当前位置: 仪器信息网 > 行业主题 > >

提高采收率岩心驱替系统

仪器信息网提高采收率岩心驱替系统专题为您提供2024年最新提高采收率岩心驱替系统价格报价、厂家品牌的相关信息, 包括提高采收率岩心驱替系统参数、型号等,不管是国产,还是进口品牌的提高采收率岩心驱替系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合提高采收率岩心驱替系统相关的耗材配件、试剂标物,还有提高采收率岩心驱替系统相关的最新资讯、资料,以及提高采收率岩心驱替系统相关的解决方案。

提高采收率岩心驱替系统相关的论坛

  • 【资料】生物表面活性剂鼠李糖脂发酵液应用研究

    [em0815] 微生物技术采油新进展:生物表面活性剂鼠李糖脂发酵液驱油应用研究韩立滨公司名称:大庆沃太斯化工有限公司地 址:大庆高新技术产业开发区宏伟园区 邮编:163411电 话:0459-5619800 传真:0459-5619868 E-Mail:victex2008@126.com http://www.cnvictex.com一、概述表面活性剂是具有亲水基和疏水基的离子或非离子型化合物,具有降低表面张力、稳定乳化液、增溶和改变分子极性等作用,表面活性剂分为化学表面活性剂和生物表面活性剂,其中生物表面活性剂是微生物在代谢过程中的产物,包括糖脂、脂肽、脂蛋白、磷脂以及中性类脂衍生物等,具有明显的表面活性,能大幅度降低油水界面张力,形成胶束溶液。此外,还可以改变油层润湿性、洗油能力强、吸附滞留量小、稳定性高、耐盐以及无毒等优点。因此,近年来,环境友好的生物表面活性剂的生产和使用日益受到人们的广泛关注。预计到2010年,生物表面活性剂将会占领市场10%的份额,销售额达两亿美元。目前,国内外研究较多的是由铜绿假单胞菌(Peudomonas aeruginosa)产生的鼠李糖脂,它是一类非常重要的生物表面活性剂,不仅具有乳化、增溶、降低表/界面张力等功能,而且毒性小、易于生物降解,因而在石油开采、医药、食品、日化及环境保护等许多领域具有极大的应用潜力。大庆沃太斯化工有限公司依托中科院上海有机所的先进技术,经自主研发的鼠李糖脂产品质量已经达到国内先进水平,具有年产2000吨以上的生产能力,是国内唯一能够大规模生产的厂家。二、生物表面活性剂国内外的研究进展国外,生物表面活性剂是七十年代后期发展起来的生物工程技术。近年来,生物表面活性剂应用于EOR方面,日益受到人们重视,如德国winter-shullAG公司将生物表面活性剂用于三次采油矿场试验,取得了明显效果,并已申请了多项专利。美国,先后有六大公司应用生物工程技术进行三次采油试验研究工作都见到了理想的效果。我国,生物表面活性剂研究工作始于八十年代初。“七五”期作为国家重点科技攻关项目实验研究做了大量的工作。“八五”期间又进行了生物表面活性剂的中试放大,随着科技手段的不断发展,研究水平不断的提高,生物表面活性剂的应用领域不断扩大,同时生物表面活性剂在石油采油的应用中取得了长足的进步。大庆油田于1997年-2000年在萨北开发区小井距试验区葡I4-7油层开展了生物表面活性剂三元复合驱先导性矿场试验,采用与进口表活剂ORS41复配的强碱体系,取得了全区提高采收率16.64%,中心井提高采收率23.24%的好效果。由于加入了浓度为0.2%生物表面活性剂,使体系中磺酸盐类表面活性剂的浓度由0.3%下降到0.15%,降低了化学表活剂50%的用量,复合驱化学剂总成本降低了35.5%。三、鼠李糖脂简介1、鼠李糖脂是一种阴离子表面活性剂,鼠李糖脂最突出的特性是它的表面活性,具有显著降低水的表面张力,改变固体表面的润湿性,具有乳化、破乳、消泡、洗涤、分散与絮凝、抗静电和润滑等多种功能。鼠李糖脂表面活性剂能使水的表面张力从72 mN/m降至30 mN/m左右,使油水界面张力从43 mN/m降低至1 mN/m左右。本产品与化学表面活性剂复配后的体系达到10-3-10-4 mN/m超低界面张力值。鼠李糖脂的另外一个重要特性是它的抗菌性。已经报道有好几种鼠李糖脂混合物具有抗菌和抗真菌的效果。2. 