当前位置: 仪器信息网 > 行业主题 > >

微分干涉相差倒置显微镜

仪器信息网微分干涉相差倒置显微镜专题为您提供2024年最新微分干涉相差倒置显微镜价格报价、厂家品牌的相关信息, 包括微分干涉相差倒置显微镜参数、型号等,不管是国产,还是进口品牌的微分干涉相差倒置显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微分干涉相差倒置显微镜相关的耗材配件、试剂标物,还有微分干涉相差倒置显微镜相关的最新资讯、资料,以及微分干涉相差倒置显微镜相关的解决方案。

微分干涉相差倒置显微镜相关的资讯

  • 江苏苏美达仪器设备有限公司关于倒置显微镜等设备的招标公告
    江苏苏美达仪器设备有限公司受南通出入境检验检疫局委托,根据《中华人民共和国政府采购法》等有关规定,现对倒置显微镜等设备进行公开招标,欢迎合格的供应商前来投标。  项目名称:倒置显微镜等设备  项目编号:1749-1640SUMEC220D  项目联系方式:  项目联系人:洪玫  项目联系电话:025-84531290  采购单位联系方式:  采购单位:南通出入境检验检疫局  地址:江苏省南通市崇川区崇川路102号  联系方式:戴小程0513-68588590  代理机构联系方式:  代理机构:江苏苏美达仪器设备有限公司  代理机构联系人:崔媛媛、曹坡  代理机构地址: 025-84532581,84532535  一、采购项目的名称、数量、简要规格描述或项目基本概况介绍:分包号产 品 名 称数量简要技术要求用途预算 (人民币/万元)1倒置显微镜1符合人体工程学的可以调整角度的双目观察镜筒...机场快速检疫查验8.5数码生物体视镜1高分辨率体视光学成像系统...机场快速检疫查验16.4高灵敏度制冷CCD1冷CCD制冷系统:低于环境温度18℃或以上...实验室检疫鉴定12.82分散机1转速控制精度10rpm...农产品检测10电熔融炉1工作及加热方式:全自动样品熔融混匀、电加热...实验室设备正常更新423梯度PCR仪1加热块模式:0.2 ml专用合金...分子检测12酸纯化装置1在蒸馏至近干时,TFM? PTFE和近干的液体都不会吸收很大的红外辐射,可防止装置因过热而损坏...适用于痕量分析中超纯酸的制备,保证ICP、ICP-MS、AAS在检测中不受杂质干扰,以达到满意的检测数值。94硫酰氟残留红外分析仪1精度:± 1ppm(0-10ppm)...对熏蒸其他(硫酰氟)残留浓度检测8.8红外水份测定仪1采用第二代环形卤素灯及镀金辐射体加热单元,更快捷、均匀的加热样品...成份检测8A级化学防护服(含正压呼吸器)1防化手套:连接设计独特,无需任何工具可轻松更换...化学有害因子现场处置个人防护5手持式化学探测器1能够对探测化学制剂进行定性定量检测,配有显示屏并可实时显示探测化学战剂的详细种类、具体名称、浓度数值范围...主要用于海港或空港口岸环境中化学战剂(CWA)气体的监测,如神经性毒剂、H类糜烂性毒剂以及血液性毒性气体和其他种类的学化学物质,特别是在突发事件处置中用以化学有害因子的监测与排查,为应急处置和人员防护提供依据。20溴甲烷气体残留检测仪1软件: 报警方式:具有视觉、振动和声音(95 分贝)...熏蒸过程中,检测是否有溴甲烷、磷化氢气体泄漏;熏蒸散气后,检测溴甲烷、磷化氢的残留量。2.85多样品自动浓缩仪1单个样品的体积范围:0.5-30mL...实验室仪器设备正常更新19全自动凝胶成像系统1采用CCD摄像头实时采集图象,采集状况可在电脑屏幕上直接观察并控制...卫生检疫设备正常更新12药品柜1柜体材质 镀锌钢板,涂有抗酸碱的环氧树脂涂层...检疫鉴定3低温冰箱1无CFC聚氨酯发泡,超厚保温层,保温效果好...植检检疫样品、试剂保存46便携式溴甲烷气体检测仪(低浓度)1检测范围: 0-200/0-2000ppm...口岸核生化防护设备1.45杂草检测图像采集设备1EF 24-105mm f/4L IS USM红圈防抖镜头,EF100mm f/2.8L IS USM微距镜头...杂草检测图像采集1.95便携式磷化氢高浓度检测仪1重量:不超过250克...口岸核生化防护设备1.5便携式溴甲烷熏蒸气体检测仪(高浓度)1提供现场实时检测溴甲烷气体的浓度和温度、对数据即时保存和打印的功能...熏蒸过程中,检测是否有溴甲烷、磷化氢气体泄漏;熏蒸散气后,检测溴甲烷、磷化氢的残留量。1.98手持式磷化氢气体检测仪(低浓度)1检测气体:空气中的磷化氢检测范围:0~10ppm分辨率:0.01ppm 产品类型:扩散式电化学有毒气体检测仪,带数据存储...熏蒸过程中,检测是否有溴甲烷、磷化氢气体泄漏;熏蒸散气后,检测溴甲烷、磷化氢的残留量。1.98  二、投标人的资格要求:  1、符合《中华人民共和国政府采购法》第二十二条的规定 1)具有独立承担民事责任的能力 2)具有良好的商业信誉和健全的财务会计制度 3)具有履行合同所必需的设备和专业技术能力 4)有依法缴纳税收和社会保障资金的良好记录 5)参加政府采购活动前三年内,在经营活动中没有重大违法记录 6)法律、行政法规规定的其他条件。 2、投标人的具体资质要求: 2.1 投标人营业执照(副本复印件)。 2.2 法人代表授权书(原件)及法定代表人、投标人授权代表身份证明材料。 2.3 若投标人不是投标产品制造商的,投标人必须具有下列授权文件之一: a.制造商出具的授权函正本 b.制造商的国内全资子公司出具的授权函正本 c.制造商对授权的区域代理商出具的授权函复印件及该区域代理商出具的授权函正 本 d.投标人取得的产品代理证书复印件(正本备查)。 2.4 银行出具的资信证书(复印件)(开标前三个月内)。 2.5 参加政府采购活动近三年内,在经营活动中没有重大违法记录(提供承诺书,格 式自拟)或提供检察机关出具的行贿犯罪档案查询结果告知函。 2.6 投标人资格证明。 2.7 投标人需要提供近三个月内任意一个月的依法缴纳税收和社会保障资金的记录。 2.8 本次采购均接受进口产品投标。  三、招标文件的发售时间及地点等:  预算金额:202.16 万元(人民币)  时间:2016年07月05日 17:30 至 2016年07月12日 17:30(双休日及法定节假日除外)  地点:江苏苏美达仪器设备有限公司,南京市长江路198号5楼。  招标文件售价:¥800.0 元,本公告包含的招标文件售价总和  招标文件获取方式:当面购买或邮购,每包800元人民币,售后不退 国内邮购须另加50元人民币。  四、投标截止时间:2016年07月27日 09:00  五、开标时间:2016年07月27日 09:00  六、开标地点:  南京市长江路198号苏美达大厦二楼开标大厅  七、其它补充事宜  公告期限:自发布之日起公告期限为5个工作日  八、采购项目需要落实的政府采购政策:  本项目执行《政府采购促进中小企业发展暂行办法》(财库〔2011〕181号),工业和信息化部、国家统计局、国家发展和改革委员会、财政部《关于印发中小企业划型标准规定的通知》(工信部联企业〔2011〕300号)等政府采购文件。
  • 光学显微镜技术和应用简介
    自然界中一些最基本的过程发生在微观尺度上,远远超出了我们肉眼所能看到的极限,这推动了技术的发展,使我们能够超越这个极限。早在公元4世纪,人们发现了光学透镜的基本概念,并在13世纪,人们已经在使用玻璃镜片,以提高他们的视力和放大植物和昆虫等对象以便更好地了解他们。随着时间的推移,这些简单的放大镜发展成为先进的光学系统,被称为光学显微镜,使我们能够看到和理解超越我们感知极限的微观世界。今天,光学显微镜是许多科学和技术领域的核心技术,包括生命科学、生物学、材料科学、纳米技术、工业检测、法医学等等。在这篇文章中,我们将首先探讨光学显微镜的基本工作原理。在此基础上,我们将讨论当今常用的一些更高级的光学显微镜形式,并比较它们在不同应用中的优缺点。    什么是光学显微镜?  光学显微镜用于通过提供它们如何与可见光相互作用(例如,它们的吸收、反射和散射)的放大图像来使小结构样品可见。这有助于了解样品的外观和组成,但也使我们能够看到微观世界的过程,例如物质如何跨细胞膜扩散。  显微镜的部件以及光学显微镜的工作原理  从根本上说,显微镜包括两个子系统:一个用于照亮样品的照明系统和一个成像系统,该系统产生与样品相互作用的光的放大图像,然后可以通过眼睛或使用相机系统进行观察。  早期的显微镜使用包含阳光的照明系统,阳光通过镜子收集并反射到样品上。今天,大多数显微镜使用人造光源,如灯泡、发光二极管(LED)或激光器来制造更可靠和可控的照明系统,可以根据给定的应用进行定制。在这些系统中,通常使用聚光透镜收集来自光源的光,然后在聚焦到样品上之前对其进行整形和光学过滤。塑造光线对于实现高分辨率和对比度至关重要,通常包括控制被照亮的样品区域和光线照射到它的角度。照明光的光学过滤,使用修改其光谱和偏振的光学过滤器,可用于突出样品的某些特征。图1:复合显微镜的基本构造:来自光源的光使用镜子和聚光镜聚焦到样品(物体)上。来自样品的光被物镜收集,形成中间图像,该图像由目镜再次成像并传递到眼睛,眼睛看到样品的放大图像。  成像系统收集与样品相互作用的照明光,并产生可以查看的放大图像(如上图1)。这是使用两组主要的光学元件来实现的:首先,物镜从样品中收集尽可能多的光,其次,目镜将收集的光中传递到观察者的眼睛或相机系统。成像系统还可包括诸如选择来自样品的光的某些部分的孔和滤光器之类的元件,例如仅看到已从样品散射的光,或仅看到特定颜色或波长的光。与照明系统的情况一样,这种类型的过滤对于挑出某些感兴趣的特征非常有用,这些特征在对来自样本的所有光进行成像时会保持隐藏。  总的来说,照明和成像系统在光学显微镜的性能方面起着关键作用。为了在您的应用中充分利用光学显微镜,必须充分了解基本光学显微镜的工作原理以及当今存在的变化。  简单复合显微镜  单个镜头可以用作放大镜,当它靠近镜头时,它会增加物体的外观尺寸。透过放大镜看物体,我们看到物体的放大和虚像。这种效果用于简单的显微镜,它由单个镜头组成,该镜头对夹在框架中并从下方照明的样品进行成像,如下图2所示。这种类型的显微镜通常可以实现2-6倍的放大倍率,这足以研究相对较大的样本。然而,实现更高的放大倍率和更好的图像质量需要使用更多的光学元件,这导致了复合显微镜的发展(如下图3)。图2:通过创建靠近它的物体的放大虚拟图像,将单个镜头用作放大镜。图3:左:简单显微镜。右:复合显微镜。  在复合显微镜中,从底部照射样品以观察透射光,或从顶部照射样品以观察反射光。来自样品的光由一个由两个主要透镜组组成的光学系统收集:物镜和目镜,它们各自的功率倍增,以实现比简单显微镜更高的放大倍率。物镜收集来自样品的光,通常放大倍数为40-100倍。一些复合显微镜在称为“换镜转盘(nose piece)”的旋转转台上配备多个物镜,允许用户在不同的放大倍数之间进行选择。来自物镜的图像被目镜拾取,它再次放大图像并将其传递给用户的眼睛,典型的目镜放大率为10倍。  可以用标准光学显微镜观察到的最小特征尺寸由所使用的光学波长(λ)和显微镜物镜的分辨率决定,由其孔径数值(NA)定义,最大值为NA =1空中目标。定义可区分的最小特征尺寸(r)的分辨率极限由瑞利准则给出:  r=0.61×(λ/NA)  例如,使用波长为550nm的绿光和典型NA为0.7的物镜,标准光学显微镜可以分辨低至0.61×(550nm)/0.7≈480nm的特征,这足以观察细胞(通常为10µm大小),但不足以观察较小生物的细节,例如病毒(通常为250-400nm)。要对更小的特征成像,可以使用具有更高NA和更短波长的更先进和更昂贵的物镜,但这可能不适用于所有应用。  在标准复合显微镜(如下图4a)中,样品(通常在载玻片上)被固定在一个可以手动或电子移动以获得更高精度的载物台上,照明系统位于显微镜的下部,而成像系统高于样本。然而,显微镜主体通常也可以适应特定用途。例如,立体显微镜(如下图4b)的特点是两个目镜相互成一个小角度,让用户可以看到一个略有立体感的图像。在许多生物学应用中,使用倒置显微镜设计(如下图4c),其中照明系统和成像光学器件都在样品台下方,以便于将细胞培养容器等放置在样品台上。最后,比较显微镜(如下图4d)常用于法医。图4:复合显微镜。a)标准直立显微镜指示(1)目镜,(2)物镜转台、左轮手枪或旋转鼻镜(用于固定多个物镜),(3)物镜、调焦旋钮(用于移动载物台)(4)粗调,(5)微调,(6)载物台(固定样品),(7)光源(灯或镜子),(8)光阑和聚光镜,(9)机械载物台。b)立体显微镜。c)倒置显微镜。  光学显微镜的类型  下面,我们将介绍一些当今可用的不同类型的光学显微镜技术,讨论它们的主要操作原理以及每种技术的优缺点。  亮视野显微镜  亮视野显微镜(Brightfield microscopy,BFM)是最简单的光学显微镜形式,从上方或下方照射样品,收集透射或反射的光以形成可以查看的图像。图像中的对比度和颜色是因为吸收和反射在样品区域内变化而形成的。BFM是第一种开发的光学显微镜,它使用相对简单的光学装置,使早期科学家能够研究传输中的微生物和细胞。今天,它对于相同的目的仍然非常有用,并且还广泛用于研究其他部分透明的样品,例如透射模式下的薄材料(如下图5),或反射模式下的微电子和其他小结构。图5:亮视野显微镜。左图:透射模式-在显微镜下看到的石墨(深灰色)和石墨烯(最浅灰色)薄片。在这里,图像上看到的亮度差异与石墨层的厚度成正比。右图:反射模式-SiO2表面上的石墨烯和石墨薄片,小的表面污染物也是可见的。  暗视野显微镜  暗视野显微镜是一种仅收集被样品散射的光的技术。这是通过添加阻挡照明光直接成像的孔来实现的,这样只能看到被样品散射的照明光。通过这种方式,暗场显微镜突出显示散射光的小结构(如下图6),并且对于揭示BFM中不可见的特征非常有用,而无需以任何方式修改样品。然而,由于在最终图像中看到的唯一光是被散射的光,因此暗场图像可能非常暗并且需要高照明功率,这可能会损坏样品。  图6:亮视野和暗视野成像。a)亮视野照明下的聚合物微结构。b)与a)中结构相同的暗视野图像,突出显示边缘散射和表面污染。c)与a)和b)相似的结构,被直径为100-300nm的纳米晶体覆盖。仅观察到纳米晶体散射的光,而背景光被强烈抑制。  相差显微镜  相差显微技术(Brightfield microscopy,PCM)是一种可视化由样品光路长度变化引起的光学相位变化的技术.这可以对在BFM中产生很少或没有对比度的透明样品进行成像,例如细胞(如下图7)。由于肉眼不易观察到光学相移,因此相差显微镜需要额外的光学组件,将样品引起的相移转换为最终图像中可见的亮度变化。这需要使用孔径和滤光片来操纵照明系统和成像系统。这些形状和选择性地相移来自样品的光(携带感兴趣的相位信息)和照明光,以便它们建设性地干涉眼睛或检测器以创建可见图像。图7:人类胚胎干细胞群落的相差显微图像。  微分干涉显微镜  与PCM类似,微分干涉显微镜(differential interference contrast microscopy,DICM)通过将由于样品光路长度变化引起的光学相位转换为可见对比度,从而使透明样品(例如活的未染色细胞)可视化。然而,与PCM相比,DICM可以实现更高分辨率的图像,并且减少了由PCM所需的光学器件引入的清晰度和图像伪影。在DICM ,照明光束被线性偏振器偏振,其偏振旋转,使其分裂成两个偏振光束,它们具有垂直偏振和小(通常低于1µm)间隔。穿过样品后,两束光束重新组合,从而相互干扰。这将创建一个对比度与图像成正比的图像差在两个偏振光束之间的光相位,因此命名为“差”干涉显微镜。DICM产生的图像出现与采样光束之间的位移方向相关的三维图像,这导致样品边缘具有亮区或暗区,具体取决于两者之间的光学相位差的符号(如下图8)。图8:微分干涉对比显微镜。左:DICM的原理图。右图:通过DICM成像的活体成年秀丽隐杆线虫(C.elegans)。  偏光显微镜  在偏振光显微镜中,样品用偏振光照射,光的检测也对偏振敏感。为了实现这一点,偏振器用于控制照明光偏振并将成像系统检测到的偏振限制为仅一种特定的偏振。通常,照明和检测偏振设置为垂直,以便强烈抑制不与样品相互作用的不需要的背景照明光。这种配置需要一个双折射样品,它引入了照明光偏振角的旋转,以便它可以被成像系统检测到,例如,观察晶体的双折射以及它们的厚度和折射率的变化(如下图9)。图9:偏光显微镜。橄榄石堆积物的显微照片,由具有不同双折射的晶体堆积而成。整个样品的厚度和折射率的变化会导致不同的颜色。  荧光显微镜  荧光显微镜用于对发出荧光的样品进行成像,也就是说,当用较短波长的光照射时,它们会发出长波长的光。示例包括固有荧光或已用荧光标记物标记的生物样品,以及单分子和其他纳米级荧光团。该技术采用了滤光片的组合,可阻挡短波长照明光,但让较长波长的样品荧光通过,因此最终图像仅显示样品的荧光部分(如下图10)。这允许从由许多其他非荧光颗粒组成的样品中挑出和可视化荧光颗粒或已被染料染色的感兴趣细胞的分布。同时,荧光显微镜还可以通过标记小于此限制的粒子来克服传统光学显微镜的分辨率限制。例如,可以用荧光标记标记病毒以显示其位置在生物样品的情况下,可以表达荧光蛋白,例如绿色荧光蛋白。结合各种新颖形式的样品照明,荧光显微镜的这一优势实现了“超分辨率”显微镜技术,打破了传统光学显微镜的分辨率限制。荧光显微镜的主要限制之一是光漂白,其中标记物或颗粒停止发出荧光,因为吸收照明光的过程最终会改变它们的结构,使它们不再发光。图10:荧光显微镜。左:工作原理-照明光由短通激发滤光片过滤,并由二向色镜反射到样品。来自样品的荧光通过二向色镜,并被发射滤光片额外过滤以去除图像中残留的激发光。右图:有机晶体中分子的荧光图像(晶体轮廓显示为黄色虚线)。由于来自其他分子和晶体材料的荧光,背景并不完全黑暗。  免疫荧光显微镜  免疫荧光显微镜是主要用于在微生物的细胞内的生物分子可视化的位置荧光显微镜的具体变化。在这里,用荧光标记物标记或固有荧光的抗体与感兴趣的生物分子结合,揭示它们的位置。(如下图11)图11:免疫荧光显微镜。肌动蛋白丝(紫色)、微管(黄色)和细胞核(绿色)的免疫荧光标记的两个间期细胞。  共聚焦显微镜  共聚焦显微镜是一种显微镜技术,它可以逐点成像来自样品的散射或荧光。不是一次对整个样品进行照明和成像,而是在样品区域上扫描源自点状光源的照明点,敏感检测器仅检测来自该点的光,从而产生2D图像。这种方法允许以高分辨率对弱信号样本进行成像,因为来自采样点之外的不需要的背景信号被有效抑制。在这里,所使用的波长和物镜在所有三个维度上都限制了成像光斑的大小。这允许通过将物镜移动到距样品不同的距离,在样品内的不同深度处制作2D图像。然后可以组合这些2D图像“切片”以创建样本的3D图像,这是所讨论的其他宽视场显微镜技术无法实现的,并且还允许以3D方式测量样品尺寸。这些优势的代价是无法一次性拍摄图像,而是必须逐点构建图像,这可能非常耗时并阻碍样本的实时成像(如下图12)。图12:单分子荧光的共聚焦荧光图像。小点对应于单个分子的荧光,而较大的点对应于分子簇。此处的荧光背景比简单的荧光显微镜图像弱得多,如亮点之间的暗区所见。  双光子显微镜  双光子显微镜(Two-photonmicroscopy,TPM)是荧光显微镜的一种变体,它使用双光子吸收来激发荧光,而不是单光子激发。在这里,通过吸收两个光子的组合来激发荧光,其能量大约是单个光子激发所需能量的一半。例如,在该方案中,通常由单个蓝色光子激发的荧光团可以被两个近红外光子激发。在TPM中,图像是逐点建立的,就像在共聚焦显微镜中一样,也就是说,双光子激发点在样品上扫描,样品荧光由灵敏的检测器检测。与传统荧光显微镜相比,激发和荧光能量的巨大差异导致了多重优势:首先,它允许使用更长的激发波长,在样品内散射较少,因此穿透更深,以允许在其表面下方对样品进行成像并创建3D样品图像。同时,由于激发能量低得多,光漂白大大减少,这对易碎样品很有用。激发点周围的荧光背景也大大减少,因为有效的双光子吸收仅发生在激发光束的焦点处,因此可以观察到来自样品小部分的荧光(如下图13)。  TPM的一个缺点是双光子吸收的概率远低于单光子吸收,因此需要高强度照明,如脉冲激光,才能达到实用的荧光信号强度。图13:双光子显微镜。花粉的薄光学切片,显示荧光主要来自外层。  光片显微镜  光片显微技术是荧光显微术的一种形式,其中样品被垂直于观察方向的薄“片”光照射,从而仅对样品的薄切片(通常为几微米)进行成像。通过在样品在光片中旋转的同时拍摄一系列图像,可以形成3D图像。这要求样品大部分是透明的,这就是为什么这种技术通常用于形成小型透明生物结构的3D图像,例如细胞、胚胎和生物体。(如下图14)图14:光片显微镜。左:工作原理。右:通过荧光成像用光片显微镜拍摄的小鼠大脑的荧光图像。  全内反射荧光显微镜  全内反射荧光(Totalinternal reflection fluorescence microscopy ,TIRF)是一种荧光显微技术,可通过极薄(约100nm厚)的样品切片制作2D荧光图像。这是通过照明光的渐逝场激发样品的荧光来实现的,当它在两种不同折射率(n)的材料之间的边界处经历全内反射时就会发生这种情况。消逝场具有与照明光相同的波长,但与界面紧密结合。在TIRF显微镜中,激发光通常在载玻片(n=1.52)和样品分散的水介质(n=1.35)之间的界面处发生全内反射。渐逝场的强度随距离呈指数下降来自界面,这样在最终图像中只能观察到靠近界面的荧光团。这也导致来自切片外区域的荧光背景的强烈抑制,这允许拾取微弱的荧光信号,例如在定位单个分子时。这使得TIRF非常适用于观察参与细胞间相互作用的荧光蛋白(如下图15)的微弱信号,但也需要将样品分散在水性介质中,这可能会限制可以测量的样品类型。图15:TIRF图像显示培养的视网膜色素上皮细胞中的蛋白质荧光。每个像素对应67nm。  膨胀显微镜  膨胀显微镜背后的基本概念是增加通常需要高分辨率显微镜的样品尺寸,以便可以使用标准显微镜技术(尤其是荧光显微镜)对其进行成像。这适用于保存的标本,例如生物分子、细胞、细菌和组织切片,可以使用下图16中所示的化学过程在所有维度(各向同性)均匀扩展多达50倍。扩展样本可以隔离感兴趣的个别特征通常是隐藏的,可以使它们透明,从而可以对它们的内部进行成像。图16:膨胀显微镜的样品制备。细胞首先被染色,然后连接到聚合物凝胶基质上。然后细胞结构本身被溶解(消化),使染色的部分随着凝胶各向同性地膨胀,从而使染色的结构更详细地成像。  光学显微镜中的卷积  除了使光学系统适应特定用例之外,现代光学显微镜还利用了数字图像处理,例如图像去卷积。该技术通过补偿光学系统本身固有的模糊,可以提高空间分辨率以及光学显微镜拍摄图像的定位精度。这种模糊可以在校准步骤中测量,然后可以用于对图像进行去卷积,从而减少模糊。通过将高性能光学元件与先进的图像处理相结合,数字显微镜可以突破分辨率的极限,以更深入地观察微观世界。(如下图17)图17:图像解卷积。左:原始荧光图像。右:解卷积后的图像,显示细节增加。  光学显微镜与电子显微镜  光学显微术通常使用可见光谱中的光波长,由于瑞利准则,其空间分辨率固有地限制为所用波长的大约一半(最多约为200nm)。然而,即使使用具有高NA和高级图像处理的物镜,也无法克服这一基本限制。相反,观察较小的结构需要使用较短波长的电磁辐射。这是电子显微镜的基本原理,其中使用电子而不是可见光照亮样品。电子具有比可见光短得多的相关波长,因此可以实现高达10000000倍的放大倍数,甚至可以分辨单个原子。(如下图18)  图18:同心聚合物结构中纳米晶体放大15000倍的扫描电子显微镜图像,即使是细微的细节,例如基材的孔隙,也能分辨出来。  总结与结论  光学显微镜是一种强大的工具,可用于检查各种应用中的小样本。通过调整用于特定用例的照明和成像技术,可以获得高分辨率图像,从而深入了解样品中的微观结构和过程。文中,我们讨论了各种光学显微镜技术的特点、优势和劣势,这些技术在光线照射和收集方式上有所不同。显微镜种类优点技术限制典型应用亮视野显微镜结构相对简单,光学元件很少低对比度、完全透明的物体不能直接成像,可能需要染色对彩色或染色样品和部分透明材料进行成像暗视野显微镜显示小结构和表面粗糙度,允许对未染色样品进行成像所需的高照明功率会损坏样品,只能看到散射图像特征细胞内颗粒成像,表面检测相差显微镜实现透明样品的成像复杂的光学设置,需要的高照明功率会损坏样品,通常图像较暗跟踪细胞运动,成像幼虫微分干涉对比显微镜比PCM更高的分辨率复杂的光学设置,需要的高照明功率会损坏样品,通常图像较暗活的、未染色的细胞和纳米颗粒的高分辨率成像偏光显微镜来自样品非双折射区域的强背景抑制,允许测量样品厚度和双折射需要双折射样品成像胶原蛋白,揭示晶体中的晶界荧光显微镜允许挑出样品中的单个荧光团和特定的感兴趣区域,可以克服分辨率限制需要荧光样品和灵敏的检测器,光漂白会减弱信号成像细胞成分、单分子、蛋白质免疫荧光显微镜使用抗体靶向可视化特定的生物分子大量样品制备,需要荧光样品,光漂白识别和跟踪细胞和蛋白质共聚焦显微镜低背景信号,可以创建3D图像成像速度慢,需要复杂的光学系统3D细胞成像,荧光信号较弱的成像样品,表面分析双光子显微镜样品穿透深度、背景信号低、光漂白少成像速度慢,需要复杂的光学系统和大功率照明神经科学,深层组织成像光片显微镜图像仅样品的极薄切片,可通过旋转样品创建3D图像成像速度慢,需要复杂的光学系统细胞和生物体的3D成像全内反射荧光显微镜强大的背景抑制,极精细的垂直切片成像仅限于样品的薄区域,需要复杂的光学系统,样品需要在水介质中单分子成像,成像分子运输膨胀显微镜提高标准荧光显微镜的有效分辨率需要对样品进行化学处理,不适用于活体样品生物样品的高分辨率成像  参考:  1. Rochow TG, Tucker PA. A Brief History of Microscopy. In: Introduction to Microscopy by Means of Light, Electrons, X Rays, or Acoustics. Springer US 1994:1-21. doi:10.1007/978-1-4899-1513-9_1  2. Smith WJ. Modern Optical Engineering: The Design of Optical Systems. McGraw-Hill 1990. ISBN: 0070591741  3. Shribak M, Inoué S. Orientation-independent differential interference contrast microscopy. Collected Works of Shinya Inoue: Microscopes, Living Cells, and Dynamic Molecules. 2008 (Dic):953-962. doi:10.1142/9789812790866_0074  4. Gao G, Jiang YW, Sun W, Wu FG. Fluorescent quantum dots for microbial imaging. Chinese Chem Lett. 2018 29(10):1475-1485. doi:10.1016/j.cclet.2018.07.004  5. Chalfie M, Tu Y, Euskirchen G, Ward W, Prasher D. Green fluorescent protein as a marker for gene expression. Science. 1994 263(5148):802-805. doi:10.1126/science.8303295  6. Baranov M V., Olea RA, van den Bogaart G. Chasing Uptake: Super-Resolution Microscopy in Endocytosis and Phagocytosis. Trends Cell Biol. 2019 29(9):727-739. doi:10.1016/j.tcb.2019.05.006  7. Miller DM, Shakes DC. Chapter 16 Immunofluorescence Microscopy. In: Current Protocols Essential Laboratory Techniques. Vol 10. 1995:365-394. doi:10.1016/S0091-679X(08)61396-5
