置。为了解决此问题,给微流道芯片提供正压、负压或常压,专利CN 216499436U“气压供应装置”中提出了一种非常复杂的概念性解决方案,标称正压气体的压力大小调节至 1~6psi,负压气体的压力大小调节至?1~6psi,正负压微调节阀可以精密至±0 .01psi。但这些指标恰恰是微压力调节阀的关键,如果没有能达到这种技术指标的调节阀,所述方案根本无法实现。(2)上海理工大学王固兵等人在2020年发表的“基于气压驱动的循环肿瘤细胞分选进样系统的设计与实现“一文中,提出了一种采用德国tecno PS120000 比例电磁阀的技术方案。但这种工业用比例阀主要是用于高压气体的压力控制,口径也较大,控制精度显然不能满足微小正负压的精密控制,而且无法外接高精度压力传感器来提升控制精度,根本无法实现文中提出的达到压力输出精度为1mbar(0.015psi)的指标,相对于1bar大气压这相当于达到0.1%的控制精度,这个指标显然不切合实际。从上述报道可以看出,细胞分选进样系统的压力控制需要在一个标准大气压附近很小的正负压范围对真空压力进行精密控制,这就对控制方法、气体流量调节阀、压力传感器和控制器提出了更高的要求。本文将针对这些技术问题,提出高精度正负压精密控制解决方案,并详细介绍控制方法和其中软硬件的功能和技术指标,由此可实现0.5%的控制精度。[size=18px][color=#000099]二、解决方案[/color][/size]本文所提出的解决方案是实现在一个标准大气压附近±10psi(或±700mbar)范围内的正负压精密控制,控制精度达到0.5%。即提供一个可控气压源解决方案,采用双向控制模式的动态平衡法,结合高精度步进电机和微小流量电动针阀、高精度压力传感器和双通道PID控制器,气压源可进行高精度的正压、负压和一个大气压的可编程输出。微小正负压精密控制的基本原理如图1所示,具体内容为:[align=center][img=气压驱动分选进样系统,690,377]https://ng1.17img.cn/bbsfiles/images/2022/06/202206231005336655_4666_3384_3.png!w690x377.jpg[/img][/align][align=center]图1 微小正负压精密控制原理框图[/align](1)控制原理基于密闭空腔进气和出气的动态平衡法。这是一个典型闭环控制回路,2通道PID控制器采集真空压力传感器信号并与设定值进行比较,然后调节进气和抽气调节阀的开度,最终使传感器测量值与设定值相等而实现真空压力的准确控制。(2)控制回路分别配备了抽气泵(负压源)和气源(正压源),以提供足够的负压和正压能力。(3)为了覆盖负压到正压的所要求的真空压力范围(如-10psi至+10psi),配置一个测试量程覆盖要求范围内的高精度绝对压力传感器,绝对压力传感器对应上述真空压力范围输出数值从小到大的直流模拟信号(如0~10VDC)。此模拟信号输入给PID控制器,由PID控制器调节进气阀和排气阀的开度而实现压力精确控制。采用绝对压力传感器的优势是不受当地大气气压变化的影响,无需采取气压修正,更能保证测试的准确性和重复性。(4)当控制是从负压到正压进行变化时,一开始的进气调节阀开度(进气流量)要远小于抽气调节阀开度(抽气流量),通过自动调节进出气流量达到不同的平衡状态来实现不同的负压控制,最终进气调节阀开度逐渐要远大于抽气调节阀开度,由此实现负压到正压范围内一系列设定点或斜线的连续精密控制。对于从正压到负压压的变化控制,上述过程正好相反。[size=18px][color=#000099]三、方案具体内容[/color][/size]解决方案中所涉及的微小正负压力发生器的具体结构如图2所示,主要包括高压气源、电动针阀、密闭空腔、压力传感器、高精度PID控制器和抽气泵。[align=center][img=气压驱动分选进样系统,690,465]https://ng1.17img.cn/bbsfiles/images/2022/06/202206231006045409_5247_3384_3.png!w690x465.jpg[/img][/align][align=center]图2 微小正负压精密控制的压力发生器结构示意图[/align]在图2所示的微小正负压控制系统中,密闭空腔上的工作压力出口连接检测仪器,密闭空腔左右安装两个NCNV系列的步进电机电动针阀,此电动针阀本身就是正负压两用调节阀,其绝对真空压力范围为0.0001mbar~7bar,最大流量为40mL/min,步进电机单步长为12.7微米,完全能满足小空腔的正负压精密控制。在图2所示的控制系统中使用了两个电动针阀来实现正负压任意设定点的精确控制,也可以从正压到负压的压力线性变化控制,也可以从负压到正压的压力线性变化控制。对于循环肿瘤细胞(CTCs)检测仪器进样系统中的微小正负压控制,要求是在标准大气压附近的真空压力精确控制,如控制精度为±0.5%甚至更小,一般都需要采用调节抽气阀的双向动态模式,即通过双通道PID控制器,一个通道用来恒定进气口处电动针阀的开度基本不变,另一个通道根据PID算法来调节排气口处的电动针阀开度。除了上述恒定进气流量调节抽气流量的控制方法之外,循环肿瘤细胞(CTCs)检测仪器进样系统中的微小正负压的控制精度,主要由压力传感器、PID控制器和电动针阀的精度决定。本方案中的PID控制器采用的是24位AD和16位的DA,电动针阀则是高精度步进电机,因此本解决方案的测试精度主要取决于压力传感器精度,一般至少要选择0.1%精度的压力传感器。对于进样系统中的微小压力控制,往往会要求密闭容器在正负压范围内进行多次往复变化,因此采用了可存储多个编辑程序的PID控制器,设定程度是一条多个折线段构成的曲线,由此可实现正负压往复变化的自动程序控制。在本文所述的解决方案中,为实现正负压的精密控制,如图2所示,针对负压的形成配置了抽气泵。抽气泵相当于一个负压源,但采用真空发生器同样可以达到负压源的效果,负压源采用真空发生器的优点是整个系统只需配备一个高压气源,减少了整个系统的造价、体积和重量,真空发生器连接高压气源即可达到相同的抽气效果。[size=18px][color=#000099]四、总结[/color][/size]本文所述解决方案,完全可以实现循环肿瘤细胞(CTCs)检测仪器进样系统中微小正负压的任意设定点和连续程序形式的精密控制,并且可以达到很高的控制精度和速度,全程自动化。本方案除了微小正负压的自动精密控制之外,另外一个特点是系统简单,正负压控制范围也可以比较宽泛,整个系统小巧和集成化,便于形成小型化的检测仪器。本文解决方案的技术成熟度很高,方案中所涉及的电动针阀和PID控制器,都是目前上海依阳实业有限公司特有的标准产品,其他的压力传感器、抽气泵、真空发生器和高压气源等也是目前市场上常见的标准产品。本文所述解决方案,同样可以适用于各种其他基于气压驱动的微流控进样系统。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【求助】生物工程实验室建设应注意哪些事项?

    我司准备筹建中试平台,请问各大侠,在建设生物工程实验时应注意什么事项呢?我们的方攻方向是:药物合成技术(主要有制备型高效液相色谱仪、制备型FPLC、自动施光仪、超滤系统、高通量药物筛选系统《有多标记检测仪+自动化工作站》;生态修复技术(四通道连续流动分析仪、自动水质监测仪、CO2培养箱等)、分析检测技术(高效液相串联质谱联用仪、电耦合等离子质谱仪等)、海洋生物技术(动植物和微生物细胞发酵罐、带分选功能的流式细胞仪、基因枪、核酸朵交炉及交联仪、冻干机、[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff][url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]基因扩增仪[/color][/url][/color][/url]PCR、组织冻干机等等)请教以下几个事项:1:在建设实验室设计布局时,要考量什么因素,布局有什么特殊的要求呢?2:在水、电气布局时要考虑哪些因素?3:实验室台柜设计有什么要求?4:环境什么特殊要求呢? 拜托了,谢谢!

  • 【全球首发仪式】星赛高通量流式拉曼分选仪,12月30日盛大开启!听报告!赏新品!拿奖品!

    【全球首发仪式】星赛高通量流式拉曼分选仪,12月30日盛大开启!听报告!赏新品!拿奖品!

    [url=https://www.instrument.com.cn/webinar/meetings/FlowRACS/][img=,690,350]https://ng1.17img.cn/bbsfiles/images/2021/12/202112281152512795_9049_2507958_3.jpg!w690x350.jpg[/img][/url] 世间生灵,均由单个细胞组合而成或者发育而来,因此,单个细胞,是生命的功能单元和进化单位。显然,在单个细胞精度的分析与操作,能够在最“深”的水平来理解、设计和改造各种生命体系。但是,面对瀚如星海的细胞世界,如何快速探测细胞的功能呢? 拉曼光谱是一种散射光谱,是化合物中分子键被激发到虚能态却尚未恢复到原始态所引起的、入射光被散射后频率发生变化的现象。我们提出,“拉曼组”(Ramanome)作为一种信息极为丰富的分子光谱,能够在单细胞精度,定量检测细胞代谢各种底物的速率、各种拉曼敏感产物之多样性及其含量、细胞的环境应激性、细胞之间的代谢互作、细胞内代谢物相互转化网络等广阔的细胞代谢表型,还可区分不同的物种。 因此,拉曼组是一种直接刻画“代谢功能”的单细胞表型组。而且,拉曼组手段具有广谱适用、活体、无损、非标记、全景式表型、可分辨复杂功能、快速、高通量、低成本、能耦合下游测序、质谱或培养等重要优势,与现有的单细胞基因组、转录组、蛋白组和代谢物组等手段具有互补性,共同形成一个完整的单细胞多组学方法学体系。 在[b]基金委国家重大科学仪器研制项目、科技部合成生物学重点研发计划[/b]等的支持下,我们研制成功基于拉曼组概念和拉曼分选(RACS)技术的“单细胞分析仪器系列”,包括临床单细胞拉曼药敏快检仪(CAST-R)、高通量流式拉曼分选仪(FlowRACS)、单细胞拉曼分选-测序耦合系统(RACS-Seq)、单细胞微液滴分选系统(EasySort Lego / Compact)等。利用这些原创仪器,我们打通了从单细胞代谢表型组表征到相对应高质量单细胞基因组测定的全流程,为单细胞多组学体系提供了一个全新的维度。 青岛星赛生物科技有限公司(www.singlecellbiotech.com),专注于单细胞维度医疗器械与科学仪器的研发、生产、销售及相关技术服务,基于上述单细胞分析仪器系列,竭诚为客户提供原创、定制化、一体化、全方位的“单细胞代谢表型组表征-分选-测序-培养”解决方案。[b][size=18px][color=#ff0000] 2021年12月30日[/color][/size][/b][size=18px],星赛生物将携年度重磅创新单品——[b]全球首台高通量流式拉曼分选仪FlowRACS[/b]来袭![/size] 立足拉曼组/元拉曼组,依赖于微流控与AI技术,FlowRACS将为合成生物学、精准医学等领域带来重大突破。[b]产品真容、技术细节、精彩报告、有奖竞答[/b]……惊喜多多,不容错过。[size=24px][color=#ff0000][b][url=https://www.instrument.com.cn/webinar/meetings/FlowRACS/][img]https://simg.instrument.com.cn/bbs/images/brow/em17.gif[/img]点击参会![/url][/b][/color][/size]

