当前位置: 仪器信息网 > 行业主题 > >

非对称流动场场流分离仪

仪器信息网非对称流动场场流分离仪专题为您提供2024年最新非对称流动场场流分离仪价格报价、厂家品牌的相关信息, 包括非对称流动场场流分离仪参数、型号等,不管是国产,还是进口品牌的非对称流动场场流分离仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合非对称流动场场流分离仪相关的耗材配件、试剂标物,还有非对称流动场场流分离仪相关的最新资讯、资料,以及非对称流动场场流分离仪相关的解决方案。

非对称流动场场流分离仪相关的论坛

  • postnova的非对称流动场场流分离仪与竞争对手的技术对比

    介绍场流分离技术,我们在外商提供的与竞争对手的技术对比文件的基础上,将其翻译成中文,并在此上传以供大家了解、学习。让大家认识到什么是真正的非对称流动场场流分离仪AF4。在附件的文件中,几个关键地方请大家注意:1 样品聚集:这是场流分离仪与HPLC/GPC的明显不同之处,而样品聚集技术的好坏,几乎就关系着非对称流动场场流分离仪的使用效果的好坏!竞争对手采用手动调节样品聚集,是非常落后的,也是非常困难的,因为绝大多数用户都不熟悉场流分离技术,更谈不上有什么使用经验了,也没有时间和精力去通过长时间的使用来总结出经验,而往往是通过使用这台仪器来尽快地做出科研成果来。这就要求实现自动化!postnova公司的非对称流动场场流分离仪采用了最先进的自动样品聚集技术,无需操作人员手动调节!2 化学兼容性:postnova产品采用了完全适应多种溶剂体系的仪器,包括:交叉流泵、溶剂输送泵、样品聚集泵、自动进样器、馏分收集器、智能分流泵等等全部硬件设备,都是分成几种溶剂体系的,以适应不同的应用,保证化学兼容性不会影响分析效果和仪器寿命。而竞争对手则完全没有这方面的设计和技术,其交叉流调节器,也不是完全采用了PEEK管路以适应水相应用,因此其中的金属部件在盐水溶液浸泡下会发生腐蚀!而有机相的应用,就更无法真正实现了——采用塑料材质的部分管路,会与有机溶剂发生溶胀,段时间使用也会产生表面张力的不良影响。

  • 非对称流动场场流仪在生物大分子领域的应用

    生物大分子材料,主要是指:蛋白质类、多糖类、组织细胞、血液及其替代品等大分子量、大尺寸/大体积样品。蛋白质集聚体的研究,以及其它生物大分子材料的分离与分析,是非对称流动场AF4MT的重要应用领域。postnova公司的中温型流动场AF4MT,主要应用之一就是生物大分子材料,特别是利用其优异的半导体制冷的柱箱对场流分离通道盒进行低于室温、高于0摄氏度的精确控温,实现蛋白质样品的高效分离,取得了很好的应用效果。再结合多角激光散射检测器、静态/动态激光粒度仪和生物质谱仪等在线定性检测技术,可以获得生物大分子材料的大量构型信息。也可结合馏分收集器,将样品组分收集下来,再进行其它分析检测,如:MALDI-TOF、NMR、AMF等等。附件的文件,介绍了AF4MT 对蛋白质混合物的分离并结合光散射检测器对其进行分析。近年,postnova公司又推出了中空纤维流动场 Hollow Fiber Flow FFF,简称HF5,这项技术主要针对生物大分子材料,分离通道是一次性使用的,具有很好的分离效果。

  • 非对称流动场AF4的分离通道过滤膜种类与型号

    Postnova公司的非对称流动场场流分离仪上配用的分离通道过滤膜,简称:通道膜,主要分为:水相 和 有机相 两大系列。水相,又进一步分为适用于纳米材料、聚合物、蛋白质等三个应用方向的。参看附件的英文文件。此外,分离通道本身也可以分为:有机相、水相 两大类。水相的AF4仪器,也可以用轻质有机相溶剂和有机相的分离通道,但是重质溶剂则不适用于水相的AF4仪器,如:DMF、DMAC、DMSO、甲酸、六氟异丙醇、三氯苯、十氢萘、二甲苯等等。

  • postnova最新推出电场流与非对称流动场组合的场流仪EAF4

    近日,德国postnova分析仪器公司最新推出了EAF4仪器,即:电场流与非对称流动场组合的场流分离仪,既可以是一套新仪器,也可以在现有的AF2000AT/MT型仪器基础之上,升级PN2410电场流模块,同时还需要升级软件、新的电场流+非对称流动场的分离通道。电场流的应用,主要是在生物大分子领域的蛋白质类样品、聚电解质型的聚合物、聚合物纳米-微米颗粒等等。很快,我们这边还会有进一步的资料,我会第一时间发布出来,供大家参考。

  • 非对称流场流分离技术的现状及发展趋势

    [color=#333333]场流分离是生物分析领域一项成熟的技术,将流体与外场联合作用于待分离物质,利用分析物某些理化参数上的差异进行分离。非对称流场流是其重要的分支之一,所施加的外力场为垂直方向的液流,分离过程于开放型的通道中在某种组成的载液迁移推动下进行,主要根据分析物与垂直施加的第二维液流之间的相互作用完成分离。非对称流场流在蛋白质、蛋白质复合物、衍生纳米级/微米级粒子、亚细胞单元和聚合物等分离中的应用日益广泛,主要归功于其直接应用于生物样品时可进行无损分离,因此生物分析物如蛋白质可以在生物友好型的环境中完成分离而不改变其构型,也无需使用降解载液。分离设备便于保持无菌状态,分析物可在生物友好的环境中维持其自然状态。该文简要描述了场流分离原理并罗列出其在生物分析领域一些卓越的发展和应用。 [/color]

