当前位置: 仪器信息网 > 行业主题 > >

非对称流动场场流分离仪

仪器信息网非对称流动场场流分离仪专题为您提供2024年最新非对称流动场场流分离仪价格报价、厂家品牌的相关信息, 包括非对称流动场场流分离仪参数、型号等,不管是国产,还是进口品牌的非对称流动场场流分离仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合非对称流动场场流分离仪相关的耗材配件、试剂标物,还有非对称流动场场流分离仪相关的最新资讯、资料,以及非对称流动场场流分离仪相关的解决方案。

非对称流动场场流分离仪相关的资讯

  • 中科院新疆理化所在非对称扩散增强的比色传感器件研究中获进展
    超灵敏传感器的构建在危险化学品分析、生物标志物检测和体内成像中发挥重要作用,对环境监测和安全监控具有重要意义。基于探针的传感器是最常用的痕量分析方法之一,具有高灵敏度、高特异性和快速响应等优势。作为常用的加载探针的介质,液相有利于探针分子与目标分析物进行有效碰撞,从而提高反应速度和效率。然而,液体介质中的自由体积扩散特性会导致反应信号的分散,引起来自痕量分析物的信号进一步减弱,影响痕量检测的灵敏度。水凝胶作为含有聚合物网络和液相分散介质的材料,可通过聚合物链的非共价作用以及聚合物网络的筛分效应限制溶质扩散。然而,对于各向同性的水凝胶体系,扩散性质的受限或降低反应的有效碰撞,使得检测反应灵敏度下降。多相界面处产生的化学反应受体系化学势影响,可在不影响溶液自身扩散性质的同时限制反应物迁移方向。因此,在水凝胶体系构建存在非对称扩散性质的反应界面,在保持快速反应的同时有效地限制信号扩散,具有重要意义。中国科学院新疆理化技术研究所爆炸物传感检测团队基于非对称扩散行为对信号分子的限制作用,设计了双层水凝胶体系以增强传感信号,实现了纳克级别亚硝酸盐的比色识别。研究设计了一种双层水凝胶体系,其中聚丙烯酰胺(PAM)进行采样和重氮化亚硝酸盐的瞬时两步反应,而聚乙烯醇(PVA)用于耦合显色反应实现对亚硝酸盐的识别。为了破坏两种紧密接触的水凝胶的扩散对称性,研究通过调控合成方法将PAM和PVA水凝胶之间的孔径比控制为10,扩散系数比控制为1.7。结果表明,显色产物在水凝胶中的扩散具有明显的有界性,且其面内扩散由于PAM和PVA水凝胶的非对称扩散性质得到有效的限制。由此设计的传感器对亚硝酸盐的裸眼检测限为2.898纳克,呈现出优异的灵敏度和抗干扰性。检测图像对目标物残留信息的良好保护性进一步证明了扩散控制对于增强传感信号以及构建适用于实际场景的高性能便携式检测器的重要性,为针对痕量固体样品识别的传感器设计奠定了理论基础。相关研究成果发表在Sensors and Actuators B: Chemical上。研究工作得到中科院“西部之光”人才培养计划、国家自然科学基金、中科院青年创新促进会、中科院基础前沿科学研究计划“从0到1”原始创新项目及国家高层次人才等的支持。a、具有非对称扩散的水凝胶体系示意图;b、用于亚硝酸盐检测的双层水凝胶器件
  • 仿松针多级非对称结构超疏水表面多尺度液滴定向输运
    液滴的自发定向输运在芯片实验室、能源电力系统、油气输运、水收集和除湿等领域具有广泛的应用前景,其主要取决于表面形貌结构和化学组成的非对称性,具体表现为浸润性梯度、各向异性结构和曲率梯度等。液滴输运的速度和距离是判定输运效率的有效指标。合理的设计并制备表面结构是实现快速、长程的液滴自发定向输运的有效方法。然而,传统的加工技术加工精度较低、加工结构单一,很难满足结构性能要求。近日,大连理工大学冯诗乐副教授,受松针表面多级非对称结构启发,使用深圳摩方材料科技有限公司PμSL 3D打印技术(nanoArch S140),制备了仿松针多级非对称结构表面,实现了快速、长程的液滴自发定向输运。该研究以“Tip-inducedflipping of droplets on Janus pillars: from local reconfiguration to globaltransport”为题发表在国际顶级期刊《ScienceAdvances》上,为液滴的定向输运领域的发展提供了新的思路。论文第一作者为大连理工大学冯诗乐副教授,通讯作者为香港城市大学王钻开教授和巴黎高等物理化工学院David Quéré教授。图1 松针和仿松针多级非对称结构表面的形貌结构特征图2 仿松针多级非对称结构表面的形貌结构参数调控要点:研究者借鉴松针表面结构特征,设计并制备包括第一级的倾斜阵列结构、第二级的高度梯度结构和第三级的平面/曲面组合的半锥形结构的仿松针多级非对称结构表面。上述表面(图1)由nanoArch S140微尺度3D打印设备加工,使用材料为HTL耐高温树脂,打印层厚为10微米。阵列间距为300微米,尖锥倾斜角度β为70°,高度梯度α为20°,尖锥顶端大小为10-20微米。在打印过程中,通过精密刮刀刮除细小的气泡,来保障加工质量。同时,研究者还设计了仅包含倾斜阵列结构和半锥形结构的对照样品,与仅包含倾斜阵列结构和高度梯度结构的对照样品。通过nanoArch S140微尺度3D打印技术,实现了包括倾斜、高度梯度及平/曲面组合的复杂三维结构表面参数的精确调控及大规模制备(图2)。图3 仿松针多级非对称结构表面微液滴自发定向输运图4 仿松针多级非对称结构尖端效应要点:在凝结过程中,液滴先随机在表面凝结,然后向尖端汇聚,然后尖端液滴会在合并过程中重新配置,并从半锥形结构的平面旋转到曲面位置,随后合并的液滴会沿着高度增加的方向运动,进而实现从微观到宏观的多尺度液滴的定向输运,其液滴定向输运的速度可以达到10 cm/s。研究者发现液滴在合并过程中重新配置是非对称结构诱导的尖端效应导致的,并通过建立能量变化模型证明,当液滴尺寸大于结构尺寸时,液滴坐落于平面的系统能量大于坐落于曲面上的系统能量,从而揭示了液滴从平面向曲面运动的机理。研究者发现毫米级的液滴在合并过程中依然会从平面运动到弧面上,证明非对称结构诱导的尖端效应普遍适用于各种尺度的液滴。论文链接: https://advances.sciencemag.org/content/6/28/eabb4540/官网:https://www.bmftec.cn/links/10
  • 仿松针多级非对称结构超疏水表面多尺度液滴定向输运
    液滴的自发定向输运在芯片实验室、能源电力系统、油气输运、水收集和除湿等领域具有广泛的应用前景,其主要取决于表面形貌结构和化学组成的非对称性,具体表现为浸润性梯度、各向异性结构和曲率梯度等。液滴输运的速度和距离是判定输运效率的有效指标。合理的设计并制备表面结构是实现快速、长程的液滴自发定向输运的有效方法。然而,传统的加工技术加工精度较低、加工结构单一,很难满足结构性能要求。近日,大连理工大学冯诗乐副教授,受松针表面多级非对称结构启发,使用深圳摩方材料科技有限公司PμSL 3D打印技术(nanoArch S140),制备了仿松针多级非对称结构表面,实现了快速、长程的液滴自发定向输运。该研究以“Tip-inducedflipping of droplets on Janus pillars: from local reconfiguration to globaltransport”为题发表在国际顶级期刊《ScienceAdvances》上,为液滴的定向输运领域的发展提供了新的思路。论文第一作者为大连理工大学冯诗乐副教授,通讯作者为香港城市大学王钻开教授和巴黎高等物理化工学院David Quéré教授。图1 松针和仿松针多级非对称结构表面的形貌结构特征图2 仿松针多级非对称结构表面的形貌结构参数调控要点:研究者借鉴松针表面结构特征,设计并制备包括第一级的倾斜阵列结构、第二级的高度梯度结构和第三级的平面/曲面组合的半锥形结构的仿松针多级非对称结构表面。上述表面(图1)由nanoArch S140微尺度3D打印设备加工,使用材料为HTL耐高温树脂,打印层厚为10微米。阵列间距为300微米,尖锥倾斜角度β为70°,高度梯度α为20°,尖锥顶端大小为10-20微米。在打印过程中,通过精密刮刀刮除细小的气泡,来保障加工质量。同时,研究者还设计了仅包含倾斜阵列结构和半锥形结构的对照样品,与仅包含倾斜阵列结构和高度梯度结构的对照样品。通过nanoArch S140微尺度3D打印技术,实现了包括倾斜、高度梯度及平/曲面组合的复杂三维结构表面参数的精确调控及大规模制备(图2)。图3 仿松针多级非对称结构表面微液滴自发定向输运图4 仿松针多级非对称结构尖端效应要点:在凝结过程中,液滴先随机在表面凝结,然后向尖端汇聚,然后尖端液滴会在合并过程中重新配置,并从半锥形结构的平面旋转到曲面位置,随后合并的液滴会沿着高度增加的方向运动,进而实现从微观到宏观的多尺度液滴的定向输运,其液滴定向输运的速度可以达到10 cm/s。研究者发现液滴在合并过程中重新配置是非对称结构诱导的尖端效应导致的,并通过建立能量变化模型证明,当液滴尺寸大于结构尺寸时,液滴坐落于平面的系统能量大于坐落于曲面上的系统能量,从而揭示了液滴从平面向曲面运动的机理。研究者发现毫米级的液滴在合并过程中依然会从平面运动到弧面上,证明非对称结构诱导的尖端效应普遍适用于各种尺度的液滴。论文链接: https://advances.sciencemag.org/content/6/28/eabb4540/ 官网:http://www.bmftec.cn/smart
  • 复享光学-R1在手性超表面非对称光学传输效率测量中的应用
    【概述】光学手性超构表面是由亚波长尺度单元所组成的平面或准平面光子器件。非对称传输是手性超表面的一大光学特性,该特性可应用于集成光路中的光学二极管,与电二极管类似,光学二极管要求器件具有单向性。目前,单层手性超材料中,非对称传输率在理论上被限制在 25% 以内,并伴随很高的吸收损耗,这成为该材料作为光学二极管的应用阻碍。而通过多层三维结构去实现非对称传输,虽然能将传输率突破 25%,但是其加工工艺更加复杂、困难,尤其是亚微米尺度以下的多层结构精准对准目前还很难实现。图1,单层手性超表面2022年,南开大学泰达应用物理学院齐继伟副教授在 Optical Express 上发表了一篇题为《Asymmetric reflection based on asymmetric coupling in single-layer extrinsic chiral metasurfaces》的文章。作者制作了一种单层手性超表面,创新地以圆偏振光斜入射反射的形式提升了非对称传输率,获得了与三维结构相当的非对称传输率。 【样品 & 测试】作者采用电子束光刻技术与金属镀膜技术在石英基底上制备了横向周期 1000nm,纵向周期 650nm 的单层 U型分裂环,该分裂环厚度 100nm,环形宽度 200nm,环形半径 350nm。为观测不同角度倾斜入射的反射情况,作者使用了复享光学的角分辨光谱仪R1,借助设备的自动旋转模块,灵活调整入射角与接收角,实现多角度反射光谱测量。同时,得益于角分辨光谱仪中的通用光学元件插口,作者使用线性偏振片与四分之一波片形成左旋与右旋圆偏振光,轻松获得合适的实验条件。图2,测试示意图作者通过模拟和测量左旋圆偏振光与右旋圆偏振光倾斜入射时超表面的反射光谱,并对比了正向入射与反向入射在 30°~45° 之间的测量结果,如图3 所示。研究发现,在 1120nm 处,右旋圆偏光正向入射与左旋圆偏振光反向入射的反射光谱均呈现出较宽的反射峰;在 1650nm 和 1075nm 处,右旋圆偏光反向入射与左旋圆偏振光正向入射的反射光谱分别显示出相对较窄反射峰。这一结果与 COSMOL 的模拟结果一致。通过理论分析结合实测光谱,作者发现 1120nm 处的反射峰源于四极局域表面等离子体共振模式,而 1650nm 和 1075nm 处的反射峰则源于表面晶格模式。这些发现为深入理解手性超表面的光学特性提供了重要线索。图3,U型分裂环超表面30°~45°反射光谱:(a,b)COSMOL模拟结果;(c,d)角分辨光谱仪测量结果进一步研究中,作者分别对比左旋圆偏振光与右旋圆偏振光正反向反射效率差异,如图4 所示。值得注意的是,反射效率差异在 1000~1600nm 波段最高可达 40%,突破了二维非对称传输理论效率 25% 的限制。图4,圆偏振光非对称反射效率测量结果【总结】作者制备了一种基于单层手性超表面,旨在实现巨大的非对称反射,并将圆偏振光斜入射反射作为关键步骤。复享光学的角分辨光谱仪R1 具备高度适应性,能够轻松适应不同的实验条件,包括变化角度、偏振、相位延迟等参数。这一设备对研究以调控光束特性为主要功能的超表面至关重要。图5,文章对复享光学 R1 的标注【参考文献】 ✽ Fu, Xianhui, et al.Asymmetric reflection based on asymmetric coupling in single-layer extrinsic chiral metasurfaces. Optics Express (2022).