  • 如何选择一台适合自己的显微镜——光学部件物镜的选择(下)
    小伙伴们,我又来了~本期给大家带来显微镜物镜的知识。啥是物镜,我想地球人都知道~物镜是显微镜的灵魂所在,物镜是影响清晰度的最重要部件,先来了解下物镜的重要参数。在选择物镜时需要考虑以下几个问题:1、需要多大的放大倍数?● 物镜可以根据其放大倍率分为三大类。其中包括:低倍物镜(2x、4x/5x和10x),中倍物镜(20x、40x)和高倍物镜(60x/63x、100x)。除了物镜的放大倍率不同外,物镜使用的介质也不同。例如,对于高倍镜头(60x和100x),经常使用浸油来获得高分辨率。放大倍率较低的镜头则采用空气作为介质。2、选择哪种观察方式?● 显微物镜有很多类型,应用场景也各有不同,根据观察方式的不同,也有不同种类。一般在物镜的外壳上会标注物镜的观察方式。● BF:明场;DF:暗场;PH:相差;PO:偏光;DIC:微分干涉;FL:荧光观察(蓝、绿、紫等);UVFL:紫外荧光观察。3、如何选择一个成像效果好的物镜?● ①要选择有平场矫正功能的物镜,即标有Plan。 ②主要根据色差校正的能力来判断成像效果:消色差物镜(Achromatic):仅能校正红蓝光的色差。半复消色差物镜(FL):能校正红绿蓝三色光的色差。全复消色差物镜(Apo):能对红绿蓝三色光的色差校正两次,同时能校正红、蓝两色光的球差。● 看透明切片可选择平场消色差物镜(Ach)。看荧光可选择半复消色差物镜(FL),而且有长工作距离可选,既可以看玻片也可以看培养皿。若需要更好的成像效果可选择全复消色差物镜(Apo),但Apo物镜没有长工作距离的,只适用于看玻片,不适合看培养皿或培养瓶等厚的样品。4、对分辨率的要求是什么?● 显微镜的分辨率是能分辨两点间的最小距离,能分辨的距离越小分辨率越高。数值孔径(NA值)与分辨率成正比,NA = n * sin α。与放大率成正比,与景深成反比。同样的放大倍数下,NA值越高越好。在工作距离都满足的情况下选择NA值高的物镜。5、需要多长的工作距离(WD)● 根据工作距离的不同,可以分为:①普通工作距离物镜:工作距离小,可以观察切片,但不能观察培养皿。②长工作距离物镜:用于倒置显微镜,可以满足组织、悬浮液等材料的镜检。6、所使用的玻片或培养板的厚度是多少?● 在标注物镜的光学类型的后面(∞/0)(210/0),也就是斜杠后面这个数字代表的是适用玻片厚度,(∞/0.17)(210/0.17),适用玻片厚度就是0.17毫米。如果用了不合适的盖玻片,则会出现很明显的球差(不同角度的光线没有会聚在同一高度)从而降低成像的对比度和分辨率。NA值越高的物镜对盖玻片厚度越敏感,所以要选择正规的盖玻片。有些高NA值的物镜以及长工作距离的物镜有可调的盖玻片厚度调节环可以对不同厚度的玻璃进行矫正,可用于培养皿的观察,观察时调节到相应的培养皿的厚度,或使用共聚焦培养皿,中间厚度也为0.17。
  • 徐涛院士团队研制出分子尺度分辨率干涉定位显微镜
    p style="text-align: justify text-indent: 2em "Seeing is believing,光学显微镜自1590年由荷兰詹森父子创制伊始,即成为生命科学最重要的研究工具之一。进入21世纪,借助荧光分子,科学家将光学显微镜的分辨率提高了一个数量级,由约一半光波波长(250 nm)拓展至几十纳米,并兴起了超高分辨荧光成像技术,用于“看到”精细的亚细胞结构和生物大分子定位,相关工作荣膺2014年诺贝尔化学奖。/pp style="text-align: justify text-indent: 2em "9月9日,Nature Methods杂志在线发表了中国科学院生物物理研究所徐涛院士研究组与科学研究平台纪伟正高级工程师研发团队合作研究论文,题为“Molecular resolution imaging by repetitive optical selective exposure”,为超高分辨光学显微镜家族再添新成员,使显微镜分辨率进一步被突破。该工作提出了一种基于激光干涉条纹定位成像的新技术,并据此研制出新型单分子干涉定位显微镜(Repetitive Optical Selective Exposure, ROSE),将荧光显微镜分辨率提升至3 nm以内的分子尺度,单分子定位精度接近1 nm,可以分辨点距为5 nm的DNA origami(DNA 折纸)结构。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 450px height: 226px " src="https://img1.17img.cn/17img/images/201909/uepic/bcbdc347-2f8b-464e-9014-787a341c1e21.jpg" title="徐涛院士组与科学研究平台研发团队实现分子尺度分辨率光学成像.jpg" alt="徐涛院士组与科学研究平台研发团队实现分子尺度分辨率光学成像.jpg" width="450" height="226" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong图1 左侧,传统质心拟合定位方法,右侧,ROSE干涉定位方法/strong/pp style="text-align: justify text-indent: 2em "所谓干涉定位,是指采用不同方向和相位的激光干涉条纹激发荧光分子,荧光分子的发光强度与其所处条纹的相位有关,该技术即是通过荧光分子强度与干涉条纹的相位关系,来确定荧光分子的精确位置。为降低单分子发光时的闪烁和漂白对亮度和定位精度产生的不良影响,研发团队对显微镜光路进行了创造性地设计,分别为:基于电光调制器的干涉条纹快速切换激发光路,基于谐振振镜扫描的6组共轭成像光路,两种光路的同步实现了高达8 kHz的分时成像,确保在相机的单次曝光时间里把每个单分子发光状态均匀分配给6个干涉条纹,有效避免了荧光分子发光能力波动对定位精度的干扰。/pp style="text-align: justify text-indent: 2em "研发团队利用该技术对不同荧光位点间距的DNA origami阵列进行验证测试,证明干涉成像分辨率达到了3 nm的分子水平,可以解析5 nm的DNA origami阵列。后续的功能性实验结果显示,该技术在免疫标记的微管、CCP(clathrin coated pits,网格蛋白有被小窝)以及较致密的细胞骨架成像时展现出良好性能,该技术将为进一步解析精细亚细胞的组分和生物大分子的纳米结构提供有力工具。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 450px height: 311px " src="https://img1.17img.cn/17img/images/201909/uepic/45780611-1a95-4748-a74e-d777d33bd780.jpg" title="分子尺度分辨率光学成像.jpg" alt="分子尺度分辨率光学成像.jpg" width="450" height="311" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong图2左侧,不同荧光位点间距的DNA origami成像,ROSE技术与传统的质心拟合方法进行对比验证。右侧,鬼笔环肽标记的微丝成像,ROSE技术与传统的质心拟合方法进行对比验证。/strong/pp style="text-align: justify text-indent: 2em "徐涛院士领衔的仪器研发团队近年来致力于显微成像仪器设备和技术方法的研究和开发,先后研制出偏振单分子干涉成像、冷冻单分子定位成像以及超分辨光电融合成像系统,开发了新的超分辨显微成像算法、探针和技术,申请有多项发明专利,上述成果被广泛应用于细胞生物学相关研究,支撑团队与合作者在该领域取得了系统性成果产出。纪伟正高级工程师所在的生命科学仪器研发中心是根据研究所发展新技术新方法的迫切需求而设立,隶属于科学研究平台,在提供技术服务的同时,聚焦生物显微成像仪器设备的研发与应用推广。/pp style="text-align: justify text-indent: 2em "徐涛院士和纪伟正高级工程师为该文章的共同通讯作者,谷陆生、李媛媛、张淑文为共同第一作者。李栋研究员、薛艳红、李尉兴参与了本课题。/pp style="text-align: justify text-indent: 2em "该工作受到中国科学院科研仪器设备研制项目、国家重点研发计划、国家自然科学基金以及北京市科技计划等项目的资助。/p
  • ​关注"生育力保护",Nexcope显微系统能在辅助生殖中做什么?
    7月9号,湖北省性学会生育力保护专委会成立大会暨生育力保护新进展学术研讨会在武汉举行。1 研讨会现场根据《中国卫生健康统计年鉴》的调查结果和北医三院乔杰院士团队开展的全国育龄人群生育健康监测数据显示,我国不孕率从1997年的3.5%提高至2020年的17.6%。即平均每6到7对夫妻中就有一对遭遇生育困境,且呈年轻化的趋势。“生育力保护”已成为相关领域专家研究的热点问题。研讨会后,人类精液分析标准化和质量控制高级培训班开幕,进行了为期一天的实操培训。本次培训实操使用的显微镜为Nexcope NE900 和NE620正置生物显微镜。在辅助生殖(ART)领域,它们通常用于精子观察,通过相差观察来计数,同时检验精子形态、存活率、活动力和浓度。 学员使用Nexcope显微镜进行实操在辅助生殖研究多个环节,Nexcope显微镜均可作为得力科研工具:正置生物显微镜--------------------精子观察、精液分析Nexcope 正置生物显微系统具有高亮度LED,能清楚地观察精子的流动性,此外由于LED光源产生的热量较低,对样品的损害会减少;25mm 大视场目镜,观察内容更全面、观察速度更快;微分干涉模块和相衬物镜可实现更精确的精子计数和更清晰的形态观察;可倾角观察头和低手位可调节手柄有助于确保舒适的显微镜操作。 Nexcope NE900 生物显微镜体视显微镜--------------------卵母细胞及胚胎观察Nexcope 体视显微镜用于卵母细胞清洁、卵母细胞冷冻和解冻期间的观察、受精检查、胚胎等级确认。Nexcope体视显微镜使您能快速切换所有观察区域,从0.75X放大倍率切换到13.5X放大倍率,变焦倍率比达到 1:18, 既可以在低放大倍率下进行高质量的整体观察,又可以快速放大以进行微米级的细节观察。在实际工作过程中,需要相当长的时间来查找和判断卵母细胞和胚胎成熟度。为减轻用户疲劳,Nexcope体视显微镜系列提供可倾角三目观察头,能够实现瞳距、视度调节,眼基线高度可提升 47mm,让您在最自然、最舒适的姿势下进行工作。此外,底座内置 OIC 照明装置,可滑动侧边操作杆将下照明改为斜射照明,增强了无色、透明样品表面的对比度,可以快速检查卵母细胞和胚胎的状况。 Nexcope NSZ818 体视显微镜倒置生物显微镜------------------------- 卵胞浆内单精子注射(ICSI)Nexcope 倒置生物显微镜可搭载体外显微注射系统,在卵母细胞中进行卵胞浆内单精子注射(ICSI)。首先使用Nexcope 倒置生物显微系统观察卵母细胞的纺锤体以确认是否成熟,同时有助于确保其处于正确的位置,避免注射过程中的损伤。通过Nexcope倒置生物显微镜可以通过微分干涉对比度(DIC)、相称进行一系列观察,您能清晰地观察主轴的外观。此外,浮雕3D反差观察塑料/玻璃培养皿中的三维卵母细胞,使您能检查卵母细胞透明带的状况,由此显著提高受精率。在ICSI期间,需要使用多种观察方法和镜头放大倍率,使显微镜操作更加复杂,并增加了用户的压力和疲劳水平。Nexcope 倒置生物显微镜能记忆使用每个物镜时的照明亮度,当不同物镜相互转换时,自动对光强进行调节,减少视觉疲劳,提高工作效率。 Nexcope NIB900 倒置显微镜搭载体外显微注射系统关注“生育力保护”,Nexcope显微系统在重要环节助力辅助生殖研究,使您的操作更舒适,观察更精准,成功率更高。了解更多相关产品,请关注我们:
  • 国际首台飞秒干涉散射显微镜研制成功
    光电界面携能载流子的时空演化与能源、催化和传感等领域紧密相关,是近年来物理、化学和材料等领域的研究热点之一。载流子的迁移、分布和弛豫是影响材料功能的关键之所在,因此,利用高时空分辨成像技术观测载流子时空演化对于新型材料基础研究和应用均具有重大意义。然而,极微弱载流子信号的测量是学界公认的难题。总体而言,国内外尚无成熟的仪器装置能够有效实现瞬态信号放大,直接"看见"少量载流子仍是巨大的挑战。近日,南京大学化学化工学院生命分析化学国家重点实验室康斌/徐静娟团队结合飞秒泵浦-探测技术和干涉散射显微术,研制成国际上首台飞秒干涉散射显微镜(Femto-iSCAT),并成功获得发明专利授权(专利号:202110510123.X)。该仪器作为一个通用测量平台,实现了超灵敏、高通量观测各种材料中的载流子迁移、分布和弛豫动力学。通过干涉放大效应和空间光场调制,瞬态图像对比度相比于传统方法提升了2个数量级以上,可探测极微弱载流子信号,从而有利于揭示超导材料、二维材料及新型光电材料中的稀奇科学现象。飞秒干涉散射成像原理随后作者展示了Femto-iSCAT的一系列极具挑战的应用场景,包括常用光电器件如金属薄膜、硅基半导体和钙钛矿太阳能电池中的界面载流子/热扩散迁移,单个等离激元微纳颗粒中的不均匀热电子分布和弛豫,以及二维材料中的载流子/激子在边缘态的独特动力学。Femto-iSCAT相比于传统瞬态显微镜,极大拓展了材料的适用范围,以极高灵敏度和检测通量实现了载流子时空演化的多功能成像,助力界面能量和载流子转移等超快过程的研究。该工作以"Decrypting Material Performance by Wide-field Femtosecond Interferometric Imaging of Energy Carrier Evolution"为题,于2022年7月22日发表在Journal of the American Chemical Society(美国化学会志)。博士生吕品田为该论文第一作者,康斌副教授和徐静娟教授为论文通讯作者,陈洪渊院士对该工作的研究思想做出了重要指导。该工作得到了国家自然科学基金、南京大学卓越研究计划、南京大学生命分析化学国家重点实验室自主研究课题等资助。文章链接:https://pubs.acs.org/doi/10.1021/jacs.2c05735
  • 蔡司Axio Observer倒置式显微镜升级版荣耀上市
    pbr//pp style="TEXT-ALIGN: center"img style="FLOAT: none" title="Observer 3m.jpg" src="http://img1.17img.cn/17img/images/201512/uepic/c8573f28-1b28-4279-8e15-034e0721454c.jpg"//ppbr//ppbr//ppbr//ppbr//ppbr//ppbr//ppbr//ppbr//pp style="TEXT-ALIGN: justify" 近期,光学领导品牌德国蔡司公司推出了全新升级版的Axio Observer倒置式金相显微镜,系统升级后增加了全新的光强记忆功能,结合专业的光学系统与自动化设计,使系统更稳定,重复操作更简便。创新的Axio observer系统是一个开放的成像平台:按照目前的需求进行配置,无论何时分析研究需求有变化时,仅需一个简单的升级就可以满足所有材料应用。/pp /ppstrong产品优势:/strong/ppstrong金相分析中节省时间/strong/pp· 使用 Axio Observer 让样品制备和检测更省时。/pp· 倒置设计利于与物镜的平行排列。/pp· 在最短的时间内观察最多的样品:将样品放置在载物台上,一旦聚焦,无论再次改变放大倍数或更换样品都无需再次聚焦。/ppbr//pp style="TEXT-ALIGN: center"img title="图片1.jpg" src="http://img1.17img.cn/17img/images/201512/uepic/3664f3d3-2515-4ddc-a52a-503c5f911001.jpg"/ /ppbr//ppstrong值得信赖的检测结果和优异的成像质量/strong/pp style="TEXT-ALIGN: justify" 您会震惊于对Axio Observer所提供的高品质图像,尤其是在高倍工作环境下。/pp style="TEXT-ALIGN: justify" Axio Observer能够提供均匀的照明环境保证整个视野都能呈现清晰的图像,结合自动化组件的与ICCS光学系统,保证了每一次的测量结果都是可靠的并且可重复的。/pp style="TEXT-ALIGN: justify" 利用专业的分析软件模块,您可以在短时间内对金相组织结构进行分析,如夹杂物、晶粒度及多相面积含量等。/ppbr//pp style="TEXT-ALIGN: center"img title="图片2.jpg" src="http://img1.17img.cn/17img/images/201512/uepic/46a72e34-ee00-4e31-86f1-e70f9eeadb5f.jpg"/ /ppbr//ppstrong多种分析对比技术,灵活选择/strong/pp style="TEXT-ALIGN: justify" 明场和暗场,采用光陷阱技术及强大的杂散光消除技术大幅降低图像的背景噪音,获得最丰富的组织细节、最锐利的图像。/pp style="TEXT-ALIGN: justify" 偏光分析技术,利用固定式起偏器检偏器、360& #176 旋转检偏器或具有全波段补偿器的可旋转检偏器,无需旋转载物台既实现对各向异性材料的双反射性及多色性分析。/pp style="TEXT-ALIGN: justify" 圆偏光微分干涉(C-DIC),利用专利的圆偏光干涉技术可顺利实现对样品表面轮廓的全组织干涉图像分析,且无需配置旋转载物台。/pp /ppstrong应用图像/strong/pp style="TEXT-ALIGN: center" /pp style="TEXT-ALIGN: center"img style="WIDTH: 542px HEIGHT: 515px" title="图片4.jpg" src="http://img1.17img.cn/17img/images/201512/uepic/68485178-ffbf-44a4-9b52-f961b87d0fd1.jpg"//ppbr//pp style="TEXT-ALIGN: center"strong巴克蚀刻铝,反射光,偏光/strong/pp style="TEXT-ALIGN: center" /pp style="TEXT-ALIGN: center"img style="WIDTH: 541px HEIGHT: 462px" title="图片5.jpg" src="http://img1.17img.cn/17img/images/201512/uepic/ed4e37ff-0dc0-4462-8525-9157b3027deb.jpg"//ppbr//pp style="TEXT-ALIGN: center"strong球状石墨,反射光,明场/strong/pp style="TEXT-ALIGN: center"br//pp style="TEXT-ALIGN: center"img style="WIDTH: 545px HEIGHT: 503px" title="图片6.jpg" src="http://img1.17img.cn/17img/images/201512/uepic/f96bdede-de78-4fe6-851e-e6a43b891afa.jpg"/ /ppbr//pp style="TEXT-ALIGN: center"strong铸造铝硅,反射光,暗场/strong/pp style="TEXT-ALIGN: center" /pp style="TEXT-ALIGN: center"img style="WIDTH: 541px HEIGHT: 499px" title="图片7.jpg" src="http://img1.17img.cn/17img/images/201512/uepic/e3967ef9-3330-4168-a7ed-5c5a8a3a2efc.jpg"//ppbr//pp style="TEXT-ALIGN: center"strong巴克蚀刻铝,反射光,C-DIC/strong/pp style="TEXT-ALIGN: center" /pp style="TEXT-ALIGN: center"img style="WIDTH: 539px HEIGHT: 461px" title="图片8.jpg" src="http://img1.17img.cn/17img/images/201512/uepic/4340e6fa-e814-4050-bcac-2f924c67a40e.jpg"//ppbr//pp style="TEXT-ALIGN: center"strong锌,反射光,带& #955 板偏光/strong/pp style="TEXT-ALIGN: center"br//pp style="TEXT-ALIGN: center"img style="WIDTH: 543px HEIGHT: 467px" title="图片9.jpg" src="http://img1.17img.cn/17img/images/201512/uepic/dd977ca9-9f5a-455c-8ead-ab22ce824700.jpg"/ /ppbr//pp style="TEXT-ALIGN: center"strong红砷镍矿,反射光,带& #955 板偏光/strong/pp /ppbr//ppbr//p
  • 1310万!中山大学电子束离子束双束电子显微镜和多普勒干涉原子力显微镜采购项目
    项目编号:中大招(货)[2022]680号、中大招(货)[2022]689号项目名称:中山大学物理学院电子束离子束双束电子显微镜采购项目、中山大学物理学院多普勒干涉原子力显微镜采购项目预算金额:1310.0000000 万元(人民币)采购需求:1、招标采购项目内容及数量:电子束离子束双束电子显微镜,1台(本项目允许产自中华人民共和国关境外的进口货物投标;本项目不属于专门面向中小企业采购项目。本项目所属行业为工业。具体内容及要求详见公告附件招标文件)。项目预算及经费来源:项目预算 7600000.00 元人民币。经费来源为财政性资金。2、招标采购项目内容及数量:多普勒干涉原子力显微镜,1套(本项目允许产自中华人民共和国关境外的进口货物投标;本项目不属于专门面向中小企业采购项目。本项目所属行业为工业。具体内容及要求详见公告附件招标文件)。项目预算及经费来源:项目预算 5500000.00 元人民币。经费来源为财政性资金。合同履行期限:收到发货通知后240日内完成交货及安装。本项目( 不接受 )联合体投标。中大招(货)[2022]680号_中山大学物理学院电子束离子束双束电子显微镜采购项目(正稿).pdf中大招(货)[2022]689号_中山大学物理学院多普勒干涉原子力显微镜采购项目(正稿).pdf
  • 突破轴向分辨率极限!我国科学家研制出新型干涉定位显微镜ROSE-Z
    单分子定位超分辨显微成像技术利用特殊荧光分子的光开关特性,突破衍射极限,将荧光显微镜的分辨率提高了一个数量级,可以揭示纳米尺度下的亚细胞结构。因受定位原理的限制,该技术轴向分辨率比侧向分辨率低2-3倍(一般为50nm左右),影响了其三维解析能力和应用。在“蛋白质机器与生命过程调控”重点专项的支持下,中国科学院生物物理研究所研究人员通过研发非对称干涉光路成像方法,突破了轴向分辨率的极限。与传统的柱面镜成像方法相比,非对称干涉光路成像方法将定位精度提高了6倍以上,将单分子定位成像的轴向分辨率提升到了纳米尺度,实现了轴向的单分子干涉定位成像。研究人员据此技术研制出了新型干涉定位显微镜(ROSE-Z),利用ROSE-Z显微镜的高分辨率三维解析能力,研究团队成功实现了对细胞内微管直径中空结构的解析。同时团队在ROSE-Z显微镜的基础上扩展了多色成像以及厚样品成像功能,对细胞样品进行了纳米精度三维双色成像,并验证了细胞厚样品成像能力。这些结果证明该方法在具备优异的轴向分辨率的同时,也具备很高的可扩展性以及操作便捷性,为细胞内三维纳米结构的研究提供了有力的研究工具。研究成果近期发表在Nature Methods杂志上。