  • 非对称流动场在环境科学领域的应用简介

    各位新老朋友,大家好!我们开辟这个论坛的目的,就是在产品推广过程中,深刻感到许多用户对场流分离仪的认识非常浅显,对于什么是场流分离技术,其原理、主要应用等了解非常少,更为严重的是,随着这几年我们在中国市场逐步打开局面,特别是中科院、国家计量院等具有影响力的科研单位采购了我们的仪器,引来了竞争对手的恶意竞争,他们的不实之词使得原本就心存疑虑的客户更加拿不定主意了、迷茫了、糊涂了。我们觉得特别有必要向广大用户宣传介绍什么是真正的场流分离技术及其应用,避免因为混乱的市场竞争、不正当的商业行为,把场流分离仪技术这么一个具有相当高科技水平的分析仪器的好名声给毁了,就像竞争对手已经毁了多检测器GPC的好名声一样。从近期开始,我们将根据场流分离技术的不同典型应用,向大家介绍场流分离技术。我们首先选择了较为容易接受的、比较通俗易懂的环境科学领域的应用,也就是类似液质联用的场流与元素质谱仪联用FFF-ICP-MS,简称场-质联用,作为我们这个论坛的第一个系统的产品与应用的宣传介绍。稍后,我们还将推出:离心场在纳米材料领域的应用介绍、热场在聚合物分子量分布分析中的应用、高温非对称流动场HAT AF4在聚烯烃分子量分布测试中的应用、非对称流动场在生物大分子材料领域的应用等几个介绍板块。并陆续上传相关的PPT文件供大家参考。场-质联用,在国内用户来说好像是挺陌生的,其实在国外早已不是什么新鲜事儿了,德国巴登符腾堡州的卡尔斯鲁厄大学的环境科学研究中心,有三套场-质联用仪。奥地利维也纳大学,也是欧洲著名的环境科学研究机构,其场质联用技术的实践也是傲视群雄的。可以说,场流分离仪在环境保护领域的污染物的形态分析方面做出了相当大的贡献。基本组成:非对称流动场(室温型或中温型)+紫外-二极管阵列检测器+DLS激光粒度仪+ICP-MS分析目标样品:江河湖海中的水、沉积物中的大分子/大尺寸样品,如:腐殖酸、凝胶微球、粘土颗粒,及其附着的重金属元素腐殖酸、粘土颗粒和凝胶微球,都是尺寸较大、分子密度较小、特性粘度较大、在色谱柱中的压力下很容易被破坏的样品,因此不适合用色谱柱的方法 分析其尺寸和尺寸分布以及其附着物重金属,而没有固定相填料的场流分离通道就是最佳选择!其空心的分离通道,保持了样品的原貌。由于这类样品具有很大的表面积和化学不活泼性,使其很容易附着重金属离子等弱电性离子,这恰恰是重金属元素实际的存在方式。过去,人们常用离子色谱-元素质谱连用分析水中金属元素,这种方法往往不易检测到重金属,因为重金属元素大多数是弱电性的,往往不是以离子形式单独存在。而对于土壤、沉积物等固体样品,则往往采用多种样品前处理方法浓缩、富集等,然后再用色谱-质谱联用仪分析,这样做,一来实际测试中的重复性、重现性不佳,二来破坏了样品原貌,无法通过形态分析追根溯源。而场质联用,则完全没有了上述这些问题。参看附件的文献。

  • 高温非对称流动场HT AF4在聚烯烃分子量分布测试的应用

    2006年、2007年前后,postnova公司与美国陶氏化学聚烯烃研发中心合作开发出来高温非对称流动场场流分离仪HTAF4,很快,postnova公司在此基础上持续研展了高温的分离通道膜和过滤膜,并且与英国PL公司合作,从而实现了高温场流仪的商业化生产。该产品主要针对聚烯烃样品的分子量分布测试,可补充高温凝胶渗透色谱仪HT GPC 的不足,在超高分子量聚烯烃领域甚至可以完全替代HT GPC 。在稀溶液(分散态)——牛顿流体——条件下,聚烯烃样品的分子尺寸/流体力学体积非常大,至少是同等分子量的聚苯乙烯的两倍以上,甚至更大些。而同时,其特性粘度也非常大,稀溶液状态下的分子密度非常小。所以,聚烯烃样品分子很容易在GPC柱子里面发生堵塞(体积大、超过了GPC柱子的分离上限)、剪切甚至降解(分子密度小、分子密实性差),再加上含有的超大分子量组分尺寸太大,GPC柱子无法分离而引起的共馏出等等,都使得聚烯烃样品不适合高温凝胶渗透色谱柱的分离分析。而HT AF4采用的没有固定相填料的分离通道则很适合聚烯烃这类大尺寸、低密度样品。此外,聚烯烃类样品往往含有凝胶物质,这部分组分与橡胶中的凝胶物质一样,也是部分交联、但是尚且能够溶解的超大分子量组分。这部分组分在GPC柱子里往往会与凝胶填料发生吸附作用,使得GPC的分子量分布数据中看不到他们。而这部分组分其实分子量非常大,对材料加工性能影响也非常大,即使其含量往往非常微小。附件中的论文,就介绍了一个标样,其含有的0.45%的超千万Dalton的超大分子量组分,就完全改变了这个样品的材料加工性,而HT GPC的分离分辨率不如高温场流仪,因此根本无法测出来这部分组分,当然也就无法计算出正确的分子量数据和分布数据了。所以,在聚烯烃的HT GPC分析中,出现分子量数据与流变仪等材料试验仪器拟合的分子量数据偏差很大、小很多的情况,是经常发生的。但是当采用HT AF4之后,这种情况就好多了,用户可以完整的、真实地看到聚烯烃的分子量分布,包括了凝胶物质。如果结合多检测器技术,那么分析测试的信息量将是非常大的。可用于HT AF4的多检测器,包括:示差、四毛细管粘度、多角激光散射、红外和红外光谱,可组成五检测器串联/并联方式的HT AF4+HT GPC并联仪,通过内置的电磁阀实现分析系统在高温场流分离通道与高温GPC柱子之间的自动切换,无需降温至室温! 附件的论文中,我用黄色标注了这些内容,大家可以特别注意一下。近年来,postnova公司持续不断研发新型高温过滤膜,使HT AF4对聚乙烯样品的分离下限已经降至了大约1000Dalton,这已经非常接近HT GPC的分离下限了,基本上可以做到保证样品分子全部被分离并被检测了。另外,补充一下,有人看到高温场流仪包含一个PL220高温GPC的主机箱子,就误认为PL220是主机,这其实是个误会。所有的流动场场流仪——包含室温型、中温型和高温型,都是以交叉流泵为主机的,全部数据都是从交叉流泵传输到控制电脑上的。在HT AF4中,PL220的机箱实际上只是自动进样器和柱温箱的作用。

  • 是非对称场流分离仪吗?

    场流分离技术是分离技术的一种,它可以与液相色谱(LC)相比。就像液相主要用来分离小分子一样,场流分离主要用来分离大分子或粒子(可称为:粒子色谱)。场流分离技术是一个独特的分离技术,所有场流分离技术都使用相同的基本分离的原则,但采用不同的分离场。根据不同分离场,场流分离技术可分为流动场流分离,沉淀场流分离,热场流分离等。场流分离技术可以提供快捷,温和以及高分辨率的分离,它可以分离任何液体介质中的从1纳米至100微米的颗粒物。积利公司生产的是哪一类场流分离仪呢?