  • 《Science Advances》:仿松针多级非对称结构超疏水表面多尺度液滴定向输运
    液滴的自发定向输运在芯片实验室、能源电力系统、油气输运、水收集和除湿等领域具有广泛的应用前景,其主要取决于表面形貌结构和化学组成的非对称性,具体表现为浸润性梯度、各向异性结构和曲率梯度等。液滴输运的速度和距离是判定输运效率的有效指标。合理的设计并制备表面结构是实现快速、长程的液滴自发定向输运的有效方法。然而,传统的加工技术加工精度较低、加工结构单一,很难满足结构性能要求。近日,大连理工大学冯诗乐副教授,受松针表面多级非对称结构启发,使用深圳摩方材料科技有限公司PμSL 3D打印技术(nanoArch S140),制备了仿松针多级非对称结构表面,实现了快速、长程的液滴自发定向输运。该研究以“Tip-inducedflipping of droplets on Janus pillars: from local reconfiguration to globaltransport”为题发表在国际顶级期刊《ScienceAdvances》上,为液滴的定向输运领域的发展提供了新的思路。论文第一作者为大连理工大学冯诗乐副教授,通讯作者为香港城市大学王钻开教授和巴黎高等物理化工学院David Quéré教授。图1 松针和仿松针多级非对称结构表面的形貌结构特征图2 仿松针多级非对称结构表面的形貌结构参数调控要点:研究者借鉴松针表面结构特征,设计并制备包括第一级的倾斜阵列结构、第二级的高度梯度结构和第三级的平面/曲面组合的半锥形结构的仿松针多级非对称结构表面。上述表面(图1)由nanoArch S140微尺度3D打印设备加工,使用材料为HTL耐高温树脂,打印层厚为10微米。阵列间距为300微米,尖锥倾斜角度β为70°,高度梯度α为20°,尖锥顶端大小为10-20微米。在打印过程中,通过精密刮刀刮除细小的气泡,来保障加工质量。同时,研究者还设计了仅包含倾斜阵列结构和半锥形结构的对照样品,与仅包含倾斜阵列结构和高度梯度结构的对照样品。通过nanoArch S140微尺度3D打印技术,实现了包括倾斜、高度梯度及平/曲面组合的复杂三维结构表面参数的精确调控及大规模制备(图2)。图3 仿松针多级非对称结构表面微液滴自发定向输运图4 仿松针多级非对称结构尖端效应要点:在凝结过程中,液滴先随机在表面凝结,然后向尖端汇聚,然后尖端液滴会在合并过程中重新配置,并从半锥形结构的平面旋转到曲面位置,随后合并的液滴会沿着高度增加的方向运动,进而实现从微观到宏观的多尺度液滴的定向输运,其液滴定向输运的速度可以达到10 cm/s。研究者发现液滴在合并过程中重新配置是非对称结构诱导的尖端效应导致的,并通过建立能量变化模型证明,当液滴尺寸大于结构尺寸时,液滴坐落于平面的系统能量大于坐落于曲面上的系统能量,从而揭示了液滴从平面向曲面运动的机理。研究者发现毫米级的液滴在合并过程中依然会从平面运动到弧面上,证明非对称结构诱导的尖端效应普遍适用于各种尺度的液滴。论文链接: https://advances.sciencemag.org/content/6/28/eabb4540/
  • Postnova场流分离系统应用举例:蛋白质聚集体分离的理想解决方案
    Postnova场流分离系统应用举例——蛋白质聚集体分离的理想解决方案 蛋白质聚集体已经成为药学发展和质检上一个重要的问题。其活性,生物利用度和可能的消极免疫响应等性能直接与不同程度的聚集态的存在有关。因此不仅FDA, 更多的官方和私人研究机构都对聚集态结构产生越来越大的兴趣。他们研究的目标是确定精确的聚集情况,即药物中的蛋白质中某个时间有多少聚集态结构形成以及如何避免这种情况。 场流分离技术是分离技术的一种,它可以与液相色谱(LC)相比。就像液相主要用来分离小分子一样,场流分离主要用来分离大分子或粒子(可称为:粒子色谱)。场流分离技术是一个独特的分离技术,所有场流分离技术都使用相同的基本分离的原则,但采用不同的分离场。根据不同分离场,场流分离技术可分为流动场流分离,沉淀场流分离,热场流分离等。当样品注射到场流分离通道时,分离应力作用于聚合物或粒子强迫它们向通道底层移动,通道底层就被称为聚集壁。样品不能透过聚集壁,所以它们再次扩散到通道中心。扩散应力被分离应力抵消,在很短的时间(一般是30~120秒)内两种力之间就建立起一个稳定的动态平衡。大小不同的颗粒有着不同的扩散系数,所以它们在通道内由于速度梯度而被分离。注射后的粒子/聚合物由于“垂直场力”的存在,受迫向垂直于流动相流动的方向移动。小粒子由于具有较大的扩散系数将会比大粒子在通道内扩散的更深远。结果就是,小粒子在通道内被“层流”更快的定位,并因此而被洗脱出来;而大粒子则定位较慢,后洗脱出来。上图是使用AF4非对称场流分离单克隆抗体的结果。在20分钟内,不同程度的聚集态被分开,整个分离过程由于没有固定相存在,因此蛋白质的空间结构不会被破坏。样品不需要前处理,更可以通过联用多种在线检测器(LS, UV, RI, SEM, DLS),方便迅速得到需要的数据。 场流分离技术具有以下优点:• 快速、温和的分离,可以兼容任何溶剂和缓冲液• 超高的分辨率(±1nm)• 没有任何固定相的分离通道• 宽分离范围:粒径1nm~100mm /分子量1000Da~1012Da• 无需前处理及过滤,直接进样复杂基质样品• 可收集所需要的样品,方便升级至制备级• 能够连接各种检测器,如在线串联紫外、光散射、荧光、质谱等检测器• 可同时测定分子的分子量及粒子的粒径。这些优点使场流分离技术在蛋白质及其聚集体分离方面可以发挥巨大的作用。更多产品详情,敬请登陆:www.tegent.com.cn德祥热线:4008 822 822info@tegent.com.cn
  • 山东大学320.00万元采购场流分离仪
    详细信息 山东大学非对称场流分离与多角角度动静态激光光散射联用系统公开招标公告 山东省-济南市-历下区 状态:公告 更新时间: 2023-11-19 招标文件: 附件1 项目概况 山东大学非对称场流分离与多角角度动静态激光光散射联用系统招标项目的潜在投标人应在山东大学招标采购管理系统获取招标文件,并于2023年12月11日14点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:SDJDHD20230506-Z295/HYHA2023-2550 项目名称:山东大学非对称场流分离与多角角度动静态激光光散射联用系统 预算金额:320.000000 万元(人民币) 最高限价(如有):320.000000 万元(人民币) 采购需求: 标包 货物名称 数量 简要技术要求 A 非对称场流分离与多角角度动静态激光光散射联用系统 1 详见公告附件 合同履行期限:详见招标文件要求。 本项目(不接受)联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:无; 3.本项目的特定资格要求:1)在“信用中国”、中国政府采购网网站中被列入失信被执行人、税收违法黑名单、政府采购严重违法失信行为记录名单的投标人,不得参加本次政府采购活动;2)单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加同一合同项下(同一包号)的政府采购活动;3)所投产品为进口设备的,投标人需提供针对此项目的产品授权书。(授权可追溯) 三、获取招标文件 时间:2023年11月20日至2023年11月24日,每天上午8:30至11:30,下午13:00至16:30。(北京时间,法定节假日除外) 地点:山东大学招标采购管理系统 方式:第一步:投标人在海逸恒安项目管理有限公司网站上录入单位名称、联系人及电话等信息; 链接:http://www.sdhyha.cn/qpoaweb/prg/gys/baoming.aspx?id=371642k9n; 第二步:登录山东大学招标采购管理中心网站(http://www.cgw.sdu.edu.cn/)进行投标人注册,注册完成山东大学招标采购管理中心审核通过后,在获取招标文件截止时间前再次登录系统在线报名本项目,报名审核成功后自助下载招标文件。 注:(1)本项目不收取招标文件工本费;(2)本项目实行资格后审,获取招标文件成功不代表资格后审的通过。 售价:¥0.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年12月11日14点30分(北京时间) 开标时间:2023年12月11日14点30分(北京时间) 地点:本项目实行网上远程开标,投标人可自行选择任意地点登录山东大学招标采购管理系统参加开标。 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、上传的技术指标附件仅作为参考,最终以招标文件中的技术指标为准; 2、本采购项目允许进口产品参与投标; 3、本项目采用电子招投标方式采购。投标人必须按相关程序办理数字证书和安装投标文件工具后方可上传递交投标投标文件。详细操作说明见山东大学采购网(www.cgw.sdu.edu.cn)--资料下载--《山东大学电子投标指南》文件。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名称:山东大学 地址:山东大学中心校区明德楼 联系方式:马老师0531-88365560 2.采购代理机构信息 名称:海逸恒安项目管理有限公司 地址:山东省济南市历下区华润置地广场A5-6号楼27楼招标三部 联系方式:陈晓楠、向忆寒0531-82667532、18780039059 3.项目联系方式 项目联系人:陈晓楠、向忆寒 电话:0531-82667532、18780039059 附件:采购需求-山东大学非对称场流分离与多角角度动静态激光光散射联用系统.pdf × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:场流分离仪 开标时间:2023-12-11 14:30 预算金额:320.00万元 采购单位:山东大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:海逸恒安项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 山东大学非对称场流分离与多角角度动静态激光光散射联用系统公开招标公告 山东省-济南市-历下区 状态:公告 更新时间: 2023-11-19 招标文件: 附件1 项目概况 山东大学非对称场流分离与多角角度动静态激光光散射联用系统招标项目的潜在投标人应在山东大学招标采购管理系统获取招标文件,并于2023年12月11日14点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:SDJDHD20230506-Z295/HYHA2023-2550 项目名称:山东大学非对称场流分离与多角角度动静态激光光散射联用系统 预算金额:320.000000 万元(人民币) 最高限价(如有):320.000000 万元(人民币) 采购需求: 标包 货物名称 数量 简要技术要求 A 非对称场流分离与多角角度动静态激光光散射联用系统 1 详见公告附件 合同履行期限:详见招标文件要求。 本项目(不接受)联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:无; 3.本项目的特定资格要求:1)在“信用中国”、中国政府采购网网站中被列入失信被执行人、税收违法黑名单、政府采购严重违法失信行为记录名单的投标人,不得参加本次政府采购活动;2)单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加同一合同项下(同一包号)的政府采购活动;3)所投产品为进口设备的,投标人需提供针对此项目的产品授权书。(授权可追溯) 三、获取招标文件 时间:2023年11月20日至2023年11月24日,每天上午8:30至11:30,下午13:00至16:30。(北京时间,法定节假日除外) 地点:山东大学招标采购管理系统 方式:第一步:投标人在海逸恒安项目管理有限公司网站上录入单位名称、联系人及电话等信息; 链接:http://www.sdhyha.cn/qpoaweb/prg/gys/baoming.aspx?id=371642k9n; 第二步:登录山东大学招标采购管理中心网站(http://www.cgw.sdu.edu.cn/)进行投标人注册,注册完成山东大学招标采购管理中心审核通过后,在获取招标文件截止时间前再次登录系统在线报名本项目,报名审核成功后自助下载招标文件。 注:(1)本项目不收取招标文件工本费;(2)本项目实行资格后审,获取招标文件成功不代表资格后审的通过。 售价:¥0.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年12月11日14点30分(北京时间) 开标时间:2023年12月11日14点30分(北京时间) 地点:本项目实行网上远程开标,投标人可自行选择任意地点登录山东大学招标采购管理系统参加开标。 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、上传的技术指标附件仅作为参考,最终以招标文件中的技术指标为准; 2、本采购项目允许进口产品参与投标; 3、本项目采用电子招投标方式采购。投标人必须按相关程序办理数字证书和安装投标文件工具后方可上传递交投标投标文件。详细操作说明见山东大学采购网(www.cgw.sdu.edu.cn)--资料下载--《山东大学电子投标指南》文件。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名称:山东大学 地址:山东大学中心校区明德楼 联系方式:马老师0531-88365560 2.采购代理机构信息 名称:海逸恒安项目管理有限公司 地址:山东省济南市历下区华润置地广场A5-6号楼27楼招标三部 联系方式:陈晓楠、向忆寒0531-82667532、18780039059 3.项目联系方式 项目联系人:陈晓楠、向忆寒 电话:0531-82667532、18780039059 附件:采购需求-山东大学非对称场流分离与多角角度动静态激光光散射联用系统.pdf
  • 山东大学320.00万元采购场流分离仪
    详细信息 山东大学非对称场流分离与多角角度动静态激光光散射联用系统公开招标公告(三次) 山东省-济南市-历下区 状态:公告 更新时间: 2024-01-07 招标文件: 附件1 项目概况 山东大学非对称场流分离与多角角度动静态激光光散射联用系统招标项目的潜在投标人应在山东大学招标采购管理系统获取招标文件,并于2024年01月29日14点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:SDJDHD20230506-Z295/HYHA2023-2550 项目名称:山东大学非对称场流分离与多角角度动静态激光光散射联用系统 预算金额:320.000000 万元(人民币) 最高限价(如有):320.000000 万元(人民币) 采购需求: 标包 货物名称 数量 简要技术要求 A 非对称场流分离与多角角度动静态激光光散射联用系统 1 详见公告附件 合同履行期限:详见招标文件要求。 本项目(不接受)联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:无; 3.本项目的特定资格要求:1)在“信用中国”、中国政府采购网网站中被列入失信被执行人、重大税收违法失信主体、政府采购严重违法失信行为记录名单的投标人,不得参加本次政府采购活动;2)单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加同一合同项下(同一包号)的政府采购活动;3)所投产品为进口设备的,投标人需提供针对此项目的产品授权书。(授权可追溯) 三、获取招标文件 时间:2024年01月08日至2024年01月12日,每天上午8:30至11:30,下午13:00至16:30。(北京时间,法定节假日除外) 地点:山东大学招标采购管理系统 方式:第一步:投标人在海逸恒安项目管理有限公司网站上录入单位名称、联系人及电话等信息;链接:http://www.sdhyha.cn/qpoaweb/prg/gys/baoming.aspx?id=371642k9n;第二步:登录山东大学招标采购管理中心网站(http://www.cgw.sdu.edu.cn/)进行投标人注册,注册完成山东大学招标采购管理中心审核通过后,在获取招标文件截止时间前再次登录系统在线报名本项目,报名审核成功后自助下载招标文件。 注:(1)本项目不收取招标文件工本费;(2)本项目实行资格后审,获取招标文件成功不代表资格后审的通过。 售价:¥0.0元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2024年01月29日14点30分(北京时间) 开标时间:2024年01月29日14点30分(北京时间) 地点:本项目实行网上远程开标,投标人可自行选择任意地点登录山东大学招标采购管理系统参加开标。 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、本项目采用电子招投标方式采购。投标人必须按相关程序办理数字证书和安装投标文件工具后方可上传递交投标投标文件。详细操作说明见山东大学采购网(www.cgw.sdu.edu.cn)--资料下载--《山东大学电子投标指南》文件。 2、上传的技术指标附件仅作为参考,最终以招标文件中的技术指标为准。 3、本采购项目允许进口产品参与投标。