性状该产品外观为乳白色、带有脂香味粘稠的水溶性液体,其组成包括鼠李糖脂、菌体干细胞、多糖、中性脂等,其中鼠李糖脂的有效含量在30 g/L以上。3. 作用机理 总述:该产品的主要成份是生物大分子,它们具有粘弹性和乳化性,能起到增大驱油波及效率的作用,在油层中具有封堵、变形、运移、再封堵的特性,可实现从水井到油井的全过程调剖驱油;具有较高的表面活性能力,有效改变储集层岩石表面的润湿状态,降低原油与岩石表面的润湿角,降低油水界面张力,从而减少了原油在储层孔隙中的流动阻力,原油得以从岩石颗粒表面释放,从而起到提高原油采收率的作用。鼠李糖脂发酵液成分及其对油层的作用鼠李糖脂发酵液组分物质名称对油层的作用鼠李糖脂为代表的各种糖脂类表面活性剂物质1、降低岩石-油-水系统界面张力及表面张力2、形成油-水乳浊液 3、增强油相相容性有机酸类1、提高孔隙度和渗透率 2、降低油黏度菌体的蛋白及核酸大分子类封堵高渗透层,增大水驱扫油率并降低油水比醇、酮、醛溶剂类溶解岩石孔隙中原油,降低原油黏度(1)鼠李糖脂发酵液中的表面活性剂物质形成临界毛管胶束、增溶、乳化、互溶阶段的洗油机理 生物表面活性剂鼠李糖脂等小分子溶液达到临界胶束浓度后,其活性分子会自发迁移到油相界面,由热力学公式△G0m=△H0M-T△S0M可知油相界面自由能降低。表现为聚集于油相,使亲油基团插入油相,亲水基团留在水相,形成圆柱胶束,胶束内核提供了一个增溶的空间,使油相处于岩心孔道中央,发生油相聚集溶合,同时也使多个鼠李糖脂类分子亲油基与油结合形成乳状液,使黏度得到降低。动力来源除了驱替的压力、油水自由能的降低还有微毛管束的拉伸作用,蜂窝状的底层孔隙使得溶液胶束受毛管力作用被沿着岩石孔道推进,胶束经过岩心孔道时受到油滴间表面张力的作用使残余油进入胶束形成油带,它的形成使采出油的含水率得到降低。当油与鼠李糖脂类活性分子结合经过岩心多路液流汇集处或孔道张力集中的弯道处多发生乳化,使油黏度进一步降低。增溶乳化的胶束受驱动力推进,遇到不动的残余油则表现为互溶。此时的油相与水相界面张力及自由能达到最低值。当油相聚集岩心孔道中央达到一定量后挤压水相与岩石孔隙面接触,水相与岩心孔隙形成表面张力膜,增强了水对岩石的润湿性,有利于残油油滴驱出。后续水驱期间,受驱动推力及毛细管共同作用使驱出的油含水率降低,压力平稳,采收率曲线提高平缓。随着水驱的推进鼠李糖脂类表活剂分子随着被驱出的量而减少,其乳化作用、降低界面张力作用及降黏作用的能力快速降低,当压力达到驱动溶液流动的恒定值则表现为平稳,此时的含水率也接近稳定。(2)鼠李糖脂发酵液中的菌体蛋白、核酸等有机大分子调驱机理 一定浓度的发酵液进入油层后,微生物代谢的生物有机物及菌体残余物质聚合形成微生物封堵,在驱替压力作用下向受力作用低的大孔导流动即高渗透区域,并调整吸水剖面,增大水驱扫油效率,降低油水比,起到宏观和微观的调剖作用,是一种有选择的封堵,改变水流向,达到提高采收率的作用。从室内驱油试验压力曲线研究证明,该微生物大分子及菌体类似于胶体,即生物大分子及菌体蛋白是有伸缩性与粘弹性,能够在复杂的非均质油层中表现出与压力相反的缓冲效应,该效应形成提高采收率的封堵调驱机理。(3)鼠李糖脂发酵液作为本源微生物营养激活剂提高采收率鼠李糖脂发酵液成分中含有大量的氮元素、碳元素及磷元素,菌体分解的核酸及蛋白等小分子是地层本源微生物迅速生长的高级营养物质,是微生物产生大量代谢物,有表面活性剂、气体、有机酸等进一步发挥微生物采油原理。(4)结论一、鼠李糖脂驱油机理包括四个阶段:形成毛管胶束阶段,增容阶段,乳化阶段,互溶阶段,四个阶段相互依存,协同的洗油机理,提高了原油的采收率。二、与单一鼠李糖脂相比未处理的鼠李糖脂发酵液驱油效果更好,鼠李糖脂与菌体蛋白、菌体代谢物有机酸、醛酮类化合物共同作用原油,既有表面活性剂作用又有大分子封堵调驱作用,提高原油采收率。三、大分子物质封堵岩层大孔道的调驱机理,降低流速比、使驱替液向油层小孔道驱替未动用剩余油、以及降低油水界面张力、乳化并降低原油粘度增容的协同洗油机理是提高采收率的综合效应指标。四、鼠李糖脂发酵液本身是油层中本源微生物的营养激活剂,能促进本源微生物生长发挥微生物采油。

