当前位置: 仪器信息网 > 行业主题 > >

放射性同位素核素识别仪

仪器信息网放射性同位素核素识别仪专题为您提供2024年最新放射性同位素核素识别仪价格报价、厂家品牌的相关信息, 包括放射性同位素核素识别仪参数、型号等,不管是国产,还是进口品牌的放射性同位素核素识别仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合放射性同位素核素识别仪相关的耗材配件、试剂标物,还有放射性同位素核素识别仪相关的最新资讯、资料,以及放射性同位素核素识别仪相关的解决方案。

放射性同位素核素识别仪相关的资讯

  • 科学家4天发现45种新放射性同位素
    日本理化学研究所6月8日宣布,一个国际联合研究小组利用RI射束工厂的放射性同位素射束加速器,在4天之内发现了从锰(25号元素)到钡(56号元素)的45种新放射性同位素。新发现的同位素数量高于世界上约40种年平均发现的同位素数量。对破解长期以来元素的合成以及中子过剩原子核之谜打开了一扇窗口。  新放射性同位素是把铀238(92号元素,质量数238)通过超导环形回旋加速器以光速的70%速度加速后,冲击标靶铍和铅的原子核,利用其引发的飞行裂变而生成的。研究小组把生成的同位素,用超导光束分离生成装置(BigRIPS)进行收集和分析,发现了中子过剩的新同位素。此次发现的新放射性同位素中,特别值得注目的是中子数为82的钯128。 该研究成果将发表在《日本物理学会杂志》(Physical Society of Japan)上。  原子核由质子和中子组成,其性质由质子数和中子数决定。地球上约有300个金、铁等天然存在的稳定性原子核,但理论上认为有10000个原子核,其中大部分为放射性同位素这样的不稳定原子核。比稳定原子核中子数少的原子核称为质子过剩核,比稳定原子核中子数多的原子核称为中子过剩核。  约100年前科学家发现了放射性同位素,同时创建了原子核物理学。自此,科学家开始了对天然存在的稳定原子核和半衰期较长的不稳定核的研究。之后,科学家利用加速器人工生成同位素,原子核物理学与加速器技术以及同位素分离技术同时发展、成长,直至目前可以对半衰期极短的不稳定核进行研究。  该国际联合研究小组把稳定的原子核重离子射束通过高能加速,对标靶进行照射。利用“弹丸碎裂反应”和“铀238的飞行裂变”产生放射性同位素射束。特别是铀238的飞行裂变,能够从质量数50至150的范围内高效生成中子过剩同位素。  研究小组在超导环形回旋加速器、理研环形回旋加速器和固定周波型环形回旋加速器、中段环形回旋加速器构成的加速器系统中,用铀射束撞击标靶,飞行裂变后生成放射性同位素。通过增强铀射束强度,从20号元素至60号元素范围内生成中子过剩的新放射性同位素可能性大为提高。  之后,研究小组把生成的同位素通过超导放射性同位素分离生成装置(BigRIPS)的第一步,选别和分离中子过剩同位素。然后,分离后的中子过剩同位素通过BigRIPS第二步,进行新同位素的粒子识别。粒子识别是根据生成的同位素的飞行时间、能量损失和到达检测器的位置信息磁钢度测定得出。  这些新发现的同位素可能在宇宙中参与了从铁至铀的元素合成过程。特别是硒95、溴98、氪101、铷103、锶106、锶107、钇109、钯128、碲143,是在元素合成过程中具有重要位置的原子核。今后通过对铀射束增加强度,期待大量生成新的同位素,并对其半衰期和质量的测定,解破宇宙中元素合成过程之谜。
  • 第四批放射性同位素与射线装置豁免备案文件发布 赛默飞、聚光部分产品在列
    p  近日,环保部发布关于放射性同位素与射线装置豁免备案证明文件(第四批)公告,公告显示,赛默飞世儿公司的i系列自动空气颗粒监测仪、聚光科技的Synspec PM-200型颗粒物在线监测系统、武汉怡特环保科技的YT-301P型PM10自动监测仪、YT-301PB型PM2.5自动监测仪及YT-5100型扬尘在线监测系统等9家企业的相关产品中含有的放射源获的有关省份豁免备案证明文件。具体通知如下:/pp style="text-align: center "span style="color: rgb(0, 176, 240) "strong关于放射性同位素与射线装置豁免备案证明文件(第四批)的公告/strong/span/pp  根据《放射性同位素与射线装置安全和防护管理办法》(环境保护部令 第18号)第五十四条的相关规定,现将各有关省份已获得豁免备案证明文件的活动或活动中的射线装置、放射源或者非密封放射性物质(第四批)予以公告(详见附件1、2)。/pp  经我部公告的活动或活动中的射线装置、放射源或者非密封放射性物质,其豁免备案证明文书在全国有效,可不再逐一办理豁免备案证明文件。/pp  附件:1.第四批已获各有关省份豁免备案证明文件的放射性同位素汇总表/pp  2.第四批已获各有关省份豁免备案证明文件的射线装置汇总表/pp style="text-align: right "  环境保护部/pp style="text-align: right "  2018年1月15日/pp style="text-align: right "  抄送:各省、自治区、直辖市环境保护厅(局)/pp style="text-align: right "  环境保护部办公厅2018年1月16日印发/pp  附件1/pp style="text-align: center "第四批已获各有关省份豁免备案证明文件的放射性同位素汇总表/ptable border="1" cellspacing="0" cellpadding="0" width="600"tbodytr class="firstRow"td width="36"p style="text-align:center "strong序号/strong/p/tdtd width="135"p style="text-align:center "strong申请备案单位/strong/p/tdtd width="81"p style="text-align:center "strong申请备案/strong br/ strong单位类型/strong/p/tdtd width="383"p style="text-align:center "strong备 案 明 细/strong/p/tdtd width="101"p style="text-align:center "strong豁免单位类型/strong/p/tdtd width="160"p style="text-align:center "strong备案文号/strong/p/td/trtrtd width="36"p style="text-align:center "1/p/tdtd width="135"p style="text-align:center "赛默飞世尔(上海)仪器有限公司/p/tdtd width="81"p style="text-align:center "生产单位/p/tdtd width="383"p style="text-align:left "i系列自动空气颗粒监测仪中含有1枚活度小于3.7E+6Bq的碳-14放射源/p/tdtd width="101"p style="text-align:center "最终用户/p/tdtd width="160"p style="text-align:left "沪环保函〔2017〕76号 br/ 沪环保函〔2017〕95号 br/ 沪环保辐〔2017〕157号 br/ 沪环保辐〔2017〕210号/p/td/trtrtd width="36"p style="text-align:center "2/p/tdtd width="135"p style="text-align:center "聚光科技(杭州) br/ 股份有限公司/p/tdtd width="81"p style="text-align:center "生产单位/p/tdtd width="383"p style="text-align:left "Synspec PM-200型颗粒物在线监测系统,每套内含1枚活度为3.7E+5Bq的C-14放射源/p/tdtd width="101"p style="text-align:center "最终用户/p/tdtd width="160"p style="text-align:left "浙环辐备〔2017〕1101号/p/td/trtrtd width="36"p style="text-align:center "3/p/tdtd width="135"p style="text-align:center "山东海能科学仪器有限公司/p/tdtd width="81"p style="text-align:center "销售单位/p/tdtd width="383"p style="text-align:left "FlavourSpec食品风味与质量控制系统(内含1枚活度为3.7E+8Bq的H-3放射源),GC-IMS气相色谱-离子迁移谱联用系统(内含1枚活度为3.7E+8Bq的H-3放射源),AIMS离子迁移谱分析仪(内含1枚活度为3.0E+8Bq的H-3放射源),BreathSpec呼吸气体分析系统(内含1枚活度为3.0E+8Bq的H-3放射源)/p/tdtd width="101"p style="text-align:center "最终用户/p/tdtd width="160"p style="text-align:left "鲁环函〔2017〕481号/p/td/trtrtd width="36"p style="text-align:center "4/p/tdtd width="135"p style="text-align:center "武汉怡特环保科技有限公司/p/tdtd width="81"p style="text-align:center "生产单位/p/tdtd width="383"p style="text-align:left "YT-301P型PM10自动监测仪、YT-301PB型PM2.5自动监测仪及YT-5100型扬尘在线监测系统,其中各含1枚活度为3.7E+6Bq的14C放射源/p/tdtd width="101"p style="text-align:center "最终用户/p/tdtd width="160"p style="text-align:left "鄂环函〔2017〕111号/p/td/trtrtd width="36"p style="text-align:center "5/p/tdtd width="135"p style="text-align:center "北京金德创业测控技术有限公司/p/tdtd width="81"p style="text-align:center "销售单位/p/tdtd width="383"p style="text-align:left "BPU-1KM型物位开关、IPB-1K型密度计和IUB-1K型物位计中各含1枚活度为9E+5Bq的Na-22放射源/p/tdtd width="101"p style="text-align:center "最终用户/p/tdtd width="160"p style="text-align:left "鲁环函〔2016〕971号/p/td/trtrtd width="36"p style="text-align:center "6/p/tdtd width="135"p style="text-align:center "贰陆红外激光 br/ (苏州)有限公司/p/tdtd width="81"p style="text-align:center "销售单位/p/tdtd width="383"p style="text-align:left "红外光学镜片,单片内含活度小于1000Bq的钍-232放射性核素/p/tdtd width="101"p style="text-align:center "最终用户/p/tdtd width="160"p style="text-align:left "苏辐豁〔2017〕014号/p/td/trtrtd width="36"p style="text-align:center "7/p/tdtd width="135"p style="text-align:center "山东海强环保科技有限公司/p/tdtd width="81"p style="text-align:center "生产单位/p/tdtd width="383"p style="text-align:left "WIN-8A型低本底α、β测量仪使用活度为49.3Bq的Pu-239标准平面源和活度为38.1Bq的Sr/Y-90标准平面源各10枚,活度浓度为16.3Bq/g的Am-241粉末标准源和活度浓度为10.3Bq/g的K-40粉末标准源各10瓶,用于仪器的性能测试和刻度/p/tdtd width="101"p style="text-align:center "最终用户/p/tdtd width="160"p style="text-align:left "鲁环函〔2017〕480号/p/td/trtrtd width="36"p style="text-align:center "8/p/tdtd width="135"p style="text-align:center "成都迈为核监测 br/ 科技有限公司/p/tdtd width="81"p style="text-align:center "生产单位/p/tdtd width="383"p style="text-align:left "便携式数字化核素识别仪NaI探测器,每台内含1枚活度为2003Bq的Cs-137放射源/p/tdtd width="101"p style="text-align:center "最终用户/p/tdtd width="160"p style="text-align:left "川环函〔2017〕1263号/p/td/trtrtd width="36"p style="text-align:center "9/p/tdtd width="135"p style="text-align:center "成都西核仪器有限公司/p/tdtd width="81"p style="text-align:center "销售单位/p/tdtd width="383"p style="text-align:left "活度为2000Bq的137Cs+239Pu平面标准源/p/tdtd width="101"p style="text-align:center "最终用户/p/tdtd width="160"p style="text-align:left "川环函〔2017〕1725号/p/td/tr/tbody/tablepbr//p
  • 安捷伦 ICP-MS 期刊 | 水中痕量放射性同位素的新法规:使用 MS/MS 模式的 ICP-MS/MS 分离峰重叠
    ICP-MS 期刊自 1999 年创刊,每季度发布一期,集中向读者分享安捷伦 ICP-MS 在各个领域的研究进展。直至今日,ICP-MS 期刊已经推出75期,它们凝聚了安捷伦 ICP-MS 超过30年的研发精华。如今“安”家 ICP-MS 期刊在中国以及全世界范围已拥有大批粉丝。为了方便众多粉丝阅读,我们特在安捷伦官方微信上开辟了“安家 ICP-MS 期刊“专栏,并不定期向您推荐 ICP-MS 期刊精选往期内容。希望通过这些生动的研究故事,使您更好地了解安捷伦 ICP-MS 产品及其应用,以期今后安捷伦产品能够更好地服务于您,并在您的检测和科研的工作中助您实现成就。本期推荐阅读内容水中痕量放射性同位素的新法规:使用 MS/MS 模式的 ICP-MS/MS 分离峰重叠放射性同位素分布于整个环境中。一些放射性同位素(包括 Ra、Rn、Th 和 U)天然存在于岩石中的放射性矿物( 如花岗岩)中。超铀元素 Pu、Np 和 Am 等其它放射性同位素则是人造的。这些元素可能有意或无意地从核电站、工业、医疗和家用产品(如烟雾报警器)的废物处理中释放。河道中的放射性核素可能进入家庭饮用水供应,因此受到严格监管。国际标准化组织 (ISO) 近期颁布了一项新标准 ISO 20899:2018,用于使用 ICP-MS 测定水中的 239Pu、240Pu、241Pu 和 237Np。即使经过化学分离,含有 Np 和 Pu 的样品通常也含有 U。由于相邻 238U 峰拖尾,因此使用单四极杆 ICP-MS 难以进行 237Np 和 239Pu 的超痕量分析,痕量及超痕量 237Np 的测量受到样品内存在的铀的严重干扰。本文介绍了使用 Agilent 8900 ICP-MS/MS 测定10 mg/L U 基质中超痕量 Np 的方法。本方法使用配备 O2 反应气的 8900 ICP-MS/MS将 Np 质量转移为 NpO2,除了将峰尾与 238U 分离之外,还解决了可能影响 237Np 的超痕量浓度分析的各种低浓度 UHx 干扰。访问 https://www.agilent.com/zh-cn/products/icp-ms/icp-ms-systems ,了解安捷伦 ICP-MS 系统。图 1. 10 ppm 铀基质中的 237Np(NpO2 形式)校准曲线扫描下方二维码,关注“安捷伦视界”公众号,获取更多资讯。
  • 使用加速器质谱法测量岩石中的放射性核素