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名称:山东大学 地址:山东大学中心校区明德楼 联系方式:马老师0531-88365560 2.采购代理机构信息 名称:海逸恒安项目管理有限公司 地址:山东省济南市历下区华润置地广场A5-6号楼27楼招标三部 联系方式:陈晓楠、向忆寒0531-82667532、18780039059 3.项目联系方式 项目联系人:陈晓楠、向忆寒 电话:0531-82667532、18780039059 附件:技术参数-山东大学非对称场流分离与多角角度动静态激光光散射联用系统.pdf × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:场流分离仪 开标时间:2024-01-29 14:30 预算金额:320.00万元 采购单位:山东大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:海逸恒安项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 山东大学非对称场流分离与多角角度动静态激光光散射联用系统公开招标公告(三次) 山东省-济南市-历下区 状态:公告 更新时间: 2024-01-07 招标文件: 附件1 项目概况 山东大学非对称场流分离与多角角度动静态激光光散射联用系统招标项目的潜在投标人应在山东大学招标采购管理系统获取招标文件,并于2024年01月29日14点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:SDJDHD20230506-Z295/HYHA2023-2550 项目名称:山东大学非对称场流分离与多角角度动静态激光光散射联用系统 预算金额:320.000000 万元(人民币) 最高限价(如有):320.000000 万元(人民币) 采购需求: 标包 货物名称 数量 简要技术要求 A 非对称场流分离与多角角度动静态激光光散射联用系统 1 详见公告附件 合同履行期限:详见招标文件要求。 本项目(不接受)联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:无; 3.本项目的特定资格要求:1)在“信用中国”、中国政府采购网网站中被列入失信被执行人、重大税收违法失信主体、政府采购严重违法失信行为记录名单的投标人,不得参加本次政府采购活动;2)单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加同一合同项下(同一包号)的政府采购活动;3)所投产品为进口设备的,投标人需提供针对此项目的产品授权书。(授权可追溯) 三、获取招标文件 时间:2024年01月08日至2024年01月12日,每天上午8:30至11:30,下午13:00至16:30。(北京时间,法定节假日除外) 地点:山东大学招标采购管理系统 方式:第一步:投标人在海逸恒安项目管理有限公司网站上录入单位名称、联系人及电话等信息;链接:http://www.sdhyha.cn/qpoaweb/prg/gys/baoming.aspx?id=371642k9n;第二步:登录山东大学招标采购管理中心网站(http://www.cgw.sdu.edu.cn/)进行投标人注册,注册完成山东大学招标采购管理中心审核通过后,在获取招标文件截止时间前再次登录系统在线报名本项目,报名审核成功后自助下载招标文件。 注:(1)本项目不收取招标文件工本费;(2)本项目实行资格后审,获取招标文件成功不代表资格后审的通过。 售价:¥0.0元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2024年01月29日14点30分(北京时间) 开标时间:2024年01月29日14点30分(北京时间) 地点:本项目实行网上远程开标,投标人可自行选择任意地点登录山东大学招标采购管理系统参加开标。 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、本项目采用电子招投标方式采购。投标人必须按相关程序办理数字证书和安装投标文件工具后方可上传递交投标投标文件。详细操作说明见山东大学采购网(www.cgw.sdu.edu.cn)--资料下载--《山东大学电子投标指南》文件。 2、上传的技术指标附件仅作为参考,最终以招标文件中的技术指标为准。 3、本采购项目允许进口产品参与投标。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名称:山东大学 地址:山东大学中心校区明德楼 联系方式:马老师0531-88365560 2.采购代理机构信息 名称:海逸恒安项目管理有限公司 地址:山东省济南市历下区华润置地广场A5-6号楼27楼招标三部 联系方式:陈晓楠、向忆寒0531-82667532、18780039059 3.项目联系方式 项目联系人:陈晓楠、向忆寒 电话:0531-82667532、18780039059 附件:技术参数-山东大学非对称场流分离与多角角度动静态激光光散射联用系统.pdf
  • 聚焦场流分离技术 解决低浓度细颗粒物分析表征难题 ——访中国科学院生态环境研究中心谭志强研究员
    随着环境污染问题日益严峻,污染物的微细化趋势明显,环境基质中细颗粒污染物的检测与控制成为当下环境管理的重大挑战。场流分离技术,起源于上世纪60年代,具有分离范围广、分离效率高等优点,在解决环境基质中低浓度细颗粒物分析检测难题方面展现出独特的技术优势和广阔的应用前景。中国科学院生态环境研究中心谭志强研究员及团队多年来一直致力于场流分离技术的研究及应用,特别是应用场流分离技术在低浓度细颗粒物分离分析中做出了突出成果。近期,仪器信息网与谭志强就其研究成果进行了深入交流。受访人:中国科学院生态环境研究中心谭志强研究员仪器信息网:能否请您介绍一下您本人的研究经历以及您目前主要从事的研究方向。谭志强:我本人的研究经历与金属元素密不可分。2005年我考入四川大学攻读硕士学位,第一次接触分析仪器研制这个研究方向,非常感兴趣。当时,为了解决野外现场痕量铜、铅、镉等重金属离子的快速检测问题,参与了便携式钨丝电热原子吸收光谱分析仪的研制和开发工作,为实现原子吸收光谱仪走出实验室做了一点工作。 2008年考入中国科学院生态环境研究中心攻读博士学位,继续从事重金属污染物现场快速检测研究,开发了一系列基于金纳米探针的灵敏、快速、准确检测汞、铜、砷等离子的分析方法。 2011年博士毕业后,我继续在生态环境研究中心从事博士后研究。围绕解决纳米材料环境安全性研究中低浓度细颗粒物分析表征的难题,开始从事基于场流分离技术的金属细颗粒物分离分析新方法开发和仪器研制。我们率先在国内开展了中空纤维流场流分离技术的研究,先后研制了四代基于中空纤维流场流分离技术的细颗粒分离纯化仪器(图1),这些仪器的分离性能逐渐优化,应用范围不断扩大(如从金属到碳质细颗粒),自动化程度逐步提高,为从纳米至微米不同尺寸细颗粒的分析表征提供了可靠技术支撑。图1 自主研制细颗粒分离纯化仪器实物照片非常荣幸,我们的工作得到了国内仪器研制专家的认可,我本人于2019年获得中国仪器仪表学会 “朱良漪分析仪器创新奖”之“青年创新奖”。最近,我们开始从事电场流分离技术的研究,为实现同尺寸、不同表面修饰剂细颗粒的分离提供了有效手段。仪器信息网:场流分离技术当前在国内外的研究及应用现状如何?在细颗粒物分析中有怎样的应用前景?谭志强:场流分离技术最早由美国犹他大学Giddings教授在上个世纪60年代提出,早期主要用于高分子聚合物、胶体矿物等的分离,现在已经拓展到生物大分子、纳米颗粒、病毒等领域。理论上,场流分离可分离尺寸从1nm~100 μm的细颗粒,所以可作为高效分离纯化细颗粒的有效手段。和色谱分离技术类似,场流分离技术也包括一系列分支技术,比如流场流分离、热场流分离、离心场流分离、电场流分离等。理论上,这些分支技术的分离性能都普遍高于尺寸排阻色谱。流场流分离是目前这些分支技术中理论最为成熟、应用最广泛的一种。流场流分离又可细分为对称流场流分离、非对称流场流分离以及中空纤维流场流分离等。其中,非对称流场流分离被美国国家标准与技术研究院(NIST)推荐为稳定可靠且应用前景广阔的纳米细颗粒分离方法。针对环境样品基质复杂、目标细颗粒物浓度低、高度动态等特点,我们的研究工作主要是围绕中空纤维流场流分离技术。与其他流场流分离系统相比,中空纤维流场流分离系统的分离能力更强,而且非常容易与高灵敏检测器(如ICPMS)直接联用,因此更适用于环境基质中低浓度细颗粒的分离分析。另外,所用中空纤维膜分离通道成本低,而且非常容易更换,这有助于该技术的推广和普及。除了分离范围宽和分离度高以外,场流分离仪器通道内没有固定相填料,而且常采用简单基质溶液(如纯水)作载流,这样可以最大程度保证目标物的无损分离,因此可用于揭示真实环境中细颗粒的赋存状态。这个特点也使得场流分离技术在蛋白质、外泌体、病毒等生物细颗粒的分离分析中具有巨大的应用前景。而且,这种载流也有利于将场流分离仪器直接与后续高灵敏检测器在线联用。离线收集的分离组分也非常容易用于其他检测方法的直接分析。另外,中空纤维流场流分离采用管壁上布满微孔的中空纤维膜作为分离通道,不仅可实现样品基质的在线净化,还可以实现共存离子组分的同时分析。比如为实现环境中痕量银纳米颗粒的形态分析,我们将研制的中空纤维流场流分离仪与紫外可见吸收检测器、动态光散射、电感耦合等离子体质谱在线联用(HF5-UV-vis-DLS-ICPMS)(图2),实现了μg/L浓度水平的5种不同粒径(1.4 nm、10 nm、20 nm、40 nm和60 nm)银纳米颗粒以及2种不同形态(游离或弱结合态和强结合态)银离子的在线分离、识别、表征及定量分析,为实际水环境中不同形态银的浓度水平调查提供了准确、可靠、高灵敏的分析方法,也为深入研究环境相关浓度水平银纳米颗粒和银离子的环境行为和归趋奠定了基础。图2 HF5-UV-vis-DLS-ICPMS在线联用系统示意图及工作原理图[1]仪器信息网:您和团队开展场流分离技术相关研究的契机是什么?回顾您过去在相关领域的研究经历,取得了哪些标志性的成果?谭志强:环境细颗粒的粒径范围涵盖纳米到微米级。近年来的研究已经证实,细颗粒的环境和生物安全性与其浓度水平和环境行为密切相关。由于环境中的细颗粒含量通常处于痕量或超痕量水平,且环境基质复杂,因此环境基质中低浓度细颗粒的分析表征极为困难,这严重制约了对环境相关浓度细颗粒的物理化学转化过程的研究,进而限制了人们对环境中细颗粒生成和转化规律的认识。因此,建立环境基质中低浓度细颗粒的高灵敏度分析方法既是当前环境化学亟待解决的关键科学问题,同时也是深入研究低浓度细颗粒环境和生物安全性的“卡脖子”技术问题。基于前面提到的HF5-UV-vis-DLS-ICPMS在线联用系统,我们系统研究了环境相关浓度(如10 μg/L)银纳米颗粒的典型物理化学转化过程。比如,在银纳米颗粒团聚行为研究中,直观表征到天然有机质在颗粒表面形成的冠结构,且发现低浓度银纳米颗粒比在高浓度下具有更长的稳定时间。另外, 我们发现在光照天然有机质还原银离子生成银纳米颗粒过程的研究中,发现光照环境相关浓度银离子仅生成大量小粒径(如2.3 nm)银纳米颗粒,而高浓度银离子下则同时生成大量小粒径和大粒径(如8.4 nm)银纳米颗粒。在银纳米颗粒和银离子的相互转化研究中,发现污水处理厂进水中银离子主要以巯基化合物形式存在,并未检测到以往在高浓度下研究报道的硫化银,而银纳米颗粒并未发生明显的化学变化(如硫化)。上述研究表明,环境相关浓度下银纳米颗粒和银离子的环境行为与高浓度情况下的研究结果存在显著差异,这也突出了细颗粒环境行为研究应从环境相关浓度水平出发的必要性。最近,我们基于偏置循环电场流分离-紫外可见吸收检测器-电感耦合等离子体质谱在线联用系统(BCyElFFF-UV-vis -ICPMS),研究了水环境中银纳米颗粒环境冠形成及对其生物效应影响(如图3所示)。我们首次使用偏置循环电场流分离技术对相同尺寸、不同修饰剂的银纳米颗粒进行了分离。根据这两种不同修饰剂银纳米颗粒洗脱时间差异、分级组分的离线分析表征以及理论计算结果,阐明了不同修饰剂银纳米颗粒表面环境冠结构形成机理,揭示了环境冠结构对银纳米颗粒生物效应的影响机制。这项工作表明,循环电场流分离技术可为监测银纳米颗粒表面结构的微小变化以及高效分离纯化银纳米颗粒及其衍生物(如表面含环境冠、蛋白冠等结构)提供了可靠技术支撑。图3 基于电场流分离系统的银纳米颗粒环境冠形成及其生物效应研究新方法[2]仪器信息网:在之前取得科研成果的基础上,您和您的团队还有哪些规划?接下来您团队的研究重点还有哪些?谭志强:基于目前已经建立的不同尺寸、不同表面性质细颗粒的分析表征方法,未来我们将从形貌、尺寸、形态变化多角度对细颗粒分析表征,开展真实环境中细颗粒的老化或风化过程、细颗粒与矿质颗粒物异质团聚行为、细菌或细胞对细颗粒摄入过程及转化等方面的研究,探索解决细颗粒生物地球化学过程和生物效应研究中的关键科学问题,为准确评估细颗粒物生态环境健康风险提供重要依据。除了在环境领域应用外,我们还将继续拓展场流分离技术在环境毒理、生物医学、纳米农业等领域的应用。近年来,我们与国家纳米科学中心、中国农业大学、中国科技大学等研究团队开展了广泛合作,并且取得了系列有国际影响力的创新成果。仪器信息网:目前国内场流分离技术应用和研究相对较为小众,您认为这主要是受限于哪些因素,未来场流分离技术还有哪些应用和发展空间?谭志强:我个人认为主要有以下几方面原因:首先与其他分离技术相比,比如色谱技术,这个技术的发明距今还不足60年,仍然是一种相对比较新的分离技术。我国学者对场流分离技术的关注和研究起步更晚。上世纪80年代,中国科学院化学所高玉书研究员较早开始关注场流分离技术,后来高老师去美国继续开展场流分离技术研究工作。很长时间国内场流分离技术研究几乎处于空白状态。非常高兴的是,进入21世纪后越来越多的研究团队开始从事场流分离技术的相关研究。据不完全统计,目前国内有十余个科研团队在从事场流分离技术研究和应用方面的工作,这已经引起了国际场流分离技术会议委员会的关注,多次邀请我们参加相关国际学术会议。其次,目前全球能够生产场流分离仪器的公司极少,国内市售场流分离仪器几乎全部来自国外进口。这些仪器的价格远高于其他常规分离仪器(如液相色谱)。由于国际贸易摩擦,近年来这些进口仪器的关税不断提高,这对进口仪器设备在价格上也有一定影响。另外,进口场流分离仪器国内维修工程师的短缺也影响了场流分离仪器的大量普及。因此,亟需我们加快国产场流分离仪器的研制和专业技术人员队伍建设,逐渐实现进口替代。这也是我们团队一直在努力的一个方向。另外,场流分离在国内的应用领域还是比较窄,场流分离的应用潜力有待进一步挖掘。场流分离技术在环境保护、生物医学、食品安全、材料制备等领域具有广阔的应用前景,这需要各个学科领域学者的共同努力。比如,去年国务院办公厅印发的《关于新污染物治理行动方案的通知》(国办发 [2022] 15号)中,已经明确把微塑料已经正式被列入第四类新污染物。国家自然科学基金委今年也启动了“微塑料的环境化学行为与效应”专项项目。对这种新污染物的识别和定量是对其环境健康风险科学评估和精准施策的前提。我们最近的研究表明,环境中还存在大量的纳塑料,它们的迁移能力更强,环境健康风险可能更大,治理起来也更加困难。目前应用较多的微塑料表征方法,如光学显微镜、红外光谱、拉曼光谱等,对于小尺寸纳塑料的识别和定量存在一定挑战性。因此,场流分离技术在微/纳塑料污染调查、环境行为、生物效应、污染防治等研究具有非常大的应用潜力。再次,目前国内学者更多关注的是流场流分离技术,市场上的场流分离仪器大多为非对称流场流分离仪,而研究其他场流分离分支技术的团队极少。近三年来,我们也围绕电场流分离和磁场流分离也开展了一些工作,有效弥补了流场流分离技术在特定目标物分离分析中的应用短板。最后,我们对场流分离技术的科普宣传还有待加强。比如我们的很多仪器分析教科书上,很少会详细介绍场流分离技术。当然这需要我们每位从事场流分离技术研究的学者共同努力,积极为场流分离在国内的推广和普及做贡献。我们希望通过我们的共同努力,场流分离仪器能够像色谱一样进入常规分析实验室,为细颗粒相关研究领域提供研究“利器”!插图出处:[1] Zhiqiang Tan, Jingfu Liu, Xiaoru Guo, Yongguang Yin, Seul Kee Byeon, Myeong Hee Moon, Guibin Jiang. Toward full spectrum speciation of silver nanoparticles and ionic silver by on-line coupling of hollow fiber flow field-flow fractionation and minicolumn concentration with multiple detectors. Anal. Chem., 2015, 87, 8441-8447.[2] Zhiqiang Tan, Weichen Zhao, Yongguang Yin, Ming Xu, Yanwanjing Liu, Qinghua Zhang, Bruce K. Gale, Yukui Rui, Jingfu Liu. Insight into the formation and biological effects of natural organic matter corona on silver nanoparticles in water environment using biased cyclical electrical field-flow fractionation. Water Res., 2023, 228, 119355.附受访人简介:谭志强,男,理学博士,博士生导师,中国科学院生态环境研究中心研究员,国科大杭州高等研究院兼职教授,大理大学客座教授,中国仪器仪表学会分析仪器分会高级会员,主要研究方向为低浓度细颗粒物分析表征新仪器研制及其在环境化学、纳米农业、生物医学等领域应用。先后在韩国延世大学、美国犹他大学以及马萨诸塞大学从事访学合作研究,在Sci. Adv.、Environ. Sci. Technol.、Anal. Chem.、Water Res.、TrAC-Trend Anal. Chem.等国内外学术期刊发表论文60余篇,参与编写中文专著3部,授权国家发明专利7项;先后主持国家自然科学基金4项,国家“973”项目和国家重点研发计划子课题各1项;担任《Reviews of Environmental Contamination and Toxicology》、《Atomic Spectroscopy》、《分析试验室》等杂志编委。2017年入选中国科学院青年创新促进会,2018年获中国分析测试协会科学技术奖(CAIA奖)一等奖,2019年获中国仪器仪表学会“朱良漪分析仪器创新奖”之“青年创新奖”。