  • 机器人应用方案 采用机械臂实现电芯的自动分选

    机器人应用方案 采用机械臂实现电芯的自动分选

    近几年,随着新能源汽车市场快速扩张,储能电池需求也正在加速增长,以致中国锂离子动力电池需求也将猛涨,其中动力电池成为锂离子电池产业增长的主导力量。据统计显示,2015年中国锂电池产量为46.80GWH;2016年达到62.34GWH,同比增长33.2%。预计到2020年中国锂离子电池市场规模将达到170.55GWH,未来4年复合增长超过25%。[color=#333333][img=,580,428]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311015_01_3294819_3.jpg[/img][img=,580,347]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311015_02_3294819_3.jpg[/img][/color][color=#333333] [/color][b]制造工艺[color=#333333]锂电池的生产流程[/color][color=#333333]:[/color][/b][align=center][color=#333333][img=,690,435]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311016_01_3294819_3.jpg[/img] [/color][/align][b][color=#333333]电芯制造工艺流程:[/color][/b][img=,618,312]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311016_02_3294819_3.jpg[/img][b] 分选流程: [img=,579,181]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311016_03_3294819_3.jpg[/img][/b]自动分选方式:以测试仪测试出的电池性能参数为依据进行分类;[img=,400,271]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311016_04_3294819_3.jpg[/img][align=center][b]自动分选设备(模拟图)[/b][/align][img=,449,294]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311017_01_3294819_3.jpg[/img][b]人工分选方式:[/b]Ø 以外观为依据对电池片进行分选Ø 检验方式:全检Ø 操作方式:人工检查[b]检测分类标准: [img=,590,288]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311017_02_3294819_3.jpg[/img][img=,545,300]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311017_03_3294819_3.jpg[/img]需求分析[/b]由于动力电池系统的性能和寿命跟系统成组的单个电芯一致性有着直接的联系,这些一致性包括[u]电芯的质量,尺寸,极柱外观,电压和内阻[/u]。电芯质量与电芯容量有着直接的关系,而系统容量会因为某个低容量电芯引起短板效应,即整体容量降低。电芯尺寸差异会影响电池模块成组,例如电芯厚度差异较大则会影响电池模块厚度方向上的固定,电芯高度一致性差异较大则会影响后续电芯极柱的焊接,高度低的电芯极柱会与电芯连接条产生距离造成焊接失效或产生较大的焊接应力,这个应力具有在后期使用时发生断裂的风险。电芯极柱外观不良,如破损,裂纹,凹坑,锈蚀,其他杂质都会影响后续电芯焊接工艺,造成焊接不良,导致连接失效,以及造成其他安全隐患。电芯电压和内阻一致性差,根据电池的短板效应,会造成电池系统整体性能和寿命下降。综上所述,[u]对电芯的质量、尺寸、极柱外观、电压和内阻控制是必须的,而目前行业里大部分电池系统生产商会对电芯的电压和内阻进行控制,但对电芯质量,尺寸和极柱外观没有做全部控制,而且所有的测量基本靠人工用手测量,测量误差较大,效率低下。[/u]针对以上所述,灵猴机器人自主研发了一套方案(采用机械臂来完成电芯的自动分选),以达到提高电芯各项指标测量的自动化程度,减小人工测量误差以及降低人工生产成本的目的。[b]方案描述[/b]电芯自动分选部分,采用六轴机器人进行搬运分选,四种NG输出,条码不良、厚度不良、重量不良、OCV测试不良,客户标准料盒输出,扫码可查询不良项目。[b]设备外观如下图所示:1 系统框架[/b] [img=,451,288]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311017_04_3294819_3.jpg[/img][table=100%][tr][td] [/td][/tr][/table] [table=100%][tr][td] [/td][/tr][/table] [table=100%][tr][td] [/td][/tr][/table] [table=100%][tr][td] [/td][/tr][/table][align=center][b]设备内部结构图[/b][/align][b]2工艺流程[img=,678,1084]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311018_02_3294819_3.jpg[/img]4.3系统配置1)机械手部件[img=,583,693]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311019_01_3294819_3.jpg[/img]2)取料机构[/b] [img=,690,443]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311019_02_3294819_3.png[/img][table=100%][tr][td] [align=center][color=white]重量传感器[/color][/align] [/td][/tr][/table][b]4.4 技术指标[/b]1:精度:Ø 电阻:±0.5% rdg.±5dgtØ 电压:±0.1% rdg.±3dgt2:效率:0.3S/cell[b]4.5案例照片4.6 优势自动化改进后生产对比表如下:[/b] [img=,690,387]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311019_03_3294819_3.jpg[/img][table=576][tr][td][b] 序号[/b][/td][td][b]生产情况[/b][/td][td][b]设备/人[/b][/td][td] [align=center][b]工序[/b][/align] [/td][td] [align=center][b]人力比较[/b][/align] [/td][td][b]产品效果系统控制[/b][/td][/tr][tr][td=1,2] [align=center]1[/align] [/td][td=1,2] [align=center]现有生产情况[/align] [/td][td] [align=center]人工[/align] [/td][td] [align=center]电芯搬运[/align] [/td][td=1,2] [align=center]人工[/align] [/td][td=1,2] [align=center]稳定性弱,难以保证产品的标准一致[/align] [/td][/tr][tr][td] [align=center]人工[/align] [/td][td] [align=center]检测分类[/align] [/td][/tr][tr][td=1,2] [align=center]2[/align] [/td][td=1,2] [align=center]改进后生产情况[/align] [/td][td] [align=center]机器人[/align] [/td][td] [align=center]电芯搬运[/align] [/td][td=1,2] [align=center]0[/align] [/td][td=1,2] [align=center]系统切换方便,保证产品效果的一致性[/align] [/td][/tr][tr][td] [align=center]机器人[/align] [/td][td] [align=center]检测分类[/align] [/td][/tr][/table][color=#333333]动力电池是新能源电动汽车的三大核心部件之一。如今,同行业竞争非常激烈,要想在未来的市场竞争中脱颖而出,传统装配工艺及生产方式必将被淘汰,因为,电池的主要客户整车制造企业永远不变的要求就是更安全、更可靠性和一致性,智能自动化的生产方式已经成为了车企考量供应商产品的重要指标;所以,提升动力电池模组组装的自动化水平非常必要。[/color][color=#333333][img=,690,471]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311019_05_3294819_3.jpg[/img][/color][color=#333333][/color]

  • 国家蛋白质科学上海设施/国家蛋白质科学中心·上海(筹)生物大分子晶体学线站运行管理员、冷冻电镜系统管理员、流式细胞分选工作人员等岗位招聘

    国家蛋白质科学上海设施/国家蛋白质科学中心·上海(筹)生物大分子晶体学线站运行管理员、冷冻电镜系统管理员、流式细胞分选工作人员等岗位招聘启事国家蛋白质科学研究上海设施是国家重大科技基础设施,是国家级蛋白质科学研究平台;在设施建设基础上,依托中国科学院上海生命科学研究院,委托生物化学与细胞生物学研究所(简称SIBCB)负责筹建成立并管理国家蛋白质科学中心•上海(筹), 负责设施的运行管理。中心位于浦东新区张江高科技园区中区西部(上海市浦东新区海科路333号),临近上海科技大学、中国科学院药物研究所、上海高等研究院等科研机构。中心定位于:支撑国家蛋白质上海设施建设的建设,衔接该设施的运行;聚集培养生命科学与生物技术特别是蛋白质研究的人才,提升国家蛋白质研究能力;进而促进我国蛋白质基础研究的飞跃发展。中心将立足于国家生命科学与生物技术及相关研究领域雄厚的研究基础 和创新实力,成为兼具蛋白质科学研究、技术及成果的转化、集成和应用平台的国家级的重要科学研究单元。国家蛋白质科学中心•上海(筹)现因工作需要,公开招聘生物大分子晶体学线站运行管理员、冷冻电镜系统管理员、自动化控制工程师、软件工程师、流式细胞分选技术员等岗位。一、岗位详情:岗位一: 生物大分子晶体学线站工作人员 4名。(一) 岗位职责:参与蛋白质科学研究中心•上海(筹)在上海同步辐射光源参与生物大分子晶体学线站的运行、维护和管理工作,参与线站的用户服务和技术支持工作;参与5线6站相关的科学研究工作。(二) 任职条件:1、物理、光学、光学工程、结构生物学等专业背景,硕士或以上学历。2、具备基本的生物大分子晶体结构衍射数据收集和数据处理的基本知识;有同步辐射光源生物大分子晶体学线站衍射数据收集经验,束线设计和建造经验者,以及同步辐射线站其他相关工作经验者优先。3、具有良好的人际关系和团队协作精神,工作努力,作风踏实,责任心强。4、身体健康,能长期稳定工作。岗位二:自动化控制系统工程师 1名(一) 岗位职责:参与国家蛋白质科学中心(上海)(筹)在上海同步辐射光源5线6站的建设、运行和管理,充分理解同步辐射光束线站的工作内容和线站用户的实际需求,完成线站自动化控制程序的设计、开发和维护。(二) 任职条件:1、本科以上学历,有 Unix/Linux 平台下的工作经验,熟悉Unix/Linux 工作环境,习惯于在 Unix/Linux 平台下工作。有大量的源代码的阅读经验。2、有丰富的 C/C++ 开发经验.熟悉 Socket 编程和多线程编程。3、良好的英文表达能力。能独立完成项目调研,设计和开发工作。4、有以下背景或经验者优先考虑:有大型系统开发经验者和硬件开发经验者;有软件界面开发经验者;有网络程序开发经验者;熟悉 Tcl/Tk 语言者;有 Unix/Linux 系统管理经验者。5、具有良好的人际关系和团队协作精神,工作努力,作风踏实,责任心强。6、身体健康,能长期稳定工作。岗位三:冷冻电镜系统管理员 A 1名(一) 岗位职责:负责电镜负染及冷冻样品制样,样品检测、用户服务。参与中心电镜(包括200 kV TF20及120kV T12)的日常管理,用户培训、技术支持等。(二) 任职条件:1. 具有生物、医学或物理等相关专业的本科或以上学位,有电镜操作或生物电镜样品制样经验者优先考虑;2.有工作热情,乐于学习新技术,有较强的动手能力;3.为人诚实、乐于助人,具有良好的沟通能力、服务精神和团队协作精神;4. 具有良好的中英文口头表达和写作能力;5. 身体健康,能长期稳定工作。岗位四:冷冻电镜系统管理员 B 1名(一) 岗位职责:负责用户项目的合作及服务研究。可以独立应用TITAN Krios及TF20电镜,进行cryo-EM single particle及cryo-ET的数据收集、处理和结构分析,或可独立开展高压冷冻、超薄切片服务等。参与中心电镜(包括300 kV TITAN Krios,200 kV TF20及120kV T12)的日常管理,用户培训、技术支持等。(二) 任职条件:1.应聘者有3年或以上冷冻透射电镜使用经验,具有独立完成cryo-EM single particle及cryo-ET的数据收集、处理和结构分析的能力和经验;或者可以独立开展高压冷冻、超薄切片服务等;2. 具有生物物理学或相关专业的硕士或以上学位,有SCI第一作者论文;具有良好的中英文口头表达和写作能力;3.有工作热情,乐于学习新技术,有较强的动手能力;4.为人诚实、乐于助人,具有良好的沟通能力和团队协作精神;5. 身体健康,能长期稳定工作。 岗位五: 软件工程师 1名(一) 工作职责:1、 编写或依据设计说明书,落实代码的实现工作,确保系统设计的合理性、可扩充性和代码编写的规范性。2、 对接受的开发任务进行评估,细化分配任务,制定软件开发阶段的具体技术实施计划。解决项目中的关键问题和技术难题。3、 根据要求协助进行需求分析及确认工作。执行单元测试、集成测试及回归测试,查出并解决软件在存的缺陷并保证其质量可靠。4、 进行项目相关技术文档的编写工作。5、 辅助保障项目的质量监控和进度管理。6、 完成上级交办的其他工作。(二) 任职条件:1、 计算机相关专业,本科以上学历。2、 熟练掌握Java语言,掌握SQL语言和数据库应用开发。3、 熟练使用JavaScript、Ajax、Jquery客户端脚本技术,有高通量数据开发经历者优先,有Android及IOS开发经验者优先。4、 善于分析项目要求,对系统框架设计有独立解决方案;能独立进行需求需求分析、设计及代码编写工作,具有较强的逻辑思维能力,问题缺陷分析处理能力。5、 责任心、事业心强,能承受工作压力,具备良好的沟通协调能力,良好的合作意识和团队协作精神,愿意分担其它工程项目职责。岗位六: 流式细胞分选技术员 1名(一) 岗位职责:1. 主要负责荧光激发细胞分选仪的操作、管理服务及样品制备;2. 负责流式细胞仪的操作,用户培训和技术支持;3. 负责普通荧光显微镜的操作、管理服务及技术支持,保证设备正常运行及日常维护;4. 参与并协调系统公共行政事务(如预算、采购、预约系统等),与中心相关职能部门对接;收集整合系统宣传信息,与中心宣传对接。(二) 任职条件:1. 生物学相关专业,硕士或以上学历;2. 掌握流式细胞分选技术,有流式、显微镜理论及操作基础,能熟练操作显微镜相关的中小型仪器;3. 具有良好的独立工作能力、创新工作精神;工作积极主动,具有团结奉献精神,乐于学习和接受新事物;4. 为人诚实,工作认真踏实、积极主动,责任心强,善于团队合作;5. 良好的英文文献阅读和理解能力;6. 身体健康,能长期稳定工作。二、薪酬福利:我

  • 国家蛋白质科学上海设施/国家蛋白质科学中心·上海(筹)诚聘生物大分子晶体学线站运行管理员、冷冻电镜系统管理员、流式细胞分选等岗位工作人员

    国家蛋白质科学上海设施/国家蛋白质科学中心·上海(筹)生物大分子晶体学线站运行管理员、冷冻电镜系统管理员等岗位招聘启事国家蛋白质科学研究上海设施是国家重大科技基础设施,是国家级蛋白质科学研究平台;在设施建设基础上,依托中国科学院上海生命科学研究院,委托生物化学与细胞生物学研究所(简称SIBCB)负责筹建成立并管理国家蛋白质科学中心•上海(筹), 负责设施的运行管理。中心位于浦东新区张江高科技园区中区西部(上海市浦东新区海科路333号),临近上海科技大学、中国科学院药物研究所、上海高等研究院等科研机构。中心定位于:支撑国家蛋白质上海设施建设的建设,衔接该设施的运行;聚集培养生命科学与生物技术特别是蛋白质研究的人才,提升国家蛋白质研究能力;进而促进我国蛋白质基础研究的飞跃发展。中心将立足于国家生命科学与生物技术及相关研究领域雄厚的研究基础 和创新实力,成为兼具蛋白质科学研究、技术及成果的转化、集成和应用平台的国家级的重要科学研究单元。国家蛋白质科学中心•上海(筹)现因工作需要,公开招聘生物大分子晶体学线站运行管理员、冷冻电镜系统管理员、自动化控制工程师、软件工程师、流式细胞分选技术员等岗位。一、岗位详情:岗位一: 生物大分子晶体学线站工作人员 4名。(一) 岗位职责:参与蛋白质科学研究中心•上海(筹)在上海同步辐射光源参与生物大分子晶体学线站的运行、维护和管理工作,参与线站的用户服务和技术支持工作;参与5线6站相关的科学研究工作。(二) 任职条件:1、物理、光学、光学工程、结构生物学等专业背景,硕士或以上学历。2、具备基本的生物大分子晶体结构衍射数据收集和数据处理的基本知识;有同步辐射光源生物大分子晶体学线站衍射数据收集经验,束线设计和建造经验者,以及同步辐射线站其他相关工作经验者优先。3、具有良好的人际关系和团队协作精神,工作努力,作风踏实,责任心强。4、身体健康,能长期稳定工作。岗位二:自动化控制系统工程师 1名(一) 岗位职责:参与国家蛋白质科学中心(上海)(筹)在上海同步辐射光源5线6站的建设、运行和管理,充分理解同步辐射光束线站的工作内容和线站用户的实际需求,完成线站自动化控制程序的设计、开发和维护。(二) 任职条件:1、本科以上学历,有 Unix/Linux 平台下的工作经验,熟悉Unix/Linux 工作环境,习惯于在 Unix/Linux 平台下工作。有大量的源代码的阅读经验。2、有丰富的 C/C++ 开发经验.熟悉 Socket 编程和多线程编程。3、良好的英文表达能力。能独立完成项目调研,设计和开发工作。4、有以下背景或经验者优先考虑:有大型系统开发经验者和硬件开发经验者;有软件界面开发经验者;有网络程序开发经验者;熟悉 Tcl/Tk 语言者;有 Unix/Linux 系统管理经验者。5、具有良好的人际关系和团队协作精神,工作努力,作风踏实,责任心强。6、身体健康,能长期稳定工作。岗位三:冷冻电镜系统管理员 A 1名(一) 岗位职责:负责电镜负染及冷冻样品制样,样品检测、用户服务。参与中心电镜(包括200 kV TF20及120kV T12)的日常管理,用户培训、技术支持等。(二) 任职条件:1. 具有生物、医学或物理等相关专业的本科或以上学位,有电镜操作或生物电镜样品制样经验者优先考虑;2.有工作热情,乐于学习新技术,有较强的动手能力;3.为人诚实、乐于助人,具有良好的沟通能力、服务精神和团队协作精神;4. 具有良好的中英文口头表达和写作能力;5. 身体健康,能长期稳定工作。岗位四:冷冻电镜系统管理员 B 1名(一) 岗位职责:负责用户项目的合作及服务研究。可以独立应用TITAN Krios及TF20电镜,进行cryo-EM single particle及cryo-ET的数据收集、处理和结构分析,或可独立开展高压冷冻、超薄切片服务等。参与中心电镜(包括300 kV TITAN Krios,200 kV TF20及120kV T12)的日常管理,用户培训、技术支持等。(二) 任职条件:1.应聘者有3年或以上冷冻透射电镜使用经验,具有独立完成cryo-EM single particle及cryo-ET的数据收集、处理和结构分析的能力和经验;或者可以独立开展高压冷冻、超薄切片服务等;2. 具有生物物理学或相关专业的硕士或以上学位,有SCI第一作者论文;具有良好的中英文口头表达和写作能力;3.有工作热情,乐于学习新技术,有较强的动手能力;4.为人诚实、乐于助人,具有良好的沟通能力和团队协作精神;5. 身体健康,能长期稳定工作。 岗位五: 软件工程师 1名(一) 工作职责:1、 编写或依据设计说明书,落实代码的实现工作,确保系统设计的合理性、可扩充性和代码编写的规范性。2、 对接受的开发任务进行评估,细化分配任务,制定软件开发阶段的具体技术实施计划。解决项目中的关键问题和技术难题。3、 根据要求协助进行需求分析及确认工作。执行单元测试、集成测试及回归测试,查出并解决软件在存的缺陷并保证其质量可靠。4、 进行项目相关技术文档的编写工作。5、 辅助保障项目的质量监控和进度管理。6、 完成上级交办的其他工作。(二) 任职条件:1、 计算机相关专业,本科以上学历。2、 熟练掌握Java语言,掌握SQL语言和数据库应用开发。3、 熟练使用JavaScript、Ajax、Jquery客户端脚本技术,有高通量数据开发经历者优先,有Android及IOS开发经验者优先。4、 善于分析项目要求,对系统框架设计有独立解决方案;能独立进行需求需求分析、设计及代码编写工作,具有较强的逻辑思维能力,问题缺陷分析处理能力。5、 责任心、事业心强,能承受工作压力,具备良好的沟通协调能力,良好的合作意识和团队协作精神,愿意分担其它工程项目职责。岗位六: 流式细胞分选技术员 1名(一) 岗位职责:1. 主要负责荧光激发细胞分选仪的操作、管理服务及样品制备;2. 负责流式细胞仪的操作,用户培训和技术支持;3. 负责普通荧光显微镜的操作、管理服务及技术支持,保证设备正常运行及日常维护;4. 参与并协调系统公共行政事务(如预算、采购、预约系统等),与中心相关职能部门对接;收集整合系统宣传信息,与中心宣传对接。(二) 任职条件:1. 生物学相关专业,硕士或以上学历;2. 掌握流式细胞分选技术,有流式、显微镜理论及操作基础,能熟练操作显微镜相关的中小型仪器;3. 具有良好的独立工作能力、创新工作精神;工作积极主动,具有团结奉献精神,乐于学习和接受新事物;4. 为人诚实,工作认真踏实、积极主动,责任心强,善于团队合作;5. 良好的英文文献阅读和理解能力;6. 身体健康,能长期稳定工作。二、薪酬福利:我单位将为入职员工提供有