    几十年来,科学家们一直在研究这些早期人类祖先和他们失散已久的亲属的化石。现在,由普渡大学地质学家开发的一种年代测定方法将在斯特克方丹洞穴遗址发现的一些化石的年龄提前了100多万年。这将使它们比世界上最著名的南方古猿化石Dinkinesh(也被称为Lucy)还要古老。“人类的摇篮”是联合国教科文组织在南非的世界遗产,包括各种含化石的洞穴沉积物,包括在斯特克方丹洞穴。斯特克方丹因1936年发现了第一个成年南方古猿(一种古人类)而闻名。古人类包括人类和我们的祖先亲属,但不包括其他类人猿。从那时起,成百上千的南方古猿化石在那里被发现,包括著名的普勒斯夫人,以及被称为小脚的几乎完整的骨骼。古人类学家和其他科学家对人类摇篮中的斯特克方丹和其他洞穴遗址进行了数十年的研究,以阐明过去400万年人类和环境的进化。达里尔格兰杰是普渡大学理学院的地球、大气和行星科学教授,他是这些科学家中的一员,在一个国际团队中工作。格兰杰专门研究地质沉积物的年代测定,包括洞穴中的沉积物。作为一名博士生,他设计了一种测定洞穴沉积物年代的方法,现在全世界的研究人员都在使用这种方法。他之前在斯特克方丹的研究表明,“小脚(Little Foot)”化石的年龄约为370万年前,但科学家们仍在争论该遗址其他化石的年龄。在PNAS上发表的一项研究中,格兰杰和一组科学家发现,不仅是“小脚”,而且所有带有南方古猿的洞穴沉积物的年龄都在大约340万至370万年前,而不是科学家之前理论的200 - 250万年前。这个年龄表明这些化石属于南方古猿时代的开端,而不是接近尾声。Dinkinesh来自埃塞俄比亚,至今年龄320万岁,她的物种,非洲南方古猿,可以追溯到约390万年前。斯特克方丹是一个深而复杂的洞穴系统,保存着古人类在该地区居住的悠久历史。了解这里化石的年代可能会很棘手,因为岩石和骨头会滚到地下一个深洞的底部,而且几乎没有办法确定洞穴沉积物的年代。在东非,人们发现了许多古人类化石,东非大裂谷的火山堆积了一层一层的火山灰,这些火山灰可以确定年代。研究人员利用这些层来估计化石的年龄。在南非,尤其是在洞穴里,科学家们没有这种奢侈。他们通常使用骨头周围发现的其他动物化石或洞穴中沉积的方解石流石来估计它们的年龄。但骨头可能在洞穴中移动,年轻的流石可能沉积在古老的沉积物中,这使得这些方法可能不正确。更准确的方法是对发现化石的岩石进行年代测定。嵌入化石的混凝土状基质被称为角砾岩,是格兰杰和他的团队分析的物质。“斯特克方丹拥有世界上最多的南方古猿化石,”格兰杰说。“但是很难在它们身上找到一个好的日期。人们观察了在它们附近发现的动物化石,并比较了洞穴特征(如流石)的年龄,得到了一系列不同的日期。我们的数据所做的就是解决这些争议。这表明这些化石很古老——比我们最初认为的要古老得多。”格兰杰和他的团队使用加速器质谱法测量岩石中的放射性核素,同时还绘制了地质图,并深入了解了洞穴沉积物是如何积累的,从而确定了斯特克方丹含南方古猿沉积物的年龄。格兰杰和普渡大学稀有同位素测量实验室(PRIME实验室)的研究小组研究所谓的宇宙成因核素,以及它们可以揭示的化石、地质特征和岩石的历史。宇宙成因核素是由宇宙射线产生的极其罕见的同位素——高能粒子不断轰炸地球。这些入射的宇宙射线有足够的能量在地表岩石内部引起核反应,在矿物晶体中产生新的放射性同位素。一个例子是铝-26:铝缺少一个中子,在数百万年的时间里慢慢衰变变成镁。由于铝-26是在岩石露出地表时形成的,而不是在岩石深埋洞穴后形成的,所以PRIME实验室的研究人员可以通过测量铝-26和另一种宇宙成因核素铍-10的水平来确定洞穴沉积物(以及其中的化石)的年代。除了根据宇宙成因核素确定斯特克方丹的新年代外,研究团队还仔细绘制了洞穴沉积物的地图,展示了在20世纪30年代和40年代的挖掘过程中,不同年代的动物化石是如何混合在一起的,这导致了几十年来与之前年代的混淆。格兰杰说:“我希望这能让人们相信,这种测定年代的方法给出了可靠的结果。使用这种方法,我们可以更准确地将古人类和他们的亲属放在正确的时期,在非洲和世界其他地方。”化石的年代很重要,因为它影响了科学家对当时生活环境的理解。人类是如何以及在哪里进化的,他们是如何融入生态系统的,以及谁是他们最近的亲戚,这些都是紧迫而复杂的问题。把斯特克方丹的化石放到合适的环境中是解开整个谜题的一步。
  • 岛津公司倾情赞助“2019无机及同位素质谱学术会议”
    2019 年 9 月 20 日至 23 日,“2019 年中国质谱学会无机及同位素质谱学术会议”在赋有“林城”之美誉的贵州省贵阳市成功举办。会议由中国质谱学会(中国物理学会质谱分会)仪器专业委员会、无机质谱专业委员会和同位素质谱专业委员会联合主办,中国科学院地球化学研究所,矿床地球化学国家重点实验室承办。会议旨在增进广大质谱领域专家学者间的交流与合作,促进我国质谱事业的发展以及质谱设备研发水平的提高,会议邀请多名专家院士莅临现场做大会学术报告。岛津公司倾情赞助了此次盛会。现场传真 中国质谱学会理事长陈洪渊院士、 中国科学院地球化学研究所陈敬安副所长分别为大会致开幕词。大会开幕式由中国质谱学会秘书长谢孟峡主持。陈洪渊院士首先对莅临会议的各位代表表示热烈的欢迎和衷心的感谢,并说道会议将会共同探讨和交流质谱技术以及在各个学科领域应用的最新研究进展,以期形成自由探讨的学术氛围,让质谱以及相关的思想撞击出火花,期待颠覆性创新创造力泉涌。中国科学院地球化学研究所陈敬安副所长也对与会者表示了衷心的感谢,并预祝了大会圆满成功。中国质谱学会秘书长谢孟峡主持开幕式中国质谱学会理事长陈洪渊院士致大会开幕词中国科学院地球化学研究所陈敬安副所长致大会开幕词 为庆祝中国质谱学会成立40周年,在开幕式上,“中国质谱学会成立四十周年倒计时”仪式举行。中国质谱学会成立至今,为推动中国质谱事业的发展做出了卓越的贡献。“中国质谱学会成立四十周年倒计时”仪式传真 开幕式后,进入了大会报告环节。中科院生态环境研究中心江桂斌院士做了题为“大气细颗粒的同位素示踪技术”的报告。他在报告中介绍了针对大气细颗粒污染的毒理与健康效应开展的相关研究以及取得的成果。中科院生态环境研究中心江桂斌院士做了题为“大气细颗粒的同位素示踪技术”的报告 来自苏州大学的柴之芳院士做了题为“人类活动产生的放射性核素的质谱研究”的报告。他说到放射性同位素质谱旨在研究放射性元素及其同位素组成,广泛应用于天然核反应推研究、放射性核素追踪、含量极低同位素检测等。重要的放射性同位素质谱方法有热电离质谱、辉光放电质谱、二次离子质谱、共振电离质谱、电感耦合等离子体质谱、加速器质谱等。其中加速器质谱在近几年取得了很大的进步,是目前应用最多的放射性同位素质谱分析方法。苏州大学的柴之芳院士做了题为“人类活动产生的放射性核素的质谱研究”的报告 加拿大阿尔伯塔大学的乐晓春院士做了题为“Mass Spectrometry Advancing Environmental Health Research”的报告。他在报告中指出,研究环境暴露与健康效应都离不开新型高效的分析手段,并以元素砷为例,介绍了生命分析化学是如何推动砷的环境健康效应的研究和发展。元素砷是环境污染源之一,但砷的形态种类多达上百种,生物效应也不尽相同。因此,砷的形态分析方法对于研究砷的生物机制和环境健康效应至关重要。加拿大阿尔伯塔大学的乐晓春院士做了题为“Mass Spectrometry Advancing Environmental Health Research”的报告 岛津企业管理(中国)有限公司质谱中心的柴昌俊博士做了题为“ICPMS-2030分析单颗粒和单细胞的解决方案”的大会报告。他在报告中说到利用岛津ICPMS-2030的单颗粒分析方法对于金纳米颗粒和银纳米颗粒进行了定量表征。实验结果显示使用单颗粒ICP-MS的方法可以准确分析纳米颗粒的粒径分布,而且可以同时定量样品中溶解态和颗粒态元素。ICPMS-2030利用高通量的雾室搭配微流量进样可以实现单细胞的元素分析,得到单个细胞间的差异,并且可以以某种元素含量区分细胞群。岛津企业管理(中国)有限公司质谱中心的柴昌俊博士做了题为“ICPMS-2030分析单颗粒和单细胞的解决方案”的大会报告 岛津企业管理(中国)有限公司分析中心钟跃汉做了题为“岛津ICP-MS复杂样品应对之道”的报告。他介绍了岛津公司在应对复杂基体样品时微量进样的创新思路,并分别讲解通过两种方式实现微量进样,对高基体样品海水和土壤进行分析。展现了微量进样方式对复杂基体样品的耐受性和高灵敏检测方面的优势。岛津企业管理(中国)有限公司分析中心钟跃汉做了题为“岛津ICP-MS复杂样品应对之道”的报告岛津展台传真全体与会人员合影
  • 日核电站泄漏 多国检测到放射性物质
    日本原子能安全保安院2011年3月23日发布的照片显示了福岛第一核电站内部建筑物受损情况。  日本福岛核电站泄漏的放射性物质目前已扩散至全球。亚洲多国政府和美国都报告了来自日本受损核电站的少量辐射,但它们均表示,辐射量对公共健康没有威胁。  美国官员说,美国南部三州已在大气环境中检测到极微量的放射性物质,这些州份为:南卡莱罗纳、北卡莱罗纳以及佛罗里达州。在这3州的数个核电站监测仪器检测到了微量的放射性碘-131。  消息称,内华达州、加利福尼亚州、华盛顿州、宾夕法尼亚州以及夏威夷州也检测到了极微量的放射性同位素。  韩国国营的核安全研究所表示,包括首尔在内的几个地区监测到了放射性碘。韩国农林水产食品部说,正在监测韩国水域捕捉到的鱼类中是否存在放射性污染。  菲律宾原子能研究所(PNRI)28日首度承认已经监测到极微量的放射性同位素,但同时重申不会对人类健康造成危害。  此外,越南、俄罗斯东部太平洋沿岸地区等地也检测到微量的放射性物质。
  • 2019中国质谱学会无机及同位素质谱学术会议在林城贵阳召开
    p style="text-align: justify text-indent: 2em line-height: 1.5em "strongspan style="text-indent: 2em "仪器信息网讯/span/strongspan style="text-indent: 2em " 2019年9月21日,由中国质谱学会(中国物理学会质谱分会)仪器专业委员会、无机质谱专业委员会和同位素质谱专业委员会主办,中国科学院地球化学研究所和矿床地球化学国家重点实验室承办的2019年中国质谱学会无机及同位素质谱学术会议在贵阳召开。来自高校、科研院所、以及相关企业的业内专家300余人参加了本次会议。本届会议为期2天,共安排18个大会报告及7场分会报告。仪器信息网作为本次会议的支持媒体将对会议进行相关报道。/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "大会开幕式上,中国质谱学会理事长陈洪渊院士、 中国科学院地球化学研究所陈敬安副所长分别为大会致开幕词。大会开幕式由中国质谱学会秘书长谢孟峡主持。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/339a6913-0ed5-4c17-8bda-720fb43dd1bf.jpg" title="现场_6.jpg" alt="现场_6.jpg"//pp style="text-align: center text-indent: 2em line-height: 1.5em "2019年中国质谱学会无机及同位素质谱学术会议现场/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/e8a89573-2cfe-473e-9b7a-3c5d5c02710d.jpg" title="陈洪渊2.jpg" alt="陈洪渊2.jpg"//pp style="text-align: center text-indent: 2em line-height: 1.5em "中国质谱学会理事长陈洪渊院士致开幕词/pp style="text-align: justify text-indent: 2em line-height: 1.5em "陈洪渊院士首先对莅临会议的各位代表表示热烈的欢迎和衷心的感谢,本届会议旨在共同探讨和交流质谱技术以及在各个学科领域应用的最新研究进展,以期形成自由探讨的学术氛围,让质谱以及相关的思想撞击出火花,期待颠覆性创新创造力泉涌。此外,陈院士还提到,2020年9月,中国质谱学会将迎来成立四十周年庆典,并将在杭州召开2020年中国质谱学术大会。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/a1d368b5-35b6-47f2-be0f-5ea3a79a53fa.jpg" title="陈敬安JPG_3.jpg" alt="陈敬安JPG_3.jpg"//pp style="text-align: center text-indent: 2em line-height: 1.5em "中国科学院地球化学研究所陈敬安副所长致欢迎词/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="text-indent: 2em "此外,中国质谱学会开幕式上还举行了“中国质谱学会成立四十周年倒计时”启动仪式。中国质谱学会在1980年9月份在杭州成立,至今已经39年,中国质谱学会成立至今,为推动中国质谱事业的发展做出了卓越的贡献。/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/11f3c219-807d-4aaf-86fc-40a3b8f6f0d5.jpg" title="倒计时.jpg" alt="倒计时.jpg"//pp style="text-align: center text-indent: 2em line-height: 1.5em "中国质谱学会成立四十周年倒计时启动仪式/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/3790be67-4912-4eb9-88ed-d4cb1529fb06.jpg" title="谢_1.jpg" alt="谢_1.jpg"//pp style="text-indent: 2em line-height: 1.5em text-align: center "中国质谱学会秘书长谢孟峡主持开幕式/pp style="text-align: justify text-indent: 2em line-height: 1.5em "开幕式后是大会报告环节,中科院生态环境研究中心江桂斌院士、苏州大学柴之芳院士、加拿大阿尔伯塔大学乐晓春院士、清华大学张新荣教授以及中国核工业集团公司李金英研究员等重量级专家带来了精彩的大会报告,全方位展示了我国质谱技术及应用的前沿研究进展。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "img src="https://img1.17img.cn/17img/images/201909/uepic/72d620dd-bd18-4cf5-b06d-1cc3f9613768.jpg" title="江__5.jpg" alt="江__5.jpg" style="text-align: center max-width: 100% max-height: 100% "//pp style="text-align: center text-indent: 2em line-height: 1.5em "中科院生态环境研究中心 江桂斌院士/pp style="text-align: center text-indent: 2em line-height: 1.5em "报告题目《大气细颗粒的同位素示踪技术》/pp style="text-align: justify text-indent: 2em "相关研究表明,大气PM2.5污染具有严重的健康危害,目前已有充分的研究证据表明空气污染会导致肺癌,大气细颗粒一年导致700万人口早逝。PM2.5细颗粒能够攻击大脑,同时与肺癌、糖尿病以及早产率等有密切的关系。/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "江桂斌在报告中介绍了针对大气细颗粒污染的毒理与健康效应开展的相关研究以及取得的成果。其课题组开发了ITA方法研究细颗粒组成,通过AhR信号通路影响研究细颗粒毒理机制;基于不同污染源具有不同的Si同位素指纹,进行大气PM2.5的溯源研究,并建立了同位素分馏的高精度方法。其课题组也通过Fe的天然同位素指纹示踪技术进行人胸腔积液中外源性颗粒物的发现与溯源的研究。最后,江桂斌表示,目前的研究对PM2.5毒性与健康危害的认识程度还不完全,对细颗粒中与毒性相关的组分仍不明确,应该发展更多类型的同位素指纹分析的方法,以期阐明外源颗粒物与疾病的关系。/span/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/6b96c442-7213-4db9-b441-28216d7aea8d.jpg" title="柴_8.jpg" alt="柴_8.jpg"//pp style="text-align: center text-indent: 2em line-height: 1.5em "苏州大学 柴之芳院士/pp style="text-align: center text-indent: 2em line-height: 1.5em "报告题目《人类活动产生的放射性核素的质谱研究》/pp style="text-align: justify text-indent: 2em line-height: 1.5em "放射性同位素质谱旨在研究放射性元素及其同位素组成,广泛应用于天然核反应推研究、放射性核素追踪、含量极低同位素检测等。重要的放射性同位素质谱方法有热电离质谱、辉光放电质谱、二次离子质谱、共振电离质谱、电感耦合等离子体质谱、加速器质谱等。其中加速器质谱在近几年取得了很大的进步,是目前应用最多的放射性同位素质谱分析方法。我国目前的加速器质谱中心有中国原子能研究院、北京大学、西安加速器质谱中心以及太原辐射防护研究院等。span style="text-indent: 2em "柴之芳在报告中介绍了一些为测定放射性元素开发的方法及装置。/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/cc76ef76-b3fe-4b59-8981-fc1c95b601b9.jpg" title="李志明7.jpg" alt="李志明7.jpg"//pp style="text-align: center text-indent: 2em line-height: 1.5em "span style="text-indent: 2em "西北核技术研究所研究员李志明主持大会报告/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="text-indent: 2em "此次会议也得到了安捷伦、岛津、赛默飞、普发真空、德国耶拿、Isotopx、谱育科技、天瑞仪器、钢研纳克、施其勒司、上海凯来、CAMECA等仪器设备厂商的大力支持。/span/p