  • 超30亿预算!10月发布显微镜(含电子显微镜等)采购意向汇总
    近日,科学仪器行业迎来了前所未有的利好消息。2022年9月13日,国务院常务会议决定对部分领域设备更新改造贷款阶段性财政贴息和加大社会服务业信贷支持,政策面向高校、职业院校、医院、中小微企业等九大领域的设备购置和更新改造。贷款总体规模预估为1.7万亿元。 2022年9月28日,财政部、发改委、人民银行、审计署、银保监会五部门联合下发《关于加快部分领域设备更新改造贷款财政贴息工作的通知》(财金〔2022〕99号),对2022年12月31日前新增的10个领域设备更新改造贷款贴息2.5个百分点,期限2年,额度2000亿元以上。因此今年第四季度内更新改造设备的贷款主体实际贷款成本不高于0.7%(加上此前中央财政贴息2.5个百分点)。这两大重磅政策提供极低利息的贷款给消费端提前进行设备购置和更新改造,推动我国仪器市场迎来新一波仪器采购大潮。仪器信息网注意到,10月7日以来,44所高校院所等单位发布的399项采购意向涉及显微镜(包括电子显微镜等),采购预算总额约33亿元。10月份含显微镜(含电子显微镜等)采购意向汇总序号项目名称预算金额(万元)采购单位发布时间预计采购时间查看1分析测试中心冷冻传输系统和冷冻传输样品杆采购项目320北京理工大学10月26日2022年12月意向原文2分析测试中心原位微区气氛系统采购项目290北京理工大学10月26日2022年12月意向原文3真空转移型高分辨场发射扫描电子显微镜560复旦大学10月26日2022年12月意向原文4原位催化型XPS互联高空间分辨表征系统540复旦大学10月26日2022年12月意向原文5高通量介孔储能材料原位电化学聚光镜单球差透射电镜1900复旦大学10月26日2022年12月意向原文6多功能多气氛环境介孔催化剂评价用图像矫正器透射电镜1300复旦大学10月26日2022年12月意向原文7材料加工-原位加热-结构表征双束多功能综合平台360复旦大学10月26日2022年12月意向原文8复杂结构解析及电热功能原位分析高通量-高分辨表征平台580复旦大学10月26日2022年12月意向原文9高分辨热场发射扫描电子显微镜采购242中山大学10月26日2022年11月意向原文10全自动高分辨快速成像系统采购152中山大学10月26日2022年11月意向原文11激光共聚焦显微镜采购260中山大学10月25日2022年11月意向原文12近红外上转化共聚焦显微镜440华中科技大学10月25日2022年11月意向原文13超高分辨激光共聚焦显微镜420华中科技大学10月25日2022年11月意向原文14智能超灵敏活细胞超分辨显微镜450华中科技大学10月25日2022年11月意向原文15西南交通大学高水平公共测试服务平台建设项目采购2900西南交通大学10月25日2022年11月意向原文16(材料型)原子力显微镜150复旦大学10月25日2022年11月意向原文17超高分辨激光共聚焦显微镜520浙江大学10月25日2022年12月意向原文18原位微纳热力分析型聚焦离子束/电子束扫描电镜836上海交通大学10月25日2022年12月意向原文19中国农业科学院蔬菜花卉研究所国家蔬菜种质资源中期库建设项目122中国农业科学院蔬菜花卉研究所10月24日2022年11月意向原文20西南交通大学复杂环境路面材料耐久性能测试系统采购177西南交通大学10月24日2022年11月意向原文21西南交通大学轨道结构材料响应细微观表征分析平台采购120西南交通大学10月24日2022年11月意向原文22西南交通大学扫描电镜能谱一体机采购140西南交通大学10月24日2022年12月意向原文23共聚焦激光扫描显微镜520浙江大学10月24日2022年11月意向原文24多光子共聚焦显微镜350中国科学院宁波材料技术与工程研究所10月24日2022年12月意向原文25双光子显微镜系统300浙江大学10月24日2022年11月意向原文26先进能源学院 场发射扫描电镜200中山大学10月23日2022年11月意向原文27先进能源学院 扫描电化学显微镜130中山大学10月23日2022年11月意向原文28先进能源学院 原子力显微镜100中山大学10月23日2022年11月意向原文29核科学与技术学院+核材料制备装置120兰州大学10月22日2022年12月意向原文30阜外医院医疗设备购置项目20000中国医学科学院阜外医院10月21日2022年11月意向原文31光发射电子显微镜1500南京大学10月21日2022年12月意向原文32冷冻电镜8000南京大学10月21日2022年12月意向原文33球差矫正透射电子显微镜3000南京大学10月21日2022年12月意向原文34场发射高分辨透射电镜800南京大学10月21日2022年12月意向原文35200kV透射电镜350南京大学10月21日2022年12月意向原文36120kV透射电镜600南京大学10月21日2022年12月意向原文37环境扫描电子显微镜420南京大学10月21日2022年12月意向原文38扫描电子显微镜600南京大学10月21日2022年12月意向原文39透射电镜原位纳米力学测试系统190南京大学10月21日2022年12月意向原文40显微镜操作平台250江南大学10月21日2022年12月意向原文41原子力显微镜200南京大学10月20日2022年12月意向原文42高分辨扫描电子显微镜与阴极荧光系统490南京大学10月20日2022年12月意向原文43显微操作系统、倒置显微镜160山东大学10月20日2022年11月意向原文44自动活细胞成像系统180山东大学10月20日2022年11月意向原文45光片显微成像系统580山东大学10月20日2022年11月意向原文46兰州大学现代化工程训练中心项目建设方案(电工电子基础训练及创新中心)——电子产品装配与检测模块68.22兰州大学10月20日2022年11月意向原文47家畜生物学国家重点实验室培育建设项目2098西北农林科技大学10月20日2022年11月意向原文48未来农业研究院平台建设项目1815西北农林科技大学10月20日2022年11月意向原文49超高分辨率活细胞三维长时程成像系统877.5复旦大学10月20日2022年12月意向原文50转盘式激光共聚焦显微镜675复旦大学10月20日2022年12月意向原文51多功能共聚焦显微拉曼成像系统298北京大学10月20日2022年12月意向原文52CSU转盘式扫描高速共聚焦成像380华南理工大学10月20日2022年11月意向原文53粤港澳中枢神经再生研究院科研设备121.5暨南大学10月20日2022年12月意向原文54快速扫描电子显微镜500上海交通大学10月20日2022年11月意向原文55电子探针系统600中山大学10月19日2022年11月意向原文56低能电子成像系统880中山大学10月19日2022年11月意向原文57场发射扫描电镜350中山大学10月19日2022年11月意向原文58场发射透射电镜1000中山大学10月19日2022年11月意向原文59拉曼-原子力显微镜联用系统200中山大学10月19日2022年11月意向原文60光子技术研究院科研设备987.7暨南大学10月19日2022年12月意向原文61基础医学与公共卫生学院科研设备429暨南大学10月19日2022年12月意向原文62场发射透射电子显微镜800湖南大学10月19日2022年11月意向原文63化学本科实验教学分析表征平台仪器设备购置664兰州大学10月19日2022年11月意向原文64药学实验教学中心升级改革——倒置荧光显微镜27浙江大学10月19日2022年12月意向原文65双球差矫正透射电子显微镜、场发射透射电镜2900北京大学10月19日2022年12月意向原文66材料科学与工程教学实验室规划、改造与建设630华北电力大学10月19日2022年11月意向原文67科研设备更新改造专项-场发射透射电子显微镜900中山大学10月19日2022年12月意向原文68中山医学院荧光显微镜(3台)采购105中山大学10月19日2022年11月意向原文69科研设备更新改造专项-聚焦离子束双束电子显微镜790中山大学10月19日2022年12月意向原文70电能转换与智慧用电教育部工程研究中心实验平台建设1889华北电力大学10月19日2022年12月意向原文71新能源电力系统国家重点实验室仪器设备升级更新项目7242华北电力大学10月19日2022年12月意向原文72国家储能技术产教融合创新平台5000华北电力大学10月19日2022年12月意向原文73新能源发电国家工程研究中心平台建设与设备更新4000华北电力大学10月19日2022年12月意向原文74氢能科学与工程学科及高水平科研平台建设5037华北电力大学10月19日2022年12月意向原文75低碳能源系统功能新材料开发与微纳制造平台4992华北电力大学10月19日2022年12月意向原文76清洁高效燃煤发电关键技术与装备集成攻关大平台4272华北电力大学10月19日2022年12月意向原文77新能源高效转换与特性研究4400华北电力大学10月19日2022年12月意向原文78水利工程学科科学研究706.6华北电力大学10月19日2022年12月意向原文79多维度单分子超分辨表征系统600浙江大学10月19日2022年11月意向原文80白激光共聚焦系统410西安电子科技大学10月19日2022年11月意向原文81化学化工学院高时空分辨显微成像设备采购项目350兰州大学10月19日2022年12月意向原文82材料科学与工程高水平研究平台建设项目2900武汉理工大学10月18日2022年11月意向原文83中南大学资源与安全工程学院新材料/能源环境控制与安全防控技术采购项目1541中南大学10月18日2022年11月意向原文84激光共聚焦显微镜(更正)490清华大学10月18日2022年11月意向原文85材料特征微区原位拉伸形貌分析仪150清华大学10月18日2022年11月意向原文86生物透射电子显微镜440清华大学10月18日2022年11月意向原文87双束三维立体生物成像电子显微镜950清华大学10月18日2022年11月意向原文88高通量切片扫描成像系统206清华大学10月18日2022年11月意向原文89活细胞晶格激光片层扫描显微镜830清华大学10月18日2022年11月意向原文90高分辨率X射线显微镜800清华大学10月18日2022年11月意向原文91快速超高分辨激光共聚焦显微镜450清华大学10月18日2022年11月意向原文92连续光谱激光共聚焦显微镜650清华大学10月18日2022年11月意向原文93多元多相燃料高效清洁混燃研究平台建设665华北电力大学(保定)10月18日2022年12月意向原文94光伏制储氢发电一体化技术研究平台340华北电力大学(保定)10月18日2022年11月意向原文95高分辨率电子显微镜1000南京大学10月18日2022年11月意向原文96多功能可控环境扫描探针显微镜300南京大学10月18日2022年11月意向原文97高倍显微镜260南京大学10月18日2022年11月意向原文98多功能超高分辨荧光分析与激光共聚焦系统970北京理工大学10月18日2022年11月意向原文99原位透射电镜表征系统2156北京理工大学10月18日2022年12月意向原文100功能有机分子化学国家重点实验室+原子力显微镜采购项目250兰州大学10月18日2022年11月意向原文101偏光显微镜60兰州大学10月18日2022年12月意向原文102包裹体测温测压系统80兰州大学10月18日2022年12月意向原文103单分子时间分辨共聚焦荧光显微系统(已有显微镜光谱系统更新)150浙江大学10月18日2022年11月意向原文104全功能扫描光电化学显微镜210浙江大学10月18日2022年11月意向原文105多功能化学成像系统1050浙江大学10月18日2022年11月意向原文106多维度单分子超分辨表征系统1215浙江大学10月18日2022年11月意向原文107表面等离子体共振显微镜300浙江大学10月18日2022年11月意向原文108高分辨多模态近场纳米光学原子力成像系统330山东大学10月18日2022年12月意向原文109超高分辨率场发射扫描电镜400厦门大学10月18日2022年12月意向原文110冷冻切片传输微加工系统585华南理工大学10月18日2022年11月意向原文111双光子激光共聚焦显微镜1000华南理工大学10月18日2022年11月意向原文112广东农工商职业技术学院化学品智能安全管理与实验教学中心设备建设项目372.9广东农工商职业技术学院10月17日2022年11月意向原文113正置荧光显微镜采购项目105北京师范大学10月17日2022年11月意向原文114光片荧光显微镜采购项目580北京师范大学10月17日2022年11月意向原文115中山大学科研设备更新改造专项-活细胞功能分析系统采购190中山大学10月17日2023年6月意向原文116中山大学科研设备更新改造专项-化学发光成像系统采购40中山大学10月17日2023年6月意向原文117中山大学科研设备更新改造专项-切片扫描系统采购168中山大学10月17日2023年6月意向原文118一体化荧光显微成像系统270中山大学10月17日2022年12月意向原文119显微注射系统55中山大学10月17日2022年12月意向原文120中山医学院倒置显微镜(2台)采购100中山大学10月17日2022年11月意向原文121高速双光子显微镜220清华大学10月17日2022年11月意向原文122场发射透射电子显微镜600南京大学10月17日2022年11月意向原文123环境扫描电子显微镜400南京大学10月17日2022年11月意向原文124双球差矫正透射电镜2000南京大学10月17日2022年11月意向原文125微结构加工与成像系统138浙江大学10月17日2022年10月意向原文126tirf全内返荧光显微镜180江南大学10月17日2023年6月意向原文127开尔文探针原子力显微镜220重庆大学10月17日2022年12月意向原文128高通量脑切片成像系统230中国科学院脑科学与智能技术卓越创新中心10月17日2022年11月意向原文129原子力显微镜230北京理工大学10月17日2022年11月意向原文130压电力显微镜180北京理工大学10月17日2022年11月意向原文131高通量低电压透射电子显微镜467北京理工大学10月17日2022年11月意向原文132原子力显微镜350山东大学10月17日2022年11月意向原文133FRET显微镜测定分析系统155山东大学10月17日2022年11月意向原文134微流场测试系统190山东大学10月17日2022年12月意向原文135原子力显微镜390山东大学10月17日2022年11月意向原文136单细胞荧光扫描显微镜120山东大学10月17日2022年12月意向原文137表面共振显微镜400山东大学10月17日2022年11月意向原文138激光扫描共聚焦显微镜195山东大学10月17日2022年12月意向原文139200KV冷冻透射电镜3750山东大学10月17日2022年11月意向原文140显微高速摄像系统190山东大学10月17日2022年12月意向原文141北京大学医学部冷冻电镜系统(一批)采购项目8500北京大学10月17日2022年11月意向原文142北京大学医学部200KV多用途场发射透射电子显微镜采购项目730北京大学10月17日2022年11月意向原文143全自动3D全息无标记活细胞成像系统200江南大学10月17日2022年11月意向原文144材料与能源学院新材料与新能源实验教学平台建设项目-数字显微镜25兰州大学10月17日2022年11月意向原文145材料与能源学院新材料与新能源实验教学平台建设项目-桌面型扫描电镜85兰州大学10月17日2022年11月意向原文146材料与能源学院新材料、新能源科研平台建设项目-原位高分辨显微织构测试系统510兰州大学10月17日2022年11月意向原文147材料与能源学院新材料、新能源科研平台建设项目-激光干涉多物理场传感成像系统480兰州大学10月17日2022年11月意向原文148橡胶类冷冻扫描分析系统520华南理工大学10月17日2022年11月意向原文149冷冻切片传输微加工系统585华南理工大学10月17日2022年11月意向原文150原子力显微镜220华南理工大学10月17日2022年11月意向原文151中南大学湘雅医学院冷冻电子显微镜平台采购项目8000中南大学10月16日2022年11月意向原文152中南大学湘雅医学院形态学平台科研设备采购项目18053中南大学10月16日2022年11月意向原文153中南大学湘雅医学院分子生物学平台采购项目15407中南大学10月16日2022年11月意向原文154中山医学院荧光显微镜(2台)采购150中山大学10月16日2022年11月意向原文155超高分辨率激光共聚焦显微镜500中山大学10月16日2022年11月意向原文156中山医学院激光共聚焦显微镜(全光谱)采购415中山大学10月16日2022年11月意向原文157中山医学院双束扫描电子显微镜采购800中山大学10月16日2022年11月意向原文158中山医学院多维活细胞灌流成像系统采购120中山大学10月16日2022年11月意向原文159原位透射电镜样品杆420复旦大学10月15日2022年11月意向原文160液相原子力显微镜350复旦大学10月15日2022年11月意向原文161聚焦离子束场发射扫描电子显微镜800华南理工大学10月15日2022年11月意向原文162台式扫描电子显微镜150华南理工大学10月15日2022年11月意向原文163中南大学高水平公共卫生学院建设采购项目6600中南大学10月15日2022年11月意向原文164中南大学医学精准诊断实验平台、高端医学影像实验平台、医学智能计算实验平台建设采购项目3000中南大学10月15日2022年11月意向原文165透射电子显微镜520吉林大学10月15日2022年12月意向原文166超高分辨激光共聚焦显微镜315吉林大学10月15日2022年11月意向原文167全自动数字玻片扫描系统280吉林大学10月15日2022年11月意向原文168倒置荧光显微成像及显微操作系统200吉林大学10月15日2022年11月意向原文169活细胞工作站320吉林大学10月15日2022年11月意向原文170高光谱显微镜--显微平台220南京农业大学10月14日2022年11月意向原文171膜蛋白结晶工作站150中山大学10月14日2022年12月意向原文172X射线显微镜900中山大学10月14日2022年11月意向原文173超分辨率显微镜650中山大学10月14日2022年12月意向原文174高通量分子相互作用分析仪0.03中山大学10月14日2022年12月意向原文175自动换液成像培养设备680中山大学10月14日2022年12月意向原文176高分辨率激光共聚焦显微镜580中山大学10月14日2022年12月意向原文177细胞无损实时监测系统100中山大学10月14日2022年12月意向原文178激光共聚焦显微镜260中山大学10月14日2022年12月意向原文179荧光斑点分析仪ELISPOT85中山大学10月14日2022年12月意向原文180高内涵成像分析系统400中山大学10月14日2022年12月意向原文181全自动外泌体提取纯化系统60中山大学10月14日2022年12月意向原文182多功能激光成像仪220中山大学10月14日2022年12月意向原文183液体闪烁计数器90中山大学10月14日2022年12月意向原文184理学院聚焦离子束-电子束系统采购项目925中山大学10月14日2022年11月意向原文185全自动活细胞荧光成像系统75中山大学10月14日2022年12月意向原文186原子力显微镜450中山大学10月14日2022年12月意向原文187化学学院多功能显微发光光谱测试系统采购项目150中山大学10月14日2022年12月意向原文188明场玻片扫描系统50中山大学10月14日2023年6月意向原文189脑片膜片钳系统(含钙成像)195中山大学10月14日2023年6月意向原文190显微注射系统85中山大学10月14日2023年6月意向原文191全光谱成像及组织微环境定量分析系统440中山大学10月14日2023年6月意向原文192细胞荧光成像系统90中山大学10月14日2023年6月意向原文193多普勒干涉原子力显微镜550中山大学10月14日2022年11月意向原文194包裹体测温测压系统80兰州大学10月14日2022年12月意向原文195双目镜3.5兰州大学10月14日2022年12月意向原文196偏光显微镜60兰州大学10月14日2022年12月意向原文197物理科学与技术学院/基于物理学科的基础学科拔尖人才培养实践教学平台建设71兰州大学10月14日2022年12月意向原文198化学学院扫描俄歇纳米探针采购项目750中山大学10月14日2022年11月意向原文199昆虫自动监测系统采购120中山大学10月14日2022年11月意向原文200化学学院形状测量激光显微系统采购项目120中山大学10月14日2023年2月意向原文201显微成像光谱系统150武汉大学10月14日2022年12月意向原文202中山医学院高通量共聚焦活细胞成像系统采购490中山大学10月14日2022年11月意向原文203中山医学院在体双光子显微成像系统采购600中山大学10月14日2022年11月意向原文204中山医学院实时无标记电阻细胞分析仪采购250中山大学10月14日2022年11月意向原文205中山医学院晶格层光显微成像系统采购800中山大学10月14日2022年11月意向原文206中山医学院荧光显微镜采购150中山大学10月14日2022年11月意向原文207化学学院 STM扫描隧道显微镜 项目150中山大学10月14日2022年12月意向原文208seahorse细胞能量代谢分析仪255中山大学10月14日2022年12月意向原文209中山医学院超分辨率显微镜采购720中山大学10月14日2022年11月意向原文210化学学院压电力显微镜采购项目300中山大学10月14日2022年12月意向原文211全自动细胞荧光显微成像90中山大学10月14日2022年12月意向原文212珠海校区高分辨共聚焦拉曼成像系统采购项目476.9北京师范大学10月14日2022年12月意向原文213多功能高分辨磁光克尔显微成像系统109吉林大学10月14日2022年12月意向原文214视频级生物型原子力显微镜330吉林大学10月14日2022年11月意向原文215场发射透射电子显微镜950吉林大学10月14日2022年11月意向原文216电镜拉曼一体化显微镜联用分析系统647.9吉林大学10月14日2022年12月意向原文217激光差动共焦显微镜120吉林大学10月14日2022年11月意向原文218超分辨共聚焦扫描显微镜368吉林大学10月14日2022年11月意向原文219超高分辨率激光共聚焦显微镜360吉林大学10月14日2022年11月意向原文220资源环境学院 