  • 双光子激光扫描显微镜的检测模式及其在生物医学领域的应用

    双光子激光扫描显微镜的检测模式及其在生物医学领域的应用

    [align=center][b]双光子激光扫描显微镜的检测模式及其在生物医学领域的应用[/b][/align][align=center][font=宋体]刘皎[/font][sup]1[/sup],吴晶[sup]1[/sup][/align][align=center]1. [font=宋体]北京大学医药卫生分析中心,北京,[/font]100191[/align][b][font=黑体][[/font]摘要] [/b]双光子激光扫描显微镜(two-photon laser scan microscope, TPLSM[font=宋体])具有低光毒性、高时空分辨率、高信噪比等优点,结合了激光扫描共聚焦显微镜和双光子激发技术,广泛应用于脑科学、免疫学、肿瘤、胚胎发育等生物医学相关研究领域。本文结合作者所在的北京大学医药卫生分析中心共聚焦平台的工作经验,概述了[/font]TPLSM适用的样本、检测模式以及在生物医学领域的应用,以期为相关科研技术人员提供参考。[b][font=&][Abstract][/font] [/b]Two-photon laser scan microscopy (TPLSM) has the advantages of low phototoxicity, high spatial and temporal resolution, and high signal-to-noise ratio.TPLSM combines laser scanning confocal microscopy with two-photon excitationtechnology and it is widely used in brain science, immunology, tumor, embryodevelopment and other biomedical related research fields. Based on the author'swork experience in the confocal center of Peking University Medical and HealthAnalysis Center, this paper summarizes the applicable samples, detection modesand applications of TPLSM in the biomedical field, in order to provide referencefor related scientific researchers and technicians.[b][font=黑体][[/font]关键词] [/b]显微镜双光子,检测模式,应用[b]1 引言[/b]双光子激发技术的基本原理是在高光子密度情况下,荧光分子可同时吸收2个长波长光子,产生一个一半波长光子去激发荧光分子的相同效果。双光子激光扫描显微镜(two-photon laser scan microscope, TPLSM[font=宋体])在激光扫描共聚焦显微镜的基础上,以红外飞秒激光作为光源,长波长的近红外激光受散射影响小,易穿透标本,可深入组织内部非线性激发荧光,对细胞毒性小且具有高空间分辨率,适合生物样品的深层成像及活体样品的长时间观察成像[/font][1]。使用高能量锁模脉冲激光器,物镜焦点处的光子密度最高,在焦点平面上才有光漂白及光毒性,焦点外不损伤细胞。双光子效应只发生在焦点处,所以双光子显微镜无需共聚焦针孔,也能做到点激发点探测,提高了荧光检测效率[2]。[b][/b]双光子激光扫描显微镜显微镜可以通过XYZ,XYT,XYλ,XYZT,XYλT等多种模式实现多维成像,亦可进行更复杂实验的拍摄,比如二次谐波成像(Second Harmonic Generation Imaging,SHG[font=宋体])、双光子荧光寿命成像([/font]Two-photon Fluorescence Lifetime Imaging Microscopy, TP-FLIM[font=宋体])、荧光寿命[/font]-[font=宋体]荧光共振能量转移成像([/font]FluorescenceLifetime - Fluorescence Resonance Energy Transfer Imaging, FLIM-FRET[font=宋体])等实验以满足对样品的定性、定量、定位、共定位等多维度多功能的研究。[/font]TPLSM已成为生命科学各领域重要的研究工具,可在细胞及亚细胞水平对活体动物的神经细胞形态结构、离子浓度、细胞运动、分子相互作用等生理现象进行直接的长时间成像监测,还能进行光激活染及光损伤等光学操纵,广泛应用于脑科学、免疫学、肿瘤、胚胎发育等生物医学相关研究[3-5]。本文拟通过按TPLSM常见的检测模式分别阐述其在生物医学领域的应用,以其为相关科研技术人员提供参考。[b]2. TPLSM适用的样本[/b]TPLSM适用的样本非常广泛,从液体、固体等形式的材料或制剂、细菌、细胞、细胞团、类器官、组织切片、到各种模式动物(如线虫、果蝇、斑马鱼、小鼠、大鼠、兔、猴等)及其[font=宋体]脑、脊髓、肝脏、肺、皮肤等器官[/font],都可以通过搭载不同载物台进行测试。相对于传统激光扫描共聚焦显微镜200μm的成像深度极限,双光子显微镜成像深度可达800μm,如果是透明化样品可更厚。TPLSM尤其适合活体动物成像,且比小动物荧光成像有更高的分辨率和信噪比,一般TPLSM的XY轴分辨率为200 nm左右,Z轴分辨率为300 nm左右。[b]3. TPLSM的检测模式[/b]3.1 二维成像模式TPLSM可以实现点扫描、点探测,得到生物样品高反差、高分辨率、高灵敏度的二维图像,从而获得细胞/组织等光学切片的物理、生物化学特性及变化。也可以对所感兴趣的区域进行准确的定性、定量及定位分析。激光扫描显微镜的zoom功能,可以用来调节扫描区域的放大倍数。但受物镜分辨率的限制,一味的增大zoom值,不能得到相应的高清图像,需根据实际情况参考piexl size进行设定。TPLSM可以实现XY、XZ或XT的二维成像模式,XT线扫会在后文与XYT时间序列成像一起进行举例说明(图2b)。3.2 三维成像模式3.2.1 Z轴序列三维成像(XYZ)[align=left]TPLSM可沿Z轴方向通过电动载物台的连续扫描对样品进行无损伤的光学切片(XYZ),获得三维立体图像。同理,通过沿Y轴方向连续扫描,可获得连续的XZY图像。如图1所示TPLSM[font=宋体]可以顺利观察到可以观察到血管清晰形态结构:单个胚胎的胎盘微血管(图[/font]1a)、肝脏血窦微血管(图1b)和后肢微血管(图1c)[6]。[/align][align=center][img=,690,230]https://ng1.17img.cn/bbsfiles/images/2022/12/202212151626576232_4807_3237657_3.png!w690x230.jpg[/img][/align][align=center]图1(a)胚胎胎盘微(b)肝脏血窦和(c)后肢的微血管三维成像[/align]3.2.2 时间序列扫描模式(XYT)[align=left]按照一定的时间间隔重复采集,则可实现对该样品的实时监测(XYT)。此类实验可观察组织区域内特异荧光探针标记的单个细胞或细胞内不同部位接受刺激后的整个变化过程。[font=宋体]如图[/font]2[font=宋体]([/font]a[font=宋体]),可以根据微血管[/font]XYT[font=宋体]序列扫描的成像结果中某一血细胞在前后两张图的位置移动和这两帧图的扫描时间间隔计算血流速度。若血流速度很快,[/font]XYT扫描不足以捕捉实际流速,可以使用XT线扫计算。如图2(b),微血管XT扫描图像中绿色荧光背景里的黑色线条代表单个血细胞的流动轨迹,每条线条的横坐标代表血细胞移动的距离(distance / μm[font=宋体]),纵坐标代表此段时间([/font]time/ ms[font=宋体]),根据这两个数据可以计算出单位时间内血细胞的流动速度([/font]μm / ms)[6]。[/align][align=center][img=,690,262]https://ng1.17img.cn/bbsfiles/images/2022/12/202212151627102569_8367_3237657_3.png!w690x262.jpg[/img] [/align][align=center]图2 微血管(a)XYT扫描结果和(b)XT一维扫描结果图像计算血流说明示意图[/align]3.2.3 光谱扫描模式(XYλ/XYΛ)通常配置有可调节接受范围的检测器的TPLSM,可以实现从400nm-800nm的发射波谱扫描。通过配置具有连续可调波长的双光子激光器,还可以实现750nm-1300nm激发波谱扫描。这对于开发研制特殊染料探针的课题来说是很方便、全面的检测功能。3.3四维成像模式(XYZT/XYλT/XYΛT)基于上述三维成像模式,结合时间序列扫描,可以实现TPLSM的四维成像。3.4二次谐波成像(SHG)SHG是一个二阶非线性过程,且一般为非共振过程,适合富含胶原纤维的样本成像,如角膜、鼠尾肌腱、皮肤等。生物组织产生的二次谐波最主要的转换源自胶原,不同生物组织中的二次谐波信号强弱与组织中的胶原含量密切相关,含胶原丰富的组织包括结缔组织和肌肉组织等二次谐波信号也比较强,另外还有一些能产生强二次谐波的生物结构是微管,如细胞分裂中纺锤体。对于具有中心对称性的生物结构,如果局部中心对称性的破坏也会产生二次谐波:在两中心对称介质的界面,不同物态分子的相互作用使局部微观场特性在交界面(如细胞膜)发生突变,从而产生界面二次谐波[7]。除了动物组织外,一些含有特殊分子结构的植物组织也能产生二次谐波。二次谐波显微成像具有高空间分辨率、深成像深度、低损伤、以及对结构对称性的高度敏感性的特点,如果能与其他成像技术结合,将成为生物样品研究的有力工具[8]。3.5双光子荧光寿命成像(TP-FLIM)[9]FLIM技术是研究细胞内生命活动状态的一种非常可靠的方法。荧光寿命是荧光团在返回基态之前处于激发态的平均时间,是荧光团的固有性质,因此其不受探针浓度、激发光强度和光漂白效应等因素影响,且能区分荧光光谱非常接近的不同荧光团,故具有非常好的特异性和很高的灵敏度。此外,由于荧光分子的荧光寿命能十分灵敏地反映激发态分子与周围微环境的相互作用及能量转移,因此FLIM技术常被用来实现对微环境中许多生化参数的定量测量,如细胞中折射率、黏度、温度、pH值的分布和动力学变化等,这在生物医学研究中具有非常重要的意义。目前FLIM技术在细胞生物学中一些重要科学问题的研究、临床医学上一些重大疾病的诊断与治疗研究以及纳米材料的生物医学应用研究等方面均有广泛应用,并取得了许多利用传统的研究手段无法获取的数据。FLIM检测需要脉冲激光,TPLSM带有的高能量锁模脉冲激光器可以满足激发要求。3.6荧光寿命-荧光共振能量转移成像(FLIM-FRET)[10]传统的FRET过程分析通常是基于荧光强度成像来实现,分析的结果容易受光谱串扰的影响。而将FLIM技术应用于FRET过程分析,利用FLIM技术可定量测量这一优势,可非常灵敏地反映供体荧光分子与受体荧光分子之间的能量转移过程。当受体分子与供体之间的距离10nm时,供体的能量转移到受体,受体从基态发生能量跃迁,从而影响供体的荧光寿命。与没有受体分子的时候相比,发生FRET的供体分子的荧光寿命降低。因此,FRET-FLIM联合能够实时监测生物细胞中蛋白质的动态变化,如蛋白质折叠、分子间(蛋白-蛋白,蛋白-核酸)相互作用和细胞间信号分子传递、分子运输以及病理学研究等。[b]4 结论和展望[/b]综上,TPLSM应用灵活,具备多种检测模式,适用于多种样本,亦可实现多种实验目的,如荧光的定量、定性、定位、共定位,动态荧光的测定等。一些特殊的实验模式,将TPLSM在生物医学领域的应用进一步扩大。通过结合其他技术(多手段联合拓展,如膜片钳、原子力显微镜、光电联用等),TPLSM必将成为助力生物医学领域研究的有力工具。双光子荧光成像由于具有天生的三维层析能力以及深穿透能力,在活体生物组织成像上广受欢迎。双光子显微镜镜下空间增大后,可广泛应用于猴、大小鼠、兔等较大的模式动物的活体成像。且可结合电生理技术、光遗传技术,广泛应用于麻醉、清醒或运行行为等生理状态下的动物脑科学神经相关研究,在单细胞、单树突精度上对神经元群体活动进行监控。如结合膜片钳技术,对活体脑组组急性切片神经元进行双光子深层成像[11];结合光遗传技术,实现视觉皮层同一神经元和神经元群体的稳定操控和长期多次重复记录[12];对在健身球上移动的头部固定小鼠小脑进行成像,探讨觉醒状态和运动行为对胶质网络中钙离子的激发的影响[13];结合多种疾病模型,探讨大脑皮层神经元及胶质细胞活性的改变及作用等[14]。随着多种双光子显微镜系统的出现,双光子显微镜成像技术将以其实时、无损地探测、诊断及检测能力,在生物医药及临床医学应用中发挥更大作用。[b]参考文献[/b][1] [font=宋体]李娟[/font],[font=宋体]张岚岚[/font],[font=宋体]吴珏珩[/font].[font=宋体]双光子显微镜的应用优势与维护要素[/font][J].[font=宋体]中国医学装备[/font],2021,18(12):158-163.[2] HendelT,Mank M, Schnell B,et al.Fluorescence changes of genetic calcium indicatorsand OGB1correlated with neural ac tivity and calcium in vivo and in vitro[J].JNeurosci, 2008,28(29):7399-7411.[3] DolginE.What leva lamps and vinaigrette can teach us about cellbiology[J].Nature,2018,555(7696):300-302.[4] Noguchi J,Nagaoka A, Watanabe S,et al.in vivo two-photon uncaging of glutamate revealingthe structure-function relatio nships of dendritic spines in the neocortex ofadult mice[J]. J Physiol,2011,589(Pt 10):2447-2457.[5] BishopD,Nikiél, Brinkoetter M,et al.Nearinfrared branding efficiently correlateslight and electron microscopy[J]. Nat Methods,2011,8(7):568-570.[6] [font=宋体]刘皎[/font],[font=宋体]丛馨[/font],[font=宋体]何其华[/font].[font=宋体]活体小鼠微血管血流倒置双光子激光扫描显微镜检测方法的建立[/font][J].解剖学报,2022,53(02):261-265.[7] [font=宋体]屈军乐[/font],[font=宋体]陈丹妮[/font],[font=宋体]杨建军[/font],[font=宋体]许改霞[/font],[font=宋体]林子扬[/font],[font=宋体]刘立新[/font],[font=宋体]牛憨笨[/font].[font=宋体]二次谐波成像及其在生物医学中的应用[/font][J].[font=宋体]深圳大学学报[/font],2006,(01):1-9.[8] [font=宋体]孙娅楠[/font],[font=宋体]赵静[/font],[font=宋体]李超华[/font],[font=宋体]等[/font].[font=宋体]二次谐波结合双光子荧光成像方法观察人源胶原蛋白透皮吸收情况[/font][J].激光生物学报,2017,26(1):24-29.[9] [font=宋体]刘雄波,林丹樱,吴茜茜,严伟,罗腾,杨志刚,屈军乐,荧光寿命显微成像技术及应用的最新研究进展。物理学报,[/font]2018,67(17):178701-1-178701-14[10] [font=宋体]罗淋淋,牛敬敬,莫蓓莘,林丹樱,刘琳,荧光共振能量转移[/font]-荧光寿命显微成像(FRET-FLIM[font=宋体])技术在生命科学研究中的应用进展。光谱学与光谱分析,[/font]2021,41(4):1023-1031[11] Isom-BatzG,Zimmem PE.Collagen injection for female urinary incontinence after urethralor periurethral surgery[J].J Unol,2009,181(2):701-704.[12] JuN,Jiang R,Mrcknik SL,et al.Long-term all-optical interrogation of corticalneurons in awake-behaving nonhuman prim ates[J].LOSBiology,2018,16(8):e2005839.[13]Nimmerjahn A,Mukamel EA, Schnitzer MJ.Motor behavior activates Bergmann glialnetworks[J].Neuron,2009,62(3):400-412.[23] Huang L, Lafaille JJ, YangG.LearningDependent dendritic spine plasticity is impaired in spontaneousautoimmune encep halomyelitis[J].Dev Neurobiol,2021,81(5):736-745.[14] Huang L,Lafaille JJ,Yang G.LearningDependent dendritic spine plasticity is impaired inspontaneous autoimmune encep halomyelitis[J].Dev Neurobiol, 2021,81(5):736-745.