  • 这些科学家照亮同位素质谱发展之路
    p  质谱技术成为分析科学的重要组成部分是从同位素的发现开始,并伴随同位素分析、研究和应用而发展。从1912年汤姆逊研制第一台简易同位素质谱仪到现在,共有13个诺贝尔奖授予了在质谱技术的诞生、发展以及应用方面有杰出贡献的科学家。可见,质谱技术在推动人类社会进步中发挥了重要的作用。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong一.质谱技术相关的诺贝尔奖获奖人及其成就:/strong/span/pp style="text-align: justify "  1. strong约瑟夫· 约翰· 汤姆逊,/strongstrong1906年诺贝尔物理奖/strong。揭示了电荷在气体中的运动。/pp style="text-align: justify "  2.strong威廉· 卡尔· 维尔纳· 奥托· 弗里茨· 弗兰茨· 维恩,/strongstrong1911年诺贝尔物理奖/strong。1893年,维恩提出波长随温度改变的定律,后来被称为维恩位移定律。1894年发表了一篇关于辐射的温度和熵的论文,将温度和熵的概念扩展到了真空中的辐射,在这篇论文中,他定义了一种能够完全吸收所有辐射的理想物体,并称之为黑体。1896年发表了维恩公式,即维恩辐射定律,给出了这种确定黑体辐射的关系式,提供了描述和测量高温的新方法。虽然后来被证明维恩公式仅适用于短波,但维恩的研究使得普朗克能够用量子物理学方法解决热平衡中的辐射问题。/pp style="text-align: justify "  3. strong弗朗西斯· 威廉· 阿斯顿/strong,strong1922年诺贝尔化学奖/strong,汤姆逊和阿斯顿使用威廉· 维恩发明的方法,通过磁场使阳极射线的粒子发生偏转,并通过电场使具有不同电荷和质量的离子分隔开,发现了同位素。/pp style="text-align: justify "  4. strong哈罗德· 尤里,/strongstrong1934年诺贝尔化学奖/strong 1931年年底,尤里教授及其团队发现了重氢。根据尤里的建议,重氢被命名为DEUTERUM(中文译为氘),符号D,在希腊语中是“第二”的意思。后来英、美的科学家们又发现了质量为3的tritium,中文译为氚,符号T,是具有放射性的另一重要氢同位素。/pp style="text-align: justify "  5.strong乔治· 佩杰特· 汤姆生/strongstrong,/strongstrong1937年诺贝尔物理学奖 /strong证实电子是一种波而被授予诺贝尔物理学奖。/pp style="text-align: justify "  6. strongHans Georg Dehmelt/strong,strong1989年诺贝尔物理奖/strong,发明离子阱技术。/pp style="text-align: justify "  7.strong沃尔夫冈· 鲍尔,1989年诺贝尔物理奖/strong,发明离子阱技术,并于1947年成功建成一台6mev的电子螺旋加速器。/pp style="text-align: justify "  8.strong小罗伯特· 卡尔,1996年诺贝尔化学奖/strong,发现C60。1985年9月与美国人斯莫利(R.E.Smalley)、英国人克鲁托(H.W.Kroto)一起,在氦气中气化石墨,产生碳原子束。从气化中他们获得了一些与含40-100个以上偶数碳原子相应的未知形式碳的谱线。从而他们发现了碳元素的第三种存在形式—C60(又称“富勒烯”“巴基球”),他们命名为“富勒烯”。这种独特结构的发现创立了一个崭新的化学分支。为此,他与克罗托、斯莫利三人共获1996年诺贝尔化学奖。/pp style="text-align: justify "  9. strong哈罗德· 克罗托,1996年诺贝尔化学奖/strong,发现C60)。/pp style="text-align: justify "  10. strong里查德· 斯莫里,1996年诺贝尔化学奖/strong,发现C60)。/pp style="text-align: justify "  11.strong中国化学家李远哲,1996年诺贝尔化学奖/strong,将交叉分子束实验方法应用于一般的化学反应,特别是研究较大分子的化学反应,并利用激光激发已被加速但尚未碰撞的分子或原子,以此控制化学反应的类型。/pp style="text-align: justify "  12.strong约翰· 本内特· 费恩,2002年诺贝尔化学奖。/strong发明了对生物大分子进行确认和结构分析的方法。/pp style="text-align: justify "strong  13. strong田中耕一 ,2002年诺贝尔化学奖/strong,发明基质辅助激光解吸离子化。/strong/pp style="text-align: justify "  span style="color: rgb(0, 112, 192) "strong二. 有关同位素的基本概念/strong/span/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 0, 0) "1、同位素(Isotope): 具有相同质子数,不同中子数的同一元素的不同核素。/span/pp style="text-align: justify "  2、稳定同位素(Stable isotope)/pp style="text-align: justify "  同位素可分为两大类:放射性同位素(radioactive isotope)和稳定同位素(stable isotope)。凡能自发地放出粒子并衰变为另一种同位素者为放射性同位素,无可测放射性的同位素是稳定同位素其中一部分是放射性同位素衰变的最终稳定产物。/pp style="text-align: justify "  3、同位素丰度(Isotope abundance)/pp style="text-align: justify "  ①绝对丰度:指某一同位素在所有各种稳定同位素总量中的相对份额。/pp style="text-align: justify "  ②相对丰度:指同一元素各同位素的相对含量。例如12C=98.892%,13C=1.108%。大多数元素由两种或两种以上同位素组成, 少数元素为单同位素元素 例如19F=100%/pp style="text-align: justify "  4、R值和δ值/pp style="text-align: justify "  ①一般定义同位素比值R为某一元素的重同位素原子丰度与轻同位素原子丰度之比.例如D/H、13C/12C、34S/32S等,由于轻元素在自然界中轻同位素的相对丰度很高,而重同位素的相对丰度都很低,R值就很低且冗长繁琐不便于比较,故在实际工作中通常采用样品的δ值来表示样品的同位素成分。/pp style="text-align: justify "  ②样品(sq)的同位素比值Rsq与一标准物质(st)的同位素比值(Rst)比较。比较结果称为样品的δ值其定义为:/pp style="text-align: justify "  δ(‰)=(Rsq/Rst-1)× 1000/pp style="text-align: justify "  即样品的同位素比值相对于标准物质同位素比值的千分差/pp style="text-align: justify "  span style="color: rgb(0, 112, 192) "strong三. 常见同位素质谱仪分类:/strong/span/pp style="text-align: justify "span style="color: rgb(0, 112, 192) "/span img title="同位素质谱仪分类.png" alt="同位素质谱仪分类.png" src="https://img1.17img.cn/17img/images/201812/uepic/7e26b4f3-9621-458b-b490-ee4ea2da4065.jpg"//pp style="text-indent: 2em "此处列出部分在仪器信息网参展同位素仪:/pp style="text-align: center "img title="赛默飞Delta V.jpg" alt="赛默飞Delta V.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/3044fd02-6b97-427e-b37e-765456c1a477.jpg"//pp style="text-align: center "赛默飞 DELTA V Advantage气体同位素质谱仪/pp  可与元素分析仪、GasBench、气相色谱或液相色谱等装置联用,用于测定C、N、S、H、O等多元素的稳定同位素比值,可用于食品安全、农业、环境、地质、海洋等领域,进行食品真实性鉴定、原产地判别以及环境污染物溯源等研究。/pp详情请点击:a href="https://www.instrument.com.cn/netshow/C112805.htm" target="_blank"https://www.instrument.com.cn/netshow/C112805.htm/a/pp style="text-align: center " img title="Elementar isoprime.jpg" alt="Elementar isoprime.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/32f67b6c-2e35-4b2a-8f7d-810262f5faad.jpg"//pp style="text-align: center "Elementar isoprime 100r稳定同位素质谱 /pp  100V超宽动态范围信号放大器,有利于高C:N, C:S 比样品的测定 离子源底置分子涡轮泵、源内磁铁以及氧化钍保护灯丝,确保离子源长期在零交叉污染、高灵敏度、长寿命下连续工作,提高质谱耐用性 可扩展多杯接收器,最多可扩展至10杯,用于二元同位素特征表征(clumped Isotope) 快速质谱峰跳跃,可以胜任CHNS四元素同时测定 标配皮拉尼真空规和潘宁真空规,实时反馈系统真空状态,进行自动诊断以及安全锁定保护 IonVantage质谱工作站软件,兼容可控全部外设,项目组管理模式,方法设定简便易行,支持脚本控制,增加第三方外设。/pp详情请点击:a href="https://www.instrument.com.cn/netshow/C181402.htm" target="_blank"https://www.instrument.com.cn/netshow/C181402.htm/a/pp style="text-align: justify "span style="color: rgb(0, 112, 192) "/span 其他未列入本文的仪器信息可点击此处了解:a href="https://www.instrument.com.cn/zc/49.html" target="_blank"https://www.instrument.com.cn/zc/49.html/a/pp style="text-align: justify "span style="color: rgb(0, 112, 192) "strong /strong/span/pp style="text-align: justify " /p
  • 铀系放射性核素激光质谱分析技术取得突破
    铀系放射性核素(230Th-231Pa-232Th-238U)是海洋碎屑沉积物定年、评估沉积颗粒侧向迁移程度、以及重建粉尘通量、表层海洋输出生产力、深海洋流流速、深海氧化还原状态所依赖的重要指标。对于晚第四纪深海沉积物中超痕量的230Th和231Pa而言,其浓度范围一般在几到几百pg/g,是自然界中丰度最低的一类核素。传统分析230Th和231Pa含量的溶液方法化学处理流程复杂、耗时久,溶样和化学分离时Pa的回收率难以保证稳定。开展沉积物230Th和231Pa含量的可靠分析,还需精确标定人工放射性核素(229Th、233Pa)的混合稀释剂溶液,但233Pa的半衰期大约只有一个月,每批次的实验分析均需重新配制和标定稀释剂溶液。因此,常规开展沉积物230Th和231Pa的分析受到了极大限制,目前国内外仅有少数单位可以进行此类分析。为了深入开展海洋沉积物铀系核素的地球化学研究,充分发挥铀系核素的古海洋应用潜力,显然需要更高效、便捷的分析方法。本研究另辟蹊径,利用激光剥蚀-多接收质谱技术来突破上述分析难题。海洋沉积物基质复杂,结构松散,无法直接进行激光剥蚀。为此我们首先开发了海洋沉积物高温熔融玻璃化的方法。在中国科大黄方教授课题组建立的火山岩粉末小样品玻璃化方法的基础上,本研究针对海洋沉积物富高温挥发组分(如碳酸钙、硫酸盐等)的特点进行了改进。在得到均一硅酸盐玻璃样品后,我们进一步建设了激光剥蚀质谱分析方法。由于质谱中232Th拖尾对丰度极低的230Th、特别是231Pa的信号存在显著干扰,为了可靠获取U-Th-Pa在质谱仪中的分馏,需制备富集230Th和231Pa但不受232Th拖尾影响的玻璃标样。我们利用处于铀系衰变平衡的钙铀云母矿物,制备了不含232Th(低于检测限)、且富集231Pa的玻璃标样。利用太平洋深海表层沉积物,制备了富230Th而232Th拖尾可以忽略的玻璃标样。同时,基质效应、拖尾干扰稳定性、多原子干扰、离子计数器在超低计数时的性能等,均可能对230Th和231Pa的信号存在不确定的影响。事实上,以往的激光剥蚀质谱分析典型的浓度测量范围在ng/g及以上,对于自然界中极低含量的231Pa,此前从未报道过激光剥蚀质谱分析。本研究对这些不确定性进行了系统验证,将激光剥蚀硅酸盐典型分析的元素/同位素含量测试范围向下拓展了2-3个数量级。我们对一系列已知230Th和231Pa含量的海洋沉积物样品(利用溶液稀释剂法进行测试)进行了分析对比,进一步验证了极低丰度下海洋沉积物230Th和231Pa激光质谱分析测试的可靠性。本研究建立的方法(图1)可以实现多种类型的海洋沉积物中230Th、231Pa、232Th、238U的快速准确测量,极大提高了样品处理与测试效率。对存在230Th过剩的海洋沉积物样品的230Th/232Th分析的准确度在±2%以内,而对230Th衰变平衡的样品(230Th含量低至数十pg/g),230Th/232Th的准确度在±5%以内。231Pa/232Th比值的分析的准确度在±12%以内(231Pa含量低至几pg/g, 溶液稀释剂分析准确度一般在百分之几的水平)。因此,海洋沉积物万亿分之一浓度水平的铀系核素激光质谱分析技术完全满足实际需求,具有广泛的应用前景。图1.本研究分析方法的主要流程上述研究成果近期以“Determination of picogram-per-gram concentrations of 231Pa and 230Th in sediments by melt-quenching and laser ablation mass spectrometry”为题,发表于分析化学领域Nature Index期刊《Analytical Chemistry》。南京大学博士研究生郑健帆为论文的第一作者,陈天宇教授为论文的通讯作者。南京大学内生金属矿床成矿机制研究国家重点实验室及关键地球物质循环前沿科学中心为论文的第一和通讯单位,合作单位包括青岛海洋科学与技术试点国家实验室、布里斯托尔大学、明尼苏达大学、自然资源部海洋一所。该论文得到了西太平洋地球系统多圈层相互作用重大研究计划等基金项目的联合资助。
  • 铀系放射性核素激光质谱分析技术取得突破
    铀系放射性核素(230Th-231Pa-232Th-238U)是海洋碎屑沉积物定年、评估沉积颗粒侧向迁移程度、以及重建粉尘通量、表层海洋输出生产力、深海洋流流速、深海氧化还原状态所依赖的重要指标。对于晚第四纪深海沉积物中超痕量的230Th和231Pa而言,其浓度范围一般在几到几百pg/g,是自然界中丰度最低的一类核素。传统分析230Th和231Pa含量的溶液方法化学处理流程复杂、耗时久,溶样和化学分离时Pa的回收率难以保证稳定。开展沉积物230Th和231Pa含量的可靠分析,还需精确标定人工放射性核素(229Th、233Pa)的混合稀释剂溶液,但233Pa的半衰期大约只有一个月,每批次的实验分析均需重新配制和标定稀释剂溶液。因此,常规开展沉积物230Th和231Pa的分析受到了极大限制,目前国内外仅有少数单位可以进行此类分析。为了深入开展海洋沉积物铀系核素的地球化学研究,充分发挥铀系核素的古海洋应用潜力,显然需要更高效、便捷的分析方法。本研究另辟蹊径,利用激光剥蚀-多接收质谱技术来突破上述分析难题。海洋沉积物基质复杂,结构松散,无法直接进行激光剥蚀。为此我们首先开发了海洋沉积物高温熔融玻璃化的方法。在中国科大黄方教授课题组建立的火山岩粉末小样品玻璃化方法的基础上,本研究针对海洋沉积物富高温挥发组分(如碳酸钙、硫酸盐等)的特点进行了改进。在得到均一硅酸盐玻璃样品后,我们进一步建设了激光剥蚀质谱分析方法。由于质谱中232Th拖尾对丰度极低的230Th、特别是231Pa的信号存在显著干扰,为了可靠获取U-Th-Pa在质谱仪中的分馏,需制备富集230Th和231Pa但不受232Th拖尾影响的玻璃标样。我们利用处于铀系衰变平衡的钙铀云母矿物,制备了不含232Th(低于检测限)、且富集231Pa的玻璃标样。利用太平洋深海表层沉积物,制备了富230Th而232Th拖尾可以忽略的玻璃标样。同时,基质效应、拖尾干扰稳定性、多原子干扰、离子计数器在超低计数时的性能等,均可能对230Th和231Pa的信号存在不确定的影响。事实上,以往的激光剥蚀质谱分析典型的浓度测量范围在ng/g及以上,对于自然界中极低含量的231Pa,此前从未报道过激光剥蚀质谱分析。本研究对这些不确定性进行了系统验证,将激光剥蚀硅酸盐典型分析的元素/同位素含量测试范围向下拓展了2-3个数量级。研究者对一系列已知230Th和231Pa含量的海洋沉积物样品(利用溶液稀释剂法进行测试)进行了分析对比,进一步验证了极低丰度下海洋沉积物230Th和231Pa激光质谱分析测试的可靠性。本研究建立的方法(图1)可以实现多种类型的海洋沉积物中230Th、231Pa、232Th、238U的快速准确测量,极大提高了样品处理与测试效率。对存在230Th过剩的海洋沉积物样品的230Th/232Th分析的准确度在±2%以内,而对230Th衰变平衡的样品(230Th含量低至数十pg/g),230Th/232Th的准确度在±5%以内。231Pa/232Th比值的分析的准确度在±12%以内(231Pa含量低至几pg/g, 溶液稀释剂分析准确度一般在百分之几的水平)。因此,海洋沉积物万亿分之一浓度水平的铀系核素激光质谱分析技术完全满足实际需求,具有广泛的应用前景。图1.本研究分析方法的主要流程上述研究成果近期以“Determination of picogram-per-gram concentrations of 231Pa and 230Th in sediments by melt-quenching and laser ablation mass spectrometry”为题,发表于分析化学领域Nature Index期刊《Analytical Chemistry》。南京大学博士研究生郑健帆为论文的第一作者,陈天宇教授为论文的通讯作者。南京大学内生金属矿床成矿机制研究国家重点实验室及关键地球物质循环前沿科学中心为论文的第一和通讯单位,合作单位包括青岛海洋科学与技术试点国家实验室、布里斯托尔大学、明尼苏达大学、自然资源部海洋一所。该论文得到了西太平洋地球系统多圈层相互作用重大研究计划等基金项目的联合资助。