  • 聚丙烯酰胺在石油开采领域的应用

    [font=&][size=18px]聚丙烯酰胺是一类多功能的油田化学处理剂,广泛用于石油开采的钻井、固井、完井、修井、压裂、酸化、注水、堵水调剖、三次采油作业过程中, 特别是在钻井、堵水调剖和三次采油领域。聚丙烯酰胺水溶液具有较高的粘度, 有较好的增稠、絮凝和流变调节作用, 在石油开采中用作驱油剂和钻井泥浆调节剂。在石油开采的中后期, 为提高原油采收率,我国目前主要推广聚合物驱油和三元复合驱油技术。通过注入聚丙烯酰胺水溶液, 改善油水流速比,使采出物中原油含量提高。在三次采油中加入聚丙烯酰胺, 可增加驱油能力, 避免击穿油层, 提高油床开采收率。中国石油工业是聚丙烯酰胺的最大用户, 聚丙烯酰胺的科技进步促进了中国石油工业的发展, 石油工业的需求又加速了聚丙烯酰胺的科技创新步伐与行业的发展。[/size][/font]

  • 生物酶在石油化工领域的应用

    在石油钻井过程中,钻井液发挥着防止井壁渗漏和保护油气层的双重作用。但这两大作用有时却存在着尖锐的矛盾。当钻井遇到油气富集地层时,地层特点多不稳定,极易发生漏失、坍塌等复杂情况,此时钻井液的护壁防漏功能显得尤为重要。而普通钻井液要起到很好的护壁防漏作用,就必须提高其固相含量和粘度,但这样又会带来污染油气层的现象。如何才能既治理好井壁漏失坍塌的毛病、又有效保护好油气层,早已成为我国石油钻井领域的一大难题。据胜利油田钻井工程技术公司首席科学家郭宝雨介绍,刚刚通过鉴定的新型钻井液体系能够在井壁上形成薄而坚韧的隔膜,这种隔膜的渗透性极低,在近井壁形成了一个渗透率几乎为零的护壁层,达到了维护井壁稳定的良好效果。随着时间的推移,在需要打开油气层时,生物酶开始发挥它的生物降解作用,把原来坚韧致密的护壁薄膜一点一点破除,而这时,活性生物酶慢慢进入储层,在岩石表面油膜下生长繁殖,使原油从岩石表面剥离,从而被驱出 同时,它还能够降解原油,增强原油流动能力,从而在根本上实现提高原油采收率的目的。据悉,这一体系在曲堤油田、淮北以及吉林等油田共34口井进行的现场试验表明,其原油采收率平均提高25%以上,地层渗透性恢复到90%以上,在解放油气层、保护油气层方面有着广阔的发展前景。

  • 求助文献,谢谢

    1、国内外聚合物驱水质研究概述2、热力驱后稠油油藏聚合物驱油技术研究3、热水驱驱油机理研究4、热水+化学剂驱提高稠油油藏开发效果5、热力驱后稠油油藏聚合物驱油技术研究6、常规稠油油藏聚合物驱适应性研究7、乐安油田草4块稠油热水驱及热化学驱实验研究8、地热水驱温度对稠油采收率影响实验研究

