当前位置: 仪器信息网 > 行业主题 > >

微反色谱催化剂评价装置

仪器信息网微反色谱催化剂评价装置专题为您提供2024年最新微反色谱催化剂评价装置价格报价、厂家品牌的相关信息, 包括微反色谱催化剂评价装置参数、型号等,不管是国产,还是进口品牌的微反色谱催化剂评价装置您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微反色谱催化剂评价装置相关的耗材配件、试剂标物,还有微反色谱催化剂评价装置相关的最新资讯、资料,以及微反色谱催化剂评价装置相关的解决方案。

微反色谱催化剂评价装置相关的资讯

  • 实践与创新结合,催化剂评价实验装置助力学生实现突破
    在化工领域的学习和实践中,催化剂评价实验装置是不可或缺的重要工具。它不仅能帮助学生增加实际操作经验,还能深入了解催化剂的性能和反应条件对反应产物的影响。我们的催化剂评价实验装置,具备先进的功能和设计,为学生们提供了一个开放性、灵活性和安全性兼备的实践平台。 作为催化剂评价实验装置的核心部分,固定床管式反应器是模拟真实工业反应条件的理想选择。它可以根据不同的反应需求进行规格定制,使学生们能够亲身体验到实际工业生产中的复杂环境。同时,反应器的样品加热炉设计方便灵活,可以轻松更换不同的反应器,为学生提供了更多实验设计和开发的机会。 为了确保操作安全和温度控制的准确性,我们的实验装置配备了超温超压报警系统和高精度的程序控温技术。学生可以放心进行实验操作,并深入了解温度对催化反应的重要性。此外,实验装置的管式反应器设计合理,可装填不同种类的催化剂,帮助学生们理解各类催化剂对反应的影响,培养他们的实验设计和催化剂选择的能力。 除了基本实验功能外,我们的实验装置还配备了一些创新功能,以更好地帮助学生进行实践教学。通过扫描装置二维码,学生可以观看实验装置的动画演示,动画内容包括催化剂评价实验装置及模拟流体在预热器及反应器内的流动形态。配备的全流程语音讲解可以深入解读实验原理和操作步骤,从而提高学生对催化反应过程的理解。此外,动画截图展示了设备不同角度含播放进度条的截图,让学生更加直观地了解实验装置的操作过程。 为了提高教学效果和学生的学习动力,我们的装置配备了配套软件系统。该系统可进行网上题库建立、试卷制作和考试成绩统计。教师可以根据需要建立题库,自主选择题型、权重和分值,并轻松生成试卷。考试成绩能够自动统计,大大减轻了教师的工作负担,同时也为学生们提供了更好的学习反馈。 我们的实验装置采用工业一体机进行控制和数据显示,让学生提前接触工业控制相关知识。这有助于学生们更好地理解和掌握现代化工工艺控制技术。此外,我们还配备了实验辅助系统,提供操作截图和分步式操作视频指导学习。学生们可以通过装置自带的操作终端观看分步式操作视频,同时还可以通过手机端APP随时随地学习实验指导视频,进一步提高学习效果。 催化剂评价实验装置的应用不仅局限于实习实践教学,它在化工领域的研究和实际应用中也发挥着重要作用。实践中获得的经验和数据可以为催化剂开发、催化反应工艺优化等方面提供有力支撑。通过我们的实验装置,学生们不仅能够提升实践能力,还能为未来的职业发展打下坚实的基础。 总之,我们的催化剂评价实验装置通过先进的功能和创新的设计,为学生们提供了一个全面、灵活和安全的实践平台。它不仅满足了学生的知识点要求,还能帮助他们在实习实践中获得真实而深入的体验。我们相信,通过实践和探索,学生们将能够充分发挥自己的潜力,为化工领域的发展贡献自己的力量。
  • 国产仪器出海!催化剂评价装置技术交流会
    8月22日下午,由仪器信息网卓越用户服务部组织的线上仪器选型技术交流会顺利召开。本次会议由俄罗斯某公司委托仪器信息网承办。通过前期对接,卓越用户服务团队了解到,该公司需要国产高通量催化剂评价装置,用于聚烯烃,但目前对国产品牌不太熟悉,基于此,卓越用户服务团队根据用户需求快速匹配了3家厂商与买家单位展开线上深入沟通。会上,厂商就仪器技术、应用、合作的典型用户单位给买家进行了介绍。讲解后,用户就技术支持、配套服务等问题与厂商进行了沟通。会议结束后,买家单位杨总表示,本次交流会不仅让他们对目前市场上的这些优秀国产品牌有了了解,更为他们提供了直接和厂商沟通的机会,国产仪器大有可为!仪器选型技术交流会是仪采通买家定制化服务之一,旨在根据买家真实的采购需求,精准推荐优质供应商;通过线上或线下会议的形式,为供需双方搭建集中交流平台,实现仪器采购降本增效。仪器选型技术交流会扫码免费报名仪器选型技术交流会
  • 欧世盛发布欧世盛EMC-3 双通道全自动催化剂 评价装置新品
    EMC-3 双通道全自动催化剂评价装置适用于催化剂研发与筛选阶段反应,可为您节省大量时间、人力和物力。该装置以微反应技术为核心,全自动流程控制为基础,保障气液固反应效率。这款全自动、紧凑型、具有创新控制技术的系统能够提供催化剂测试所需要的各种配置与选项。通过一套交互式软件控制系统进行一系列实验,实时获取高精度、高重现性的结果。EMC-3 双通道全自动催化剂 评价装置特点:关键技术:基于清华大学微反应器技术的气液混合器,能够控制气泡达到微米级,气液混合效率更高,传质速度是普通300倍,反应效果更好。双通道同时评价:日平均评价10-20种催化剂配方,同时根据用户需求扩展4、6、8通道同时评价。交互式系统管理软件:多任务管理模式,可视化操作界面,全流程控制,数据参数可追溯,一套软件可实现多台评价装置同时运行。反应参数更改:可通过触摸屏快速更改气液流速、反应压力、温度。一机两用:催化剂筛选及催化剂寿命评价,筛选速度快,效率高。系统平衡时间:数分钟,死体积小,不易反混,副产物少。重复性:重复性好。体积小:可将仪器放入通风橱内,节省实验室空间。输送粘性反应物或纳米颗粒悬浊液:加装双注射高压恒流输液泵,适用于粘性反应物或纳米颗粒悬浊液输送。系统压力调节器:全自动背压阀。全自动气液分离器,分离罐体积5mL。预留100位样品自动采样接口,可设置采样间隔时间,自动完成样品采样。预留在线红外、在线紫外、在线液相、在线气相接口,可根据应用需求,在线实时检测评价结果。技术参数:型 号EMC-3反应单元材 质316L反应器通道数双通道(标配)反应压力≤10Mpa反应温度室温~500℃预热器温度室温~500℃液路伴热温度(选装)室温~200℃供液单元液路数量2路(可根据应用需要扩增)液体流速0.01~3ml/min液体精度±1% F.S.供气单元气路数量3路(可根据应用需要扩增)气体流速5~100sccm气体精度±1% F.S.气液分离单元气液分离器体积5mL出液滞后体积1mL检测液体体积±0.1mL创新点:基于清华大学微反应器技术;体积小可放置通风橱,节省实验空间;系统平衡时间数分钟,死体积小,不易反混,副产物少;双通道同时评价; 欧世盛EMC-3 双通道全自动催化剂 评价装置
  • 色谱法化学吸附仪在催化剂行业中的应用
    摘自石油化工科学研究院《色谱法多功能催化研究装置》 在以往工作的基础上,提出了用气象色谱(GC)对催化反应、化学吸附和气体扩散进行联合研究的设计,建立了相应的装置,并拟投入定型化仪器生产。根据要求,可以使用脉冲法、连续流动法、迎头法,以及程序升温脱附技术,在一套设备上逐个测定催化剂的反应速度、金属分散性或其它活性中心、表面酸碱度和质量传递性能等,以便参照催化全过程的多种原位数据,有效地改进催化剂的活性、选择性及寿命。一、序言 在多相催化中,由于反应体系的复杂性,使得再解释催化活性及其机理上遇到了困难,因而妨碍了对特定化学过程最佳催化剂的选择。在近代,虽然有着各种能谱,光谱,磁学方法,场发射技术等应用于催化精细结构的研究,但由于各自在仪器和理论方面的限制,它们存在以下主要缺点:1、由于价格昂贵,不是所有的研究者都能得到所希望的仪器设备;2、由于催化材料的多样性,不是每种仪器都能获得所希望的数据;3、多数物理方法在“非原位“条件下所得到的数据,很难与催化行为直接关联。 近十多年来,随着色谱理论和技术的日臻成熟,并且由于它没有以上缺点和具有简便、快速、定量准确等优点,因而在催化研究中得到了广泛的应用。则是在接近于反应的条件下,研究固体催化剂的大多数表面化学性质,并在同时测定他们的催化性能,以便关联这些数据,加深对某特定过程催化作用本质的了解,并控制它的最佳催化剂的选择。为此,在综合以前工作的基础上,笔者提出了利用气相色谱技术,对催化行为进行联合研究的设计,并建立了可以作为定型化仪器的示范装置。现将该方法的基本原理和操作要点介绍如下。二、在催化研究中的应用GC技术通常按两种方式用在催化研究中,一种是将催化剂直接填充在色谱柱中,另一种是附加一个微型反应器与GC。用此可以测定物理表面积,传递参数,化学吸附和表面行为,反应速度等催化过程所需要的几乎全部数据。由于使用物理吸附法进行总表面积和孔分布的测定熟为人知,因而将不予涉及。在此,仅介绍笔者及其同事曾经进行和较感兴趣的几个方面。应用GC技术研制的程序升温化学吸附仪PCA-1000系列可进行以下催化剂性能分析:1. 催化剂活性表面积或金属分散性 催化剂的活性表面积仅占物理总表面积的一小部分。这一数据对于考虑催化反应的结构敏感性行为和计算转换数是不必可少的。通常,它也可以用在催化剂上的活性中心数目来表示。并且,通过用用脉冲色谱技术测定不可逆化学吸附,能够获得这一结果。金属和负载的金属催化剂,是研究的最多的对象。我们曾对重整过程中的各种催化剂和双金属催化剂进行研究。吸附质可以使用氢气、氧气、一氧化碳等。最优越的是化学吸附氧的氢脉冲滴定法。吸附体积的测量,按催化剂上消耗的吸附质数量来计算2. 程序升温脱附(TPD)技术 当吸附的质点被提供的热能活化,以至能够克服为了它的逸出所需越过的势垒时,便产生脱附。由于脱附速度随着温度的升高而指数地增加,同时,又因覆盖度的减小而减小,因此,正比于脱附物质浓度的信号,即脱附速度曲线呈TPD谱。 我们曾用氢气的TPD法,对国内外工业和实验室重整催化剂,发现在以Pt为主要组分,以氧化铝为载体的单、多金属催化剂上,存在着两类主要的活性中心。其低能中心是Pt的某种结构所特有的,它主要与加氢-脱氢反应活性有关;而第二或第三组元的引入,则只改变了高能中心的结构特征,它主要与异构化和环化反应有关。两类中心的相对数量和谱图的形状,决定着各基元反应的选择性;而催化剂的稳定性,则可由谱图的值估价。由此向我们提供了改进催化剂活性、选择性,以及使用寿命的方向。3. 固体材料表面酸碱性能的研究 在多相酸碱催化或双功能催化反应中,催化剂或者在体表面的酸碱度、酸碱中心类型,以及强度,对其活性、选择性、甚至寿命,都有着十分重要的作用。田部浩三曾系统的介绍了这一催化现象和对其进行实验测定的各种方法。特别是应用GC技术的气相酸碱物质的化学吸附法,在快速、准确、简便等方面,具有明显的优越性。 例如,当气体碱在酸性中心上吸附时,与强酸的结合将较在弱酸中心上更稳定,因此,随着温度的上升,吸附在后者上的碱性物质将优先的因热能激发而逸出。于是,在各种温度下逸出的吸附碱的份数,能够作为酸强度的量度;而从气相中所吸附的碱量,则作为表面酸度的量度;如果选择适当的吸附质,也有可能对表面Bronsted酸和 Lewis酸中心加以区分。4. 微型催化反应器技术 将微型催化反应器与GC相结合,提供了一个节省催化反应性能、动力学参数。特别是研究起始速度。中毒效应、催化剂失活等缓慢现象的手段。而且,它也容许方便地获得有关反应机律的情报。 笔者所给出的这种实验设计,可以按两种方式操作:一种是所谓的尾气技术,它与一般的连续流动法没有什么区别;一种是脉冲技术,它更能体现出GC法的优点。特别适合于在各种条件之下快速筛选和评价催化剂的情形。结合选择加氢催化剂的研制,我们曾有效地使用了环己烯、噻吩、异戊二烯模型化合物的微型脉冲催化反应研究法。考察了在许多催化剂上的活性、选择性,以及在某些工业催化剂上的吸附竞争性、反应机理,并计算了主要过程的反应活化能。在本文报道的装置上,还用类似方法研究了环戊二烯在各种类型催化剂上的选择加氢行为。 在非稳态脉冲条件下反应动力学的理论研究指出,只有在一级反应的情形中,或者在脉冲宽度远大于床层高度的条件之下,才能得到与连续流动法反应一致的结果。因此在进行动力学测量时,仔细的把握这一条件是十分重要的。5. 催化剂有效扩散系数的测定 质量传递作用,即扩散效应在使用多孔固体催化剂的工业过程中,对于产品的生产率有着巨大的影响。因此关于催化剂有效扩散性的测定是十分重要的。利用我们给出的装置,还可以按照另外一种途径进行这方面的研究。方法的基本点是在各种流速上,用测定非化学作用气体脉冲加宽的办法,来计算有效扩散系数。
  • 安徽大学:研制催化剂快速筛选装置填补国内市场空白
    只需一个高通量催化剂快速筛选装置,以前评价1个样品的时间,现在能够评价100个以上。近期,安徽大学化学化工学院魏宇学、孙松团队研制的催化剂快速筛选装置完成工程机样机迭代,填补了国内催化剂性能快速评价仪器领域市场空白,助力催化、导热、热管理材料研发。传统的材料研发模式像“钓鱼”,依赖科研人员成千上万次的反复试验或偶然间的“灵光一现”。由于化学的复杂性以及不同成分组合的可能性增多,这种试错模式研发周期较长,无法满足日新月异的科研需求和市场需求。而制约其效率的重要因素就是高端科学仪器。早些年,很多科研人员就想改变材料研发模式,把原来的“钓鱼”进化为大片撒网的“捞鱼”,可是一直未能研发出合适的“捞网”。目前,国内外在高通量评价催化剂性能方面的仪器装备都比较少,已推向市场的设备通道数较少,远不能满足材料研发效率亟需提升的需求。2005年,该团队开始进行并行合成与高通量筛选装置的技术积累,2018年,将相关技术与催化材料研发相结合,2020—2021年,研制出用于催化材料的并行合成与高通量筛选设备,可以实现一次合成100个样品,并快速评价它们的性能。近期,在学校的大力支持下,团队进行科技成果转化,完成工程机样机迭代,推向市场,填补了国内催化剂性能快速评价仪器领域的市场空白。“这个高通量催化剂快速筛选装置,不仅加速新材料的开发、现有材料的优化,降低研发成本,还能为催化材料数据库提供基础实验数据,为下一代材料筛选奠定基础。”魏宇学介绍,这些技术及设备可以广泛应用于催化剂、导热、磁性等多个材料研发领域,满足客户在材料筛选与应用、材料研发全流程高通量设计方案及装备定制、数据库建立等方面的需求。
  • 麦克仪器提供全套催化剂表征仪器加速催化剂开发
    Loyola大学研究人员考察麦克仪器的气体吸附仪和催化剂评价装置。 材料表征技术全球领导者麦克仪器(micromeritics),扩展了其用于多相催化剂测试的仪器组合,因此客户现在可以很容易地选择多个高效协同工作的系统来加速催化剂开发。麦克仪器的研究级气体吸附仪ASAP2020和全自动实验室催化剂评价装置Microactivity Effi,为目前流行且强大的组合。ASAP2020用于定量活性催化剂和载体的主要物性,Effi可用于相关条件过程的催化剂评价,来自Universidad Loyola (Seville, Spain)的Dr Manuel Antonio Díaz Pérez是使用这一双仪器解决方案进行高效催化剂研究的最新客户之一。 “当谈到建立我们的新实验室时,我毫不犹豫地直接去麦克仪器公司复制了一套在以前的工作中证明对我有价值的测试设备,” Díaz Pérez博士 表示,“EFFI是非常有效和高度可靠的。硬件稳定,软件直观,如果您需要,更换部件非常容易。我对ASAP 2020的体验主要是为了物理吸附来研究表面积和孔隙率,这是任何多相催化剂都需要的性能表征。展望未来,我希望投资于Micromeritics的更多设备,以进一步增强我们的研究能力。他们提供的一系列设备可得到丰富的相关和有用的数据,可加快催化剂的开发。” Díaz Pérez博士在University of Loyola工程系内建立一个新的实验室,以开发解决特定环境问题的新材料。研究课题包括将生物燃料转化为大宗化学构件的催化剂和二氧化碳的吸附剂。ASAP2020气体吸附仪为物理吸附加化学吸附配置,采用体积法分析催化剂的表面积,孔容和孔径分布,这些参数定义了反应物和产品进出活性催化剂位点的难易程度,帮助研究者在分子级别优化反应环境。Effi催化剂评价装置可用于研究催化剂活性、选择性、产率和典型条件下的失活,可得到动力学数据和合适的催化剂再生条件。 “高质量、可靠的分析设备是一项值得投资的项目,” Díaz Pérez博士表示 “这对实验室的日常运行和生产力有很大影响。麦克仪器的产品非常好用,该公司在具体分析和应用方面提供快速有效的帮助。我相信我们购买的新仪器将对我们正在进行的研究做出重要贡献。” Micromeritics Microactivity Effi 催化剂评价装置 Micromeritics ASAP 2020 Plus 气体吸附仪关于麦克仪器麦克仪器公司是提供材料表征解决方案的全球领先厂商,在密度、比表面积及孔隙度、粒度及粒形、粉体表征、催化剂表征及工艺开发等五个核心领域拥有一流的仪器和应用技术。麦克仪器公司成立于1962年,总部位于美国佐治亚州诺克罗斯,在全球拥有400多名员工。同时具备丰富的科学知识库和一流内部生产制造, 麦克仪器公司产品覆盖了石油加工、石化产品和催化剂、食品和制药等多个行业,以及为下一代材料例如石墨烯、MOF材料、纳米催化剂和沸石等提供最前沿的表征技术。在Particulate Systems旗下,麦克仪器公司发现并商业化独特和创新的材料表征技术,对核心产品线进行补充。商业测试实验室–Particle Testing Authority (PTA)实验室可提供表征分析测试服务。战略收购富瑞曼科技有限公司(Freeman Technology Ltd)和PID公司(PID Eng & Tech),也反映公司一直致力于在粉体和催化等工业关键领域提供优化、集成的解决方案。仪器咨询:400-860-5168转0677
  • 第二届催化剂表征与评价主题网络研讨会再度来袭 强大专家阵容先睹为快