  • 基于海洋放射性核素时空演化体系的海洋核安全评估技术
    基于海洋放射性核素时空演化体系的海洋核安全评估技术林武辉1,5,杜金秋2,拓飞3,曹少飞4,张翊邦5,祁第1,陈立奇1,余克服5(1. 集美大学港口与海岸工程学院 极地与海洋研究院,厦门 361021;2. 国家海洋环境监测中心,大连 116023; 3.中国疾病预防控制中心辐射防护与核安全医学所,北京 100088;4. 中国辐射防护研究院,太原 030006;5. 广西大学 海洋学院,南宁 530004)摘要:本文指出全面构建海洋中放射性核素本底基线的时空演化体系是海洋核安全评估的基石,提出本底基线法、活度限值法和剂量限值法三种海洋核安全评估技术,并应用于福岛核事故后污染最严重的核心海区——港口区,定量剖析港口区的海洋核污染历史与现状,有利于评估过去12年以来日本福岛核电站修复进程中相关修复措施的有效性。之后,本文指出在利用海洋数字孪生技术的基础上,针对上述三种海洋核安全评估技术对应提出从寻找人类核活动历史的可靠“档案馆”、健全海洋放射性核素的基准/标准限值和探索长期低剂量生物辐射效应与风险三个角度展望未来海洋核安全评估技术需求与发展方向,以期为国内外新形势下我国海洋核安全评估与管理提供一定借鉴。核安全是核能发展与核技术利用的生命线。自1984年成立国家核安全局以来,我国已经形成法律、条例、部门规章、标准、导则等不同层次的核安全制度体系[1],以保护人类和环境免受电离辐射危害。核安全和深海安全是总体国家安全观的有机组成,二十大报告中也明确指出“强化……核、太空、海洋等安全保障体系建设”。在加快建设海洋强国战略背景下,海洋核安全也应该是国家安全保障体系的重要环节。1. 新形势下的海洋核安全需求海洋占地球表面积约71%,占地球总水量约97%,是地球气候的重要调节器,也为人类生存和发展提供了重要的资源和生态服务功能[2]。然而,20世纪人类大气核试验产生69%的人工放射性核素137Cs(780 PBq)直接沉降进入海洋[3],部分沉降进入陆地环境中的人工放射性核素通过河流仍在持续不断输入海洋[4, 5];福岛核事故泄漏的放射性核素总量的80%最终进入太平洋[6];过去60多年来,英国和法国的乏燃料后处理厂也一直向北大西洋和北冰洋排放137Cs、129I、236U等人工放射性核素[7-13]。日本在2023年8月24日已经启动福岛核污水排海计划,预计持续30年[14, 15]。海洋数值模拟显示,福岛核污水将通过海洋环流逐步迁移扩散至全球海域,未来也将进入我国海域[16, 17]。此外,在复杂的国际形势下,我国周边海域日益频繁的核动力航母和核潜艇活动也有可能增加海洋核污染风险。2023年修订通过的《中华人民共和国海洋环境保护法》中首次新增“加强海洋辐射环境监测”。因此,海洋核安全具有重要的研究意义和强烈的社会需求。2. 全面构建海洋中放射性核素本底基线的时空演化体系天然放射性核素(比如宇生放射性核素14C、原生放射性核素238U等)通过河流、大气沉降和地下水等自然过程,持续不断地进入海洋;核电站、乏燃料后处理厂、核医学等活动以及日本福岛核事故所产生的人工放射性核素也持续排入海洋[18]。当今海洋存在几十种天然和人工放射性核素,不同核素活度水平从104 Bq/m3到10-5 Bq/m3[19],相差9个数量级。海洋中同一种放射性核素也存在一定的时空分布特征。比如,自20世纪60年代美苏停止大气核试验以来,我国海水中人工放射性核素90Sr随着时间总体呈现指数下降趋势[4]。空间上海洋中人工放射性核素存在“双峰型”纬向分布特征,即南北半球40°—60°的纬度带存在全球落下灰(Global fallout)活度高值[20]。由于切尔诺贝利核事故和英法乏燃料后处理厂运行的影响,北欧海域中90Sr、137Cs、129I、239+240Pu等人工放射性核素均显著高于其它海域[21-23]。海水中90Sr和137Cs的活度随深度增加,总体活度呈现下降趋势,而海水中239+240Pu却经常出现次表层峰值现象[24]。精准甄别海洋中人为新增放射性核素的种类与含量不仅是异常辐射信号判别与不同人类核活动溯源技术的前提,也是海洋核安全评估的核心。过去十多年来,作者和团队已经围绕海洋中多种介质(海水、沉积物、生物、悬浮颗粒物、大气等)的210Po[25]、210Pb[25]、234Th[26]、238U[27]、226Ra[27]、228Ra[28]、228Th[28]、232Th[27]、40K[27]、90Sr[4]、137Cs[29]、239,240Pu[29]、14C[29]、3H[15]等十多种天然和人工放射性核素,从放射性核素的源汇过程及其物理—海洋生物地球化学调控机制的角度长期开展海洋与核技术的多学科交叉研究,初步构建海洋放射性核素本底基线的时空演化体系。针对海洋中放射性核素的时空演化历史数据,国际上IAEA与日本筑波大学已经建立Marine Radioactivity Information System (MARIS)[30, 31]与Historical Artificial Radionuclides in the Marine Environment (HAM-Global 2021)[32-34]两个数据库。然而,MARIS和HAM数据库中我国辽阔海域放射性核素的历史资料数据却极度缺乏。我国海洋放射性核素监测工作始于20世纪60年代的大规模大气核爆。在20世纪60~90年代期间,卫生部门李树庆、中国科学院海洋研究所李培泉和原国家海洋局第三海洋研究所蔡福龙等人开展海洋中放射性核素研究[35-37];唐森铭和商照荣重点对20世纪中后期我国海域放射性调查进行总结[38]。我国历次海洋污染基线调查积累了部分海洋放射性监测数据。滨海核电站建设和运行过程中也持续开展海洋放射性监测。虽然我国生态环境部门、自然资源部门、卫生系统、中国科学院与高校系统、地方政府部门和核电公司等不同机构基于业务管理和科研的需求已经积累一些海洋放射性监测的历史数据,但数据零散分布于多个不同管辖部门,不仅缺乏统一的全国性海洋放射性核素监测数据库,而且缺乏基于时空演化视角的系统分析,不利于数据挖掘、解译、利用和管理。总之,全面构建海洋放射性核素本底基线的时空演化体系则是海洋核安全评估的基石。中国近海放射性核素本底基线的时空演化体系构建将有助于科学评价我国滨海核电和其它滨海核设施的影响[4]。开阔大洋放射性核素本底基线的时空演化体系构建可以用于评价其它国家人类核活动(核电站事故、核试验、核材料的海洋倾倒、核潜艇与核动力航母活动等)的影响,并对我国海域的潜在影响进行预报与预警评估,也是我国维护国家安全和人民生命健康、深度参与全球海洋治理、构建海洋命运共同体的重要体现。因此,全面构建海洋中放射性核素本底基线的时空演化体系对于海洋核安全具有重要意义。3. 海洋核安全评估技术活度与剂量是定量表征放射性核素的独特物理量,不同于元素和同位素的常见表征方式。在海洋核安全评估中,活度浓度和剂量率是重要的定量参数,对应常见单位为Bq/m3(或者Bq/kg)和Gy/h(或者Sv/h)。为此,本文总结提出本底基线法、活度限值法和剂量限值法开展海洋核安全评估。3.1 本底基线法自20世纪中叶以来,人类在核能发展与核技术利用的进程中已经产生大量的人工放射性核素[20]。其释放进入地球环境中的长半衰期人工放射性核素(比如239,240Pu、137Cs等)甚至被视为定义“人类世”(继全新世后,人类活动作为重要地质营力所主导的地质新时代)的重要代用指标[20, 29]。全面构建海洋中放射性核素本底的时空演化体系,准确掌握海洋中人工放射性核素的历史本底基线水平,是进一步精准甄别人为新增放射性核素和开展海洋核安全评估的前提。短半衰期的人工放射性核素(比如131I、134Cs、106Ru、110mAg等)通常不存在于天然环境本底之中,其定性或者定量的异常检出可以直接指示短期内人为新增的海洋核污染源(比如核事故、核潜艇活动等)。中长半衰期的人工放射性核素(比如90Sr、137Cs、239,240Pu、129I等)则需要考虑人类核活动的历史排放而残留的本底基线的时空演化特征后,借鉴人为新增信号和本底噪声处理技术,开展人为新增海洋核污染源的定量甄别。此外,核素活度比值(比如134Cs/137Cs、90Sr/137Cs等)和原子比值(比如129I/127I、240Pu/239Pu等)也常作为核素特征指纹,指示判别不同人类核活动源项。3.2 活度限值法不同放射性核素存在不同程度的放射毒性,比如极毒组的239Pu、高毒组的90Sr、中毒组的137Cs、低毒组的3H等。在海洋核安全评估过程中,法律法规和标准规程等对海洋中不同毒性的放射性核素活度限值做出一些规定[39, 40]。比如,福岛核事故后日本政府规定海产品中134+137Cs的活度限值为100 Bq/kg[12]。我国的海水水质标准(GB3097-1997)和食品中放射性物质限制浓度标准(GB14882-94)分别规定了海水和海产品中部分放射性核素的活度限值。我国海洋沉积物尚没有相应放射性核素标准限值规定。鉴于部分地区经常采用海砂作为建筑材料,我们可以参考建筑材料放射性核素限量(GB6566-2010)的部分放射性核素的活度限值标准,评估海洋沉积物中的放射性核素。值得注意的是,国际上不同组织机构(国际原子能机构、世界卫生组织、国际粮农组织)和地区(中国、欧盟、美国、日本等)基于科学认识、国情现状和社会发展需求等综合因素,对相同介质中的同种放射性核素活度限值的规定经常存在一定差异[19, 40]。3.3 剂量限值法处于不稳定状态的放射性核素发生衰变并发射不同能量的α、β、γ粒子。活度可以衡量单位时间内放射性核素发射的粒子数,剂量则更精细刻画不同类型的粒子所产生的能量沉积和危害。比如,我国的电离辐射防护与辐射源安全基本标准(GB18871-2002)中规定公众的年有效剂量为1 mSv。针对海洋生物,欧盟开发的ERICA软件推荐10 μGy/h的剂量率限值作为筛选阈值(screening level)[41]。IAEA、ICRP、美国和加拿大等也推荐不同的剂量率限值(40~400 μGy/h)用以评估放射性核素对海洋生物的影响[42]。截至目前,我国法规标准尚未涉及放射性核素对海洋生物的剂量限值规定。4. 日本福岛核电站港口区的海洋核安全评估日本福岛核事故已经泄漏大量人工放射性核素进入海洋[6],福岛核污染水也已经启动排入太平洋[14]。这些放射性核素可能通过海洋水文动力驱动下的“随波逐流”和海洋生物洄游驱动下的“搭乘便车”等过程进入我国海域[12]。作为福岛核污水排海的利益攸关方,我国公众和政府始终高度关注由此引发的海洋核安全问题。距离福岛第一核电站最近的港口区(图1a,1 km范围内)是日本福岛核事故后污染最严重的海域。港口区属于日本领海,其它国家都无法进行采样而获取相关数据。港口区的海洋核污染历史与现状不仅是世界了解福岛核事故后海洋核污染的重要窗口,而且直接反映日本福岛核电站修复进程与修复措施的有效性。本文聚焦福岛核事故后污染最严重的海区——港口区,系统汇总IAEA的MARIS数据库、日本东电公司(TEPCO)、日本经济产业省(METI)和日本原子能规制委员会(NRA)等多方的大量数据,全面构建福岛核事故前后海水中137Cs的历史活度曲线(图1b),利用本底基线法、活度限值法和剂量限值法,联合开展海洋核安全评估。本底基线法显示,福岛核事故后日本福岛附近海域的海水137Cs活度从1.3 Bq/m3骤升至1.9×1012 Bq/m3(图1b中红色箭头)。截至2023年9月的最新数据,港口区海水中137Cs活度为5.1×103 Bq/m3,仍然比2011~2015年期间我国海域的海水中137Cs平均活度(1.05 Bq/m3)高3个数量级。值得警惕的是,2016年以来福岛港口区海水中137Cs活度并没有显著下降趋势,甚至出现多次周期性异常升高事件。活度限值法显示,2016~2023年期间港口区海水中137Cs平均活度(6943 Bq/m3)高于我国海水水质标准(GB3097-1997)中海水137Cs活度限值(700 Bq/m3)。日本监测数据显示港口区的海洋鱼类通过生物富集吸收海水中高浓度的137Cs,进一步导致部分鱼类体内137Cs(1.8×104 Bq/kg)显著超过日本规定的限值标准(100 Bq/kg)[43]。本文基于港口区的海水中137Cs活度数据,利用欧盟开发的ERICA软件开展海洋鱼类的辐射剂量评估。福岛核事故后海水中137Cs峰值活度(1.9×1012 Bq/m3)可以导致游泳鱼类和底栖鱼类的辐射剂量率为2.9×107 μGy/h和3.1×109 μGy/h,均大大超出欧盟推荐的剂量率筛选阈值(10 μGy/h)。2016~2023年期间港口区海水中137Cs平均活度(6943 Bq/m3)对底栖鱼类产生的剂量率为11.2 μGy/h,也高于欧盟推荐的剂量率筛选阈值(10 μGy/h)。因此,三种海洋核安全评估技术获得的定量评估结果均显示,港口区的海洋核污染仍然较为严重。图1 中国海、日本福岛近海、福岛第一核电站港口区等海区的海水137Cs活度历史曲线。中国海和日本福岛核事故前的福岛近海数据来自MARIS数据库[44],核事故后的福岛近海数据来自NRA[45],核事故后的港口区数据来自TEPCO和METI[46, 47]Fig. 1 Historical 137Cs activity in seawater from the China seas, Fukushima offshore, and the port area nearby the Fukushima Daiichi Nuclear Power Plant. The data of the China seas and the Fukushima offshore before the Fukushima Nuclear Accident (FNA) was obtained from the MARIS database[44], the data of the Fukushima offshore after the FNA was provided by the NRA[45], and the data of the port area after the FNA was derived from TEPCO and METI[46, 47]5. 总结及展望新形势下的海洋核安全需求极为迫切。本文指出全面构建海洋中放射性核素本底基线的时空演化体系是海洋核安全研究的基石,提出本底基线法、活度限值法和剂量限值法的三种海洋核安全评估技术,并应用于福岛核事故后污染最严重的核心海区——港口区,定量剖析港口区的海洋核污染历史和现状。然而,面对海洋中核素种类众多、活度差异巨大、时空分布不均、迁移行为各异、生态影响复杂以及危害程度不一等现状难题,海洋核安全的科学评估仍然存在较大挑战性。基于本底基线法、活度限值法和剂量限值法三种海洋核安全评估技术,本文强调融合海洋数字孪生技术,尝试从以下三个角度展望海洋核安全评估技术未来的发展方向(图2)。图2 海洋核安全评估的技术路线与展望Fig. 2 Technical route and prospect of marine nuclear safety assessment寻找人类核活动历史的可靠“档案馆”。海洋放射性核素的本底基线存在复杂的时空演化特征。然而,海洋放射性核素实际观测数据的时间和空间分辨率均十分欠缺,特别是在我国广大海域。冰芯、树轮、黄土、沉积柱、珊瑚礁是记录不同时空尺度环境变化的天然档案馆。特别指出,海洋中珊瑚礁具有年轮清晰、分辨率高、连续记录、固定生长等优点[48],是记录海洋放射性核素本底基线时空演化历史和追踪人类核活动历史的十分理想的档案馆[29, 49]。健全海洋放射性核素的基准/标准限值。活度限值是海洋核安全评估和管理的重要依据。出于人类健康的需求,国际上更多关注饮用水和食品中放射性核素的活度限值[40]。海洋为人类提供丰富的生物资源和重要的生态服务功能。出于海洋中非人类物种的保护与人类健康的综合需求,未来我国需要加强海洋中非人类物种的放射性核素基准/标准限值研究和制定工作[39]。探索长期低剂量生物辐射效应与风险。国际上对于低剂量辐射效应和危害仍然存在争议[50],较为缺乏实验室内受控观测和流行病学现场调查等证据[51],直接影响人类和非人类物种的剂量限值规定和管理。此外,海洋生物辐射剂量模型的构建和计算,还涉及代表生物的筛选、海洋生物富集和海洋食物链/网的传递等过程。在巨大且复杂的海洋生态环境系统中,这些过程又往往存在较大的物种差异性和海域特异性。因此,在海洋核安全技术与管理需求背景下,亟需开展适用于我国海域现状与发展需求的长期低剂量海洋生物辐射效应与风险研究。作为海洋大国,新时代中国明确提出加快建设海洋强国。