  • 德祥圆满参展第37届HPLC 2011 Dalian / 第18届NSEC
    2011年10月9日至11日,第37届国际高效液相色谱及相关技术会议 (HPLC 2011 Dalian) / 第18届全国色谱学术报告会及仪器展览会(18th NSEC)在大连举行。德祥集团多款色谱相关产品参加了展出。 德国Gerstel全自动样品前处理工作站 德国GERSTEL是全球*的样品前处理分析设备公司,成立于1967年,已有40余年的历史。自1986年,GERSTEL成为Agilent气相色谱增值产品全球合作伙伴,其主要产品包含冷进样口系统(CIS)、多功能全自动样品前处理平台(MPS XT)、热脱附系统(TDS3)、用于气味化合物分析的嗅觉检测口(ODP)、全自动气相色谱馏分收集器( PFC)、用于复杂化合物分析的多柱切换系统(MCS)等,这些产品基于模块化设计,可单独使用,也可互相配套使用,为用户提供多种样品前处理解决方案,从而大大拓展气相色谱仪的样品分析性能。另外,结合MAESTRO软件,可实现样品高通量的在线分析, 为您提供完整的解决方案,已广泛应用于全球各地及各行业。 Gerstel MPS XT 是一个多功能的样品前处理平台,*结合液体进样、顶空进样(HS)、固相微萃取(SPMS)、Twister 磁力搅拌吸附萃取(SBSE)、动态顶空(DHS)、自动更换进样口衬管(ALEX)、固相萃取(SPE)、膜萃取、高效移液萃取(DPX)等样品前处理技术于一体,结合Gerstel新开发Maestro软件,为您的色谱提供*性能的体验。 Gerstel多功能全自动样品前处理平台MPS XT Gerstel 作为全球*的生产前处理技术设备的公司,其热吸附系统TDS3展现了世界上最先进技术,并取得了巨大的成功。TDS3是一个高性能的热脱附系统,它使用了Gerstel冷进口CIS,同时作为冷肼和GC进样口。脱附的样品组分在CIS中被冷聚焦,以利于改善色谱峰形。Gerstel热脱附系统TDS 嗅觉检测器(ODP)专注于味道的检测,可以连接在所有类型的GC上工作。与传统的其为分析相比,它能给出更加显著和明确的结果。它通过一段柔性的传输线和GC相连,同时带有以个可加热的混合腔,皮面高沸点物质冷凝。ODP可以将操作者的感受完整记录,并与GC检测器同时鉴定,得到更准确可靠的结果。 Gerstel嗅觉检测器ODP 目前,Gerstel样品前处理设备已广泛用于环保、香精香料、食品行业、制药工业、塑料工业、精细化工、法医学和临床化学等全球各行各业。德国Gerstel公司以其40余年的成功经验,集多种全自动样品前处理技术于一体,提供高效完美的解决方案,为您的色谱提供*性能的体验。 日本山善株式会社(Yamazen Corporation)---制备色谱专家 全球*30余年只专注于中压制备色谱的厂家,成立于1977年,占据70%以上的日本市场份额,拥有全球诸多知名制药企业如,GSK(葛兰素史克)、Pfizer(辉瑞)、Novartis(诺华)、Roche(罗氏)、Sanofi-Aventis (赛诺菲安万特)、Takeda(武田)、Daiichi-Sankyo(*三共)、SmithKline Beecham(史克必成)等忠实客户。 山善公司为您提供一整套的制备色谱的解决方案。 美国SEMBA模拟移动床色谱&mdash &mdash 高效连续分离色谱 美国Semba Biosciences公司坐落于美国威斯康星州麦迪逊市。专业致力于为人们提供高效分离纯化方面的仪器、试剂、分离方法等。 模拟移动床色谱是一种连续的分离纯化技术,适合手性化合物、重组蛋白、抗体等,模拟移动床有别于传统的单柱色谱,不仅分离纯化的效率高,而且节约纯化介质及试剂。美国Semba Biosciences公司也是世界上首先将模拟移动床色谱技术运用在台式色谱仪上的,并提供相应的色谱柱及试剂,客户很容易将HPLC或蛋白层析方式移植到模拟移动床色谱上以获得更高的纯度和产量。Semba Octave&trade 系统特点:世界上*台台式8柱模拟移动床色谱适合分析手性化合物、重组蛋白、抗体等纯化量:毫克~克级产率为单柱色谱的5~10倍全流路具有生物样品兼容性 应用领域: 模拟移动床色谱分离技术是色谱技术的一次革新,其应用遍及石油、精细化工、生物发酵、医药、食品等生产及研究领域,尤其在同系化合物、手性异构体药物、糖类、有机酸、氨基酸及标记蛋白等混合物的分离中显示出其独特性能。在分离两组分体系上更有着巨大的优势。德国Postnova场流分离系统&mdash &mdash 无固定相色谱技术 POSTNOVA公司是一家专注场流分离技术的研发和仪器设计生产的高科技企业。为全球的科学家们提供了非常独特的大分子物质分离技术和技术服务,以确保用户能成功地、高效地使用好场流分离仪器。&ldquo 场流分离&rdquo (Field-Flow Fractionation)概念和场流分离技术的发明者-凯文.吉蒂斯教授(Prof. C. Giddings,两次获得诺贝尔奖提名)是&ldquo 场流技术公司/POSTNOVA公司&rdquo 的创始人之一,并且开发出世界上*台商业化的场流分离仪。AF 2000-MT中温非对称流动场场流分离仪 场流分离技术是分离技术的一种,它可以与液相色谱(LC)相比。就像液相主要用来分离小分子一样,场流分离主要用来分离大分子或粒子(可称为:粒子色谱)。场流分离技术是一个独特的分离技术,所有场流分离技术都使用相同的基本分离的原则,但采用不同的分离场。根据不同分离场,场流分离技术可分为流动场流分离 ,沉淀场流分离,热场流分离等。场流分离技术可以提供快捷,温和以及高分辨率的分离,它可以分离任何液体介质中的从1纳米至100微米的颗粒物。场流分离技术具有以下优点:&bull 快速、温和的分离,可以兼容任何溶剂和缓冲液&bull 超高的分辨率(± 1nm)&bull 没有任何固定相的分离通道&bull 宽分离范围:粒径1nm~100mm /分子量1000Da~1012Da&bull 无需前处理及过滤,直接进样复杂基质样品&bull 可收集所需要的样品,方便升级至制备级&bull 能够连接各种检测器,如在线串联紫外、光散射、荧光、质谱等检测器&bull 可同时测定分子的分子量及粒子的粒径更多产品请登陆德祥官网:www.tegent.com.cn德祥热线:4008 822 822联系我们(直接用户)联系我们(经销商)邮箱:info@tegent.com.cn
  • 微纳尺度分离和分析技术学术会大会报告
    仪器信息网讯 由国家自然科学基金委、中国化学会联合主办,复旦大学和上海交通大学联合承办的“2010年微纳尺度分离和分析技术学术会议暨第六届全国微全分析学术会议”于2010年10月18-19日在上海复旦大学召开。会议主题为“科技让生活更美好,微纳让科技更奇妙”。400余名国内同行和20余名国外专家参加,讨论交流微/纳尺度分离、微全分析、以及微/纳技术在化学生物学和生物医学领域中的应用问题。会议现场  本届大会邀请了瑞士洛桑联邦高等理工大学Hubert H.Girault教授、高丽大学SanHong Lee教授、香港科技大学I-Ming HSING教授、延世大学Myeong Hee Moon教授、南京大学陈洪渊院士、卢森堡大学Bruno Domon教授、基金委化学科学部常务副主任梁文平研究员做了精彩的大会报告。   瑞士洛桑联邦高等理工大学 Hubert H.Girault教授  报告题目:Functional electrospray chips  Hubert H.Girault教授主要从事液/液界面电分析化学、电化学传感、生物传感、生物芯片、毛细管电泳、质谱等与生化分析相关的研究。其在会上主要介绍了Offgel毛细管电泳技术、聚合物的微机械加工,以及一种与质谱联用的新型电喷雾芯片,该芯片可应用于临床诊断。    高丽大学 SanHong Lee教授  报告题目:Microfluidic microenviroment for cell study and stem cell differentiation  SanHong Lee教授来自高丽大学生物医学工程系,主要从事芯片实验室及生物微机电加工技术研究。他为与会者作了关于“微流控微环境用于对细胞和干细胞分化的研究”方面的报告。SanHong Lee教授介绍了目前模拟体内细胞方面的相关研究,并指出生物融合技术将是未来的发展趋势。此外,显微技术可用于控制微环境,将显微技术用于生物研究将可能发展成为一门新的科学。  香港科技大学 I-Ming HSING教授  报告题目:Nucleotide-mediated size fractionation of gold nanoparticles and a new immunoassay platform utilizing Yeast surface display and direct cell counting  I-Ming HSING教授主要从事生化分析微系统、DNA杂交的电化学监测、PCR-电化学微装置的集成等方面研究。在会上,I-Ming HSING教授介绍了核苷酸介导的黄金纳米粒子大小分馏技术,以及利用酵母细胞表面展示和直接细胞计数形成的高灵敏度免疫分析平台。  延世大学 Myeong Hee Moon教授  报告题目:High speed two-dimensional protein separation using isoelectric focusing/asymmetrical flow field-flow fractionation  Myeong Hee Moon教授来自延世大学化学系,主要从事生物大分子的二维分离、等电聚焦-场流分离技术、色谱质谱联用技术等研究。Myeong Hee Moon教授在报告中主要介绍了利用等电聚焦/非对称流场流分离技术实现二维蛋白高速分离方面的研究情况。  南京大学 陈洪渊院士  报告题目:PDMS表面功能及其应用研究  陈洪渊院士介绍了构建PDMS/PDDA-纳米金属杂化膜,及其表征和应用。该材料可作为细胞及其表面糖蛋白检测的优异基体材料,可用于剧毒农药的选择性研究及用于研制细胞区分芯片等。  卢森堡大学 Bruno Domon教授  报告题目:The Luxembourg personalized medicine life sciences initiative  Bruno Domon教授介绍了鸟枪法研究蛋白质组学的局限性,有针对性的蛋白质组学研究策略,以质谱为基础的临床蛋白质组学研究。此外,Bruno Domon教授指出蛋白质组学研究要注意质量控制和质量保证等方面的相关问题。  基金委化学科学部常务副主任 梁文平研究员  报告题目:化学学科发展战略调研与“十二五”优先发展领域  梁文平研究员在报告中阐述了三个方面的问题:目前中国化学基础研究现状与地位,“十二五”化学学科发展战略,以及“十二五”我国化学学科优先发展领域。详请请见本网新闻报道:“十二五”化学学科优先发展领域确定 分析仪器位列其中。
  • Science:浅读IBM Research–Zurich最新力作—纳流控摇摆布朗马达
    2018年3月,知名的科研团队IBM Research–Zurich于 Science 杂志发表了新力作:Nanofluidic rocking Brownian motors。IBM Research–Zurich原名为IBM Zurich Research Laboratory,曾因重大发明成果在1986年和1987年获得过诺贝尔物理学奖,为大家所熟知。今天,我们带着原文一同品味纳流控摇摆布朗马达的科学探索。浅读纳流控摇摆布朗马达大多数物质间的相互作用机制会在物质尺度小至纳米量时产生不利的缩放效应,因此,在流体中控制、输运纳米尺度的物体是一个巨大的挑战。通过控制纳流控器件中狭缝结构的几何参数,同时利用类带电粒子与纳流控器件中墙面结构间的静电作用,M. J. Skaug等人设计了针对纳米颗粒的能图谱。他们通过将非对称势垒与振荡电磁场结合,获得了一种摇摆布朗马达,从而可以对纳流体中的纳米颗粒的定向输运进行调控。Skaug分析了此种分子马达的物理机制,与理论模型进行对比后,基于分子马达成功制备了一种分类器件。这种器件可以在几秒钟的时间内使两种不同粒径的纳米颗粒(直径分别为60 nm和100 nm)在器件中沿着相反方向运动,从而实现对两种颗粒的分离。后续的模拟分析结果证明:这种新型器件可以有效区分粒径差异在1 nm量的不同纳米颗粒。除了在材料、环境科学领域(尺寸分析、过滤、单分散制备)具有应用潜力外,可实现对纳米颗粒进行尺寸选择性输运、收集的芯片器件,在床边检测及生化领域(如分子分离、预浓缩)的应用亦被寄予厚望。闪烁棘轮型布朗马达中的颗粒扩散效应依赖于颗粒的尺寸,研究人员对这类马达在颗粒分类方面的应用潜力进行了探究。与连续层式流动器件的情况相似,利用外加力来替代扩散作用会使得尺寸的区分能力变差。摇摆型布朗马达利用零平均外加力和静态势垒产生直接的定向颗粒运动,其输运特性与其所传输颗粒的扩散特性之间表现出了一种其显著的非线性依赖关系,这对纳米颗粒的区分、分离来说具有重要的意义和应用潜力。对于纳米尺度的颗粒来说,如何创造出能量足够强的静态势垒,是一个重大挑战。 静电俘获为这个挑战提供了很好的思路,即:将带电颗粒限制在均匀带电的表面之间。在其中一个表面上制备一个凹陷的几何结构,可以降低此处局部的颗粒-表面相互作用能量,从而定义一个侧向的俘获势垒。Skaug等人将几何结构诱导静电俘获的思路进行了拓展,以利用热扫描探针光刻方法获得的三维结构取代此前简单的二维凹陷结构,从而创造出针对纳米颗粒的复杂二维能图景。这种方法获得的三维结构在纵向的图形控制精度可以达到纳米量。图1 利用热扫描探针光刻技术制备纳流控布朗马达、定义棘齿形貌:(A)纳流控器件中的狭缝截面示意图及俯瞰图;(B)形貌图像;(C)图(B)中的圆环状棘齿结构的放大形貌图;(D)图(B)中白线标识区域的剖面轮廓图,即棘齿台阶轮廓图;(E)被俘获纳米颗粒的光学图像。图2 实验测量的平均势垒的决定因素:(A)四种图形化棘齿的形貌图以及三种控制场的示意图;(B)棘齿单元的轮廓示意图;(C)棘齿限制的纳米颗粒的能量曲线(平均实验数据与有限元模拟数据对比);(D)九种不同间隙距离的棘齿的能量势垒曲线对比;(E)由因子α确定的棘齿能量势垒通用曲线。图3 粒径60 nm与粒径100 nm的金颗粒的分类:(A)分类器件的形貌图像;(B)图(A)白色虚线框内区域的放大图;(C)上图:金颗粒分类原理简图;下图:相应的静态能量曲线(实现为测量值、虚线为模拟值);(D)金颗粒在分类器件中不同时刻的光学图像;(E)颗粒的空间分布图像;(F)模拟得到的颗粒漂移与粒径的函数关系。通过一系列的测试以及相应的理论计算、模拟,Skaug等人展示了在水平表面与带有三维图形修饰的表面之间的电泳可以有效限制纳米颗粒,从而创造一个可以由几何形貌结构定义的、针对纳米颗粒的能量图景。通过调节表面之间的间隙,一阶俘获势垒可以简单地按比例缩放,从而提供了一种可以用于优化系统的有效手段。在实验当中,所有与模拟纳流控系统有关的必要物理量都可以原位获取。实验与理论的一致性,证明了对文中系统工作机制的解释以及对系统特性的预测的可靠性。摇摆布朗马达输运特性的非线性特性以及静电作用的非线性特性,是文中器件实现对纳米颗粒高效分离的物理基础。更进一步,基于文中的模拟分析以及Ruggeri等人关于颗粒俘获研究的结果,Skaug等人预测可以通过比例缩放的手段,将文章中的方法应用于对生物小分子的分离、分类。与基于流动的分离机制相反,采用摇摆布朗马达可以实现纳米颗粒的选择性输运、分离、集聚,且不需要电泳净流或热力学梯度这类条件。通过将更小的棘齿形貌参数与更低的外加电场相结合,这类器件将非常适合应用于针对芯片实验室中少量液体的高精度成分分析。高精度3D高速纳米结构高速直写技术助力布朗马达尽情“摇摆”上文中,纳流控摇摆布朗马达中的核心部件是其中的棘齿单元,每个棘齿单元的高度、距离其相对水平面的间距等纵向几何参数,对棘齿的能量壁垒特性具有显著的调控作用,从而影响棘齿结构对器件中纳米颗粒定向输运特性的调节。所以,器件中微结构侧壁的构筑和微结构纵向形貌控制成为为重要的部分及大的技术难题。 为了能够克服这一技术上的难题,文章作者采用了热扫描探针技术,这是一种高精度3D纳米结构高速直写技术,其水平方向的直写精度可达10 nm、纵向精度则可以达到1 nm,直写速度则高达10 mm/s,堪称3D加工的利器!高精度3D纳米结构高速直写设备-NanoFrazor很好地满足了Skaug等人的实验需求,并出色完成了研究中所需的多种高难度微纳图形直写任务。?相关产品及链接:1、 3D纳米结构高速直写机:http://www.instrument.com.cn/netshow/C226568.htm2、小型台式无掩膜光刻系统:http://www.instrument.com.cn/netshow/C197112.htm