    催化剂在全球各行各业广泛使用,未来无论在催化剂的科学理论研究、清洁能源的开发与利用,环境保护与提高经济效益以及人类的生存环境的治理与保护都有极大的发展前景。简言之,人类的生存发展,吃穿住行离不开催化剂及其发展。催化剂广泛应用于石油化工、能源、环境等多个当前最热门、最重要的领域,从国家工业生产到日常生活的节能环保,催化都在无形中的发挥着“四两拨千斤”的重要作用。催化剂的表征与评价对于催化剂的设计和性能调控起到重要的媒介作用,因此对于催化剂的研究有着至关重要的意义。由仪器信息网联合面向工业催化领域创新成果产业化的公共服务平台(2020年工信部批建)共同主办的第二届催化剂表征与评价主题网络研讨会将于今年6月16日举办。本次会议邀请到来自中国科学院大连化学物理研究所、浙江大学、天津大学、北京化工大学、华东理工大学、中国科学院山西煤炭化学研究所等多位国内催化领域的知名专家学者,共同分享催化领域的研究成果,促进催化领域研究人员间的互动交流。本次会议同时也得到知名科学仪器厂商——东京理化的大力支持。东京理化器械株式会社报告嘉宾简介(以报告时间为序):华东理工大学教授 戴升戴升,博士,华东理工大学教授,博导。2009年本科毕业于清华大学, 2014年于清华大学获得博士学位,师从我国著名电子显微学专家朱静院士。2014年至2019年,先后在美国密歇根大学与加州大学尔湾分校进行博士后研究,合作导师为Xiaoqing Pan教授。2019年,全职回国加入华东理工大学,担任电镜中心负责人、课题组组长。 主要研究方向为催化剂原位电镜表征方法的开发与应用研究。运用先进的原位电子显微学技术,于原子尺度探究催化剂在真实催化反应条件下的动态演化行为,从而辨识其活性位点,建立催化剂的构效关系。近五年内,在Nature、Nat. Mater.、Nat. Catal. 等期刊发表论文50余篇;其中,以第一作者与通讯作者身份发表论文20余篇,包括Nat. Mater.、Nat. Commun.、J. Am. Chem. Soc、Nano Lett.、 ACS Catal.等。入选国家高层次人才引进计划、上海市高校特聘教授等项目资助。浙江大学研究员 姚思宇姚思宇,博士毕业于北京大学化学院物化专业。2015-19年在美国布鲁克海文国家实验室开展博士后研究工作。19年9月入职浙江大学化工学院,任百人计划研究员。获国家海外高层次人次引进计划青年项目、浙江省杰出青年基金项目资助。姚思宇博士致力于研究能源环境相关的小分子活化转化催化剂的开发,Mo 基催化剂体相、表面结构调控及贵金属替代催化剂的设计策略。具有多年同步辐射光源研究经历,对应用原位表征手段探究微纳尺度催化剂的构效关系和催化材料合成调控机制等基础问题具有深入理解。目前共发表SCI论文 85篇。以第一作者、共同第一作者或通讯作者在 Science, Nature Nanotechnology. JACS等学术期刊发表论文十余篇,他引4000余次,H-index 36。东京理化器械株式会社应用工程师 王超王超,硕士,毕业于中国日化所。现任东京理化器械株式会社产品在中国市场的应用工程师,主要负责EYELA实验室前处理设备的培训及应用推广。中国科学院大连化学物理研究所研究员 侯广进侯广进研究员于2007年在中国科学院武汉物理与数学研究所获得理学博士学位。2007至2011年先后在德国马普高分子研究所和美国特拉华大学从事博士后研究工作;2011年被特拉华大学聘为二级副研究员;2012年晋升为磁共振谱学研究员。2016年入选中科院大连化学物理研究所“百人计划”,2017年入选国家青年海外高层次人才引进计划,入职于中科院大连化学物理研究所催化基础国家重点实验室,聘为研究员、任固体核磁共振与催化化学研究组组长。侯广进研究员长期从事固体核磁共振方法学的发展和多种材料体系结构及动力学的应用研究,截止目前已在Science, Proc. Natl. Acad. Sci., J. Am. Chem. Soc., Angrew. Chem. Int. Ed., Adv. Energy. Mater., Nat. Commun., Acc. Chem. Res., Environ. Sci. Technol.等学术期刊上发表论文80余篇。侯广进研究员目前主要从事固体核磁共振波谱学与催化化学相关的研究工作,发展高分辨固体NMR方法学,并应用于实际固体材料体系,包括催化能源材料、高分子材料及生物材料等,在原子和分子水平上探测材料的微观结构和动力学特征,解决与实际研究体系相关的基础科学问题。中国科学院大连化学物理研究所研究员 刘健刘健,博士,中国科学院大连化学物理研究所研究员,博士生导师。长期致力于纳米多孔材料的设计合成及在能源、催化相关领域的基础应用研究,在催化纳米功能材料的设计合成与应用,及纳米反应器构筑等方面取得了一系列重要的成果。迄今在包括 Angew. Chem. Int. Ed., Adv. Mater., JACS, Mater. Today, Matter, Nature Commun., Nature Mater., NSR等刊物发表正式论文220余篇。所发表论文已被 SCI 引用超过 17000余次,H 因子为 59,2018到2020年连续三年入选科睿唯安高引作者。受邀为CRC Press编写 “Mesoporous Materials for Energy Storage and Conversion” 专著一本。任期刊“Materials Today Sustainability” 主编(Editor-in-Chief)。曾获得 “第 14 届国际催化大会青年科学家奖”(2008),“UQ Foundation Research Excellence Award”(澳大利亚昆士兰大学基础研究最高奖,2011),英国皇家化学会旗下杂志Journal of Materials Chemistry A 2017杰出研究者等多项奖励。并于2011年获得澳大利亚基金委博士后特别研究员资助 (AustralianPostdoctoral Fellowship),2013年入选日本学术振兴会特邀研究员 (JSPS Invitation Fellow),2016年获大连化学物理研究所“百人计划”支持。2017年入选国家青年海外高层次人才引进计划,2018年入选辽宁省“兴辽英才计划”青年拔尖人才,2020年获得辽宁省自然科学基金优秀青年基金。中国科学院山西煤炭化学研究所研究员 吕宝亮吕宝亮,现任中国科学院山西煤炭化学研究所研究员,课题组长,中国科学院青年创新促进会会员,山西省“三晋英才”拔尖骨干人才,太原市高端创新型人才,主要研究方向为纳米催化材料的结构设计、合成及应用研究。先后主持研究了包括国家自然科学基金、山西省优秀青年基金在内的20余项国家及省部级科研项目。在ACS Catalysis、 Journal of Catalysis、Advanced Functional Materials等期刊上发表论文80余篇,曾获山西省自然科学一等奖(排名1/4)、中国颗粒学会自然科学二等奖(排名1/6)等奖项,应邀担任40余个国际学术期刊审稿人、国家自然科学基金函评专家、国家自然科学奖函评专家。天津大学教授 李新刚天津大学长聘教授、工业催化学科带头人,天津市131创新团队负责人,自2019年对口支援兰州交通大学。入选教育部新世纪人才、天津市中青年科技创新领军人才、天津市131创新人才第一层次。担任J. Chem. Technol. Biotechnol.期刊副主编、Catal. Today和《化工学报》期刊客座编辑、中国化工学会稀土催化与过程专业委员会副主任、中国化学会分子筛专业委员会委员、中国稀土学会催化专业委员会委员、中国能源学会能源与环境专业委员会委员等职务。长期从事低碳分子催化转化及大气污染物催化消除等方面的研究工作,在Nat. Commun.、Chem、EES、CES等期刊发表SCI论文120余篇,荣获国际催化理事会“青年科学家奖”。北京化工大学教授 冯俊婷冯俊婷,教授,博士生导师。2005年和2010年分别毕业于北京化工大学,获理学学士和工学博士学位; 2012年-2013年在英国卡迪夫大学访问,合作教授Graham Hutchings院士。以通讯/第一作者在Chem. Soc. Rev.(1 篇)、 ACS Catal.(6 篇)、 J.Catal.(15 篇)、Appl. Catal. B: Enviorn.(2篇)、Chem. Sci.(1 篇)等发表SCI论文40余篇;作为主要完成人授权专利10件,含美国专利1件。2020年获国家优秀青年科学基金资助。现任北京市多级结构催化材料工程技术研究中心学术秘书,全国工业催化联盟青年委员。会议日程:报告时间报告主题报告专家09:30--10:00常压扫描透射电子显微术在原位催化表征中的应用戴升(华东理工大学 教授)10:00--10:30XAFS 表征方法在催化剂结构解析中的应用姚思宇(浙江大学 研究员)10:30--11:00柱型连续流动反应装置在催化剂评价中的应用王超(东京理化 应用工程师)11:00--11:30固体核磁共振技术及在多相催化研究中的应用侯广进(中国科学院大连化学物理研究所 研究员)13:30--14:00纳米反应器与纳米多孔催化剂的构筑及表征刘健(中国科学院大连化学物理研究所 创新特区组组长 / 研究员)14:00--14:30过渡金属氧化物晶面结构调控及其催化应用吕宝亮(中国科学院山西煤炭化学研究所 研究员)14:30--15:00低碳分子高效转化催化剂的设计、表征和机理研究李新刚(天津大学 催化科学与工程系主任/教授)15:00-15:30界面活性催化剂设计、表征与性能强化机制研究冯俊婷(北京化工大学 教授)注:会议日程可能根据实时情况有所调整,以会议页面展示为准。本次会议报名完全免费,只需扫描下方会议报名二维码或点击下方报名链接,即可进入会议页面,在会议页面可以实时查看会议日程,点击下方“立即报名”按钮,填写报名信息即可报名参会:会议报名二维码报名链接:https://www.instrument.com.cn/webinar/meetings/catalysts2021/
  • 中国工业环保促进会发布《催化裂化及催化重整装置催化剂碳含量的测定元素分析仪法》(征求意见稿)
    各有关单位:由中国工业环保促进会组织起草的《催化裂化及催化重整装置催化剂碳含量的测定元素分析仪法》团体标准已完成征求意见稿编制工作。为使标准具有科学性、先进性和适用性,现公开征求意见,欢迎社会各界对标准内容提出建议和意见。请各单位于2024年1月16日之前将征求意见表(附件1)以电子邮件形式反馈至我会。 联系人: 梁缙联系电话:18601248576邮箱地址:liangjin@ciep.org.cn 中国工业环保促进会2023年12月17日附件1:附件1. CIEP团标征求意见表.doc附件2:标准文本——催化裂化及催化重整装置催化剂碳含量的测定元素分析仪法 讨论稿-第二版.docx附件3:编制说明——催化裂化及催化重整装置催化剂碳含量的测定元素分析仪法 讨论稿-第二版.docx
  • 团簇质谱+光谱 大连化物所为合成氨催化剂提供新思路
    p   近日,中国科学院大连化学物理研究所复合氢化物材料化学研究组研究员陈萍团队和分子反应动力学国家重点实验室团簇光谱与动力学研究组研究员江凌团队合作在合成氨反应机理研究中取得新进展,相关结果发表在《德国应用化学》(Angew. Chem. Int. Ed.,DOI:10.1002/ange.201703864)上,并被选为“热点文章”。 /p p   实现温和条件下氨的高效合成一直是催化领域的重要研究课题。陈萍团队首次报道了具有优异低温活性的LiH-3d过渡金属这一复合催化剂体系,并提出了“氮转移”催化机理:LiH作为第二催化中心,可以转移过渡金属表面的氮物种形成Li2NH/LiNH2,继而加氢放氨。这种双中心的催化机制打破了单一过渡金属上反应物种的活化能垒和吸附能之间的限制关系,使得氨的低温低压合成成为可能(Nature Chemistry,2017,9,64)。而该催化剂上氮的活化和转移转化的微观机制尚有待深入研究。 /p p   在该工作中,大连化物所研究团队以LiH-Fe复合催化剂为研究对象,发现Fe与LiH在界面处存在强的相互作用。利用自主研制的团簇质谱与光谱联用实验装置,并与密度泛函理论计算紧密结合,成功探测到该催化剂表(界)面存在Li-Fe-H三元氢化物物种(如Li4FeH6,Li5FeH6等)。更为有趣的是这些氢化物物种可与N2反应直接转化为含有Fe-(NH2)-Li和LiNH2的物质,实现了N2的解离、向Li的转移和加氢 同时,三元氢化物中与Fe结合带负电荷的氢则转化为与N结合带正电荷的氢,完成了两电子转移。这些基于团簇反应的研究结果暗示了在Fe-LiH表(界)面形成的Li4FeH6很可能是催化活性中心,而N2的活化则有可能从传统Fe基催化剂C7位上的均裂过程转变为“氢助解离”机制。这项研究加深了对LiH-3d过渡金属催化剂上合成氨反应机理的认识,为新型高效合成氨催化剂的设计开发提供了思路。 /p p   上述工作得到国家杰出青年基金、基金委重点项目、教育部能源材料化学协同创新中心(iChEM)和大连化物所甲醇转化与煤代油新技术基础研究专项(DICPDMTO)的资助。 /p
  • 强大的光谱技术用于燃料电池关键催化剂研究
    英国利物浦大学(University of Liverpool)和西班牙阿利坎特大学(University of Alicante)的研究人员发现,领先燃料电池催化剂铂上存在低电位表面物质,这对发展氢燃料电池技术具有重要意义。利物浦大学斯蒂芬森可再生能源研究所(SIRE)的研究人员,利用高灵敏度光谱技术,探讨低配位Pt原子上OH物质(氢氧根负离子)的吸附性。这种光谱技术名为SHINERS,即壳层隔绝纳米粒子增强拉曼光谱技术。研究人员借助SHINERS方法证明,OH会在比以前认为的更多的负电位下被吸附。在交通运输领域,氢燃料电池正在引领下一场革命。在这些装置中,氢气中的储能与空气中的氧发生反应,从而产生电力,为电动汽车提供动力。氢燃料电池使用铂来催化其内部反应,包括氧还原反应和氢氧化反应。虽然市面上已有燃料电池驱动的汽车、客车和卡车,但所使用的铂成本较高,仍是这项技术的主要阻碍之一。在燃料电池中,要减少铂的使用量,甚至用成本更低和更有效的催化剂代替铂,需要从分子层面深入了解铂表面发生的反应。 到目前为止,人们一直认为,在发生反应的电位下,铂的表面比较“干净的”,没有其他物质。然而,这项研究表明,氢氧根负离子在极低的电位下被吸附在铂表面。对于理解氧还原反应的发生方式,以及寻找更有效的催化剂,这将产生重要影响。研究人员利用电化学技术和拉曼光谱,从而获得这些结果。电化学技术可以区分表面发生的不同过程。基于最近的发展,拉曼光谱首次可以检测吸附的氢氧根负离子。SIRE博士研究生Julia Fernández Vidal领导先进的拉曼测量。Julia表示:“通过系统的电化学和光谱研究,可以观察到OH吸附光谱信号。SHINERS是一种非常强大的技术,能够检测电极表面的分子单层。通过实验观察到这一点,非常令人兴奋。”
  • 首届催化剂表征与评价主题网络研讨会取得圆满成功(含回放链接)