海洋核安全是我国维护国家安全和人民生命健康、深度参与全球海洋治理以及构建海洋命运共同体的关键领域,亟需投入与滨海核电发展及应对海上核风险能力需求相匹配的研发力度, 以保障新时期我国海洋核安全,进一步丰富和完善现代化核安全监管体系,践行全面推进美丽中国建设需求。参考文献:[1] 于大鹏, 梁晔, 徐晓娟, 等. 我国核与辐射安全现状研究与探讨 [J]. 核安全, 2022, 21 (4): 12-18.[2] Sverdrup K, Kudela R. Investigating oceanography, 4th edition [M]. New York: McGraw Hill, 2023.[3] Buesseler K O. Fukushima and ocean radioactivity [J]. Oceanography, 2014, 27 (1): 92-105.[4] Lin W H, Mo M T, Yu K F, et al. Establishing historical 90Sr activity in seawater of the China seas from 1963 to 2018 [J]. Marine Pollution Bulletin, 2022, 176: 113476.[5] Smith J T, Wright S M, Cross M A, et al. Global analysis of the riverine transport of 90Sr and 137Cs [J]. Environmental science & technology, 2004, 38 (3): 850-857.[6] Lin W H, Chen L Q, Yu W, et al. Radioactive source terms for the Fukushima nuclear accident [J]. Science China: Earth Sciences, 2016, 59 (1): 214-222.[7] Casacuberta N, Smith J N. Nuclear reprocessing tracers illuminate flow features and connectivity between the arctic and subpolar north atlantic oceans [J]. Annual Review of Marine Science, 2022, 15(1): 203-221.[8] Song J M. Biogeochemical processes of biogenic elements in China marginal seas [M]. Berlin: Springer, 2010.[9] 黄彦君, 沙向东, 祝兆文, 等. 压水堆核电厂流出物监测的关键核素研究 [J]. 核安全, 2020, 19(5): 27-34.[10] 王茂杰, 郝丽娜, 徐晋, 等. 核电厂流出物监督性监测实践 [J]. 核安全, 2021, 20(3): 12-16.[11] Machida M, Iwata A, Yamada S, et al. Estimation of temporal variation of tritium inventory discharged from the port of Fukushima dai-ichi nuclear powerplant:analysis of the temporal variation and comparison with released tritium inventories from Japan and world major nuclear facilities [J]. Journal of Nuclear Science and Technology, 2023, 60(3): 258-276.[12] 林武辉, 余克服, 杜金秋, 等. 日本福岛核废水排海情景下海洋生态环境影响与应对 [J]. 科学通报, 2021, 66(35): 4500-4509.[13] Wang F F, Men W, Yu T, et al. Intrusion of Fukushima-derived radiocesium into the East China Sea and the Northeast South China Sea in 2011–2015 [J]. Chemosphere, 2022: 133546.[14] Smith J, Marks N, Irwin T. The risks of radioactive wastewater release [J]. Science, 2023, 382(6666): 31-33.[15] 林武辉, 张翊邦, 余克服, 等. 2023年日本福岛核污水站在历史的十字路口 [J]. 环球财经, 2023, 267(2/3): 46-50.[16] Zhao C, Wang G, Zhang M, et al. Transport and dispersion of tritium from the radioactive water of the Fukushima daiichi nuclear plant [J]. Marine Pollution Bulletin, 2021, 169: 112515.[17] Liu Y, Guo X-Q, Li S-W, et al. Discharge of treated Fukushima nuclear accident contaminated water: macroscopic and microscopic simulations [J]. National science review, 2022, 9(1): 209.[18] Hu Q-H, Weng J-Q, Wang J-S. Sources of anthropogenic radionuclides in the environment: a review [J]. Journal of Environmental Radioactivity, 2010, 101(6): 426-437.[19] 林武辉, 陈立奇, 何建华, 等. 日本福岛核事故后的海洋放射性监测进展 [J]. 中国环境科学, 2015, 35(1): 269-276.[20] Waters C N, Syvitski J P M, Ga&lstrok uszka A, et al. Can nuclear weapons fallout mark the beginning of the anthropocene epoch? [J]. Bulletin of the Atomic Scientists, 2015, 71(3): 46-57.[21] Zalewska T, Suplińska M. Anthropogenic radionuclides 137Cs and 90Sr in the southern baltic sea ecosystem [J]. Oceanologia, 2013, 55(3): 485-517.[22] IAEA. Worldwide marine radioactivity studies (WOMARS): Radionuclide levels in oceans and seas [M]. Vienna: IAEA, 2005.[23] He P, Aldahan A, Possnert G, et al. A summary of global 129I in marine waters [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 294: 537-541.[24] Wu J W, Sun J, Xiao X Y. An overview of current knowledge concerning the inventory and sources of plutonium in the China seas [J]. Marine Pollution Bulletin, 2020, 150: 110599.[25] Lin W H, Ma H, Chen L Q, et al. Decay/ingrowth uncertainty correction of 210Po/210Pb in seawater [J]. Journal of Environmental Radioactivity, 2014, 137: 22-30.[26] Lin W H, Chen L Q, Zeng S, et al. Residual β activity of particulate 234Th as a novel proxy for tracking sediment resuspension in the ocean [J]. Scientific Reports, 2016, 6: 27069.[27] Lin W H, Feng Y, Yu K F, et al. Long-lived radionuclides in marine sediments from the Beibu Gulf, South China Sea: Spatial distribution, controlling factors, and proxy for transport pathway [J]. Marine Geology, 2020, 424: 106157.[28] Lin W H, Yu K F, Wang Y, et al. Assessing the feasibility of the 228Th/228Ra dating method for young corals (10 a) by gamma spectrometry [J]. Quaternary Geochronology, 2021, 61: 101125.[29] 林武辉, 张帆, 余克服, 等. 人工放射性核素在珊瑚岛礁系统中的富集与评估 [J]. 地球科学进展, 2023, 38(3): 286-295.[30] Povinec P P, Aarkrog A, Buesseler K O, et al. 90Sr, 137Cs and 239,240Pu concentration surface water time series in the Pacific and Indian Oceans–WOMARS results [J]. Journal of environmental radioactivity, 2005, 81(1): 63-87.[31] Povinec P P, Hirose K, Honda T, et al. Spatial distribution of 3H, 90Sr, 137Cs and (239,240) Pu in surface waters of the Pacific and Indian Oceans--GLOMARD database [J]. Journal of environmental radioactivity, 2004, 76(1): 113-137.[32] Aoyama M, Hirose K. Artificial radionuclides database in the Pacific Ocean: HAM database [J]. The Scientific World Journal, 2004, 4: 200-215.[33] Inomata Y, Aoyama M, Hirose K. Analysis of 50-y record of surface 137Cs concentrations in the global ocean using the HAM-global database [J]. Journal of Environmental Monitoring, 2009, 11(1): 116-125.[34] Inomata Y, Aoyama M. Evaluating the transport of surface seawater from 1956 to 2021 using 137Cs deposited in the global ocean as a chemical tracer [J]. Earth Syst. Sci. Data, 2023, 15(5): 1969-2007.[35] 李培泉. 海洋放射性及其污染 [M]. 北京: 科学出版社, 1983.[36] 蔡福龙. 海洋放射生态学 [M]. 北京: 原子能出版社, 1997.[37] 李树庆, 祝汉民, 吴复寿, 等. 中国近海放射性水平 [M]. 北京: 海洋出版社, 1987.[38] 唐森铭, 商照荣. 中国近海海域环境放射性水平调查 [J]. 核安全, 2005, 4(2): 21-30.[39] 杜金秋, 王震, 林武辉, 等. 放射性核素水环境质量标准研究进展 [J]. 生态毒理学报, 2018, 13(5): 27-36.[40] Bradley F J, Pratt R M. Regulations. Poschl M, Nollet L M L. Radionuclide concentrations in food and the environment [M]. Boca Raton: CRC Press. 377-410, 2007. [41] Brown J, Alfonso B, Avila R, et al. The ERICA tool [J]. Journal of Environmental Radioactivity, 2008, 99(9): 1371-1383.[42] 林武辉, 陈立奇, 余雯, 等. 海洋生物辐射剂量评价方法及应用 [C]. 福建平潭: 福建省海洋学会2014年学术年会暨福建省科协第十四届学术年会, 2014: 326-334.[43] TEPCO. Analysis of seafood [EB/OL]. (2023-6-5) [2023-6-13]. https://www.tepco.co.jp/decommission/data/analysis/pdf_csv/2023/2q/fish01_230605-j.pdf.[44] IAEA. Marine radioactivity information system (MARIS) [EB/OL]. (2014-12-28) [2023-11-13]. https://maris.iaea.org/explore.[45] NRA. Readings of seawater monitoring in off-shore sea area [EB/OL]. (2023-11-7) [2023-11-13]. https://radioactivity.nra.go.jp/en/list/292/list-1.html.[46] TEPCO. Analysis of radioactive substances around Fukushima daiichi nuclear power plant [EB/OL]. (2014-7-31) [2023-11-13]. https://www.tepco.co.jp/nu/fukushima-np/f1/smp/indexold-j.html. [47] METI. Progress status reports [EB/OL]. (2023-10-26) [2023-11-13]. https://www.meti.go.jp/english/earthquake/nuclear/decommissioning/progress_status.html.[48] 余克服. 南海珊瑚礁及其对全新世环境变化的记录与响应 [J]. 中国科学: 地球科学, 2012, 42(8): 1160-1172.[49] 林武辉, 何建华, 余克服, 等. 海洋中90Sr:日本周边海域与南海的对比 [J]. 海洋学报, 2020, 42(10): 47-58.[50] Sutou S. Low-dose radiation effects [J]. Current Opinion in Toxicology, 2022, 30: 100329.[51] Lowe D, Roy L, Tabocchini M A, et al. Radiation dose rate effects: what is new and what is needed? [J]. Radiation and Environmental Biophysics, 2022, 61(4): 507-543.
  • 美国牛奶检测出放射性物质
    3月31日,新华网消息称,美国环境保护署、食品和药物管理局30日联合发表声明说,检验人员在美国西海岸华盛顿州的牛奶样品中检测出极微量放射性物质。但,两家机构同时呼吁消费者不必担忧。  食品和药物管理局说,由于日本福岛第一核电站发生核泄漏,放射性物质沿太平洋到达美国西海岸。在未来数日内,极微量放射性物质将持续存在于诸如牛奶等食品中,但相信这一状况会很快好转。  检验牛奶样本来自华盛顿州斯波坎市,取样时间为3月25日。检验结果显示,样品中含有极微量放射性同位素碘-131。食品和药物管理局解释说,“极微量”可量化至食品放射性物质含量安全标准的五千分之一。  这一食品安全监督机构说,样本中极微量放射性物质的含量同时满足这一机构设定的成人食品安全标准、儿童食品安全标准和婴儿食品安全标准。  “放射性物质在我们的日常生活中无处不在,样本中的这一含量低于我们每天经历的日常吸收量,”食品和药物管理局专家帕特里夏汉森说,“坐飞机、看电视都会接触放射性物质,它甚至存在于我们身边的建筑材料中。”  美国环境保护署表示将持续监测牛奶、饮用水源、雨水中的放射性物质含量。  距美国西海岸480公里的斯波坎市表示将单独发表声明,告知民众不必恐慌。
  • 建筑材料放射性限量核素检验新标准发布