  • 免维护、人机交互、可视化——记优秀新品海光HGLF-V液相色谱-原子荧光联用仪
    为了将在中国仪器市场上推出的、创新性比较突出的国内外仪器产品全面、公正、客观地展现给广大的国内用户,同时,鼓励各仪器厂商积极创新、推出满足中国用户需求的仪器新品,仪器信息网自2006年发起“优秀新品”评选活动,至今已成功举办十六届。发展至今,该奖项也成为了国内外科学仪器行业最权威的奖项之一,获奖名单被多个政府部门采信。2022年度“优秀新品”评选活动正在进行中,2022下半年入围名单已公布(详情链接)。值此之际,一起再来回顾下往届年度优秀新品奖获得者们吧!本期带您回顾的是2021年度“优秀新品”获奖产品:海光 HGLF-V液相色谱-原子荧光联用仪。2021年度共有711台仪器参与“优秀新品”奖项评选,在“技术评审委员会主席团”的监督下,经仪器信息网“专业编辑团”初审、“网络评审团”评审、“技术评审委员会”终审,确定12台仪器获奖。其中,海光 HGLF-V液相色谱-原子荧光联用仪脱颖而出。海光 HGLF-V液相色谱-原子荧光联用仪介绍如下:海光在2007年同江桂斌院士的技术团队合作研发液相色谱-原子荧光联用仪,并在国家食品安全风险评估中心吴永宁研究员等专家的推动下,制定了GB5009食品安全国家标准。获得2021年度“优秀新品”的HGLF-V系列液相色谱-原子荧光联用仪已经是第三代创新产品,融入了多项绿色环保设计理念,采用自动化、免维护、智能化、人机交互设计,为广大用户带来了更加便利的体验。荧光部分技术特点:● 采用多通道多灯位免调灯光源系统● 基于内消光螺纹、非对称光阑以及特殊消光材料涂层的光学系统设计,有效控制杂散光,显著提高检测系统的信噪比● 高度设计的三维集成流路系统,有效解决了管路凌乱,汞容易残留、记忆效应严重的问题● 微升级高性能顺序注射进样系统,完全免维护,无泵管消耗,实现分析和清洗过程的完全自动化与智能化● 载气、辅助气和屏蔽气组成的三路毫升级高精度数字化气体质量流量控制系统,保证分析结果的长期稳定可靠● 专门针对高有机质样品设计的的免维护水冷式自溢流三级气液分离系统,自动控制泡沫生成,除湿,自动排废● 免维护控温原子化器,确保原子化效率的长期稳定可靠● 百万次免维护点火技术,不需要更换点火炉丝,解决点火炉丝容易断裂的问题● 高稳定度汞灯漂移校准系统,解决了长期测量过程中汞稳定性差的问题● 智能化漏液、气体流量、点火电流、原子化室视频监控等传感监测技术● 高速LAN及Wl FI无线通讯技术● 全新一代智能化软件系统,自动完成测量、保存、清洗、退岀、关机计算机的全流程动作● 采用多通道多灯位免调灯+无限制旋转灯塔及二维坐标对光系统形态部分技术特点:● 10项完全自动化、免维护、智能化的无人值守、人机交互设计  全自动1:8路流动相和试剂液位高度全自动监测与报警  全自动2:流动相和清洗液流路自动切换  全自动3:柱塞清洗完全自动化  全自动4:流动相在线全自动脱气系统  全自动5:双柱高压全自动切换系统  全自动6:柱温箱温度全自动控制与监测  全自动7:紫外灯全自动点亮与可视化监测  全自动8:紫外消解与常规模式全自动切换  全自动9:形态分析和总量分析模式全自动兼容  全自动10:包含软件自动退出与计算机自动关机的全自动分析流程● 20项智能化实时监测技术,随时掌握系统工作状态● 基于自限温空气浴加热、多级温度监控与高精度PID控温算法的全透明可视化柱温箱● 三倍于传统机型紫外光能量的高性能紫外消解系统,消解管路和紫外灯状态实时视频监控● 可选内置氢气助燃模式,还原剂消耗量仅为传统机型的1/4● 智能化气体电子流量控制系统,实现毫升级别高精度控制与快速响应海光市场负责人赵慷发表获奖感言:
  • 拖尾因子、对称因子、不对称因子三者间的关系
    相信小伙伴们在日常测试中会发现,评价色谱峰的峰形对称性,有拖尾因子、对称因子、不对称因子三种参数。而目前使用的分析软件,ChemStation工作站中的对称因子,Empower工作站中的USP拖尾因子,Chameleon工作站中并没有对称因子参数,是以不对称度评价的。这三种参数的关系是什么,有什么区别,今天小编就和大家聊一下。理想条件下,色谱峰应该具有高斯型的特征:式中,χ等于(t-tR)/σ,t是时间,σ=W/4,y是峰高。色谱图中的真实峰通常会稍稍偏离对称的高斯峰形,通常会或多或少带一点拖尾。如下图所示: 拖尾因子:Tailing factor常用Tf表示,以峰高5%处计算。不对称因子:Asymmetry factor常用As表示,以峰高10%处计算。对称因子:Symmetry factor常用S表示,与不对称因子As互为倒数关系。As和Tf值的关系大概可以表达为:As≈1+1.5(Tf-1)所以一般来说As的值在一定程度上大于Tf的值。峰形随着不对称因子(As)和拖尾因子(Tf)而变化。当As或者Tf=1.0时,对应的是一个完美的对称色谱峰,在这种情况下,两个色谱峰可以很好地彼此分开。然而,随着峰拖尾的程度加重,它们之间的分离也变得糟糕。多数情况下峰拖尾的程度并不是很严重(Tf1.2),并且一般不会被注意到。这种程度的拖尾(Tf1.2)对分离造成的影响可以忽略不计,除非是在一个很大的色谱峰后跟随了一个很小的色谱峰的情况下。拖尾因子、对称因子和不对称因子规定范围探讨中国药典(CP)要求拖尾因子的范围是在0.95-1.05,是有一个适用前提的,即中国药典规定峰高法定量时拖尾因子应该在0.95-1.05之间,低于0.95为前延峰,高于1.05为拖尾峰。欧洲药典(EP)和英国药典(BP)规定进行有关物质或含量测定时,除另有规定外,色谱图中定量用对照品溶液的色谱峰对称因子应为0.8~1.5。美国药典(USP)中出现了对某些化合物拖尾因子要求不大于2.0。日本药典(JP)中没有具体规定拖尾因子的范围。从各国药典对拖尾因子范围的约束来看,拖尾因子并没有一个数值范围的确定标准,在实际的色谱实验中需要具体问题具体分析。
  • 岛津二维液相色谱新应用|流动相含离子对试剂的化药杂质质谱鉴定方法
    离子对试剂:极性药物分析绕不开的话题 液相色谱是药物杂质含量测定和有关物质分离分析最常用的技术手段。对一个陌生的化合物,ODS反相色谱柱通常方法开发条件会选择酸性pH流动相。然而,总有些化合物,它们或含氨基、或含羧基、磺酸基团、磷酸基团,极性较强在反相色谱柱上没有保留。打开2020版《中国药典》第二部,不难发现这些品种,名称中常含有“马拉酸”、“盐酸”、“碱”、“酸”等关键词。对于这类强极性化合物的分析,药典给出的答案是:流动相中添加离子对试剂。例如丁溴东莨菪碱、贝敏伪麻的有关物质流动相条件中含有十二烷基硫酸钠;马来酸曲美布汀的流动相含有戊烷磺酸钠;盐酸头孢吡肟的流动相含有辛烷磺酸钠;叶酸、头孢美唑和对氨基水杨酸钠的流动相含有四丁基氢氧化铵。离子对试剂的添加,增强了极性化合物的保留,改善了药物与杂质的分离,是极性药物分析的杀手锏。 离子对试剂:“质谱不能承受之重” 辛烷磺酸钠和四丁基硫酸氢铵等常用离子对试剂,属于不挥发盐类,质谱响应强且信号经久不衰,持续抑制目标化合物的电离。一旦误操作进入质谱端,需要清洗整个离子通路才能恢复质谱的正常状态。常规二维液相在线除盐系统仅能去除无机盐,无法去除离子对试剂。这是因为无机盐(如磷酸盐)在二维反相色谱柱上无保留,在死时间将其切至废液从而实现在线除盐。然而离子对试剂具有较强的疏水性,在常规ODS色谱柱上强烈吸附显著拖尾,因此不能被常规二维液相系统去除。 上图是辛烷磺酸钠在ESI离子源上的响应。可生成簇离子,质谱响应强且持久,对ESI正负模式均可产生抑制。 上图是四丁基硫酸氢铵在ESI离子源正模式的响应,质谱响应强且持久。四丁基硫酸氢铵与固定相强烈作用,色谱上呈现显著拖尾。 ReDual:一款可以同时分离无机、有机、阴、阳离子的“神柱” ReDual系列色谱柱,是岛津公司最新推出的离子交换反相混合键合相色谱柱,共分为三款: ReDual™ SCX-C18 强阳离子交换+反相ReDual™ CX-C18 弱阳离子交换+反相ReDual™ AX-C18 强阴离子交换+反相 下图是采用ReDual AX-C18 (4.6 mm I. D. × 150 mm L., 5 µm,货号426-45415)分析磷酸二氢钠、四丁基硫酸氢铵和卡络磺钠混合样品的色谱图。该款色谱柱表面键合叔胺基团,在pH 2-7范围内色谱柱表面带阳离子。除疏水作用外,其对阴离子具有离子交换作用,对阳离子具有离子排斥作用。为分离极性类似的阳离子和阴离子型化合物提供了条件。下图中四丁基氨根离子峰型对称,不拖尾无残留,可以通过阀切换导入废液实现在线去除。 ReDual AX-C18色谱柱NQAD检测器同时分离无机有机阴阳离子(1:Na+ 2:四丁基氨根离子;3:H2PO3- 4:卡络磺酸根离子) 应用案例:卡络磺钠参比制剂中杂质结构鉴定 本应用采用常规中心切割二维液相系统,无需改造仪器;馏分转移过程配有紫外检测器监控,不存在检测盲区;离子对试剂的去除未使用强酸或强碱性试剂;方法耐用性好。一维使用C18反相色谱柱,流动相添加磷酸二氢钠(含四丁基硫酸氢铵,pH 3.0);二维使用ReDual AX-C18色谱柱,在线去除四丁基硫酸氢铵和磷酸二氢钠,实现目标化合物的质谱鉴定。 卡络磺钠杂质2的质谱鉴定结果 总结岛津中国创新中心搭载的特色中心切割二维色谱杂质鉴定系统,二维使用岛津公司最新推出的ReDual™ AX-C18强阴离子交换反相混合键合相色谱柱,成功实现一维流动相中离子对试剂和无机盐的在线去除,并对卡络磺钠参比制剂中未知杂质进行了质谱鉴定。
  • 聚焦新技术 | AIS puriFlash® 制备纯化系统与流动化学集成,搭建连续分离纯化平台!
    流动化学创新地将传统独立分开的合成操作过程整合起来,在连续流动的系统中完成化学反应,加快了合成的速度,对于绿色化学和实验室自动化领域具有非常重要的意义。此前,我们与爱丁堡赫利瓦特大学 VilelaLAB 和流动化学实验室进行合作,借助 Advion Interchim Scientific puriFlash5.250 纯化制备系统,搭建了全新的连续分离纯化平台,进一步加快实验流程。AIS puriFlash5.250 纯化制备系统ONE平台搭建 平台大致上分为三部分:流动反应池部分、在线输送部分以及AIS puriFlash 5.250 制备纯化部分。实验平台搭建示意图ONE基本思路step 1:流动反应池系统用于进行合成并将粗反应混合物直接或通过在线萃取器输送到 AIS puriFlash 5.250 色谱仪的进样口处。step 2:puriFlash 5.250 通过仪器的 10 通阀,将原料交替切换注入到其中一个样品环中。step 3:两根相同的色谱柱:一个加载反应混合物,另一个用于平衡和执行色谱方法,确保样品环中的样品不损失。 step 4:使用 UV+ELSD 检测器监测并进行馏分收集。 ONE 实验关键点1、优化流动反应池的设置,以获得产品的最大产率;2、优化纯化方法,尽量减少离线实验中粗反应混合物纯化所需的时间;3、色谱方法与流动反应池的进料流速同步,以实现成功的耦合。ONE应用实例(A) 乙二醇和苯甲酰氯酯化反应的在线快速纯化流程示意图。 (B) 40 个连续分离的酯产物的色谱堆叠图。DMAP:4-(二甲氨基)吡啶,FBR:固定床反应器。 实验体系证明了流动化学集成 puriFlash 5.250 从粗反应混合物中同时分离两种产品(以克/小时为单位,纯度 99%)的潜力。在乙二醇和苯甲酰氯的连续流动酯化中,两种酯的产率分别为 9.9 和 7.6 mmol/h。ONE讨论 使用测试混合物(4-甲氧基苯酚和2,5-二溴对二甲苯,正己烷/乙酸乙酯体系)成功进行了原理验证研究,证明了流动化学-puriFlash5.250集成的可行性,并确认了 Advion Interchim Scientific Flash 柱的耐用性。 受到该方法成功的启发,另外几种不同的反应也得到了验证,连续分离出纯度为 97-99% 的产品。 除此之外,puriFlash 5.250 纯化制备系统还可以提供重要的辅助功能。 • 以4,7-二苯基-2,1,3-苯并噻二唑为均相光敏剂,催化 fmoc-l-蛋氨酸生成相应的亚砜为例,证明了均相催化剂在线回收的可能性。 • 可以实现 AIS puriFlash 纯化制备色谱系统与您的流动化学无缝集成,这种联合能够满足实验需求,有助于加速化学新反应的发现。
  • 清华精仪系团队实现高分辨生物分子异构体分析研究
    研究背景与成果生物分子的结构解析与相关生物学功能的关联研究已成为现今生命科学的前沿。生物分子存在多级结构,而其结构复杂度的一个重要因素为分子异构。不同的异构分子(Isomers and isoforms)具有相同的化学式和分子量,但化学结构不同。例如,单糖存在多种异构体,包括葡萄糖、果糖、半乳糖等;多糖由单糖两两通过糖苷键相互连接组成,导致出现更为复杂的构造异构(分子中原子或原子团互相连接次序不同,Structural or constitutional isomers)和立体异构现象(连 接 次 序 相 同 但 空 间 排 列 不 同,Spatial isomers or stereoisomers)。离子迁移(Ion mobility, IM)与质谱(Mass spectrometry, MS)联用(IM-MS)分析已经发展为生物分子特别是生物大分子结构解析的一种主要手段,并成为质谱仪器发展的主要方向。IM可以区分MS不能区分的异构体或同重素(Isobars),这一独到的特性对生物分子的结构解析研究十分关键,近年来被广泛用于糖结构、脂质结构、蛋白质结构和活性、蛋白质-分子相互作用等研究中。近年来,多种IM 分析方法被纷纷提出,例如迁移时间 DTIMS (Drift time ion mobility spectrometry)、囚禁式 TIMS(Trapped ion mobility spectrometry)、行波 TWIMS(Travelling wave ion mobility spectrometry) 以及非对称场 FAIMS(Field asymmetric ion mobility spectrometry)等。然而,这些技术均基于低E/N场原理(E/N 30 Td,E代表电场场强,N代表中性气体数密度,Td是Townsend数),分离分辨率一般在40-200,不足以解决目前生物分子异构体解析研究的迫切需求。图1. 离子云扫描分析技术的仪器设置、原理和性能表征。(a)Mini β质谱仪器系统。(b)实验装置示意图。(c)离子云扫描技术原理。强迫振动下的两种异构体离子(紫色和蓝色)的离子轨迹。(d)获得的离子云扫描谱图。针对以上难题,清华大学精密仪器系生物医学仪器与应用研究团队向高E/N场寻求突破离子迁移分析低分辨率的局限,提出一种超高场离子云扫描技术,并在Mini β质谱仪器系统(PURSPEC科技(北京)有限公司)上实现迁移分辨率超过10,000的高分辨IM分析,提升较现有技术水平一个数量级以上(图1)。超高场离子云扫描技术采用强迫振荡的物理原理,在超高场(约1×105 Td)条件下实现异构体离子的离子云分离,通过扫描激发振荡电压可以获得异构体离子的高分辨IM谱图。成果优势利用高场离子云扫描分析技术,对四种二糖异构体 (海藻糖、麦芽糖、纤维二糖和乳糖,图2a)开展了结构分析(图2b),并对乳糖和纤维二糖的混合物进行了离子云扫描分析(图2c),并与传统串联质谱分析(图2d)结果对比。从图2d可见,乳糖和纤维二糖具有到相同的碎裂模式,无法通过串联质谱技术加以区分。但这两种异构体可以通过离子云扫描实现完全分离(图2c)。此外,离子云扫描分析技术也展现出优异的定量分析特性(图2e和2f)。图2. 二糖异构体分析。(a)四种二糖异构体及其(b)离子云扫描谱图。乳糖和纤维二糖混合物的(c)离子云扫描谱图和(d)串级质谱分析谱图。(e)两种二糖标准品及(f)混合物的定量分析结果。离子云扫描技术对各类生物分子异构体具有普遍适用性。如图3所示,该技术同样可分辨脂质和多肽分子异构体。研究工作中,离子云扫描方法展现出多种优点,如分析部件结构简单、操作方便、具有强大的时间/空间串级质谱能力等,可以方便地与多类质量分析器联用,用于设计混合型串联分析质谱仪器,在生物分子复杂结构解析上展现出较好的应用前景。图3. 脂质与多肽异构体分析。(a)脂质异构方式示意图。各种脂质异构体的离子云扫描谱图:(b)sn异构、(c)碳碳双键位置异构和(d)双键顺反异构。(e)多肽的不同翻译后修饰类型及其异构方式示意图。不同翻译后修饰类型的多肽异构体离子云扫描谱图:(f)甲基化、(g)乙酰化和(h)磷酸化。本研究由国家自然科学基金项目和清华大学精准医学科研项目资助。论文第一作者为清华大学精仪系周晓煜副教授,通讯作者为欧阳证教授,其他作者还包括精仪系博士生王卓凡和范菁津,第一完成单位为清华大学精密仪器系精密测试技术与仪器国家重点实验室。这项研究也得到了清华大学化学系瑕瑜教授、精仪系马潇潇副教授与张文鹏助理教授的大力帮助。
  • 速度每年70公里!科学家流动重心正在向东方国家迁移