    p   由仪器信息网(www.instrument.com.cn) 联合面向工业催化领域创新成果产业化的公共服务平台(2020年工信部批建)主办的首届“催化剂表征与评价”主题网络研讨会于昨日圆满闭幕。此次会议邀请了业内著名催化研究学者、检测分析专家以及业界企业代表,针对催化研究应用及检测分析的前沿热点和关键技术进行探讨,为催化领域的研发应用与检测分析搭建交流平台,促进催化领域科研人员间的互动交流。本次会议报名参会人数近700人,观众反响强烈,会议取得了圆满成功。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202005/uepic/e14a20ed-81cd-4636-ba2b-0df66b586998.jpg" title=" 1125_480.jpg" alt=" 1125_480.jpg" width=" 500" height=" 213" border=" 0" vspace=" 0" style=" max-width: 100% max-height: 100% width: 500px height: 213px " / /p p   大会开始前,中国石油和化学工业联合会科技与装备部处长李文军为大会致辞,随后6位专家奉献了精彩的报告,并为现场提问的观众进行了耐心的解答。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/1d6d6704-bc2c-4795-9ccc-626827c41586.jpg" title=" 李瑛.jpg" alt=" 李瑛.jpg" / /p p style=" text-align: center " strong 浙江工业大学工业催化研究所 李瑛 /strong /p p style=" text-align: center " strong 报告题目:《表征技术在工业催化剂开发中的重要性及工业催化剂宏观物性表征》 /strong /p p   李瑛,浙江工业大学教授。2005年获中国科学院大连化学物理研究所物理化学博士学位,师从国际催化委员会主席李灿院士 2005.08-2007.08荷兰 Eindhoven University of Technology做博士后及访问学者。合作导师:荷兰皇家科学院院士Prof. Rutgers Van Santen。 /p p   目前担任浙江省石油协会理事,浙江省科协九届委员。中国化学工程学报(英文版)编委,近年来在国际知名期刊共发表SCI论文100余篇,已获得授权专利10余项,其中多项技术已经实现产业化推广。承担浙江工业大学研究生核心课程《现代催化剂表征技术》、《催化学科前沿讲座》、本科生《物理化学》上下册等教学。 /p p   主要研究方向:新型多孔碳材料及其复合材料的调控合成及催化应用 纳米金属催化剂的调控合成及工业应用 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/f09f957d-8dd1-41ee-bfa9-5a1af9e669ca.jpg" title=" 陈婧琼.png" alt=" 陈婧琼.png" / /p p style=" text-align: center " strong 安东帕(上海)商贸有限公司 陈婧琼 /strong /p p style=" text-align: center " strong 报告题目:《表征技术在工业催化剂开发中的重要性及工业催化剂宏观物性表征》 /strong /p p   陈婧琼,安东帕(上海)商贸有限公司产品应用专家,毕业于天津科技大学。具有长达8年的粉体材料表征经验。 /p p   2012~2014从事甲醇制烯烃MTO催化剂的制备和表征,包括催化剂原料SAPO-34的合成,催化剂喷雾干燥制备、粒度测试、zeta电位测试,催化剂微反评价,酸性测试,比表面积和孔径分析等 /p p   2014~2015于兰州化学物理研究所羰基合成与氧化国家重点实验室从事光催化产氢研究,以共沉淀法制备了掺杂石墨烯的光催化剂,具有良好的产氢效应 /p p   2015至今,任职于安东帕,从事粉体表征产品气体吸附仪等的技术支持。每年于清华大学、复旦大学、石油大学、大连理工等高校进行气体吸附的技术交流和客户培训。 /p p   从业多年来,以丰富的职业经验和深入浅出、活泼的手法编写和翻译气体吸附相关行业技术文件50多篇,深受行业客户的好评。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/05114d62-4523-4231-b8ec-f70eebdd41c0.jpg" title=" 刘伟.png" alt=" 刘伟.png" / /p p style=" text-align: center " strong 中国科学院大连化学物理研究所 刘伟 /strong /p p style=" text-align: center " strong 报告题目:《电子显微技术在催化剂表征评价中的机会与挑战》 /strong /p p   刘伟,中国科学院大连化学物理研究所电子显微中心副研究员,环境透射电镜负责人,中科院青年创新促进会会员,大连市紧缺技术人才。 /p p   迄今,研制了国内首套专用于环境透射电镜的mbar级负压定量混气自动控制系统 研制“透射电镜可控气氛转移样品台” 解决敏感材料向电镜转移中的氧化相变问题 基于深度学习技术和数字滤波图像识别,实现单原子催化剂的原子精度识别与万级样本空间的分散度统计 /p p   先后主持国家自然科学基金(1项)、近3年围绕催化剂显微结构分析与支撑发表Nature Catalysis(1篇),JACS 2篇、Nano Lett. 2篇、Nature Commn. 2篇、Adv. Mater. 1篇、Adv. Sci. 1篇、Chem. Mater.1篇、ACS Catal. 1篇、Appl. Catal. B 1篇。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/4d44be02-96e2-4296-9333-ea9b61824ba1.jpg" title=" 彭路明.jpg" alt=" 彭路明.jpg" / /p p style=" text-align: center " strong 南京大学 彭路明 /strong /p p style=" text-align: center " strong 报告题目:《氧化物纳米催化材料的固体核磁共振研究进展》 /strong /p p   彭路明,博士,南京大学教授,博士生导师。在Nature Materials,Science Advances,Nature Communications,Journal of the American Chemical Society等杂志发表学术论文100多篇。入选2010年度新世纪优秀人才支持计划。2012年获得国家自然科学基金委优秀青年科学基金项目资助,同年获中国化学会催化专业委员会中国催化新秀奖。2016年起任中国物理学会波谱专业委员会委员和《波谱学杂志》编委,同年获英国皇家学会牛顿高级学者项目资助(Newton Advanced Fellowship)。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/241ab918-ba36-4070-979c-70cc80fbe37d.jpg" title=" 杨贵东.jpg" alt=" 杨贵东.jpg" / /p p style=" text-align: center " strong 西安交通大学 杨贵东 /strong /p p style=" text-align: center " strong 报告题目:《基于催化剂结构修饰的光催化反应过程强化》 /strong /p p   杨贵东,西安交通大学化工学院教授,博士生导师。主要从事光催化反应过程强化及吸附新材料开发的研究工作。在Angewandte Chemie International Edition、ACS Catalysis、Applied Catalysis B: Environmental、Nano Energy等高质量学术期刊发表论文52篇,其中IF& gt 10的论文17篇,累计被 SCI引用3000余次,个人 H 因子27。开发了一系列具有高介孔含量、强疏水、高机械强度的三维分级通孔碳质吸附材料,实现了其工业化生产与应用。入选了教育部“青年长江学者”、“王宽诚青年学者”、“陕西省青年科技新星”,兼任中国化工学会化工过程强化专业委员会青年委员会委员和中国石油和化学工业联合会工业催化联盟青年工作委员会委员等学术职务。担任国际期刊《Frontiers in Environmental Chemistry》副主编、《Chinese Journal of Catalysis》客座编辑、《Chinese Chemical Letter》青年编委和《工业催化》期刊编委。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 200px height: 293px " src=" https://img1.17img.cn/17img/images/202005/uepic/7f1b13b7-19a4-49ea-a36f-9ffc0238539a.jpg" title=" 刘家旭.jpg" alt=" 刘家旭.jpg" width=" 200" height=" 293" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 大连理工大学 刘家旭 /strong /p p style=" text-align: center " strong 报告题目:《双光束FT-IR光谱在多相催化反应中的应用与进展》 /strong /p p   刘家旭,大连理工大学副教授,主要从事分子筛催化在能源、环境及精细化学品清洁制备等领域的应用基础研究和原位分子光谱表征技术开发。作为项目负责人主持国家自然科学基金、中国石油科技创新基金和大连市高层次人才创新创业计划等12项科研项目。研制出具有自主知识产权的双光束原位红外光谱技术,并将其成功应用于多相催化反应的原位表征,已在Catalysis Science & amp Technology, Chemical Engineering Journal, ACS Applied Materials & amp Interfaces等期刊发表30余篇学术论文,申请10余项国内专利,1项国际专利。作为项目负责人开发的精细化学品清洁制备催化剂,低碳烃芳构化催化剂已实现工业应用。 /p p   会后,李文军处长介绍了面向工业催化领域创新成果产业化的公共服务平台现阶段的工作内容,并鼓励催化领域学者间的沟通与交流。会议至此圆满结束。 /p p   此次会议获得了工业催化协会的帮助以及安东帕的大力支持。 /p p    a href=" https://www.instrument.com.cn/netshow/SH101011/" target=" _self" strong 安东帕(上海)商贸有限公司 /strong /a /p p   安东帕(上海)商贸有限公司隶属于奥地利安东帕公司旗下,是其全资子公司,总部位于上海。安东帕公司作为密度、浓度、二氧化碳和流变测量的技术引领者,依托仪器领域的百年经验,为食品饮料、石油石化、制药、高校科研、质检、商检、药检和出入境检验检疫等领域提供量身定制的检测解决方案。安东帕的产品及服务涵盖实验室与过程应用中的密度、浓度和温度测量技术、旋光及折光仪等高精密光学仪器、微波消解、萃取及合成等样品前处理技术、黏度计及流变仪、闪点、馏程分析等石油石化产品测试仪器、以及研究材料特性及表面力学性能的测试仪器等。 /p p    strong 专家视频回放链接: /strong /p p   a href=" https://www.instrument.com.cn/webinar/Video/Video/Collection/10541" target=" _self"  https://www.instrument.com.cn/webinar/Video/Video/Collection/10541 /a /p p br/ /p
  • 科学家研制出含铁燃料电池催化剂
    新材料不含贵金属 成本不再高企   近日,中科院大连化学物理研究所催化基础国家重点实验室博士邓德会、研究员潘秀莲、院士包信和等与洁净能源国家实验室燃料电池研究部合作,首次完成用铁替代燃料电池催化剂中贵金属的实验。相关研究成果日前在线发表于《德国应用化学》。   据了解,利用氢气发电是未来先进可持续能源体系发展的重要目标。为了实现这一目标,作为重要能量转换装置的质子交换膜燃料电池将会发挥不可替代的作用。然而,该类燃料电池需要大量的贵金属,如铂、钯、钌等作为催化剂,进而影响了其大规模应用。因此,大幅降低燃料电池电极材料中的贵金属含量,并最终采用地球上丰富的“廉”金属元素完全替代贵金属已成为该领域的重大机遇和挑战。   为此,该研究团队创造性地将铁基金属纳米粒子限域到具有豆荚状结构的碳纳米管的管腔中,采用该研究组新近研制成功的深紫外光发射电子显微镜,并借助上海光源先进的X射线吸收谱,结合理论计算,首次观察到金属铁的活性d电子通过与组成碳管壁的碳原子相互作用而“穿过”碳管管壁,使富集在碳管外表面的电子直接催化分子氧的还原反应。   该实验和理论研究进一步证实,在这一体系中,包裹纳米金属铁的碳壁阻断了反应气体与铁纳米粒子的直接接触,从原理上避免了反应过程中活性金属铁纳米粒子的深度氧化以及反应气氛中其他有害组分对催化剂的毒害,从而在根本上解决了纳米金属铁作为燃料电池阴极催化剂的稳定性难题。   业内专家认为,该项研究不仅为燃料电池催化剂的贵金属替代研究提供了行之有效的途径,而且,由此发展出来的概念为在苛刻条件下运行的催化剂的设计和制备开辟了新方向。   以上研究得到了国家自然科学基金委和科技部等相关项目的资助。
  • 文献解读丨基于铁基催化剂的CO₂高效转化制备烯烃:Na,Mn催化助剂协同作用探究
    本文由北京大学分析测试中心电子能谱实验室所作,第一作者为徐尧老师,文章发表于Angewandte Chemie International Edition(Angew. Chem. Int. Ed. 2020, 59, 21736–21744)。 多相催化剂活性和选择性的优化常需借助多种组分(或助剂)来实现,充分理解这些不同组分(或助剂)在催化反应中所起到的作用机制,特别是各组分(或助剂)之间的相互影响及协同效应,对于理性设计多相催化剂具有重要的指导意义。CO2的有效转化是实现当下碳中和目标下的主要途径,Na和Mn常被用作助剂添加到铁基催化剂中以改善CO2加氢转化制备烯烃过程的活性和选择性。此前的研究通常将Na、Mn助剂作为独立的变量来考察,而对两者共存时Na、Mn助剂之间的相互作用及其对催化性能的影响尚缺乏系统性认识。 由于催化反应往往在催化剂的表面发生,XPS表征技术的发展为我们研究助剂对催化剂表面结构的影响提供了有利的检测手段。利用岛津X射线光电子能谱仪(XPS),通过设计准原位XPS实验,对不同助剂影响下铁基催化剂表面的元素组成和化学态变化进行了深入研究,明确了助剂在实现CO2高效转化过程中的关键作用,为设计合成高效CO2转化到烯烃催化剂提供了重要依据。 Axis Supra文献解析图一. Na、Mn助剂促进铁基催化剂上CO2高效转化制备烯烃示意图 表一. 不同铁基催化剂催化CO2加氢性能的比较aaReaction conditions: 100 mg catalyst, 340˚C, 2.0 MPa, CO2/H2/Ar = 24/72/4, 20 mL min-1. bThe carbon ratio of olefin to paraffin. cThe approach to equilibrium factor for the RWGS step (Eq. 1). dThe net rate of the RWGS step (i.e. the net CO2 conversion rate Eq. S1 of SI). eThe forward rate of the RWGS step (Eq. 2). fThe rate of the FTS step (Eq. S2 of SI).gCannot be calculated accurately due to the established equilibrium of the RWGS step. 通过动力学分析分别获得RWGS和FTS的本征速率,发现Mn的加入会同时抑制两步反应的活性,而Na则是调控烃类产物分布的关键因素。当两种助剂同时加入时,Na的介入使Fe和Mn的相互作用减弱,使更多的活性位得以暴露,在两种助剂的协同作用下催化剂表现出最高的反应活性和烯烃选择性。 对催化剂的准原位XAFS和XPS表征表明,Mn可以促进Fe5C2相的形成和稳定,而Na的加入减弱了Fe和Mn之间的相互作用,一定程度上抑制了部分Fe5C2相的生成。该影响使得FeMnNa催化剂中Fe5C2活性相的比例相比于FeMn催化剂明显减少,而体系中Fe3O4相的含量则相对增加。正是两种助剂的协同作用使催化剂中Fe5C2和Fe3O4相的比例达到了最优状态,从而使得该催化剂在获得高CO2加氢活性的同时也表现出最优的烯烃选择性。 图二. 反应3 h后催化剂的a)Fe k-边XANES谱图和b)Fe k-边 EXAFS 谱图反应条件:340˚C, 2.0 MPa CO2/H2/Ar = 24/72/4 图三. 反应3 h后催化剂的a)Fe 2p XPS谱图和b)C 1s XPS谱图反应条件:340˚C, 2.0 MPa CO2/H2/Ar = 24/72/4 通过上述实验,可发现对于使用共沉淀方法制备的铁基催化剂,Mn的添加可以有效地促进Fe的分散,但Fe和Mn之间的强相互作用在CO2加氢转化过程中却表现出了负面效应。这种负面效应包括对RWGS反应活性的抑制和烯烃产物生成速率的降低。造成前者的原因是Mn的加入促进了RWGS的活性相Fe3O4向FTS反应活性相Fe5C2的转变,而造成后者的原因则与Mn增加了Fe5C2活性相上FTS反应的空间位阻有关。而第三组分Na的加入不仅提高了CO2的加氢活性和烯烃的选择性,还减弱了Fe与Mn之间的强相互作用,使Mn转变成为对CO2加氢转化有利的助剂。 以上结果表明,对于类似的复杂多相催化体系,在设计催化剂时,关注多种助剂之间的相互作用(而非孤立地关注各助剂对于催化活性位的影响)或许能够为构筑高性能催化剂提供一种更为有效的策略。而应用具备特殊样品杆和配气装置的Axis Supra X射线光电子能谱仪,为以上实验的表征提供有效助力。 文献题目《Highly Selective Olefin Production from CO2 Hydrogenation on Iron Catalysts: A Subtle Synergy between Manganese and Sodium Additives》 使用仪器Axis Supra X射线光电子能谱仪 作者Yao Xua, Peng Zhaia, Yuchen Denga, Jinglin Xiea, Xi Liuc, Shuai Wang*,b and Ding Ma*,a a. Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University. Beijing 100871 (P. R. China) b. State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University. Xiamen 36100 (P. R. China) c. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry Chinese Academy of Sciences P.O. Box 165, Taiyuan, Shanxi 030001 (P. R. China), and Synfuels China. Beijing 100195 (P. R. China)
  • 普林斯顿团队揭示PtSe2基高效ORR催化剂的催化机制!