    7月1日,由国家质量监督检验检疫总局、国家标准化管理委员会联合发布的《建筑材料放射性核素限量》GB6566-2010正式实施。  此次标准对建筑材料放射性限量的检验标准进行了进一步修订,为国内陶瓷、石材等建材企业的生产销售提出了明确的规范。  新标准严格试验方法  新标准规定了建筑材料放射性核素限量和部分天然放射性核素放射性比活度的试验方法,适用于对放射性核素限量有要求的无机非金属类建筑材料。该标准替代GB6566-2001《建筑材料放射性核素限量》,删除了原标准中“检验规则”部分,新标准中测量不确定度采用了《国际计量学基本和通用术语词汇表》中术语定义。  据悉,室内环境放射性大多来源于装饰过程中大量使用的石材、墙地砖、陶瓷洁具类建材产品,其中最大的辐射隐患来自石材。我国石材按放射性高低被分为A、B、C三类,只有A类可用于室内装修。而陶瓷产品的放射性来自于其原料中的泥土、矿渣、石粉。  花岗石放射性须警惕  目前,消费者对苯、甲醛、PVOC等室内污染已经较为警觉,但对建筑材料辐射性污染的认识尚且不足。  在四惠、八里桥等建材市场调查时记者发现,消费者们在选购瓷砖、石材等具有放射性的建材产品时,也往往更关注其款式和价格,对于是否具有放射性危害一事并未加以足够的重视。多数商家在被问及产品放射性问题时也语焉不详。  相关专家提醒消费者,天然石材中花岗石放射性超标现象严重,尤其是印度红、枫叶红、杜鹃红、英国棕、孔雀绿等,因此应谨慎选择红色、绿色或带有红色大斑点的花岗石品种。同时,天然石材不宜在室内大量使用,尤其不要在卧室、儿童房中使用。
  • PerkinElmer率先推出符合GMP要求的镥177核素
    PerkinElmer 率先推出符合GMP 要求的镥 177 核素 放射化学试剂领域的全球领导者扩展放射性同位素产品,推动多种疾病的相关研究 马萨诸塞沃尔瑟姆 –专注于提高人类健康及其生存环境安全的全球领先公司PerkinElmer, Inc.,今天宣布推出全新的符合 GMP* 要求的放射化学试剂解决方案 - 镥 177 核素**这种新化合物可用于研究 30 多项不同临床应用,包括结肠癌、转移性骨癌、非何杰金淋巴瘤和肺癌的治疗靶位。 生产符合 GMP 要求的镥 177 可以为世界各地的核药物中心和制药公司提供支持,帮助他们采取有效措施开发出全新的放射性药物解决方案,从而创造出适于靶向癌症疗法的潜在“智能药物”。 最近,PerkinElmer 和密苏里大学原子能研究所 (MURR) 签署了一项合作协议,旨在对原有放射化学级的镥 177 生产进行升级,使其符合 2001 年 8 月颁布的 ICH Q7A(原料药的优良制造规范指南)。 镥177 的功能和优点:- 低能 gamma 射线可用于研究诊断成像和放射治疗的效果 - 组织穿透路径长度短,适用于删除较小肿瘤的靶向疗法研究 - 相对较长的半衰期,可达 6.71 天 - 纯度和放射化学浓度高,可优化标记效率 - 支持定制配比,增加了灵活性和便捷性NEN 放射化学试剂 50 多年来一直是优质、可靠以及科学创新和生产创新的代名词。这款新产品续写了 PerkinElmer 作为放射性核素、配体和生化制剂顶级供应商的光荣传统。公司将通过全球配送网络、种类齐全的产品和优秀的技术支持,不断追求卓越的客户满意度。 ** 符合 2001 年 8 月颁布的 ICH Q7A(原料药的优良制造规范指南)的相关规定。 ** 仅用于研究和考察用途。 关于 PerkinElmer, Inc. PerkinElmer, Inc. 是一家专注于提高人类健康及其生存环境安全的全球领先公司。据报道,该公司 2009 年收入为 18 亿美元,拥有约 8,800 名员工,为超过 150 个国家/地区的客户提供服务,同时该公司也是标准普尔 500 指数的成员。 有关其它信息,请访问www.perkinelmer.com.cn或请致电800-820-5046 或+86(0)21-39879510–3208。 媒体联系人: Kim McCrossen 电话:(781) 663-5871
  • 直击济南放射性核素检测全过程
    4月8日,国家核事故应急协调委员会发布公告,称山东的菠菜抽检中发现了极微量的人工放射性核素碘-131,饮用水抽检监测无异常。4月9日,记者跟随山东省医学科学院放射医学研究所的科研人员,详细了解了济南饮用水和菠菜放射性核素检测全过程。  取样:卧虎山水库及周边区域随机取样  4月9日的取样由省医科院放射医学研究所副所长、研究员邓大平和放射医学研究所辐射防护监测研究室主任、研究员陈英民负责。上午10点10分,记者随同邓大平和陈英民一起来到济南主要饮用水水源之一的卧虎山水库。据介绍,卧虎山水库作为济南环境辐射检测点已有20多年历史,以往的常规检测多为一季度一次,每次的样品水量为20公斤,常规检测时要把样品水蒸干、浓缩,检测时间需要一周多。  邓大平说,3月27日开始的食品和饮用水放射性核素应急检测和常规检测要求不同,饮用水不需要蒸干环节,而是直接对样品检测,每次的样品水量保证在1公斤以上就可以。  沿卧虎山水库大坝台阶下到水库边,陈英民用一个10公斤容量的塑料桶取了满满一桶样品水。记者注意到桶上标明了“卧虎山水库”和“4.9”字样,以此标注水样的取样地点和取样时间。陈英民介绍说,在水库每次取水样的地点不固定,以前也曾租船到水库中心取过水样。  取完水样后,10时32分,两位专家来到卧虎山水库东北角的仲宫镇东许村的菜地,采集菠菜样品。样品的采集也是随机的,但要事先征得菜农的同意,并按市场价格支付菜农费用。  菜农魏庆友的菠菜是露天种植,数量和长势比较符合样品要求。在征得魏庆友妻子同意后,两位专家采集了1.65公斤菠菜,并按每公斤2元的价格支付费用。在菜田地头,陈英民当场在装菠菜样品的塑料袋上写好采集地点和样品名称。10时50分许,两位专家带着采集的水样和菠菜样品返回省医科院。  至于为什么选择菠菜作为样品进行检测,邓大平解释说,菠菜是一种多叶蔬菜,叶片面积大,而且叶片表面有绒毛,容易吸附空气中的放射性物质,所以选择了菠菜当检测样本。  送检:一品一登记  11点30分左右,邓大平和陈英民带着用于放射性核素检测的样品径直来到省医科院6楼的放射医学研究所放射化学实验室。记者注意到,在6楼的走廊两侧和放射化学实验室,摆了很多用于放射性核素检测的各种样品,其中以装有水样的塑料桶居多。  放射医学研究所工作人员把两位专家从南部山区采集到的水样和菜样进行编号,然后在一册名为《山东省医学科学院放射医学研究所检验原始记录》的登记簿进行登记。记者注意到,样品登记项目包括“采样点”、“样品种类”、“采样时间”、“检验项目”等信息。登记簿内容显示,此项检测的“委托单位”是“中国CDC核与安全医学所”(中国疾病预防控制中心辐射防护与核安全医学所——— 记者注),“检验项目”主要是碘-131、铯-134和铯-137的“放射性活度浓度”。  样品登记完后,从南部山区采集到的水样和菠菜样品分别被装入专用的圆柱形马林杯,等待上机器检测。  检测时间:需要15至20个小时才有结果  随后,邓大平和陈英民又带记者到放射化学实验室对面的“γ谱实验室”。两位专家介绍,用于放射性核素检测的样品将被送入γ谱实验室,放到该实验室内的高纯锗γ谱仪进行检测。  高纯锗γ谱仪放在实验室的东南角,高近2米。仪器主要由上、下两部分构成,上半部分是铅室,主要用来隔离检测过程外界环境辐射干扰,下半部分是用来放置装有样品的马林杯的γ谱仪探头和两个液氮罐,液氮罐的主要作用是保证γ谱仪的探头在-200℃的低温环境下正常工作。  与高纯锗γ谱仪连接的是一台数字化谱仪和一台装有解谱软件的电脑,用于分析样品中的γ能谱变化,然后科研人员根据能峰变化分析样品是否含有放射性核素。  陈英民告诉记者,实验室里的高纯锗γ谱仪正在对一份样品进行检测。他指着电脑软件上显示的柱状图的红色区域说,一旦该区域的柱状图面积达到一定的量,就说明样品中存在放射性核素。目前正在进行的食品和饮用水放射性核素应急检测,由于样品中放射性核素的含量极低,需要检测15至20个小时才能得到有统计学意义的数据。  4月10日下午,陈英民告诉记者,4月9日从南部山区采集的水样和菠菜样品将于4月10日晚上进行检测,4月11日上午会得出检测结果。
  • 详解城市放射性废物库辐射环境监测方案 ——国家生态环境标准《城市放射性废物库运行管理技术规范 (征求意见稿)》公开征求意见
    2023年9月26日,生态环境部办公厅发布通知,对国家生态环境标准《城市放射性废物库运行管理技术规范 (征求意见稿)》公开征求意见。本标准规定了城市放射性废物库运行管理的技术要求,包括核技术利用废旧放射源和放射性废物的整备、包装、送贮、运输、入库、贮存、清库和清洁解控等环节的技术要求,适用于城市放射性废物库,其他核技术利用单位放射性废物暂存库可参照执行。城市放射性废物库运行管理技术规范(征求意见稿)编制说明中介绍到,伴随核技术利用行业的快速发展,废旧放射源和放射性废物的产生量呈现不断增加趋势,放射性废物的产生方式和形态也发生变化。各省、自治区、直辖市城市放射性废物库运营单位在多年放射性废物(源)收贮和废物库管理工作中,缺乏统一的参照标准,包括收贮范围、收贮要求、收贮程序、运输要求和入库程序等。本规范通过研究废旧放射源和放射性废物收贮的规范化操作要求及各省已建成城市放射性废物库的管理经验,制定具有可操作性的运行管理技术规范,为各省、自治区、直辖市城市放射性废物库的安全运行管理提供技术支持。从标准层面而言,目前,与城市放射性废物库直接相关的标准只有《核技术利用放射性废物库选址、设计和建造技术规范》(HJ1258-2022),该规范规定城市放射性废物库前期建设过程中的各项要求。《城市放射性废物库运行管理技术规范》对废物库运行阶段废旧放射源和放射性废物收贮过程和库房管理中各项工作要求进行规定。征求意见稿中对辐射防护要求描述如下:装卸作业前,工作人员需穿工作服(必要时穿辐射防护服)、工作鞋或鞋套,戴工作手套、安 全帽,佩戴个人剂量计,携带个人剂量报警仪,经卫生通过间进入作业现场。入坑操作完成后,用表面污染检测仪对人体体表进行检测,如无污染,将鞋套放入专用收集箱,工作服、工作鞋、工作手套 放入专门工作柜;如有污染,则经去污、淋浴并再次检测确认体表无污染后方可经卫生通道离开库房;装卸作业结束后,应测量车内外辐射水平,发现异常应及时采取措施,满足 GB 18871 表面污染限值要求后方可驶离库区。《辐射环境监测技术规范》(HJ 61)中已对城市放射性废物库场所及环境监测范围、布点原则、监测项目和频次有明确规定。本规范要求按照 HJ 61 执行。城市放射性废物库场所及环境监测范围、布点原则、监测项目和频次参照如下表:本标准的编制遵照了以下法规,参考了相关标准:1.《中华人民共和国放射性污染防治法》(国家主席令 第 6 号,2003 年 10 月 1 日起施行) 2. 《放射性同位素与射线装置安全和防护条例》(国务院令 第 449 号, 3 2005 年 12 月 1 日起施行)3. 《放射性物品运输安全管理条例》(国务院令 第 562 号,2010 年 1 月 1 日起施行)4. 《放射性废物安全管理条例》(国务院令 第 612 号,2012 年 3 月 1 日起施行)5. 《放射性物品运输安全许可管理办法》(环境保护部令 第 11 号, 2010 年 11 月 1 日起施行)6. 《放射性固体废物贮存和处置许可管理办法》(环境保护部令 第 25 号,2014 年 3 月 1 日起施行)7. 《放射性物品运输安全监督管理办法》(环境保护部令 第 38 号, 2016 年 5 月 1 日起施行)8. 《放射性同位素与射线装置安全和防护管理办法》(环境保护部令 第 18 号,2011 年 5 月 1 日起施行)9. 低、中水平放射性固体废物近地表处置安全规定 GB 913210. 放射性物品安全运输规程 GB 1180611. 电离辐射防护与辐射源安全基本标准 GB 1887112. 低、中水平放射性固体废物包安全标准 GB 1271113. 放射性废物管理规定 GB 1450014. 低、中水平放射性废物固化体性能要求 水泥固化体 GB 14569.115. 机动车安全技术检验项目和方法 GB 3890016. 低水平放射性废物包特性鉴定—水泥固化体 GB 4193017. 辐射环境监测技术规范 HJ 6118. 核技术利用放射性废物库选址、设计和建造技术规范 HJ 1258 419. 放射性废物体和废物包的特性鉴定 EJ 118620. 低、中水平放射性固体废物容器 钢桶 EJ 104221. 核技术利用放射性废物最小化 HAD 401/1122. 核技术利用设施退役 HAD 401/14 附件: 1.城市放射性废物 库运行 管理技术规范(征求意见稿) 2.城市放射性废物 库运行 管理技术规范(征求意见稿)编制说明
  • 北京等地也检测出极微量人工放射性核素
    3月29日,环境保护部(国家核安全局)有关负责人就环境辐射监测情况回答了记者关心的问题。  这位负责人介绍说,继黑龙江省、江苏省、上海市、浙江省、安徽省、广东省、广 视频:华东西南西北华北等监测到微量放射性碘  西壮族自治区之后,环保部门又在山东省、天津市、北京市、河北省、河南省、山西省和宁夏回族自治区的监测点气溶胶取样中检测到了极微量的人工放射性核素碘-131,浓度均在10-4贝克/立方米量级及以下 此外,在安徽省、广东省、广西壮族自治区和宁夏回族自治区的监测点气溶胶取样中还检测到了极微量的人工放射性核素铯-137和铯-134,其浓度均在10-5贝克/立方米量级及以下。  由于各地检测出的人工放射性核素所带来的附加辐射剂量极其微弱,小于岩石、土壤、建筑物、食物、太阳等自然辐射源形成的天然本底辐射剂量的十万分之一,仅相当于一人乘坐两千公里飞机所受辐射剂量的千分之一,仍在当地本底辐射水平正常涨落范围之内,因此不会对环境和公众健康造成影响,不需要采取任何防护措施。  另据报道,美国(至少十五个州)、冰岛、芬兰、法国、瑞典、瑞士、俄罗斯、韩国、菲律宾、越南等国都宣布检测到了日本福岛核事故释放出来的人工放射性核素,但数量都极其微小,由此给公众带来的附加辐射剂量很低,最高者(韩国)也只有天然本底辐射剂量的几千分之一,远远低于对环境和公众健康造成伤害的水平。  目前环保部门设在全国其他地区的气溶胶取样监测点尚未确认检测到人工放射性核素。
  • 我国24省检测到放射性核素铯-137和铯-134
    环境保护部(国家核安全局)有关负责人介绍说,4月12日,日本政府根据《国际核事件和放射事件分级表(INES)》的规定,将福岛第一核电站事故定为7级,即最高级,与切尔诺贝利核事故同级。这是日本政府根据放射性释放量对福岛核事故的重新定级。  4月12日,环保部门在我国内地除西藏外其他30个省(市、区)部分地区空气中监测到来自日本核事故释放出的极微量人工放射性核素碘-131,另在黑龙江、吉林、辽宁、北京、天津、河北、河南、山西、山东、上海、江苏、浙江、安徽、福建、江西、湖南、海南、四川、贵州、陕西、甘肃、青海、宁夏和新疆等24个省(区、市)检测到更微量的放射性核素铯-137和铯-134。全国环境空气中人工放射性核素检测结果详见附表。  由于各地检测出的人工放射性核素所造成的辐射剂量极其微弱,只有10-7微希沃特/小时量级,小于岩石、土壤、建筑物、食物、太阳等自然辐射源形成的天然本底辐射剂量率(0.1微希沃特/小时左右)的十万分之一,仍在当地本底辐射水平正常涨落范围之内 公众暴露在这样的环境中,一年之内所接受的附加辐射剂量,仅相当于乘坐飞机飞行两千公里所受辐射剂量的千分之一,因此,不会对环境和公众健康造成影响,无需采取防护措施。  下图是环境保护部(国家核安全局)4月12日16:00继续发布的全国省会城市和部分地级市辐射环境自动监测站实时连续空气吸收剂量率监测值。监测结果汇总图中绿色曲线代表监测值,蓝色柱体代表天然本底水平,绿色曲线均在蓝色柱体范围内。监测结果表明,目前我国环境辐射水平仍在本底范围内,日本核电事故未对我国环境及境内公众健康产生影响。环保部发布全国辐射环境空气中放射性核素检测结果 序号省份活度浓度(mBq/m3)131I137Cs134Cs1黑龙江省0.740.18未检出2吉林省0.820.080.083辽宁省0.670.080.074北京市1.350.200.205天津市1.280.19未检出6河北省1.200.110.137河南省1.800.230.188山西省2.340.220.249内蒙古自治区0.21未检出未检出10山东省1.410.330.2311上海市0.590.190.1612江苏省0.320.090.0913浙江省0.250.090.0814安徽省0.350.110.1015福建省0.200.080.0616江西省0.190.06未检出17湖北省0.42未检出未检出18湖南省0.320.070.0719广东省0.14未检出未检出20广西壮族自治区0.11未检出未检出21海南省0.110.07未检出22重庆市0.07未检出未检出23四川省0.150.080.0724贵州省0.120.050.0625云南省0.06未检出未检出26西藏自治区未检出未检出未检出27陕西省0.750.140.1428甘肃省0.590.110.1029青海省0.810.150.0730宁夏回族自治区0.970.120.1231新疆维吾尔自治区2.170.440.37全国辐射环境空气中放射性核素检测结果注:1、本表数据实时更新。 2、本次更新时间:2011年4月12日 15:00
  • PerkinElmer购买GE Healthcare的放射性化学试剂目录等产品