  • 国家蛋白质科学上海设施/国家蛋白质科学中心·上海(筹)诚聘生物大分子晶体学线站运行管理员、冷冻电镜系统管理员、流式细胞分选等岗位工作人员

    国家蛋白质科学上海设施/国家蛋白质科学中心·上海(筹)生物大分子晶体学线站运行管理员、冷冻电镜系统管理员等岗位招聘启事国家蛋白质科学研究上海设施是国家重大科技基础设施,是国家级蛋白质科学研究平台;在设施建设基础上,依托中国科学院上海生命科学研究院,委托生物化学与细胞生物学研究所(简称SIBCB)负责筹建成立并管理国家蛋白质科学中心•上海(筹), 负责设施的运行管理。中心位于浦东新区张江高科技园区中区西部(上海市浦东新区海科路333号),临近上海科技大学、中国科学院药物研究所、上海高等研究院等科研机构。中心定位于:支撑国家蛋白质上海设施建设的建设,衔接该设施的运行;聚集培养生命科学与生物技术特别是蛋白质研究的人才,提升国家蛋白质研究能力;进而促进我国蛋白质基础研究的飞跃发展。中心将立足于国家生命科学与生物技术及相关研究领域雄厚的研究基础 和创新实力,成为兼具蛋白质科学研究、技术及成果的转化、集成和应用平台的国家级的重要科学研究单元。国家蛋白质科学中心•上海(筹)现因工作需要,公开招聘生物大分子晶体学线站运行管理员、冷冻电镜系统管理员、自动化控制工程师、软件工程师、流式细胞分选技术员等岗位。一、岗位详情:岗位一: 生物大分子晶体学线站工作人员 4名。(一) 岗位职责:参与蛋白质科学研究中心•上海(筹)在上海同步辐射光源参与生物大分子晶体学线站的运行、维护和管理工作,参与线站的用户服务和技术支持工作;参与5线6站相关的科学研究工作。(二) 任职条件:1、物理、光学、光学工程、结构生物学等专业背景,硕士或以上学历。2、具备基本的生物大分子晶体结构衍射数据收集和数据处理的基本知识;有同步辐射光源生物大分子晶体学线站衍射数据收集经验,束线设计和建造经验者,以及同步辐射线站其他相关工作经验者优先。3、具有良好的人际关系和团队协作精神,工作努力,作风踏实,责任心强。4、身体健康,能长期稳定工作。岗位二:自动化控制系统工程师 1名(一) 岗位职责:参与国家蛋白质科学中心(上海)(筹)在上海同步辐射光源5线6站的建设、运行和管理,充分理解同步辐射光束线站的工作内容和线站用户的实际需求,完成线站自动化控制程序的设计、开发和维护。(二) 任职条件:1、本科以上学历,有 Unix/Linux 平台下的工作经验,熟悉Unix/Linux 工作环境,习惯于在 Unix/Linux 平台下工作。有大量的源代码的阅读经验。2、有丰富的 C/C++ 开发经验.熟悉 Socket 编程和多线程编程。3、良好的英文表达能力。能独立完成项目调研,设计和开发工作。4、有以下背景或经验者优先考虑:有大型系统开发经验者和硬件开发经验者;有软件界面开发经验者;有网络程序开发经验者;熟悉 Tcl/Tk 语言者;有 Unix/Linux 系统管理经验者。5、具有良好的人际关系和团队协作精神,工作努力,作风踏实,责任心强。6、身体健康,能长期稳定工作。岗位三:冷冻电镜系统管理员 A 1名(一) 岗位职责:负责电镜负染及冷冻样品制样,样品检测、用户服务。参与中心电镜(包括200 kV TF20及120kV T12)的日常管理,用户培训、技术支持等。(二) 任职条件:1. 具有生物、医学或物理等相关专业的本科或以上学位,有电镜操作或生物电镜样品制样经验者优先考虑;2.有工作热情,乐于学习新技术,有较强的动手能力;3.为人诚实、乐于助人,具有良好的沟通能力、服务精神和团队协作精神;4. 具有良好的中英文口头表达和写作能力;5. 身体健康,能长期稳定工作。岗位四:冷冻电镜系统管理员 B 1名(一) 岗位职责:负责用户项目的合作及服务研究。可以独立应用TITAN Krios及TF20电镜,进行cryo-EM single particle及cryo-ET的数据收集、处理和结构分析,或可独立开展高压冷冻、超薄切片服务等。参与中心电镜(包括300 kV TITAN Krios,200 kV TF20及120kV T12)的日常管理,用户培训、技术支持等。(二) 任职条件:1.应聘者有3年或以上冷冻透射电镜使用经验,具有独立完成cryo-EM single particle及cryo-ET的数据收集、处理和结构分析的能力和经验;或者可以独立开展高压冷冻、超薄切片服务等;2. 具有生物物理学或相关专业的硕士或以上学位,有SCI第一作者论文;具有良好的中英文口头表达和写作能力;3.有工作热情,乐于学习新技术,有较强的动手能力;4.为人诚实、乐于助人,具有良好的沟通能力和团队协作精神;5. 身体健康,能长期稳定工作。 岗位五: 软件工程师 1名(一) 工作职责:1、 编写或依据设计说明书,落实代码的实现工作,确保系统设计的合理性、可扩充性和代码编写的规范性。2、 对接受的开发任务进行评估,细化分配任务,制定软件开发阶段的具体技术实施计划。解决项目中的关键问题和技术难题。3、 根据要求协助进行需求分析及确认工作。执行单元测试、集成测试及回归测试,查出并解决软件在存的缺陷并保证其质量可靠。4、 进行项目相关技术文档的编写工作。5、 辅助保障项目的质量监控和进度管理。6、 完成上级交办的其他工作。(二) 任职条件:1、 计算机相关专业,本科以上学历。2、 熟练掌握Java语言,掌握SQL语言和数据库应用开发。3、 熟练使用JavaScript、Ajax、Jquery客户端脚本技术,有高通量数据开发经历者优先,有Android及IOS开发经验者优先。4、 善于分析项目要求,对系统框架设计有独立解决方案;能独立进行需求需求分析、设计及代码编写工作,具有较强的逻辑思维能力,问题缺陷分析处理能力。5、 责任心、事业心强,能承受工作压力,具备良好的沟通协调能力,良好的合作意识和团队协作精神,愿意分担其它工程项目职责。岗位六: 流式细胞分选技术员 1名(一) 岗位职责:1. 主要负责荧光激发细胞分选仪的操作、管理服务及样品制备;2. 负责流式细胞仪的操作,用户培训和技术支持;3. 负责普通荧光显微镜的操作、管理服务及技术支持,保证设备正常运行及日常维护;4. 参与并协调系统公共行政事务(如预算、采购、预约系统等),与中心相关职能部门对接;收集整合系统宣传信息,与中心宣传对接。(二) 任职条件:1. 生物学相关专业,硕士或以上学历;2. 掌握流式细胞分选技术,有流式、显微镜理论及操作基础,能熟练操作显微镜相关的中小型仪器;3. 具有良好的独立工作能力、创新工作精神;工作积极主动,具有团结奉献精神,乐于学习和接受新事物;4. 为人诚实