    p style="text-align: justify "strong从人才流失/回流到人才环流/strong/pp style="text-align: justify " 全世界范围内,科学家流动越来越频繁,也越来越成为热门话题。/pp style="text-align: justify " 科学家流动已经从过去的『Brain Drain』或『Brain Gain』 逐步转变为『Brain Circulation』,即由人才流失或人才回流转变为人才环流。/pp style="text-align: justify " 关于科学家流动,支持者认为,科学家的流动给流入国与流出国之间建立了联系,此外,科学家流动背后是知识的流动,流入国(地)获得了新的科学知识,流出国(地)获得了知识输出产生的影响力,所以科学家流动是一种『双赢』。/pp style="text-align: justify " 反对者认为,科学家流动造成了各国各地科学人才结构失衡。/pp style="text-align: justify "strong过去40年,全球科学家流动的变化/strong/pp style="text-align: justify " 奥地利克雷姆斯多瑙河大学的Czaika和美国哈佛大学的Orazbayev两人以Scopus中1970— 2014年的数据为基础,分析了全球科学家流动的变化,发现:/pp style="text-align: justify " 科学家流动变得越来越普遍,流动距离越来越大;/pp style="text-align: justify " 科学家流动的频率比全社会平均水平高三倍;/pp style="text-align: justify " 科学家流动的重心正在以每10年700公里的速度向东方迁移;同时科学知识生产的重心正在以每10年1300公里的速度向东方国家迁移。/pp style="text-align: justify " 科学家流动的重心是指科学家在全球范围内流动所形成的网络结构的重心。/pp style="text-align: justify " Czaika和Orazbayev的研究显示,南欧、南美、东南亚等国家的科学家流动占比逐渐加大,在20世纪70-80年代科学家大量流出的国家,如今已成为科学家的流入国,这其中以印度和中国为代表。/pp style="text-align: justify " 过去40余年科学家流动和科学知识生产的重心持续向东方国家转移,从网络结构上看,科学家流动的重心从大西洋迁移到墨西哥东边,移动近2800余公里(平均每十年向东移动约700公里);科学知识生产的重心从大西洋变到地中海东部的塞浦路斯,移动5800余公里,平均每十年向东移动1300公里。/pp style="text-align: justify "strong科学家流动的原因/strong/pp style="text-align: justify " 影响科学流动背后的原因有很多,而且较为复杂。/pp style="text-align: justify " 一项来看OECD的报告称,全球科学家流动的主流人群是出国读大学、成为科学家之后回国的人,影响这些人才回流的主要原因是经济发展状况与签证移民政策[4]。/pp style="text-align: justify " “政治事件也常常阻碍科学家自由流动。2017年,特朗普三次签发旅游禁令,禁止特定国家的个人进入美国,提高签证签发的要求。2016年6月英国脱欧之后,大批在英国没有绿卡的欧盟其他国家的研究员人离开英国。2016年5月蔡英文上台之后,两岸学者交流在一定程度上受阻......。”/pp style="text-align: justify "strong中国的科学家流动/strong/pp style="text-align: justify " 近年,在大力引进海外人才的政策激励下,海归科学家越来越多,这给中国学术界带来了极大的活力,同时,激烈的竞争让招聘单位的招聘门槛逐年提高。/pp style="text-align: justify " 以清华大学的颜宁和北京大学的许晨阳为代表的『海归归海』曾引发媒体的热烈讨论。/pp style="text-align: justify " 媒体上的观点主要分为两类,其一,顶尖青年科学家去供职国外大学,是严重的人才流失,背后的原因是什么,制度该如何反思;其二,本土科学家进入国际顶尖高校任职,是国内学术研究被国际认可的标识,是国内高校向世界一流靠齐的标识。/pp style="text-align: justify " 国内各地之间的科学家流动频率并不高,科学家流动常常并不被鼓励,部分西部高端人才向东部流动甚至被禁止。科学家流动也常常与负气、矛盾等负面情绪联系在一起。 br/ 从原因上来看,我们的文化环境鼓励『长相厮守』、『天长地久』,毕生供职于某一机构被视为情感上的从一而终,因此,我们也常常见到某些大学评选一些奖项时要求候选人在该大学至少服务20年或30年(差不多一辈子)。/ppbr style="text-align: left "//p
  • 1075万!山东大学流式细胞分析仪、多功能酶标仪、在线粒形粒度分析仪等采购项目
    一、项目基本情况1.项目编号:SDJDHD20230553-Z330/SDDQ2023-247项目名称:山东大学流式细胞分析仪采购预算金额:500.000000 万元(人民币)采购需求:为满足科研需求,学校拟采购流式细胞分析仪1套合同履行期限:至本项目质保期结束之日止本项目( 不接受 )联合体投标。2.项目编号:SDJDHD20230506-Z295/HYHA2023-2550项目名称:山东大学非对称场流分离与多角角度动静态激光光散射联用系统预算金额:320.000000 万元(人民币)最高限价(如有):320.000000 万元(人民币)采购需求:标包货物名称数量简要技术要求A非对称场流分离与多角角度动静态激光光散射联用系统1详见公告附件合同履行期限:详见招标文件要求。本项目( 不接受 )联合体投标。3.项目编号:SDDX-SDLC-CS-2023010项目名称:山东大学多功能酶标仪采购方式:竞争性磋商预算金额:150.000000 万元(人民币)最高限价(如有):150.000000 万元(人民币)采购需求:多功能酶标仪采购,具体内容详见电子磋商文件。合同履行期限:质保期:国产设备3年,进口设备1年,本项目( 不接受 )联合体投标。4.项目编号:SDJDHD20230591-Z358项目名称:山东大学在线粒形粒度分析仪采购项目采购方式:竞争性磋商预算金额:105.000000 万元(人民币)最高限价(如有):105.000000 万元(人民币)采购需求:本项目采购1套在线粒形粒度分析仪,具体参数详见磋商文件。合同履行期限:合同签订后3个月内(国产设备)。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年11月22日 至 2023年11月28日,每天上午8:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外)地点:山东大学招标采购管理系统方式:在线下载(投标人在山东大学采购网,点击“投标人注册”,完成后,通过“校外用户登录”,报名并免费下载招标文件电子版。未报名的投标人,不能参加本项目采购活动),获取招标文件时需上传①企业法人营业执照副本②法定代表人身份证明及法定代表人授权委托书。本项目为资格后审,投标人获取招标文件不代表资格审查通过。售价:¥0.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:山东大学     地址:山东大学中心校区明德楼        联系方式:联系人:王老师;联系方式:0531-88365560      2.采购代理机构信息名 称:山东德勤招标评估造价咨询有限公司            地 址:济南市高新区龙奥北路909号海信龙奥九号2号楼25层            联系方式:联系人:李雅琼、张承竹;联系方式:0531-82389633            3.项目联系方式项目联系人:李雅琼、张承竹电 话:  0531-82389633
  • 岛津应用:Nexera UC手性筛选系统自动优化分离条件
    光学活性(手性)物质是分子内具有不对称碳、呈镜像对称而无法完全重合的化合物。以往利用色谱法分离手性化合物以HPLC为主,但近年来,使用超临界流体色谱法(Supercritical FluidChromatography:SFC)进行分析的方法日益增加。通过SFC法对手性化合物进行分析时,主要使用低极性、低粘度、高扩散的超临界二氧化碳作为流动相,向其添加极性有机溶剂(改性剂)来控制溶解性和极性。HPLC分析中,正相条件实现手性化合物的常规分离和高速分析,还能够减少有机溶剂的使用量,因而分析成本和环境负荷低。 但是,使用SFC法分析手性化合物时,需要探索各种柱和改性剂,因此需要花费大量人力和时间。本文中的岛津Nexera UC手性筛选系统能够最多切换12个色谱柱和4种改性剂及各种溶液混合比例,自动探索多种分离条件,从而大幅度提高了分析效率。 亮相BCEIA2015的岛津Nexera UC 了解详情,敬请点击《使用Nexera UC手性筛选系统自动优化手性化合物的分离条件》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 利用超高效合相色谱系统对联二酚萘(BINOL)对映体进行分离
    目的采用沃特世(Waters)ACQUITY UPC2&trade 系统比较正相HPLC和UPC2&trade 方法分离联二苯酚对映体的效果。背景生物体由手性生物分子,如蛋白质、核酸和多糖组成;因此,它们对药物、食品、农药和废弃化合物中的对映体表现出不同的生物反应。因此,分离手性化合物,尤其是具有药物意义的化合物尤为重要。其重要性表现是以单对映体形式获批的手性药物数量不断增加。为符合FDA关于研发立体异构药物的严格指令,制药行业在进行药代动力学、药物代谢、生理学以及毒理学评价之前,已经加强手性纯化合物的制备。在过去的10年里,超临界流体色谱(SFC)已经显示出其作为分离立体异构体(包括对映体和非对映体)的巨大前景。与传统的手性高效液相色谱(HPLC,主要是正相HPLC)相比,超临界流体色谱(SFC)平均快了3-10倍。超临界流体色谱使用廉价的CO2和极性改性剂(如MeOH)作为流动相,减少有机溶剂的消耗和处理,使分析更高效,更环保。与正相色谱HPLC相比,超高效合相色谱(UPC2)能够实现联二酚萘更快的分离(为正相HPLC的9倍),且每次分析成本大大降低。解决方案联二酚萘是一种轴手性有机物,如图1所示。联二酚萘样品采用正相HPLC和ACQUITY UPC2系统进行分离,两种方法的主要参数见表1。图2给出了采用正相HPLC(A)和UPC2(B)分离手性联二酚萘图谱。与正相HPLC中的第二个峰18min的出峰时间相比,UPC2的出峰时间为2min,使用UPC2速度增加至正相HPLC的9倍。正相HPLC的分离度(USP)为1.73,而UPC2为2.61。这种情况也说明了使用UPC2可以大大地节约每次分析的成本。UPC2方法使用2mL的甲醇洗脱化合物,但正相HPLC需要35.28mL正己烷和0.72mL甲醇。根据有机溶溶剂的用量计,使用正相HPLC每次分析大约需要2.85美元,而使用UPC2,每次分析仅需要0.08美元。UPC2图谱中的峰形比使用正相HPLC色谱得到的峰形性对称更好。正相HPLC的拖尾因子(USP)分别为1.33和2.18;而UPC2的拖尾因子分别为1.03,1.03。UPC2图谱中的色谱峰比正相HPLC色谱峰更高,更窄,意味着更高的灵敏度和峰容量。在UPC2中,由于使用超临界CO2作为流动相,超临界CO2固有的高扩散性和低粘度对分离产生巨大的影响。高扩散性减少了由流动相和固定相间的传质造成的色谱峰扩散。低粘度可实现最佳高流速而不产生明显的压降。况且,ACQUITY UPC2大大减小的系统体积使柱外的谱带展宽降至最小。总结ACQUITY UPC2系统展示了使用UPC2在2min内实现联二酚萘对映体的成功分离。与正相HPLC相比,UPC2速度快了8倍,且得到的色谱峰更高,对称性更好。ACQUITY UPC2大大减小的系统体积使柱外的谱带展宽降至最小。速度上的改善以及使用相对廉价的甲醇代替了正己烷可大大节约每次分析的成本(正相HPLC的2.85美元/次分析对比UPC2的0.08美元/次分析)。沃特世ACQUITY UPC2是实验室常规分离对映体的理想之选。
  • 贴心指南丨离心机配平:合力为零,中心对称
    离心机是一种利用离心力原理对样品进行分离的机械设备,广泛应用于制药、化工、食品、环保等行业。在使用离心机前必须进行配平,若未进行配平、或配平操作不当,离心机会产生较大的振动和噪音,样品的分离效果也会受到影响,严重时导致设备损坏,甚至引发安全事故。离心机转子一般分为角转子和水平挂篮,两种配平都遵循合力为零计算法,具体如下。固定角转子配平对于固定角转子的配平,按照“合力为零,中心对称”法则,可分为2倍配平、3倍配平及2+3结合配平。2倍配平2、4、6管配平示意图3倍配平3、6、9管配平示意图2+3结合配平5、7、11管配平示意图实际操作需保证每一组均平衡*对于特殊情况,如:样品出现单管情况,需要另外取用一只离心管进行配平(平衡管)。但需要注意:(A)平衡管的材质、规格必须与装载样品的离心管一致;(B)必须选择与样品密度相近的配平物质进行填充。水平转子配平而对于水平转子,配平时不仅要考虑单个吊篮内的样品是否对称,还要考虑对应吊篮间的样品是否平衡。简单来说,就是先确保挂篮的重心在挂篮的中心点,再按照中心对称配齐对应挂篮的样品。挂篮讲解示意图正确示范(左),错误示范(右)对于生产较早的老式离心机而言,通常未配备检测自停功能,一旦没有配平,转子就有飞出的风险,引起伤害事故。因此,务必养成良好的习惯,离心前对样品进行称重、配平,确保安全使用离心机。Titan/泰坦台式离心机系列产品钜惠来袭,惊喜不断!即日起至12月31日,通过【探索平台】及其APP和小程序下单台式离心机,可享受买一赠一!买一赠二优惠!活动详情请咨询您身边的泰坦销售或联系marketing@titansci.com。
  • 北京谱仪III开创探索正反物质不对称性的新方法
    近期,我国自主研发的大型高能物理实验装置北京谱仪III合作组实现一种创新实验方法,为研究物质和反物质不对称性提供了极其灵敏的实验探针。相关研究成果于6月2日发表在《自然》上。  宇宙大爆炸之初应该产生等量的正反物质,但为什么我们的宇宙却只有物质组成而非反物质?这个问题困扰了科学界半个多世纪。物质和反物质遵循不同的规律吗?粒子衰变为研究正反物质不对称性提供了重要线索:如果粒子和反粒子的衰变模式存在差异,那么这些差异可能是导致我们今天丰富的物质世界形成的原因。然而,由于粒子衰变通常是由多种相互作用诱导发生的,比如一种类似质子的短寿命粒子叫做科西超子,它的内部含有两个重的奇异夸克和一个轻夸克,带一个负电荷,其衰变过程中既有弱也有强作用发生。如何识别是哪种作用导致正反物质衰变行为不同呢?北京谱仪III实验最近首次利用处于量子纠缠的正反科西超子对的级联衰变,成功把导致正反物质不对称的弱作用力从强作用力中分离出来,这一创新方法和实验结果引起该领域世界同行的密切关注。  实验数据北京谱仪III实验国际合作组收集的。合作组成立于2008年,由来自亚洲、欧洲和美洲等17个国家80个研究机构约500名科学家组成。在北京谱仪III实验中,电子与其反粒子正电子碰撞的能量是其固有质量的上万倍。在这些碰撞中,电子和正电子湮灭,并从释放的能量中产生其他粒子或粒子对。在这项新的研究中,科研人员利用正反科西超子的“自旋”信息和量子关联来揭示正反物质不对称性,粒子物理学家称为“CP破坏”。超子衰变是寻找CP破坏的一个很有希望的狩猎场,因为它们的“自旋”方向可以通过其“子粒子”的衰变直接测量。考虑成对的正反超子级联衰变,可以把强力和弱力的贡献分开,导致对CP破坏测量的敏感度显著提高。北京谱仪III实验这一创新方法为寻找CP破坏提供了一种全新的视角。  尽管该研究给出的结果显示没有CP破坏的迹象,但这一创新方法为科学家未来确认或排除超出标准模型的CP破坏来源带来了希望。“这是理解正反物质不对称性的一个里程碑,我期待北京谱仪III合作组将取得更多成就。”中国科学院院士、中科院高能物理研究所所长王贻芳说。“北京谱仪III实验的灵敏度远高于之前费米实验室的HyperCP实验,是HyperCP实验单事例灵敏度的1000倍,这得益于北京谱仪III实验上正反科西超子的自旋极化和量子纠缠。”BESIII国际合作组发言人李海波表示。  北京谱仪III探测器拥有目前国内正在运行的最大国际合作组。此次研究由中国科学家和国外合作者共同完成,是国际合作的典范。  论文链接 北京谱仪III探测器侧面照  正反科西超子级联衰变演示图:如果物质和反物质遵循相同的物理法则,科西超子与反科西超子的衰变应该是镜像对称的,只是空间坐标是相反的。镜像之间纽带连接表示正反超子的量子关联。
  • 复杂单克隆抗体的对比分析
    p来自Postnova Analytics英国实验室的讯息:/pp  strongPostnova Analytics发布了一份新海报,比较了两种用于测定单克隆抗体物理化学及生物物理学性质的测试方法——电场流及非对称场流分离色谱法(EAF4-Electrical Asymmetrical Flow Field Flow Fractionation)和体积排阻色谱法(SEC-Size Exclusion Chromatography)的适用性。/strong/pp style="text-align: center "strongimg title="复杂单克隆抗体的对比分析.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/c124cda4-465c-4088-99f8-7208b46db509.jpg"//strong/pp  据美国国家标准与技术研究院(NIST-U.S. National Institute of Standards and Technology)的工作所述,一种参比单克隆抗体(RM 8671 mAb),被用于比较EAF4-UV-MALS(多重散射聚焦系统Multi Astigmatism Lens System)与SEC-UV-MALS之间分离量化、聚合量化及恢复参数的差异。NIST的这种mAb为治疗用蛋白质表征这一新技术的发展提供了一种代表性的检测分子。/pp  该海报阐述了EAF4模组如何将抗体及蛋白质分子大小与表面电荷特性(电泳迁移率)的同时测量变为可能。FFF(场流分离色谱Field Flow Fractionation)系统测量显示蛋白质/抗体的聚集只占注入总量的10%,且无聚集体被SEC检测到。研究人员总结到,FFF的开放通道设计会顾及相比SEC更好的注入物的复原,这对于追求量化少量聚集体而言至关重要。/pp  Postnova Analytics的EAF4技术独创性地将电场流分离色谱和非对称场流分离色谱的原理融合在同一系统中。在EAF2000系统中,电场流和交叉场流被同时应用于FFF通道,通过粒子不同的电泳迁移率,使得按粒子大小与电荷进行色谱分离成为可能。这两种强大分离技术在一个单独平台上的结合,为表征复杂的蛋白质、抗体、病毒,以及环境和带电纳米粒子或高分子打开了大门,而其他技术已证明了这一问题是多么棘手。/p