    PerkinElmer 增添了用于检测和筛查潜在新药的产品,并扩展了放射性同位素标记和微珠检测技术 萨诸塞沃尔瑟姆,2009 年 9 月 16 日(美国商业新闻)- 专注于提高人类及环境的健康和安全的全球领先公司 PerkinElmer, Inc. 今天宣布,其已购买 GE Healthcare 的 3H 和 14C 目录放射性化学试剂、闪烁亲近实验 (SPA) 试剂和 Cytostar-T 微孔板产品线的资产。 放射性化学试剂目录产品用于各种研究应用,包括通过结合检测筛选潜在候选药物。SPA 微珠发光检测和 Cytostar-T 微孔板技术可用于实现高通量筛选 (HTS) 过程自动化,从而帮助药物开发研究人员快速而准确地确定潜在的新药化合物是否能够有效地命中其预期的疾病靶点。 GE Healthcare 将与 PerkinElmer 密切合作以保证其生产和技术支持活动顺利交接,并尽量减少交接期间的中断情况。 PerkinElmer 生物研发业务总裁 Richard M. Eglen 博士说:&ldquo PerkinElmer 非常高兴地宣布我们的试剂资产此次得到了壮大。我们希望这些技术的加入将增强我们业内领先的 GPCR 和激酶研究产品线的实力,并进一步完善我们的 HTS 和研究试剂解决方案。此次资产购买加强了 PerkinElmer 作为 HTS 放射性化学试剂及相关仪器领域领先公司的稳固地位,与此同时我们仍将致力于为至关重要的放射性化学试剂研究提供支持。&rdquo 资产购买完成后,PerkinElmer 目前有能力向全球的科学研究机构提供世界上最全的高质量放射性同位素标记化合物。此外,该公司还计划继续扩展其 NEN(R) 系列放射性化学试剂,并提供各种检测仪产品线、核计数仪及其它高性能仪器,从而为客户提供放射检测领域的完整的应用解决方案。有关详细信息,请访问:www.perkinelmer.com.cn/committedtorads。 关于 PerkinElmer, Inc. PerkinElmer, Inc. 是一家专注于提高人类及环境的健康和安全的全球领先公司。据报道,该公司 2008 年收入约为 20 亿美元,拥有 8,400 名员工,为超过 150 个国家/地区的客户提供服务,同时该公司也是标准普尔 500 指数的成员。有关其它信息,请访问 www.perkinelmer.com.cn 或致电 1-877-PKI-NYSE。 来源:PerkinElmer, Inc. 详情,请联络︰媒体联络︰ PerkinElmer, Inc. Mario Fante 联络电话︰781-663-5602 版权所有 美国商业新闻 2009
  • 中国科学报:放射性废物处置遇技术难关
    日益增加的放射性废物令人担忧,然而很多专家都无法清楚说出目前中国究竟有多少放射性废物。公众的担忧不仅来自不断发生的核泄漏事故,更与放射性废物的管理息息相关。将于3月1日实施的《放射性废物安全管理条例》或将推动我国放射性污染物的防治工作,但仍需要接受公众的审视与检验。  2月13日,离大学正式开学还有一星期,《中国科学报》记者来到位于北京师范大学南门外的放射性药物化学实验室。  实验室管理员李娜一早便开始忙碌起来。“过几天,我就更忙了!”她一边在放置放射性废物的冰柜前作记录,一边说,“等学生放假回来之后,实验产生的放射性废物又会多起来。”  在烦琐的处理流程和冗长的半衰期中,李娜必须每天记录下放射性废物的情况,等待专门机构将这些特殊的“垃圾”集中收走。  如同李娜所在的这间实验室一样,许多实验室也产生放射性废物。不仅如此,广泛使用的核电站、铀矿、辐照设备等工业设施则产生了数量更多、放射性剂量更大的废物。  2003年正式实施的《放射性污染防治法》,标志着我国依法防治放射性污染工作迈出了重要的一步。法律明确规定了放射性污染管理的五个方面,放射性废物管理则是其中之一。在此基础上制定的《放射性废物安全管理条例》将于今年3月1日起实施。  中国辐射防护研究院三废治理研究所副所长孙庆红告诉《中国科学报》记者,目前最大的难题在于高放射性水平废物的永久处置。  越来越多的“垃圾”  核技术在医药、能源、军事等领域的应用已经让人们尝到了它的甜头。同时,日益增加的放射性废物也让专家们头疼不已。但当《中国科学报》记者采访相关领域专家时,却没有一位专家能说得清目前究竟有多少放射性废物。  李娜所在的放射性药物化学实验室主要研究放射性药物在动物体内的情况,每天都会产生大量包含放射性的溶液和动物尸体。  李娜介绍,他们所用的药物半衰期都不长,而10个半衰期后,放射性剂量则被认为已经减少到不足以造成伤害的程度,便可以进一步处置。“这个时候,我们就可以向环保局提出申请,请专门人员来收走这些废物了。”  最近这些年,李娜感到收“垃圾”的人来得越来越频繁,实验室的放射性废物也越来越多了。  同样地,据中国原子能科学研究院统计,2009年,该院共收贮放射性固体废物22.2立方米,主要有污土、金属、工作服、塑料、玻璃、棉纱等,均为“低水平放射性废物”。在1996年发布的《放射性废物分类标准》中,这是一种“在正常操作和运输过程中通常不需要屏蔽”的放射性废物。  中国科学技术大学国家同步辐射实验室教授李珏忻也对《中国科学报》记者称:“随着技术的发展,核仪器使用越来越多,留下的废物肯定越来越多。”例如,在找矿时地质工作者使用的探伤仪,其中带有小型放射源。  不仅在科学研究上,放射源也快速进入了民用领域。在常见的烟雾报警器中,便含有少量的放射性金属镭。“单个报警器放射性强度很低,但广泛使用后数量激增,放射性镭的处理便成了大问题。”孙庆红指出。  辐照技术的推广也带来不少放射性废物。据不完全统计,截至2011年,全国已建成运行的辐照装置超过200座。  早在1975年,湖南彬州市农业科学研究所获取钴源38支,放射总强度为5500克镭当量。当时,彬州市农科所利用钴源先后开展了辐射诱变育种、食品灭菌消毒、刺激作物增产、辐射产品加工等综合性应用。  30多年后,这批钴源早已废弃。其间产生了大量放射性废物,针对这些废物的处置则花费了330多万元的经费。  此外,自1956年以来,全国几十座铀矿山、铀水冶厂、铀采冶联合企业已遍布云南、西藏、内蒙古等地区,完整的铀矿冶工业体系同样留下了危险的放射性废物。  孙庆红透露,我国现有核电站中,每一个百万千瓦级的机组将产生50到100立方米的放射性固体废物。  而根据2007年国务院批准的核电中长期规划,到2020年前,中国将新建27个百万千瓦级核电机组,届时将有超过30台的百万千瓦核电机组投入运行。据此估算,到2020年,由这些核电机组运行产生的放射性固体废物将在1500到3000立方米之间。  值得注意的是,尽管这些来自核电站的废物体积看上去并没有达到惊人的地步,但它们都属于“高放射性废物”,其放射性水平高、释热量大、毒性大,处理和处置难度非常大,且费用非常高。  日益严格的管理  近年来,不断发生的核事故让人们谈“核”色变,也与放射性废物的管理无不相关。西安交通大学能源与动力工程学院教授胡华四向《中国科学报》记者强调:“放射性废物安全管理事关人体健康和环境安全,也直接关系到核能和非动力核技术及应用事业的健康发展。”  其实,早在1987年,当时的国家环保总局下发文件《城市放射性废物管理办法》。该《办法》对放射性废物的分类、产生放射性废物单位的责任、废物的收运及废物库的管理都作了详尽的规定。  对此,胡华四解释:“放射性废物处理、贮存、处置活动是放射性废物管理的三个核心环节。”而放射性废物管理还应以安全为目的,具体应遵循“减少生产、分类收集、净化浓缩、减容固化、严格包装、安全运输、就地暂存、集中处置、控制排放、加强监测”的原则。  但是,由于管理不善带来放射源丢失、违规使用的事故仍然时常发生。  2004年7月12日凌晨,唐山市某建筑工地技术人员因操作不慎,将一个用于工业探伤的硒-75放射源失落在施工现场。10余名工人误将放射源当做机器配件,最终发现主要受照者受到全身非均匀照射。  无独有偶,2008年4月11日,山西省农科院旱农辐照中心发生了一起严重的钴源意外照射事故。由于违规使用已经退役的钴源室照射药剂,数名工人受到不同程度的辐照。  另外,在铀(钍)矿和伴生放射性矿开发利用过程中,由于对放射性污染防治重视不够,缺乏对放射性污染防治的专项管理制度,乱堆、乱放放射性废矿渣的情况也时有发生,由此造成的放射性污染威胁着环境安全和公众健康。  中广核中科华核电技术研究院反应堆工程设计与燃料管理研究中心主任肖岷向《中国科学报》记者介绍:“针对这些情况,政府部门对放射性废物进行了日趋严格的管理。”  国务院法制办公室负责人解释,《放射性污染防治法》规定了“要尽量减少放射性废物的产生量”、“排放废物要经国家许可”、“对高放废物要进行分类处理”等原则性问题,而将于今年3月1日起实施的《条例》则将法律的原则规定具体化了。  那么,对具体单位而言,新《条例》的实施将带来什么变化?北京市环保局宣传教育处工作人员称,目前仍在等环保部的进一步通知。截至发稿时,记者仍未得到回应。  肖岷认为,国家对放射性废物的管理力度加大,不仅相关文件得到了细化,管理体系也在进行调整。  有报道称,我国在核安全监管机构上将进行大幅度调整,国家能源局将新增设核电司,国家核安全局在原来一个司的基础上调整到三个司,核安全监管人员增加近千人。国防科工局新增设核应急司。  永久保存难题  孙庆红长期与放射性“三废”打交道,中低放射性水平的废物主要以暂存后处置为主。公开资料显示,目前中国已建有两座中低放射核废料处置库,分别位于甘肃玉门和广东大亚湾附近的北龙,还将在华东和西南建设两座区域性低放废物处置库。  1944年,美国田纳西州橡树岭进行了世界上首次放射性废物的处置。在今天看来,第一个用于处置“放射性污染的破碎玻璃器皿”的处置场,只不过是橡树岭处置场中的一条简易地沟,填满了未经处理的废物。  在核动力发展的初期阶段,世界上其他国家也都采取了与此类似的方法进行放射性废物处置。如今,国际原子能研究机构成员国中已经有100多座专业的设施运行。  在普通人眼中,放射性废物暂存库恐怕是一个非常神秘的地方。据统计,截至2011年,我国已建成31个放射性废物库。孙庆红向记者透露,我国几乎每个省都有自己的放射性废物暂存库。  1998年建成的湖北省城市放射性废物库深藏在大别山脉的崇山峻岭中。戒备森严的仓库配备厚实的铁门,地面上有一个个标有字母的水泥盖板,放射性废物就封存在盖板下面。  运送废物的卡车,必须加装防护铅板,每次将放射源搬入库中后,经办人员、车辆必须进行彻底清洗。这些“洗澡水”被排入专门的蒸发池,防止其混入地表及地下水体。  去年6月,该库结束了为期8年的改造工程。改造后的废物库实现了物联网远程在线监控,这在全国放射性废物库建设中走在了前列。  与此相比,高放射性水平废物处置的技术要求则高很多。高放射性核废料含有多种对人体危害极大的高放射性元素,10毫克钚就能令人毙命。  所以,在孙庆红看来,目前最大的难题在于高放射性水平废物的永久处置。  核工业北京地质研究院环境工程研究所所长苏锐曾撰文称,高放废物的最终去向是深地质处置。这需要把高放废物埋藏在距离地表深约500米到1000米的地质体中,使之永久与人类的生存环境隔离。  首先要将高放废液变成玻璃固化体,再将玻璃固化体装入金属罐中,并在地下1000米的深部找一块2平方公里到10平方公里不等的坚硬岩石,将装有高放玻璃固化体的废物罐埋藏其中,最后用一种特殊的回填材料将所有深部空间封填。  孙庆红形容:“看上去有点像一座巨大的坟墓。”  因此,地质条件是首要的考虑因素。南京大学地球科学与工程学院水科学系教授周启友向《中国科学报》记者介绍,选择高放废物的处置地点最重要的则是要地下水的条件。  “我们要寻找一个不含地下水或者地下水移动非常缓慢的地方。”周启友说,“除了自然条件,还需要加固工程屏障,对岩石圈进行保护。”据此,一些专家认为甘肃敦煌北山可能是将来最为理想的高放废物处置库。  不仅是中国,高放废物的处置也是一个全球性的难题。从建造核电站的那天起,德国政府有关机构和地质、核电专家就在为核废料的最终去处而发愁。  目前已知的看法是,核废料在相当长的时间内不得流入自然界。那么,什么样的建筑构造和地点能经得住自然界的沧海桑田?  “别放在我家后院”  在美国的报刊上,经常会见到这样的缩写——NIMBY,即Not in my backyard.意思是:别将垃圾放在我家后院。  纽约市的许多垃圾填埋场因为不符合美国环境署的环保标准而被迫关闭,一些城市索性将垃圾直接运到别的城市或其他州。被动接受垃圾的城市的居民就非常愤怒,他们组织了“NIMBY”运动,抵制垃圾运进自家后院。  在令人恐慌的放射性废物处置上,我国也面临类似问题。2008年,在一家地方网站的论坛中出现一个“湖北省的放射性废物库在广水市”的帖子。帖子中陈述了“广水市癌症发病率全省最高与省放射性废物仓库具有很大关联”,并抗议废物库继续在当地运行。  而2010年11月,中国核工业集团与法国阿海珐公司签署的协议则引发了更大的波澜。协议规定,在甘肃嘉峪关以北的金塔县内建设一座年处理规模达到800吨的乏燃料后处理基地。  这意味着,今后运往甘肃的核废料不仅来自国内的核电站,还有可能来自周边国家。“回收技术是否成熟”已经成了专家担忧的问题。  不过,这已不是阿海珐公司第一次在运输核废料途中遭遇“拦路虎”。作为国际“核废料处理中心”,核废料在法国与这些国家之间往来运输,所到之处,无不遭到民众的强烈抗议。  普遍认为,核废物处置计划的成功离不开与公众良好的沟通。长久以来,一些国家已经采取若干种步骤,并取得相当的成效。  例如,在匈牙利,上世纪90年代的两次选址受阻后,匈牙利原子能委员会于1992年启动了国家低中放射性废物处置选址计划。委员会采用公众自愿参加的方式,确定了愿意成为这些场地“东道主”的社区,最终在这些社区内选定了6个处置场场址。  在澳大利亚、美国、加拿大等国家和地区,全面的公众磋商过程是专设低中放射性废物处置库选址的一个重要环节。  而在我国,在环境问题上与公众进行互动才刚刚兴起。胡华四向记者表示:“将来,公众对核的态度将影响核科学技术事业的发展。”如何使公众既不“对核安全报以无所谓的态度”,也不致“谈核色变”,还需要作长期的努力。  “必须要开展广泛深入细致的核科技知识的普及宣传工作。”他说,“要使公众能理解、配合和支持这项工作的开展,应当保障充足的经费开展核科学的普及工作。”  放射性废物的来源  地质勘探、铀矿开采、选矿和矿石  含有铀、镭和其他天然放射性核素的铀矿山废石、尾矿和水冶厂尾砂,放射性水平较低  铀的精制、转化、同位素分离和燃料元(组)件制造  含铀的坑道废水、选矿水等  核电厂和其反应堆的运行  含活化产物和裂变产物中、低放射性废物和固体废物及卸出的乏燃料  核燃料后处理厂的运行  含裂变产物和锕系元素高放射性废液和废物  核设施退役  堆芯活化材料、可回收的放射性污染废钢铁及其他废金属、大量放射性水平极低的固体废物  核能研究与开发、放射性同位素生产和应用  废辐射源,主要是钴-60和镭-226源
  • 气溶胶中γ 放射性核素的测量γ 能谱法 标准征求意见
    p  气溶胶中γ放射性核素的测量是国家辐射环境监测网(以下简称国控网)常规监测项目,亦是核事故情况下的预警监测项目,测量结果可用于评估空气中的放射性核素对人体直接造成的外照射、以及因吸入空气中的放射性核素而造成的内照射。掌握环境空气气溶胶中γ放射性核素活度浓度的水平,对于评价核与辐射设施向环境排放放射性物质是否遵守剂量限值和剂量约束值,特别是应急情况下,对于判明污染物类型,评价污染范围和可能造成污染程度、决策采取的防护行动均具有重要意义。br/br/  目前,我国环境空气气溶胶γ能谱分析主要依据《空气中放射性核素的γ能谱分析方法》(WST/T 184-2017(WS/T 184-2017 ,自 2018 年 5 月起实施,代替 WS/T 184-1999),方法适用于环境空气、工作场所空气和个人空气中放射性核素的γ能谱分析。但该方法为通用分析方法,对采样设备性能、滤膜截留效率与压降、样品采集过程、样品保存与处理、探测下限、质量保证与质量控制等未作详细规定,作为环境监测依据的标准方法适用性和可操作性不强。br/br/  2017 年 5 月、2018 年 5 月,浙江省辐射环境监测站(辐射环境监测技术中心)签订了制订环境保护标准《环境空气 气溶胶中γ放射性核素的测量 γ能谱法》合同,合同编号为 BZ201760,BZ201801,项目分两年实施。br/br/  标准由浙江省辐射环境监测站负责制订,辽宁省核与辐射监测中心、江苏省核与辐射安全监督管理中心、山东省辐射环境管理站、广东省环境辐射监测中心、四川省辐射环境管理监测中心站、秦山环境应急监测中心、浙江省辐射环境监测站参与验证实验。br/br/  参与方法验证的仪器设备有:/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/ca6fb4ff-bd9e-4749-ae72-f27405d6a0f5.jpg" title="使用仪器情况登记表.jpg" alt="使用仪器情况登记表.jpg"//pp style="text-align: left "br/  近日,《img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style="vertical-align: middle margin-right: 2px "/a href="https://img1.17img.cn/17img/files/201912/attachment/c328b754-0c2d-4428-8ce1-ee7e1cf4d28f.pdf" title="环境空气 气溶胶中γ放射性核素的测量 γ能谱法(征求意见稿).pdf" style="font-size: 12px color: rgb(0, 102, 204) "环境空气 气溶胶中γ放射性核素的测量 γ能谱法(征求意见稿).pdf/a》正式发布。/pp style="text-align: left "br/  本标准规定了测量环境空气气溶胶中γ放射性核素的γ能谱分析方法。br/br/  本标准适用于用大流量或超大流量气溶胶采样器进行环境空气中气溶胶的采集,滤膜经压缩处理后,用高纯锗(高分辨 HPGe)γ能谱仪分析气溶胶中γ射线能量特征谱线能够分辨开的γ 放射性核素组成及其浓度的手工测量方法。br/br/  当环境空气采样体积约为 10000msup3/sup(标准状态),本方法主要γ放射性核素的探测下限为 5μ Bq/msup3/sup~100μBq/msup3/sup。br//p
  • 卫生部发布“放射性核素碘-131健康相关知识答问”