  • 国家蛋白质科学上海设施/国家蛋白质科学中心·上海(筹)诚聘生物大分子晶体学线站运行管理员、冷冻电镜系统管理员、流式细胞分选等岗位工作人员

    国家蛋白质科学上海设施/国家蛋白质科学中心·上海(筹)生物大分子晶体学线站运行管理员、冷冻电镜系统管理员等岗位招聘启事国家蛋白质科学研究上海设施是国家重大科技基础设施,是国家级蛋白质科学研究平台;在设施建设基础上,依托中国科学院上海生命科学研究院,委托生物化学与细胞生物学研究所(简称SIBCB)负责筹建成立并管理国家蛋白质科学中心•上海(筹), 负责设施的运行管理。中心位于浦东新区张江高科技园区中区西部(上海市浦东新区海科路333号),临近上海科技大学、中国科学院药物研究所、上海高等研究院等科研机构。中心定位于:支撑国家蛋白质上海设施建设的建设,衔接该设施的运行;聚集培养生命科学与生物技术特别是蛋白质研究的人才,提升国家蛋白质研究能力;进而促进我国蛋白质基础研究的飞跃发展。中心将立足于国家生命科学与生物技术及相关研究领域雄厚的研究基础 和创新实力,成为兼具蛋白质科学研究、技术及成果的转化、集成和应用平台的国家级的重要科学研究单元。国家蛋白质科学中心•上海(筹)现因工作需要,公开招聘生物大分子晶体学线站运行管理员、冷冻电镜系统管理员、自动化控制工程师、软件工程师、流式细胞分选技术员等岗位。一、岗位详情:岗位一: 生物大分子晶体学线站工作人员 4名。(一) 岗位职责:参与蛋白质科学研究中心•上海(筹)在上海同步辐射光源参与生物大分子晶体学线站的运行、维护和管理工作,参与线站的用户服务和技术支持工作;参与5线6站相关的科学研究工作。(二) 任职条件:1、物理、光学、光学工程、结构生物学等专业背景,硕士或以上学历。2、具备基本的生物大分子晶体结构衍射数据收集和数据处理的基本知识;有同步辐射光源生物大分子晶体学线站衍射数据收集经验,束线设计和建造经验者,以及同步辐射线站其他相关工作经验者优先。3、具有良好的人际关系和团队协作精神,工作努力,作风踏实,责任心强。4、身体健康,能长期稳定工作。岗位二:自动化控制系统工程师 1名(一) 岗位职责:参与国家蛋白质科学中心(上海)(筹)在上海同步辐射光源5线6站的建设、运行和管理,充分理解同步辐射光束线站的工作内容和线站用户的实际需求,完成线站自动化控制程序的设计、开发和维护。(二) 任职条件:1、本科以上学历,有 Unix/Linux 平台下的工作经验,熟悉Unix/Linux 工作环境,习惯于在 Unix/Linux 平台下工作。有大量的源代码的阅读经验。2、有丰富的 C/C++ 开发经验.熟悉 Socket 编程和多线程编程。3、良好的英文表达能力。能独立完成项目调研,设计和开发工作。4、有以下背景或经验者优先考虑:有大型系统开发经验者和硬件开发经验者;有软件界面开发经验者;有网络程序开发经验者;熟悉 Tcl/Tk 语言者;有 Unix/Linux 系统管理经验者。5、具有良好的人际关系和团队协作精神,工作努力,作风踏实,责任心强。6、身体健康,能长期稳定工作。岗位三:冷冻电镜系统管理员 A 1名(一) 岗位职责:负责电镜负染及冷冻样品制样,样品检测、用户服务。参与中心电镜(包括200 kV TF20及120kV T12)的日常管理,用户培训、技术支持等。(二) 任职条件:1. 具有生物、医学或物理等相关专业的本科或以上学位,有电镜操作或生物电镜样品制样经验者优先考虑;2.有工作热情,乐于学习新技术,有较强的动手能力;3.为人诚实、乐于助人,具有良好的沟通能力、服务精神和团队协作精神;4. 具有良好的中英文口头表达和写作能力;5. 身体健康,能长期稳定工作。岗位四:冷冻电镜系统管理员 B 1名(一) 岗位职责:负责用户项目的合作及服务研究。可以独立应用TITAN Krios及TF20电镜,进行cryo-EM single particle及cryo-ET的数据收集、处理和结构分析,或可独立开展高压冷冻、超薄切片服务等。参与中心电镜(包括300 kV TITAN Krios,200 kV TF20及120kV T12)的日常管理,用户培训、技术支持等。(二) 任职条件:1.应聘者有3年或以上冷冻透射电镜使用经验,具有独立完成cryo-EM single particle及cryo-ET的数据收集、处理和结构分析的能力和经验;或者可以独立开展高压冷冻、超薄切片服务等;2. 具有生物物理学或相关专业的硕士或以上学位,有SCI第一作者论文;具有良好的中英文口头表达和写作能力;3.有工作热情,乐于学习新技术,有较强的动手能力;4.为人诚实、乐于助人,具有良好的沟通能力和团队协作精神;5. 身体健康,能长期稳定工作。 岗位五: 软件工程师 1名(一) 工作职责:1、 编写或依据设计说明书,落实代码的实现工作,确保系统设计的合理性、可扩充性和代码编写的规范性。2、 对接受的开发任务进行评估,细化分配任务,制定软件开发阶段的具体技术实施计划。解决项目中的关键问题和技术难题。3、 根据要求协助进行需求分析及确认工作。执行单元测试、集成测试及回归测试,查出并解决软件在存的缺陷并保证其质量可靠。4、 进行项目相关技术文档的编写工作。5、 辅助保障项目的质量监控和进度管理。6、 完成上级交办的其他工作。(二) 任职条件:1、 计算机相关专业,本科以上学历。2、 熟练掌握Java语言,掌握SQL语言和数据库应用开发。3、 熟练使用JavaScript、Ajax、Jquery客户端脚本技术,有高通量数据开发经历者优先,有Android及IOS开发经验者优先。4、 善于分析项目要求,对系统框架设计有独立解决方案;能独立进行需求需求分析、设计及代码编写工作,具有较强的逻辑思维能力,问题缺陷分析处理能力。5、 责任心、事业心强,能承受工作压力,具备良好的沟通协调能力,良好的合作意识和团队协作精神,愿意分担其它工程项目职责。岗位六: 流式细胞分选技术员 1名(一) 岗位职责:1. 主要负责荧光激发细胞分选仪的操作、管理服务及样品制备;2. 负责流式细胞仪的操作,用户培训和技术支持;3. 负责普通荧光显微镜的操作、管理服务及技术支持,保证设备正常运行及日常维护;4. 参与并协调系统公共行政事务(如预算、采购、预约系统等),与中心相关职能部门对接;收集整合系统宣传信息,与中心宣传对接。(二) 任职条件:1. 生物学相关专业,硕士或以上学历;2. 掌握流式细胞分选技术,有流式、显微镜理论及操作基础,能熟练操作显微镜相关的中小型仪器;3. 具有良好的独立工作能力、创新工作精神;工作积极主动,具有团结奉献精神,乐于学习和接受新事物;4. 为人诚实

  • 自动进样器进样针进样模式的选择

    大家都知道一般的GCMS自动进样器会提供几种进样针的进样模式,如只进样品,样品+空气,样品+溶剂+空气 等,问一下各位,进1微升+0微升空气和进1微升样品+1微升空气,谱图有什么不同吗?在什么情况下要选择+空气呢?进样的时候选择进空气会不会对柱子造成损害?http://simg.instrument.com.cn/bbs/images/brow/em09511.gif

  • 国家蛋白质科学上海设施/国家蛋白质科学中心·上海(筹)诚聘生物大分子晶体学线站运行管理员、冷冻电镜系统管理员、流式细胞分选等工作人员

    国家蛋白质科学上海设施/国家蛋白质科学中心·上海(筹)生物大分子晶体学线站运行管理员、冷冻电镜系统管理员等岗位招聘启事国家蛋白质科学研究上海设施是国家重大科技基础设施,是国家级蛋白质科学研究平台;在设施建设基础上,依托中国科学院上海生命科学研究院,委托生物化学与细胞生物学研究所(简称SIBCB)负责筹建成立并管理国家蛋白质科学中心•上海(筹), 负责设施的运行管理。中心位于浦东新区张江高科技园区中区西部(上海市浦东新区海科路333号),临近上海科技大学、中国科学院药物研究所、上海高等研究院等科研机构。中心定位于:支撑国家蛋白质上海设施建设的建设,衔接该设施的运行;聚集培养生命科学与生物技术特别是蛋白质研究的人才,提升国家蛋白质研究能力;进而促进我国蛋白质基础研究的飞跃发展。中心将立足于国家生命科学与生物技术及相关研究领域雄厚的研究基础 和创新实力,成为兼具蛋白质科学研究、技术及成果的转化、集成和应用平台的国家级的重要科学研究单元。国家蛋白质科学中心•上海(筹)现因工作需要,公开招聘生物大分子晶体学线站运行管理员、冷冻电镜系统管理员、自动化控制工程师、软件工程师、流式细胞分选技术员等岗位。一、岗位详情:岗位一: 生物大分子晶体学线站工作人员 4名。(一) 岗位职责:参与蛋白质科学研究中心•上海(筹)在上海同步辐射光源参与生物大分子晶体学线站的运行、维护和管理工作,参与线站的用户服务和技术支持工作;参与5线6站相关的科学研究工作。(二) 任职条件:1、物理、光学、光学工程、结构生物学等专业背景,硕士或以上学历。2、具备基本的生物大分子晶体结构衍射数据收集和数据处理的基本知识;有同步辐射光源生物大分子晶体学线站衍射数据收集经验,束线设计和建造经验者,以及同步辐射线站其他相关工作经验者优先。3、具有良好的人际关系和团队协作精神,工作努力,作风踏实,责任心强。4、身体健康,能长期稳定工作。岗位二:自动化控制系统工程师 1名(一) 岗位职责:参与国家蛋白质科学中心(上海)(筹)在上海同步辐射光源5线6站的建设、运行和管理,充分理解同步辐射光束线站的工作内容和线站用户的实际需求,完成线站自动化控制程序的设计、开发和维护。(二) 任职条件:1、本科以上学历,有 Unix/Linux 平台下的工作经验,熟悉Unix/Linux 工作环境,习惯于在 Unix/Linux 平台下工作。有大量的源代码的阅读经验。2、有丰富的 C/C++ 开发经验.熟悉 Socket 编程和多线程编程。3、良好的英文表达能力。能独立完成项目调研,设计和开发工作。4、有以下背景或经验者优先考虑:有大型系统开发经验者和硬件开发经验者;有软件界面开发经验者;有网络程序开发经验者;熟悉 Tcl/Tk 语言者;有 Unix/Linux 系统管理经验者。5、具有良好的人际关系和团队协作精神,工作努力,作风踏实,责任心强。6、身体健康,能长期稳定工作。岗位三:冷冻电镜系统管理员 A 1名(一) 岗位职责:负责电镜负染及冷冻样品制样,样品检测、用户服务。参与中心电镜(包括200 kV TF20及120kV T12)的日常管理,用户培训、技术支持等。(二) 任职条件:1. 具有生物、医学或物理等相关专业的本科或以上学位,有电镜操作或生物电镜样品制样经验者优先考虑;2.有工作热情,乐于学习新技术,有较强的动手能力;3.为人诚实、乐于助人,具有良好的沟通能力、服务精神和团队协作精神;4. 具有良好的中英文口头表达和写作能力;5. 身体健康,能长期稳定工作。岗位四:冷冻电镜系统管理员 B 1名(一) 岗位职责:负责用户项目的合作及服务研究。可以独立应用TITAN Krios及TF20电镜,进行cryo-EM single particle及cryo-ET的数据收集、处理和结构分析,或可独立开展高压冷冻、超薄切片服务等。参与中心电镜(包括300 kV TITAN Krios,200 kV TF20及120kV T12)的日常管理,用户培训、技术支持等。(二) 任职条件:1.应聘者有3年或以上冷冻透射电镜使用经验,具有独立完成cryo-EM single particle及cryo-ET的数据收集、处理和结构分析的能力和经验;或者可以独立开展高压冷冻、超薄切片服务等;2. 具有生物物理学或相关专业的硕士或以上学位,有SCI第一作者论文;具有良好的中英文口头表达和写作能力;3.有工作热情,乐于学习新技术,有较强的动手能力;4.为人诚实、乐于助人,具有良好的沟通能力和团队协作精神;5. 身体健康,能长期稳定工作。 岗位五: 软件工程师 1名(一) 工作职责:1、 编写或依据设计说明书,落实代码的实现工作,确保系统设计的合理性、可扩充性和代码编写的规范性。2、 对接受的开发任务进行评估,细化分配任务,制定软件开发阶段的具体技术实施计划。解决项目中的关键问题和技术难题。3、 根据要求协助进行需求分析及确认工作。执行单元测试、集成测试及回归测试,查出并解决软件在存的缺陷并保证其质量可靠。4、 进行项目相关技术文档的编写工作。5、 辅助保障项目的质量监控和进度管理。6、 完成上级交办的其他工作。(二) 任职条件:1、 计算机相关专业,本科以上学历。2、 熟练掌握Java语言,掌握SQL语言和数据库应用开发。3、 熟练使用JavaScript、Ajax、Jquery客户端脚本技术,有高通量数据开发经历者优先,有Android及IOS开发经验者优先。4、 善于分析项目要求,对系统框架设计有独立解决方案;能独立进行需求需求分析、设计及代码编写工作,具有较强的逻辑思维能力,问题缺陷分析处理能力。5、 责任心、事业心强,能承受工作压力,具备良好的沟通协调能力,良好的合作意识和团队协作精神,愿意分担其它工程项目职责。岗位六: 流式细胞分选技术员 1名(一) 岗位职责:1. 主要负责荧光激发细胞分选仪的操作、管理服务及样品制备;2. 负责流式细胞仪的操作,用户培训和技术支持;3. 负责普通荧光显微镜的操作、管理服务及技术支持,保证设备正常运行及日常维护;4. 参与并协调系统公共行政事务(如预算、采购、预约系统等),与中心相关职能部门对接;收集整合系统宣传信息,与中心宣传对接。(二) 任职条件:1. 生物学相关专业,硕士或以上学历;2. 掌握流式细胞分选技术,有流式、显微镜理论及操作基础,能熟练操作显微镜相关的中小型仪器;3. 具有良好的独立工作能力、创新工作精神;工作积极主动,具有团结奉献精神,乐于学习和接受新事物;4. 为人诚实