  • 【原创】POSTNOVA场流分离仪

    我们把场流分离技术隆重介绍给大家!FFF技术也是大分子分离与分析的重要手段。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=121343]中温非对称流动场场流分离仪[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=121344]常温非对称流动场场流分离仪[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=121345]新型热场场流分离仪[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=121347]离心场场流分离仪[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=121348]重力分离场场流分离仪[/url]

  • 2010F 物镜是对称的还是非对称的?还有3010呢?

    多谢,刚看到一本书上提到对称非对称透镜问题,说是非对称的又被称为高衬度透镜,在jeol电镜中物镜光栏常被称为高衬度光栏,是否与透镜排布有关?还有fei的系列电镜中,s-twin, u-twin透镜什么区别?

  • 【原创】POSTNOVA场流分离仪

    给大家介绍场流分离仪——大分子分离分析的另一种方法[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=121350]常温[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=121351]中温非对称流动场场流分离仪 [/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=121352]离心场[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=121353]热场场流分离仪[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=121354]重力分离场场流分离仪 [/url]

  • 非对称PCR

    非对称[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]扩增条件,一般分为两个步骤,第二步骤的循环设置条件95℃,72℃,20个循环是否可以呢?引物浓度比例设置为50:1?

  • 南京大学成为我们在国内的首个二维场流仪EAF4的实际用户

    大家好!如题,南京大学环境学院的几位老师,认知能力、接受新事物的能力都比较好,调研充分,不偏听偏信,近日采购了我们的EAF2000MT型电流动场,并配上了21角度激光散射检测器、马尔文的台式机的激光粒度仪(通过PN9020接口板与EAF4实现在线直接联用),以及三个浓度型检测器:RI、UV和FL,同时还配置了postnova的自动进样器(带10毫升大体积进样附件包)和馏分收集器(配用分析型组件),总的配置超过了中山大学分析测试中心,成为了我们在国内配置最齐全的流动场场流仪。中山大学去年买仪器的时候,电场流EF3还未推出,所以没有带上,其余的都有,配置也很强。二维场流仪EAF4,通过在一个分离通道盒内同时施加非对称流动场AF4和电场EF3,从而实现了二位场流分离,因此,对于蛋白质、病毒、抗体等生物类样品,以及腐殖酸、聚电解质类聚合物、聚合物制的纳米材料,都具有更好的、更加强大的分离分析能力。当竞争对手及其用户,还在自鸣得意地显摆“双流道”(就好像HF5是什么高深莫测的技术似的)的时候,我们已经真正开启了二维场流的时代了。今后,还会有客户陆续采购二维场流的。

  • 离心场场流仪在纳米材料领域的应用简介

    离心场场流仪,简称CF3,是在空心的分离通道内施加一个垂直于样品流动方向的离心力,使样品分离并分析测试其尺寸及分布。这款仪器与超速离心有相似之处,但是分离能力、分辨率等要高出很多。像热场具有两个分离原理一样,离心场也具有两个分离原理:1 尺寸分离,包括聚合物/生物大分子材料的流体力学体积、纳米材料的体积与尺寸;2 按照密度分离。离心场是最早商品化的场流分离仪,在人工合成/制造的纳米材料领域有着广泛的应用,在国际纳米材料科研领域享有极高声誉。许多归国留学科学家都曾经在国外学习期间使用过、了解过离心场CF3。目前,国内不少科研单位都对离心场产生了浓厚兴趣。由于具有按照密度分离的能力,离心场可以把尺寸相同或相近的、但是化学性质不同的纳米材料分离开来。附件的文件中,就介绍了尺寸基本相同的纳米金与纳米银颗粒的混合材料,被离心场分离开来并分别测试其含量和尺寸分布。注意,场流仪的分离,是先馏出小尺寸/小分子量样品,再馏出大尺寸/大分子量样品的,其顺序与GPC的分离顺序相反。具体到离心场,小尺寸/小密度的样品先馏出,因此,纳米银颗粒在前、纳米金颗粒在后。离心场可以分离分析各种纳米材料:金属、非金属、有机与无机材料等等,既可以使用水做流动相,也可以使用各种有机溶剂做流动相。

  • postnova公司推出多检测器凝胶渗透色谱仪,并可升级成场流仪

    近日,德国postnova分析仪器公司推出了完全自主知识产权的、带温控的四毛细管粘度检测器、以及配套的多检测器GPC软件:NovaSEC,结合原有的单泵、自动进样器、带半导体制冷功能的柱温箱、21个角度或9个角度的激光散射检测器、各型浓度型检测器(示差、紫外、紫外荧光、蒸发光散射等等)、馏分收集器等产品,就组成了SC2000型中温型多检测器凝胶渗透色谱仪 Multi-Detector GPC。目前,已经有价格表了,欢迎广大中国用户来电来函咨询!SC2000型仪器,全套设备,都是postnova公司自己生产的,因此,包括激光散射检测器、粘度检测器、自动进样器、馏分收集器在内的所有硬件,都在NovaSEC软件控制之下,不像有些厂家,自己无法生产泵、自动进样器等设备,还需要跟其它HPLC厂家配套使用,就带来了硬件和软件兼容性问题、软件操作复杂等等的问题。SC2000型GPC,还可以很方便地升级成非对称流动场场流分离仪——客户只需要再购买交叉流泵和样品聚集泵、升级软件到NovaFFF即可。PN3310型四毛细管粘度检测器、SC2000GPC的英文版产品资料,我们会在“最新版产品资料”那个帖子中贴出来,请大家稍等些日子。

  • 热场场流仪在高分子材料分析测试方面的应用介绍

    热场场流仪,简称TF3,是利用在空心的分离通道内的垂直方向上施加由温度差引起的热扩散力,来实现对有机相溶剂体系的高分子材料的分子量分布、含量、共混物的分离进行分析测试。热场TF3的主要应用,就是测试分子量分布、聚合物共混物的分离与分析、橡胶样品中的凝胶含量测试等等,以及聚合物质的纳米材料的尺寸分布的分析测试。由于热场具有两个分离原理:1 流体力学体积分离;2 化学性质,因此热场可以分离分析聚合物共混物,这在高分子材料的科研当中具有广阔的应用前景。此外,热场场流仪的一个独特应用,是分析超大分子量淀粉的分子量分布。此方法以DMSO(N,N -二甲基亚砜)为溶剂、流动相,在较高温度下操作。热场TF3,是利用分离通道上下壁的温度差:上壁为热壁、下壁为冷壁,来实现对样品的分离与分析的。热扩散性,是在热场中是样品分离的原动力,影响热扩散性的因素,既包括流体力学体积/分子量,也包括样品自身的化学性质,即:不同种类的高分子材料,其热扩散性也不同。就是利用这个原理,热场TF3实现了对聚合物共混物的分离与分析。橡胶中的凝胶含量分析,目前已被全球各大橡胶制品企业、橡胶轮胎企业广泛接受,世界知名的轮胎厂,基本都购买、使用热场TF3来分析橡胶原胶、混炼橡胶的凝胶含量测试,TF3享有很高知名度。与凝胶渗透色谱仪GPC相比,热场除具有上述优势外,还具有分析速度快、溶剂消耗少——多数应用方法,流速都是0.2--0.5ml/min——等许多优点。