    【研究背景】PtM(M = S、Se、Te)二硫族化合物是具有潜力的二维材料,因其高空气稳定性、可调带隙和高载流子迁移率而被广泛应用于电子学、光电学和气体传感器等领域。与传统的铂基合金材料相比,这些二硫族化合物具有高比表面积、丰富的活性位点和优越的催化性能等优点。然而,PtM二硫族化合物在作为氧还原反应(ORR)催化剂时,常常由于其半导体特性和有限的表面积受到低估,这带来了在燃料电池应用中的挑战。近日,来自美国普林斯顿大学Wenhan Niu, Bruce E. Koel以及印度理工学院Srimanta Pakhira教授团队携手在PtM二硫族化合物的研究中取得了新进展。该团队设计并制备了缺陷铂二硒化物(DEF-PtSe2),并通过在氧气饱和电解液中进行电化学循环对其进行重构,实现了其作为高效ORR催化剂的潜力。经过42,000个循环后,DEF-PtSe2的比活性和质量活性分别比商业Pt/C电催化剂高出1.3倍和2.6倍。即使经过126,000个循环,DEF-PtSe2的ORR性能仍然保持优越,几乎没有衰减。利用混合密度泛函理论(DFT),研究人员深入分析了DEF-PtSe2的电子特性及其表面的ORR化学路径,揭示了其催化机制。这项研究不仅提供了对DEF-PtSe2作为耐用电催化剂的理解,也为PtM二硫族化合物的电化学特性和先进催化剂的设计提供了重要的见解。通过这种创新的策略,该研究成功获取了DEF-PtSe2在燃料电池应用中的显著性能提升,展示了其在未来电催化领域的广泛应用潜力。【科学亮点】本文通过多种先进的表征手段对PtSe2基催化剂进行了全面的分析和解读,揭示了其优越的催化性能和微观结构变化。首先,采用扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察了PtSe2和DEF-PtSe2的表面形貌和微观结构。这些图像显示,经过电化学激活的DEF-PtSe2表面出现了明显的结构缺陷,表明其表面重新构建的过程与催化性能的提升密切相关。为进一步了解催化剂的电子特性,本文运用了X射线光电子能谱(XPS)技术,对Pt和Se的化学状态进行了分析。XPS结果显示,DEF-PtSe2中Se的缺失导致了Pt的电子密度增加,这为催化反应提供了更强的活性位点。此外,通过核磁共振(NMR)分析,我们深入探讨了DEF-PtSe2中Pt-Se的相互作用,发现其在催化过程中起到了至关重要的作用。针对DEF-PtSe2催化性能提升的现象,本文还通过原位傅里叶变换红外光谱(FTIR)技术监测了反应过程中吸附物的形成和变化,揭示了氧分子在催化反应中的活化机制。这些结果表明,DEF-PtSe2催化剂在ORR过程中能够有效降低能量障碍,提高反应速率。在此基础上,通过电化学测试手段,如循环伏安法(CV)和计时电流法(CC),对DEF-PtSe2的电催化性能进行了系统评估。这些测试结果显示,DEF-PtSe2在经过42,000个循环后,其特定活性(SA)和质量活性(MA)分别达到商业Pt/C催化剂的1.3倍和2.6倍,进一步证实了其在氧还原反应中的卓越表现。总之,经过SEM、TEM、XPS、NMR、FTIR等多种表征手段的综合分析,深入探讨了DEF-PtSe2的催化机理及其优越性能。这些研究不仅揭示了PtSe2基催化剂在ORR中的潜在应用,更为新型催化材料的制备提供了重要的理论依据。最终,这些成果推动了电催化领域的进步,展示了DEF-PtSe2作为燃料电池组件的巨大潜力。【图文解读】图1: 缺陷二硒化铂defective platinum diselenide,DEF-PtSe2的结构和组成。图2:DEF-PtSe2(42,000)的结构和组成。图3:不同电极的电化学性能。图4: DEF-PtSe2(42,000)的形成机制。图5: Pt/C和DEF-PtSe2(42,000)的抗中毒Anti-poisoning试验。图6:电子性质计算和自由能图。【结论展望】本研究揭示了通过在PtSe2催化剂表面创造结构缺陷和进行电化学激活,从而显著提高其在氧还原反应(ORR)中的催化性能的有效策略。特别是,经过42,000个循环激活的缺硒PtSe2(DEF-PtSe2)催化剂在特定活性(SA)和质量活性(MA)方面分别达到了商业Pt/C催化剂的1.3倍和2.6倍,证明了其优越的催化能力。这一发现不仅为催化剂设计提供了新的思路,也为开发高性能燃料电池组件奠定了基础。此外,研究中通过密度泛函理论(DFT)计算揭示了DEF-PtSe2优异性能的微观机制,强调了Pt与PtSe2之间的强相互作用以及Pt顶原子活性位点在ORR中的重要作用。这些理论支持使我们能够深入理解催化过程中的反应路径及其能量学特征,从而指导后续催化剂的优化与开发。总体而言,该研究不仅为PtSe2基催化剂的实际应用提供了重要的实验依据,也为未来材料科学领域的研究方向指明了新的路径,特别是在替代贵金属催化剂方面展现出广阔的前景。文献信息:Niu, W., Pakhira, S., Cheng, G. et al. Reaction-driven restructuring of defective PtSe2 into ultrastable catalyst for the oxygen reduction reaction. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-02020-w
  • 卡博莱特· 盖罗回访中石化催化剂(北京)有限公司
    前言乙烯工业是石油化工业的龙头,国内现有的乙烯装置全部采用催化加氢除乙炔工艺来制备聚合级乙烯。碳二加氢催化剂技术是整个乙烯技术中的关键技术之一。卡博莱特盖罗来到中石化催化剂(北京)有限公司对高温箱式炉RHF1400进行安装并回访生产运行一部,探访卡博莱特盖罗马弗炉在石化催化剂行业的应用。 中国石化催化剂有限公司作为中国石油化工股份有限公司的全资子公司,是全球知名的炼油化工催化剂生产商、供应商、服务商。中国石化催化剂(北京)有限公司是中国石化催化剂有限公司的分公司,坐落在美丽的燕山石化,始建于1993年6月,企业已通过GB/T 19001、GB/T 24001、GB/T 28001和Q/SHS0001.1管理体系的认证。公司于2015年5月获得中关村高新技术企业认定。中石化催化剂(北京)有限公司现有4套主要生产装置。主要产品为:银催化剂、碳二碳三选择性加氢催化剂、聚烯烃助剂、芳烃溶剂。 中国石化催化剂(北京)有限公司生产运行一部于2008年和2012年分别购买了两台卡博莱特的高温箱式炉RHF1400,十年间使用状况良好,设备稳定,并于2018年底再次采购了一台卡博莱特盖罗的高温箱式炉RHF1400,6月17日销售经理叶上游先生与高级维修工程师袁石峰先生来到中石化催化剂(北京)有限公司生产运行一部,对新购买的RHF1400进行安装和培训使用。据了解,生产运行一部主要是生产碳二选择性加氢催化剂的部门,马弗炉是用于催化剂的产品检验。碳二选择加氢催化剂的载体性质非常广,马弗炉烧完之后主要检测四项指标,吸水率,强度,密度和比表面积。崔工对卡博莱特盖罗的产品质量及售后服务安装都给予了高度评价。卡博莱特盖罗的马弗炉控温精度比较高,比其他一些品牌精度高一些,样品烧结的差别比较明显。 2008年及2012年采购的卡博莱特盖罗高温箱式炉RHF1400 生产运行一部的崔工(右)与卡博莱特盖罗销售经理叶上游先生(左)合影 合成各种聚合物的乙烯单体,通常是由烃类蒸汽裂解制得。在裂解气中除了乙烯单体以外常常含有少量的乙炔等杂质,为了提高聚合物的性能,通常需要对裂解气进行精制,以使乙炔含量降至10ppm以下,最好小于5ppm。工业上一般采用催化选择性加氢的方法将乙烯原料中的乙炔除去。近年来,由于乙烯需求量的增加,大多数厂家通过改扩建装置来提高乙烯产量,导致碳二加氢单元的负荷增加,因此对乙炔加氢催化剂性能也提出了更高的要求。拥有自主知识产权的碳二选择加氢催化剂的开发并在工业装置上的成功应用,可大大减轻国内乙烯装置对国外技术的依赖,对保证我国能源与经济安全、提高乙烯工业的竞争地位有重要意义。CarboliteGero(卡博莱特盖罗)是弗尔德集团建立的专业马弗炉品牌,拥有了全系列炉类产品,加热温度从室温至3000°C,容积从3L至14000L,应用领域覆盖实验室至工业,包括各类气氛炉类产品。CarboliteGero有着灵活的方案,能为用户提供个性化的解决方案,如:航空航天领域、工程领域、材料科学、热处理、医药、生物及实验室检测等领域。卡博莱特盖罗以满足用户需求为中心,提供设备选型指导,有专业领域的工程师为全球的用户提供现场安装和调试服务。RHF系列高温箱式炉采用硅碳棒加热,有4种炉腔尺寸,每种都有3种不同最高工作温度可选(1400°C, 1500°C和1600°C)。坚固的结构和高品质加热元件保证加热速率(通常40分钟内升到1400°C)和长久的使用寿命。RHF系列高温箱式炉特点:◆ 最高工作温度1400°C,1500°C或1600°C◆ Carbolite Gero301控制器,单段程序控温,计时器功能◆ 炉腔体积3,8,15或35L◆ 阻尼式上开门(仅3L,8L型号)◆ 硅碳棒加热元件使用寿命长,能够承受间歇操作产生的应力◆ RHF系列3L和8L采用一体成型的炉底板,15L和35L采用碳化◆ 硅炉底板◆ 低蓄热量的保温材料,升温和降温迅速
  • 闵恩泽:催化剂之恩 泽被苍生——2007年度获奖人
    人物介绍:   闵恩泽,1924年2月出生于四川省成都市。中国石油化工催化剂专家。是我国炼油催化应用科学的奠基人,石油化工技术自主创新的先行者,绿色化学的开拓者。   1946年毕业于重庆中央大学化学工程系。1951年获美国俄亥俄州立大学化学工程系博士学位。1955年回国后,先后任石油化工科学研究院题目组长、研究室主任、主任工程师、副总工程师、总工程师、副院长、首席总工程师、学术委员会主任。现任中国石化石油化工科学研究院高级顾问。中国科学院院士、中国工程院院士、第三世界科学院院士、英国皇家化学会会士。   半个世纪前,石油工业部北京石油炼制研究所(中国石化石油化工科学研究院前身,以下简称石科院)办公室只有几间小平房,实验设备只有从大连石油研究所搬来的几件旧设备,试验装置要靠自己制备,没有现成可循的技术资料,放眼周围是一片麦田。   如今这里已发生了翻天覆地的变化——高楼林立,1000多名科研人员,多项石油炼制技术国际领先,被称为“中国石化的重点科技支撑机构”。   这里,就是闵恩泽半个多世纪科学人生的主战场。   结缘石油化工   闵恩泽生于四川成都,自幼受“忠厚传家远,诗书继世长”的家风熏陶,喜爱读书。1942年抗战时期,因高中会考成绩优异,闵恩泽被保送到重庆国立中央大学学习土木建筑 后来又在大二转到化工化学工程系。   1946年,闵恩泽大学毕业后,在上海第一印染厂学习、工作两年。1948年3月,到美国俄亥俄州立大学攻读学位。   1948年暑假,闵恩泽刚去美国没多久,学校组织学生暑假去参观工厂,其中就有肯塔基州阿希兰德炼油厂。当看到用流态化原理建设起来的催化裂化装置,见到那黑褐色的原油馏分在这套装置中神奇地变成清亮透明的汽油时,闵恩泽惊奇且激动不已。在返程的路上,闵恩泽思绪万千:中国不知哪一天能建成这样的装置?   1951年7月闵恩泽获得博士学位,在芝加哥纳尔科公司担任副化学工程师,生活宽松、富裕。然而闵恩泽一心想要回国,用自己的所学报效祖国。为了回到祖国,闵恩泽动用了一切可以动用的公私关系。   经过不懈的努力,1955年10月,闵恩泽夫妻历经辗转,绕道香港,最终回到了阔别8年的祖国首都北京。   当时,中美关系处于紧张时期,周恩来总理《关于知识分子问题的报告》还没发表,这些从美国回来的知识分子多数单位不敢要。闵恩泽联系了三四个地方,没人敢要。中央大学化工系的师兄武宝琛将闵恩泽引荐给石油工业部部长助理徐今强,他拍板要了。徐今强安排闵恩泽参与筹建北京石油炼制研究所,闵恩泽在借来的几间旧平房里开始了后来延续半个世纪的催化剂研究。   强调“集体智慧”   炼油催化应用科学、石油化工技术自主创新和绿色化学的开拓,是闵恩泽的三大贡献领域。闵恩泽配合着我国石化、化工产业前进的步伐,在自己的专业领域内造诣精深,成就非凡,并在每一阶段都有属于自己的标志性贡献。但闵恩泽从不自傲,而是将成绩归于“集体智慧。”   “我只是个上台领奖的代表,这成绩是属于大家的,是几代石油石化人集体智慧的结晶。”总是强调“集体智慧”的闵恩泽很看重团队精神,“我绝大部分时间是唐僧,即要有信心和决心,指导大家去完成任务 我有时候是孙悟空,要去攻关,但是孙悟空本事再大,也有许多困难解决不了,需要找土地神来了解当地情况,还要向玉皇大帝、如来佛、观世音求救。我碰到不懂的东西,给同事、朋友打个电话请教 有时候还是沙和尚,要搞后勤,去筹备资金设备器材,遇到困难,还要向中国石化总部求救”。言谈中不无四川人幽默的特质。   “看完了电视剧《长征》,他跟我们说,做成一件事要不光有信念、有方法,还要有人。”他的博士生兼秘书姚志龙说。   闵恩泽前后带了50多位学生。龙军这样概括闵恩泽的教师角色:“他的贡献,更在于他带出了一支勇于攻关、善于团结、勤谨踏实的科研队伍,为石化研究储备了一个人才库,是我国炼油催化研究的中坚力量。”   著书传经验   从事石油化工研究50多年,闵恩泽从技术革新,到局部有所创新,到原始自主创新,走过了艰辛、成果丰硕的漫长历程。闵恩泽觉得,应该把自己从1984年以来在自主创新道路上的成功经验和失败教训归纳总结出来,以促进年轻一代科技工作者少走弯路,在创新道路上走得快一些。2008年,闵恩泽撰写了创新中国丛书之一《石油化工——从案例探寻自主创新之路》。   中国科学院院士白春礼为这本书作序,他写道:“此书在形式上很新颖,旁征博引,通俗易懂,不仅有生动的讲述,也有形象的比喻,读来令人耳目一新,亲切、自然、宛若春风拂面,细雨润物。总之,不管你是科研工作者、教育工作者,还是其他行业的工作者,相信这本书都会给你教益和启发。”这本书发行后,不久就又再版了一次。   闵恩泽非常重视自主创新,他认为我国自主创新要寄希望于年轻一代。为此,80多岁的闵恩泽多次到高等院校给学生们讲课,一讲就是一个小时以上,非常劳累。但他却时时牢记自己的社会责任。虽然闵恩泽的讲座、报告总是不变的“创新”主题,但针对不同的听众,他都采用不同的内容和讲法,尽量使其能感染、激励听众。   年迈不停步,志在未来   2008年2月,中国石化总工程师曹湘洪院士和中国科学院副院长李静海院士商讨开展合作项目,邀请闵恩泽院士参加,大家从战略性、前瞻性、全局性高度出发,确定在新能源领域开发“微藻生物柴油成套技术”,决定请闵恩泽负责筹备组织。   这是个全新的领域,年迈的闵恩泽又开始了边工作、边学习的科研历程。   2008年5月,闵恩泽组织召开了微藻生物柴油技术研讨会。会后,又考察了中科院各相关院所和中国石化生物柴油中试基地,编制了微藻生物柴油成套技术研发方案。   闵恩泽虽然积极投入微藻生物柴油成套技术的开发,但是他也清醒地认识到所面临的巨大挑战。现有的微藻生物柴油技术产业链长,投资大、成本高、不经济 几万吨/年规模的生产尚未实现 发展微藻生物柴油同时需要二氧化碳、阳光、土地三个资源,具备这三个条件的地区有限。   在闵恩泽主持下,到2011年12月中期检查时,该项目已取得了下列进展:建成了适应不同地区的微藻资源库 掌握了一种新的转基因方法来改造微藻 开发了多种光反应器 研究了稀微藻的回收方法 简化了微藻饼的加工流程。为规划建立万吨/年的户外装置奠定了基础。   2011年4月,在中国石化第三期青年骨干人才提高创新能力研修班上,闵恩泽作了“从原始创新到转变经济增长方式之路的探索”的讲话,重点介绍了中国炼油工业未来发展面临的挑战和对策,鼓励青年一代要努力创新,为承担这一光荣任务而奋斗。   生活中的闵恩泽   少小离家的闵恩泽,至今故乡情结深厚。哪怕到了国家最高科学技术奖的领奖台上,还是一口纯正的四川话。2004年,闵恩泽个人出资10万元捐赠给母校——北京师大成都实验中学,建立“闵恩泽奖学金”,资助优秀的在读学生。“只要回了成都,老先生都要抽出休息时间回母校,和小校友们交流。”姚志龙说。   而在学生眼里,他既是严师,又是关心自己的好老师。   “有一次我女儿钢琴比赛得了奖,老先生知道了还给她订了一个蛋糕。”姚志龙说,“去年12月31日,我带女儿去拜访老先生,老先生还给我女儿唱了3个版本的《上海滩》,9岁的小孩从没见过这么可爱的老头,很高兴,结下了忘年交。他还给我女儿题字,‘震岚小友:诚信宽容、勤奋学习、劳逸结合、加强锻炼’。我女儿回去就把这幅字和与闵先生夫妇的合影装在镜框里,挂在墙上,激励自己。”   闵恩泽唯一的女儿闵之琴在美国。在她看来,爸爸闵恩泽在生活中就是一个快乐、颇具幽默感的老小孩。她常听爸爸说要“管住嘴,迈开腿,保持心态平和”,但闵恩泽又常说自己既管不住嘴,又迈不开腿,但能做到心态平和!闵之琴认为这是他能经几次病魔折磨,在80多岁仍能保持这样健康状态的关键。   闵之琴曾这样描写自己的父亲:   “爸爸不是那类工作时工作、休息时就休息的人。他是工作与休息不分,他的头脑很单纯,满脑想的都是催化剂,因为催化剂对他不仅是工作,也带来快乐,对他也是一种休息。同时,他也成天在想如何去原始创新,有了新想法,他也高兴!   “他有自己的休闲方式。他喜欢听京剧,特别是京剧大师言菊朋唱的“卧龙吊孝”,唱腔的宽窄高低、抑扬顿挫,他听得津津有味。   “他还喜欢看网球,特别是瑞士天王费德勒的比赛,成为他的忠实粉丝。只要有大师赛,如奥网、美网、温布尔顿网球公开赛,他一定坐在电视机旁,从第一轮、第二轮,直到最后决赛。   “爸爸还是一位‘歌唱家’。在石科院的春节联欢会上,他唱《上海滩》,还有自己的特点,广东话与四川话、新老上海滩歌词混唱。他在作报告时,讲到科技上要有成就,就需要各尽所能的团队精神和坚持到底的精神,就像《西游记》主题歌中的‘你挑着担,我牵着马,迎来日出,送走晚霞,踏平坎坷成大道,斗罢艰险又出发’。他会在讲台上带领大家一起唱《西游记》主题歌。   “爸爸由于‘管不住嘴’也成了一位美食家,北京的川菜、粤菜、鲁菜、湘菜,法国、意大利、俄罗斯西餐馆等等的招牌菜,特别是每家好吃价廉的菜是什么,他都清楚!正是这种对生活的每一份乐趣的热爱,对工作的每一点进展的兴奋,爸爸永远像一个年轻人”。   2010年,闵恩泽86岁生日时,闵之琴连续写了两张贺卡,祝老爸爸生日快乐。一封贺卡上这样写:   “时间在快乐地流淌,年纪在轻轻地增长……   “老爸爸的创新本领继续向高峰挺进——生姜还是老的辣!   “老爸爸的粉丝团队犹如雨后春笋般扩大——中石化竟有了个吸引青年学子的老头!   “老爸爸的演唱才华证明了“大器晚成”的道理——怎么还没有制碟的给川音《西游记》主题歌出CD?   “老爸爸的美食体验在日新月异——牙口好还能跟得上繁荣富强的餐饮业!  “任随世上事万变,老爸爸本色不变……   “虽然名利堆在面前,老爸爸还是夜里起来读原始期刊——奠基者的看家本事!   “86岁老爸其实还是那个成都小康家庭走出的孩子:忠厚、善良、勤奋、天真,没新花样啰!   “祝我的老爸爸在无忧无虑中欢度生日,您是我才气的源泉”。   闵恩泽读了这些贺卡后,感叹道:“知我者,女儿也!”   揭秘闵恩泽爱情故事:伉俪院士佳偶天成——记中国科学院院士闵恩泽、陆婉珍夫妇    闵恩泽夫人陆婉珍为丈夫庆祝生日   2008年元月8日上午,北京人民大会堂大礼堂里鲜花吐艳,灯火辉煌,洋溢着喜庆的气氛,国家科技奖励大会在这里召开。在欢快的乐曲声中,中国科学院院士、中国工程院院士、中国石油化工股份有限公司石油化工科学研究院高级顾问、84岁高龄的闵恩泽稳健地走上主席台,庄重地从面带微笑的胡锦涛总书记手中接过“2007年度国家最高科学技术奖”大红证书。   此时,北京西郊石油化工科学研究院宿舍区一幢普通的住宅楼里,同为中国科学院院士的闵恩泽的夫人陆婉珍正全神贯注地收看中央电视台国家科技奖励大会实况,老人的眼里噙着泪花,脸上洋溢着幸福的笑容。   闵恩泽、陆婉珍这对鹤发童颜的伉俪院士,用他俩辉煌的人生谱写了一曲科坛佳偶的爱情乐章。   (一)求学成才 一路相伴   1942年,正是中华民族蒙受日本军国主义侵略奴役的苦难岁月,江山破碎,民不聊生。   这一年秋天,闵恩泽和陆婉珍这两个年方18、素不相识的青年男女,怀着科学救国的共同理想,从不同的地方不约而同地来到位于陪都重庆的中央大学求学。