  • 激光扫描共聚焦显微镜的检测模式及其在生物医学领域的应用

    [align=center][font='times new roman'][size=16px]激光扫描共聚焦显微镜的[/size][/font][font='times new roman'][size=16px]检测[/size][/font][font='times new roman'][size=16px]模式及其在生物医学领域的应用[/size][/font][/align][align=center][font='times new roman'][size=14px]吴晶[/size][/font][font='times new roman'][sup][size=14px]1[/size][/sup][/font][font='times new roman'][size=14px],刘皎[/size][/font][font='times new roman'][sup][size=14px]1[/size][/sup][/font][font='times new roman'][sup][size=14px], *[/size][/sup][/font][/align][align=center]1. [font='times new roman']北京大学医药卫生分析中心,北京,100191[/font][/align][font='times new roman'][/font][align=center][font='times new roman'][size=13px]* [/size][/font][font='times new roman']通讯作者[/font][/align][font='times new roman']摘要[/font][font='times new roman']由于激光扫描共聚焦显微镜(Confocal Laser Scanning Microscopy, CLSM)特有的分辨率和技术优势,使得其成为了生物学、医学及药学等领域重要的科研工具。本文结合[/font][font='times new roman']作[/font][font='times new roman']者所在的北京大学医药卫生分析中心共聚焦平台的工作经验,概述了CLSM适用的样本、[/font][font='times new roman']检测[/font][font='times new roman']模式以及在生物医学领域的应用,以期为相关科研技术人员提供参考。[/font][font='times new roman']A[/font][font='times new roman']bstract[/font][font='times new roman']Confocal Laser Scanning Microscopy (CLSM) has become an important scientific research tool in the fields of biology, medicine and pharmacy due to its unique resolution and technical advantages. Based on the author's work experience in the confocal [/font][font='times new roman']center[/font][font='times new roman'] of Peking University Medical and Health Analysis Center, this paper summarizes the applicable samples, detection modes and applications of CLSM in the biomedical field, in order to provide reference for related scientific researchers and technicians.[/font][font='times new roman']关键词[/font][font='times new roman']激光扫描共聚焦显微镜,[/font][font='times new roman']检测[/font][font='times new roman']模式,应用[/font][font='times new roman']1 引言[/font][font='times new roman']从17世纪世界上第一台原始的光学显微镜问世以来,光学显微镜在20世纪经历了快速发展时期[1]。但由于普通的光学显微镜受光波衍射效应的限制,分辨率已接近理论极限值。因此,为改善成像质量,提高图像清晰度,从而提高显微镜的成像分辨率,人们采用增加物象与背景的反差来实现此目的[2]。激光扫描共聚焦显微镜(Confocal Laser Scanning Microscopy, CLSM)的诞生,在一定程度上实现了这一目的。1984年,Bio-Rad公司首次推出世界第一台商品化的CLSM,从此CLSM迅速发展成为现代生物医学等领域科研的有力工具,广泛应用于细胞生物学、生理学、病理学、解剖学、胚胎学、免疫学和神经生物学等领域。[/font][font='times new roman']伴随着光学、计算机等技术的迅速发展,CLSM的分辨率甚至可以突破光学极限(0.2μm),达到0.05μm甚至0.02μm。与分辨率可以达到0.2nm的电子显微镜相比,CLSM的优势是既可以用于固定样品的拍摄,还可以用于活细胞实验,比如观察在特定刺激下细胞某个结构或者荧光强度的变化等。同时还可以通过XYZ[/font][font='times new roman'],[/font][font='times new roman']XYT[/font][font='times new roman'],[/font][font='times new roman']XYλ[/font][font='times new roman'],[/font][font='times new roman']XYZT[/font][font='times new roman'],[/font][font='times new roman']XYλT等多种模式实现多维成像,亦可进行更复杂实验的拍摄,比如荧光共振能量转移([/font][font='times new roman']Fluorescence Resonance Energy Transfer, [/font][font='times new roman']FRET),荧光漂白恢复([/font][font='times new roman']Fluorecence Recovery After Photobleaching, [/font][font='times new roman']FRAP),荧光寿命成像([/font][font='times new roman']Fluorescence Lifetime Imaging Microscopy, [/font][font='times new roman']FLIM)[/font][font='times new roman'],荧光相关光谱/荧光互相关光谱(Fluorescence Correlation/Co-Correlation Spectroscopy, [/font][font='times new roman']FCS[/font][font='times new roman']/FCCS)[/font][font='times new roman']等实验以满足对样品的定性、定量、定位、共定位等多维度多功能的研究。[/font][font='times new roman']本文拟通过按CLSM常见的[/font][font='times new roman']检测[/font][font='times new roman']模式分别阐述其在生物医学领域的应用,以其为相关科研技术人员提供参考。[/font]2. [font='times new roman']CLSM适用的样本[/font][font='times new roman']CLSM适用的样本非常广泛,从液体、固体等形式的材料或制剂、细菌、培养的粘附细胞、悬浮细胞、细胞团、类器官、各种染色、非染色荧光标记的组织或组织切片、到各种动物(如模式动物线虫、果蝇、斑马鱼、小鼠、大鼠等),都可以通过搭载不同载物台进行测试。所有的样品都可以通过匹配不同的器皿(包括共聚焦专用小皿、玻片、transwell小室、孔板等等)和固定器(比如不同热台、孔板支架等)放置到载物台上进行测试。[/font]3. [font='times new roman']CLSM的[/font][font='times new roman']检测[/font][font='times new roman']模式[/font]3.1 [font='times new roman']单一光切片模式(XY或XZ)[/font][font='times new roman']CLSM的最基本优势在于利用激光代替传统场光源,借助于激光扫描共聚焦显微镜的软件系统,CLSM可以实现点扫描、点探测,得到生物样品高反差、高分辨率、高灵敏度的二维图像,从而获得细胞/组织等光学切片的物理、生物化学特性及变化。也可以对所感兴趣的区域进行准确的定性、定量及定位分析。[/font][font='times new roman']CLSM特有的zoom功能,可以用来调节扫描区域的放大倍数。增加选定区域的zoom值,其图像会被放大。但zoom值会受吴晶分辨率的限制,一味的增大zoom值,不能得到相应的高清图像。因此,需根据实际情况参考piexl size进行设定。[/font]3.2 [font='times new roman']三维成像模式[/font]3.2.1 [font='times new roman']Z轴系列及三维成像模式,三维定位/图像重构[/font][font='times new roman']CLSM可对活的或固定的细胞及组织进行无损伤的系列光学切片,获得标本真正意义上的三维数据,这一功能被称为“细胞CT”:通过扫描振镜在X、Y方向的连续扫描,控制软件将扫描的像素点组成共聚焦图像,通过电动载物台沿Z轴方向的连续扫描,可获得样品不同层面连续的光切图像(xyz)。同理,通过沿Y轴方向连续扫描,可获得连续的xzy图像。再经计算机图像处理及三维重建软件,可产生生动逼真的动态效果。[/font]3.2.2 [font='times new roman']时间序列扫描模式(XYT)[/font][font='times new roman']共聚焦显微镜若按照一定的时间间隔、重复地采集样品内固定区域的荧光图像,并对其进行定位、定性及定量分析,则可实现对该样品的实时监测(XYT),此类实验可观察特异荧光探针标记的单个细胞不同部位或不同组织区域接受刺激后的整个变化过程,常用于对单个细胞内各种离子、膜电位、活性氧的比例及动态变化做实时定量分析,例如动态测定活细胞或组织内游离Ca[/font][font='times new roman'][sup][size=13px]2+[/size][/sup][/font][font='times new roman']、Mg[/font][font='times new roman'][sup][size=13px]2+[/size][/sup][/font][font='times new roman']、K[/font][font='times new roman'][sup][size=13px]+[/size][/sup][/font][font='times new roman']、Na[/font][font='times new roman'][sup][size=13px]+[/size][/sup][/font][font='times new roman']等离子的分布和浓度的变化、活细胞内H[/font][font='times new roman'][sup][size=13px]+[/size][/sup][/font][font='times new roman']浓度的变化、细胞/线粒体膜电位,自由基等。当Y方向上的扫描行数设为1时,便可进入特殊的XT模式,在这种扫描模式下得到的图像,可以用来计算血流速度等。[/font]3.2.3 [font='times new roman']光谱扫描模式(XYλ/XYΛ/XZλ)[/font][font='times new roman']通常配置有可调节接受范围的检测器[/font][font='times new roman']的CLSM[/font][font='times new roman'],可以实现从400nm-800nm的发射波谱扫描。通过配置具有连续可调波长的白激光,CLSM还可以实现激发波谱扫描。[/font][font='times new roman']3.3四维成像模式(XYZT/XYλT/XYΛT)[/font][font='times new roman']基于[/font][font='times new roman']上述[/font][font='times new roman']三维成像[/font][font='times new roman']模式[/font][font='times new roman'],结合时间序列扫描,可以实现CLSM的四维成像。[/font][font='times new roman']3.4反射光/透射光/微分干涉(DIC)成像模式[3-4][/font][font='times new roman']反射光成像主要是指光源发出的光到达样品后发生反射,检测器将此反射光信号转化为电信号进而生成样品表面的图像。利用反射光成像,能够更好的获得样品的表面纹理等信息,是对荧光图像信息的进一步补充。[/font][font='times new roman']透射光成像技术是通过光源发出的光到达样品后,透过样品的光进入检测器生成光信号,再由检测器转变为电信号所形成的图像信息。透射光成像通常能够更好的呈现目标的外轮廓信息,亦是对荧光图像信息的进一步补充。[/font][font='times new roman']很多CLSM配置有DIC模式。与其他成像技术相比,DIC成像技术通过对光路中梯度变化的呈现,实现“伪立体”效果,如在梯度比较小的区域中,相对比较扁平的上皮细胞亦可以较好的实现“立体”结构,同时,由于DIC成像技术不存在相差成像等技术中出现的光晕,还可以利用这个特点检测到细胞表面分布着的细菌,这是很多成像技术所观察不到的。因此DIC成像技术的主要优势在于不需要对相差环和聚光镜遮挡等因素进行考虑,可以直接实现高数值孔径的物镜观察,即可以提高轴向分辨率,这在对分辨率要求十分高的实验中具有重要的应用价值。[/font][font='times new roman']3.6 特殊[/font][font='times new roman']检测[/font][font='times new roman']模式[/font][font='times new roman']3.6.1 荧光漂白恢复(FRAP)[/font][font='times new roman'][5][/font][font='times new roman']FRAP技术由Axelrod等于20世纪70年代研发,指对细胞内的某一区域荧光漂白后,通过测定荧光分子的恢复速率,来研究活细胞中生物分子的动力学特征。[/font][font='times new roman']通过FRAP实验可以研究生物膜脂质分子的侧向扩散、细胞间的通讯、胞浆及细胞器内小分子物质转移性的观测、以及细胞骨架、核膜结构或大分子组装等。[/font][font='times new roman']3.6.2荧光能量共振转移(FRET)[/font][font='times new roman'][6][/font][font='times new roman']FRET是指两个荧光基团间能量通过偶极-偶极耦合作用以非辐射方式从供体传递给受体的现象。目前FRET技术可广泛用于单个固定细胞、亚细胞或活细胞原位生理环境下检测生物大分子的构象变化和分子间的直接相互作用,如检测配体-受体、蛋白分子共定位、转录机制、蛋白折叠以及蛋白质二聚化等,亦可用于检测酶活性变化、细胞凋亡以及膜蛋白的研究等。[/font][font='times new roman']在FRET体系中,常用的荧光能量供体、受体对主要有:CFP/YFP、BFP/RFP、CY3/CY5等。[/font][font='times new roman']进行FRET实验时,需要满足以下几个条件:① 所检测样品包含两个荧光分子,能量的提供者叫做供体,能量的接受者叫做受体;② 供体与受体的距离在[/font][font='times new roman']10[/font][font='times new roman']nm之间;③ 供体的发射波长与受体的激发波长一致。当供体的激发波长照射样品时,若没有FRET效应产生,只会检测到供体的发射光;反之,如果有FRET效应发生,则CLSM可检出供体发射的荧光减弱,而受体的发射光增强。[/font][font='times new roman']3.6.4 荧光寿命成像([/font][font='times new roman']FLIM[/font][font='times new roman'])[7][/font][font='times new roman']FLIM技术是研究细胞内生命活动状态的一种非常可靠的方法。荧光寿命是荧光团在返回基态之前处于激发态的平均时间,是荧光团的固有性质,因此其不受探针浓度、激发光强度和光漂白效应等因素影响,且能区分荧光光谱非常接近的不同荧光团,故具有非常好的特异性和很高的灵敏度。此外,由于荧光分子的荧光寿命能十分灵敏地反映激发态分子与周围微环境的相互作用及能量转移,因此FLIM技术常被用来实现对微环境中许多生化参数的定量测量,如细胞中折射率、黏度、温度、pH值的分布和动力学变化等,这在生物医学研究中具有非常重要的意义。目前FLIM技术在细胞生物学中一些重要科学问题的研究、临床医学上一些重大疾病的诊断与治疗研究以及纳米材料的生物医学应用研究等方面均有广泛应用,并取得了许多利用传统的研究手段无法获取的数据。[/font][font='times new roman']3.6.5 荧光共振能量转移-荧光寿命成像(FRET- [/font][font='times new roman']FLIM[/font][font='times new roman'])[8][/font][font='times new roman']FRET本身不是一种成像技术,而是一个物理过程。传统的FRET过程分析通常是基于荧光强度成像来实现,分析的结果容易受光谱串扰的影响。而将FLIM技术应用于FRET过程分析,利用FLIM技术可定量测量这一优势,可非常灵敏地反映供体荧光分子与受体荧光分子之间的能量转移过程。当受体分子与供体之间的距离10nm时,供体的能量转移到受体,受体从基态发生能量跃迁,从而影响供体的荧光寿命。与没有受体分子的时候相比,发生FRET的供体分子的荧光寿命降低。因此,FRET-FLIM联合能够实时监测生物细胞中蛋白质的动态变化,如蛋白质折叠、分子间(蛋白-蛋白,蛋白-核酸)相互作用和细胞间信号分子传递、分子运输以及病理学研究等。[/font][font='times new roman']3.6.3 荧光相关光谱/荧光互相关光谱([/font][font='times new roman']FCS[/font][font='times new roman']/FCCS)[9-12][/font][font='times new roman']FCS[/font][font='times new roman']和FCCS都是在涨落光谱技术的基础上衍生而来的,通过检测某一微小区域内荧光信号的瞬时涨落变化,分析分子的密度、扩散以及分子之间的相互作用,是一种新兴的单分子检测技术。由于FCS/FCCS的高灵敏性可以用来检测生物系统中发生的小概率时间,因此此技术主要用于分子之间相互作用、活细胞分析、核酸分析、蛋白质的寡聚化、蛋白质的动力学研究以及纳米制剂粒径测量等研究,在检测物质浓度、扩散速度、分子结合速率等方面体现出巨大的优越性,亦可用于肿瘤的早期诊断以及高通量药物筛选等。[/font][font='times new roman']FCS技术,即在CLSM焦点的微小测量区域内,通过对荧光强度随时间变化的自发性波动分析和其时间函数自相关的分析,并通过计算机统计与拟合运算,在活细胞内单分子水平给出分子的扩散系数、分子数目、分子浓度及分子之间结合与分离状态等动力学参数的检测方法。其实质是监测带有荧光基团的物质在激光作用体积内的扩散情况,可揭示异质群体中的每个个体,并对各自的亚群进行鉴定、分类、定量比较,亦可对复杂的生化反应提供详细、确定的动力学参数。[/font][font='times new roman']发明FCS的最初目的是在生物系统中研究非常稀的样本浓度的化学动力学特征。随着探测手段、自相关电子学等方面的技术进步,FCS在生物化学中的研究和应用越来越广泛,如经典的细胞膜中脂质扩散研究就是通过CLSM整合了FCS技术后所取得的巨大进展。[/font][font='times new roman']FCCS技术,确切来说是FCS技术的一种延伸应用。其既保持了FCS技术的灵敏性,又可以解决FCS对两种粒子的扩散速度要有明显不同的要求(至少相差2倍,即二者质量差相差8倍)。该技术在实验中通常将两种粒子用不同的荧光进行标记,荧光分子被激发后,产生两种互不干扰的荧光信号,分别被两个独立的检测器探测,然后将探测到的信息进行交叉函数分析。如果分子间存在相互作用,那么两种不同的荧光信号将同时经过检测通道,这时两个检测器就会产生同步的信号波动,从而产生互相关信号;而当单色荧光分子独立在微区域内运动时,则不会产生互相关信号。这样,相互作用的荧光分子和独立运动的荧光分子就被区分开来。由于FCCS技术直接反映分子间的相互作用,而不像FRET技术那样受分子扩散或聚集的影响,因此在生物分子互作、蛋白寡聚化、酶活性研究领域中有重要的应用前景。[/font][font='times new roman']4 结论和展望[/font][font='times new roman']综上,CLSM应用灵活,具备多种检测[/font][font='times new roman']模式,适用于多种样本,[/font][font='times new roman']亦可[/font][font='times new roman']实现多种实验目的,如荧光的定量、定性、定位、共定位,动态荧光的测定等[/font][font='times new roman']。一些特殊的实验模式,将CLSM在生物医学领域的应用进一步扩大。通过[/font][font='times new roman']结合其他[/font][font='times new roman']技术[/font][font='times new roman'](多手段联合拓展[/font][font='times new roman'],如膜片钳、原子力显微镜、光电联用等[/font][font='times new roman'])[/font][font='times new roman'],CLSM必将成为[/font][font='times new roman']助力生物医学领域研究[/font][font='times new roman']的有力工具[/font][font='times new roman']。[/font][font='times new roman']参考文献[/font]1. [font='times new roman']黄德娟,浅谈显微镜的发展史及其在生物学中的用途。赤峰教育学院学报,2000,2:51-52[/font]2. [font='times new roman']肖艳梅,付道林,李安生,激光扫描共聚焦显微镜(LSCM)及其生物学应用。激光生物学报,1999,8(4):305-311[/font]3. [font='times new roman']弓宇, 郭英玲, 张枫, 刘红旗, 基于反射光和透射光成像的图像识别方法比较。机电产品开发与创新,2013,26(3):7-9[/font]4. [font='times new roman']虞兆芳, DIC成像技术的优势。求知导刊,2016,2:53[/font]5. [font='times new roman']隋鑫,满奕,张越,林金星,荆艳萍,荧光漂白恢复技术及其在生物膜系统研究中的应用。电子显微学报,2017,36(6):601-609[/font]6. [font='times new roman']肖忠新,张进禄,荧光共振能量转移技术在激光共聚焦显微镜中的应用。中国医学装备,2014,8(11):73-75[/font]7. [font='times new roman']刘雄波,林丹樱,吴茜茜,严伟,罗腾,杨志刚,屈军乐,荧光寿命显微成像技术及应用的最新研究进展。物理学报,2018,67(17):178701-1-178701-14[/font]8. [font='times new roman']罗淋淋,牛敬敬,莫蓓莘,林丹樱,刘琳,荧光共振能量转移-荧光寿命显微成像(FRET-FLIM)技术在生命科学研究中的应用进展。光谱学与光谱分析,2021,41(4):1023-1031[/font]9. [font='times new roman']曲绍峰,林金星,李晓娟,FCS/FCCS技术及其在植物细胞生物学中的应用。电子显微学报,2014,33(5):461-468[/font]10. [font='times new roman']张普敦,任吉存,荧光相关光谱及其在单分子检测中的应用进展。分析化学,2005,33(6):875-880[/font]11. [font='times new roman']黄茹,周小明,荧光相关光谱在生物化学领域中的应用。激光生物学报,2013,22(4):289-293[/font]12. [font='times new roman']游俊,荧光相关光谱(FCS)在生物活细胞中的应用。湖北大学学报(自然科学版),2005,27(1):53-56[/font]