  • 生物酶在石油领域应用的介绍

    在石油钻井过程中,钻井液发挥着防止井壁渗漏和保护油气层的双重作用。但这两大作用有时却存在着尖锐的矛盾。当钻井遇到油气富集地层时,地层特点多不稳定,极易发生漏失、坍塌等复杂情况,此时钻井液的护壁防漏功能显得尤为重要。而普通钻井液要起到很好的护壁防漏作用,就必须提高其固相含量和粘度,但这样又会带来污染油气层的现象。如何才能既治理好井壁漏失坍塌的毛病、又有效保护好油气层,早已成为我国石油钻井领域的一大难题。  据胜利油田钻井工程技术公司首席科学家郭宝雨介绍,刚刚通过鉴定的新型钻井液体系能够在井壁上形成薄而坚韧的隔膜,这种隔膜的渗透性极低,在近井壁形成了一个渗透率几乎为零的护壁层,达到了维护井壁稳定的良好效果。  随着时间的推移,在需要打开油气层时,生物酶开始发挥它的生物降解作用,把原来坚韧致密的护壁薄膜一点一点破除,而这时,活性生物酶慢慢进入储层,在岩石表面油膜下生长繁殖,使原油从岩石表面剥离,从而被驱出;同时,它还能够降解原油,增强原油流动能力,从而在根本上实现提高原油采收率的目的。  据悉,这一体系在曲堤油田、淮北以及吉林等油田共34口井进行的现场试验表明,其原油采收率平均提高25%以上,地层渗透性恢复到90%以上,在解放油气层、保护油气层方面有着广阔的发展前景。

  • 生物酶在石油领域应用的介绍

    在石油钻井过程中,钻井液发挥着防止井壁渗漏和保护油气层的双重作用。但这两大作用有时却存在着尖锐的矛盾。当钻井遇到油气富集地层时,地层特点多不稳定,极易发生漏失、坍塌等复杂情况,此时钻井液的护壁防漏功能显得尤为重要。而普通钻井液要起到很好的护壁防漏作用,就必须提高其固相含量和粘度,但这样又会带来污染油气层的现象。如何才能既治理好井壁漏失坍塌的毛病、又有效保护好油气层,早已成为我国石油钻井领域的一大难题。  据胜利油田钻井工程技术公司首席科学家郭宝雨介绍,刚刚通过鉴定的新型钻井液体系能够在井壁上形成薄而坚韧的隔膜,这种隔膜的渗透性极低,在近井壁形成了一个渗透率几乎为零的护壁层,达到了维护井壁稳定的良好效果。  随着时间的推移,在需要打开油气层时,生物酶开始发挥它的生物降解作用,把原来坚韧致密的护壁薄膜一点一点破除,而这时,活性生物酶慢慢进入储层,在岩石表面油膜下生长繁殖,使原油从岩石表面剥离,从而被驱出;同时,它还能够降解原油,增强原油流动能力,从而在根本上实现提高原油采收率的目的。  据悉,这一体系在曲堤油田、淮北以及吉林等油田共34口井进行的现场试验表明,其原油采收率平均提高25%以上,地层渗透性恢复到90%以上,在解放油气层、保护油气层方面有着广阔的发展前景。

  • 液液萃取如何调节pH提高回收率

    待测物:尿样中羟基多环芳烃(ESI负模式)和氨基多环芳烃代谢物(ESI正模式)实验目的:比较不同萃取剂和不同pH环境下液液萃取的回收率实验步骤:2ml样品酶解,回收率组加入100微升100ppb的外标,加2ml饱和氯化钠溶液,调节pH,液液萃取三次,浓缩定容至100微升后上机检测(ps:样品酶解时加入了pH4-5的缓冲液,后面加氯化钠饱和溶液后,多次加氢氧化钠溶液调节pH)分五组不同pH和有机溶剂:组一:pH4-5,乙酸乙酯组二:pH6-8,乙酸乙酯组三:pH10,乙酸乙酯组四:pH6-8,二氯甲烷组五:pH6-8,正己烷以上5组的纯水空白和样品空白加标回收率都达不到80-120%请教:如何提高回收率?