拔尖创新人才培养平台建设15兰州大学10月14日2022年11月意向原文221中国科学院大学物理科学学院原子力显微镜采购项目198中国科学院大学10月14日2022年10月意向原文222超声波扫描显微镜采购项目141中山大学10月14日2022年11月意向原文223场发射电子显微镜采购项目440中山大学10月14日2022年11月意向原文224西南交通大学聚焦离子束扫描电子显微镜和场发射扫描电子显微镜购置项目1500西南交通大学10月14日2022年11月意向原文225生物医学科学与工程学院-超高分辨率倒置荧光显微镜320华南理工大学10月14日2022年11月意向原文226双转盘激光共聚焦高内涵系统550华南理工大学10月14日2022年11月意向原文227中山医学院高分辨率激光共聚焦显微镜(倒置型)采购480中山大学10月13日2022年11月意向原文228中山医学院全自动玻片扫描系统采购250中山大学10月13日2022年11月意向原文229中山医学院大组织样本光片显微镜采购435中山大学10月13日2022年11月意向原文230化学学院压电力显微镜采购项目300中山大学10月13日2023年3月意向原文231中山医学院高通量活细胞功能分析系统采购200中山大学10月13日2022年11月意向原文232中山医学院数控剪切流活细胞自动分析系统采购240中山大学10月13日2022年11月意向原文233中山医学院透射电子显微镜采购495中山大学10月13日2022年11月意向原文234飞秒激光-聚焦离子束三束电子显微镜采购800中山大学10月13日2022年11月意向原文235肖特基场发射扫描电子显微镜采购193中山大学10月13日2022年11月意向原文236中山医学院激光共聚焦显微镜(正置型)采购420中山大学10月13日2022年11月意向原文237超景深视频显微镜70中山大学10月13日2022年12月意向原文238中山医学院高分辨率荧光成像系统(倒置型)采购120中山大学10月13日2022年11月意向原文239中山医学院转盘共聚焦显微镜(倒置型)采购495中山大学10月13日2022年11月意向原文240中山医学院数字化组织原位多组学分析系统采购450中山大学10月13日2022年11月意向原文241双球差校正透射电子显微镜采购4300中山大学10月13日2022年11月意向原文242共聚焦显微镜采购182中山大学10月13日2022年11月意向原文243中山医学院多光谱组织成像分析系统采购400中山大学10月13日2022年11月意向原文244激光共聚焦显微镜700中山大学10月13日2022年11月意向原文245中山医学院激光共聚焦显微镜(正置型)采购320中山大学10月13日2022年11月意向原文246中山医学院高分辨率场发射扫描电子显微镜采购495中山大学10月13日2022年11月意向原文247中山医学院高分辨率激光共聚焦显微镜(正置型)采购480中山大学10月13日2022年11月意向原文248中山医学院高分辨率荧光成像系统(正置型)采购120中山大学10月13日2022年11月意向原文249高通量低电压透射电子显微镜467北京理工大学10月13日2022年11月意向原文250压电力显微镜180北京理工大学10月13日2022年11月意向原文251中国药科大学共聚焦显微镜项目500中国药科大学10月13日2022年11月意向原文252低压超快原子分辨透射电镜2600吉林大学10月13日2022年11月意向原文253多用途场发射透射电镜720吉林大学10月13日2022年11月意向原文254生命科学学院全自动数字玻片扫描系统采购项目210中山大学10月13日2022年11月意向原文255生命科学学院晶格层光显微镜采购项目980中山大学10月13日2022年11月意向原文256线扫描激光共聚焦显微镜450浙江大学10月13日2022年11月意向原文257球差校正电子显微镜3146吉林大学10月13日2022年11月意向原文258双球差校正透射电子显微镜3000吉林大学10月13日2022年11月意向原文259双束拉曼一体化显微镜联用分析系统647.9吉林大学10月13日2022年12月意向原文260微纳光学成像工作站557华南理工大学10月13日2022年11月意向原文261球差矫正透射电子显微镜5000华南理工大学10月13日2022年11月意向原文262超高分辨率原位动态显微成像系统575华南理工大学10月13日2022年11月意向原文263双光子激光共聚焦显微镜1000华南理工大学10月13日2022年11月意向原文264生物医学科学与工程学院-扫描探针及激光共聚焦成像系统600华南理工大学10月13日2022年11月意向原文265测试中心原子力显微镜(AFM)采购项目500中山大学10月12日2022年11月意向原文266测试中心生物型原子力显微镜采购项目443中山大学10月12日2022年11月意向原文267测试中心原子力显微镜-红外光谱联用采购项目795中山大学10月12日2022年11月意向原文268生态学院倒置荧光显微镜设备采购项目22兰州大学10月12日2022年11月意向原文269生物医学工程学院透射电子显微镜(120kV)采购项目440中山大学10月12日2022年11月意向原文270生物医学工程学院激光共聚焦显微镜(正置型)采购项目275中山大学10月12日2022年11月意向原文271生物医学工程学院桌面型扫描电镜采购项目110中山大学10月12日2022年11月意向原文272测试中心显微微区荧光寿命成像系统采购项目98中山大学10月12日2022年11月意向原文273基于高通量成像筛选设备150清华大学10月12日2022年11月意向原文274高分辨率光片系统470清华大学10月12日2022年11月意向原文275原位冷冻超分辨激光共聚焦系统400清华大学10月12日2022年11月意向原文276高分辨在体双光子激光扫描共聚焦成像系统680清华大学10月12日2022年11月意向原文277智能超灵敏活细胞超分辨显微镜480清华大学10月12日2022年11月意向原文278超高分辨三维(3View)扫描电子显微镜870四川大学华西医院10月12日2022年11月意向原文279草业科学国家级实验教学示范中心一流草学人才培养平台建设项目43兰州大学10月12日2022年11月意向原文280生命科学学院生物学野外实习科教一体化平台-农作物生长箱等设备采购项目85兰州大学10月12日2022年11月意向原文281生命科学学院细胞、免疫及显微技术科教一体化平台-荧光相差显微成像系统采购项目126兰州大学10月12日2022年11月意向原文282医学实验中心十人共览显微镜采购项目28兰州大学10月12日2022年11月意向原文283数字病理切片扫描仪120四川大学华西医院10月12日2022年11月意向原文284惰性气氛下锂电池界面表征用布鲁克原子力显微镜350华北电力大学10月12日2022年11月意向原文285超高分辨场发射扫描电子显微镜360华北电力大学10月12日2022年10月意向原文286200kV冷场发射透射电镜1600华南理工大学10月12日2022年11月意向原文287聚焦离子束场发射扫描电子显微镜800华南理工大学10月12日2022年11月意向原文288环境扫描电子显微镜400山东大学10月11日2022年11月意向原文289眼科手术显微镜20南京农业大学10月11日2022年11月意向原文290高级正置显微镜(含成像系统)5南京农业大学10月11日2022年11月意向原文291显微镜5南京农业大学10月11日2022年11月意向原文292耳科显微镜100四川大学华西医院10月11日2022年11月意向原文293微纳米尺度红外光谱成像系统725华南理工大学10月11日2022年11月意向原文294扫描隧道显微镜185华南理工大学10月11日2022年11月意向原文295四川大学华西第二医院11-12月专业设备采购4391四川大学华西第二医院10月11日2022年11月意向原文296大组织样本激光片层扫描显微镜430清华大学10月11日2022年11月意向原文297高分辨率激光片层扫描显微成像系统490清华大学10月11日2022年11月意向原文298高通量快速转盘共聚焦成像分析系统350清华大学10月11日2022年11月意向原文299公共卫生学院+核酸鉴定平台150兰州大学10月11日2022年12月意向原文300公共卫生学院+蛋白鉴定平台180兰州大学10月11日2022年12月意向原文301化学化工学院针尖增强拉曼光谱成像系统采购项目450兰州大学10月10日2022年11月意向原文302化学化工学院受激拉曼散射显微成像系统采购项目500兰州大学10月10日2022年12月意向原文303化学化工学院/分析测试中心成像质谱显微镜设备采购项目850兰州大学10月10日2022年10月意向原文304化学化工学院高效型激光共聚焦显微镜350兰州大学10月10日2022年11月意向原文305基础医学院双光子激光共聚焦成像系统设备采购项目500兰州大学10月10日2022年11月意向原文306护理学基础研究平台采购项目160兰州大学10月10日2022年12月意向原文307医学实验中心倒置荧光显微镜采购项目204兰州大学10月10日2022年11月意向原文308医学实验中心激光共聚焦采购项目330兰州大学10月10日2022年11月意向原文309医学实验中心360度全息无标记3D荧光显微镜采购项目98兰州大学10月10日2022年11月意向原文310电子增益探测正置光学显微系统160华南理工大学10月10日2022年11月意向原文3113D单分子定位显微镜260华南理工大学10月10日2022年11月意向原文312双光子激光微纳加工系统480华南理工大学10月10日2022年11月意向原文313超快高分辨原子力显微镜560华南理工大学10月10日2022年11月意向原文314超快激子扩散四维成像显微镜1050华南理工大学10月10日2022年11月意向原文315研究级倒置显微镜系统100华南理工大学10月10日2022年11月意向原文316冷冻场发射(生物)扫描电子显微镜450清华大学10月10日2022年11月意向原文317先进能源学院荧光显微镜采购项目120中山大学10月10日2022年11月意向原文318集成电路学院场发射扫描电镜(SEM)采购391.7中山大学10月10日2022年11月意向原文319集成电路学院高精度光学显微镜采购84中山大学10月10日2022年11月意向原文320集成电路学院原子力显微镜采购228中山大学10月10日2022年11月意向原文321集成电路学院金相显微镜采购80中山大学10月10日2022年11月意向原文322集成电路学院操作显微镜采购12中山大学10月10日2022年11月意向原文323高分辨场发射透射电镜2500哈尔滨工业大学10月10日2022年11月意向原文324离子/电子双束系统1400哈尔滨工业大学10月10日2022年11月意向原文325多场耦合原位微纳米力学可视化测试系统1350哈尔滨工业大学10月10日2022年11月意向原文326高分辨场发射扫描电子显微镜590哈尔滨工业大学10月10日2022年11月意向原文327高分辨镓离子双束电镜-二次离子质谱一体化系统1210哈尔滨工业大学10月10日2022年11月意向原文328扫描电镜原位高通量荧光纳米力学测试装置605哈尔滨工业大学10月10日2022年11月意向原文329西南交通大学分析测试中心测试能力提升建设项目采购120西南交通大学10月10日2022年10月意向原文330兰州大学中长期贷款项目投资估算表-拔尖创新人才培养平台60兰州大学10月10日2022年11月意向原文331兰州大学药学院荧光光学倒置显微镜采购项目45兰州大学10月10日2022年11月意向原文332兰州大学药学院荧光正置显微镜及成像系统采购项目60兰州大学10月10日2022年11月意向原文333基础医学院显微数码互动教学实验室采购项目144兰州大学10月10日2022年11月意向原文334基础医学院显微数码互动教学实验室采购项目192兰州大学10月10日2022年11月意向原文335开办费实验室设备购置第二包322.2中国医学科学院病原生物学研究所10月9日2022年11月意向原文336单分子成像和捕获系统530华南理工大学10月9日2022年11月意向原文337多势阱光镊操控系统190华南理工大学10月9日2022年11月意向原文338STED超分辨成像系统620华南理工大学10月9日2022年11月意向原文339北京大学人民医院国家创伤医学中心经费项目购转盘共聚焦显微镜185北京大学人民医院10月9日2022年11月意向原文340兰州大学生命科学学院荧光相差显微成像系统采购项目126兰州大学10月9日2022年11月意向原文341兰州大学生命科学学院红外相机等采购19.48兰州大学10月9日2022年11月意向原文342兰州大学生命科学学院激光聚焦扫描显微镜采购项目240兰州大学10月9日2022年11月意向原文343傅里叶红外光谱/红外显微镜400哈尔滨工程大学10月9日2022年11月意向原文344超快超高压原子级扫描透射电子显微镜3600哈尔滨工程大学10月9日2022年11月意向原文345氦离子束显微镜1100哈尔滨工程大学10月9日2022年11月意向原文346单光子计数共聚焦显微镜1500哈尔滨工程大学10月9日2022年11月意向原文347全通道激光共聚焦显微镜800哈尔滨工程大学10月9日2022年12月意向原文348口岸检疫查验能力提升项目20.5中华人民共和国济南机场海关10月9日2022年11月意向原文349兰州大学生命科学学院超高分辨率显微成像系统设备采购项目730兰州大学10月9日2022年10月意向原文350兰州大学生命科学学院全自动电动荧光显微镜设备采购项目68兰州大学10月9日2022年10月意向原文351物理学院/量子钻石原子力显微镜设备350兰州大学10月9日2022年11月意向原文352兰州大学生命科学学院双光子显微成像系统设备采购项目450兰州大学10月9日2022年10月意向原文353兰州大学生命科学学院激光共聚焦显微镜设备采购项目480兰州大学10月9日2022年10月意向原文354兰州大学生命科学学院高速转盘式共聚焦成像显微镜设备采购项目350兰州大学10月9日2022年10月意向原文355兰州大学生命科学学院激光片层扫描成像系统设备采购项目570兰州大学10月9日2022年10月意向原文356生命科学学院植物生理实训平台采购项目45南京农业大学10月9日2022年11月意向原文357生态学院研究级正置显微镜设备采购项目35兰州大学10月8日2022年11月意向原文358生态学院共聚焦扫描成像显微镜采购项目130兰州大学10月8日2022年11月意向原文359生态学院基因编辑与显微注射平台设备采购项目38.6兰州大学10月8日2022年11月意向原文360药学院激光共聚焦显微镜233.7中山大学10月8日2022年11月意向原文361数字PCR、多通道全自动扫描成像系统、石英晶体微天平、全自动活细胞荧光显微镜成像系统690中国医学科学院肿瘤医院10月8日2022年11月意向原文362双光子激光共聚焦显微镜680南京农业大学10月8日2022年11月意向原文363激光片层扫描显微系统410南京农业大学10月8日2022年11月意向原文364免疫荧光显微系统60南京农业大学10月8日2022年11月意向原文365Spinning disk激光共聚焦荧光显微镜500南京农业大学10月8日2022年11月意向原文366原子力显微镜350南京农业大学10月8日2022年11月意向原文367光电联用激光共聚焦显微镜400南京农业大学10月8日2022年11月意向原文368受激发射损耗显微镜620南京农业大学10月8日2022年11月意向原文369体视显微镜26南京农业大学10月8日2022年11月意向原文370全内反射荧光显微镜175南京农业大学10月8日2022年11月意向原文371荧光倒置显微镜48南京农业大学10月8日2022年11月意向原文372人文与社会发展学院金相显微镜100南京农业大学10月8日2022年12月意向原文373人文与社会发展学院扫描电子显微镜100南京农业大学10月8日2022年12月意向原文374人文与社会发展学院生物显微镜100南京农业大学10月8日2022年12月意向原文375自旋科技研究院购置激光共聚焦荧光显微镜设备项目380华南理工大学10月8日2022年11月意向原文376自旋科技研究院购置扫描探针显微镜项目294华南理工大学10月8日2022年11月意向原文377自旋科技研究院购置金刚石NV色心扫描显微镜系统项目460华南理工大学10月8日2022年11月意向原文378自旋科技研究院购置电子束曝光系统项目498华南理工大学10月8日2022年11月意向原文379双光子扫描光遗传学显微镜500北京大学10月8日2022年11月意向原文380植物保护学院教学中心仪器设备采购项目680南京农业大学10月8日2022年11月意向原文381教务处、国家级实验教学中心显微互动系统采购项目383.7南京农业大学10月8日2022年11月意向原文382中国药科大学场发射电子探针显微分析仪(SEM)项目600中国药科大学10月8日2022年11月意向原文383中国药科大学扫描电镜项目500中国药科大学10月8日2022年11月意向原文384中国药科大学光片显微成像系统项目600中国药科大学10月8日2022年11月意向原文385中国药科大学超高分辨率激光共聚焦项目560中国药科大学10月8日2022年11月意向原文386动物科技学院显微操作系统等仪器采购项目249.7南京农业大学10月8日2022年11月意向原文387全自动活细胞荧光显微镜成像系统165中国医学科学院肿瘤医院10月8日2022年11月意向原文388动物科技学院显微镜等仪器采购项目248.9南京农业大学10月8日2022年11月意向原文389白激光共聚焦显微镜490清华大学10月8日2022年11月意向原文390高分辨扫描电镜600华南理工大学10月8日2022年11月意向原文391环境电子显微镜及制样设备5200华南理工大学10月8日2022年11月意向原文392超高能量分辨率多功能谱学专用电镜3000华南理工大学10月8日2022年11月意向原文393自旋科技研究院购置自旋电子材料表征设备项目1330华南理工大学10月8日2022年11月意向原文394超高分辨球差矫正磁成像透射电镜4000华南理工大学10月8日2022年11月意向原文395兰州大学草地农业科技学院显微数码互动系统采购108兰州大学10月7日2022年11月意向原文396形状测量激光纤维系统138厦门大学10月7日2022年11月意向原文397场发射扫描电镜360厦门大学10月7日2022年11月意向原文398水生动物疫病专业实验室建设项目734.6华中农业大学10月7日2023年1月意向原文399正置全样品双超分共振快速成像系统350清华大学10月7日2022年11月意向原文
  • 中国烟草总公司郑州烟草研究院计划采购荧光倒置显微镜、气相色谱-串接质谱等仪器设备
    招标编号:HNZB[2022]N0494号项目所在地区:河南省郑州市一、招标条件中国烟草总公司郑州烟草研究院烟草微生物分析鉴定和筛选应用实验室建设项目配套仪器设备采购(第二批),招标人为中国烟草总公司郑州烟草研究院,招标项目资金来自自有资金,出资比例为100%。本项目已具备招标条件,现进行公开招标。二、项目概况招标范围:中国烟草总公司郑州烟草研究院烟草微生物分析鉴定和筛选应用实验室建设项目配套仪器设备采购(第二批)标段划分:本项目共分8个标段。标段号序号货物名称数量(台/套)标段11自动微生物生化鉴定系统1标段21荧光倒置显微镜12真空冷冻干燥机13生物安全柜2标段31高速基因分析仪1标段41全自动核酸提取和多重荧光定量分析仪1标段51凝胶成像系统12垂直蛋白电泳转印系统1标段61全自动微生物分析仪1标段71气相色谱-串接质谱1标段81超高效液相色谱-四极杆-静电场轨道阱超高分辨质谱联用仪1三、投标人资格要求1. 注册于中华人民共和国境内,具备增值税一般纳税人资格,具有独立承担民事责任能力的法人,具有有效的企业营业执照或事业单位法人证书。2. 标段1、2(1、2)、3、4、5、6、7、8投标人必须是投标产品的制造商或授权代理商(投标人如为代理商的,必须提供所投产品的生产商或中国区域总代理商出具的针对本次招标项目授权书和售后服务承诺书)(原件装订进投标文件正本)。说明:a.如果生产商或中国区域总代理商出具的产品授权书是英文格式的,投标人另需提供一套中文翻译版本的产品授权;b.对于从中国区域总代理获得的授权书则必须同时提供生产商对中国区域总代理商的授权书。3.财务要求:投标人提供2019、2020、2021年度财务审计报告。(如公司成立不足三年的,以成立之年起;本年度新成立的公司提供银行资信证明。)4.提供2021年1月1日以来至少三个月纳税证明材料和社会保障资金缴纳证明资料。(如依法免税或不需要缴纳社会保障资金的,应提供相应文件证明)5.招标人对进口仪器享受海关相应的免税政策。若投标人所投设备为进口设备,并根据海关免税政策可以免税的,投标人必须具备该设备的进口资质并提供证明文件,具备为招标人办理免税及清关等进出口手续的能力,报价应为人民币目的地免税价。6.信誉要求:a.投标人未被列入《信用中国》网站“异常经营名录”、“税收违法黑名单”;未被列入《中国执行信息公开网》网站“失信被执行人名单”;不处于《中国政府采购网》“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间。(以代理机构于投标截止日当天在《信用中国》、《中国执行信息公开网》网站及《中国政府采购网》查询结果为准,信用记录截止时间为投标截止时间;如相关失信记录已失效,投标人需提供相关证明资料);b. 投标人提供近三年内无重大违法记录的承诺(格式自拟)及投标人、法定代表人、委托代理人均无行贿犯罪记录的承诺(格式自拟);c.投标人提供近三年来在经营活动中没有骗取中标和严重违约及重大质量问题书面承诺;d.投标人应提供通过中国裁判文书网查询的自身企业、法定代表人、授权委托人、项目负责人自2019年1月1日以来在已生效的刑事判决书或刑事裁定书中不存在行贿犯罪记录的承诺书。存在行贿犯罪记录的投标人,不得参与本次招投标活动。【查询渠道:中国裁判文书网首页—高级检索—选择刑事案由—贪污贿赂罪—行贿罪、对有影响力的人行贿罪、对单位行贿罪、单位行贿罪,文书类型—判决书及裁定书;查询时间为自公告发布之日起至投标截止时间前】;e.投标人、法定代表人、授权委托人、项目负责人应未在烟草行业或招标人发布的行贿行为投标人名单禁入期限内。行贿人担任法定代表人、主要负责人或实际控制人的其他企业均不得参与本次投标。招标人及招标代理机构将对投标人信息进行核查,对行贿投标人及行贿人存在“换马甲”“换壳”行为参与本招标项目的,将拒绝其投标。7.单位法人为同一人或者存在控股、管理关系的不同单位,不得同时参加本项目同一标段投标。8.本次招标不接受联合体投标。四、招标文件的获取1.获取时间:2022年6月15日至2022年7月1日,上午8:00时到12:00时,下午15:00时到18:00时(节假日、双休日除外)。2.招标文件售价300元/套,招标文件售后不退。3.购买招标文件时必须提供:1)营业执照复印件(加盖公章);2)如法定代表人参加投标,提供法定代表人身份证明复印件及身份证复印件,如法定代表人委托代理人参加投标,提供法定代表人身份证明复印件、法人授权委托书、被授权人身份证复印件。4.获取方式:投标人可通过现场或电子邮件方式获取招标文件。1)现场购买方式:投标人携带第3条要求的资料,至河南招标采购服务有限公司509房间(郑州市纬四路13号)现场购买。2)电子邮件方式:投标人可将招标文件款汇入以下账户,并将第3条要求的资料原件扫描件和汇款凭证发送至hnzb65993320@163.com,代理机构收到邮件并审核合格后,将招标文件电子版发送至投标人邮箱。开户名称:河南招标采购服务有限公司开户行:广发银行郑州行政区支行帐号:8898516010005452注:本账号不接收投标保证金。五、 投标文件的递交1.投标文件递交截止时间:2022年7月12日9 时30分(北京时间)2.投标文件递交方式:因受疫情影响,本次项目投标文件的递交采用两种方式,投标人可根据自身情况选择其中一种方式递交:1)现场递交:郑州高新技术产业开发区枫杨街2号索普锐丽致酒店一楼第二会议室现场递交。2)邮寄递交:投标人将密封好的投标文件邮寄至郑州市纬四路13号河南招标采购服务有限公司509房间(邮编:450003),并随寄一份投标说明,载明投标人名称、项目名称、投标标段、授权人姓名、授权人联系方式。投标人如采取邮寄方式的,请保证将密封好的投标文件在投标截止时间前一天邮寄到上述地址,否则可能导致投标文件无法按时到达规定的递交地点,由此产生的后果(包括投标文件被拒收等)由投标人自行承担。投标人如采用邮寄递交方式,则自动放弃参加开标程序的相关权利。3.逾期送达的投标文件或者未送达指定地点的投标文件,招标人不予受理。六、 开标时间及地点开标时间:2022年7月12日9 时30分(北京时间)开标地点:郑州高新技术产业开发区枫杨街2号索普锐丽致酒店一楼第二会议室七、其他1、本次项目采用公开招标方式进行。2、项目地点:河南省郑州市。八、监督部门本招标项目的监督部门为中国烟草总公司郑州烟草研究院规范办。九、发布媒体本公告同时在中国招标投标公共服务平台、中国采购与招标网、国家烟草专卖局政府网站和郑州烟草研究院网上发布。其他网站所转载的信息招标人和代理机构皆不予认可。十、联系方式招 标 人:中国烟草总公司郑州烟草研究院地 址:河南省郑州市高新技术产业开发区枫杨街2号联 系 人:牛先生电 话:0371-67672916招标代理机构:河南招标采购服务有限公司地 址:郑州市纬四路13号联 系 人:梁振逵电 话:0371-65993320电子邮件:hnzb65993320@163.com2022年6月15日
  • 首都医科大学360.00万元采购共聚焦显微镜