  • 王建华:"流动注射"20年的坚持与守望——访东北大学王建华教授
    日前,在第19届国际流动注射分析及相关技术大会上,因在流动分析方法学及样品预处理等方面的突出成就,东北大学理学院王建华教授获得了&ldquo 流动注射分析科学奖&rdquo 。  其实,在90年代后期的时候,中国做流动注射分析(FIA)研究的人已经明显减少了,中国的FIA全国性学术会议也在1996年之后停办,种种迹象表明,FIA 已经不再是科研的热点领域,目前研究人员多是将FIA作为一种工具进行相关的科学研究。那么,王建华教授是如何与FIA结缘、并且20多年来一直坚持、如今取得了哪些让自己自豪的成果、以及是如何看待FIA的发展呢?  &ldquo 好容易学会了一种东西,舍不得扔。并且一直研究下来,越发觉得FIA挺有意思,用处多、也挺重要,&rdquo 王建华笑到。&ldquo 我有幸成为今年的两名获奖人之一,并参加了在日本福冈举行的第19届国际流动注射分析及相关技术大会和颁奖仪式。这应该感谢国际同行对我本人所作的一点贡献的认可和肯定,&rdquo 王建华介绍,&ldquo 我个人觉得这不能算是多大的成功,我们只是在流动注射分析领域中进行了一些个人或课题组成员感兴趣的研究,我一直认为,在流动系统中进行样品预处理的尝试是十分有意义的。&rdquo 东北大学王建华教授  结缘&ldquo 流动注射&rdquo   王建华教授与FIA结缘可以说是件意料之外又顺理成章的事情,&ldquo 本科和硕士研究生期间,我学的是无机合成,后来才转行到分析化学领域的。&rdquo 王建华教授谈到如何进入FIA领域时说到,&ldquo 我在1990年开始接触FIA时,有一个梦想&mdash &mdash 到流动注射的发祥地跟FIA的创始人学习。做过了一些FIA研究之后,机缘巧合,居然&lsquo 梦想成真&rsquo ,不仅到FIA发祥地学习,而且还直接师从FIA创始人 Elo Harald Hansen教授。&rdquo Hansen教授对中国十分友好,王建华在他的系统指导下完成了自己的博士论文,并跟随他进入了国际流动注射分析研究的前沿领域,也因此与国际同领域中的顶尖学者有了接触和交流,包括流动注射分析的创始人Jarda Ruzicka教授等。  方肇伦先生是我国流动注射分析研究领域的主要开创人,在1992年的全国FIA学术会议上,王建华认识了方肇伦先生; 2003年,在Hansen教授的推荐、方肇伦先生的&ldquo 感召&rdquo 下,王建华&ldquo 一激动&rdquo 就留在了东北大学。&ldquo 自从我来到东北大学分析科学研究中心,就一直得到方先生的关怀,我学到了方先生宽厚待人的为人之道,更领略了他严谨的治学态度。这对于我后来的科学研究和指导研究生极为重要。&rdquo 谈起方先生,王建华就滔滔不绝起来,&ldquo 方先生做人做事非常低调,科学研究耐得住寂寞。他从90年代初开始研究微流控分析技术,经过了长时间的探索奠定了研究基础,直到五六年之后才发表了第一篇微流控分析的文章。&rdquo   虽然在90年代后期,国内对流动注射分析的关注已经减弱,但是王建华认为,流动注射尤其是顺序注射和阀上实验室作为一种进样技术具有独到的优点,是在线分析的理想手段。在过去的20多年间,王建华一直将在线分析技术和在线样品预处理作为主要研究方向之一。并且,坚持了20多年,如今王建华教授和他的课题组在FIA研究领域取得了一系列成果。  其中让王建华自己满意、认为比较有意义的研究也有不少,如建立了一些在线样品预处理方法,包括对生命样品中DNA和蛋白质的分离富集,以及对环境样品中金属及其形态的分离分析 还建立了一些专用于特定组分分析的顺序注射在线检测系统,仪器公司在他们研究的基础上将其产业化后在环境检测领域有较好的推广应用 另外,实现了在阀上实验室中进行微珠注射及微填充柱的在线表面更新,并用于固相萃取,这对于后来阀上实验室技术的发展具有积极的意义 与方肇伦先生一起提出了&lsquo 介观流控&rsquo 分析系统的概念,即介于微流控和常规流动系统之间的流动分析模式,可成为常规样品引入与微流控系统进样的桥梁。  不过遗憾的是,尽管目前FIA的相关理论已经相对成熟,但由于在实际应用中还存在稳定性不足等局限,使得FIA在常规检测和生产实践中的应用还远远没有达到理想的程度。王建华教授说到,&ldquo 总的来说,流动注射及相关技术在我国的产业化还不太广泛,我们课题组在这方面也只是进行了一点探索,离真正的实际应用还有差距。&rdquo   谈到下一步研究工作,王建华说,&ldquo 在流动注射分析方面,我们课题组在今后一段时间内仍将持续目前的研究,即加强在流动系统样品预处理方面的探索,特别是对生命样品的预处理。同时继续进行基于流动系统的微型化仪器研究。&rdquo   流动注射与原子光谱&ldquo 微型化&rdquo   王建华教授在不断研究流动系统中样品预处理技术的同时,也探索了基于第三代FIA技术&mdash &mdash 阀上实验室技术的微型化原子光谱系统。如建立了介观流控-分离富集-原子荧光微型集成系统、报道了基于阀上实验室的微型化原子荧光光谱分析系统、利用介质阻挡放电技术(DBD)发展了微型化原子荧光光谱及原子发射光谱分析系统&hellip &hellip   这里所说的&ldquo 微型&rdquo 比微流控系统中的&ldquo 微型&rdquo 装置要大,但又显著小于常规的分析系统,且在样品消耗、废液排放等方面也位于二者之间。王建华教授课题组在阀上实验室-介观流控系统中集成了样品预处理单元和检测装置,建立了小型化仪器装置,包括原子光谱系统。  &ldquo 这种微型化仪器系统与大型仪器的原理一样,只是利用了阀上实验室技术,在阀上加工了一些模块,包括流路、微型填充柱、光学检测系统等。不过,这些研究成果后续并没有产业化,只是在原理上论证了在那样小的系统中可以做原子光谱分析。在产业化之前还有很多技术问题需要解决。&rdquo   王建华指出,&ldquo 目前这种微型化原子光谱的应用还受到一些限制,比如样品通常需要以蒸汽状态引入,而液相直接进样尚有待研究&hellip &hellip .。总之,基于这些原理的微型化原子光谱仪器在实现真正的产业化之前还需要深入系统的研究。目前国内有数个课题组和仪器公司也正在进行相关瓶颈问题的攻关。&rdquo   在采访的最后,王建华教授说到,&ldquo 我本人认为,基于流动注射的进样技术今后在中国仪器分析领域仍有较大的潜力,在未来的一段时间内,它仍将是一种有效的进样技术,与此相关的在线分析仪器的应用也将不断扩大。&rdquo   采访编辑:刘丰秋  附录1:王建华教授简历  王建华本科毕业于南开大学,于吉林大学获硕士学位,导师为徐如人院士和冯守华院士,获丹麦科技大学博士学位。  现为东北大学理学院院长,教授,博士生导师。  担任TALANTA(ELSEVIER)副主编(2005年起),英国皇家化学会《Journal of Analytical Atomic Spectrometry》编委(2007-2010)、《分析化学》、《光谱学与光谱分析》、《分析试验室》、《分析科学学报》等编委,还担任中国仪器仪表学会分析仪器分会原子光谱专业委员会副主任委员。  在Angew Chem、Anal Chem、Chem Commun、Chem-Eur. J、Lab Chip等期刊上发表SCI论文150余篇。近年主持过国家杰出青年科学基金、国家自然科学基金重点项目2项、重大国际合作项目1项、面上项目3项等。2005年被评为全国化工优秀科技工作者,2006被评为沈阳市优秀科技工作者、2008年被评为辽宁省优秀科技工作者,并获教育部自然科学一等奖,2009年获中国化学会分析化学基础研究梁树权奖,并被评为辽宁省优秀教师,2014年被评为沈阳市劳动模范。  附录2:流动注射分析科学奖  流动注射分析(Flow Injection Analysis,简写为FIA)是1974年丹麦化学家茹奇卡(Ruzicka J)和汉森(Hansen E H)提出的一种新型的连续流动分析技术,其发展经历了三代,即第一代流动注射分析,第二代顺序注射分析,第三代阀上实验室。国际流动注射分析及相关技术大会(ICFIA)是FIA领域内的系列国际学术会议,迄今已成功举办了19届。&ldquo 流动注射分析科学奖&rdquo 是用来奖励在国际FIA及相关技术研究领域中做出过相应贡献的学者的专有奖项,流动注射分析技术的创始人--美国华盛顿大学Jarda Ruzicka和丹麦科技大学Elo Harald Hansen教授均获得过此奖。
  • 欧阳证团队利用超高场离子云扫描技术实现高分辨生物分子异构体分析研究
    生物分子的结构解析与相关生物学功能的关联研究已成为现今生命科学的前沿。生物分子存在多级结构,而其结构复杂度的一个重要因素为分子异构。不同的异构分子(Isomers and isoforms)具有相同的化学式和分子量,但化学结构不同。例如,单糖存在多种异构体,包括葡萄糖、果糖、半乳糖等 多糖由单糖两两通过糖苷键相互连接组成,导致出现更为复杂的构造异构(分子中原子或原子团互相连接次序不同,Structural or constitutional isomers)和立体异构现象(连 接 次 序 相 同 但 空 间 排 列 不 同,Spatial isomers or stereoisomers)。  离子迁移(Ion mobility, IM)与质谱(Mass spectrometry, MS)联用(IM-MS)分析已经发展为生物分子特别是生物大分子结构解析的一种主要手段,并成为质谱仪器发展的主要方向。IM可以区分MS不能区分的异构体或同重素(Isobars),这一独到的特性对生物分子的结构解析研究十分关键,近年来被广泛用于糖结构、脂质结构、蛋白质结构和活性、蛋白质-分子相互作用等研究中。近年来,多种IM分析方法被纷纷提出,例如迁移时间DTIMS(Drift time ion mobility spectrometry)、囚禁式TIMS(Trapped ion mobility spectrometry)、行波TWIMS(Travelling wave ion mobility spectrometry)以及非对称场FAIMS(Field asymmetric ion mobility spectrometry)等。然而,这些技术均基于低E/N场原理(E/N 30 Td,E代表电场场强,N代表中性气体数密度,Td是Townsend数),分离分辨率一般在40-200,不足以解决目前生物分子异构体解析研究的迫切需求。  针对以上难题,清华大学精密仪器系生物医学仪器与应用研究团队向高E/N场寻求突破离子迁移分析低分辨率的局限,提出一种超高场离子云扫描技术,并在Mini β质谱仪器系统(PURSPEC科技(北京)有限公司)上实现迁移分辨率超过10,000的高分辨IM分析,提升较现有技术水平一个数量级以上(图1)。超高场离子云扫描技术采用强迫振荡的物理原理,在超高场(约1×105Td)条件下实现异构体离子的离子云分离,通过扫描激发振荡电压可以获得异构体离子的高分辨IM谱图。    图1.离子云扫描分析技术的仪器设置、原理和性能表征。(a)Mini β质谱仪器系统。(b)实验装置示意图。(c)离子云扫描技术原理。强迫振动下的两种异构体离子(紫色和蓝色)的离子轨迹。(d)获得的离子云扫描谱图  利用高场离子云扫描分析技术,对四种二糖异构体(海藻糖、麦芽糖、纤维二糖和乳糖,图2a)开展了结构分析(图2b),并对乳糖和纤维二糖的混合物进行了离子云扫描分析(图2c),并与传统串联质谱分析(图2d)结果对比。从图2d可见,乳糖和纤维二糖具有到相同的碎裂模式,无法通过串联质谱技术加以区分。但这两种异构体可以通过离子云扫描实现完全分离(图2c)。此外,离子云扫描分析技术也展现出优异的定量分析特性(图2e和2f)。    图2. 二糖异构体分析。(a)四种二糖异构体及其(b)离子云扫描谱图。乳糖和纤维二糖混合物的(c)离子云扫描谱图和(d)串级质谱分析谱图。(e)两种二糖标准品及(f)混合物的定量分析结果  图3.脂质与多肽异构体分析。(a)脂质异构方式示意图。各种脂质异构体的离子云扫描谱图:(b)sn异构、(c)碳碳双键位置异构和(d)双键顺反异构。(e)多肽的不同翻译后修饰类型及其异构方式示意图。不同翻译后修饰类型的多肽异构体离子云扫描谱图:(f)甲基化、(g)乙酰化和(h)磷酸化  离子云扫描技术对各类生物分子异构体具有普遍适用性。如图3所示,该技术同样可分辨脂质和多肽分子异构体。研究工作中,离子云扫描方法展现出多种优点,如分析部件结构简单、操作方便、具有强大的时间/空间串级质谱能力等,可以方便地与多类质量分析器联用,用于设计混合型串联分析质谱仪器,在生物分子复杂结构解析上展现出较好的应用前景。  该研究成果近日以“超高场离子云扫描技术实现高分辨生物分子异构体分析研究”(High-Resolution Separation of Bioisomers Using Ion Cloud Profiling)为题发表在《自然通讯》(Nature Communications)上。  论文第一作者为清华大学精仪系周晓煜副教授,通讯作者为欧阳证教授,其他作者还包括精仪系2020级博士生王卓凡和范菁津,第一完成单位为清华大学精密仪器系精密测试技术与仪器国家重点实验室。研究得到了清华大学化学系瑕瑜教授、精仪系马潇潇副教授与张文鹏助理教授的大力帮助。该研究由国家自然科学基金项目和清华大学精准医学科研项目资助。  论文链接:  https://www.nature.com/articles/s41467-023-37281-7
  • 单分子二极管问世
    科技日报北京5月26日电 美国哥伦比亚大学应用物理学副教授拉莎· 文卡塔拉曼指导的研究团队开发了一种新技术,成功创建出首个单分子二极管,其性能比之前所有设计的要高50倍,有望在纳米器件领域获得实际应用。论文发表在5月25日的《自然· 纳米技术》杂志上。  单分子器件是电子设备微型化的极致。亚利耶· 艾佛莱姆和马克· 瑞特在1974年提出,单个分子可以作为整流器,一个单向的电流导体。此后,科学家相继演示了单分子连接到金属电极上(单分子结)可用作多种元件,包括电阻器、开关、晶体管,以及二极管。  由二极管充当电阀,其结构需要不对称,以使两个方向的电流处于不同环境。据物理学家组织网报道,为了开发单分子二极管,研究人员简单地设计了具有非对称结构的分子。  &ldquo 虽然这种不对称分子的确显示出一些类二极管特性,但它们并不有效。&rdquo 论文第一作者、博士生布莱恩· 卡珀兹解释说,&ldquo 设计良好的二极管应只允许电流沿一个方向流动&mdash &mdash 接通方向,并且电流强度要大。非对称分子设计往往会出现接通(开)和断开(关)两个方向上都有微弱电流流过的现象,并且开电流和关电流的比率(整流比)通常都很低。而理想情况是,整流比应该非常高。&rdquo   为了克服非对称分子设计的相关问题,文卡塔拉曼的团队将重点放在为分子结构创造一个不对称的环境上。他们的方法相当简单&mdash &mdash 用离子溶液包围活性分子,并用不同大小的金属电极接触分子。  结果,他们获得的单分子二极管的整流比达到了250,比以前的设计高出50倍。文卡塔拉曼指出,二极管中的开电流可超过0.1微安,对于单分子而言,这个电流已经很大了。此外,新技术很容易实施,可以应用于所有类型的纳米器件,包括那些用石墨烯电极制造的器件。  &ldquo 能够采用化学和物理学概念设计一个分子电路,并让它具备一定的功能性,这是很令人惊异的。&rdquo 文卡塔拉曼说,&ldquo 由于尺度如此之小,量子力学效应绝对是这一器件的一个重要方面。因此,能够创建一个看不见却表现得与预期一致的东西,这是一个真正的成功。&rdquo   研究团队目前正在努力理解这项成果背后的物理基础,并试图使用新的分子系统,进一步提高整流比。
  • 东华大学团队造出双功能纳滤膜,兼具脱盐和抗菌两大能力