  • 液液萃取如何提高回收率

    待测物:尿样中羟基多环芳烃(ESI负模式,pKa9-10)和氨基多环芳烃代谢物(ESI正模式,pKa3-4)实验目的:比较不同萃取剂和不同pH环境下液液萃取的回收率实验步骤:2ml样品酶解,回收率组加入100微升100ppb的外标,加2ml饱和氯化钠溶液,调节pH,液液萃取三次,浓缩定容至100微升后上机检测(ps:样品酶解时加入了pH4-5的缓冲液,后面加氯化钠饱和溶液后,多次加氢氧化钠溶液调节pH)分五组不同pH和有机溶剂:组一:pH4-5,乙酸乙酯组二:pH6-8,乙酸乙酯组三:pH10,乙酸乙酯组四:pH6-8,二氯甲烷组五:pH6-8,正己烷以上5组的纯水空白和样品空白加标回收率都达不到80-120%请教:如何提高回收率?

  • 核磁共振_岩心孔隙结构分析_孔隙度

    应用背景岩样中所有孔隙空间体积之和与该岩样体积的比值,称为该岩石(岩心)的总孔隙度,以百分数表示。储集层的总孔隙度越大,说明岩石(岩心)中孔隙空间越大。从实用出发,只有那些互相连通的孔隙才有实际意义,因为它们不仅能储存油气,而且可以允许油气在其中渗滤。因此在生产实践中,提出看了有效孔隙度的概念。有效孔隙度是指那些互相连通的,在一般压力条件下,允许流体在其中流动的孔隙体积之和与岩样总体积的比值,以百分数表示。显然,同一岩石(岩心)有效孔隙度小于其总孔隙度。孔隙度是储层评价的重要参数之一.核磁共振(NMR)可检测到岩心内孔隙流体的信号,且具有无损快速准确等特点,在确定地层孔隙度方面具有其他测井方法无法比拟的优势,因此,在石油勘探和开发领域,核磁共振(NMR)技术在岩心分析 、地球化学和地球物理测井等方面的应用日益引人注目。核磁共振在石油岩心领域的功能 :1)常规岩心孔隙结构,孔径分布及流体饱和度;2) 非常规岩心(致密岩心,泥岩,页岩)孔隙结构,孔径分布及流体饱和度;3) 岩心样品含油含水分布、油水含量测试;应用举例一:玻璃珠孔隙模型测试(不同饱和度下T2弛豫图谱分析)http://i1292.photobucket.com/albums/b570/niumagnmr/niumagnmr/ball.jpg应用举例二:常规岩心孔渗饱测试http://pic.yupoo.com/niumagnmr_v/EqwZXDb3/KysOx.jpg图2.砂岩T2谱及累积T2谱样品的微分谱中可以看出来,饱锰样中加入锰使水的弛豫时间变短,采集不到水的信号,只能采集到油的信号。从饱水样的弛豫谱中可以得到孔隙度,束缚流体饱和度、自由流体饱和度,结合原始样和饱锰样弛豫谱可以得到含油饱和度和含水饱和度。