    详细信息 [公开]高层次人才建设经费第四批(第二次)公开招标公告 北京市-丰台区 状态:公告 更新时间: 2023-10-27 招标文件: 附件1 [公开]高层次人才建设经费第四批(第二次)公开招标公告 2023-10-27 项目概况 高层次人才建设经费第四批 招标项目的潜在投标人应在北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)获取招标文件,并于2023-11-20 14:00(北京时间)前递交投标文件。 一、项目基本情况 项目编号:11000023210200056769-XM001 项目名称:高层次人才建设经费第四批 预算金额:360 万元(人民币) 最高限价:325 万元(人民币) 采购需求: 打包号 打包名称 最高限价(万元) 标的名称 数量 简要技术需求或服务要求 是否接受进口产品投标 zt-23q13-01 高层次人才建设经费第四批-设备购置-01 325 全光谱高分辨率活细胞激光共聚焦显微镜 1套 全电动倒置显微镜,观察方法:明场、微分干涉、荧光…… 否 合同履行期限:合同签订后50日内,完成供货 本项目不接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: ◆本项目不专门面向中小企业预留采购份额 3.本项目的特定资格要求: 3.1本项目是否属于政府购买服务: ◆否 □是,公益一类事业单位、使用事业编制且由财政拨款保障的群团组织,不得作为承接主体; 3.2其他特定资格要求:________/________。 三、获取招标文件 时间:2023-10-30 至 2023-11-03 ,每天上午08:30至12:00,下午12:00至16:30(北京时间,法定节假日除外) 地点:北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home) 方式: 线上获取 1.潜在投标人从 “北京市政府采购网”或“中国政府采购网”网站下载供应商信息采集表,并在获取招标文件截至时间前,将供应商信息采集表发至邮箱303488901@qq.com。 2.办理CA数字认证证书(北京一证通数字证书),详见北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)查阅“用户指南”—“操作指南”—“市场主体CA办理操作流程指引”,按照程序要求办理。 3.于北京市政府采购电子交易平台“用户指南”—“操作指南”—“市场主体注册入库操作流程指引”进行自助注册绑定。 4.招标文件获取方式:投标人按照规定办理CA数字认证证书(北京一证通数字证书)后,自招标公告发布之日起持投标人自身数字证书登录北京市政府采购电子交易平台免费获取电子版招标文件。 5.电子版招标文件下载时间:2023年10月30日08:30至2023年11月03日16:30。 6.未按上述获取方式和期限下载招标文件的投标人,无资格参加本次投标。 7.证书驱动下载: 于北京市政府采购电子交易平台“用户指南”—“工具下载”—“招标采购系统文件驱动安装包”下载相关驱动。 CA认证证书服务热线:010-58511086 技术支持服务热线:010-86483801 注意:本项目政府采购采用电子化招标(线上线下相结合形式),请投标人认真学习北京市政府采购电子交易平台发布的相关操作手册。 售价:¥0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 2023-11-20 14:00(北京时间) 地点:北京市朝阳区南磨房路37号华腾北搪商务大厦11层1113室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.采购项目需要落实的政府采购政策:节约能源、保护环境、扶持不发达地区和少数民族地区、促进中小企业发展、支持监狱企业发展、促进残疾人就业、支持创新、绿色发展(不适用者除外),优先采购贫困地区农副产品等政府采购政策 2.评分方法:综合评分法 3.招标文件编号:ZTXY-2023-H42590 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:首都医科大学 地址:北京市丰台区右安门外大街西头条10号 联系方式:王老师、张老师,010-83911949 2.采购代理机构信息 名 称:中天信远国际招投标咨询(北京)有限公司 地 址:北京市朝阳区南磨房路37号华腾北搪商务大厦11层1109室 联系方式:成志凯、周姗、王师安、张静、于海龙、鲁智慧,010-51909015 3.项目联系方式 项目联系人:成志凯、周姗、王师安、张静、于海龙、鲁智慧 电 话: 010-51909015 供应商信息登记表(高层次人才建设经费第四批第二次).doc × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:共聚焦显微镜 开标时间:2023-11-20 14:00 预算金额:360.00万元 采购单位:首都医科大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:中天信远国际招投标咨询(北京)有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 [公开]高层次人才建设经费第四批(第二次)公开招标公告 北京市-丰台区 状态:公告 更新时间: 2023-10-27 招标文件: 附件1 [公开]高层次人才建设经费第四批(第二次)公开招标公告 2023-10-27 项目概况 高层次人才建设经费第四批 招标项目的潜在投标人应在北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)获取招标文件,并于2023-11-20 14:00(北京时间)前递交投标文件。 一、项目基本情况 项目编号:11000023210200056769-XM001 项目名称:高层次人才建设经费第四批 预算金额:360 万元(人民币) 最高限价:325 万元(人民币) 采购需求: 打包号 打包名称 最高限价(万元) 标的名称 数量 简要技术需求或服务要求 是否接受进口产品投标 zt-23q13-01 高层次人才建设经费第四批-设备购置-01 325 全光谱高分辨率活细胞激光共聚焦显微镜 1套 全电动倒置显微镜,观察方法:明场、微分干涉、荧光…… 否 合同履行期限:合同签订后50日内,完成供货 本项目不接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: ◆本项目不专门面向中小企业预留采购份额 3.本项目的特定资格要求: 3.1本项目是否属于政府购买服务: ◆否 □是,公益一类事业单位、使用事业编制且由财政拨款保障的群团组织,不得作为承接主体; 3.2其他特定资格要求:________/________。 三、获取招标文件 时间:2023-10-30 至 2023-11-03 ,每天上午08:30至12:00,下午12:00至16:30(北京时间,法定节假日除外) 地点:北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home) 方式: 线上获取 1.潜在投标人从 “北京市政府采购网”或“中国政府采购网”网站下载供应商信息采集表,并在获取招标文件截至时间前,将供应商信息采集表发至邮箱303488901@qq.com。 2.办理CA数字认证证书(北京一证通数字证书),详见北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)查阅“用户指南”—“操作指南”—“市场主体CA办理操作流程指引”,按照程序要求办理。 3.于北京市政府采购电子交易平台“用户指南”—“操作指南”—“市场主体注册入库操作流程指引”进行自助注册绑定。 4.招标文件获取方式:投标人按照规定办理CA数字认证证书(北京一证通数字证书)后,自招标公告发布之日起持投标人自身数字证书登录北京市政府采购电子交易平台免费获取电子版招标文件。 5.电子版招标文件下载时间:2023年10月30日08:30至2023年11月03日16:30。 6.未按上述获取方式和期限下载招标文件的投标人,无资格参加本次投标。 7.证书驱动下载: 于北京市政府采购电子交易平台“用户指南”—“工具下载”—“招标采购系统文件驱动安装包”下载相关驱动。 CA认证证书服务热线:010-58511086 技术支持服务热线:010-86483801 注意:本项目政府采购采用电子化招标(线上线下相结合形式),请投标人认真学习北京市政府采购电子交易平台发布的相关操作手册。 售价:¥0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 2023-11-20 14:00(北京时间) 地点:北京市朝阳区南磨房路37号华腾北搪商务大厦11层1113室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.采购项目需要落实的政府采购政策:节约能源、保护环境、扶持不发达地区和少数民族地区、促进中小企业发展、支持监狱企业发展、促进残疾人就业、支持创新、绿色发展(不适用者除外),优先采购贫困地区农副产品等政府采购政策 2.评分方法:综合评分法 3.招标文件编号:ZTXY-2023-H42590 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:首都医科大学 地址:北京市丰台区右安门外大街西头条10号 联系方式:王老师、张老师,010-83911949 2.采购代理机构信息 名 称:中天信远国际招投标咨询(北京)有限公司 地 址:北京市朝阳区南磨房路37号华腾北搪商务大厦11层1109室 联系方式:成志凯、周姗、王师安、张静、于海龙、鲁智慧,010-51909015 3.项目联系方式 项目联系人:成志凯、周姗、王师安、张静、于海龙、鲁智慧 电 话: 010-51909015 供应商信息登记表(高层次人才建设经费第四批第二次).doc
  • 300万!莆田学院采购激光共聚焦显微镜
    一、项目基本情况 项目编号:[350300]YDCG[GK]2022004 项目名称:莆田学院基础医学院激光共聚焦显微镜采购项目货物类采购项目 采购方式:公开招标 预算金额:3000000元 包1: 采购包预算金额:3000000元 采购包最高限价:2900000元 投标保证金:30000元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业1-1A02100309-激光仪器激光共聚焦1(台)是1激光器部分1.1激光器:采用单模保偏光纤,能量动态范围 ≥10000:1;- 固态激光器405nm:额定功率≥15mW,出光纤口功率≥5mW; - 固态激光器488nm:额定功率≥25mW,出光纤口功率≥10mW;- 固态激光器561nm:额定功率≥25mW,出光纤口功率≥10mW; - 固态激光器640nm:额定功率≥15mW,出光纤口功率≥5mW; 1.2软件可以直接调节所有激光器开关以及强度,并具有实验中未使用自动进入关闭状态(Switch off)功能。 2扫描模块2.1扫描器与显微镜一体化,一体化像差及色差校正。所有扫描器组件都直接耦合,无光纤连接。2.2▲共聚焦针孔采用复消色差校正,适合短波长(如 405 nm)激光成像,自动对齐;调节范围0.0到>10AU(Airy Unit)。 2.3检测器数量:荧光检测器≥3个,透射光检测器1个, 2.4荧光检测器类型: 荧光检测器全部为光谱型检测器,检测范围调节精度≤1nm;高灵敏度GaAsP检测器≥1个,QE≥45%。2.5★ 主分光镜:采用10°小角度入射技术,提供更高的激光压制效率,OD值≥6。2.6★利用可变次级二色分光镜(VSD)灵活地向所选通道内进行光谱分光,分光精度≤1.5nm。2.7▲采用X、Y独立的检流计(Galvo)双扫描镜,具有超快线扫及帧飞回技术。2.8扫描头绝对线性扫描运动,回转时间短,>85%的帧时间(frame time)有效地用于图像采样。2.9★可以进行360°任意旋转实时扫描成像。2.10▲扫描光学变倍:最小变倍扫描系数≤ 0.45x,且变倍连续可调,调节精度0.1x。2.11最大扫描分辨率≥6000 x 6000。2.12在非共振扫描模式下,逐行扫描可同时满足以下扫描速度指标:≥8幅/秒(512x512像素)、≥60幅/秒(512x64像素)、≥220幅/秒(512x16像素)。 2.13一次实验中单次扫描可以实现三个荧光检测通道同时成像,如果一次实验设置分次扫描,分次扫描次数≥10。 2.14光谱扫描(Lambda成像):两个检测器平行扫描完成光谱成像,扫描过程无荧光信号损失;光谱分辨率≤1.5nm;可根据结果做线性光谱拆分,去除自发荧光及荧光串扰。2.15扫描成像视场数≥20mm。2.16一个可用于明场和DIC的透射光检测通道。2.17具有实时电子组件(real-time electronics):控制显微镜、激光器、扫描模块和其他附件;通过实时电路进行数据采集和同步管理:过量采样读取逻辑电路,用以获得最佳灵敏度;数据在实时电路与用户计算机之间通过LVDS进行交换,在采集图像的同时可进行数据在线分析。3超高分辨率部分3.1★超高分辨率检测器:采用由不少于30个GaAsP(磷酸砷化镓)-PMT组成的高灵敏度面阵列探测器, 而非常规的GaAsP或HyD系列探测器。3.2▲在确保荧光收集效率的情况下(针孔≥2.5AU),超高分辨成像可同时实现如下效果:分辨率XY方向上≤125nm,Z方向≤360nm;同时相较传统共聚焦提升4-8x灵敏度或信噪比。3.3在确保荧光收集效率的情况下(针孔≥2.5AU),超高分辨率成像速度:不低于4幅/秒(512x512像素,16位)。 3.4超高分辨率多通道成像:可以灵活选择荧光收集波段,调节精度1nm。3.5超高分辨率成像可使用激光器波段:405nm, 488nm, 561nm 和640nm。3.6荧光样品制备:无需选择特定的荧光标记物,常规的激光共聚焦样品都可以进行超高分辨率成像。3.7超高分辨率成像深度:同一样品具有与共聚焦相同的超高分辨率成像深度。4显微镜主机4.1研究型全自动倒置显微镜,高效率V型光路。4.2★齐焦距离:≤45mm国际标准齐焦距离4.3▲显微镜内置电动调焦驱动马达,最小步进≤15nm。 4.4▲全电动扫描台,扫描台面积≥320mm x 140mm,行程≥130 mm x 100 mm,精度≤ 0.1 μm,最大速度≥50mm/s,具有独立的控制器及操控手柄。4.5显微镜透射光源: LED光源,寿命>60000小时。4.6荧光附件:复消色差荧光光路,六位电动滤色镜转盘,电动光闸,含UV、B、G激发滤色镜组件和长寿命荧光光源。4.7全套微分干涉部件(DIC),有与不同数值孔径的物镜一一对应的棱镜。4.8多功能长工作距离电动聚光镜,数值孔径≥0.55。4.9目镜一对:10X,视场数≥23。 4.106孔位电动物镜转盘,具有自动识别功能。4.11★物镜:10x干镜,数值孔径≥0.45;20x干镜,数值孔径≥0.8;40x干镜,数值孔径≥0.95 ;63x油镜,数值孔径≥1.4;工作距离≥190 μm4.12通过TFT电子触控屏系统控制显微镜并显示工作状态,TFT触摸屏可以远离显微镜机身实现远程控制。4.13配有专业共聚焦显微镜系统防震装置。 5软件部分及图像工作站5.1智能化光路设置:通过选择样品的染料标记,提供3种光路配置模式,一键自动设置所有的光路。5.2REUSE功能。再次调用存储在每张图像里的所有的拍照参数来重现实验及进行精确对比。5.3多维获取图像:Z轴序列扫描、时间序列扫描、多点扫描等。5.4▲三维图像处理:3D和4D图像渲染,有四种渲染方式(阴影、表面、透明及最大强度投影)并可进行不同渲染方式的结合(如透明结合表面渲染);可实现三维空间的距离和角度测量;自定义式的3D和4D视频制作与导出。5.5▲交互式漂白,在进行图像采集的同时(包括连续扫描和时间序列实验),通过鼠标点击对任意区域进行漂白。适用于主动光活化实验、光转化实验或者快速光漂白实验等。5.6Z轴深度补偿功能,自动补偿由于样品深度增加造成的信号衰减。5.7具有图形化的感兴趣区域荧光强度平均值分析,实时或在扫描完成后显示和计算离子浓度。5.8裁剪功能,灵活地选择扫描区域。5.9光谱扫描及拆分功能,可以去除自发荧光,及荧光串扰。5.10图像分析功能:具备直方图分析和任意线的序列测量,长度、角度、面积、强度等的测量;定量的共定位分析;可根据要求编辑测量程序,对自定义的类和子类进行图像分割、计数和面积、强度等的测量,并将结果以表格、列表和散点图/直方图形式显示;可进行批量图像分析。5.11图像与视频导入/导出:适用于所有常见的文件格式(如:JPEG, BMP, TIFF, BigTIFF, PNG, WDP, SUR, AVI, WMF, MOV, OME-TIF, ZVI)。5.12反卷积功能:提供3种反卷积方式用于图像处理,提高图像的信噪比、对比度和分辨率。5.13图像工作站一套:经共聚焦厂家验证其匹配性。5.14 硬件配置不低于以下要求: Intel? Xeon Gold 4核处理器,主频≥3.6 GHz; >512 G SSD高速硬盘以及2个4TB SATA 7200 rpm硬盘,≧64GB内存,DVD刻录机,30英寸液晶显示器,分辨率不低于2560 × 1600; Windows 7 Ultimate x64操作系统。6活细胞培养系统6.1可控制温度、CO2浓度以及湿度。6.2细胞培养在独立空间内,培养皿底部可加热,上部也可同时加热;多孔板培养时顶部和底部均可被加热。6.3▲控温系统可同时控制至少4个独立的通道温度设定,温度控制范围:室温至60℃,精度≤0.1℃。6.4▲可进行CO2浓度控制,范围:0至8%,调节精度为≤0.1%,内置精度≤0.1%6.5湿度控制,加湿装置同时也可控温保湿。活细胞培养系统可完全由共聚焦软件一体化控制,并在软件及显微镜显示器上可以直接显示、调节。3000000工业 合同履行期限: 按招标文件要求 本采购包:不接受联合体投标二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.本项目的特定资格要求: 包1 (1)明细:招标文件规定的其他资格证明文件(若有) 描述:1、(强制类节能产品证明材料,若有,应在此处填写); 2、(按照政府采购法实施条例第17条除第“(一)-(四)”款外的其他条款规定填写投标人应提交的材料,如:采购人提出特定条件的证明材料、为落实政府采购政策需满足要求的证明材料(强制类)等,若有,应在此处填写)。 ※1上述材料中若有与“具备履行合同所必需设备和专业技术能力专项证明材料”有关的规定及内容在本表b1项下填写,不在此处填写。 ※2投标人应按照招标文件第七章规定提供。 (2)明细:具备履行合同所必需设备和专业技术能力专项证明材料(若有) 描述:1、招标文件要求投标人提供“具备履行合同所必需的设备和专业技术能力专项证明材料”的,投标人应按照招标文件规定在此项下提供相应证明材料复印件。 2、投标人提供的相应证明材料复印件均应符合:内容完整、清晰、整洁,并由投标人加盖其单位公章。(如项目接受联合体投标,对联合体应提出相关资格要求;如属于特定行业项目,供应商应当具备特定行业法定准入要求。) 三、采购项目需要落实的政府采购政策 进口产品,适用于(合同包1)。节能产品,适用于(合同包1),按照财库〔2019〕19号《关于印发节能产品政府采购品目清单的通知》执行。环境标志产品,适用于(合同包1),按照财库〔2019〕18号《关于印发环境标志产品政府采购品目清单的通知》执行。信息安全产品,适用于(合同包1)。小型、微型企业,适用于(合同包1)。监狱企业,适用于(合同包1)。促进残疾人就业 ,适用于(合同包1)。信用记录,适用于(合同包1),按照下列规定执行:(1)投标人应在(填写招标文件要求的截止时点)前分别通过“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)查询并打印相应的信用记录(以下简称:“投标人提供的查询结果”),投标人提供的查询结果应为其通过上述网站获取的信用信息查询结果原始页面的打印件(或截图)。(2)查询结果的审查:①由资格审查小组通过上述网站查询并打印投标人信用记录(以下简称:“资格审查小组的查询结果”)。②投标人提供的查询结果与资格审查小组的查询结果不一致的,以资格审查小组的查询结果为准。③因上述网站原因导致资格审查小组无法查询投标人信用记录的(资格审查小组应将通过上述网站查询投标人信用记录时的原始页面打印后随采购文件一并存档),以投标人提供的查询结果为准。④查询结果存在投标人应被拒绝参与政府采购活动相关信息的,其资格审查不合格。四、获取招标文件 时间:2022-10-18 15:10至2022-11-07 23:59:59(提供期限自本公告发布之日起不得少于5个工作日),每天上午00:00:00至11:59:59,下午12:00:00至23:59:59(北京时间,法定节假日除外) 地点:招标文件随同本项目招标公告一并发布;投标人应先在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目下载招标文件(请根据项目所在地,登录对应的(省本级/市级/区县))福建省政府采购网上公开信息系统操作),否则投标将被拒绝。 方式:在线获取 售价:免费五、提交投标文件截止时间、开标时间和地点 2022-11-08 08:30(北京时间)(自招标文件开始发出之日起至投标人提交投标文件截止之日止,不得少于20日) 地点:福建省莆田市城厢区莆田市公共资源交易中心三楼开标室六、公告期限 自本公告发布之日起5个工作日。七、其他补充事宜 /八、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:莆田学院 地 址:莆田市城厢区学园路兴安新村36号 联系方式:18450050730 2.采购代理机构信息(如有) 名 称:福建省亿达工程咨询有限公司 地  址:三明市梅列区徐碧街道乾龙新村16幢8层 联系方式:13950740195 3.项目联系方式 项目联系人:何凤保 电   话:13950740195 网址:zfcg.czt.fujian.gov.cn 开户名:福建省亿达工程咨询有限公司 福建省亿达工程咨询有限公司 2022-10-18
  • 250万!共聚焦显微镜平台采购项目
    项目编号:0613-227122244824/01项目名称:ZYCGR22011903共聚焦显微镜平台预算金额:250.0000000 万元(人民币)最高限价(如有):250.0000000 万元(人民币)采购需求:序号内容数量简要要求1共聚焦显微镜平台1套 研究级全电动倒置荧光显微镜,齐焦距离为国际标准45mm:具备明场、荧光、微分干涉(DIC)等观察功能,显微镜可通过机身按钮、共聚焦软件控制 合同履行期限:合同签订后4个月内交货本项目( 不接受 )联合体投标。
  • 文献速递 | ECHO荧光显微镜在脂肪产热新机制研究中的应用
    肥胖是指脂肪层的堆积,减肥不仅是为了更美,也是为了更健康,肥胖已被证明会增加多种疾病的发生风险,如心血管疾病、癌症、脂肪肝等,但对于大多数人来说,控制体重却非常困难。减肥则主要通过刺激脂肪组织产热增加全身的能量消耗,运动和节食是我们最常见的方式,但运动和节食太累和痛苦,难以坚持;因此有很多人选择使用药物来进行体重的控制。现有刺激脂肪产热药物大多以β3-肾上腺素能受体(β3-AR)为靶点,通过激活β3-AR及其下游信号通路,活化解偶联蛋白(UCP1),从而引起脂肪组织产热。但是β-AR激动剂会导致血压增加,可能诱发心血管疾病。因此需要一种更低风险和安全的药物靶点。美国加州大学旧金山分校糖尿病中心的研究人员对之前报道的一个与UCP无关的产热机制进行了进一步探索,研究者们将该机制的验证以《Wireless optogenetics protects against obesity via stimulation of non-canonical fat thermogenesis》为题发表在《Nature Communications》上。这个与UCP无关的产热机制涉及依赖于ATP的Ca2+通过肌/内质网Ca2+-ATPase2b (SERCA2b)和Ryanodine受体2 (RyR2)的无效循环(无效循环指两物质自由能始终存在差异,自由能一高一低,即该循环发生必须从循环外注入能量)。之前研究发现作用于RyR2-Calstabin复合体的化学稳定剂S107可以增强Ca2+无效循环,刺激非UCP1依赖的产热,并保护UCP1缺失的小鼠在寒冷暴露后不会降低体温。但是S107是全身性给予小鼠的,无法排除脂肪组织以外的其他组织,如骨骼肌,可能有助于UCP1非依赖性产热的可能性,因此本文采用了独特的光遗传学方法,对脂肪细胞进行特异性操作,以严格测试非典型脂肪产热治疗肥胖的可能。光遗传学是对体内神经元或细胞活动进行时间和空间操作的强大工具。传统的光遗传学研究需要光纤系绳和/或大型头戴式接收器,使其在一般代谢研究中应用受限。而无线供电的光遗传学设备使光能够高效、稳定地传递到行为自由的动物的外周神经,因此本文开发了一种可植入小鼠皮下脂肪组织的无线光遗传学装置,同时该装置刺激的细胞也与之前不同,刺激脂肪细胞而非常见的神经细胞。无线光遗传学装置可以通过光激活转入channelrhodopsin2 (ChR2,光门控的、向内整流的阳离子通道,传输质子和单价Na+,K+和二价阳离子Ca2+,Mg2+)的神经细胞,并可以驱动神经元去极化。而该研究更进一步,将ChR2转入小鼠和脂肪细胞,通过光诱导脂肪细胞激活Ca2+循环的脂肪产热,增加全身能量消耗。首先对细胞层面的可行性进行分析,确定转入ChR2的米色脂肪细胞可以被光激活膜去极化触发细胞内Ca2+内流,通过Echo Revolve正倒置一体显微镜对转入ChR2脂肪细胞在光激活下的Ca2+含量,如视频显示的,光激活后,细胞内Ca2+含量明显升高。且对耗氧量分析发现,光激活的脂肪细胞耗氧量明显增加。进一步对体内脂肪是否会被激活进行检测,通过对温度,耗氧量等的检测确定,光激活后小鼠激活部位温度升高,整体耗氧量增加,表明非UCP1依赖的产热途径在体内脂肪细胞中可以被激活并发挥作用。通过对高脂肪饮食(HFD)的分析发现,光激活小鼠其体重增加明显少于对照组,表明非UCP1依赖的产热途径足以保护小鼠免受饮食诱导的体重增加。此项研究也首次证明了脂肪特异性冷刺激模拟可以通过激活非典型产热来预防肥胖。Echo Revolve正倒置一体显微镜Echo Revolve展现了其非凡的灵活性,可以轻松地实现正置和倒置显微镜转换,创新性地把正倒置显微镜合二为一,开启了显微镜Hybrid时代。▲ Echo Revolve正倒置一体显微镜☑ 视网膜屏显示技术:比拟目镜人眼观察效果。☑ 全视野观察: 更清晰,更方便。☑ 多通道荧光:多达4个EPI荧光通道,无须暗室,就可以轻松快速地完成多色荧光显微分析。☑ 自动化操作:通过iPad Pro点触操控相机及荧光通道之间的切换,实现了完全自动化操作。☑ App应用软件:基于IOS的Echo App是与Apple团队合作研发的专业显微镜软件。☑ 精湛的工艺尽显高端品质:实现非凡的性能。|申请试用|我们的仪器可以申请试用哦!扫描下方二维码关注“深蓝云生物科技”公众号,点击“云活动”→“试用中心”即可。
  • 徕卡显微系统国产化成果斐然,积极响应设备更新政策