    卫生部3月27日就黑龙江部分环境监测点发现空气中含有极微量碘-131情况发布了“放射性核素碘-131健康相关知识答问”,内容如下:  1. 有报道称黑龙江部分环境监测点发现空气中含有极微量碘-131,是不是说明日本核泄漏事故已威胁到我们?  碘-131是人工放射性核素(核裂变产物),正常情况下自然界中不会存在,日本核泄漏事故释放的放射性核素中含有这种核素。目前在黑龙江东北部空气中监测出碘-131,仅提示日本核泄漏的放射性物质随大气扩散已抵达我国境内,但浓度极其微弱,对我国公众健康不会构成危害。  2. 碘-131多大含量会对人造成伤害,目前监测量是多少?  根据国家核事故应急协调委员会3月26日发布的信息,在我国黑龙江省东北部空气中发现了极微量的人工放射性核素碘-131,其对当地公众产生的剂量小于天然本底辐射剂量的十万分之一。据此估算,公众持续摄入一年情况下,所导致的剂量约是国家标准(GB18871-2002)规定的公众年剂量限值(1mSv)的十万分之一左右,不会对公众健康造成影响。考虑到目前的浓度环境下不可能持续一年时间,浓度很快会降低,实际结果将远低于上述数值。  3.碘-131会对人体造成哪些健康影响?会污染食品和水,进而损害我们的健康吗?  碘-131摄入人体后,主要积聚在甲状腺处对人体造成危害,大剂量情况下会导致甲状腺肿、甲状腺结节或萎缩等,远后期的影响会使甲状腺癌的发生率增加。  从目前的监测结果来看,监测到的是极微量的放射性核素,不会污染我国食品和饮用水,更不会对我国公众的健康造成影响。  4. 如何及时获得相关信息,在当前情况下需要注意什么?情况严重时个人能做什么防护?有有效治疗方法吗?  国家有关部门已对日本核泄漏对我国造成的影响进行实时监测,会及时发布相关信息,公众应及时关注国家相关部门发布的权威信息。当前情况下不会对公众健康造成危害,无需采取防护措施。根据卫生部要求,各省级卫生行政部门均已在本辖区指定医疗卫生机构,可以开展人员辐射污染检测、医学处理和辐射损伤救治。  5. 卫生部门开展有关地点食品和饮用水辐射污染监测了吗?  自日本核泄漏事故发生以来,卫生部门一直在密切关注事态的发展,并已及时部署了在北京、东北、沿海等14个省市开展食品和饮用水放射性监测工作。
  • 环保部:未发现朝鲜地下核试验人工放射性核素
    针对2月12日朝鲜进行的第三次地下核试验,环境保护部有关负责人今天表示,环保部门继续在我国东北边境及周边地区加密监测点位,开展辐射环境监测。截至今天上午11时,东北边境及周边地区大气气溶胶样品监测中未发现人工放射性核素。  全国辐射环境自动监测站数据显示,包括哈尔滨、长春、沈阳在内的31个直辖市及省会城市的空气吸收剂量率均处正常水平。  环保部核与辐射安全中心副总工程师陈晓秋在接受本报记者专访时说,进行封闭式地下核试验,由于核裂变而泄漏的环境辐射污染较小,即使设备等发生故障有少量放射性物质逸出,大致估算,也仅为大气核试验的十万分之一。  1963年8月,美国、苏联和英国签署了《部分禁止核试验条约》,即禁止在大气层、外层空间和水下进行核试验,但允许在地下进行核试验。陈晓秋说,此后很多国家都转到地下做核试验。一方面,地下核试验的爆炸当量比大气核试验小很多,可进行主要性能测试,如验证理论计算和工程设计是否正确,为改进设计提供科学依据等 另一方面,其泄漏到环境的人工放射性核素比大气核试验少很多,仅为十万分之一。此外,伴随核裂变产生的放射性氙-133,半衰期为两天多。“如果设备等发生故障,有少量放射性物质泄漏出,对环境的辐射影响也仅出现在前几天。”  陈晓秋说,从《部分禁止核试验条约》到1996年9月联合国大会第50届会议通过《全面禁止核试验条约》,世界各国进行了大约上千次地下核试验。以往的经验证明,地下核试验的环境辐射影响较小,“对土壤和地下水的影响也比较小,所排放的放射性核素在土壤中每年仅迁移几厘米”。
  • 我国东南沿海检测出极微量人工放射性核素
    3月28日,环境保护部(国家核安全局)有关负责人就环境辐射监测情况回答了记者关心的问题。  这位负责人介绍说,环保部门继3月26、27日在黑龙江省东北部监测点的气溶胶样品中检测到了极微量的人工放射性核素碘-131之后,今天又在我国东南沿海江苏省、上海市、浙江省、安徽省、广东省、广西壮族自治区部分地区的监测点气溶胶样品中检测到了极微量的人工放射性核素碘-131,其浓度均在10-4贝克/立方米的量级及以下。结合近年来当地辐射环境监测数据分析,初步确认所检测到的碘-131来自日本福岛核事故。由于检测出的人工放射性核素所带来的附加辐射剂量极其微弱,小于天然本底辐射剂量的十万分之一,仍在当地本底辐射水平涨落范围之内,因此不需要采取任何防护行动。  目前环保部门设在全国其他地区的气溶胶取样监测点尚未确认检测到来自日本福岛核事故的人工放射性核素。  下图是环境保护部(国家核安全局)3月28日18时继续发布的全国省会城市和部分地级市辐射环境自动监测站实时连续空气吸收剂量率监测值。监测结果汇总图中绿色曲线代表监测值,蓝色柱体代表天然本底水平,绿色曲线均在蓝色柱体范围内。监测结果表明,目前我国环境辐射水平仍在本底范围内,日本核电事故未对我国环境及境内公众健康产生影响。
  • Milli-Q水没有放射性物质污染(碘131,铯137)的风险
    问题一:默克密理博纯水和超纯水系统能去除放射性物质吗?答:据新闻报导,以铯137、碘131为主的放射性物质可能已经混入水中,它们是化学性质稳定的铯133和碘127的放射性同位素。 在ASTM*1(美国材料与测试协会)和JIS*2(日本工业标准)中,碘是可以被活性炭吸附的物质。也就是说,Progard预过滤柱和Milli-Q超纯水柱中含有活性炭,可以吸附碘。自来水中放射性物质的暂定指标是碘131:300 becquerel/kg,换算起来也就是6.5× 10-14 g/L(65 fg/L)。 Progard的碘静态吸附容量能达到700g,如果活性炭接近饱和,氯和碘会相互竞争,吸附上去的碘有可能又被释放。Progard在设计时就考虑到了这些方面,如果水机提示更换Progard柱,应尽快更换。 碘还可能以离子形式存在。RO膜、EDI和离子交换树脂都能有效去除溶解在水中的碘离子,我们认为去除效果尤以RO膜最佳。 由于铯是碱金属,通常以离子形式存在,因此也能被RO膜、EDI和离子交换树脂有效去除,我们认为RO膜的去除效果最好。 因为铯的电负性最小,在EDI离子交换过程中,与其他离子相比,铯优先被吸附去除。这时,铯以离子状态被浓缩并成为RO膜和EDI弃水。 这样的话,使用了Elix系列水机和以Elix做进水的Milli-Q系列水机,就可以像往常一样放心的使用纯水和超纯水。*1 ASTM D4607 - 94(2006) Standard Test Method for Determination of Iodine Number of Activated Carbon*2 JIS K1474 :2007活性炭试验方法问题二:纯水和超纯水系统产水能饮用吗?答: 不行。默克密理博的纯水和超纯水仅供实验使用。关于Milli-Q水,请点击此处关于Milli-Q 纯水/超纯水器, 请点击此处关于Elix 纯水器,请点击此处更多详情,请来电垂询技术支持热线:400-889-1988
  • 科学家检测到罕见氧同位素 可能改写原子核结构理论
    通过将一套强大的仪器与一些实验技巧结合,物理学家首次探测到氧-28—— 一种氧同位素,其原子核中有12个额外的中子。科学家之前预测这种同位素异常稳定。但对28O原子核的初步观察表明,情况并非如此。一个研究小组8月30日在《自然》上报道称,28O核在形成后便迅速分解。如果这些结果可以复制,物理学家可能需要更新原子核结构理论。宇宙中最强的力是把原子核中的质子和中子结合在一起的力。日本东京工业大学物理学家Takashi Nakamura说,为了解元素是如何形成的、中子星的物理特性以及其他更多问题,科学家需要更好地了解这种强大的核力。一种流行的方法是将过量的中子加载到轻质原子核,如氧原子核中,然后观察会发生什么。目前的理论认为,具有一定数量质子和中子的原子核本质上是稳定的。这是因为质子和中子填满了原子核的“壳层”。当一个壳层被刚好数量适合的质子或中子填满时,要增加或减少粒子就变得非常困难。这是一些“神奇”的数字,其中包括2、8、20、28、50、82和126个粒子。如果一个原子核同时拥有“神奇”的中子和质子数,它就会变得“双重神奇”,因此也就更加稳定。氧最丰富的形式是16O,它拥有“双重神奇”,即8个质子和8个中子。氧-28有8个质子和20个中子,长期以来一直被预测拥有“双重神奇”。但物理学家此前一直没能探测到它。观察28O需要几个实验技巧。整个操作的关键是位于日本的放射性束流工厂产生的强烈放射性同位素流。科学家向铍靶发射了一束钙-48同位素,从而产生了氟-29同位素。这个同位素的原子核比28O多一个质子,但中子数相同。接下来,科学家将29F撞向一个厚厚的液态氢屏障,将一个质子从原子核中敲出,最终生成了28O。这种罕见的氧形式存在的时间太短,无法被直接观察到。研究小组转而探测了它的衰变产物——氧-24和4个中子,这在几年前几乎是不可能的。Nakamura说,这是科学家第一次同时检测到4个中子。“它们就像幽灵。”他这样评价中子。为观察单个中子,研究小组使用了一个从德国亥姆霍兹重离子研究中心借来的强大探测器。在这个特殊的探测器中,入射的中子在撞击质子时会暴露出来。Nakamura说,论文主要作者、东京工业大学物理学家Yosuke Kondo通过模拟验证了这些棘手的测量结果。“他们真的做足了功课。”美国北卡罗来纳大学教堂山分校物理学家Robert Janssens表示,“他们做了所有能做的检查。这是一项杰作。”虽然该团队无法精确测量28O的寿命,但Nakamura说,这种同位素的行为并没有表现出“双重神奇”,它几乎一出现就分解了。
  • 生态环境部《城市放射性废物库运行管理技术规范 (征求意见稿)》征求意见
    近日,生态环境部办公厅发布关于公开征求国家生态环境标准《城市放射性废物库运行管理技术规范 (征求意见稿)》意见的通知。为贯彻《中华人民共和国放射性污染防治法》和《放射性同位素与射线装置安全和防护条例》,规范城市放射性废物库的运行与管理,我部组织编制了《城市放射性废物库运行管理技术规范(征求意见稿)》,现公开征求意见。征求意见稿及编制说明可登录我部网站(http://www.mee.gov.cn/)“意见征集”栏目检索查阅。各机关团体、行业协会、企事业单位和个人均可提出意见和建议。有关意见请书面反馈我部,电子版材料请同时发至联系人邮箱。征求意见截止时间为2023年10月31日。(详情见附件)附件征求意见单位名单.pdf征求意见反馈单.doc城市放射性废物库运行管理技术规范(征求意见稿)编制说明.pdf城市放射性废物库运行管理技术规范(征求意见稿).pdf
  • 标准|《生物样品中放射性核素的γ 能谱分析方法》国家标准发布
    p 近日,国家标准化管理委员会在2020年第8号中国国家标准公告中发布了《生物样品中放射性核素的γ能谱分析方法》(GB/T 16145—2020)。该标准将代替GB/T 16145—1995。新标准将在span style="color: rgb(255, 0, 0) "strong2020年11月1日/strong/span实施。归口国家卫生健康委员会。/pp 该标准规定了用锗[HPGe,Ge(Li)]或碘化钠[NaI(Tl)] γ能谱仪分析生物样品中放射性γ核素的方法。标准中规定了strong生物样品 /strong(strongB/strongstrongiological Sample/strong) 的概念以及样品处理的一般方法。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 356px height: 243px " src="https://img1.17img.cn/17img/images/202005/uepic/2fbb8aed-e222-432e-8d7c-c5fc528c8527.jpg" title="GEORADiS RT-30.jpg" alt="GEORADiS RT-30.jpg" width="356" vspace="0" height="243" border="0"//pp style="text-align: center "span style="font-size: 14px color: rgb(0, 112, 192) "strong图为GEORADiS RT-30 手持放射性伽马能谱仪/strong/span/pp γ能谱仪设计用于监测和检测各种金属制品、建筑材料、地质样品、环境采样样品及食品中可能存在的放射性辐射。例如:钢铁厂内钢、尘、渣的快速辐射分析;建筑材料、岩石中钾、铀和钍的浓度检测以及食品、动物饲料和环境样品中可能存在的放射性辐射。/pp 仪器有台式机型和手持机型。手持版本便携、体积小、操作方便,在实验室外也可以轻松完成检测。br//pp span style="color: rgb(255, 0, 0) "strong标准原文/strong/spanspan style="color: rgb(165, 165, 165) "待国家标准化委员会正式发布后上传。/span/pp-------------#会议预报#-------------------/pp style="text-align: center "strong style="color: rgb(255, 0, 0) text-align: center "span style="background-color: rgb(255, 255, 0) font-family: 楷体, 楷体_GB2312, SimKai font-size: 24px "欢迎报名“药品微生物检测技术”/span/strongstrong style="color: rgb(255, 0, 0) text-align: center "span style="background-color: rgb(255, 255, 0) font-family: 楷体, 楷体_GB2312, SimKai font-size: 24px "专题网络研讨会/span/strong/pp style="text-align: center"a href="https://www.instrument.com.cn/webinar/meetings/Drug2020/" target="_blank" title="微生物大会链接"img style="max-width: 100% max-height: 100% width: 400px height: 300px " src="https://img1.17img.cn/17img/images/202005/uepic/dfdb8120-0b79-41bd-b6f2-f2fc9417648b.jpg" title="微生物检测技术大会.jpg" alt="微生物检测技术大会.jpg" width="400" vspace="0" height="300" border="0"//a/ppstrong报名链接/strong:a href="https://www.instrument.com.cn/webinar/meetings/Drug2020/" target="_blank" style="color: rgb(255, 0, 0) text-decoration: underline "span style="color: rgb(255, 0, 0) "stronghttps://www.instrument.com.cn/webinar/meetings/Drug2020//strong/span/a/p
  • 印度科学家获国际核化学和放射分析化学最高奖
    据印度教徒报载,印度萨哈核物理研究所化学科学部教授Susanta Lahiri,在第十届放射分析化学方法及应用国际会议上,因在重离子诱导的放射性同位素生产、示踪技术(tracer technique)、靶向变流和绿色化学领域做出的杰出贡献,荣获2015年赫维西奖章(Hevesy Medal Award即George von Hevesy奖,是国际核化学和放射分析化学最高奖)。同获此殊荣的还有美国哥伦比亚大学放射研究中心的Kattesh V. Katti教授。 Lahiri教授同时兼任霍米巴巴研究所的教授,在物理评论等期刊发表了近180篇论文,同时也是第117号元素的联合发现人(该元素于2014年5月7日被公布发现)。该教授积极参加国际领先的物理和化学领域合作研发,包括CERN(欧洲核子研究中心),特别是EURISOL(欧洲同位素分离在线放射性核束)的设计研究,以及放射性药物和超重元素的相关研究。 目前,Lahiri教授正在和他的团队使用低成本技术和少量化学制剂生成一种黄金纳米粒子,该研究属于绿色化学项目。他们使用极低的辐射量触发辐照分解,通过类似连锁反应使辐照分解得以扩展,最终形成纳米颗粒,从而实现“炼金术”,将廉价的铅转换为黄金。目前,大多数同类“炼金师”都在使用数十亿美元的粒子加速器,通过在无载体的放射性核素——微量汞、铊、铅、铋和钋中加入一定量的锂和碳离子,经辐照形成黄金。Lahiri教授和他的同事制造了一种“示踪包”(tracer packet),内含锰、铜、锌、钆、锗、砷和硒等微量元素,作为无载体放射性的示踪剂,在加速器中与一定比例氧的同位素、锂和碳离子相混合后,使用厚钴片进行照射。Lahiri教授称,除了一个项目是在CERN(由印方主导)中进行,其他项目都在印度BARC-TIFR Pelletron与可变能量回旋加速器中心(Variable Energy Cyclotron Centre)进行。 注:我国中科院高能物理研究所的柴之芳院士,因长期从事放射化学和核分析方法研究,建立了多种元素的先进放射化学分离流程,曾于2005年获得该奖,成为发展中国家第一位获得此奖项的人。
  • “天圆地方”牌 放射性核素检测仪器系列喜获“湖北名牌产品”荣誉称号
    热烈祝贺湖北方圆环保科技有限公司生产的“天圆地方”牌“放射性核素检测仪器系列”被评为“湖北名牌产品”。 湖北方圆环保科技有限公司生产的放射性核素检测仪器系列产品包含全自动低本底多道γ能谱仪,低本底α、β测量仪,便携式γ能谱仪,便携式测氡仪,氡钍分析仪等。 根据湖北省2017年湖北名牌产品申报的规定,共有纺织、化工、设备制造、冶金压延加工等23个行业的产品,以及节能环保、信息技术、新材料等战略性新兴产业的高新技术产品均纳入了《2017年湖北名牌产品评价目录及申报标准》,申报产品范围和产品种类都较往年有大幅增加。经过了企业自愿申请、市州和行业初审、申报企业主要申报数据公示、委托第三方机构进行顾客(用户)满意度测评、委托省标准化与质量研究院组织专家委员会评价认定、湖北省质量强省工作委员会相关单位审核共六个环节的角逐,湖北方圆环保科技有限公司的放射性核素检测仪器系列产品喜获殊荣! 打造名牌,是提升“湖北造”美誉度的一个重要举措,也是企业提升产品质量的自我激励。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制