  • 中草药的采收

    合理采收中草药,对保证药材质量,保护和扩大药源,具有重要意义。中国劳动人民对中草药的采收积累了丰富的经验。如“春采茵陈夏采篙,知母黄芩全年刨,秋天上山挖桔梗,及时采收质量高”说明采收季节对保证中草药质量的重要性。但是中草药的合理采收,不但与采收季节有关,而且与中草药的种类、药用部分都有关。药用植物在不同生长发育阶段,其有效成分的含量不同,同时也受气候、产地、土壤等多种因子的影响,因此采收时,不但要考虑中草药的单位面积产量,而且还要考虑有效成分的含量,只有这样才能获得高产优质的药材。  1. 适宜采收期的寻找  要确定中草药的适宜采收期,必须把有效成分的积累动态与植物生长发育阶段这两个指标结合起来考虑,但这两个指标有时是一致的,有时是不一致的,因此,必须根据具体情况加以分析研究,以确定适宜采收期。一般常见的有下述几种情况:  (一)有效成分的含量有一显著的高峰期,而药用部分的产量变化不显著。此时,含量高峰期,即为适宜采收期。如蛔篙(Artemisia clna Berg.)中含有的驱蛔成分山道年(Santonin),经沈阳地区采收经验,初步探索到山道年有两个含量高峰期。因此,含量高峰期即为蛔蒿的适宜采收期。  第一高峰期在营养期,叶中山道年含量可达2.4%,高峰期持续4~5天,沈阳地区为7月16日左右,过此期间含量迅速下降。第二高峰期为开花前期,蕾中含量为2.4%,高峰期持续一周左右,沈阳地区为8月25日至9月1日左右,过此期间含量迅速下降,含量高峰期,蛔蒿花蕾的顶端由尖而长变为圆而钝,颜色由绿色变为黄绿,手握已不发粘,此时采收最为适宜。又如在甘草(Glycyrrhiza uralensis Fisch.)不同生长发育阶段,进行甘草甜素(Glycyrrhlzin)的含量测定,故甘草应在开花前期采收为宜。  (二)有效成分含量高峰与药用部份产量高峰不一致时,要考虑有效成分的总含量。即有效成分的总量=单产量X有效成份%含量,总量最大值时,即为适宜采收期。  例如强心新药灰色糖芥(Erysimum canescenS Roth.)的地上部分,强心甙总含量在花谢及种子形成期最高,所以应当在此时期采收。有时,利用绘制含量与产量曲线图,由二曲线的相交点直接找到适宜采收期。如薄荷(Mentha hap1ocalyx Briq.)在花蕾期挥发油含量最高,而叶的产量高峰却在花后期。  若将二曲线图中的产量高峰与含量高峰以同一座标高度表示。二曲线交点之对应点人,即为适宜采收期。此外,有些中草药中除含有效成分外,尚含毒性成分,则采收时亦应予以考虑。如治疗慢性气管炎的照山白(Rh0dodendron micranthum Turcz。)叶中有效成分总黄酮和毒性成分QIN木毒素含量与生长季节的关系。照山白的叶在6、7、8三个月生长最旺盛,产量最高,但此时总黄酮含量最低而QIN木毒素(Grayanotoxin Ⅰ)含量却最高,故以往在此期间采叶似不合理,5、9、10三个月份叶的产量虽稍低,但总黄酮含量较高,QIN木毒素含量较低,似在此期间采集为宜,至于何月为最适宜采收期,应根据叶产量,总黄酮含量,浸木毒素含量三着的数据,综合考虑确定。

  • 二氧化碳捕集和封存是怎么一回事儿?

    山东省东营市油区环境污染治理工程技术研究中心将建设省级国际合作研究中心——山东省中加环境污染治理合作研究中心,为环境保护和治理引进国外先进技术和高端人才搭建平台,为生态东营建设提供智力和技术支持。据悉,这一中心依托油区环境污染治理工程技术研究中心和加拿大里贾纳大学组建。里贾纳大学的GTC和ITC两个研究中心,是全球较早从事二氧化碳捕集和封存技术研究的机构。目前,双方已开展了利用二氧化碳提高原油采收率和相关封存技术的研发、应用工作,开发了自动历史拟合数值模拟软件和生产优化软件。此外,还与加拿大HTC公司洽谈了二氧化碳捕集装置的购买合同,预计今年在东营市进行产业化应用。请各位专家来讨论一下二氧化碳捕集和封存技术是怎么一回事!

  • 提高喷雾干燥机技术收率的三个方法

    [font=&]喷雾干燥机由于其本身的特性,干燥的样品成微米或纳米级。[/font][font=&]所以对于喷雾干燥机的收集来讲,也是个极其重要的参数。[/font][b]想提高收率:[/b][font=&]1.调整实验参数。[/font][font=&]2.样品越小越不容易收集,可加二级收集系统来提高收率。[/font][font=&]3.如果需要收集超细粉,那就要静电装置了。[/font]

  • 喷雾干燥机提高收率的办法

    [font=&]喷雾干燥机由于其本身的特性,干燥的样品成微米或纳米级。[/font][font=&]所以对于喷雾干燥机的收集来讲,也是个极其重要的参数。[/font][b]想提高收率:[/b][font=&]1.调整实验参数。[/font][font=&]2.样品越小越不容易收集,可加二级收集系统来提高收率。[/font][font=&]3.如果需要收集超细粉,那就要静电装置了。[/font]