  • pH对分离选择性以及峰形对称性的影响

    pH对分离选择性以及峰形对称性的影响

    1概述在使用HPLC进行分析方法开发的时候,影响分离选择性以及色谱峰对称性的因素有很多,即包括仪器硬件方面的因素,如色谱柱的选择,流动相的种类、添加剂的种类以及浓度、流动相pH的控制、色谱柱温度的控制等等,也包括仪器控制的软件部分,如检测器带宽的选择、采样频率的选择等等。在HPLC方法开发的过程中,色谱柱以及流动相的选择起决定性作用,而对于流动相的pH的控制,不仅会对色谱柱的稳定性产生影响而且对于分离的选择性以及色谱峰的对称性也起到至关重要的作用(特别是对于可离子化的极性酸碱化合物来说)。一般来讲,在典型的ODS色谱柱上,pH对于中性化合物的分离选择性以及色谱峰的对称性没有影响,这是因为中性分析物以及色谱柱的选择性配体ODS均不具有解离能力,因而不会影响到分析物的分离选择性;然而对于一些极性改性或者Mixed-Mode类型的色谱柱而言,虽然分析物不含有可解离部分,但是pH会影响到色谱柱上的选择性配体的状态,进而影响到中性化合物的分离选择性以及色谱峰的对称性。如下图1所示,不同pH对于中性非极性化合物、极性不可解离化合物以及极性可解离化合物的分离选择性的影响。http://ng1.17img.cn/bbsfiles/images/2017/01/201701171506_01_2452211_3.jpg2pH对选择性的影响从pH的定义来说,其是溶液中质子的摩尔浓度的对数,取相反数,与质子浓度有关。pH越大,溶液中的质子浓度越小,pH越小,溶液中的质子浓度越大。对于水溶液,在25℃下,其解离常数为10-14。对于酸碱极性化合物,其在水溶液中发生解离,解离程度与水溶液的pH以及化合物本身的pKa有关,如下图2所示。http://ng1.17img.cn/bbsfiles/images/2017/01/201701171507_01_2452211_3.jpg从上图2,可以看出当水溶液的pH偏离化合物本身pKa 2个单位以上时,化合物主要以一种形态存在,而当pH在化合物本身pKa 2个范围以内时,化合物以两种形态存在(不解离与解离形态),而当溶液的pH等于化合物本身的pKa的时候,化合物解离形态与不解离形态大约各占50%,如下表1所示。http://ng1.17img.cn/bbsfiles/images/2017/01/201701171507_02_2452211_3.jpgpH对于极性可解离化合物在ODS色谱柱上的分离选择性的影响,主要就是通过控制分析物的解离状态,改变其与固定相上的选择性配体的相互作用能力来实现的(不解离状态化合物的极性相比解离状态化合物要小的多,与固定相配体之间的相互作用要强得多)。可解离极性化合物在ODS-HPLC上的容量因子与pH的关系,如下图3所示,以容量因子对pH作图,如下图4所示。http://ng1.17img.cn/bbsfiles/images/2017/01/201701171507_03_2452211_3.jpg从上图4可以看出,极性可解离化合物的容量因子与pH之间呈现S型曲线。对于碱性化合物而言,pH越大,其容量因子也越大;对于酸性化合物而言,pH越小,其容量因子也越大,这也是在使用反相HPLC“酸加酸,碱加碱”的原因,其目的在于抑制酸碱极性化合物的离子化作用,增强与ODS固定相之间的相互作用,而提高该类化合物的保留时间。值得注意的是,上述所说的是ODS类典型反相色谱柱,如果脱离这个特定条件的话,有可能会得出相反的结论,如正相色谱以及亲水相互作用色谱(HILIC)。因此,对于酸碱极性化合物的分析方法开发的时候,可以通过调节流动相的pH来改变目标化合物的保留时间,从而达到提高相关组分分离度的目的,如下图5所示。http://ng1.17img.cn/bbsfiles/images/2017/01/201701171507_04_2452211_3.jpg3pH对色谱峰对称性的影响对于ODS类型的反相色谱柱来说,疏水相互作用是其主要作用机理,酸碱可解离极性化合物解离之后形成的离子形态,与固定相硅胶残留的硅醇基之间的二次极性相互作用,是色谱柱分析酸碱极性化合物,色谱峰拖尾,对称性差的根本原因。如硅醇基的pKa大概为5左右,在pH为7的时候,基本可完全解离带负电,在分析带有正电的碱性化合物的时候,二者之间的强极性二次相互作用,导致其色谱峰发生严重拖尾现象。当然,极性化合物发生严重的拖尾现象,有时并不是上述原因所导致。如目前所用的反相C18色谱柱,有很多均采取了封端处理,在分析极性化合物的时候,依然会产生严重的拖尾现象,其可能主要原因为,极性化合物解离之后形成的带电离子外围的水合层,影响了其与固定相配体之间的相互作用,从而导致超载现象,此时可以通过降低分析物的浓度,改善色谱峰的对称性。无论上述哪种情形导致的色谱峰拖尾,色谱峰对称性差的情况,均可以通过改变流动相的pH,抑制分析物的解离来改善极性可解离化合物的色谱峰对称性,如下图6所示。http://ng1.17img.cn/bbsfiles/images/2017/01/201701171510_01_2452211_3.jpg4有机相对于流动相pH以及极性可解离化合物pKa的影响如上所述,pH的大小与溶液中的质子的浓度有关,是质子浓度大小的间接量度。如纯水在25℃下的解离常数为10-14,pH为7。当在水溶液中添加了有机相如甲醇的时候,由于甲醇的解离常数为10-16.6,将水与甲醇进行混合之后,其pH应在7-8.3的范围之内。在配置流动相的时候,将水相调pH到某一值,在使用的过程中,随着有机相混合比例的不断变化,其pH是不断增加或者减小,有机相的比例增加越多,pH的变化也就越大。水相-有机相的pH变化程度与添加的酸碱的种类,有机相的种类及比例有关,对于乙腈而言,有如下关系,如下图7所示。http://ng1.17img.cn/bbsfiles/images/2017/01/201701171510_02_2452211_3.jpg另有很多时候,我们会在水相以及有机相中同时添加同等浓度的酸碱,如TFA等,此时我们的目的并不是为了保证流动相在混合之后维持pH的一致性,事实上,由于有机相的加入,如乙腈或者甲醇等,尽管有机酸碱的浓度一致,也无法保证pH的一致性。其目的在于维持由于有机相的加入而造成的有机酸碱浓度的变化,进而对于基线的影响处于同一水平。如下图8所示,乙腈的加入比例对pH的影响,对于有机酸添加剂如乙酸体系而言,当乙腈的比例从0.1到0.6的时候,pH变化了0.8个单位,随着乙腈的进一步增加,pH甚至会增加到2个单位以上;对于氨水碱性体系,随着有机相的加入,pH不断减小。http://ng1.1