  • 真空度(气压)控制:上游模式和下游模式的特点以及新技术

    真空度(气压)控制:上游模式和下游模式的特点以及新技术

    [size=14px][color=#cc0000]摘要:本文详细介绍了真空系统中上游和下游控制模式的特点以及在应用中存在的问题,并介绍了上下游模式同时使用的双向控制新技术,新技术可有效发挥上下游控制模式的优点和抑制缺点。[/color][/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [b][color=#cc0000]1. 真空度(压力)控制概述[/color][/b][size=14px][/size]  在许多真空系统中,为了实施特定的工艺过程或达到一定的实验条件,需要真空系统中的真空度恒定在特定以及关键的设定值,这就需要对真空系统内的真空度进行控制。真空度控制一般通过上游模式(upstream model)、下游模式(downstream model)和两种模式结合的方法实现。业内一般将上游模式定义为控制输入真空系统的气体,下游模式定义为控制泵送系统的节流,即以真空系统为参照物,真空系统上游的进气控制为上游模式,真空系统下游的出气控制为下游模式。[size=14px][/size]  无论是自动的上游控制还是下游控制,都需要电动控制阀来实现。在目前国内外真空系统的真空度控制过程中,由于技术的限制,绝大多数还都是采用单一控制方式,即或是上游模式,或是下游模式。但随着双向控制技术的突破,可以实现上下游模式的同时控制。[size=14px][/size]  本文详细介绍了真空系统中上下游真空度控制模式的特点以及在应用中存在的问题,介绍了双向控制技术的特点。[size=14px][/size][b][color=#cc0000]2. 上游控制模式(Upstream Model)[/color][/b][size=14px]  如图2-1所示,上游控制模式是一种控制系统中压力的方法,在该系统中,气体流入腔室,通常由电动控制阀进行控制。[/size][align=center][size=14px][img=,500,421]https://ng1.17img.cn/bbsfiles/images/2021/01/202101042202534200_9124_3384_3.png!w690x582.jpg[/img][/size][/align][align=center][size=14px][color=#cc0000]图2-1 上游控制模式示意图[/color][/size][/align][size=14px][/size]  上游真空度(压力)控制器维持真空系统本身上游的压力,在真空泵抽速一定的情况下,增加进气流量以降低压力,减少进气流量以增加压力。因此,这称为反向作用,该配置在行业中通常称为背压调节器。[size=14px][/size]  在真空度(压力)上游模式控制期间,控制阀将以特定的速率注入气体,同时还与控制器通信。如果从控制器接收到不正确的输出电压(意味着压力不正确),控制阀将调整流量。压力过高,控制阀会降低流量,压力过高,控制阀会提高流量。[size=14px][/size]  上游模式具有以下特点:[size=14px][/size]  (1)可提高真空系统中工艺的稳定性和速度;[size=14px][/size]  (2)使用快速作用控制阀,将控制仪器放置在真空系统的上游可提供更快的响应时间和更好的稳定性。上游模式还消除了对附加阀的需求,减少了系统中潜在泄漏点的数量,减少了下游设备的需求并降低了安装成本。例如在真空镀膜应用中,将压力控制装置放置在腔室的上游可以节省时间,成本,并提高真空沉积工具的精度。[size=14px][/size]  (3)很多真空工艺,如等离子熔炼和真空沉积等,都使用了下游控制模式来维持真空室内的气体压力,而节流阀的使用会有几万元的配置,并还需要一个单独的控制模块来为阀门供电、提供PID数据和设定点功能。因此,上游模式有时可有效的降低真空系统的造价成本。[size=14px][/size]  (4)由于下游真空泵不受控制,一般都以较大的抽速运行,这就造成在单独使用上游模式时会出现比较费气的现象,特别是在工艺气体为较贵的高纯惰性气体时尤为明显。[size=14px][/size][b][color=#cc0000]3. 下游控制模式(Downstream Model)[/color][/b][size=14px]  如图3-1所示,下游控制模式是一种控制真空系统内部压力的方法,其中抽气速度是可变的,通常由真空泵和腔室之间的控制阀实现。[/size][align=center][size=14px][img=,500,418]https://ng1.17img.cn/bbsfiles/images/2021/01/202101042203517636_9658_3384_3.png!w690x578.jpg[/img][/size][/align][align=center][size=14px][color=#cc0000]图3-1 下游控制模式示意图[/color][/size][/align][size=14px][/size]  下游控制模式是维持真空系统下游的压力,增加流量以增加压力,减少流量以减少压力,因此,这称为直接作用,这种控制器配置通常称为标准压力调节器。[size=14px][/size]  在真空度(压力)下游模式控制期间,控制阀将以特定的速率限制真空泵抽出气体,同时还与控制器通信。如果从控制器接收到不正确的输出电压(意味着压力不正确),控制阀将调整抽气流量。压力过高,控制阀会提供抽气流量,压力过低,控制阀会降低流量。[size=14px][/size]  下游模式具有以下特点:[size=14px][/size]  (1)下游模式作为目前最常用的控制模式,通常在各种条件下都能很好地工作;[size=14px][/size]  (2)但在下游模式控制过程中,其有效性有时可能会受到“外部”因素的挑战,如入口气体流速的突然变化或等离子体事件的开启或关闭。此外,某些流量和压力的组合会迫使节流阀在等于或超过其预期控制范围的极限的位置上运行。在这种情况下,精确或可重复的压力控制都是不可行的。或者,压力控制可能是可行的,但不是以快速有效的方式,结果造成产品的产量和良率受到影响。[size=14px][/size]  (3)在下游模式中,会在更换气体或等待腔室内气体沉降时引起延迟。[size=14px][/size][b][color=#cc0000]4. 双向控制模式(Bidirectional Model)[/color][/b][size=14px][/size]  通过上述两种控制模式的特点可以看出,两种模式各有优缺点。目前在真空度控制中常用的方法是以下游控制模式为主控方法,同时在真空系统的上游设置几个控制档位来控制进气流量,由此来最大限度发挥两种模式的优点,但这种控制方式还无法实现全自动化。[size=14px]  随着自动化控制技术的发展,目前上海依阳公司已经开发出双向自动控制技术,其结构图4-1如所示。[/size][align=center][size=14px][img=,500,414]https://ng1.17img.cn/bbsfiles/images/2021/01/202101042205187960_2317_3384_3.png!w690x572.jpg[/img][/size][/align][size=14px][/size][align=center][color=#cc0000]图4-1 双向控制模式示意图[/color][/align][size=14px][/size]  这种双向控制模式可以最大限度发挥控制优势,节省时间和成本,并提高真空工艺的效率和质量。[size=14px][/size][align=center]=======================================================================[/align][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size]

  • 哈工深圳陈华英团队: 单细胞连续捕获, 弹性模量测量和可寻址分选打印

    [size=15px][color=#333333]细胞的机械特性对其生物学功能(如增殖、分化和凋亡)和形态状态(如迁移、附着和病理状态)至关重要。目前常用的细胞弹性模量测量技术包括原子力显微镜、微管吮吸、光镊和磁镊等。这些技术可以有效测量单个细胞的机械性质,但是通量低,限制了其实际应用。[/color][/size][size=15px][color=#333333]近年来,微流控芯片因其在小体积液体操控方面的独特优势,也被用于测量细胞弹性模量。现有的微流控芯片主要侧重于平台开发,虽然通量大幅提高,但很少将测量后的细胞进一步收集以实现后续分析。[/color][/size][size=15px][color=#333333]单细胞分析技术的发展要求能够准确地打印单个细胞。传统单细胞打印技术包括荧光激活细胞分选、有限稀释和手动细胞挑选,这些方法打印效率较低且难以实现自动化。[/color][/size][font=mp-quote, -apple-system-font, BlinkMacSystemFont, &][size=15px][color=#333333]近年来,各种微流控技术被开发用于高通量精确打印单个细胞,如喷墨打印、精确分配、双阀门筛选和移液管式单细胞分离等。这些技术可以根据目标细胞的荧光、形态等特征进行识别并打印,但是大多技术难以获得单细胞的机械信息。[/color][/size][/font][font=mp-quote, -apple-system-font, BlinkMacSystemFont, &][size=15px][color=#333333]因此,本研究报道了一款基于 U 型阵列的微流控系统,集成了单细胞连续捕获,弹性测量和可寻址打印。该装置在研究细胞力学与其他生物学特性的关系方面具有强大的应用潜力。[/color][/size][/font][b]研究内容[/b][size=15px]近日,哈尔滨工业大学(深圳)[color=#004976][b]陈华英课题组[/b][/color]在英国皇家化学会(RSC)期刊[color=#004976][b] Lab on a chip[/b][/color] 上发表题为“Continuous trapping, elasticity measuring and deterministic printing of single cells using arrayed microfluidic traps” ([color=#007aaa]《单细胞连续捕获、弹性模量测量和可寻址分选打印》[/color])的研究论文,报道了一款创新的微流控芯片,实现了基于精确调节的压力对微球/细胞进行捕获和逐个打印,并将已知弹性模量的单细胞确定性地打印到孔板中(图 1)。[/size][size=15px]该论文第一作者是哈工大(深圳)在读硕士研究生[color=#004976][b]蔡逸珂[/b][/color]和硕士毕业生[color=#004976][b]余恩[/b][/color]。[color=#004976][b]陈华英副教授[/b][/color]为通讯作者。[/size][img=图片]https://img1.17img.cn/17img/images/202403/uepic/b3ebc9a4-6d42-4ef1-bfd0-c7cf1f5c3a15.jpg[/img]微流控芯片(图 1A)由冲洗入口、样品入口、打印入口、压力维持口和两个平行的主通道组成,下游有打印出口。在所有入口通道中设计了宽度从 200μm 减小到 25μm 的微通道阵列,以过滤介质中较大的颗粒/细胞碎片。如图 1A 和 B 所示,在每个主通道的一侧有 16 个 U 型捕获陷阱,且吮吸通道的高度比分流通道的高度低 15 μm,以保证细胞停留在 U 型陷阱中并诱导其微小变形。[img=图片]https://img1.17img.cn/17img/images/202403/uepic/b3ee5e4c-b99c-4b5e-8904-b5a6d2817633.jpg[/img][table=677][tr][td=1,1,5]▲[/td][td=1,1,549][b]图1[/b] 单细胞连续捕获、弹性测量和可寻址打印系统。(A)微流控芯片连接到压力泵,将单细胞精确分配到孔板中;(B)通过调节打印压力(Po)捕获(Pi-Po0)和释放(Pi-Po0)单个细胞的机制;(C)用于捕获和分离细胞的吮吸通道;(D)用于捕获和分离微球的分流通道。[/td][/tr][/table][来源:陈华英团队 RSC英国皇家化学会][align=right][/align]

  • MRM3模式在多肽药物生物分析中的应用解决方案

    随着制药企业对生物治疗药物的日益重视,在药物研究中使用LCMS定量分析蛋白和多肽药物已经引起越来越多研究者的兴趣。艾塞那肽是一种治疗性多肽,目前已被批准用于治疗I型和II型糖尿病。艾塞那肽可增强胰腺β细胞分泌葡萄糖依赖性胰岛素,以调节糖代谢和胰岛素分泌。近年来,血浆中艾塞那肽的浓度测定主要通过配体实验来完成,例如利用酶标免疫测定法进行艾塞那肽的 药代动力学研究。但是,由于某些具有相似理化性质的化合物的存在,致使酶标免疫测定法缺乏足够的特异 性和选择性,导致采用该方法分析将面临一定的风险。基于以上原因,采用AB SCIEX QTRAP® 5500系统的 MRM3模式确保分析血浆中多肽药物时能够达到更高的选择性。实验方法样品制备:提取人血浆中的艾塞那肽,用氮气吹干,复溶。在所有的操作步骤中,pH值及有机相都要严格控制。串联质谱技术在药物高通量筛选和生物分析中的应用液相色谱条件:UHPLC采用ShimadzuUFLC LC-20ACXR;反相色谱柱为C-18 2.0 x30mm,5μ;流速为 0.6mL/min;进样体积为5 μL;流动相A为含0.1%甲酸的水溶液,流动相B为含0.1%甲酸的甲醇溶液;梯度5分钟,流动相B浓度从2%升至95%。质谱条件:使用AB SCIEXQTRAP® 5500系统中的MRM3扫描模式进行LC/MS分析。开启离子阱的动态填充时间(DFT)功能,在10,000Da/s的扫描速度下进行MS3扫描。总周期时间为0.17s。采用质荷比 838→396→202进行MRM3分析。QTRAP® 5500系统进行MRM3分析原理展示在图2中。图1. 艾塞那肽结构。艾塞那肽是由39个氨基酸组成的多肽(MW =4186.6 Da),是糖代谢和胰岛素分泌的调节剂。图2. MRM3定量分析工作原理。首先在Q1四极杆中选择母离子,然后在Q2碰撞池中碎裂,其子离子在线性离子阱中富集并分离,接着通过激发产生第二级碎片,然后将第二级产物离子扫描至检测器。实验结果在增强全扫描模式(EMS)下,选择多电荷母离子5+838.3作为前体离子(母离子,图3,上左图)。当前体离子碎裂后,选择m/z 396.