    近年来,随着国家对于设备国产化的重视和扶持力度的加大,为了满足中国市场的多样化需求,徕卡显微系统积极投入研发和生产,推出了一系列国产化产品。这些产品不仅继承了徕卡显微系统一贯的卓越品质和技术优势,还针对中国市场的特点进行了优化和改进,深受用户的喜爱和好评。徕卡显微系统已经成功实现从研发到生产的全面国产化能力。 随着国家政策的逐步推进,设备更新已成为推动产业升级和科技进步的重要动力。作为光学显微领域的领军企业,徕卡显微系统积极响应国家设备更新政策,推出了多项优惠政策和服务措施。针对老旧设备的更新,徕卡显微系统提供了专业的评估和咨询服务,帮助用户选择最适合自己的新产品。此外,徕卡显微系统还提供了完善的售后服务和技术支持,确保用户在使用过程中能够得到及时、有效的帮助和支持。 与小编一起感受徕卡在中国市场的深耕细作,看看国产化产品的魅力吧! Leica DM300 单筒或双筒教育用显微镜 结构紧凑,使用方便,配备了机械台以及贴上标签的阿贝聚光镜,DM300可配置旋转式单镜筒或双镜筒,共享观看,便于储存。适用于高年级的生物学系学生或2-4年的大学生命科学课程。该机型和DM500/750的主要接触部件上的Ag涂层有效防止使用者之间的感染。 Leica DM500 双目教学显微镜 无限远光学系统使其具有“即插即用”功能,是教师和学生在学院和大学初级生命科学课程教学中的一种方便有趣的理想工具。该机型有适合学生的各种功能,如预聚焦、预居中的聚光器和EZTube™预置屈光度,这些功能可以避免错误调整,为实践操作教学提供更多时间。此外,EZStore™具有一体化手柄及绳裹,便于搬运和提升,且防止显微镜部件损坏。 Leica DM750 双目教学显微镜 徕卡DM750除了支持无限远光学,还支持科勒照明。其适用于学院和大学高级生命科学课程和医学、兽医及牙科学校专业训练的各种需求。除了和DM500一样的EZStore™功能,该机型和DM500一样的圆边EZGuide允许单手滑动装载,减少滑动玻片,提供安全的课堂环境。 Leica DM1000 生物显微镜 符合人体工程学设计,具有多种可调功能且易于使用的控制装置,是所有临床实验室应用的理想选择,特别是细胞学、血液学和病理学。 Leica DM2000 & DM2000 LED 正置显微镜 具有高端的模块设计和高性能的荧光,人体工学设计,适用于复杂的临床应用,可用于病理学、细胞学,以及其它复杂工作领域。从该机型开始支持微分干涉功能。 Leica DM2500 & DM2500 LED 荧光显微镜 凭借强大的透射光照明、高品质的光学性能以及技术先进的附件,特别适合要求微分干涉相衬或高性能荧光等颇具挑战性的生命科学研究任务。 Leica DM3000 & DM3000 LED 生物显微镜 适用于病理学、细胞学与血液学研究,它具有电动物镜转盘、聚光顶镜、自动光线强度调节装置与可选脚踏开关,直观的显微镜改善了细胞学与病理学研究的操作流程。 Leica DMi1 倒置显微镜 操作直观,灵活自如,可以轻松添加必须的各种配件,支持细胞培养实验室中的日常工作。 Leica DM IL LED 倒置显微镜 高性能光学元件、人体工学设计和 5W LED 照明,是细胞培养、显微操作、免疫染色样本成像和活细胞常规检查的理想选择。 Mateo TL 数字透射光倒置显微镜 让所有实验室成员都能够舒适地检查和记录细胞生长状态,适合需要获得一致实验结果的研究人员。统一测量汇合度,从而增强对下游实验取得成功的信心。 Leica EZ4 用于高校教学的体视显微镜 Leica EZ4教学体视显微镜,带4.4:1变焦镜头,适用于入门级高等院校课程,如生物学、解剖学、化学,提供了超过20年寿命的高亮LED照明,从而节省时间和更换灯泡的成本。此外,7路LED照明系统提供了高品质照明的入射、斜射和透射光以及任何应用的对比。格里诺光学系统提供了样本的三维视图。 未来,徕卡显微系统将继续深耕中国市场,坚持技术创新和品质提升,不断推出更多符合中国用户需求的国产化产品,为用户创造更大的价值。我们坚信,在国家政策的支持和推动下,徕卡显微系统一定能够在光学显微领域取得更加辉煌的成就。 点击此处申请样机试用 徕卡显微咨询电话:400-630-7761 关于徕卡显微系统 徕卡显微系统的历史最早可追溯到19世纪,作为德国著名的光学制造企业,徕卡显微成像系统拥有170余年显微镜生产历史,逐步发展成为显微成像系统行业的领先的厂商之一。徕卡显微成像系统一贯注重产品研发和最新技术应用,并保证产品质量一直走在显微镜制造行业的前列。 徕卡显微系统始终与科学界保持密切联系,不断推出为客户度身定制的显微解决方案。徕卡显微成像系统主要分为三个业务部门:生命科学与研究显微、工业显微与手术显微部门。徕卡在欧洲、亚洲与北美有7大产品研发中心与6大生产基地,在二十多个国家设有销售及服务分支机构,总部位于德国维兹拉(Wetzlar)。
  • 浅谈显微镜未来发展的方向
    自从1673年列文胡克发明显微镜,至今已经历了大约三百多年的历史,显微镜也从过去的单目变为双目乃至三目,由简单的观察变为可拍照,由初始的放大300倍左右到现在放大1000倍左右。 最近10年,随着数码摄影技术、信息技术和自动化技术的革新,显微镜的外观、舒适性、自动化程度以及方便性都出现了很大的发展。显微镜的外观上出现了一些革命性的变化,性能上有了进一步的提高。全球显微镜生产商都为此做出了不懈的努力。通过对一些特色产品的比较分析,不难发现显微镜设计上的一些特点,从中可以判断出未来显微镜的发展方向。 一、 拍得更清晰 显微镜目的就是为了更好地观察微生物,要求看得更清楚。显微镜厂商为此开发出各种各样的显微镜镜头来消除各种色差和场曲。最近,在显微镜上普遍采用了UIS2光学系统,它充分体现了无限远校正方式的优越性。光线通过物镜后成为平行光束通过镜筒,并在结象透镜处折射或完成无相差的中间象。UIS2无限远光学系统的物镜具有在宽波长范围内(由紫外至近红外区)具有一致的高透过率。同时具有更高的信噪比,不需要额外补偿就可以得到更为清晰的图像。例如美国AMG公司的EVOS fl大屏幕数码荧光显微镜所拍出的图像已经接近于激光共聚焦的水平。 二、 放大倍数更高 对于大多数显微镜来说,对样本的物理放大倍数是物镜放大倍数与目镜的放大倍数乘积。通常情况下,目镜的放大倍数为10倍或者16倍。以40倍物镜为例,也不过是放大400倍或者是640倍,如今却能够将放大倍数提高到840倍。例如美国AMG公司开发的倒置显微镜,在物镜下采用了21倍的光学放大,使得我们能够通过40倍的物镜就可以观察到放大倍数更高的图像了。如果换成100倍的油镜,就可以通过显示器观察到放大到惊人的2100倍甚至更高的图像,无不让人赞叹技术的发展之快。 三、 更为人性化的设计 一提到显微镜,我们的第一印象就是:弯着腰,低着头,抬着手臂,眼睛盯着目镜来观察。对于长期从事显微镜观察的科研人员来说,这一&ldquo 固定姿势&rdquo 往往会引起身体上的疲劳,肌肉损伤。曾经有一位科研人员因为长期观察显微镜而落下了颈椎病。因此改变传统的显微镜观察模式成为一项非常有必要而且紧迫的任务。 不过最近,各大显微镜厂商相继推出了一些更为人性化的显微镜,如美国AMG公司推出了大屏幕倒置显微镜系列,Nikon推出的Coolscope 显微镜,Olympus推出的智能生物导航仪FSX100,leica推出的DMD108等,均是无目镜的显微镜,直接通过液晶显示器来观察,实现了观察细胞就像玩电脑,就像看电影,大大减轻了显微镜观察时的疲劳。 四、 一体化的显微镜 也许现在我们接触到的显微镜大多是机械式的,需要手动来调焦距、调光源、调样品的位置,特别是针对细胞培养,出现了大量连续培养过程中显微观察的要求。为此,各个显微镜厂商设计了能够用于连续培养显微观察的显微镜或配件,如Nikon公司的显微活细胞工作站Biostation IM和Biostation CT,其中Biostation IM是专门针对35mm细胞培养皿设计的,系统中包含了温控系统,CO2气体系统和显微成像系统,可以实现自动化控制,连续培养显微成像。Biostation CT则是更为大型的系统。AMG公司整合了美国Ibidi公司开发的连续细胞培养配件,在其倒置显微镜上也可以实现温控和CO2的供气,从而实现细胞连续培养显微观察,它可以连续观察达60个小时,所采集的图像可进行视频连续播放,从而观察细胞生长过程中形态的动态变化。德国显微镜厂商Leica和Zeiss也开发了自己的连续培养显微观察配件。 五、 专门的网络化显微镜 在临床医学上,专家远程会诊,病理资源共享将会为疑难杂症的诊断和对症治疗提供更大的可能性,这就需要能够实现自动化远程操作的显微镜来观察病理切片。Nikon公司的Coolscope和Leica公司的DMD108为临床远程病理会诊提供了方便,它们专门为载玻片显微观察设计,自动转换物镜,自动对焦,得到的图像可直接通过网络发送到异地进行专家会诊。 六、 光源的革新 对于荧光显微镜,其稳定的激发光源对样本数码成像起着关键性的作用,到现在为止绝大多数显微镜还在使用卤钨灯或者是高压汞灯,一方面这类光源使用寿命短,需要3到4各月更换一次,每次更换后都需要专业工程师进行位置校准;另外一方面,这类光源的强度会随着使用寿命而衰减;还有一方面,这类光源对于显微镜操作来说需要预热来等待光源强度稳定,而且光源关闭后需要等待30分钟左右才能重启,这就造成了使用上的极大不便。 现在LED灯成为大家公认的新一代照明产品,它具有能耗低、光强稳定、寿命长等优点。AMG公司的倒置显微镜系列全部采用了LED光源系统,完全消除了前面所提到的卤钨灯和高压汞灯的使用不便,而且AMG针对荧光倒置显微镜开发了专利的Light cube&ldquo 光立方&rdquo 单色激发光源系统,光源强度可调,不同的单色激发光源可自由更换,在显微镜光源方面可以说是一场前所未有的革命。Leica的DMD108和Nikon的Coolscope也采用了LED光源,因此可以预见未来将会有更多的显微镜厂商采用LED光源。 结束语:综上所述,可以看出最近几年是显微镜出现革命性发展的阶段,越来越多的更为人性化、自动化的理念应用到显微镜设计上,显微镜的性能也大大提高,不仅仅是看到图像,还可以看得更大、更清晰,操作上可以自动化,可以远程控制。还有一些很鲜明的显微镜特点如Olympus 的FXS100的智能化设计,AMG 的EVOS fl荧光成像时无需暗室的独特暗盒设计等由于篇幅有限,无法详细介绍。 以前,在显微镜领域全球一直是Nikon、Olympus、Leica和Zeiss这四家占据着绝大多数的市场,如今美国AMG公司凭借其在倒置显微镜方面的独特设计,开始在显微镜市场上暂露头角。中国内地也出现了很多显微镜生产商,也许在不远的将来,中国制造的显微镜也可以让显微镜领域耳目一新,精神一振,我们期待着这一天早日到来。 参考资料网络来源: 1.http://www.amgmicro.com 2.http://www.leica-microsystems.com/ 3.http://www.nikoninstruments.com/content/download/5113/47632/version/2/file/BioStation-IM.pdf 4.http://www.olympusamerica.com/files/FSX100_brochure.pdf 5.http://www.szsn.cn/szsn_Article_11468.html 欢迎选购,详情请联系东胜创新各地办事处咨询。   东胜创新公司www.eastwin.com.cn   北京:010-51663168,上海:021-64814661,广州:020-38331360
  • 如何用显微镜拍出良好的图片?
    显微镜是生物实验室中必备的设备,但显微镜的类型和配置众多,需求和配置如何相互对应?又该如何去选择适合自己实验室的显微镜?让我们跟随深蓝云一起,看看显微拍摄的设备需求吧。问题1:我经常需要观察细胞,应该用什么样的显微镜?回答:细胞种类众多,但是大多数活细胞观察时都是未染色细胞。未染色的细胞为透明状态,普通明场显微镜观察不到,这种情况下,需要使用相差的观察方式。相差模式将光波通过细胞折射率和厚度不同的各部细微结构产生的相位变化变为振幅差来观察活细胞和未染色的标本。问题2:我们课题组即需要对病理切片进行观察,也需要对培养的细胞进行观察,这两种方式需要什么样的设备?回答:切片类型的样本建议采用正置观察方式,即物镜位于载物台上部,而细胞一般放置于培养瓶、培养皿中,所需要的空间更大,更适合使用倒置观察方式。因此对常规显微镜就需要一台正置显微镜、一台倒置显微镜。不过ECHO正倒置一体显微镜,既可以正置也可以倒置,一台就可以满足两种需求啦。问题3:既需要明场拍摄也需要荧光拍摄需要怎么选?回答:▲荧光产生原理图▲ 荧光光路示意图单色相机拥有更高的灵敏度以及光通量,而彩色相机拥有更好的对比度和色彩还原能力。荧光观察时需要用特定波长的激发光激发材料产生荧光,并通过滤色片最终得到特定波长的荧光,而这种荧光一般较弱,观察时需要高灵敏度的相机,因此配置采用单色相机。单色相机无法识别真实颜色,不适合进行明场拍摄,因为明场拍摄需要更好的对比度,彩色相机才可以满足此需求。如果想获得最好的荧光与明场观察效果,最佳的选择是搭配双相机系统。这里说一下哦,ECHO正倒置一体显微镜突破了常规显微镜的设计,同时配置了双相机系统,自动切换,保证无论明场还是荧光都可以获得最佳的观察效果,同时满足您的多种需求。问题4:市面上荧光显微镜的光源多种多样,我该选择哪种?回答:大多数荧光显微镜的光源波长需求都在可见光范围内,在这个范围内,LED光源要明显优于其他光源,其在不同波长范围可以做到光强一致,且寿命更长,无需预热和冷却,作为冷光源,其可以做到随开随用,且光毒性低,适合大多数实验室配置。问题5:可供选择的荧光通道那么多,我该如何选择荧光通道?回答:对于荧光通道的选择,需要根据用户想要观察的荧光波长来进行确定,如用户后续需要DAPI染色,需要进行GFP蛋白的观察,这些观察都有其对应的荧光波长范围,符合该波长范围的荧光通道就可以选择,如DAPI通道,FITC通道。问题6:物镜该如何选择?荧光观察配置什么物镜?回答:▲ 物镜物镜的分类方式很多,这里先说一个根据色差校正进行的分类,色差校正能力由高到低分别是复消色差显微镜,半复消色差显微镜(萤石物镜),消色差物镜,消色差能力越强,带来的最直观提升是NA值越高,因此分辨率更好。半复消色差物镜的校正范围为400-500,是常见荧光发射光的波段,适合进行荧光观察,因此对于荧光显微镜,一般配置半复消色差物镜。以上是一些关于如何选择和配置显微镜的常见问题,后续我们还会更新一些更加深入的信息。部分图源:来自网络,侵删。
  • 兰州大学505.54万元采购荧光显微镜,立体显微镜
    详细信息 兰州大学显微镜及互动教学系统等仪器设备采购项目公开招标公告 甘肃省-兰州市-城关区 状态:公告 更新时间: 2022-12-25 兰州大学显微镜及互动教学系统等仪器设备采购项目公开招标公告 兰州大学显微镜及互动教学系统等仪器设备采购项目公开招标公告 2022年11月25日 23:50 来源:中国政府采购网 项目概况兰州大学显微镜及互动教学系统等仪器设备采购项目 招标项目的潜在投标人应在中国政府采购网(www.ccgp.gov.cn)和兰州大学采购管理办公室主页 (http://zbb.lzu.edu.cn)获取招标文件,并于2022年12月16日 09点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:LZU-2022-391-HW-GK 项目名称:兰州大学显微镜及互动教学系统等仪器设备采购项目 预算金额:505.5400000 万元(人民币) 最高限价(如有):505.5400000 万元(人民币) 采购需求: 相关内容详见招标文件第三章 采购项目需求。 标段名称及标段编号 预算金额(万元) 标的名称 计量单位 数量 是否进口 第一标段(标段编号:LZU-2022-391-HW-GK-01) 144 显微数码互动教室 套 3 否 第二标段(标段编号:LZU-2022-391-HW-GK-02) 96 显微数码互动系统 套 1 是 第三标段(标段编号:LZU-2022-391-HW-GK-03) 86.94 数码带屏一体显微镜 台 23 是 相差显微镜 台 1 成像倒置显微镜 台 2 第四标段(标段编号:LZU-2022-391-HW-GK-04) 39.6 倒置荧光显微镜 台 2 否 普通显微镜 台 20 体视显微镜 台 20 第五标段(标段编号:LZU-2022-391-HW-GK-05) 99 实时全景深显微镜 台 1 是 第六标段(标段编号:LZU-2022-391-HW-GK-06) 40 基因编辑与显微注射平台 套 1 是 合同履行期限:第一标段:合同生效后90个日历日内供货。第二标段:合同生效后90个日历日内供货。第三标段:合同生效后90个日历日内供货。第四标段:合同生效后5个日历日内供货。第五标段:合同生效后90个日历日内供货。第六标段:合同生效后180个日历日内供货。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求:第一、四标段:无第二、三、五、六标段:对提供进口产品的投标人须提供投标产品生产厂家针对本项目的专项授权函原件或区域总代理针对本项目的转授权函原件(提供转授权函的,还须提供生产厂家对区域总代理的授权函复印件且该复印件须加盖区域总代理公章)。 三、获取招标文件 时间:2022年11月28日 至 2022年12月02日,每天上午00:00至12:00,下午12:00至23:59。(北京时间,法定节假日除外) 地点:中国政府采购网(www.ccgp.gov.cn)和兰州大学采购管理办公室主页 (http://zbb.lzu.edu.cn) 方式:本项目采用电子招投标,所有供应商必须办理数字证书后方可登记和投标。 符合本公告要求的供应商,须按以下流程在兰州大学采购管理办公室电子招投标系统(供应商)(http://company.lzu.edu.cn/CG-GS/gongSiLogin.initDenglu.action)上注册并完成在线登记: 1. 确认企业公章证书(KEY)办理完成并与公司注册账号绑定,确认证书驱动安装完成,并使用证书方式登陆电子招投标系统(供应商)。 2.核对注册信息准确性和证照扫描件真实性,根据公告及系统要求完善供应商基本信息;公告中要求供应商具备的资格条件,相关证照必须扫描上传至“资质”栏目内。 3. 选择要投标的项目点击在线登记,按要求完整、准确填写登记信息,核对无误后保存并提交。 4. 登记信息使用数字证书签名并提交审核,此过程可能需要输入证书PIN码,注意不是供应商注册的密码。 5. 供应商登记后应及时登陆兰州大学采购管理办公室供应商库查看审核情况,根据审核要求补充、完善相关信息,审核通过即为登记成功。同时可以通过“下载采购文件”模块自行免费下载采购文件。 注:如有问题,请联系技术支持,电话:13811001607 售价:¥0.0 元,本公告包含的招标文件售价总和。 售价:¥0.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年12月16日 09点00分(北京时间) 开标时间:2022年12月16日 09点00分(北京时间) 地点:兰州西部投资咨询有限公司开标室(兰州市城关区南关什字世纪广场B座26楼)。 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、投标文件递交方式:此项目是远程开标(不见面开标),投标文件通过兰州大学投标程序客户端上传到电子招投标平台。供应商应按招标文件规定的投标截止时间登录 “ 兰州大学采购管理办公室电子招投标系统(供应商)”参加远程开标(不见面开标),并应自开标时间截止前 30 分钟签到,签到完成在开标时间开始起半小时内自行完成开标解密,否则投标无效。详见操作说明(见附件)。 2、未尽事宜详见第二章投标须知前附表。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:兰州大学 地址:兰州市天水南路222号 联系方式:刘老师、曹老师 0931-8912932 zbk@lzu.edu.cn 2.采购代理机构信息 名 称:兰州西部投资咨询有限公司 地 址:兰州市城关区南关什字世纪广场B座26楼 联系方式:李伟山 17793580008 3014570993@qq.com 3.项目联系方式 项目联系人:彭老师 电 话: 13919826012 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:荧光显微镜,立体显微镜 开标时间:2022-12-16 09:00 预算金额:505.54万元 采购单位:兰州大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:兰州西部投资咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 兰州大学显微镜及互动教学系统等仪器设备采购项目公开招标公告 甘肃省-兰州市-城关区 状态:公告 更新时间: 2022-12-25 兰州大学显微镜及互动教学系统等仪器设备采购项目公开招标公告 兰州大学显微镜及互动教学系统等仪器设备采购项目公开招标公告 2022年11月25日 23:50 来源:中国政府采购网 项目概况兰州大学显微镜及互动教学系统等仪器设备采购项目 招标项目的潜在投标人应在中国政府采购网(www.ccgp.gov.cn)和兰州大学采购管理办公室主页 (http://zbb.lzu.edu.cn)获取招标文件,并于2022年12月16日 09点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:LZU-2022-391-HW-GK 项目名称:兰州大学显微镜及互动教学系统等仪器设备采购项目 预算金额:505.5400000 万元(人民币) 最高限价(如有):505.5400000 万元(人民币) 采购需求: 相关内容详见招标文件第三章 采购项目需求。 标段名称及标段编号 预算金额(万元) 标的名称 计量单位 数量 是否进口 第一标段(标段编号:LZU-2022-391-HW-GK-01) 144 显微数码互动教室 套 3 否 第二标段(标段编号:LZU-2022-391-HW-GK-02) 96 显微数码互动系统 套 1 是 第三标段(标段编号:LZU-2022-391-HW-GK-03) 86.94 数码带屏一体显微镜 台 23 是 相差显微镜 台 1 成像倒置显微镜 台 2 第四标段(标段编号:LZU-2022-391-HW-GK-04) 39.6 倒置荧光显微镜 台 2 否 普通显微镜 台 20 体视显微镜 台 20 第五标段(标段编号:LZU-2022-391-HW-GK-05) 99 实时全景深显微镜 台 1 是 第六标段(标段编号:LZU-2022-391-HW-GK-06) 40 基因编辑与显微注射平台 套 1 是 合同履行期限:第一标段:合同生效后90个日历日内供货。第二标段:合同生效后90个日历日内供货。第三标段:合同生效后90个日历日内供货。第四标段:合同生效后5个日历日内供货。第五标段:合同生效后90个日历日内供货。第六标段:合同生效后180个日历日内供货。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求:第一、四标段:无第二、三、五、六标段:对提供进口产品的投标人须提供投标产品生产厂家针对本项目的专项授权函原件或区域总代理针对本项目的转授权函原件(提供转授权函的,还须提供生产厂家对区域总代理的授权函复印件且该复印件须加盖区域总代理公章)。 三、获取招标文件 时间:2022年11月28日 至 2022年12月02日,每天上午00:00至12:00,下午12:00至23:59。(北京时间,法定节假日除外) 地点:中国政府采购网(www.ccgp.gov.cn)和兰州大学采购管理办公室主页 (http://zbb.lzu.edu.cn) 方式:本项目采用电子招投标,所有供应商必须办理数字证书后方可登记和投标。 符合本公告要求的供应商,须按以下流程在兰州大学采购管理办公室电子招投标系统(供应商)(http://company.lzu.edu.cn/CG-GS/gongSiLogin.initDenglu.action)上注册并完成在线登记: 1. 确认企业公章证书(KEY)办理完成并与公司注册账号绑定,确认证书驱动安装完成,并使用证书方式登陆电子招投标系统(供应商)。 2.核对注册信息准确性和证照扫描件真实性,根据公告及系统要求完善供应商基本信息;公告中要求供应商具备的资格条件,相关证照必须扫描上传至“资质”栏目内。 3. 选择要投标的项目点击在线登记,按要求完整、准确填写登记信息,核对无误后保存并提交。 4. 登记信息使用数字证书签名并提交审核,此过程可能需要输入证书PIN码,注意不是供应商注册的密码。 5. 供应商登记后应及时登陆兰州大学采购管理办公室供应商库查看审核情况,根据审核要求补充、完善相关信息,审核通过即为登记成功。同时可以通过“下载采购文件”模块自行免费下载采购文件。 注:如有问题,请联系技术支持,电话:13811001607 售价:¥0.0 元,本公告包含的招标文件售价总和。 售价:¥0.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年12月16日 09点00分(北京时间) 开标时间:2022年12月16日 09点00分(北京时间) 地点:兰州西部投资咨询有限公司开标室(兰州市城关区南关什字世纪广场B座26楼)。 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、投标文件递交方式:此项目是远程开标(不见面开标),投标文件通过兰州大学投标程序客户端上传到电子招投标平台。供应商应按招标文件规定的投标截止时间登录 “ 兰州大学采购管理办公室电子招投标系统(供应商)”参加远程开标(不见面开标),并应自开标时间截止前 30 分钟签到,签到完成在开标时间开始起半小时内自行完成开标解密,否则投标无效。详见操作说明(见附件)。 2、未尽事宜详见第二章投标须知前附表。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:兰州大学 地址:兰州市天水南路222号 联系方式:刘老师、曹老师 0931-8912932 zbk@lzu.edu.cn 2.采购代理机构信息 名 称:兰州西部投资咨询有限公司 地 址:兰州市城关区南关什字世纪广场B座26楼 联系方式:李伟山 17793580008 3014570993@qq.com 3.项目联系方式 项目联系人:彭老师 电 话: 13919826012
  • 相机显微镜应用于生命科学(显微镜成像系统)
    相机显微镜是一种将显微镜与专业显微镜相机结合在一起的设备,用于拍摄和记录显微镜下的图像。不仅能够帮助我们观察到微观世界,还能进行参数设置和数据采集,提供定量和定性的数据,也可以将图像投射到大屏幕上,供多人观察与分析,方便多人共览分析,是实验教学、科学研究及医学检验的理想工具。显微镜摄像头MHD800相机显微镜在生命科学领域的应用非常广泛,应用于细胞生物学、分子生物学、遗传学、免疫学等多个领域。例如,在细胞生物学中,显微镜成像系统可以用于观察细胞的结构、形态和功能,以及细胞之间的相互作用。在分子生物学中,显微镜成像系统可以用于观察DNA、RNA和蛋白质等分子的结构和功能。通过测量细胞的大小、形状和数量,我们可以了解细胞生长和分化的规律。通过观察蛋白质的分布和数量,我们可以了解蛋白质的功能和调控机制。明慧MingHui显微镜数码成像系统界面明慧MingHui显微镜数码成像系统功能特点:高分辨率:能够捕捉到更清晰、更准确的图像。自动对焦和自动曝光功能:能够快速准确地捕捉到目标物体。多种观察模式:如明场、暗场、微分干涉、荧光、偏光等,可以满足不同实验需求。配备分析软件:可以对图像进行定量和定性分析,为科学研究提供有力支持。应用广泛:适用于生命科学、医学、材料科学等多个领域的研究。产品清单:显微图像分析软件相机显微镜如果您需要一整套显微镜成像系统或者已有的显微镜需要升级拍照功能和安装,请与我们联系。
  • 仪器新应用!科学家用干涉散射显微镜解密COF合成的全过程!