  • potnova场流仪与安捷伦和PE的ICP MS 及马尔文DLS联用介绍

    附件是postnova公司的离心场、非对称流动场与安捷伦7700、8800等型号的ICP MS,以及PE公司的ICP MS 的联用介绍。此外,联用仪器中还包含了马尔文公司的几型激光粒度仪,连接顺序是:离心场+紫外-DAD检测器+DLS+ICP MS。主要应用包括:纳米材料、环境与环保、生物材料等。postnova场流仪的操作软件可以很方便地与上述各厂家的质谱仪、激光粒度仪的操作软件配合使用,无需特殊改进。管路接口,可选用专用的通用化质谱仪接口,也可以采用简易接口。

  • AF2000分析黄原胶(Xanthan Gum)的测试报告

    大家好!有段时间没有发表新帖了,近日,外商给了我们一份测试报告,删去了客户单位,只有内容,是用非对称流动场AF2000分析黄原胶样品和其它几个类似样品的,我贴出来,供大家参考。从测试结果看,黄原胶不仅分子量很大——大约10几亿Dalton,而且体积也非常大,简直奇大无比,我都是第一次见到这么大尺寸的、溶解型的样品——其均方旋转半径(Rg)竟达1000多纳米!这么大尺寸的样品,不要说GPC了,就连我们的竞争对手的场流分离仪,都做不了啊。参看附件。

  • 【原创】极性、对称性及其他

    有网友问关于键极性的问题,我来大概说说极性,极性分子,极性键键极性有机化合物原子间由共价键链接,键极性特指共价键的一种性质。离子晶体不要讨论这个问题了。共价键按照键的极性分为极性键和非极性键不同两个原子间,必然是极性键——这个无特例同原子间,一般为是非极性键——这个不排除特例键的对称性,这个就比较复杂了,根据电子云形状,大家自己琢磨吧,我不写了,这个要写,得一本书。分子极性非对称分子,一定为极性分子有对称性分子,不一定是非极性分子这个要考虑分子构型对称性问题。极性分子——电子云几何中心和质子几何中心不重合非极性分子——电子云几何中心和质子几何中心重合举几个例子吧H2——非极性分子——重合于两个H中间CO2——非极性分子——重合于C上H2O——极性分子——电子云偏向O,(这个偏向相对于正电荷中心,因为正电荷是分子几何中心,这个当然经过了加权的)分子对称性,也太复杂了,我也不说了分子对称性和分子极性有相关性但是不是对称分子,就为非极性分子这个也比较复杂,内容太多了

  • 探讨一下:国内大学如何采购场流分离仪

    首先,祝大家新春快乐、羊年吉祥如意!近期,国内不少大学都对场流分离仪表现出了浓厚兴趣,纷纷表达了采购意向。但是,不少大学的客户向我们询价之后,感觉价格昂贵、一时半会儿没有那么多资金采购,需要等待机会、获得国家资金支持或拨款,才能采购。这是可以理解的。德国postnova的场流仪,相比较液相色谱、凝胶渗透色谱仪器而言,确实贵一些。我想说的是,我觉得,对于大学来说,应该由学校的分析测试中心、至少也应该是某一学院的分析测试中心来采购场流分离仪才合适,至少第一套仪器应该是这样来采购。因为场流分离仪,特别是流动场场流分离仪AF4MT中温型,是一款通用型的分离与分析的仪器,可适用于:高分子材料(水相、有机相)、蛋白质和多糖等生物高分子材料、纳米材料(包含环境领域的天然产物样品),因此,只有大学或学院的分析测试中心,才能够更好地、充分的发挥一套场流分离仪的作用,为更多的老师和同学们提供测试服务,这方面的成功案例很多很多了。通过更换场流分离通道盒(水相:聚酯-透明有机玻璃材质、有机相:不优秀钢材质)、场流分离通道膜(叶城为:spacer)、过滤膜等来实现对各种样品的通用分析。其次,分析中心采购AF4/CF3/TF3这类大型仪器,还可以配合使用自动进样器、馏分收集器、激光粒度仪DLS/SLS或者激光散射检测器MALS/LALS、各种质谱仪器、光谱仪器、核磁NMR和电镜等等,从而实现深度分析、对未知样品的分析。仪器的使用效率更高一些。第三,分析中心采购仪器,就可以实现专人管理、专人操作,有利于保持仪器的最佳运行状态、降低故障率和消耗品的毁损与消耗,节约运行成本。特别是像分离通道内部的过滤膜这类消耗品,一套仪器是需要很多种不同的过滤膜的,以适应不同的样品。但是厂家提供的过滤膜,都是10片一包装的,不拆包也无法拆包卖啊,所以,集中使用就显得最经济实惠了。分析测试中心的人员,一般来说,对色谱类仪器还是比较熟悉的,也更容易较快掌握AF4这类比较复杂的仪器,也就可以更快发挥作用了。第四,分析仪器,特别是色谱类仪器,也像其他设备那样,不怕用、就怕不用。如果一个课题组买了仪器,课题结束了,仪器就不怎么用了,那么不仅是浪费了科研资源,而且仪器还面临着维护越来越困难、故障越来越多的问题,到最后,不到10年,仪器就报废了,真是莫大的损失啊!综上所述,我强烈建议,大学的客户们最好不要由课题组出资金采购,而是统一由学校的分析中心、学院的分析测试中心来组织招标采购,即可以集中资金干大事儿——采购一套配置比较高级的AF4/CF3/TF3仪器,配置上自动进样器、馏分收集器、激光散射检测器、甚至中空纤维流动场HF5等等,就可以为更多老师和同学的科研工作提供强有力支持了。有的学校,由课题组申请经费采购、再组织招标。由于经费有限,不得不跟厂家进行反复讨价还价。厂家或代理商为了维护自身利益,不得不酌减配置,弄到最后,往往成了一个“半拉子“工程:只买了AF4,而没有买DLS/MALS,这样做的结果,就使分析测试变得有些不方便了,因为许多样品无法找到标准样品来做标准曲线!如:环境类样品中的腐殖酸、凝胶微球、抗生素颗粒等等。而且,没有自动进样器和馏分收集器,也影响了分析效率、无法进一步做其它项目的分析测试。最后,希望对场流仪感兴趣的客户,一定要充分调研、甚至是做一下样品测试,再选择仪器厂家。目前,我们可以为有采购意向的客户提供德国原厂分析测试服务。对于一些不太适合邮寄到国外的样品,我们也可以在国内为用户做分析测试,客户可现场观看分析过程、现场亲眼目睹色谱图和数据结果。一旦有合适的测试结果报告,我们也会第一时间上传到这个网页上来,以供大家参考。