    纳滤(Nanofiltration)是一种高效节能的膜分离工艺,可有效地去除多价离子和有机化合物,在水处理、制药和食品工业等领域具有重要的应用前景。透水性和离子筛分能力,是纳滤膜分离性能的主要指标。增大渗透性分离层的表面积,则能在提升水通量同时保持盐份的截留。目前,聚酰胺基纳滤微孔膜,已被广泛用于液体基分子/离子分离。然而,在兼具渗透、截留、抗菌和自清洁方面,这种膜仍然存在一定的瓶颈。受到氨基/亚胺与酰氯缩合交联形成致密聚酰胺网络的启发,东华大学材料科学与工程学院、纤维材料改性国家重点实验室教授团队,提出通过将多氨基卟啉基共轭微孔聚合物(PACMP,porphyrin-aniline conjugated microporous polymers)接枝到聚酰胺上,借此来扩大纳滤膜的分离表面积的策略。(来源:团队)得益于 PACMP 与聚酰胺膜牢固的共价接枝,并借助减薄分离层厚度、增加分离表面积、增加粗糙度等方法,纳滤膜的水通量能达到纯酰胺膜的两倍,同时还能保持较高的盐截留率。此外,PACMP 在光照下光激发单线态氧可有效杀灭细菌,体现了卟啉基聚合物接枝的聚酰胺膜优异的抗菌性能。就其研究意义来说:一方面,课题组发现了粉末状聚合物牢固负载制备二维材料的方法,并对原子力显微镜图像处理表征膜表面积变化的独特方法加以探索,也从后处理角度解决了共轭微孔聚合物难加工成形的问题。另一方面,该工作通过卟啉基聚合物修饰聚酰胺纳滤膜,制备了一种复合膜材料,其具备分离层较低、传质阻力小的优势,进而可以造出双功能纳滤膜。这种双功能纳滤膜拥有水通量翻倍的特点,可以实现有效抗菌的功能。基于此,该团队研发出一种可以高效解决膜易污染、膜通量低等问题的新策略。期间,课题组所引入的共轭微孔聚合物,不仅解决了膜分离过程中渗透率和截留率存在 trade-off 的难题,而且赋予分离膜以优异的抗菌和抗阻垢性能,未来有望用于工业分离领域,例如浓缩、脱盐、油水分离、染料提纯、天然药物分离、有机/无机液体分离等。日前,相关论文以《超渗透性抗菌偶联微孔聚合物-聚酰胺复合膜的表面工程》为题发在 Science China Materials 上。在论文投稿期间,其中一位审稿人非常认可通过卟啉基共轭微孔聚合物,来赋予纳滤膜原位抗菌性的方法。其还表示,利用原子力显微镜图像处理表征膜表面积的方法给他留下了深刻印象。而在研究中,该团队通过阅读文献、结合实际应用,发现传统的聚酰胺纳滤膜存在几个突出的问题,包括水通量待提高、盐离子或分子的截留率长期运行难保持、膜表面易结垢易污染等。调研发现,纳滤膜的分离层厚度,会对水/溶剂传质的阻力产生影响,即较厚且致密的分离层会导致传质阻力大幅增加,长期运行之后容易导致表面结垢,从而造成通量下降以及膜污染。相反的,使用薄的分离层可以提高膜的通量,并能保持较高的截留率。针对低通量、易结垢问题,该团队确立了如下目标:制备分离层减薄的聚酰胺纳滤膜,进而造出一种可以确保纳滤性能和稳定膜结构的纳滤抗菌膜,最终实现较高的通量和抗污染特性。同时,通过引入共轭微孔聚合物,优异的截留性能得以保证。另外,他们发现卟啉基聚合物材料具有较好的光吸收性能,在光照下能激发产生单线态氧活性成分,通过氧化破坏细胞器可以抑制细菌的生长。因此,可以将卟啉基共轭微孔聚合物 PACMP 作为光敏材料,以作为单线态氧的“生成器”,从而发挥杀菌的功能。基于以上调研与论证,该团队又提出这样一个课题计划:将氨基封端的卟啉基共轭微孔聚合物 PACMP,与酰氯通过酰胺化反应“预接枝”形成多酰氯聚合物,接着通过一步界面聚合法,让多酰氯聚合物和酰氯的混合溶液,同时与哌嗪单体完成酰胺化反应,从而形成聚酰胺纳滤复合膜。随后,针对含有不同剂量的共轭微孔聚合物的纳滤膜,他们对其进行纳滤性能测试,包括纯水通量测试、多种盐溶液的通量及截留率测试等。为了研究纳滤膜的抗菌性能,通过膜在光照/黑暗条件下对比、聚合物含量对比等,课题组检测了革兰氏阴性、阳性两种细菌的存活率。最后,通过长期通量/盐截留测试,表征了膜结构与纳滤性能的稳定性。而在研究纳滤膜精细结构如何分离层表面积时,该团队遇到了一个难题:即如何定量表征膜分离层表面积的变化?通过扫描电子显微镜,他们观察到纳滤膜分离层厚度只有 120-150nm,这是一个极薄且非常脆弱易破损的表面,对其表面进行定量表征几乎是不可能实现的。正当犯难时,他们想到通过对比原子力显微镜二维图像明暗场,可以反映材料表面高度起伏的变化,由此得到对应的高度曲线和三维立体结构。这时课题组设想,通过单位投影面积中明暗对比程度,是否可以得到实际表面积与单位投影面积的增量(变化量)?事实证明,该方法既巧妙、又可靠,原本困扰他们许久的膜精细结构的表征问题也就迎刃而解了。此外,传统聚酰胺纳滤膜具有两面亲水性,理论上水相溶液可以从任何一面渗透到另一面。对于特定的应用场景,比如高湿度环境或极干燥沙漠环境,假如水分可以选择性地透过就会显得更为重要。因此,他们将致力于研制亲水和疏水的两性非对称膜。亲水面允许高湿度环境的水分透过进入到干燥环境;背水面则能有效阻止水分从低湿度环境蒸发。由此,亲疏水膜可以调节膜覆盖下环境的湿度变化。另外,亲疏水非对称膜还可以拓展应用以下场景:即去除有机溶剂中微量的水分、或水相中微量的有机溶剂。
  • 【瑞士步琦】使用SFC分离手性反式-1,2-二苯乙烯氧化物
    使用SFC分离手性反式-1,2-二苯乙烯氧化物SFC 应用”本应用描述了以反式二苯乙烯氧化物为手性分子的手性柱筛选和连续的制备方法,并用叠层进样方法进行制备分离。1简介手性分子是一种有机化合物,它具有一种独特的性质,即互为不可重叠的镜像。这意味着它们以两种形式存在,称为对映体,除了原子的三维排列外,它们在各方面都是相同的。虽然这些对映体具有相同的化学性质,但它们可能具有不同的生物活性和药理作用[1,2]。因此,手性分子在制药工业中变得越来越重要,它们被用于开发药物和其他治疗方法,因此分离对映体十分重要。超临界流体色谱法(SFC)在手性分子的分离纯化中,具有其他分离技术无法比拟的优点。SFC 使用超临界二氧化碳作为流动相,这是一种清洁和绿色的溶剂,很容易从最终产品中去除。此外,SFC 提供了高分辨率和快速的分离。预测哪种固定相能够有效分离 SFC 中特定的一组对映异构体,即使在现在看来也是十分困难,这使得我们需要选择合适的手性固定相来不断试错[2]。手性 SFC 多采用与手性高效液相色谱(HPLC)相同的色谱柱,其中最常用的是多糖手性固定相(CSPs),由于可以选择不同改性的多糖,因此具有很强的通用性[3]。多糖 CSPs 具有高负载能力,这使得它们在制备规模应用中非常有用。许多商业多糖手性固定相是可用的,主要是基于直链淀粉或纤维素和改性的卤化或非卤化芳香基团。改性后的多糖可以包被或固定在二氧化硅载体上,以增强其对强溶剂的抵抗力[3]。还有其他 CSPs 通常用于手性 SFC 应用,例如,Pirkle 型手性固定相[3]。本文介绍了使用 Sepmatix 8x SFC 对反式二苯乙烯氧化物(TSO)进行平行柱筛选,随后通过方法优化转移到制备的 Sepiatec SFC-50。▲反式 - 二苯乙烯氧化物 两种手性结构2设备Sepiatec SFC-50Sepmatix 8x SFCPrepPure cCDMPC, 5um, 250 x 4.6mmPrepPure cADMPC, 5um, 250 x 4.6mmPrepPure iADMPC, 5um, 250 x 4.6mmPrepPure iCDMPC, 5um, 250 x 4.6mmPrepPure iCDCPC, 5um, 250 x 4.6mmPrepPure iBT, 8um, 250 x 4.6mmPrepPure iBT, 8um, 250 x 10mm3试剂和耗材二氧化碳(99.9%)甲醇(≥99%)乙醇(99%)异丙醇(99%)乙腈(99%)反式二苯乙烯氧化物(99%)(为了安全操作,请注意所有相应的MSDS)4实验过程样品制备:在筛选和方法优化时,将 0.075g 反式二苯乙烯氧化物溶解在 5.0mL 甲醇中;在堆叠注射时,将 0.1909g 反式二苯乙烯氧化物溶解于 6.0mL 甲醇中。使用 Sepmatix 8x SFC 进行筛选:流动相A = 二氧化碳;B = 甲醇流速3 mL/min (每根色谱柱)流动相条件0 - 0.5min5% B0.5 - 8.0min5 - 50% B8.0 - 9.4min50% B9.4 - 9.5min50 - 5% B9.5 - 10min5% B检测200nm – 600nm 紫外扫描筛选完全是全自动运行,采用流量控制单元,将每通道内的流量设置为 3mL/min,并将流量平衡。样品自动进样(每根色谱柱 5μL),启动平行筛选(运行时长=10分钟)。背压调节器设置为 150bar,柱温箱设置为32℃。使用 Sepiatec SFC-50 进行制备:流动相A = 二氧化碳;B = 甲醇流动相条件等度运行检测229nm 紫外检测PrepPure iBT 色谱柱在设定的流速下预热 4 分钟,样品通过定量环自动进样并运行。背压调节器设置为 150bar,柱温箱设置为 40℃。5实验结果色谱柱筛选:为了确定手性化合物 TSO 的最佳分离条件,进行了不同手性色谱柱的筛选,使用 Sepmatix 8x SFC 允许同时进行 8 根不同色谱柱的平行筛选。本实验一共使用了 6 根不同色谱柱:Chiral iADMPC, Chiral iCDMPC, Chiral iCDCPC, Chiral iBT, Chiral cADMPC 和 Chiral cCDMPC。图1 为色谱柱筛选结果,其中 Chiral iADMPC 色谱柱不能很好地分离对应异构体 TSO(可见表1),而 Chiral iCDMPC,Chiral iCDCPC,Chiral iBT,Chiral cADMPC 和 Chiral cCDMPC 色谱柱可以分离 TSO。▲ 图1. Sepmatix 8x SFC 筛选结果。从左上至右下依次是Chiral iADMPC,Chiral iCDMPC和Chiral iCDCPC;Chiral iBT,Chiral cADMPC 和 Chiral cCDMPC。运行时长 =10min,紫外检测波段 =229nm在处理复杂的混合物时,分辨率 R 是一个特别重要的参数,因为它衡量了每一次分离的程度,并且可以被准确识别和量化。例如分辨率 R=1 表明了不理想的分离效果,两个峰本质上并没有分离,更高的分辨率数值代表了更好的分离效果。在实际运行过程中,分辨率 R 至少达到 1.5 才会被认为是分离的。表1 显示了不同色谱柱分离 TSO 时的分辨率 R。在转移至 SFC-50 制备时,选择 iBT 色谱柱,因为它有最佳的分离效果,最容易实现转移,进样量可大大提高。表1. 使用 Sepmatix 8x SFC 筛选时不同色谱柱的分辨率色谱柱RiADMPC1.23iCDMPC1.74iCDCPC4.68iBT14.47cADMPC6.20cCDMPC4.22使用 SFC-50 进行结果优化为了确定改性剂对 TSO 的影响,下列每一种改性剂都在等度条件下使用:PrepPure iBT, 8um, 250 x 10mm 色谱柱;甲醇,乙醇,异丙醇,乙腈 (见图2)。▲ 图2. 左上-甲醇,右上-乙醇,左下-异丙醇,右下-乙腈。流速 =20mL/min,改性剂含量 =25%,温度 =40℃,背压调节器 =150bar,进样量 =150μL甲醇(偶极矩参数= 5[4])在对映体有足够的峰距的情况下,仅在 3 分钟内分离 TSO。乙醇(偶极矩参数= 4[4])作为极性稍小的改性剂,分离所需时间略大于 3 min。异丙醇(偶极矩参数= 2.5[4])在不到 3.5 分钟的时间内分离 TSO,这是由于异丙醇的极性较小。乙腈(偶极矩参数= 8[4])在 2.25 分钟内最有效地分离 TSO。然而,甲醇被用作进一步实验的改性剂,因为它的窄峰宽和对称峰有望带来高进样量。此外,它比乙腈毒性更小,价格也更便宜。由于流动相中改性剂的含量会因极性变化而对分离产生影响,所以采用了不同的甲醇含量(见图3)。▲ 图3. 左上 20% 甲醇,右上 25% 甲醇,左下 30% 甲醇,右下 35% 甲醇。流速 = 20mL/min,,温度 =40℃,背压调节器 =150bar,进样量 =150μL流动相甲醇含量由 20% 连续增加到 35%,运行时间逐渐缩短。当改性剂含量为 35% 时,运行时间可以从大约 3.5 分钟缩短至约 2.5 分钟。不过分辨率有所降低,对映体的峰宽也降低了。因此,在进一步的实验中,改性剂的浓度被设定为 35%。每根色谱柱都有可达到最大效率或理论塔板数的固有最佳流速。如果流量减小或增大,则用非最佳分离塔板数进行分离。与液相色谱法相比,SFC 可以使用更高的流速,而分离塔板数不会大幅减少[5]。因此,图4显示了流速对分离效率的影响。▲ 图4. 左 20mL/min,右 30mL/min,改性剂 % = 35%,温度 = 40℃,背压调节器 =150bar,进样量 =150μL随着流量的增加,运行时间和峰宽进一步减小。运行时间从大约 2.5 分钟缩短至 2 分钟以内。根据样品的不同,温度和压力对组分的分离和保留的选择性有影响。因此,在 100 bar 和 150 bar 以及 40℃ 和 50℃ 范围内进行了 4 次实验(见图5)。可以看出,温度和压力的变化对各自的分离没有明显的影响。因此,叠层进样时,温度控制在 40℃,背压调节器控制在 150 bar。▲ 图5.左上 100bar 和 40℃,右上 150bar 和 40℃,左下100bar 和 50℃,右下 150bar 和 50℃。流速 = 30 mL/min,改进剂 %=35%,进样量 =150μL为了提高分离效率,增加 TSO 的浓度和进样量(150μL ~ 250 μL)(见图6左上)。在这些条件下,基线分离仍然是可行的。图6(右上和下)显示了在与单次进样图 6 左上相同的实验条件下,叠层进样时间为 0.97min,即每 0.97 分钟进样一次。在这种情况下,每次额外注入都节省了平衡时间,提高了产能。最终采用基于时间的方法收集馏分。每次进样的紫外信号都表明了该方法具有良好的再现性(图6右上)。垂直线表示收集相应馏分的时间窗口。▲ 图6. 左上 250μL (0.1909 g TSO 的 6mL 甲醇溶液),右上叠层进样 TSO 的紫外信号,下最后的色谱图。流速 = 30 mL/min,改进剂 %=35%,温度 =40℃,背压调节器=150bar,进样量 = 250μL,进样次数 = 10次6结论在文中,使用 Sepmatix 8x SFC 仪器进行以 TSO 为分析物的手性柱筛选,将最合适的手性色谱柱,转移到 Sepiatec SFC-50 仪器进行制备。每根手性柱对手性物质的反应都不同,这就是为什么在纯化过程之前必须进行筛选的原因,作为标准物质的 TSO 可以在许多不同的手性柱上分离。随后在 SFC-50 上放大,并利用制备柱对等度纯化的方法进行优化。结果表明,改性剂的选择、改性剂在流动相中的比例和流量对分离效果有较大影响。在这些特定条件下,温度和压力的变化对分离效果的影响不大。在一般情况下,这两个参数也可以改变以优化分离条件。7参考文献https://doi.org/10.1038/s41570-023-00476-zSUPERCRITICAL FLUID CHROMATOGRAPHY, Terry A. Berger, Agilent Technologies, Inc., 2015PRACTICAL APPLICATION OF SUPERCRITICAL FLUID CHROMATOGRAPHY FOR PHARMACEUTICAL RESEARCH AND DEVELOPMENT, Vol. 14, M. Hicks and P. Ferguson, 2022 Elsevier Inc.Laboratory Chromatography Guide, ISBN 3-033-00339-7, by Büchi Labortechnik AG (Switzerland)http://dx.doi.org/10.1016/j.chroma.2012.10.005
  • 基于Pμ SL 3D打印技术制备的波形人工触须传感器用于不同流体分析
    近年来,随着无人水下航行器和软体机器人的发展,微型柔性流量传感器已经成为姿态控制和流场分析的关键器件。目前,仿生毛发流量传感器的灵感多来自昆虫的触角、海豹的触须。其中,仿生毛发流量传感器通常采用圆柱形结构,但是该类型的传感器会产生涡激振动,这种涡激振动会引发很大的噪音,并恶化流量传感器的信噪比。海豹可以通过触须识别、定位和追踪猎物。这种波形触须可以抑制涡激振动的产生、降低涡激振动引发的噪音。研究学者受海豹触须形态的启发制备了多种人工触须传感器。然而,这些传感器通常体积庞大、组装起来较为繁琐。因此,使用简单的制备工艺并优化传感器的结构以提高其灵敏度、使其微型化具有重要的意义。近日,北京航空航天大学蒋永刚课题组基于面投影微立体光刻(PμSL) 3D打印技术结合PDMS浇铸工艺制备了波形人工触须传感器,该传感器可以用于不同流体的分析。人工触须传感器由仿生触须和带有压阻传感器的PDMS基座组成;PDMS基座上集成有4个微通道,并采用定向液体扩散(DSL)方法将碳纳米管/银纳米颗粒(CNT/AgNPs)墨水注入微通道中,以形成压阻传感器。研究人员基于PμSL (nanoArch S140,摩方精密) 3D打印技术制备了仿生触须和两个用于制备PDMS基座的模具。仿生触须长35mm,表面呈现波浪形,截面呈现椭圆形,几何结构呈现非对称性;打印模具的链状凸台结构宽度为200μm,高度为80μm,其中,凸台上对称菱形组成的结构高度为30μm。 图1. 人工触须传感器的结构示意图图2. 人工触须传感器的制备。其中,a图是基于PμSL技术制备的仿生触须和两个模具图3. 稳态流场中人工触须传感器在不同流速下的响应图4. 涡流检测的实验装置及结果 波形人工触须传感器对复杂的流体现象表现出极好的灵敏性,包括涡激振动、振荡流动和上游涡流尾迹。稳态流实验表明,在0°攻角下,人工触须的波形形态可以显著降低触须的阻力,抑制涡激振动的产生;振荡流实验表明,触须传感器可以检测振荡流流速,阈值检测限可低至8mm/s;另外,涡流检测实验表明,该波形人工触须传感器可以辨别上游圆柱诱导的各种涡流尾迹。该研究成果在智能流体分析方面具有巨大的应用潜力,以“Artificial Whisker Sensor with Undulated Morphology and Self-Spread Piezoresistors for Diverse Flow Analyses”为题发表在Soft Robotics上。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制