  • 必知:各类中药材采收有技巧

    树皮类药材的采收通常在春夏之交、植物生长旺盛期、树液流动时应尽快采剥。此时,树皮类汁液充足,形成层生长最活跃,皮部与木质部最容易分离,如杜仲、黄柏、厚朴、肉桂等树皮。树皮类药材的采收:通常在春夏之交、植物生长旺盛期、树液流动时应尽快采剥。此时,树皮类汁液充足,形成层生长最活跃,皮部与木质部最容易分离,如杜仲、黄柏、厚朴、肉桂等树皮。其采收方法:一般剥取环状块或采取“剥皮再生法”进行采收。花类药材的采收:这类药材采摘季节性很强,如辛夷花、款冬花、金银花等要采摘未开放的花蕾供药用;绿梅花等要采摘即将开放的花朵入药;菊花、凌霄花、红花、西红花等要采摘盛开的花或花柱供药用。采收方法:选择晴天分期分批采摘,采摘后避免挤压,并注意遮阳,防日晒变色。全草类药材的采收:通常在枝叶生长茂盛、初花时收割,如荆芥、藿香、穿心莲、益母草、半边莲等。但有些应在开花前采收,如佩兰、青蒿等;也有些是采集嫩苗,如春柴胡等;而马鞭草要在花开后采。极少要连根挖出入药,如北细辛、紫花地丁等。采收方法:割取或挖取。叶类药材的采收:一般在植物的叶片生长旺盛、叶色浓绿,花蕾开放前采收,如青叶、紫苏叶、艾叶等品。植物一旦开花结果,叶肉内储藏的营养物质就向花、果转移,从而降低叶类药材的质量。也有极少数叶类药材宜在秋后经霜打后采摘,如桑叶、银杏叶等,而枇杷叶则要在落叶后采。采收方法:摘取、割取或拾取。根及根茎类药材的采收:当植物正在生长发育时,会消耗根部储藏的养分,因此一般在植物休眠期,即秋冬季落叶后至翌年早春萌发前采收根及根茎类药材,如黄芪、党参、丹参、桔梗、丹皮、地骨皮、前胡等。此时地下根和根茎储藏的营养物质和有效成分含量最高。少数药材如白芷、当归、川芎等应在生长期采收。采收方法:选雨后的晴天或阴天,在土壤较湿润时用锄头或特制的工具挖取。采挖时注意保持根皮完整,避免损伤而降低药材质量。根皮类药材的采收:采收时期同根茎类。先将根部从土中挖出,然后进行砸打或搓揉使皮肉与木心分离,如五加皮、远志肉等根皮。果实类药材的采收:多数果实类药材在果实完全成熟时采收,如瓜蒌、黄栀子、薏苡仁、花椒、八角等;也有些要求果实成熟经霜打后再采,如山茱萸霜后变红、川楝子霜打变黄时才采收;还有些应在果实未成熟时采收,如青皮、枳实、桔红等。果实成熟期不一致的药材,如山楂等,要随熟随采,过早采收肉薄产量低,过期采收肉松泡,质量差。多汁浆果,如枸杞子、山茱萸等,采摘后应避免挤压和翻动。采收方法:摘取或剪取。同一果序上的果实成熟期一致的,如女贞子、五味子等,可将整果序剪取,放置若干天后摘取果实。种子药材的采收:多数种子类药材要在果实充分成熟、籽粒饱满时采收,如牵牛子、决明子、补骨脂、续断子等。一些蒴果类的种子,若待果实完全成熟,则蒴果开裂,种子散失,难以收集,须稍提早采收,如急性子、牵牛子、豆蔻等。对种子成熟期不一致而且成熟即脱落的药材,如补骨脂等,应随熟随采。干果类一般在干燥后取出种子,蒴果通常敲打后收集。肉质果,若果肉亦作药用的,可先剥取果肉,留下种子或果核,如瓜蒌子等;有些果肉不能作药用的则取出种仁。

  • 顶空分析技术中如何提高加标样的回收率?

    顶空分析是通过样品基质上方的气体成分来测定这些组分在原样品中的含量。传统的液液萃取以及 SPE 都是将样品溶在液体中,不可避免地会有一些共萃取物干扰分析。况且溶剂本身的纯度也是一个问题,这在痕量分析中尤为重要。而气体作溶剂就可避免不必要的干扰,因为高纯度气体很容易得到,且成本较低,这也是顶空分析被广泛采用的一个重要原因。 作为一种分析技术,我们应该如何提高顶空技术中加标样的回收率?