  • AF4在纳米材料领域的应用

    最近,我搜集了一些AF4在纳米材料领域的应用,既有文献,也有postnova的方法介绍,供大家参考。纳米-微米材料,有些尺寸较小,二有些则密度很低,都不太适合用离心场CF3来分析了,此时,AF4的优势就显现出来了。尤其像一些比较轻的、密度很小的纳米材料,AF4是很好的解决办法。其他一些纳米材料,如:量子点、碳纳米管等等,AF2000系列场流仪也是可以做的,方法也是现成儿的,感兴趣的朋友,可以到postnova公司网站上浏览他们那边的“scientific paper”, 可以找到更多文献或其摘要。附件其中一篇文献,好像是日本的吧,采用了流动场与离心场的在线联用,我在另一个帖子里面介绍了这个文献,此处顺便多说几句。由于CF3与AF4在量程范围、样品种类与情况方面的差异,无法相互完全替代,因此,有些资金条件好的客户,就买了两台,一台离心场CF3,另一台流动场AF4。国内,目前就是国家计量院是这样的配置,目前这两台仪器都在十三陵的计量院新区的实验室里,但是这两台postnova的仪器是分开使用的,没有联用。附件中,有一个是微量型分离通道盒及其应用,其内外尺寸比标准的分析型分离通道盒要小一些,参看“非对称流动场分离通道及过滤膜的尺寸与型号”一贴的附件,可以找到其具体数据的。这个也很有特色,适合样品量较少的样品分析。在这个配置中,需要将交叉流泵的注射器,换成100ul的微量注射器。

  • 【求助】对称因子与拖尾因子一样吗?选择性因子一般要达到多少?

    请教HPLC的参数指标,一般评价色谱系统适用性的指标有塔板数,分离度,重复性,拖尾因子等等,请问拖尾因子T与色谱性能报告中的对称因子是指一个值吗?另外选择流动相时需要考虑的参数“选择性”貌似也叫分离因子α,范围通常要多大呢?以前看到过,一时想不起来,不能确定,请各位帮帮忙

  • 为什么AF4分析生物大分子、纳米材料会出现用不好的情况?

    一段时间以来,不少客户,由于种种原因,采购了我们的竞争对手的非对称流动场场流分离仪AF4,结果发现使用效果不好、甚至非常差,而且不论是厂家工程师还是客户自己都找不到原因。其实,这就是产品问题。主要原因有:1 没有采用分离通道温控技术,这对于蛋白质等生物大分子材料来说,更显得影响大、负作用大了。由于分离通道盒裸露于室内环境中,使得分离过程易受温度波动的影响。生物类样品往往具有活性,而且活性随温度升高而降低,在低于室温下、高于0摄氏度的温度下,却具有更大的活性,对场流分离仪来说,则具有更高的分离效果!紫外检测器此时可明显看到更加清晰的信号,dA/dc值更大,信号也随之更大、尺寸/分子量的分布曲线更加准确;2 交叉流调节器这种方法有问题,造成分离力不稳定,分离效果不好。该方法,类似一个放压阀,将分离通道内的溶剂放掉,使用电控阀门操作。但是,这样做的明显不足之处就是压力,可能会忽大忽小,远不如采用双注射器泵来实现交叉流要稳定得多。此外,简单放流、放压,也带来了分离力不足的问题,使得分离效果不好。对于尺寸较小的环境类样品,则明显感觉分离力不足,分离力控制不够精密。交叉流调节器这一技术,实际上是场流分离仪的早期技术了,已经落后于时代了。这也是我们一直坚持使用交叉流泵的原因。3 样品聚集技术:由于缺乏专用的样品聚集泵,特别是无法与交叉流很好配合,造成了样品聚集过程中效果很差,从而造成了分离不好。由于场流仪没有固定相填料,样品进入分离通道内之后,就会平铺在通道底壁上。如果不采取有效办法将样品聚居成堆状、塔状,则无法实现尺寸/分子量分布测试。而色谱磊仪器中,色谱固定相填料就起到了将样品聚集在一起的作用!4 化学兼容性,也是影响AF4分离效果的重要原因。不同的样品,需要选择不同的交叉流泵,因为泵头、管路和阀门的材质不同,影响着样品的分离过程。例如:对于DMF、DMSO、甲酸、六氟异丙醇等中等极性以上至强极性的溶剂,我们就采用不锈钢制的泵头和阀门,PTFE的接头;对于三氯苯、邻二氯苯、十氢萘、四氢萘、二甲苯等高温型溶剂,我们则采用全不锈钢制的材料,泵头、管路和阀门均为不锈钢制;对于水相、轻质有机溶剂(四氢呋喃、氯仿、甲苯、乙酸乙酯等),则采用PEEK材料的泵头、阀门和接头。这样做的目的,就是为了使交叉流的流速稳定、精确,不至于受到化学兼容性、材料表面张力的不良影响。分离通道膜、过滤膜就更需要考虑化学兼容性了,针对不同类型样品,有很多种材质的膜可供选择。以后我们会就此专门开个帖子来介绍的,同时还会结合着分析型、半制备型和微量分析型的分离通道仪器介绍给大家。

  • 【分享】造成色谱峰不对称的原因

    造成色谱峰不对称的原因色谱峰的不对称性来源于色谱过程本身,也有些来源于仪器。造成峰不对称的原因有:(1)不完全分离:歪曲的峰形有时实际上是因为未分离的其他溶质组分峰的叠加造成的。(2)缓慢的动力学过程:包括溶质在固定相中为空隙中的扩散,溶质与表面能量分布不均匀的固定相的相互作用;对液相色谱来说,还有在溶剂化不充分的键合固定相表面传质缓慢的影响。动力学过程造成的不对称可以通过梯度洗脱予以改善。(3)化学反应:如溶质在柱内发生化学反应,会形成拖尾峰或宽得不正常的峰。很可能这些现象会伴随着色谱峰的分裂,常导致一个尖锐的峰叠在严重拖尾的峰上。(4)柱内空腔:固定相收缩是逐渐的。由于固定相收缩会形成越来越严重的拖尾的或歪曲的峰。如果在接近入口的地方有占据整个柱截面的空腔,会更多的造成峰形增宽而不是不对称。但如空腔沿着柱的纵向占据部分柱的截面,则会造成很强的拖尾或前伸峰,甚至把所有的峰分裂为双重峰,这些双重峰可能是分离开的,也可能是不完全分离开的。这是因为样品在流速不同的通道中居留的时间不同,而径向扩散不够迅速,使峰的不对称或峰的分裂得不到弥补,尤其是在液相色谱中。在气相色谱中由于流动相传质系数大得多,这种现象轻微多了。