  • 【原创】Biolog微生物自动鉴定系统使用

    希望能够帮助初使用Biolog微生物自动鉴定仪的朋友们,同时望大家提宝贵意见,谢谢![img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=55127]Biolog微生物自动鉴定系统使用[/url]

  • 【国产好仪器讨论】之成都科林分析技术有限公司的AutoHS自动顶空进样器(全模式)

    http://www.instrument.com.cn/show/Breviary.asp?FileName=C16867%2Ejpg&iwidth=200&iHeight=200 成都科林分析技术有限公司 的 AutoHS自动顶空进样器(全模式)已参加“国产好仪器”活动并通过初审。自上市以来,这款产品已经被多家单位采用,如果您使用过此仪器设备或者对其有所了解,欢迎一起聊聊它各方面的情况。您还可以通过投票抽奖、参与调研等方式参与活动,并获得手机电子充值卡。【点击参与活动】 仪器简介: 仪器简介: 自动顶空进样相对于其它气相色谱样品处理技术来讲,它消除了复杂的容易 产生错误的步骤。能使您在较短的时间内获得大量有用信息。AutoHS智能的触摸 屏图形用户界面使得操作极为方便。专利的结构设计,独有的气体置换模式使MS (及其它易受空气中氧干扰和损害)操作更加安全可靠,延长灯丝寿命等。 具有动态和静态功能,大大拓展了顶空技术的应用范围。 经国家鉴定,评审结果为:此产品达到国际先进水平,建议加大应用和推广力度。技术参数: 国际先进 样品容量: 40个样品位的样品盘 顶空瓶体积: 20ml 样品恒温器容量度: 15位 传输线长度; 1m 进样方法: 静态-动态补偿进样量:参数设定--时间控制 气体置换(Purge mode) 恒定模式(Constant mode ) 渐进模式(Progressivemode) 多次提取模式(MHE mode) 控制触摸屏操作、密码保护,可保存10个方法。具有通用的接口,可与任何气相色谱连接。 中英文可选。自动泄漏测试故障报警,可使用IOS系统远程控制。温度范围:恒 温 器: 35-180°C 提取温度: 35-210°C 传输温度: 35-210°C 物理条件操作条件:5-32℃; 湿度:75%RH 宽:410mm 深:600mm 高:600mm 重量:30kg主要特点: 国际先进 BCEIA2005金奖产品 在第17届多国仪器展上获得由科技部授权颁发的最高奖-科技创新奖,大会一共给评选出国内外产品颁发34个奖,科技创新奖共3个。AutoHS自动顶空进样器采用动态补偿专利技术及现代触摸屏动态显示技术有效地提高了仪器性能和品质,独有的气体置换模式使MS操作更加安全可靠,延长灯丝寿命等。 操作模式:气体置换 时间恒定 时间渐进和多次提取 语言:中英文可选 自动泄漏测试 智能的触摸屏图形用户界面 可与任何气相色谱连接 AutoHS自动顶空进样器以其特有的提取方式把顶空进样的效果体现得淋漓尽致。顶空的过程本身不仅仅是样品的前处理过程,事实上对于挥发性有机物起到了一个浓缩的作用,挥发性越强浓缩作用越大。采用动态补偿提取方式的AutoHS自动顶空进样器使样品几乎无损失地传输到气相色谱仪,使得同一样品中挥发性有机物组分直接进样气相色谱仪不能检测到的,而采用AutoHS顶空进样气相色谱仪能够检测到,如水中1ppb苯。【了解更多此仪器设备的信息】

  • 新手求助 7700x 关于仪器待机模式自动转关闭

    各位大侠好!之前由于台风天的原因领导让我们关闭了icp ms 这次重新开机 发现按了真空打开后 一旦进入待机模式又立马自动从待机模式转换成关闭的状态 请问这是什么原因引起的?我又该如何解决呢?仪器型号是A家的7700x 先在这里谢过各位大侠

  • 【网络会议】:赛默飞实验室自动化系统在药物研发和生物医学领域的应用

    【网络会议】:赛默飞实验室自动化系统在药物研发和生物医学领域的应用

    【网络会议】:赛默飞实验室自动化系统在药物研发和生物医学领域的应用【讲座时间】:2015年09月25日 10:00【主讲人】:刘晓达1997年获得军事医学科学院药物分析学博士学位,1999年晋升副研究员。在2000~2002年期间,在 美国田纳西大学( The University of Tennessee) 化学系Guiochon教授实验室做博士后,主要进行了胰岛素等的非线性色谱方面的研究。 多年来的研究工作涉及气相色谱、液相色谱、毛细管电泳、病原体的快速诊断等,在国内外刊物发表文章四十余篇,参与编写“蛋白质分析技术手册”和“现代仪器分析在生物医学研究中的应用”。自2004年2月起,分别在贝克曼库尔特公司和戴安公司工作,为蛋白质组学和生物制药领域色谱产品提供技术支持。 2011年5月随戴安公司并入赛默飞世尔科技公司,先后任高级生命科学专家、HPLC/CDS产品市场经理和HPLC BioPharma/CDS应用经理 。【会议介绍】实验室自动化提供对研究、 质量保证和诊断实验室在技术和工程方面先进的工作流量的支持。涵盖许多技术,如移液器、机器人技术和酶标仪。移液工作站是典型的机器人设备,它可以从一个容器中吸取一定量的液体然后转移到另一个容器中。与移液设备类似,实验室机器人或机械臂代替了手动操作,如将样品从一个地方移动到另一个地方、堆叠和排序微孔板、制备样品、进行滴定和将样品引入仪器,大多数实验程序——从简单的样品瓶封盖和启盖到测试样品的高通量筛选发现都有很广应用。生命科学研究和药物研发需要高通量和快速分析技术,是实验室自动化设备应用的两大领域,其它还包括政府测试、农业、食品和CRO的需求。Thermo Fisher Scientific提供高度灵活、模块化的新药开发平台,可最终将任何实验、方法或步骤进行自动化。主要涉及药物发现、临床诊断、基因组学、蛋白质组学和细胞组学方面的应用。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名,通过审核后即可参会。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2015年09月25日 09:304、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/16095、报名及参会咨询:QQ群—379196738http://ng1.17img.cn/bbsfiles/images/2017/10/2015042911235201_01_2507958_3.jpg

  • 自动进样器的溶剂清洗地模式的含义

    仪器7890A+7693,在进行自动进样器的设定时,溶剂清洗模式有三种(1)A,B(2)A-A2,B-B2,(3)A-A3,B-B3。是什么意思?一般如何设定?因为初次使用A的气相,对软件不了解,而且前任走了没有交接,完全靠自学。希望高手指点,谢谢!

  • 关于生物显微最新技术 及应用进展,听听中科院专家怎么说? 8月18日在线答疑~

    关于生物显微最新技术 及应用进展,听听中科院专家怎么说? 8月18日在线答疑~

    [url=https://www.instrument.com.cn/webinar/meetings/swxw2021][size=18px][color=#ff0000][b]报名占位[/b][/color][/size][/url]1.《[color=#333333]基于高速原子力显微镜的生物物理研究》 [font=&][color=#333333]焦放([/color][/font][font=&][color=#333333]中国科学院物理研究所 特聘研究员)[/color][/font][/color]【摘要】 [color=#ff6666][b]高速原子力显微镜[/b][/color]开始广泛应用于生物大分子(蛋白质,DNA等)动态,生物纳米机器组装,以及功能纳米材料开发等方面的研究。基于高速原子力显微镜系统,这里将对新型穿孔素蛋白(perforin-2)的自组装及其细胞膜穿孔机理;Septin骨架蛋白的自组装、动力学和作用机理;病原体收缩注射器(R-type pyocin)外壳的弹性常数和能量储存等进行探究。[size=16px][/size][size=16px]2.《[font=&][color=#333333]多模态结构光超分辨显微镜技术开发与应用》 [/color][/font][font=&][color=#333333]李栋([/color][/font][font=&][color=#333333]中国科学院生物物理研究所 研究员)[/color][/font][/size][font=&][size=16px][color=#333333]【摘要】本报告将介绍李栋课题组针对上述问题开展的高时空分辨成像技术研制工作。在显微镜硬件方面:开发了多模态结构光超分辨显微镜,以及晶格光片超分辨显微镜系统,集成了TIRF-SIM、GI-SIM、Nonlinear-SIM、3D-SIM等在内的多种成像模式,实现了在活细胞条件下对多种生物过程进行高速、多色、长时程超分辨成像;在超分辨图像重建软件方面:提出了傅立叶域注意力机制的特征图提取方法,以此开发了傅立叶域注意力卷积神经网络,能够在较低信噪比成像条件下获得与传统超分辨显微镜技术媲美的成像效果,从而显著[/color][/size][/font][size=16px][color=#ff6666][b]扩展了传统超分辨显微镜的适用范围[/b][/color][/size][size=16px][color=#333333]。[/color][/size][font=&][size=16px][color=#333333][/color][/size][/font][color=#333333]3.《基于流式光片的毫米级样品高通量三维成像》 [font=&][size=16px]李辉([/size][/font][font=&][size=16px]中国科学院苏州生物医学工程技术研究所 研究员)[/size][/font]【摘要】 本报告将介绍基于流式和光片扫描的高通量三维活体成像技术与系统,对斑马鱼等微小模式动物根据尺寸、存活、是否成功标记荧光等的高速检测和分选,以及对分选后的样本法人高分辨全自动三维成像,从而[/color][size=16px][color=#ff6666][b]实现根据大量样品三维图像的形态/功能特征进行统计分析[/b][/color][/size][size=16px][color=#333333]。[/color][/size][font=&][size=16px][color=#333333][/color][/size][/font]4.《[color=#333333]冷冻光电关联成像技术在原位结构生物学中的应用》 [font=&][size=16px]李硕果([/size][/font][font=&][size=16px]中国科学院生物物理研究所 高级工程师)[/size][/font][/color][font=&][color=#333333][size=16px]【摘要】[/size][/color][/font][font=&][color=#333333][size=16px] [/size][/color][/font][font=&][size=16px][color=#333333]针对结构生物学原位生物大分子的高分辨率结构解析技术需求,依托生物成像中心自主研发的基于高真空冷台的冷冻光电关联成像系统HOPE,[/color][color=#ff6666][b]实现对目标区域的冷冻光镜-扫描电镜关联成像[/b][/color][color=#333333],导航聚焦离子束对目标区域进行减薄,获得包含目标物的200nm冷冻含水切片样品,助力高分辨率冷冻透射电镜的高效原位结构解析。[/color][/size][/font][color=#333333][font=&][size=16px][/size][/font][/color][color=#333333]5.《[font=&][size=16px]电镜技术在生物学中的发展与应用》 [/size][/font][font=&][size=16px]孔妤([/size][/font][font=&][size=16px]中国科学院脑科学与智能技术卓越创新中心 电镜平台主任/高级工程师)[/size][/font][/color][font=&][size=16px][back=#f2f2f2]【摘要】 电子显微镜是研究生物样品亚纳米级分辨率超微结构的最佳观察工具,本报告介绍[b]目前最新的生物电镜技术及其应用方向[/b],主要包括生物样品透射电镜技术、扫描电镜技术和体电子显微学技术等。多元化的成像方案是高分辨解析细胞或组织乃至大尺度样品精细结构的技术保障,具有很多潜在的科研应用价值。[/back][/size][/font][font=&][b][size=24px][color=#ff0000][url=https://www.instrument.com.cn/webinar/meetings/swxw2021]报名占位[/url][/color][/size][/b][/font][font=&][b][/b][/font][color=#333333][font=&][size=16px][img=,690,1518]https://ng1.17img.cn/bbsfiles/images/2021/08/202108061954279632_7267_2507958_3.jpg!w690x1518.jpg[/img][/size][/font][/color]

  • MRM模式下生物基质出峰保留时间改变是为什么?

    [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url]技术MRM模式,化合物在甲醇水中的保留时间为2.5min,内标保留时间为3.2min。空白生物基质中没有化合物与内标化合物的峰。动物给药以后生物基质中化合物在3.4min出峰,内标保留时间不变,还是3.2min。请问3.4min的峰是化合物峰吗?如果是,为什么保留时间会改变?图1是甲醇水中出峰,图2.3是空白生物基质中出峰,图4.5是动物给药后生物基质出峰。[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2023/09/202309091536154719_512_5259805_3.png[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2023/09/202309091536158713_6179_5259805_3.png[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2023/09/202309091536161728_4771_5259805_3.png[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2023/09/202309091536164182_5088_5259805_3.png[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2023/09/202309091536165594_1734_5259805_3.png[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制