闵恩泽来自素有“天府”之称的成都,而陆家大小姐婉珍则从母亲河长江的入海口上海迢迢千里而来。两人是同一个专业又在同一个班级。   也许是一见钟情,秀丽的江南女子陆婉珍第一眼看到十分英俊的四川小伙子闵恩泽便怦然心动。   闵恩泽的课堂笔记既工整又详细,陆婉珍常以对照笔记为借口与闵恩泽亲密接触。天长日久,闵恩泽也喜欢上这个上海姑娘。每次上完课,便主动把笔记递给陆婉珍,引起同班几位女生对陆婉珍的“妒忌”。   毕业的那天晚上,陆婉珍约闵恩泽一块去上海找工作,这让闵恩泽犯了难。他的父亲要求他回家乡支撑门户,父命难违,一对刚刚开始交往的男女青年只好各奔前程。   两人依依惜别。陆婉珍在家乡上海一家印染厂谋了一份技术员的工作。闵恩泽则回到家乡成都,在一家自来水厂做分析化验工。   没多久,闵恩泽听说当时的中国纺织建设公司要招收一批印染技术人员,经过培训,有出国的机会,这让闵恩泽眼前一亮,他很想到外面的世界去闯一闯。通过考试,闵恩泽得了第一名。于是在1946年10月,闵恩泽到了当时中国最大的印染厂——上海第一印染厂当上了漂染车间的技术员。   也许是命运的安排,这家印染厂正是陆婉珍工作的工厂。两人在上海不期而遇,旧情复炽,不到一个月,闵恩泽和陆婉珍已经是一对热恋中的情人,如影随形,黄埔江边、上海滩头,时常徜徉着他俩甜蜜相偎的身影。   可追求幸福的冲动并没有让他俩沉湎于爱情的缠绵之中。1947年初,陆婉珍作出了一个让家人十分震惊的抉择,这位大家闺秀只身一人带着外婆给她的一枚金戒指作为盘缠赴美求学。一年后,闵恩泽循着陆婉珍的足迹,也赴美留学。   他俩第三次相聚,再度成为同窗。1948年春,闵恩泽在美国俄亥俄州立大学化学工程系攻读研究生,当年就拿到了硕士学位,又继续攻读博士 这时陆婉珍也拿到硕士学位,考入俄亥俄州立大学化学工程系攻读博士。   1950年6月,闵恩泽和陆婉珍双双通过博士论文答辩。一个良辰吉日,在神圣悠扬的婚礼进行曲中,英俊儒雅的闵恩泽挽着身披洁白婚纱的新娘陆婉珍款款步入了婚姻的殿堂。   (二)报效祖国 共赴国难   上世纪50年代初,新中国成立伊始,百废待举,以钱学森为代表的中国留美学者不顾个人安危纷纷踏上返回祖国的旅程。   闵恩泽、陆婉珍夫妇也打点行装,准备启程回国,他们的恩师和朋友都来挽留他们。是啊,论生活条件,在美国,他们什么都有了,可金钱、地位、洋房、汽车对他们来说,只是过眼烟云,他们更执着于报国的情结。虽说祖国还是一穷二白,可那是他们的根。闵恩泽、陆婉珍夫妇去意已定。   1955年底,闵恩泽和陆婉珍绕道香港,辗转回到祖国,当他们踏上祖国大地的那一刻,泪水夺眶而出。   可迎接他们的并没有鲜花和掌声,一切都是那么平淡。回国之初,很多单位都不敢接收从美国回来的人,他们接连吃了几次闭门羹。   后来闵恩泽、陆婉珍来到刚刚组建的石油化工科学研究院,待遇微薄,条件简陋。还没等他们大显身手,接踵而至的就是没完没了的政治运动。莫须有的帽子让他们寒心,凭空飞来的棍子打得他们晕头转向,痛苦万分。   1957年反右斗争,无休止的会议,检举与被检举,攻讦与被攻讦……心直口快的陆婉珍看不下去了,“人家国外在搞研究,你们在这里整天开会,怎么会赶得上人家?”领导正愁从哪里开刀呢,这女博士胆子够大,自己撞到枪口上来了。更何况,还是留过美的,有海外背景,父亲又是旧上海的资本家。在石油化工科学研究院,陆婉珍当然第一个被揪了出来。但她不是党员,够不上“右派”的条件,单位只好教育一番了事。亲友们都为她捏着一把汗:“婉珍哪,典型的幼稚病!”时年,陆婉珍33岁。   “文革”伊始,陆婉珍带着7岁的女儿被下放到湖北潜江干校。种棉花、玉米,还要挑煤和修厕所,女儿偏又营养不良得了肝炎。挑煤不只是力气活,挑着百十斤沉的担子从一条窄窄的舷板上稳稳当当地走下来,可不是那么容易。别说女同志,就是很多男人也干不来。可陆婉珍挺了过来。   一向循规蹈矩、老实本分的闵恩泽在“文革”中也没有逃脱噩运。1969年,姚文元发表了题为《上海机床厂道路——从工人中间培养知识分子》的文章。第二天,闵恩泽就被拉出来批斗了,因为他说过“搞科研还得靠专家学者”的话。   此后,打扫厕所、运煤渣、烧煤、关禁闭、写揭发材料、老实交代“罪行”成了闵恩泽数年中生活的主要内容。这是那个年代科学家们共同的遭遇。   然而,这一切不公正的待遇对于闵恩泽和陆婉珍来说,都无怨无悔。“祖国”二字在他们心目中依然是神圣的、沉甸甸的。他们说,做父母的一时错怪了儿女,而儿女爱父母的心是永远不会变的。共赴国难,义无反顾,这就是当年海外归来的知识分子的心路。   折腾了一阵子,造反派把闵恩泽当成“死老虎”扔在一旁。无人过问,闵恩泽难得“清闲”,利用“闭门思过”的机会,偷偷地回忆石油催化剂的实验过程。   而在干校劳动的陆婉珍则忙里偷闲地复习她的石油分析专业,蛰伏一隅,等待时机,期望有朝一日重新开始她的科研项目。   于是,当他俩被宣布审查结束获得“解放”后,揩干委屈的泪水,又双双扎到实验室中,就像回到久别的情人怀抱里一样幸福。   (三)科研攻关 比翼双飞   早在“文革”前的10年中,闵恩泽和陆婉珍就分别在各自的研究领域内,取得了丰硕的科研成果,与世界水平接近。   上世纪60年代初,苏联背信弃义,在撤走专家的同时,还带走全套炼油催化剂技术资料。没有催化剂,石油就等于废料,无法提炼出航空汽油。闵恩泽临危受命,几十天吃住都在现场,关键时刻与工人们一起钻进高温炙烤的干燥室里查找原因,有时接连二十几个小时不合眼。经过数百次试验,终于研制出我国一向依赖别国的、生产航空汽油所必须的小球硅铝裂化催化剂,而且质量还优于国外同类产品。接着,他又研制出我国炼油工业急需的磷酸迭合催化剂、铂重整催化剂和微球硅铝催化剂。   而陆婉珍也有不菲的成果。在上世纪60年代初,世界上色谱技术刚一露头,陆婉珍便拿出了中国人自己的色谱仪。接着,根据科研生产发展的需要,在分析科技领域里她继续开拓,在石油化工科学研究院逐步建立了光谱、质谱、电子显微镜、差热、发射光谱、电化学、红外光谱、紫外光谱、核磁共振、x-射线衍射光谱、x-射线荧光光谱、原子吸收光谱、色-质联用、电子能谱、激光拉曼等各种化学、物理分析技术和手段,全都达到了当时的世界水平。并且,由于她的努力,科研成果很快在大企业孵化,在石油化工生产建设中发挥着特殊作用。   10年浩劫,惚若隔世,中国石油化工科技与西方列强相比,已经落后了一大截。   1978年,全国科学大会在北京召开。会上,闵恩泽获得了“在我国科学技术工作中做出重大贡献的先进工作者”称号。陆婉珍的科研成果也获得了大会的奖励。年逾花甲的闵恩泽、陆婉珍夫妇倍受鼓舞。   1980年以后,闵恩泽指导开展新催化材料和新化学反应工程的导向性基础研究,其中新催化材料有层柱黏土、非晶态合金、负载杂多酸、纳米分子筛等,新化学反应工程有磁稳定床、悬浮催化蒸馏。在这些研究的基础上,已开发成功己内酰胺磁稳定床加氢、烯烃与苯烷基化的悬浮催化蒸馏等新工艺。近年来,他又进入绿色化学的研究领域,曾任国家自然科学基金委员会“九五”重大基础研究项目“环境友好石油化工催化化学和反应工程”的主持人。他还扩展至开发化纤单体己内酰胺的制造技术,正开发新的工艺,并取得长足进展。   这期间,闵思泽先是担任石油化工科学研究院副院长兼总工程师,后又被任命为石油化工科学研究院首席总工程师。他曾两次当选为全国先进工作者 于1980年当选为中国科学院院士 1994年当选中国工程院院士 同年,他又当选为第三世界科学院院士 还是这一年,中国石化总公司党组做出《广泛开展向闵恩泽同志学习的决定》。于是,在全国石化系统掀起了学习闵恩泽的热潮。1995年,他又荣获了首届“何梁何利”基金科学与技术进步奖。   陆婉珍的科研也是硕果累累。上世纪80年代,随着科研和生产技术的不断发展,对分析测试的要求在样品数量、分析周期、分析项目和数据准确性等方面都有了更高的标准。国际上相关实验室已开始朝网络化管理的方向发展。陆婉珍敏锐地意识到了这一问题,积极呼吁实验室的信息化管理。   陆婉珍是我国实验室信息管理系统(LIMS)学术界公认的领袖人物,LIMS引发了实验室的一场革命,带动了一批产业,也带出了一批人。目前国内几家产品基本是在这一基础上发展起来的,现在很火的ERP管理,也是这一管理思想的延续。   1995年,陆婉珍将工作重心转向了近红外光谱分析的研究,该技术省时、省钱又省人力。   这一技术的广泛应用,是一场分析化学的革命。引导这场革命的,正是陆婉珍。   这期间,陆婉珍一直担任着石油化工科学研究院总工程师。曾当选为全国“三八红旗手”和全国妇联执行委员。1991年,她当选为中国科学院院士。   闵恩泽当之无愧地被中外科技界公认为我国炼油催化应用科学奠基人,陆婉珍也被公认为我国分析技术领域的学术带头人。夫妻俩在石油化工科技领域比翼齐飞,美誉共播。   (四)恩爱体贴 相濡以沫   54个春秋,54个年轮,闵恩泽陆婉珍夫妇走过了银婚,又走过了金婚,如今都是耄耋之年,满头银发见证了二位老人的沧桑人生,也演绎着他俩恩爱的婚姻,他们相濡以沫,一路走来,始终如一。   两位院士看起来精神矍铄,没想到,他们都是曾与病魔做过搏斗的人。闵恩泽数年来动过3次大手术。1964年他患肺癌,被切除部分肺叶,同时摘除了一根肋骨。1989年又患胆囊结石,把胆切除了。最厉害的是1999年春节期间,因胆管堵塞,引起了胰腺炎,生命垂危,又做了一次手术。而陆婉珍多年前曾患肾癌,一侧肾被摘除。   夫妇俩患难与共,相依为命。闵恩泽手术住院期间,陆婉珍日夜守候在病榻前,忙前忙后。陆婉珍病了,闵恩泽也是汤药伺候,无微不至。   两位院士唯一的女儿目前在美国工作,彼此照顾已经成为他们的生活习惯。有一次两位老人一同在石油化工科学院机关二楼开完会后,陆婉珍去洗手间,闵恩泽一直站在楼梯口,等老伴到跟前后,才和她一起相互搀扶着走下楼。那情景让在场的人为之动容。   而平时两位老人在科研之余也沉醉于中西文化交融之中。每当闲暇时,一段京剧余派的须生唱腔,一曲贝多芬的《英雄交响曲》,都会使闵恩泽深深陶醉 而中国女革命家秋瑾的诗篇和法国居里夫人的传记,是陆婉珍自幼至今都痴迷的书。   有时候,他俩会合唱一首美国19世纪的乡间小曲,也会共同朗诵一段《古文观止》中的名篇,陶冶情操,愉悦生活。   他们的家里时常是高朋满座,胜友如云。他们特别喜欢与年轻人交流,从世界杯到奥运会,从亚洲金融危机到伊拉克战争,从当代影视明星到于丹、易中天等百家讲坛学术明星,无所不谈。每到这时,老人和大家你争我辩,笑声朗朗,其乐融融。
  • 北化院BHL催化剂完成首次工业应用试验
    近日,北京化工研究院自主研发的新型BHL催化剂在中科炼化道达尔ADL环管聚乙烯工艺装置成功完成首次工业应用试验,综合性能全面超越进口同类催化剂。道达尔ADL工艺对催化剂性能要求高,此前均使用进口专利商催化剂。北化院针对道达尔ADL工艺,历时多年开发新型高性能钛系催化剂——BHL催化剂。试验过程中,中科炼化和北化院团队紧密合作,催化剂切换顺畅,生产过程平稳,以创纪录的16.5小时将各项产品参数调整合格。相对于进口催化剂,BHL催化剂活性提高10%~20%,氢调性能平稳,共聚性能提升10%以上,制得的聚合物颗粒形态良好、细粉更少,树脂产品达到优级标准。BHL催化剂工业应用试验的成功,标志着北化院研发的催化剂技术在国内淤浆聚乙烯工艺领域实现全覆盖。下一步,北化院将与中科炼化进一步深化产销研用合作,提升树脂产品质量,开发新型树脂产品,助力中科炼化降本增效,实现高质量发展。
  • 把烟囱“搬”进显微镜,浙大制出不会“中毒”的催化剂
    p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 氮氧化合物是最主要的大气污染物之一,如何“减排”至关重要,工业上称之为脱硝。但是,目前广泛的SCR脱硝法存在一处“软肋”:在450-523K的中低温区间,哪怕废气中存在一丁点儿的二氧化硫,都会导致催化剂失效。浙江大学材料科学与工程学院教授王勇和杨杭生研究团队通过原位环境电子显微技术,首次在原子尺度实时观察到了脱硝反应过程中催化剂的动态行为,解码了催化剂中毒的微观机理,在此基础上成功设计制备出一种新型催化剂,它能在低温下持续、稳定、高效地脱硝,达到了准工业级水平。 /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) font-size: 16px " strong span style=" color: rgb(0, 112, 192) font-size: 16px text-indent: 2em " 看——把烟囱“搬”进显微镜 /span /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 氮气是空气的主要成分,在工业上,通常有燃烧的地方就有氮氧化合物产生。这是一类对人类很不友好的气体,可引起光化学烟雾、酸雨、臭氧层破坏等环境问题,也是人类健康的威胁因素,人们一直在想办法去掉它们,保护大气。上世纪八十年代,选择催化还原技术(SCR)开始用于工业现场,对于火电厂等产生的高温废气,它们有着优秀的脱硝能力,但对于钢铁、陶瓷、玻璃等工业过程中产生的中低温尾气,它们却束手无策。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 科学界称催化剂失效的现象为“中毒”。低温工业尾气净化往往先脱硫,再脱硝,在脱硫阶段残余的二氧化硫会严重影响脱硝阶段的成效。催化剂为何中毒?科学家希望通过电子显微镜在原子尺度观察“中毒”现象,帮助它们认识其深层机理。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 研究团队在球差校正透射电镜里构建了一个人工“烟囱”,里面的气压和温度与真实工业线保持一致。“这里模拟了工业线上的脱硝环境,在原子层级实时呈现催化剂的‘中毒’过程。”王勇说。通过实验,科研人员得到了世界上第一张原子分辨级的催化剂中毒照片。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 在催化剂氧化铈晶体的部分表面,我们看到它的晶格结构已经模糊,二氧化硫与催化剂反应形成硫酸盐颗粒,表面覆盖累积,形成许多不均匀的小凸起。“正是这些凸起遮蔽了催化剂与废气的接触,束缚了催化效力的发挥。”王勇说。 /span /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 299px " src=" https://img1.17img.cn/17img/images/201909/uepic/a39f3b22-860e-4d0a-8ed1-fe370db5bcc3.jpg" title=" 在电子显微镜下可以看到,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿”.PNG" alt=" 在电子显微镜下可以看到,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿”.PNG" width=" 450" height=" 299" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " span style=" font-size: 16px " strong 在电子显微镜下可以看到,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿” /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 如何破解中毒难题?科学家在电子显微镜的“烟囱”里,继续探索催化剂“解毒”的过程。他们发现,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿”了,“这是催化剂的‘解毒’的过程。”杨杭生说,“‘消肿’后的催化剂,可以恢复催化能力。”“氨气本来是参与SCR催化反应的气体,通过原位电镜研究,我们意外的发现在合适的实验条件下氧化铈可以实现硫酸盐的沉积与分解的动态平衡,这个信息对我们“解毒”至关重要。”王勇补充说。 /span /p p style=" text-align: center text-indent: 0em " span style=" font-size: 16px " img style=" max-width: 100% max-height: 100% width: 450px height: 393px " src=" https://img1.17img.cn/17img/images/201909/uepic/5b16ca19-0219-41c7-ac0e-99e84cd079d3.jpg" title=" 反应循环的建立确保硫酸盐的沉积与分解达到动态平衡.png" alt=" 反应循环的建立确保硫酸盐的沉积与分解达到动态平衡.png" width=" 450" height=" 393" border=" 0" vspace=" 0" / /span /p p style=" text-align: center text-indent: 0em " strong span style=" font-size: 16px " 反应循环的建立确保硫酸盐的沉积与分解达到动态平衡 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong span style=" text-indent: 2em " 算——“白马”“黑马”最佳配比 /span /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 在脱硝催化剂领域,氧化锰是催化性能优异的“白马”,而氧化铈是表现一般的“黑马”。但是,“白马”容易受到二氧化硫的干扰,一遇到二氧化硫,其性能就直线下降。氧化铈虽然催化效力差氧化锰很远,但它自带的“解毒”本领,让科学家看到了它的潜力。王勇说,氧化铈能让硫酸盐的沉积与转化实现动态的平衡,这是其“解毒”机制的核心。“下一步是希望怎样把两者的优点结合,扬长避短。” /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 根据电子显微镜提供的信息,理论计算科学家通过第一性原理模拟,试图去寻找“白马”与“黑马”的最佳配比方案。这种复合催化剂的思路,该研究团队并不是第一个想到的。但他们发现,常见的混合方法容易在催化剂表面形成硫酸(氢)铵网络结构,导致氮氧化物和氨气分子无法靠近锰离子并与之发生反应,造成催化剂活性下降。 /span /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 334px " src=" https://img1.17img.cn/17img/images/201909/uepic/ebd9855f-f73c-48d5-8d08-f935b9636cba.jpg" title=" 理论计算理解位阻效应.png" alt=" 理论计算理解位阻效应.png" width=" 450" height=" 334" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong span style=" font-size: 16px " 理论计算理解位阻效应 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " “通过原位环境透射技术的观察和第一理论计算,我们得到了一种全新的设计方案。”王勇介绍,这是一种新型的氧化铈、氧化锰复合催化剂,两者以全新的方式混合,形成一定的微观结构。“氧化锰颗粒形成团簇,分布于棒状的氧化铈晶体上,氧化锰团簇的尺寸在1纳米左右。”杨杭生补充道:“这些都是通过精密的理论计算得出的。” /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 16px " 测 /span /strong /span span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 16px " —— /span span style=" text-indent: 2em " 1000小时耐力测试 /span /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 新型的催化剂的“减排”能力究竟如何?需要有接近工业现场的实验验证。研究团队在实验室构建了一个仿真的烟气处理装置,新型催化剂在进行真实场景的考验。 /span /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 193px " src=" https://img1.17img.cn/17img/images/201909/uepic/f0dad4cd-8d6c-4218-9ef4-2826072f4f45.jpg" title=" 持续稳定的抗中毒性能.png" alt=" 持续稳定的抗中毒性能.png" width=" 450" height=" 193" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong span style=" font-size: 16px " 持续稳定的抗中毒性能 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 在“起跑”的最初几个小时,传统的氧化锰催化剂与新型催化剂齐头并进,共同处于催化能力的高位。但不到24小时,氧化锰的催化能力锐减,迅速跌破“黑马”氧化铈的能力线。而新型催化剂则一路“笑到最后”,实验持续进行了1000小时,其能力线一直平稳的处于高位。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " “可以说,这种催化剂达到了准工业级的应用要求。”杨杭生说,这一氧化铈氧化锰的复合催化剂,解决了低温尾气持续高效净化的难题。在此之前,科学界曾尝试用添加“牺牲剂”的方法去消除二氧化硫的干扰,但王勇认为,牺牲剂虽然在短时间内能消除二氧化硫,但需要不断补充添加才能得以实现“抗毒”效果,否则将很快中毒失效,因此应用于工业现场并不现实。“我们的方法是既维持了硫酸盐的沉积与转化的动态平衡,又保持了催化剂的高效催化。” /span /p