    【科学背景】共价有机框架(COFs)是一类功能性材料,能够在能量转换和存储方面发挥作用。然而,尽管近20年的研究,对于它们的合成条件却缺乏统一的预测规则。这部分是由于对于形成的早期阶段的成核和生长的认识仍然不完整。为了解决这一挑战,科学家们需要一种能够在操作中进行研究的技术,以全面理解COF形成的动态过程。鉴于此,德国慕尼黑大学的Richard Martel & Emiliano Cortés等研究者在“Nature”期刊上发表了题为“Early stages of covalent organic framework formation imaged in operando”的最新论文。科学家们使用了干涉散射显微镜(iSCAT)技术,首次揭示了在COF合成过程中液液相分离的现象,这表明了溶剂在形成过程中的关键作用。利用这些发现,他们成功地开发了一种新的COF合成方案,在室温下进行反应,实现了对合成条件的有效设计。这项研究的结果揭示了溶剂在COF合成中的重要性,并为有理材料合成提供了新的视角和方法。【科学亮点】(1) 本研究首次利用干涉散射显微镜(iSCAT)技术进行了COF聚合和框架形成的操作内研究。这一技术在高速度(微秒/毫秒级)下结合了亚5纳米的灵敏度和高空间分辨率,使得能够观察到反应混合物中的所有物质,包括晶态、非晶态、液体/固体相。(2) 实验结果显示,COF的形成过程中存在液液相分离,表明常规COF合成中存在结构化溶剂,呈现为无表面活性剂的(微)乳液。此外,发现溶剂的作用不仅仅是溶解性,还通过将反应物和催化剂分隔开来起到了动力学调节剂的作用,从而影响COF的形成过程。(3)基于这些发现,作者成功开发了一种室温下合成COF的新协议,摆脱了之前合成中需要提高温度的限制。这项工作将框架合成与液相图连接起来,为合理设计反应环境提供了新的方法。【科学图文】图1:iSCAT是全面了解COF形成机制的有效工具。图2. 实时iSCAT图像在空间和时间上显示COF的形成,在添加催化剂后的毫秒内显示液-液相分离过程。图3. 常规碳纳米管合成中的溶剂结构。图 4:合理设计了COFs的室温合成方案。【科学结论】这项研究为理解和优化复杂湿化学过程(如COF合成)提供了新的科学启示。通过使用iSCAT显微镜直接成像,作者得以深入解析COF合成的多阶段过程,揭示了液液相分离等关键现象。同时,作者提出的IAC合成方案展现了在温和条件下合成框架材料的可靠途径,这为设计更高性能的COF材料提供了新的思路。此外,作者提出的通过液相图定制反应环境的策略不仅可以用于COF合成,还可以推广到其他材料的合成领域,为实现有理材料合成提供了可行性方案。这一研究还强调了利用光散射技术可视化反应过程的重要性,这为更深入地理解化学反应机制提供了新的方法。综上所述,本研究不仅为COF合成提供了新的合成策略和理解机制,还为湿化学过程的探索提供了新的科学思路和方法。原文详情:Gruber, C.G., Frey, L., Guntermann, R. et al. Early stages of covalent organic framework formation imaged in operando. Nature (2024).https://doi.org/10.1038/s41586-024-07483-0
  • 关于显微镜你所不知道的故事
    生物课上,一台显微镜、一片菜叶子加上一只青蛙或者鲫鱼,一场生物显微解剖课开场了。各自不免兴奋,显微镜是多么神奇的一个东西!它让我们能够看到流淌江水中的各种微生物,能够知晓细胞内形形色色的细胞器,能够区分出猩猩有24对染色体而人却只有23对。  这都要归功于16世纪一个叫Zacharias Jansen的荷兰人,我们不清楚他如何想到将两个镜片叠在一起并放在管子的两头,但是这个奇怪想法催生出的工具,却能够在压缩最小的时候放大3倍,拉到最长时可以放大达到10倍。他在孩童时期的嘻哈把玩,将我们带进了令人瞠目结舌的微观世界。  ▲玩出来的显微镜  很奇怪,做出显微镜的第一人不是生物学家,而是一个观星的人&mdash &mdash 现代物理学与天文学之父伽利略。1609年,在听说了这个孩子的发明后,他不仅研究明白了这些镜片在一起能够放大很多倍的原理,还制造出了一台更为精密的工具,并将其命名为occhiolino(也被称为little eye)。从此,现代意义上的显微镜走进人们的视野。  然而,显微镜真正发展成为一个学科,成为窥视微观世界的独门兵器,还是要等到17世纪六、七十年代。列文虎克,这个出生于1632年的荷兰小伙子,在稚嫩的年纪就不得不面对父亲的去世,被迫来到阿姆斯特丹的一家干货商店当学徒,在那里他接触到放大镜,产生极大的兴趣。闲暇之余,他便耐心地磨起了自己的镜片。或许是太无聊,或许是太好玩,他一生中竟然磨制了400多个透镜,放大倍数竟然可以达到300倍!利用自制的显微镜,列文虎克为我们展现了一个全新的微观世界,他第一个发现并描绘了细菌,展现了一滴水中的世界,准确地描述了红细胞,证明了马尔皮基推测的毛细血管层是真实存在的,他成为了微生物学的奠基人。  与列文虎克同期的,还有一个叫做罗伯特&bull 胡克,被称为&ldquo 伦敦的莱奥纳多&bull 达&bull 芬奇&rdquo 的英国博物学家。你说对了,&ldquo 胡克定律&rdquo 就是以他名字命名的。他不仅提出了弹性材料的胡克定律,万有引力的平方反比关系,设计了真空泵,还利用自制的显微镜发现了软木中的&ldquo 小室&rdquo ,并将&ldquo cell&rdquo 一词深深地刻进了现代人的脑海中。从此,显微镜的发展进入了快车道,出现了形式多样、拥有不同功能的各色显微镜。  ▲光学显微镜  灯泡的发明让那些狂热的显微镜粉丝们欣喜不已,终于可以在晚上也可以使用高倍镜片来触摸微观世界了。但是当他们将光源经聚光镜投射在被检样本上后,却发现在视野中除了有那些小东西,竟然还发现了灯丝的影像。直到1893年,一个叫柯勒的年轻人,发明了二次成像技术,成功地将热焦点落在了被检样本之外,不仅光线均匀了,而且也不会损伤样本。这种被称为柯勒照明的光源系统,成为了现代光学显微镜的关键部件。  显微镜的变革,也使细胞学迎来了最为辉煌的发展时期。细胞器、染色体等细胞染色方法的出现,使人们对于细胞这一生命最基本单位有了相当深入的认识。但是,染色毕竟影响甚至杀死了细胞,跟一堆死细胞玩真是太没意思了!直到20世纪二、三十年代,弗里茨&bull 泽尔尼克在研究衍射光栅的时候,发明了相差显微技术,这一情况才被彻底改变。  再后来,出现了各种形形色色的显微镜,按照设计方式的不同,有正立的、倒立的,还有解剖显微镜,按照目镜的个数,有单目镜的、双目镜的,还有直接数码相机采集图像的,有使用偏振光作光源的,还有不将光直接射入样本的暗视野显微镜,还有选定特定波长的光波照射样本,以产生荧光的荧光显微镜。  ▲瓶颈所在  十八世纪,光学显微镜的放大倍数已经可以达到1 000倍,直到现在人们也只能将其提高到1 600倍左右这个极限了。不是因为技术不够,而是因为显微镜的最大分辨率受到光源波长的限制。  光在传播途径中,如果碰到的障碍物或者小孔的尺寸远大于光的波长时,就会被反射回去或者穿透过去,可以看作是沿直线传播。但是当物体尺寸与光波差不多甚至还要小的时候,光波就会发生衍射现象并绕过去。不论我们怎样磨镜片,或者使用油镜来提高清晰度,显微镜的分辨率最多也只能达到光波长的一半。而我们肉眼通常能感知的可见光,波长范围在0.39&mu m ~0.76&mu m,即便使用0.39&mu m左右的紫外光,理想状况下,也就能达到0.2&mu m的分辨率。所以,要想提高分辨率,只能改变光源,并且改用仪器来探测放大的图像。  ▲新时代的骄子  当人们意识到用光学显微镜看不到原子般细微的物质,那么就会想法进一步提高显微镜的分辨率,别的办法行不通,那就只能寻找比光波波长还短的光源。还有哪些波的波长比光波还短?当然是电子。注意,是电子,不是家里电线中220 V的电&hellip &hellip   1924年,德布罗意提出了波粒二象性的假说,根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。接着汉斯&bull 布什又开创了电磁透镜的理论。这些使人们产生了制作显微镜的新想法:为什么不用具有波动性的电子做&ldquo 光源&rdquo ,再用电磁透镜来放大呢?于是,1932年德国工程师恩斯特&bull 鲁斯卡和马克斯&bull 克诺尔制造出了第一台透视电子显微镜,这是近代电子显微镜的先导,鲁斯卡也因此获得了1986年度的诺贝尔物理奖。  电子显微镜有着与光学显微镜相似的成像原理,它的神奇之处在于用电子束代替光源,而电磁场也化身成了透镜:高速的电子束在真空通道中穿越聚光镜再透过样品,带着样品内部的结构信息投射在荧光屏板上,最终转化成可见光影像。另外,由于电子束的穿透力很弱,用于电子显微镜的标本,需要用超薄切片机制成厚50纳米左右的超薄切片,稍微厚一点,电子就可能做无用功。如果给飞奔的电子再来一马鞭,电子显微镜的放大倍数最高可达近百万倍,分辨率可以达到纳米级(10-9 m)。  用电子束代替光看起来已经是一个反常规的奇妙主意,但让人想不到的还在后面。1983年,IBM公司苏黎世实验室的两位科学家格尔德&bull 宾宁和海因里希&bull 罗雷尔,发明了扫描隧道显微镜,这是一种利用量子理论中的隧道效应探测物质表面结构的仪器。这种显微镜比电子显微镜更激进,它的出现完全抛开了传统显微镜的概念。  最神奇的是,扫描隧道显微镜没有镜头!没有镜头也敢叫&ldquo 显微镜&rdquo ?没错,这不是山寨的时候出了问题,它原原本本就是这么设计的。扫描隧道显微镜依靠&ldquo 隧道效应&rdquo 进行工作,如同一根唱针扫过一张唱片。一根有着原子般大小的探针慢慢通过被分析的物体,当探针距离物体表面很近时(大约在纳米级的距离),电子会穿过物体与探针之间的空隙,形成一股微弱的电流。如果探针与物体的距离发生变化,这股电流也会相应改变,通过测量电流我们就能知道物体表面的形状。所以,当电流经过一个原子,便能极其细致地描绘出它的轮廓,通过绘出电流量的波动,我们就可以得到单个原子的美丽图片。  电子显微镜的出现,&ldquo 神马&rdquo 细菌、病毒、DNA、蛋白质大分子、原子核、电子云啥的,都得规规矩矩老实听话,要不,来探针下现个原形?  ▲未知的微观世界  对人来说,安全电压是36 V,可是对于电子显微镜下的观测样品,其接收到的辐射剂量等同于10万吨当量的氢弹在30米远处爆炸的辐射量!当生物标本暴露于电子束中时,细胞结构和化学键将迅速崩溃,所以电子显微镜虽然精妙却无法用于活细胞的观察。  麻省理工大学Mehmet教授的研究小组提出,通过使用量子力学的测量技术可以让电子束被约束起来,在稍远的距离感应被观察的物体,一次扫描样品的一个像素,并将这些像素组合起来拼出整个样品的图像,从而避免损坏实验样品。倘若研究成功,它可以使研究人员看到分子在活体细胞内的活动,比如酶在活细胞中的功能或是DNA的复制过程,用以揭示生命和物质的基本问题。  看电影,你一定希望看到3D的画面。同样的,长期的2D显微镜成像,也让人们感到审美疲劳,于是3D图像技术如雨后春笋般发展起来。共聚焦显微镜已经能够通过移动透镜系统对一个半透明的物体进行三维扫描,通过计算机系统的辅助,对实验材料从外观到内在、从静态到动态、从形态到功能进行观察。  同时,随着数码摄影技术、信息技术和自动化技术的革新,显微镜的外观、舒适性、自动化程度以及方便性都在提高。例如近几年的大屏幕倒置显微镜,直接通过液晶显示器来观察,研究细胞结构就像在电脑上看电影,大大减轻了显微镜观察时的疲劳。
  • 中美联合研制自适应光学双光子荧光显微镜
    像差问题一直困扰着光学领域的工作者。像差会使光波前发生形变,不仅降低成像的信噪比和分辨率,使得很多时候我们只能&ldquo 雾里看花&rdquo ,更甚者,产生赝像,或无法获得有意义的图像。像差问题对双光子成像的影响尤为严重,因为在那里,荧光信号对入射光强度的依赖是平方关系,一旦入射光波前形变,不仅聚焦强度大幅下降,成像分辨率也急剧恶化。因此,如何解决像差问题,实现活体,例如小鼠大脑皮层,深层区域的高质量成像成为光学成像发展中最具挑战性的问题之一。  美国Howard Hughes Medical Institute (霍华德· 休斯医学研究所)在Janelia Farm Research Campus的吉娜博士小组与来自中科院上海光机所强场激光物理国家重点实验室的王琛博士最近成功将一种新的自适应光学的方法和双光子显微镜结合,研制出一种新的自适应光学双光子荧光显微镜。通过校正活体小鼠大脑的像差,在视觉皮层的不同深度处均获得了提高数倍的成像分辨率和信号强度,大大改进了成像质量,使得原来在活体鼠脑中不可见或者模糊的细节变得清晰可见,她们成功将该方法应用于老鼠视觉皮层第五层(约500µ m)的形貌结构成像和钙离子功能成像。这一新的自适应光学方法,首次使得在活体小鼠深层区域成像中获得近衍射极限的成像分辨率成为现实。这一成果以题Multiplexed aberration measurement for deep tissue imaging in vivo发表在最新一期的Nature Methods (自然· 方法)杂志上。  在该自适应光学双光子荧光显微镜中,她们将空间光位相调制器光学共轭到显微物镜的后焦平面,通过位相调制器将入射光分成若干子区域,每一块子区域的波前都可以被独立控制。同时,她们用数字微阵列光处理器,以不同的频率同时调制其中一半子区域的入射光强度,以另一半子区域作为&ldquo 参考波前&rdquo 。来自所有子区域光束会在焦点处会聚干涉,通过监测焦点激发的双光子信号随时间的变化情况,并进行傅里叶变换分析,可以&ldquo 分解&rdquo 得到被调制的每一块子区域的&ldquo 光线&rdquo 的贡献信息,从而可以实现对一半子区域波前的并行测量。对另一半子区域重复这一测量过程,从而获得整个入射波前的信息并进行校正。该方法耗时很短,通常约1~3分钟左右即可完成像差的测量和校正,无需复杂的计算,适用于任何标记密度和标记类型的样品。更重要的是,得到的像差校正图案可以用于提高较大视场范围内的成像质量。该方法无疑为在体研究小鼠大脑皮层深层区域的生物、医学问题提供了可行性方案。
  • 高端显微镜又添新玩家!熵智科技发布超分辨及共聚焦显微镜新品
    生命科学是从微观层面观察和研究生命过程,从而揭示生命的物质基础和基本现象。显微成像是观察微小物体的重要手段,但其分辨能力受光学成像系统的限制(即衍射极限),无法满足现代生命科学研究要求的更高解析度、更准确的成像需求。熵智科技作为中国原创3D视觉创业公司第一梯队,横跨机器视觉与微纳光学两大领域,深刻认识到微纳光学在生命科学研究领域中的巨大价值。9月23日,熵智科技在西安发布自研的超分辨及共聚焦显微成像分析系统。该系统易用、性价比高,相较于国内外显微成像产品,不仅突破了光学成像系统的限制,轻松实现纳米尺度的2D/3D动态图像解析能力,还将共聚焦+超分辨+后处理分析完美融合,软件结合场景模块化。无论新手用户还是专家用户,只需通过一套界面即可获取一流的超高分辨率图像及分析结果。熵智科技超分辨及共聚焦显微成像分析系统工作原理超分辨显微成像分析系统采用结构光照明显微成像术(英文Structured Illumination Microscopy, 简称SIM),突破传统显微镜的阿贝衍射极限,实现生物组织、细胞、神经元等活动样本的快速超分辨率成像,为生命科学、生物工程等领域提供创新的超分辨率成像技术产品,几乎可集成于任何荧光显微镜。共聚焦显微成像分析系统的软硬件均采用模块化设计,硬件集成SIM超分辨模块、软件支持多种后处理功能,从而提供精确的2D/3D成像,以及动态过程的成像。目前,共聚焦和超分辨光路共用了光源准直部分、物镜部分、聚焦成像部分。主要功能超分辨及共聚焦显微成像分析系统视野超10倍扩展,达1mm,拥有精确的多微细胞结构生物显微影像分析功能,实现双光路同时,宽场、共聚焦、超分辨三种模式自由切换。大视野拼图:多种不同的图像获取方式、可实现500um*500um视场上图片进行拼接。图像增强及处理:可对采集到荧光图像进行增益调节、对比度调节、亮度调节以及色阶调节。反卷积处理:在原有采集到图像基础上,对图像数据做实时清晰度优化,达到消除背景噪声,有用信息表达更精准的作用,处理速度10ms以下,速度快;可进一步结合DNN方法,提高应用场景的鲁棒性。特征统计分析:对于识别出的细胞,对其强度、直径、周长等15个属性做数值量化。特征标记分类:可对细胞的特征进行标记和分类。单细胞定量分析:可以准确分割出相互重叠的细胞,精度更高,在专业单细胞识别的基础上,结合深度学习AI算法,可以精确识别互相挤压重叠的细胞核,而且对于细胞轮廓边界识别更加准确。亚细胞结构分析:可以定位某种蛋白或者某个基因表达产物在细胞的具体存在部位,如细胞核,胞浆内,结合AI图像分析方法,以表格和数据统计输出结果。细胞亚群圈选分析:筛选特定的感兴趣细胞亚群,进行了10余种参数分析。特殊细胞/结构识别:提供特殊细胞如脂肪细胞的识别和数量统计。多重荧光染色:实现细胞核、细胞质、细胞膜的各种形态和染色,精确寻找目的细胞及其结构。细胞寻找及跟踪:实现特定细胞的动态识别和跟踪。核心参数激光共聚焦超分辨显微参数配置普通光纤激光器激光405nm、488nm、561nm、640nm扩展HC-PCF激光器920nm探测器 PMT3个;波长:400-750nm,GaAsP最大拍摄速度8fps@512×512像素;2fps@1024×1024像素;4096×4096最高;更多可配置;扫描方式X-Y, X-Y-Z, X-Y-T分辨率250nm in x, y and 550nm in z 共聚焦120 nm in x, y and 320nm in z (488nm wavelength) 超分辨共焦视场Φ18mm-Φ25mm 内接正方形成像深度100μm灵敏度提升4倍相对信噪比 SNR优良级 50dB显微镜电动显微镜奥林巴斯 倒置IX73显微镜,具备明场、微分干涉、荧光等观察方式物镜奥林巴斯或Mitutoyo平场复消色差物镜(防腐蚀陶瓷表面以及红外色差矫正)选型载物台奥林巴斯 电动IX3-SSU 扫描精度优于0.7μm光学放大1.0X;1.5X;3.2X;20X 适配/转换器共聚焦/超分辨率光路切换(电动)、6位电动物镜转换器荧光装置配荧光光阑*相机(lattice)SCMOS,分辨率2048×2048,100fps@全幅面,位深12bit工作站Windows10 Pro 64 bit;硬盘≥1TB;内存16GB软件控制软件:图像采集及2D/3D/4D处理;共聚焦和超分辨配置;*成像分析:细胞自动识别、单细胞定量分析、亚细胞结构分析、细胞亚群圈选分析等防震台频率范围(5~30Hz):≤30μm/s均方根;频率范围(>30Hz): ≤60μm/s均方根增配双光子成像激光生成组件、高速扫描头、前置补偿单元应用场景超分辨及共聚焦显微成像分析系统可应用于基础生物学、临床医学、病毒学、精准药物筛选等领域,为活细胞超分辨率智能成像提供解决方案。基础生物学:皮肤病例研究、类器官培养观察、微生物形态研究、胚胎发育成像、组织结构三维重构。如通过斑马鱼胚胎发育过程的成像,研究血管疾病和血管药物的新兴模型,从而更好解决人类血管疾病;通过光学切片, 确定其复杂的内部结构与组织功能之间的关系。临床医学:细胞形态结构鉴定、病理显微成像、异常细胞跟踪检测、组织形态学观察。利用计算机进行图像处理, 不仅可观察固定的细胞、组织切片, 还可对活细胞的结构、分子等进行实时动态观察和检测。通过它可以直接观测细胞形态学的组织、细胞之间的相互作用、组织微环境、伤口的愈合等成像,有助于了解病理机制,以开发疾病治疗方法从而促进人体健康有重要的意义。病毒学:植物病毒研究、动物病毒研究、医学病毒研究、环境病毒研究、噬菌体研究。采用超分辨技术,可以实现病毒感染细胞及复制、组装、释放等动态过程的研究。药物筛选:药材显微鉴别、载药微粒结构、药物扩散跟踪、制药成型和释药研究、药理药效研究。通过药物筛选确定干预的潜在治疗方法,加速早期药物的研发和确定疾病的模型。利用显微镜观察植(动)物药材内部的细胞、 组织构造,从而达到鉴定药材的目的。选择合适的药物靶分子,针对高分辨率成像的固定样品及活细胞进行分析,从而满足不同实验的需求。关于熵智科技熵智科技是国家级高新技术企业,拥有底层成像系统和算法开发能力,软硬件一体化,致力于通过高性能的成像技术解决机器人柔性化、微纳级检测与测量等问题。熵智科技自2018年成立至今,先后获得字节跳动、拓金资本、松禾资本、远望资本、华控资本等投资。深圳、武汉、西安三地联合办公,目前研发和工程团队70余人,核心技术人员均硕士及以上学历,博士6人。未来,熵智科技将继续深耕微纳光学领域,以更优的产品与服务回馈广大合作伙伴及客户。
  • 南理工发明三维显微镜 成本8万或打破垄断
    p  屏幕上圆形立体的巨噬细胞正在慢慢地伸出“触角”,吞噬着周围的残骸,看上去有几分触目惊心……这一画面来自于南京理工大学电光学院研究生们发明的一种新型三维显微镜。由于彻底改变显微镜现有成像方式,该作品近日在第十四届“挑战杯”全国大学生课外学术科技作品决赛中一举夺得特等奖。/pp style="text-align: center "img title="OArg-fxkwuwk9559544.jpg" src="http://img1.17img.cn/17img/images/201511/noimg/6b5403c5-f630-42cf-8980-f2f4542441e1.jpg"//pp  strong真实的巨噬细胞像个怪物/strong/pp  记者昨天在现场看到,随着工作人员的操作,显微镜看到的影像显示在屏幕上,只见一个“张牙舞爪”的圆形家伙正在吞噬着周围的“杂物”,像极了卡通片里的怪物。“这就是巨噬细胞的真实模样,它是我们身体的护卫者,遇到细菌病毒就会消灭它们。”电光学院研二的林飞指着屏幕说。/pp  这种新型显微镜叫SCscope。乍看之下,它和传统显微镜在外形上并没有太大区别。仔细观察才发现,原来它的照明光源与成像焦距都是可以通过软件灵活操控的。“显微镜通过可编程照明产生不同的光线照射样品,并采用电控变焦透镜快速扫描物体不同的焦面,配合软件中的图像重构算法,便可完成视野内所有细胞的同时三维成像。”/pp  林飞告诉记者,传统显微镜成像是平面的,而通过三维显微镜,任一细胞的厚度、尺寸都可以随着鼠标的选取精确地获得。/pp  strong千人合影可以看清脸上的痣/strong/pp  “显微镜经过四百多年的发展,仍然没有摆脱‘可见即所得’的传统成像模式,而我们的作品革命性地采用‘计算成像’的全新概念,这为显微镜的功能与性能带来了跨越式的提升。”林飞说。/pp  据了解,目前常用的细胞显微镜观测需要对细胞进行染色或标记,或通过外界激发光源对细胞成像进行分析,但这些标记以及长时间的曝光往往对细胞有一定的伤害,甚至导致细胞的死亡,无法获知细胞真实长生状况。/pp  而SCscope显微镜不但不用把活细胞染色,而且可以看到三维立体的细胞,并且在任意视角观察,“可以生成高达2.8亿像素的‘全视场、高分辨’图像,这就好比在一张千人大合影中,可以看清每个人脸上的痣。”/pp  值得注意的是,这个新型显微镜还在同一系统中集成了明场显微镜、暗场显微镜、相衬显微镜、微分干涉显微镜等现有多种专用显微镜的成像功能,且可以做到“一键切换”,使得显微镜功能更加多样,成本更加低廉。/ppstrong  打破国外光学显微镜的垄断/strong/pp  林飞说,这款显微镜成本8万多元,相当于现用显微镜的三分之一,可大大降低医疗检测的门槛。目前,已经在南京部分医院进行试用。/pp  指导老师左超副教授说,SCscope改变了传统显微成像系统获取信息方式,提升其获取信息能力,有望在生物医学、材料科学、工业检测、科研教学等众多领域得到广泛应用。相关核心技术已申请国家发明专利4项。目前国内已有多家单位前来洽谈合作,如果该作品投入生产并在相关行业大力推广应用,将有望推动我国显微镜产业的技术革新,将打破国外高端光学显微仪器的长期垄断地位。/pp/p
  • 如何选择一台适合自己的显微镜——显微镜的种类选择