  • 【分享】造成色谱峰不对称的原因

    色谱峰的不对称性来源于色谱过程本身,也有些来源于仪器。造成峰不对称的原因有: (1) 不完全分离:歪曲的峰形有时实际上是因为未分离的其他溶质组分峰的叠加造成的。 (2) 缓慢的动力学过程:包括溶质在固定相中为空隙中的扩散,溶质与表面能量分布不均匀的固定相的相互作用;对液相色谱来说,还有在溶剂化不充分的键合固定相表面传质缓慢的影响。动力学过程造成的不对称可以通过梯度洗脱予以改善。 (3) 化学反应:如溶质在柱内发生化学反应,会形成拖尾峰或宽得不正常的峰。很可能这些现象会伴随着色谱峰的分裂,常导致一个尖锐的峰叠在严重拖尾的峰上。 (4) 柱内空腔:固定相收缩是逐渐的。由于固定相收缩会形成越来越严重的拖尾的或歪曲的峰。如果在接近入口的地方有占据整个柱截面的空腔,会更多的造成峰形增宽而不是不对称。但如空腔沿着柱的纵向占据部分柱的截面,则会造成很强的拖尾或前伸峰,甚至把所有的峰分裂为双重峰,这些双重峰可能是分离开的,也可能是不完全分离开的。这是因为样品在流速不同的通道中居留的时间不同,而径向扩散不够迅速,使峰的不对称或峰的分裂得不到弥补,尤其是在液相色谱中。在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]中由于流动相传质系数大得多,这种现象轻微多了。

  • 【资料】高速逆流色谱介绍---分离原理及仪器

    【资料】高速逆流色谱介绍---分离原理及仪器

    (一)单向性流体动力学平衡理论单向性流体动力学平衡是一种特殊的流体动力平衡,是高速逆流色谱的基础。它是Ito教授在研究旋转螺旋管组合的流体动力平衡学状态时偶然发现的。图7表示出这种单向性HDES的特点。在图中顶部画出的旋转螺旋管中包容着等量的两个互不混溶的溶剂,图中其它各处的螺旋管都画成直管,以便表明两相溶剂在整个螺旋管内的分布情况。http://ng1.17img.cn/bbsfiles/images/2010/10/201010290825_254840_1615407_3.jpg图7 单向性HDES的原理在基本的HDES 中(见图 左侧),螺旋管的慢速转动使两相从首端到尾端均匀的分布,任一相的超量都会存留在螺旋管的尾端,因此,用某一相作流动相从首端向尾开始洗脱时,另一相在螺旋管里的保留量大约是柱容积的50%,这一保留量还会随流动相流速的加大而减小。由于固定相的流失,从而限制了高流速的实际应用,下面要讨论的单向性HDES就能解决上述问题。当使螺旋管的转速加快,达到临界范围时,将产生一个不对称的离心力场,螺旋管内的两相就会沿螺旋管长度完全分开,其中一相全都占据首端的一段,我们称之为首相端。另一相全部占据尾端的一段,我们称之为尾相端。这种分布状态如图7的右侧顶端所示。这种两相的单向性分布表明如果从尾端送入首端相,它会穿过尾端相而移向螺旋管的首端;反之,如果从首端送入尾端相,它会穿过首端相而移向螺旋管的尾端。因此,可以利用这一分布的特性通过两种方式来实现逆流色谱。图7的右侧中部显示了这种正向和反向洗脱方式。这种体系还能够实现同时将两相分别从螺旋管的不同端口泵入,实现真正的逆向移动方式,如图7b底端所示。不论采用哪一种方式,都能在流动相的高流速条件下保留大量的固定相,使整个体系能在相当短的时间内实现极高的溶质色谱峰分辨度。进一步的研究表明,这种螺旋管的高速行星式运动,使流动相恒速流过螺旋管内固定相时,在管柱任何部位的两相溶剂都以极高的频率经历着混合和沉积的过程。图8 给出了实验观察到的J型行星式运动螺旋管内两相溶剂流体动力学分布示意图。这个结果是由Conway等用频闪仪观察到的。实验采用的体系为氯仿-乙酸-水(2:2:1),为了便于观察,每一相用一定的颜色标识,首先用上相注满螺旋管柱,然后使仪器在750rpm转速下转动,并将下相从首端泵入,在建立了稳定的流体动力平衡后,用频闪仪观察到两个非常清晰的区域:靠近中心轴的将近1/4的区域(混合区),在那里两相剧烈地混合,其余的区域(沉积区),在那里两相分离成两层,重相占据螺旋管每一段的外部,轻相占据每一段的内部,并且两相沿螺旋管形成一个清晰的界面。http://ng1.17img.cn/bbsfiles/images/2010/10/201010290839_254842_1615407_3.jpg 图8 J型行星式运动螺旋管内两相溶剂混合区域的移动[c