  • 你距离一流的催化剂可能只差一个表征
    p   催化在化工、能源、环境、材料、生物、制药、分析等领域被广泛应用。催化研究涵盖的领域更是包括了能源催化、催化材料、催化机理、环境催化、工业催化、电化学催化、化学合成催化、光催化、单原子催化等领域。90%以上的化学化工工程都是催化反应过程,因此,催化剂的表征与评价研究与应用具有重大的意义。 /p p   基于此,仪器信息网(www.instrument.com.cn) 联合面向工业催化领域创新成果产业化的公共服务平台(2020年工信部批建),将于2020年5月12日组织召开 a href=" https://www.instrument.com.cn/webinar/meetings/catalyst/" target=" _self" 首届“催化剂表征与评价”主题网络研讨会 /a ,邀请业内著名催化研究学者、检测分析专家以及业界企业代表,针对催化研究应用及检测分析的前沿热点和关键技术进行探讨,为催化领域的研发应用与检测分析搭建交流平台,促进催化领域科研人员间的互动交流,促进我国催化领域的研究发展。 /p p    strong 会议日程(以报名页面为准): /strong /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 389px " src=" https://img1.17img.cn/17img/images/202004/uepic/2d2b81b9-37c4-4310-b824-24a0dde5bb40.jpg" title=" 会议日程.png" alt=" 会议日程.png" width=" 600" height=" 389" border=" 0" vspace=" 0" / /p p    strong 报告嘉宾简介: /strong /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 200px height: 280px " src=" https://img1.17img.cn/17img/images/202004/uepic/f0ffda9a-a79b-46b2-b962-61852b503735.jpg" title=" 李瑛.jpg" alt=" 李瑛.jpg" width=" 200" height=" 280" border=" 0" vspace=" 0" / /p p style=" text-align: center " 浙江工业大学工业催化研究所 李瑛 /p p   李瑛,浙江工业大学教授,主要研究方向:新型多孔碳材料及其复合材料的调控合成及催化应用 纳米金属催化剂的调控合成及工业应用。2005年获中国科学院大连化学物理研究所物理化学博士学位。师从国际催化委员会主席李灿院士。2005.08-2007.08荷兰 Eindhoven University of Technology做博士后及访问学者。合作导师:荷兰皇家科学院院士Prof. Rutgers Van Santen。2007.10-至今,浙江工业大学参加工作,目前担任浙江省石油协会理事,浙江省科协九届委员。中国化学工程学报(英文版)编委,近年来在国际知名期刊共发表SCI论文100余篇,已获得授权专利10余项,其中多项技术已经实现产业化推广。承担浙江工业大学研究生核心课程《现代催化剂表征技术》、《催化学科前沿讲座》、本科生《物理化学》上下册等教学。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/8eb4aed1-d4cb-4371-87f4-5a95d4f8985f.jpg" title=" 陈婧琼.png" alt=" 陈婧琼.png" / /p p style=" text-align: center " 安东帕(上海)商贸有限公司 陈婧琼 /p p   陈婧琼,安东帕(上海)商贸有限公司产品应用专家,毕业于天津科技大学。具有长达8年的粉体材料表征经验。 /p p   2012~2014从事甲醇制烯烃MTO催化剂的制备和表征,包括催化剂原料SAPO-34的合成,催化剂喷雾干燥制备、粒度测试、zeta电位测试,催化剂微反评价,酸性测试,比表面积和孔径分析等 2014~2015于兰州化学物理研究所羰基合成与氧化国家重点实验室从事光催化产氢研究,以共沉淀法制备了掺杂石墨烯的光催化剂,具有良好的产氢效应 2015至今,任职于安东帕,从事粉体表征产品气体吸附仪等的技术支持。每年于清华大学、复旦大学、石油大学、大连理工等高校进行气体吸附的技术交流和客户培训。 /p p   从业多年来,以丰富的职业经验和深入浅出、活泼的手法编写和翻译气体吸附相关行业技术文件50多篇,深受行业客户的好评。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 300px height: 359px " src=" https://img1.17img.cn/17img/images/202004/uepic/b3624259-0e1f-46c8-96f6-617867a5f51a.jpg" title=" 刘伟.png" alt=" 刘伟.png" width=" 300" height=" 359" border=" 0" vspace=" 0" / /p p style=" text-align: center "   中国科学院大连化学物理研究所 刘伟 /p p   刘伟,中国科学院大连化学物理研究所电子显微中心副研究员,环境透射电镜负责人,中科院青年创新促进会会员,大连市紧缺技术人才,2013年度北京航空航天大学优秀博士论文。2003.07~2012.06 北京航空航天大学应用物理学士,凝聚态物理博士 2012.06~2013.10,四川大学物理系 讲师 2013.11~2017.03,电子科技大学物理系副教授 2011.07~12、2015.08~2016.08,美国密西根大学电子显微分析中心访问学者。 /p p   迄今,研制了国内首套专用于环境透射电镜的mbar级负压定量混气自动控制系统 研制“透射电镜可控气氛转移样品台” 解决敏感材料向电镜转移中的氧化相变问题 基于深度学习技术和数字滤波图像识别,实现单原子催化剂的原子精度识别与万级样本空间的分散度统计 /p p   先后主持国家自然科学基金(1项)、近3年围绕催化剂显微结构分析与支撑发表Nature Catalysis(1篇),JACS 2篇、Nano Lett. 2篇、Nature Commn. 2篇、Adv. Mater. 1篇、Adv. Sci. 1篇、Chem. Mater.1篇、ACS Catal. 1篇、Appl. Catal. B 1篇。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/c2152725-0f04-4b8e-ad99-d0c80dbd4ec5.jpg" title=" 彭路明.jpg" alt=" 彭路明.jpg" / /p p style=" text-align: center "   南京大学 彭路明 /p p   彭路明,博士,教授,博士生导师。1997-2001,南京大学化学化工学院化学系,学士(2001) 2001-2006,美国纽约州立大学石溪分校化学系,博士(2006) 2006-2008,美国斯坦福大学地质和环境科学系,博士后;2008- 至今,南京大学化学化工学院,副教授(2008-2013),研究员(2013-2017),教授(2017-至今)。 /p p   在Nature Materials,Science Advances,Nature Communications,Journal of the American Chemical Society等杂志发表学术论文100多篇。入选2010年度新世纪优秀人才支持计划。2012年获得国家自然科学基金委优秀青年科学基金项目资助,同年获中国化学会催化专业委员会中国催化新秀奖。2016年起任中国物理学会波谱专业委员会委员和《波谱学杂志》编委,同年获英国皇家学会牛顿高级学者项目资助(Newton Advanced Fellowship)。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 200px height: 300px " src=" https://img1.17img.cn/17img/images/202004/uepic/c9d9165c-5824-45a4-84f4-ef47d8320e90.jpg" title=" 杨贵东.jpg" alt=" 杨贵东.jpg" width=" 200" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center " 西安交通大学 杨贵东 /p p style=" text-align: left "   杨贵东,西安交通大学化工学院教授,博士生导师。主要从事光催化反应过程强化及吸附新材料开发的研究工作。在Angewandte Chemie International Edition、ACS Catalysis、Applied Catalysis B: Environmental、Nano Energy等高质量学术期刊发表论文52篇,其中IF& gt 10的论文17篇,累计被 SCI引用3000余次,个人 H 因子27。开发了一系列具有高介孔含量、强疏水、高机械强度的三维分级通孔碳质吸附材料,实现了其工业化生产与应用。入选了教育部“青年长江学者”、“王宽诚青年学者”、“陕西省青年科技新星”,兼任中国化工学会化工过程强化专业委员会青年委员会委员和中国石油和化学工业联合会工业催化联盟青年工作委员会委员等学术职务。担任国际期刊《Frontiers in Environmental Chemistry》副主编、《Chinese Journal of Catalysis》客座编辑、《Chinese Chemical Letter》青年编委和《工业催化》期刊编委。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 200px height: 293px " src=" https://img1.17img.cn/17img/images/202004/uepic/330e9a1d-1016-4fa5-af51-cd6ed2420c2b.jpg" title=" 刘家旭.jpg" alt=" 刘家旭.jpg" width=" 200" height=" 293" border=" 0" vspace=" 0" / /p p style=" text-align: center " 大连理工大学 刘家旭 /p p   刘家旭,大连理工大学副教授,主要从事分子筛催化在能源、环境及精细化学品清洁制备等领域的应用基础研究和原位分子光谱表征技术开发。作为项目负责人主持国家自然科学基金、中国石油科技创新基金和大连市高层次人才创新创业计划等12项科研项目。研制出具有自主知识产权的双光束原位红外光谱技术,并将其成功应用于多相催化反应的原位表征,已在Catalysis Science & amp Technology, Chemical Engineering Journal, ACS Applied Materials & amp Interfaces等期刊发表30余篇学术论文,申请10余项国内专利,1项国际专利。作为项目负责人开发的精细化学品清洁制备催化剂,低碳烃芳构化催化剂已实现工业应用。 /p p    strong 参与方式: /strong /p p   免费报名链接: a href=" https://www.instrument.com.cn/webinar/meetings/catalyst/" target=" _self" & nbsp /a /p p a href=" https://www.instrument.com.cn/webinar/meetings/catalyst/" target=" _self"   https://www.instrument.com.cn/webinar/meetings/catalyst/ /a /p p   或扫描下方二维码报名: /p p style=" text-align: center " a href=" https://www.instrument.com.cn/webinar/meetings/catalyst/" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/7f447697-bd90-47df-8213-b3370e6155a6.jpg" title=" 报名二维码.png" alt=" 报名二维码.png" / /a /p p   扫下方二维码进入催化剂表征与评价交流群: /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/810a8756-4206-4f04-a26c-8134245d0576.jpg" title=" 催化剂表征与评价交流群.jpg" alt=" 催化剂表征与评价交流群.jpg" / /p
  • 大连化物所宽光谱捕光催化剂全分解水制氢研究取得新进展
    p 近日,中国科学院大连化学物理研究所太阳能研究部中科院院士李灿、研究员章福祥等在宽光谱捕光催化剂Z机制全分解水制氢研究中取得新进展。研究结果发现,通过设计和调控BiVO4表面助催化剂Au的担载,以及双助催化剂(Au和CoOx)的选择性负载,可有效促进BiVO4的产氧性能及其与氧化还原电对离子间的电荷传输,并基于此构筑了高效的可见光Z机制全分解水体系,其表观量子效率超过10%(420nm激发)。相关结果在线发表在Cell旗下的Joule 期刊上。 /p p   基于光催化剂粉末悬浮体系实现太阳能全分解水产氢有望成为经济可行的太阳能转换方式之一。近年来,李灿和章福祥团队一直致力于利用宽光谱响应材料构筑Z机制全分解水体系,期间发展了“一锅氮化”构筑异质结促进电荷分离的新方法,解决了含氮化合物在空气或惰性气体下热稳定性差、不易构筑异质结的实验难题,进而构筑了多个Z机制全分解水制氢体系(Angew. Chem. Int. Ed., Chem. Sci.)。此外,该团队发展了氨气流保护负载放氧助催化剂的新方法,极大提升了宽光谱捕光催化剂的放氧性能 在此基础上又发现助催化剂的分散性对界面电荷分离有极大影响,其受界面的亲疏水属性影响明显,例如:通过Ta3N5表面氧化镁层修饰不仅可促进助催化剂分散和界面电荷分离效率,而且可有效抑制Z机制中的竞争反应,最终使Z机制全分解水制氢成为可能(相关结果发表在J. Am. Chem. Soc., Angew. Chem. Int. Ed., J. Catal., Appl Catal B: Environ.等)。通过不断努力,该团队不仅成功拓展了Z机制全分解水制氢中产氢和产氧端催化剂对可见光的利用范围(产氢端由510nm拓展至650nm 产氧端由450nm拓展至590nm),而且将粉末体系Z机制可见光催化全分解水制氢的表观量子效率记录不断刷新。 /p p   该研究利用具有单电子转移、适宜中性环境且具有较低氧化还原电位的[Fe(CN)6]3-/[Fe(CN)6]4-为氧化还原电对,基于其前期实验发现,BiVO4不同晶面间存在光生电子和空穴空间分离(Nature Commun.),采用双助催化剂(Au/CoOx)在BiVO4的{010}和{110}晶面上的选择性沉积策略使得产氧性能大幅提升。在此基础上通过耦合具有较宽可见光响应的产氢端,实现了高效的Z机制全分解水,取得了10.3%(420nm激发)的全分解水制氢量子效率,刷新了该团队以前保持的6.8%(420nm激发)的记录。此外,研究同时发现Au纳米粒子的担载有利于从BiVO4抽取电子向[Fe(CN)6]3-的转移。以上研究结果为今后进一步发展高效可见光完全分解水体系奠定了基础。 /p p   该研究工作获得基金委、科技部、中科院以及能源材料化学协同创新中心等资助。 /p p style=" text-align: center " img title=" 54.jpg" alt=" 54.jpg" src=" https://img1.17img.cn/17img/images/201809/uepic/78441239-c803-421d-92ba-a3a5ddc2a895.jpg" / /p p /p
  • 宽光谱捕光催化剂全分解水制氢研究取得新进展