    2022年的春节已接近尾声,科研的小伙伴已经开始忙碌起来了,对于新学期是不是也有新的计划,发一篇sci的文章顺利毕业,脱单flag,头发多一点点,细胞养好,科研项目进展顺利,老师能给买台心仪已久的显微镜;你想知道选择什么种类的显微镜,正置还是倒置,宽场显微镜、超高分辨率显微镜、激光共焦显微镜等等,小本本备好,我们开始了。1不同成像原理,不同分辨率的显微镜如何选择显微镜作为生命科学领域研究的必须工具,其结构复杂,配置繁多,根据不同的配置和结构,相应的价格有很大的差异。那很多用户在实际采购过程中,看到长串的配置不知如何去选择,怎么用合理的价格去买到一个完全能够满足自己实验需求的显微镜呢?从今天这期推文开始,将会着重介绍选择显微镜的几个关键核心问题,目的是让用户能够在自己的预算范围内选择出符合自己实验需求的显微镜。首先要知道显微镜从开始诞生发展到现在,主要通过分辨率来划分,分为宽场显微镜、超高分辨率显微镜、激光共焦显微镜以及电镜。这一系列显微镜的分辨率从光镜的200纳米到超高与共聚焦的100多到几十纳米再到电镜的0.2纳米。并不是说显微镜的分辨率越高,就越适合我们的研究。分辨率越高,意味着其价格和操作的难度系数是逐级增长的。那我们如何去选择一个适合我们的显微镜呢?要根据老师和用户自己样品的大小去选择。2不同机型的选择我们在根据样品的大小和观察的实验需求,确定了某一类型的显微镜之后。我们需要根据实验样品去选择相对应的合适机型。显微镜的主要机型,根据其光路设计的不同,主要分为体视显微镜、正置显微镜和倒置显微镜。体视显微镜:体视显微镜,是一种具有正像立体感的显微镜,被广泛应用于材料宏观表面观察、失效分析、断口分析等工业领域。以及生物学、医学、农林、工业及海洋生物各部门。因为体视显微镜的光路设计,符合人体眼睛夹角的偏角,所以通过体视显微镜观察物体时,类似于我们眼睛的成像光路,这样会让我们看到立体的图像呈现。正是由于此设计,体视显微镜的分辨率要远低于传统的正置或倒置显微镜。体视显微镜更多的是观察小物体的宏观表象,而不是更为精细的细节。正置显微镜:正置显微镜作为最早诞生的机型它更多的是要配合玻片来对样品实现显微观察。如何来定义正置显微镜呢?显微镜物镜朝下,观察的样品在物镜的下方,这样的显微镜我们称之为正置显微镜。一般适用于的观察样品为:透明样品、薄的样片、生物切片、涂片等。但由于正置显微镜的机械设计,样品位于载物台与物镜中间。低倍物镜齐焦时,与载物台之间的距离大约为三厘米左右。像无法切割的厚样品,类似矿石、零件或者是在孔板、培养皿、培养瓶中培养的细胞,就无法在正置显微镜下进行观察,那由此人们设计了倒置显微镜。倒置显微镜:顾名思义,倒置显微镜与正置显微镜正好相反,那么定义也是相反的,物镜朝上,要观察的样品在物镜的上方,此类显微镜我们称之为倒置显微镜。我们可以看到倒置显微镜,物镜和载物台之间不再放观察的样品,样品是放于载物台的上面,所以样品的厚度就不会受到载物台与物镜之间距离的限制。因此倒置显微镜主要用于微生物、细胞、细菌、组织培养、悬浮体、沉淀物等的观察。介绍了三种不同形式的显微镜,相信我们的老师和用户对自己的样品适用于什么类型的显微镜已经有了一个大体的判断。当我们更多的去观察样品的立体结构,对细节和分辨率没有更高追求的时候,我们通常会选择体视显微镜。当我们的样品无法制成玻片或者不能放在玻片上时,我们就去选择倒置显微镜。如果能制成玻片就选择正置。为什么说能制成玻片就去选择正置呢?因为对于倒置显微镜来说,正置显微镜的高倍数观察更方便,比如60X和100X的油镜。同时,因为它的光路要比倒置更短,搭配高分辨率聚光器后分辨率更高,对比度更好。通过我们这期推文的介绍,老师对于选择哪种分辨率水平的显微镜,以及什么类型的显微镜会有一个较为清楚的了解。这些只是我们采购或选择显微镜的第一步,就是我们确定显微镜的类型。针对不同的观察样品,又会有其更为适应的观察方式,又有不同的光源,不同品质的物镜,供我们去选择。欲知后事如何,且听下回分解。|申请试用|ECHO 显微镜可以申请试用哦!关注“深蓝云生物科技”公众号,点击“云活动”→“试用中心”即可。
  • 最小最轻远程医疗显微镜面世 仅重46克
    最小最轻的远程医疗显微镜面世可助资源条件落后地区提高医疗卫生水平  据物理学家组织网4月22日报道,美国科学家发明了一种世界上最小、最轻的微型显微镜。该新型无透镜成像技术被认为不仅削减了与医疗照顾相关的成本,还将给资源条件有限的地区提供快捷、廉价的医学诊断,也将远程医疗向前推进了一步。  美国加州大学洛杉矶分校的电子工程副教授艾多安奥兹坎使用了一种“基于侧影成像的无透镜超宽视野单元监测阵列平台”(LUCAS)的成像技术。LUCAS的特点是,摈弃放大物体所用的透镜,通过采用发光二极管照亮物体及数字传感阵列来捕捉影像,从而产生微粒或细胞的全息图像。分析样本经由一个小芯片载入,芯片内装有用以监测健康状况的唾液或血液涂片。在使用血液涂片时,该显微镜能准确鉴别出细胞或微粒,如红细胞、白细胞和血小板等。  这台显微镜和一个鸡蛋的重量差不多,仅46克,是一个自成一体的成像设备,其仅有的外设为一个可与智能手机、掌上电脑(PDA)或计算机相连的USB接口,可经此供电。除了比常规显微镜更为紧凑轻巧外,该无透镜显微镜还省却了要经过专业技术人员才能分析成像的需要,图像经由计算机分析后就可即时获取结果。再加上一些不太昂贵的附件后,还能改装成一个微分干涉对比显微镜(亦称诺玛尔斯基显微镜),改装附件的成本仅100美元至200美元。微分干涉对比显微镜可用以获取样本的密度信息,通过突出线条和边缘的对比度来形成看似立体的图像。  这台功能强大、成本低廉的无透镜显微镜可装入一个极小包装;大量设计元素将使其在资源条件有限的地区,特别是非洲的一些国家大显身手,帮助监测诸如疟疾、艾滋病和肺结核等疾病。  在以上地区,医疗的两个关键需求是:易用性和耐久性。该显微镜的使用将培训减至最低程度,其大视野成像的特点,令样本不再需要在显微镜内进行扫描或精确对齐;操作简单到只需将样本装满芯片,然后将其移至显微镜边上的一个槽内 由于其具有大孔径,还能避免因碎屑阻塞光源引起的问题 另外,由于几乎没有活动部件,使得显微镜相当坚固 而且还能被数字化集成为远程医疗网络的一部分,成为填补基础设施和移动工具之间缺隙的典范。  相关研究成果发表于英国皇家化学会《芯片实验室》杂志网络版。
  • 文献速递 | Echo Revolve显微镜助力对新冠病毒侵入机制的深入解析
    2019年突然爆发的新冠疫情在今天仍深刻的影响着我们的生活,对新冠病毒SARS-CoV-2的防范已成为我们每个人日常生活的一部分,研究者们在新冠病毒的治疗、防护、免疫等方面不断探索,帮助我们认识病毒、战胜疫情。近日,来自美国犹太健康中心的一篇报道帮助我们更深入的理解新冠病毒的发病原理,该文献发表于《Nature commuunications》,揭示了影响SARS-CoV-2传染性和新冠肺炎临床结果的可能机制。新冠肺炎是由SARS-CoV-2引起的,而作者研究发现宿主蛋白ACE2和TMPRSS2在呼吸道中的表达与病人对新冠肺炎的感染相关,SARS-CoV-2可以利用宿主蛋白ACE2和TMPRSS2作为进入因子侵入人体。研究者对695名儿童的鼻呼吸道转录组数据进行分析,发现影响ACE2和TMPRSS2表达的基因突变在世界不同人群中的频率不同,如表达减少相关的TMPRSS2 eQTL变异体rs1475908,东亚人(AF=38%)的等位基因频率最高、欧洲人AF为35%、非洲人AF为26%和德系犹太人AF为23%,而拉丁美洲人AF(AF=17%)的等位基因频率最低。与表达增加相关的两个TMPRSS2 eQTL变异在世界人群中表现出更多不同的等位基因频率。研究者发现TMPRSS2是粘液分泌网络的一部分,通过IL-13(白细胞介素-13)的作用被2型(T2)炎症改变从而上调,并且通过呼吸道病毒的干扰素反应使ACE2表达上调。研究者使用Echo Revolve正倒置一体显微镜进行免疫荧光实验证实,在呼吸道上皮的蛋白质水平上也可观察到IL-13和病毒感染介导的ACE2表达的影响。a-d GALA II哮喘患儿的体外鼻呼吸道上皮细胞ALI培养的免疫荧光染色, (a)IL-13处理5天;(b) IL-13处理5天并HRV-A感染24h的上皮细胞;(c)纤毛细胞的代表性图像(ACT 红色)和ACE2阳性(白色)细胞。核用DAPI(蓝色)染色。ACE2蛋白位于根尖腔室,IL-13处理后降低,HRV-A感染后升高。f-h、j非哮喘儿童的体外鼻呼吸道上皮细胞ALI培养的免疫荧光染色 (f) IL-13处理21天;(g) IL-13 和DAPT处理21天的上皮细胞;(h)纤毛细胞的代表性图像(ACT;红色),基底细胞(KRT5 绿色),ACE2阳性(白色)细胞。核用DAPI(蓝色)染色。ACE2蛋白位于根尖腔室,IL-13处理时ACE2蛋白降低,DAPT处理时ACE2蛋白升高;(j)健康人的体外鼻呼吸道上皮细胞ALI培养的免疫荧光染色。所有的图像都使用Echo Revolve正倒置一体显微镜拍摄。研究者最终确认儿童对常见冠状病毒感染的呼吸道反应,并发现这些冠状病毒感染产生类似于其他病毒物种的宿主反应,包括IL6和ACE2的上调。该研究有助于进一步揭示新冠病毒的致病机制,使我们对新冠肺炎的了解更加深入。希望我们可以早日解析新冠病毒致病的全部机制,战胜新冠病毒。Revolve FL应用highlight:1.自动切换多色荧光和透射光通道,快速成像;2.自动merge多通道检测图像,快速定位;3.触摸式Retina视网膜屏,高分辨率显示和注释。Revolve正倒置一体显微镜Revolve展现了其非凡的灵活性,可以轻松地实现正置和倒置显微镜转换,创新性地把正倒置显微镜合二为一,开启了显微镜Hybrid时代。☑ 视网膜屏显示技术:比拟目镜人眼观察效果。☑ 全视野观察: 更清晰,更方便。☑ 多通道荧光:多达4个EPI荧光通道,无须暗室,就可以轻松快速地完成多色荧光显微分析。☑ 自动化操作:通过iPad Pro点触操控相机及荧光通道之间的切换,实现了完全自动化操作。☑ App应用软件:基于IOS的Echo App是与Apple团队合作研发的专业显微镜软件。☑ 精湛的工艺尽显高端品质:实现非凡的性能。申请试用关注“深蓝云生物科技”公众号→云活动→免费试用。参考文献:Sajuthi S P , Deford P , Li Y C , et al. Type 2 and interferon inflammation regulate SARS-CoV-2 entry factor expression in the airway epithelium[J]. Nature Communications, 2020, 11(1).DOI:10.1038/s41467-020-18781-2
  • 向“新”而生,EVIDENT工业显微镜亮相中国材料大会
    新材料是传统产业升级和战略性新兴产业发展的基石。近年来,中国新材料产业蓬勃发展,关键材料取得突破、前沿技术不断涌现。7月8日-11日,中国材料大会2024于广州白云国际会议中心举行,大会致力于面向国家重大需求、推动新材料前沿重大突破,Evident携带多款创新工业显微镜产品亮相,与行业同仁一同探索材料的微观世界,为新材料的发展贡献力量。当前,高新产业的发展不断催生对于新材料的需求,进而对材料的微观结构设计和性能优化研究提出了更具前瞻性的要求。作为专业的光学仪器和解决方案提供商,Evident致力于提供材料学领域整体解决方案,其显微镜产品广泛应用于金属、陶瓷、半导体、化学材料等领域的微观形貌观察,助力实现精准的质量分析与控制。OLS5100 3D激光显微镜:亚微米级测量标杆OLS5100激光显微镜以其卓越的测量精度和光学性能,在亚微米级测量方面树立了标杆。在电子材料领域,新材料向更高性能、更小尺寸和更高集成度发展。Evident OLS5100显微镜以其精细的亚微米级三维成像能力,可深入观察半导体材料的微观结构,帮助提高电子元件性能。此外,其专用的LEXT物镜和Smart Lens Advisor(智能镜头顾问)的结合,确保了测量的准确性,为用户提供值得信赖的检测结果。随着全球对可持续能源解决方案的需求不断增长,新能源材料、储能材料和节能材料的研究变得尤为关键。在锂电池电极材料的生产中,为了保障电子在集流体与电极材料之间有效转移,生产中材料表面的粗糙度控制十分重要。作为非接触式工具,OLS5100显微镜在不损失样品的情况下获得精准数据,清晰捕获传统显微镜难以获得的精细图案和缺陷。值得一提的是,OLS5100配备智能实验管理助手,能够简化工作流程并提供高质量数据,让材料检测的流程更加快速、高效。激光显微镜OLS5100可同时获得样品的激光图、真彩色图和高度图DSX1000数码显微镜:多功能、一体化创新工具DSX1000数码显微镜则是Evident在数字化显微技术领域的又一力作。它将光学技术与数字技术有机融合,成为一台集体视镜、工具显微镜、金相显微镜、偏光显微镜等功能于一体的多功能高度自动化的显微系统,集成明场、暗场、偏斜、偏光、MIX、微分干涉等六种观察模式,多款物镜支持23X-8220X放大倍率,为研究人员提供综合性成像和显微镜解决方案。在汽车、航空航天及其他制造领域,轻质材料、高温材料和耐腐蚀材料的需求日益增长。DSX1000显微镜配备的PRECiV软件提供多种选配模块,包括符合行规和国际标准的材料解决方案,如晶粒度、铸铁分析、最恶劣视场、孔隙率、相分析、非金属夹杂物等。此外,DSX1000的远心光学系统有效降低在整个放大范围内的图像失真率,保证了测量的准确度和重复性。其丰富的观察方法和灵活的载物台设计,使得研究人员能够轻松应对各种复杂外形的样品。一键式呈现样品的明场、暗场、斜射、偏振、MIX(明场和暗场)、偏光和微分干涉的图像在同一界面中,即使是初学者也能快速找到合适的观察方式。活动现场,Evident展台吸引了众多行业专家、研究人员及合作伙伴,Evident光学技术的创新应用引发了关注与热议。在制造大国向制造强国迈进的征程上,新材料的突破性进展对于加速产业升级具有重要作用,展望未来,Evident仍将顺应时代发展浪潮,以高质量的解决方案推动产业向“新”发展,为中国制造业的发展筑牢基石。
  • 中科院分子植物卓越中心蔡文娟博士:激光扫描共聚焦显微镜使用和管理心得分享
    生命科学基础研究与人类健康和社会经济发展密切相关,在科学和经济社会领域中的重要性日渐增强。Science 曾发布125 个挑战全球科学界的重要基础问题,其中涉及生命科学的问题约占 54%。生命科学研究过程离不开各类科学仪器的帮助,今年,仪器信息网特别策划话题:“生命科学技术平台经验分享”,邀请高校、科研院所公共技术平台的老师分享技术心得和经验,方便生命科学领域研究人员了解相关技术进展、学习仪器使用方法。 本篇为中国科学院分子植物科学卓越创新中心细胞结构分析技术平台主管蔡文娟撰写,蔡老师根据多年工作经验,详细介绍了激光扫描共聚焦的发展、系统组成和应用,并分享了工作中仪器使用的心得体会。以下为供稿内容:1957年, Malwin Minsky博士在其博后阶段首次阐明了激光扫描共聚焦显微镜技术的基本工作原理,但由于当时没有足够强度的照明光源,工作一直停留在理论阶段。20世纪60年代,伴随着激光器技术的发展,激光扫描共聚焦技术开始进一步发展,直到80年代中期才基本成熟,有了成熟的商业化产品(Bio-Rad)。由于该系统所用光源为激光,成像方式为逐点扫描成像,因此又被称为“laser scanning confocal microscope”, 简称为LSCM。激光扫描共聚焦仪器发展至今,已经不再是简单的光学显微镜 ,而是整合了光学显微镜 、激光、检测器、工作站和图像处理软件的复合型显微成像系统。1987年,White和Amos在英国《自然》杂志发表了“共聚焦显微镜时代的到来”一文,标志着LSCM已成为进行科学研究的重要工具。作为细胞生物学研究的必备工具,激光扫描共聚焦显微镜堪称各个成像平台的“扛把子”,其对各种标本和荧光标记方法具备很强的普适性,即使在各种高端显微成像技术飞速发展的当下,也依然占据着极高的使用率。中国科学院分子植物科学卓越创新中心所级中心细胞结构分析技术平台成立于2010年,经过10余年的发展,拥有多种细胞成像设备,包括激光扫描共聚焦(7台)、转盘共聚焦和SIM超高分辨等高端显微系统(http://cfc.cemps.ac.cn/xibao.php),为中心内部及周边科研院所和企业提供专业的显微成像服务,最大程度地满足中心及周边的成像需求。一、 激光扫描共聚焦显微镜的组成和应用激光扫描共聚焦显微镜(以下简称为LSCM)的灵魂部件是针孔(pinhole),针孔与物镜的焦平面共轭,因此被称为“共(共轭)聚焦”。由于共轭针孔的存在,只有标本焦平面的荧光信号才会透过针孔被检测器捕捉,而非焦平面的信息被阻挡在针孔之外,形成类似光学CT的效果。配合针孔成像, LSCM硬件部分通常包括光学显微镜、激光器、扫描振镜、检测器和图像工作站组成,每一个重要部件均可根据实验需求选择合适的配置,以下将结合分子植物卓越中心细胞平台的实际需求,逐一进行简要介绍。1、光学显微镜 LSCM可以搭建在正置或倒置荧光显微镜上。生命科学研究中,倒置显微镜使用更为广泛,适合组织切片、贴壁细胞等相对较薄的标本。样品固定在载玻片上,可以方便地倒置观察。在植物研究领域,倒置显微镜也经常用于观察拟南芥根/叶片、烟草叶片、原生质体等标本,这类标本的特点是相对较薄,制片简单,可以通过简单压片的方式,利用水或其他压片溶剂在载玻片盖玻片之间形成的吸附力,将标本固定住,从而可以倒置观察。但也存在部分无法使用倒置观察的应用场景,如茎尖分生组织、较厚的作物叶片或根等,由于标本过于厚重,倒置观察时容易掉落,不方便固定,或者由于压片会导致表面形态发生变化或组织破裂,从而影响定位观察。针对这类应用,正置显微镜就显得尤为重要,尤其是搭配合适的浸入式水镜,可以帮助这类厚标本实现清楚方便的显微成像。作为光学显微平台,需要考虑到研究所各个课题组之间的应用差异,保证正置与倒置的合理配备,设备组合可最大程度地满足各类研究需要。2、激光器 为了激发出足够的荧光信号,LSCM采用激光作为照明光源。根据标记和成像需求,一般LSCM至少配置4个波段的激光器,包括405/488/561/633nm等,涵盖了整个可见光波段的激发需求,能满足大多数荧光染料和蛋白的成像。在此基础上,研究组经常涉及荧光共振能量转移(FRET)相关实验,需要对CFP和YFP等分子对进行特异性激发,这种情况下,必须选择配置有458和514nm激光器的LSCM系统。红色荧光蛋白中,mCherry以单体形式存在,不易出现由荧光蛋白多聚化带来的artifact定位现象,因此现在很多研究组选择mCherry荧光蛋白标记,543nm和561nm等波长都能够激发mCherry蛋白,但如果希望得到更为明亮和特异的红色荧光信号,最好选择含594nm激发波长的系统。除了固定波段的激光器,还可选择搭配脉冲式白色激光器,自由选择所需激发波段。由于白色激光器在激发波段方面调节的灵活性,以及其特有的脉冲式而非连续激发,可以配合检测器做基于门控技术的荧光寿命成像,有助于过滤部分自发荧光信号,或者得到荧光寿命信息。分子植物卓越中心细胞平台(辰山园区)就配备了该系统,配合脉冲式白激光和高灵敏度检测器,可以进行FLIM-FRET实验,在荧光强度成像的基础上,增加荧光寿命维度的检测。3、扫描振镜 扫描振镜一般由x和y两个方向的振镜组成,通过高速振动控制激光在成像视场内逐点扫描,“点动成线,线动成面”,形成一个完整的2D图片。根据振动速度的区别,在LSCM中一般分为检流式振镜(galvanometer)和共振振镜(resonant)。检流式振镜是应用最多的扫描振镜,单个像素点上停留时间在微秒层级,可激发出更多的荧光信号,保证图像信噪比。常规拍摄荧光2D/3D图像和非毫秒级变化的time-series,检流式振镜一般都可以满足需求。共振振镜的振动频率相比检流式有显著提高, 能实现万赫兹,512X512分辨率的图像采集频率可达到30fps。如果涉及到钙波捕捉、相分离小体快速融合/FRAP实验、囊泡运动等快速变化,使用该振镜更容易检测完整的运动变化。细胞平台2015年后购买的系统,多为混合式振镜(含有两种振镜),在实际实验中,会根据需求选择合适的振镜使用。但必须注意的是,由于共振振镜速度很快,牺牲了每个像素点上的激发时间,图像的信噪比下降严重,一般需结合合适的图像处理,才可以得到相对清晰的共聚焦图片。近三年植物领域由于相分离和钙信号相关研究逐渐增多,对扫描成像速度的要求也日渐提高,共振振镜的存在可以很好地补充检流式振镜的不足,两种振镜同时存在,可兼顾成像分辨率和时间分辨率,更好地满足不同研究方向的需求。4、检测器 配合振镜的点扫描方式,光电倍增管(PMT)和雪崩式光电二极管(HyD)均可用于激光扫描共聚焦系统的荧光检测,实现光电子信号的倍增放大。除了常规的PMT(一般以多碱作为光阴极感光材料),细胞平台每套LSCM系统上也会配置高灵敏度的GaAsP检测器(镓砷磷为感光材料的PMT)或HyD检测器,目的是提高检测灵敏度,提升弱信号的捕捉能力。对于较明亮的荧光信号,常规PMT即可满足需求;碰到相对较弱的信号,建议使用高灵敏度的GaAsP或HyD检测器,以获得信噪比更高的图片。但实际使用中,高灵敏度检测器并非万能,如果荧光发射在近红区域(Cy5.5和Cy7等),常规PMT的检测效率会相对更高,这是因为不同的感光材料对各个光谱波段的响应效率不一样。作为细胞成像平台,需要保证各类型检测器的存在,根据荧光染料的强度和特性,给出专业的建议和设置,能够更好地保证成像效率。5、图像工作站 激光扫描共聚焦系统需要整合多种硬件协同工作,因此对图像工作站和操作软件都提出了较高的要求。操作软件和工作站必须能稳定运行,精准控制各电动部件,流畅采集显微图片,针对3D/time series等较大的图像数据,能够保证后期图像处理速度。一般来说,成熟的商业化共聚焦系统在硬件控制上都可以做到稳定流畅,但对于后期的图像处理,则需要根据平台常见的数据做合理配置。反卷积处理,3D重构和AI分析等图像数据处理都对图形处理显卡有一定的要求,因此我们平台一般都会选择配备有GPU的工作站,以满足越来越高的分析需求。同时,在实际使用中,尽量避免在采集电脑上使用USB等移动存储设备,以最大可能杜绝电脑病毒的存在引起整机系统故障。二、 激光扫描共聚焦系统管理心得和未来可提升空间细胞平台成像设备类型多样化,各有特点,作为其中的“扛把子”成员,激光扫描共聚焦系统使用频率极高,受众很广,应用方向也更为多样化。作为平台管理人员,如何管理统筹多台LSCM系统的使用,使其更好地服务于科研工作,也是常思常修的一门功课。现将日常管理心得和提升空间分享如下:1、激光扫描共聚焦系统的日常维护必不可少,尤其是物镜的清洁和光路的校准。每位用户根据观察标本的不同,会选择空气镜/水镜/油镜等不同介质类型的物镜,很容易存在交叉污染,导致物镜使用不当。在培训用户遵守使用章程的同时,平台工作人员必须保证2-3天检查一次常用物镜的清洁程度。光路校准方面,建议根据仪器使用状况每半年或一年检查一次光路状态,保证光路的准直。如果共聚焦光路上搭载了超高分辨系统,使用中尤其需要注意光路状态,以确保使用效率。2、激光扫描共聚焦系统的基础操作培训是重中之重。平台工作人员要精通已有设备的软件使用和参数调节,组织小范围培训,每次上机培训不超过5人,确保培训效果。培训必须结合考核进行,第一次上机实验须保证培训老师陪同,以了解用户的实验和使用薄弱点,巩固培训效果。3、预约体系和微信用户群的合理使用。目前中科院仪器平台有统一的预约体系,可以在网预约所需仪器机时。但作为使用频率极高的激光扫描共聚焦系统,经常面临僧多粥少难以预约的状况。我们针对高频使用的LSCM建立了仪器专用微信用户群,培训考核通过后即可入群。用户在使用结束或临时取消后会在微信群内公告,便于后续用户及有需求的用户及时知晓,提升使用效率。同时,该仪器如有任何不合理使用和故障,管理人员也可在群内及时公告,方便用户调整实验。4、拓宽平台设备的应用边界,提升管理人员的技术能力。作为平台管理人员,需要密切关注生命科学领域的研究进展,尽可能从应用角度提前布局所需的成像设备,做到有备无患,不断拓展应用边界。另外,必须时刻关注显微成像的技术前沿,结合用户的实验特性和科研目的,立足已有的设备进行必要的改造和改进,提升自身的技术能力。5、国产化成像设备的落地展望。2019年已有相关国产化LSCM设备搭建成功的报道(苏州医工所),2021年也有商业化SIM超高分辨显微镜的落地(北京大学),今年再传出国产超分辨显微成像设备商业交付的消息(中科院生物物理所),这表明国产化设备正在显微成像赛道不断发力,相信其能够更好地结合国内科研用户的应用需求,不断突破瓶颈,落地于细胞平台,提升平台的技术实力。作者简介: 蔡文娟 博士,高级工程师,中国科学院分子植物科学卓越创新中心(植物生理生态研究所)细胞结构分析技术平台主管。2012年中国科学院上海生科院植生所获博士学位,2012-2017年中科院上海生科院植生所担任助理研究员, 2017-2020在奥林巴斯中国有限公司担任应用工程师,2020年12月加入中科院分子植物科学卓越创新中心,担任细胞结构分析技术平台主管,主要负责所级中心细胞结构分析技术平台的管理维护和运行,承担院级功能开发研制项目,承担和参与多项国自然基金等。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制