  • 浅读IBM Research–Zurich最新力作——纳流控摇摆布朗马达

    浅读IBM Research–Zurich最新力作——纳流控摇摆布朗马达

    2018年3月,世界知名的科研团队IBM Research-Zurich于 Science 杂志发表了最新力作:Nanofluidic rocking Brownian motors。IBM Research-Zurich原名为IBM Zurich Research Laboratory,曾因重大发明成果在1986年和1987年获得过诺贝尔物理学奖,为大家所熟知。今天,我们带着原文一同品味纳流控摇摆布朗马达的科学探索。[b]浅读纳流控摇摆布朗马达[/b] 大多数物质间的相互作用机制会在物质尺度小至纳米量级时产生不利的缩放效应,因此,在流体中控制、输运纳米尺度的物体是一个巨大的挑战。通过精确控制纳流控器件中狭缝结构的几何参数,同时利用类带电粒子与纳流控器件中墙面结构间的静电作用,M. J. Skaug等人设计了针对纳米颗粒的能级图谱。他们通过将非对称势垒与振荡电磁场结合,获得了一种摇摆布朗马达,从而可以对纳流体中的纳米颗粒的定向输运进行调控。Skaug分析了此种分子马达的物理机制,与理论模型进行对比后,基于分子马达成功制备了一种分类器件。这种器件可以在几秒钟的时间内使两种不同粒径的纳米颗粒(直径分别为60 nm和100 nm)在器件中沿着相反方向运动,从而实现对两种颗粒的分离。后续的模拟分析结果证明:这种新型器件可以有效区分粒径差异在1 nm量级的不同纳米颗粒。 除了在材料、环境科学领域(尺寸分析、过滤、单分散制备)具有应用潜力外,能够对纳米尺度颗粒进行尺寸选择性输运、收集的芯片实验室器件,在床边检测及生化领域(如分子分离、预浓缩)的应用亦被寄予希望。以探测流体中的低浓度物质为例,通过在探测器中引入定向输运机制,可以将浓度极低的被探测物质输运至探测器中的感应区域,并使被探测物质形成集聚,从而克服传统探测方法中存在的各类技术限制,实现对低浓度物质的有效探测。受到生物学中分子马达的启发,Magnasco和Prost等人曾经提出利用人造布朗马达来实现类似的颗粒输运功能,这种布朗马达的物理机制是基于非对称势垒以及非平衡力的调控。前人的实验中,主要都是集中在“闪烁棘轮”型的布朗马达,它是利用周期性非对称势垒以及各向同性扩散机制来实现微米尺度颗粒的定向输运的。在这种布朗马达中,通常是利用外加光场或介电泳产生的力学作用来获得所需的势垒,所以势垒的作用效果会随颗粒尺寸缩小而减弱,因此这类马达很难满足纳米尺度实验的需求。 闪烁棘轮型布朗马达中的颗粒扩散效应依赖于颗粒的尺寸,研究人员对这类马达在颗粒分类方面的应用潜力进行了探究。然而,与连续层式流动器件的情况相似,利用外加力来替代扩散作用会使得尺寸的区分能力变差。摇摆型布朗马达则利用零平均外加力和静态势垒产生直接的定向颗粒运动。这类布朗马达的输运特性与其所传输颗粒的扩散特性,二者之间表现出了一种极其显著的非线性依赖关系,这对纳米颗粒的区分、分离来说具有重要的意义和应用潜力。然而,对于纳米尺度的颗粒来说,如何创造一个能量足够强的静态势垒是一个挑战。 静电俘获可以有效解决这一挑战,具体思路是将类带电颗粒限制在均匀带电的表面之间。在其中一个表面上制备一个凹陷的几何结构,可以降低此处局部的颗粒-表面相互作用能量,从而定义一个侧向的俘获势垒。约束颗粒的能量大约在几个kBT的量级(其中kB是玻尔兹曼常数,T是绝对温度),可以稳定地俘获多种带电颗粒,比如金纳米球与纳米棒(粒径在十几至一百多纳米左右)、囊泡(五十纳米左右)、DNA寡核苷酸(含有十几至六十几个碱基)、蛋白质分子(分子量在十几kDa)。 Skaug等人扩展了利用几何结构诱导静电俘获的思路,以三维结构取代此前简单的二维凹陷结构,从而创造了针对纳米颗粒的复杂二维能级图景。三维结构的构筑是通过利用热扫描探针光刻方法获得的,这种方法在纵向的图形控制精度可以达到纳米量级。[align=center][img=,500,306]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311347510856_9222_981_3.jpg!w690x423.jpg[/img] [/align][align=center]图1 利用热扫描探针光刻技术制备纳流控布朗马达、定义棘齿形貌:[/align][align=center](A)纳流控器件中的狭缝截面示意图及俯瞰图;[/align][align=center](B)形貌图像;[/align][align=center](C)图(B)中的圆环状棘齿结构的放大形貌图;[/align][align=center](D)图(B)中白线标识区域的剖面轮廓图,即棘齿台阶轮廓图;[/align][align=center](E)被俘获纳米颗粒的光学图像。[/align][align=center][/align][align=center][img=,500,379]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311348456748_522_981_3.jpg!w690x524.jpg[/img] [/align][align=center]图2 实验测量的平均势垒的决定因素:[/align][align=center](A)四种图形化棘齿的形貌图以及三种控制场的示意图;[/align][align=center](B)棘齿单元的轮廓示意图;[/align][align=center](C)棘齿限制的纳米颗粒的能量曲线(平均实验数据与有限元模拟数据对比);[/align][align=center](D)九种不同间隙距离的棘齿的能量势垒曲线对比;[/align][align=center](E)由因子α确定的棘齿能量势垒通用曲线。[/align][align=center][/align][align=center][img=,500,341]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311349216951_1045_981_3.jpg!w690x471.jpg[/img] [/align][align=center]图3 粒径60 nm与粒径100 nm的金颗粒的分类:[/align][align=center](A)分类器件的形貌图像;[/align][align=center](B)图(A)白色虚线框内区域的放大图;[/align][align=center](C)上图:金颗粒分类原理简图;下图:相应的静态能量曲线(实现为测量值、虚线为模拟值);[/align][align=center](D)金颗粒在分类器件中不同时刻的光学图像;[/align][align=center](E)颗粒的空间分布图像;[/align][align=center](F)模拟得到的颗粒漂移与粒径的函数关系。[/align] 通过一系列的测试以及相应的理论计算、模拟,Skaug等人展示了在水平表面与带有三维图形修饰的表面之间的电泳可以有效限制纳米颗粒,从而创造一个可以由几何形貌结构定义的、针对纳米颗粒的能量图景。通过精确调节表面之间的间隙,一阶俘获势垒可以简单地按比例缩放,从而提供了一种可以用于优化系统的有效手段。在实验当中,所有与模拟纳流控系统有关的必要物理量都可以原位获取。实验与理论的一致性,证明了对文中系统工作机制的解释以及对系统特性的预测的可靠性。摇摆布朗马达输运特性的非线性特性以及静电作用的非线性特性,是文中器件实现对纳米颗粒高效分离的物理基础。 更进一步,基于文中的模拟分析以及Ruggeri等人关于颗粒俘获研究的结果,Skaug等人预测可以通过比例缩放的手段,将文章中的方法应用于对生物小分子的分离、分类。与基于流动的分离机制相反,采用摇摆布朗马达可以实现纳米颗粒的选择性输运、精确分离、集聚,且不需要电泳净流或热力学梯度这类条件。通过将更小的棘齿形貌参数与更低的外加电场相结合,这类器件将非常适合应用于针对芯片实验室中少量液体的高精度成分分析。 参考文献:Nanofluidic rocking Brownian motors, Skaug et al., Science 359, 1505-1508 (2018)

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制