    p style=" text-align: justify " & nbsp & nbsp 近日,中国科学院大连化学物理研究所太阳能研究部中科院院士李灿、研究员章福祥等在宽光谱捕光催化剂Z机制全分解水制氢研究中取得新进展。研究结果发现,通过设计和调控BiVO4表面助催化剂Au的担载,以及双助催化剂(Au和CoOx)的选择性负载,可有效促进BiVO4的产氧性能及其与氧化还原电对离子间的电荷传输,并基于此构筑了高效的可见光Z机制全分解水体系,其表观量子效率超过10%(420nm激发)。相关结果在线发表在Cell旗下的Joule期刊上。 /p p style=" text-align: justify " & nbsp & nbsp 基于光催化剂粉末悬浮体系实现太阳能全分解水产氢有望成为经济可行的太阳能转换方式之一。近年来,李灿和章福祥团队一直致力于利用宽光谱响应材料构筑Z机制全分解水体系,期间发展了“一锅氮化”构筑异质结促进电荷分离的新方法,解决了含氮化合物在空气或惰性气体下热稳定性差、不易构筑异质结的实验难题,进而构筑了多个Z机制全分解水制氢体系(Angew. Chem. Int. Ed.,& nbsp Chem. Sci.)。此外,该团队发展了氨气流保护负载放氧助催化剂的新方法,极大提升了宽光谱捕光催化剂的放氧性能;在此基础上又发现助催化剂的分散性对界面电荷分离有极大影响,其受界面的亲疏水属性影响明显,例如:通过Ta3N5表面氧化镁层修饰不仅可促进助催化剂分散和界面电荷分离效率,而且可有效抑制Z机制中的竞争反应,最终使Z机制全分解水制氢成为可能(相关结果发表在J. Am. Chem. Soc.,& nbsp Angew. Chem. Int. Ed.,& nbsp J. Catal.,& nbsp Appl Catal B: Environ.等)。通过不断努力,该团队不仅成功拓展了Z机制全分解水制氢中产氢和产氧端催化剂对可见光的利用范围(产氢端由510nm拓展至650nm 产氧端由450nm拓展至590nm),而且将粉末体系Z机制可见光催化全分解水制氢的表观量子效率记录不断刷新。 /p p style=" text-align: justify " & nbsp & nbsp 该研究利用具有单电子转移、适宜中性环境且具有较低氧化还原电位的[Fe(CN)6]3-/[Fe(CN)6]4-为氧化还原电对,基于其前期实验发现,BiVO4不同晶面间存在光生电子和空穴空间分离(Nature Commun.),采用双助催化剂(Au/CoOx)在BiVO4的{010}和{110}晶面上的选择性沉积策略使得产氧性能大幅提升。在此基础上通过耦合具有较宽可见光响应的产氢端,实现了高效的Z机制全分解水,取得了10.3%(420nm激发)的全分解水制氢量子效率,刷新了该团队以前保持的6.8%(420nm激发)的记录。此外,研究同时发现Au纳米粒子的担载有利于从BiVO4抽取电子向[Fe(CN)6]3-的转移。以上研究结果为今后进一步发展高效可见光完全分解水体系奠定了基础。 /p p style=" text-align: justify " & nbsp & nbsp 该研究工作获得基金委、科技部、中科院以及能源材料化学协同创新中心等资助。 /p p /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201809/uepic/6551cab8-9ba1-4a04-9214-029bf98e67ba.jpg" title=" W020180903502854063554.jpg" alt=" W020180903502854063554.jpg" / br/ 大连化物所宽光谱捕光催化剂全分解水制氢研究取得新进展 /p p br/ /p
  • 紫外拉曼光谱:破解催化剂技术瓶颈
    新材料作为高新技术的基础和先导,应用范围非常广泛,是21世纪最重要和最具有发展潜力的领域。而新材料的研制与催化剂的使用是分不开的。大连化物所凝聚科学技术研究团队十几年的智慧和心血,研究的催化材料紫外拉曼光谱技术,破解了催化材料的若干关键技术难题,为突破国家建设急需、引领未来发展的关键材料和技术提供了重要技术支持。该成果也因此获得了2011年度国家自然科学二等奖。   催化材料紫外拉曼光谱技术研究的带头人李灿院士告诉记者,作为化学反应中不可替代的催化剂,贵金属在诸多领域发挥着重要的作用。但是稀缺资源的价格都很昂贵,这无疑是横亘在催化剂制造的一道难题。而紫外拉曼光谱技术正是破解这一难题的金钥匙。紫外拉曼光谱是一种无损伤、高灵敏度的测量技术,在物理、化学、生物学、矿物学、材料学、考古学和工业产品质量控制等领域中有着广泛的应用,是研究分子结构和组态、物质成分鉴定、结构分析的有力工具。   紫外拉曼光谱技术破解了世界催化材料发展瓶颈,解决了催化材料关键科学难题,实现了四大突破。一是利用紫外共振拉曼光谱技术解决了一系列重要分子筛材料中有关骨架金属活性中心的结构鉴定难题。建立了微孔和介孔分子筛骨架过渡金属杂原子活性中心鉴定的表征新方法,不仅可以大幅节约贵金属用量,而且单原子相对均一的催化环境有望实现化学反应的高选择性,减少副产物的出现,从而实现真正的绿色催化。   二是紫外拉曼光谱研究了金属氧化物催化材料表面物相结构问题,发现金属氧化物的表面与体相常常具有不同相结构,物相形成过程中表面和体相的相变表现不同步。在太阳能光催化材料研究中,发现表面物相结构和光催化活性有直接关联,提出了“表面异相结和异质结增强光催化活性”的概念。   三是发展了水热催化材料合成中的原位紫外拉曼光谱技术,观察到分子筛合成初期的分子碎片以及模板剂与分子碎片的相互作用形成的微孔结构,提出了分子筛初期形成的重要中间体决定最终分子筛结构的机理。他们的研究发展了表征催化材料的新方法,发现了催化材料合成的重要转化过程和活性中心中间物种,提出了催化材料合成的机理。   四是获得了具有与均相不对称催化相媲美的多相手性催化剂。该催化剂是一大类化合物——手性化合物的一种,而手性药物则是手性化合物中非常重要的一个分支。手性药物是指具有左旋或右旋对映体化学结构的单一对映体化合物,包括光学纯药品、光学纯农业化学品及其他光学纯产品与中间体。利用“手性”技术,人们可以有效地将药物中不起作用或有毒副作用的成分剔除,生产出具有单一定向结构的纯手性药物,从而让药物成分更纯,在治疗疾病时疗效更快、疗程更短。手性药物的研究目前已成为国际新药研究的新方向之一。在国际制药界,手性技术已被广泛应用到消化系统疾病、心血管疾病、癌症等领域新药研发中。   李灿院士告诉记者,1998年他们成功研制出我国第一台具有自主知识产权的紫外拉曼光谱仪,解决了国际拉曼光谱领域长期存在的荧光干扰问题,在国际上最早将其应用于催化及材料科学的研究。到2004年研究组研制成功紫外—可见全波段共振拉曼光谱议,使我国在拉曼光谱的催化表征研究走在世界前面。2008年,研究组与卓立汉光仪器公司合作,开始将紫外拉曼光谱仪产业化。2010年完成国家重大装备研制项目“深紫外拉曼光谱仪的研制”,获得世界上第一张激发波长低至177纳米的深紫外拉曼光谱。   李灿院士骄傲地告诉记者,在过去的10年间,紫外拉曼光谱已经在化学、物理和生命科学等诸多领域显示出巨大的优越性,成为一项重要的分子光谱技术。我国紫外拉曼光谱研究在国际上的领先地位,极大地促进了中国在这个领域的国际合作研究,大化所与国内外十余个研究机构实现技术合作。今后,紫外拉曼光谱仪技术在多家研究机构的推广应用,一定会有力推动我国新能源、节能环保、电动汽车、新材料等七大战略性新兴产业健康快速发展,一定会让更多的新材料、精细化工产业受益。
  • 麦克仪器推出催化剂原位表征系统ICCS为多相催化剂研究助力
    ▼点击蓝字,关注麦克▼麦克仪器推出催化剂原位表征系统ICCS为多相催化剂研究助力原位直接评估反应条件对催化剂主要性能的影响麦克仪器公司推出了新的原位催化剂表征系统(ICCS),原位直接评估反应条件对催化剂主要性能的影响。ICCS是Micromeritics公司和PID Eng&Tech公司的专业知识相结合的产物,PID Eng&Tech公司最近被Micromeritics公司收购,并以其微反应器和中试工厂技术而闻名。ICCS使研究人员能够有效地量化反应对定义催化剂参数(如活性中心数量)的影响,所得数据直接支持开发更有效的多相催化剂。 麦克仪器的化学吸附技术如程序升温分析和脉冲化学吸附在全球范围内应用逛逛。另一方面,MicroActivity Effi是一种高度自动化的催化剂筛选工具,用于测量工艺相关条件下的产率、转化率、选择性和催化剂再生。ICCS将化学吸附和程序升温技术(如TPR、TPO和TPD)与Microactivity Effi的现有功能相结合,从而可以对催化剂进行表征、测试,然后对其进行重新表征,以评估反应的影响。所有这些都是在严格控制的条件下进行的,没有受到外部环境污染的风险。 ICCS催化剂原位表征系统集成了用于全自动精确气体控制的质量流量控制器和用于去除冷凝蒸汽的冷阱。精确的热导检测器监测流入和流出样品反应器的气体浓度的变化。ICCS可以连接到任何微反应器,甚至是定制的反应器,以提供有关被测催化剂的重要信息。 当ICCS与Microactivity Effi直接相连时,ICCS可以进行原位化学吸附测试,可以对催化剂、催化剂载体和其他材料进行分析,不会有暴露在外部环境中的风险,因为不需要将样品从反应器中取出。这消除了大气气体和湿气污染的可能性,因为大气气体和湿气可能会损坏活性催化剂并损害数据完整性。程序升温实验,包括程序升温还原(TPR)、程序升温氧化(TPO)和程序升温脱附(TPD),可以在大气压或高达20bar的压力(取决于相关筛选系统的额定压力)下进行,提供有关高压下催化剂氧化还原性能的重要信息。可以使用相同的样品对相同的材料进行多种表征。 欲了解更多ICCS信息请点击查看Micromeritics原位催化表征系统 (ICCS) 与 Microactivity EFFI关于麦克仪器公司麦克仪器公司是提供材料表征解决方案的全球领先厂商,在密度、比表面积及孔隙度、粒度及粒形、粉体表征、催化剂表征及工艺开发等五个核心领域拥有一流的仪器和应用技术。麦克仪器公司成立于1962年,总部位于美国佐治亚州诺克罗斯,在全球拥有400多名员工。公司同时具备丰富的科学知识库和一流内部生产制造,为石油加工、石化产品和催化剂、食品和制药等多个行业,以及下一代材料例如石墨烯、MOF材料、纳米催化剂和沸石等表征提供高性能产品。公司设有Particle Testing Authority(PTA)实验室,可提供商业测试服务。战略收购富瑞曼科技有限公司(Freeman Technology Ltd)和PID公司(PID Eng & Tech),也反映公司一直致力于在粉体和催化等工业关键领域提供优化、集成的解决方案。设备咨询热线:400-860-5168转0677
  • 粉体测试促进催化剂生产
    测试结果有助于设计方案和原料的选择。工业催化剂作为一种复杂材料,需要不断精制提高加工效率同时减少对环境产生的影响。催化剂能够提高原料灵活性,降低能耗,增加选择性和延长使用寿命,对石油化工可持续性的提升发挥了重要的作用。对于商业化非均相催化剂,添加粘合剂、填料、致孔剂和增塑剂等,将活性相和载体转化为特定几何形状和性能稳定的产品。由于大多数催化剂成分为粉料,因此有效的粉体加工是催化剂高效生产的先决条件。托普索公司位于丹麦灵比,作为化工、炼油行业中高性能催化剂和专利技术的全球领导者,提供超过150种催化剂。该公司应用粉体表征技术,如ft4粉体流变仪,对催化剂生产设备的设计方案进行优化,改进原料的选择。确定与粉体传输过程密切相关的特性,从而制定设备选型的标准,最大限度降低新工厂的运行成本。此外,辅助筛选原料,降低意外停工的风险,有助于加快粉体加工效率。催化剂生产非均相催化剂加工简单,生产高效,在炼油和化工行业中尤为普遍。这种催化剂是多元络合物,结构为毫米尺度,化学性能和机械性能优异[1]。化学性能取决于活性相的有效分散和传质、传热的精确控制。催化剂寿命,即维持反应和选择性的时间,是关键的商业因素。控制机械性确保整个催化剂床层产生的压力降可控,维持稳定、长效反应所需的机械强度。机械摩擦也会破坏催化剂性能。从活性相和载体的结合开始,配方开发人员通过一系列添加剂的组合,实现催化剂工业化并满足工艺需求。添加剂包括炭黑或淀粉等致孔剂——热处理分解,形成颗粒内孔隙,以及增强机械成型的增塑剂和润滑剂[2]。催化剂的生产取决于这些成分的有效组合和重现。作为一个复杂、多步骤过程,主要涉及[2,3]:• 粉料原料的准备;• 通过喷雾干燥、球化、压实、湿法造粒、挤出等过程形成的预混物和团聚“中间体”;• 硬化和精制,例如还原,洗涤涂层或离子交换。粉体传输和可控定量,作为众多加工过程的基本要素,要求设计方案和操作实践的效率最大化。除了特定的单元操作,还需表征粉体,理解、解释并控制催化剂整个生产过程的表现。托普索公司通常使用激光衍射法测试粒径分布,振实密度评价原料和中间体。但凭这些数据去选择和确定加工设备仍不可靠。此外,这些测试并未充分评估原料的替代品是否匹配特定工艺。单凭这些测量技术,工艺方法的开发无法达到最优,包含一定程度的错误,引入新物料或更换供应商时停机的风险增大。托普索公司还加入了罗格斯大学催化剂制造联盟。这一小组汇集了不同学科的研究学者,从事催化剂生产改进项目。成果之一是基于动态、剪切和整体粉体特性的测试[4],开发出更好的方法选择催化剂组分的失重(liw)进料器。托普索公司运用此项工作的成果来设计、选择和优化liw进料器;现有粉体测试在实践过程中极具潜力,同时也提高了公司对这一收益的认知。托普索公司使用ft4粉体流变仪进行内部评估,获得75种原料的动态、剪切和整体特性数据(总计超过25个特性)。在此成功试验的基础上,公司于2012年购买仪器成为用户。确定设计方案为了优化新仪器的应用,托普索公司进行深入评估,包括运用主成分分析(pca),建立原料特性数据库,确定能否减少常规测量的次数,最大程度地减少成本,这也是一个重要的商业考虑。公司还进行了不同粉体传输设备性能与特定粉体特性相关性的研究。这项工作确定了粉体传输应用中三个关键的属性:可压性,透气性和粘结应力。可压性量化粉体受到固结应力时的体积变化,通过测量整体密度与所施加正应力的函数(图1左、中)得到。虽然粘性较强的粉体相比自由流动的材料更可压,pca分析说明可压性是独立变量,与其他参数无关。关键粉体整体特性图1.测量可压性(左、中)和透气性(右)有助于理解粉体行为。透气性测量了粉体对于气流的阻力,通过测量特定固结压力下粉床压力降与气流速度的函数(图1右)得到。空气不易夹带,能够轻松穿过透气性较好的粉体,与之相比,透气性较差的粉体容易滞留空气。透气性与传输过程极其相关,例如气动传输和料斗下料。粘结应力由剪切盒确定,该测试测量了固结粉层相对另一粉层剪切所需的应力。剪切盒主要量化固结粉体从静止到流动变化的难易程度。因此,粘结应力与固结的粉体、低流速工艺操作最为相关,尤其是料斗下料过程。通过评估这三个特性,托普索公司能够选择最佳的传输方式,使用气动传输或者流体隔膜泵。由于气动传输设备的造价较高,需要适合的排气系统来清除粉体夹带的空气,因此这一决定具有重大的成本影响。通常流体隔膜泵的安装成本仅为气动传输系统的10-30%。已有的设计方案,需要大约一年的时间开发并获得批准,原则如下:• 如果可压性小于36%,适合流体隔膜泵。• 如果可压性大于38%,需要气动传输系统。• 如果可压性介于36-38%,选择取决于透气性和粘结应力的值。由此确定两种方式的抉择标准。作为可压性测试的结果之一,粉体的松装密度也很重要,由此决定所选系统的传输能力。量化选用这一方式累积节省的成本也非常容易。一套全新气动传输系统成本约为80000美元,而流体隔膜泵系统通常少花费约55000美元。根据现有的设计标准确定传输系统,托普索公司自2012年底起成功安装了六套流体隔膜泵系统,并且从2015年起更换了两个现有的气动传输系统。假设每个流体隔膜泵系统的成本为气动传输系统的30%,仅根据新安装系统的保守估计,对于整体造价约34万美元的项目而言,使用粉体流变仪进行成本缩减也很可观。这说明对仪器的明智投资获得了巨大回报。优化原料的选择此外,深入的粉体表征也优化了原料选择。这项工作的目的是筛选粉体特性,可靠预测催化剂生产过程中新材料的性能,也无需投入实际工厂试验,更具体地说,确认新材料与现有材料的性能可比。这种评估在更换供应商或使用替代原料时十分关键,特别是选用价格较低的替代材料缩减成本。粉体测试仪器可以获得:• 剪切特性,包括壁面摩擦角,尤其是研究料斗性能,与连续粉体流动相关的料斗倾角和下料口尺寸;• 可压性和松装密度;• 动态特性包括基本流动能(bfe)和稳定性指数(si)用于评估粉体动态流动性。动态粉体性能通过测量桨叶旋转穿过样品时阻力和扭矩(图2)得到[5]。向下行径穿过预处理后的样品产生bfe值,这是一个高度灵敏的流动性参数,量化了低应力条件下受约束流动的行为。重复bfe测试还可以量化粉体的稳定性,结果为si,该值的定义是多次测试前后bfe值的比值。si接近于1说明粉体物理性能稳定;该值高于或低于1通常与分层、摩擦或团聚等现象有关,这些都可能导致性能变差。动态粉体特性图2.动态特性非常敏感,与不同工艺性能相关。这一测试可以确定粉料在投入工厂前,不同供应商或原料替代品的表现是否良好。粉体加工过程是否会发生间歇传输或堵塞,导致意外停机,从而影响生产效率。因此,能够在不中断工厂生产的情况下找出潜在问题是一大收获。公司现在定期参考上述指标筛选材料,同时全面分析新材料,增补原始数据库,逐步优化实践并扩展粉体测试仪器所提供的价值。强力工具设计和运行粉体处理设备,对工艺工程师来说是一场持久挑战,优化和测试替代设备仍然重要。幸运的是,理解不同工艺与原料之间的相容性,以及选用合适的粉体测试确定这一相关性,近年来已有长足进步。托普索公司的经验验证了粉体测试在催化剂生产中的可行性,其实相关工艺对于大多数生产部门也很常见。通过测量动态、剪切和整体性能,托普索公司强化了liw进料器选型的过程。基于粉体的可压性、透气性和粘结应力数据,为粉体传输确定了可靠的设计方案,确定选用经济型设备的条件。此外,现在公司也能无需工厂试验,可靠评估是否选用新料或更换供应商。粉体测试仪器都提供了关键的数据和丰厚的投资回报。参考文献1.“catalysts for optimal performance,” haldor topsøe, lyngby, denmark, viewable via: www.topsoe.com/products/catalysts2.mitchell, s., et al., “from powder to technical body: the undervalued science of catalyst scale-up,” chem. soc. rev. (feb. 2013).3.catalyst manufacturing center, rutgers university, homepage, https://cbe.rutgers.edu/catalyst-manufacturing-center.4.wang, y., et al., “predicting feeder performance based on material flow properties,” powder tech. (dec. 2016).5.freeman, r., “measuring the flow properties of consolidated, conditioned and aerated powders — a comparative study using a powder rheometer and a rotational shear cell,” powder tech (oct. 2006).
  • 著名催化剂专家魏可镁院士逝世
    中国共产党的优秀党员、中国工程院院士、福建省人民政府顾问、原福州大学校长、化肥催化剂国家工程研究中心主任、我国著名的催化剂专家魏可镁先生,因劳累过度,突发脑梗塞、心脏骤停,经抢救无效,于2014年10月23日凌晨1时30分不幸逝世,享年75岁。   魏可镁院士,1939年8月出生,福建福清人。1965年毕业于福州大学化学系,师从著名科学家卢嘉锡教授。1997年当选中国工程院院士,曾任第九届、第十届全国人民代表大会代表,中共福建省第七届委员会委员,先后荣获&ldquo 全国首届杰出专业技术人才奖章&rdquo 、 &ldquo 全国先进工作者&rdquo 、&ldquo 全国优秀科技工作者&rdquo 、&ldquo 全国侨界十杰&rdquo 等荣誉称号。   魏可镁院士是我国著名的催化剂专家,主要从事化肥催化剂、汽车尾气催化剂和净化器的研发。他先后研发成功并产业化四个系列十二个化肥催化剂,在全国上百家合成氨厂推广应用并取得巨大经济和社会效益 完成了FD汽车尾气催化净化器的研发,并已达到欧Ⅴ排放限值,成为外企在国内的主要竞争对手,并已实现年产销量15万套,为我国净化器产业的国产化打下坚实的基础。魏可镁院士曾先后获得国家发明奖3项,国家科技进步奖2项,省部级奖6项,为我国化学化工科学技术的发展和应用做出了杰出贡献。   魏可镁院士教书育人四十余载,培养了大批优秀人才,为党的教育事业、科技事业呕心沥血,奉献了毕生精力。他严谨求实的治学态度,勇于创新的科学精神,不求索取、只知奉献的催化剂品格,是我国科技教育界的光辉典范。以魏可镁院士为代表的勇于拼搏的奉献精神被列入福州大学的&ldquo 三种精神&rdquo 之一,将激励和泽及一代又一代的学子。   魏可镁院士的逝世,是我国化学化工科学与教育界、福州大学的重大损失。敬爱的魏可镁院士永远活在我们心中!
  • 化物所宽光谱响应光催化剂分解水研究获进展
    近日,中国科学院大连化学物理研究所催化基础国家重点实验室及洁净能源国家实验室中科院院士李灿和&ldquo 百人计划&rdquo 学者章福祥研究员负责的宽光谱响应半导体光催化分解水研究取得新进展:通过对宽光谱捕光材料Ta3N5 (Eg: 2.1 eV,吸收带边可至600 nm)与高效氧化助催化剂CoOx之间的界面进行MgO纳米层修饰,不仅改善了CoOx与其界面接触和分散状态,而且还对半导体Ta3N5表面起到钝化保护作用,使光催化体系在可见光长波段500&minus 600 nm激发条件下的分解水放氧量子效率(AQE),由文献最高值5.2%提升至目前的11.3%。相关研究结果在线发表在《德国应用化学》期刊上。   太阳能光催化分解水制氢是实现太阳能光-化学转化的重要反应,被认为是化学领域的一个&ldquo 圣杯&rdquo 式的反应。光催化水分解反应主要涉及质子还原和水氧化两个半反应,其中水氧化是涉及多电子转移、热力学爬坡的反应,被认为是实现上述太阳能光化学转化的速控步。太阳能光催化转化涉及如何实现太阳能宽光谱利用、如何实现高效的光生电荷分离以及表面的催化转化等关键科学问题,然而随着半导体催化剂吸收带边的红移,其驱动光生电荷分离以及水分解(还原、氧化)的能力就随之变弱。因此,太阳光的充分利用与光生电荷的高效分离常常不易兼得,要实现宽光谱响应的光催化剂高效水氧化过程是一个非常具有挑战性的难题。   助催化剂可有效促进光生电荷分离和催化转化,李灿研究团队在国际上明确提出了双助催化剂策略(Acc. Chem. Res. 2013, 46, 2355)。最近几年,为了攻克宽光谱响应光催化剂上水氧化这一科学难题,他们发展了高温负载廉价助催化剂CoOx的策略,在LaTiO2N (Eg: 2.1 eV)上取得了比传统贵金属IrO2和RuO2助催化剂更高的放氧性能(J. Am. Chem. Soc. 2012, 134, 8348-8351.),随后又成功地将这种CoOx负载策略拓展到了新开发的宽光谱响应的氮掺杂氧化物Sr5Ta4O15-xNx 和MgTa2O6&minus xNx材料体系上(J. Mater. Chem. 2013, 12, 5651 Chem. Commun. 2014, 50, 14415)。   该研究进一步利用MgO纳米层调变宽光谱响应半导体Ta3N5与助催化剂CoOx之间的界面性质,通过改变半导体材料表面的亲疏水性,改善了助催化剂的纳米分散以及界面间电荷的转移,取得了目前宽光谱响应光催化剂上分解水放氧反应的最高量子效率,为发展高效的光催化体系提供了新策略。   该研究工作获得基金委重大基金、科技部&ldquo 973&rdquo 项目以及中科院&ldquo 百人计划&rdquo 人才项目资助。 宽光谱响应光催化剂分解水研究取得新进展
  • 【热点应用】质子交换膜燃料电池生产中催化剂浆料的颗粒特性表征
    燃料电池(Fuel Cell)市场前景 为缓解世界性能源危机的加剧,减少传统能源对环境造成的污染;有序推进碳中和的各项任务目标,不断深化能源结构优化,提高能源开发整体效益成为摆在我国科研工作人员及新能源产业开发从业者面前的重要课题。 燃料电池(Fuel Cell)是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、热能发电和原子能发电之后的第四种发电技术。 燃料电池用燃料和氧气作为原料;同时没有机械传动部件,故没有噪声污染,排放出的有害气体极少。由此可见,从节约能源和保护生态环境的角度来看,燃料电池是最有发展前途的发电技术[1]。 作为一种新的高能量密度、高能量转化率、环保型的电源装置受到全世界的广泛关注,并具有广阔的应用前景。 一、质子交换膜燃料电池目前,燃料电池主要被分为六类[2]。碱性燃料电池(AFC,Alkaline Fuel Cell)、磷酸盐燃料电池(PAFC,Phosphorous Acid Fuel)、熔融碳酸盐燃料电池(MCFC,Molten Carbonate Fuel Cell)、固体氧化物燃料电池(SOFC,Solid Oxide Fuel Cell)、质子交换膜燃料电池(PEMFC,Proton Exchange Membrane Fuel Cell)和直接甲醇燃料电池(DMFC,Direct Methanol Fuel Cell)。采用聚合物质子交换膜作电解质的PEMFC,与其它几种类型燃料电池相比,具有工作温度低、启动速度快、模块式安装和操作方便等优点,被认为是电动车、潜艇、各种可移动电源、供电电网和固定电源等的最佳替代电源[3]。如图1所示,膜电极(membrance-electrode assembly, MEA)是由质子交换膜、催化层与扩散层 3 个部分组成,是质子交换膜燃料电池 (PEMFC)电化学反应的主要场所,也是决定质子交换膜燃料电池 (PEMFC) 的成本、性能和耐久性的核心关键部件。 二、质子交换膜燃料电池的催化剂浆料分析 催化剂浆料涂布是膜电极生产的关键步骤之一,要求催化层涂敷均匀,同时尽量减少铂含量以降低成本,因此必须对浆料进行严格的质量控制。 催化剂浆料的颗粒粒度和分散性能会影响浆料粘度、聚合物电解质的分布和形态、催化剂的利用率、催化剂和聚合物电解质的相互作用以及催化层的均匀性和连续性等重要参数,最终影响膜电极的电化学性能[4]。 如图 2 所示,常见的活性催化剂为铂基纳米颗粒,最佳粒度范围为 2~5nm,但这些纳米颗粒不是独立存在的,而是分散在碳载体颗粒上。单个碳载体颗粒的粒度范围为 20~40nm,在浆料中碳载体通常以团聚体的形式存在,粒度在亚微米至微米范围。聚合物电解质分散成不同形态(棒状或线团)、粒度在 70 nm~2.5 µm 之间的团聚体,与碳载催化剂混合形成催化剂浆料。催化剂和聚合物电解质分散在特定的溶剂中,需要控制团聚物的粒度,优化催化剂和电解质导体团聚物的相互作用。 对于聚合物电解质团聚体,粒度在200~400 nm范围有利于提高氢气/空气的反应性能。碳载体催化剂会出现未充分分散或过度分散的情况[5]。 在未充分分散时,碳载体是高度团聚的;离子交联聚合物只覆盖在团聚物外部,内部的铂催化剂无法与电解质充分接触,因此利用率不高。 过度分散时,团聚物破裂,铂催化剂颗粒与碳载体分离,影响其在氧化还原反应中的活性。 理想的分散状态是形成由碳载体催化剂组成的小团聚体,电解质聚合物在这些团聚体上均匀分布,能够提高催化剂的利用率[6]。 粒度是催化剂浆料的关键性指标,但浆料由不同尺度的颗粒混合物组成,要准确测量浆料的粒度有一定的难度,目前还没有一种技术可以全面表征所有颗粒的粒度。 X 射线衍射 (XRD)、激光衍射 (LD) 和动态光散射 (DLS) 是三种常用的材料表征技术,用于表征不同尺度的颗粒,结合三种技术能够全面表征催化剂浆料中的颗粒特性。 三、马尔文帕纳科解决方案 —— X 射线衍射技术X 射线衍射 (XRD) 通常用于确定小于 100 nm 的纳米晶粒尺寸。快速测量单个衍射峰(1~3 分钟),足以利用峰宽的 Scherrer 分析来计算晶粒尺寸。另外,如果测量多个衍射峰(20 分钟以上),则可采用全谱拟合技术,更精确地计算晶粒尺寸和点阵参数。图 3 显示了使用 Aeris 台式 X 射线衍射仪收集的 X 射线衍射数据,样品是分散在三种不同碳载体颗粒上的催化 Pt 粉末。 如表 1 所示,分散在 Ketjenblack EC-300J 碳黑上的 Pt 的平均晶粒尺寸比分散在 Vulcan XC72 碳或 Vulcan XC72R 碳上的 Pt 略小。晶粒尺寸的变化会改变催化活性和耐用性。全谱拟合分析还表明,EC-300J 上分散的 Pt 比 Vulcan XC72 或 Vulcan XC72R 上的 Pt 的点阵参数更大。该点阵参数也大于已公布的 Pt 的参考值3.9231 Å。[6]较大的点阵参7数可能表明表面引起了点阵应变或合金杂质可能改变催化活性。 XRD 可以分析分散体、固体碎片以及粉末。例如,碳载体 Pt 催化剂纳米颗粒可以在粉末分散到浆料中后和浆料印刷并固化在膜片或气体扩散层上后进行测量。图 4 显示了 40% Pt 在 Vulcan XC72 碳上的 XRD 数据,这些碳可作为粉末、浆料和催化剂涂覆膜 (CCM) 上的固化电极层。在所有情况下,Pt 衍射峰均可通过其他成分中解析出纳米粒尺寸计算,如表 2 所总结。 如图4所示,浆料和催化剂涂覆膜(CCM)样品与粉末样品相比,铂衍射峰变窄,说明这两中样品的铂晶粒尺寸变大。铂催化剂的这种粗化现象可能表明,在溶剂中的碳载体催化剂粉分散过程中,浆料变得过热。因此,在超声处理过程中,通常使用 5℃ 的水浴对浆料进行冷却。[8]在加工过程中,晶粒尺寸的变化(如颗粒粗化),会影响催化剂活性。 四、马尔文帕纳科解决方案—— 激光衍射技术激光衍射技术 (LD)是测量颗粒粒度分布的常用分析方法,粒度范围从十几纳米到几个毫米。动态范围宽,非常适合分析催化剂浆料的粒度分布。激光衍射法操作简便,测试速度快,通常不到1分钟,也非常适合生产过程控制。此外,激光衍射技术还可以研究工艺条件变化对浆料粒度分布的影响。 图 5 是使用 Mastersizer 3000 激光粒度仪对稀释后的催化剂浆料重复5次的粒度测试结果。该浆料中颗粒的粒度呈双峰分布,峰值在1 µm左右的颗粒占最大体积分数,20nm左右的颗粒体积分数占比较小。如表 3 所示,该浆料的粒度分布结果相对标准偏差(RSD)10 µm) 存在,这说明还需要增加剪切或者使用更高能量的分散方法进一步分散,才能达到合格的催化剂浆料要求。 五、马尔文帕纳科解决方案 —— 动态光散射技术 与激光衍射法相比,动态光散射 (DLS) 更适合于测量纳米级颗粒的平均粒度,范围从1 nm 至 1 µm。 将催化剂浆料以 1:10 比例分散在异丙醇(IPA)中,用Zetasizer Ultra纳米粒度仪测量催化浆料的平均粒度。稀释后的浆料仍然是高度不透明的,采用非侵入背散射 (NIBS)技术进行测量,重复测量5次。如图 7 所示,尽管浆料不透明,5次测量的相关曲线的一致性很好。图 8 是催化剂浆料的粒度分布图。如表 4所示,体积平均粒度为 1.04 µm,多分散指数也比较大(0.1)说明浆料的粒度分布宽,与激光衍射法的结果吻合。动态光散射技术(DLS)主要是检测颗粒的布朗运动产生的散射光光强波动,颗粒的散射光强与粒径的 6 次方成正比,大颗粒的信号很容易掩盖小颗粒的信号,因此动态光散射法(DLS)没有观察到激光衍射法测得的小颗粒。 动态光散射技术还可用于测量催化剂浆料的 Zeta 电位,研究电解质聚合物与碳载催化剂之间的相互作用,确定电解质聚合物在催化剂上的均匀分布。Zeta电位与浆料的离子浓度有关,可以通过对碳载体颗粒功能化改性或者改变电解质聚合物浓度来调节。通常来讲,特别是在介电常数较高的分散介质(如甲醇)中,Zeta 电位越高,浆料的稳定性越好。Zeta 电位分析还可以用于优化配方,改进浆料的稳定性。事实上,已经有研究报道可以通过模型根据初级颗粒的粒度和体系的Zeta 电位来预测催化剂浆料稳定[9]。 六、结论 通过X射线衍射技术发现,浆料和阴极催化剂涂覆膜中的晶粒尺寸比催化剂粉末大。这种颗粒粗化现象通常是由于浆料在分散过程中过热引起的。激光衍射法检测到在20 nm附近有大量初级颗粒,说明催化剂浆料出现了过度分散的现象。 联合使用激光衍射、X射线衍射和动态光散射技术,可以从不同尺度表征催化剂浆料,优化和监测催化浆料配方和稳定性。使用 Mastersizer 3000 激光粒度仪测量催化剂浆料的粒度分布,可评估临界颗粒分散的有效性。使用 Zetasizer 纳米粒度及Zeta电位仪进行 Zeta 电位测量,可研究聚合物电解质和碳载催化剂的相互作用,预测浆料稳定性。使用 Aeris 台式 X 射线衍射仪,可以测量纳米催化剂的晶粒尺寸,验证防止纳米颗粒粗化的方法的有效性。 参考文献[1] 陈光. 新材料概论:科学出版社,2003年[2] Kamaruzzaman.Sopian ,Wan Ramli Wan Daud.Challenges and Future Developments in Proton Exchange Membrane Fuel Cells [J].Renewable.Energy.2006,31(5):719~727[3] 胡嫦娥,刘琼,周敏. 质子交换膜燃料电池的研究现状. 新能源网. 2016.[4] D. Papageorgopoulos, US Dept. of Energy Hydrogen and Fuel Cells Program Report, FY 2018 Annual Progress Report[5] Orfanidi et al,J. Electrochem. Soc.165 (2018) F1254[6] Wang et al, ACS Appl. Energy Mater. (2019) DOI: 10.1021/acsaem.9b01037[7] Swanson Natl. Bur. Stand. (U.S.) Circ. (1953) 539 1 31[8] Sharma et al, Materials chemistry and Physics 226 (2019) 66-72[9] Shukla et al, J. Electrochem. Soc.164 (2017) F600-F609 关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。
  • 新型催化剂实现炔烃加氢制烯烃
    近日,中国科学院大连化学物理研究所研究员陈萍、郭建平团队与厦门大学副教授吴安安团队合作,在催化炔烃选择加氢反应研究中取得新进展。合作团队利用金属配位氢化物,发展出一类新型碱土金属钯基三元氢化物催化剂,并应用于炔烃选择性加氢反应中,实现高选择性催化炔烃加氢制烯烃。相关研究成果发表于《美国化学会志》。  炔烃是一类重要的化工产物,炔烃选择性氢化制烯烃是石油化工以及精细化工中的重要过程。目前研究较多的催化剂主要是金属合金、负载型单原子催化剂等。合作团队提出一种不同的催化剂设计策略,利用碱(土)金属稳定金属氢化物制备出三元配位氢化物催化剂,用于炔烃选择加氢反应,通过催化剂中的阴离子和碱土金属阳离子协同作用调控炔烃、烯烃及反应中间体的吸附与加氢能垒,实现炔烃高选择性氢化制烯烃。  郭建平表示,新型催化剂在活性中心组成、结构、反应动力学性质、催化作用机制等方面显著不同于常规多相炔烃选择加氢催化剂。该研究丰富了炔烃选择性加氢催化剂体系,并基于金属配位氢化物材料组成与结构的多样性,为寻找更加高效的炔烃选择性加氢催化剂提供了更多可能。  相关论文信息:https://doi.org/10.1021/jacs.1c09489
  • 大连化物所实现高温稳定的铜基催化剂的研制
    近日,大连化物所碳资源小分子与氢能利用创新特区研究组(DNL19T3)孙剑研究员、俞佳枫副研究员团队,与日本富山大学Noritatsu Tsubaki教授、我所电镜技术研究组(DNL2002)刘岳峰副研究员等人合作,成功构建了800℃高温稳定的铜基多相催化剂。合作团队结合磁控溅射(Sputtering,SP)和火焰喷射(Flame spray pyrolysis,FSP)两种负载型催化剂制备新技术,分别对金属铜的电子结构和TiO2载体的可还原性进行重构,首次在较低温条件下构建了非贵金属铜基催化剂上经典的金属载体强相互作用(Strong metal-support interaction, SMSI),进而实现了耐水耐高温铜催化剂的可控制备。  长期以来,铜基催化剂因其廉价和高活性而被广泛应用于多种工业催化反应中。但受限于较低的塔曼温度,铜纳米颗粒极易在300℃以上烧结聚集而导致失活,严重限制了其高温应用。因此,构建可稳定铜颗粒的保护层,从根本上限制其聚集长大是解决这一问题的关键技术之一。然而,金属铜的功函数较低,且对氢气活化能力较弱,很难诱导载体物种向其表面迁移形成包裹,无法像传统贵金属一样在温和条件下形成金属载体强相互作用。  本工作中,合作团队通过利用自主开发的SP技术,改变了Cu的外围电子环境,同时采用FSP技术,增加了氧化物中晶格氧无序度,分别促进电子转移和载体还原,实现了在300℃较温和条件下即可形成SMSI。研究发现,在高温(550-800℃)CO2加氢(逆水气变换)反应条件下,该铜基多相催化剂可连续稳定运行700小时,且未见颗粒长大。本工作实现了铜催化剂上SMSI的构筑和调控,阐明了催化剂表界面上的反应过程和催化机理,为提高铜基催化剂的水热稳定性提供了全新策略,有望进一步拓宽铜基催化剂的高温应用领域。  近年来,孙剑团队在CO2加氢和先进纳米催化材料的制备和新应用方面取得了系列成果,采用SP技术(Sci. Adv.,2018;ACS Catal.,2014)和FSP技术(ACS Catal.,2020;Chem. Sci.,2018;Chem. Comm.,2021;Appl. Catal. B: Environ. ,2016)先后开发了一系列与传统催化剂不同性质的催化材料,并成功应用于加氢、氧化、重整等多种催化反应中。  相关成果以“Ultra-high Thermal Stability of Sputtering Reconstructed Cu-based Catalysts”为题,于近日发表在《自然-通讯》(Nature Communications)上。该文章的第一作者是大连化物所DNL19T3俞佳枫。该工作得到国家自然科学基金、中国科学院青年创新促进会、兴辽英才青年拔尖人才计划、大连市杰出青年科技人才计划、大连化物所创新基金等项目的支持。(文/图 俞佳枫、孙剑)  文章链接:https://doi.org/10.1038/s41467-021-27557-1
  • 将Ag/AgCl@SiO2 光催化剂用于光催化甲烷转化
    1. 文章信息标题:Selective photocatalytic aerobic oxidation of methane into carbon monoxide over Ag/ AgCl@SiO2DOI: 10.1039/d2sc01140a2. 文章链接https://pubs.rsc.org/en/content/articlelanding/2022/SC/D2SC01140A3. 期刊信息期刊名:Chemical ScienceISSN:2041-65202020年影响因子:9.825分区信息:中科院1区Top;JCR分区(Q1)涉及研究方向:化学4. 作者信息:翟建新(首要作者),周宝文(首要通讯作者);吴海虹(第二通讯);何鸣元(第三通讯作者)韩布兴(第四通讯作者)5. 光源型号:北京中教金源CEL HXF300(300 W氙灯,300-800范围)、NP2000、CEL-SPS1000、CEL-TPV2000文章简介:设计一种能够在温和条件下利用甲烷的光催化剂具有重要意义,我们制备了一种Ag/AgCl@SiO2 光催化剂,其可以高选择性将甲烷光氧化为一氧化碳,一氧化碳产量为2.3 为μmol/h,选择性为73%。基于半原位红外光谱学、电子顺磁共振等一系列表征研究,二氧化硅的引入可以增加光生载流子的寿命,并且揭示了甲烷通过原位形成的单线态氧转化为COOH*中间体从而氧化为CO的中间过程。同时Ag/AgCl@SiO2催化剂也能在环境条件下使用真实的阳光进行甲烷的转化。 我们一致认为本文的创新之处有以下几点:1. 首次将Ag/AgCl@SiO2 光催化剂用于光催化甲烷转化2. 通过一系列表征表明二氧化硅的引入可以增加载流子的寿命3. 在真实太阳光下也能发生图1 催化机理图
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制