  • 【转贴】生物表面活性剂及其应用

    表面活性剂(Surfactants)是一类重要的化工原料,素有“工业味精”之称,它在石油工业、环境工程、食品工业、精细化工等许多领域中占有特殊和重要的地位。目前,几乎所有的表面活性剂都是以石油为原料化学合成而来,化学合成的表面活性剂在生产和使用过程中常常会带来严重的环境污染问题。生物表面活性剂(Biosurfactants)是表面活性剂家族中的后起之秀,它是由微生物所产生的一类具有表面活性的生物大分子物质。与化学合成的表面活性剂相比,生物表面活性剂除具有降低表面张力、稳定乳化液和增加泡沫等相同作用外,还具有一般化学合成表面活性剂所不具备的无毒、能生物降解等优点。生物表面活性剂的这些特性尤其适合于石油工业和环境工程,如石油的生物降粘、提高原油采收率、重油污染土壤的生物修复等。另外,生物表面活性剂作为天然添加剂,在食品工业、精细化工、医药和农业等工业方面也愈来愈受到人们的青睐。随着人们崇尚自然和环保意识的增强,生物表面活性剂将有更加广阔的应用前景,并有可能成为化学合成表面活性剂的替代品或升级换代品。

  • 19.9 HPLC-UV测定不同产地及不同采收期酸枣叶中芦丁的含量

    19.9 HPLC-UV测定不同产地及不同采收期酸枣叶中芦丁的含量

    【作者】 裴香萍; 杜晨晖; 闫艳; 沈佳兴; 裴妙荣; 白瑶;【机构】 山西中医学院;【摘要】 目的:考察不同产地及不同采收期酸枣叶中芦丁的含量,以确定其最佳采收期,为酸枣叶的资源开发提供科学依据。方法:采用HPLC,Diamonsil(钻石)C18色谱柱(4.6 mm×200 mm,5μm),流动相甲醇-0.1%冰醋酸(34∶66),检测波长257nm,流速1.0 mL.min-1,柱温30℃。结果:芦丁在0.221 6~2.216μg有良好的线性关系(r=0.999 9),平均加样回收率为99.40%(RSD 2.42%,n=6);酸枣叶中芦丁含量一般以5~6月含量最高,7~8月芦丁含量有所下降,9~10月又有所升高。结论:酸枣叶中芦丁的含量整体上随时间变化基本呈U字形趋势,该方法准确、简便、稳定,为酸枣叶的质量标准提供参考。 http://ng1.17img.cn/bbsfiles/images/2012/07/201207231745_379278_2379123_3.jpg

  • 中草药的一般采收原则

    用有效成分含量或有效成分总量来指导中草药的采收,虽然比较合理,但还需要做大量的科研工作,同时很多中草药有效成分目前尚未明了,因此,利用传统的采药经验及根据各种药用部分的生长特点,分别掌握合理的采收季节,仍是十分重要的。   (一)根和根茎类:宜在植物生长停止,花叶萎谢的休眠期,或在春季发芽前采集。但也有例外情况,如柴胡、明党参在春天采较好,孩儿参则在夏季采集较好,延胡索立夏后地上部分枯萎,不易寻找,故多在谷雨和立夏之间采挖。  (二)叶类和全草:应在植物生长最旺盛时,或在花蕾将开放时,或在花盛开而果实种子尚未成熟时采收。但桑叶需经霜后采收,枇杷叶、银杏叶需落地后收集。  (三)树皮和根皮:树皮多在春夏之交采收,含量既高,也易于剥离。根皮多在秋季采收。因为树皮、根皮的采收,容易损害植物生长,应当注意采收方法。有些干皮的采收可结合林木采伐来进行。  (四)花类: 一般在花开放时采收。有些则于花蕾期采收,如槐米、蛔篙、丁香等。此外如除虫菊,宜在花头半开放时采收,红花则在花冠由黄变橙红时采收为宜。  (五)果实、种子:应在已成熟或将成熟时采收,少数用未成熟的果实,如积实。种子多应在完全成熟后采收。  (六)菌、藻、孢粉类药材: 各自情况不一,如麦角在寄主(黑麦等)收割前采收,生物碱含量较高,茯苓在立秋后采收质量较好,马勃应在子实体刚成熟期采收,过迟则孢子飞散。  (七)动物类: 昆虫类药材,必须掌握其孵化发育活动季节。以卵鞘入药的,如桑螵蛸,则三月收集,过时则虫卵孵化成虫影响药效,以成虫人药的,均应在活动期捕捉,有翅昆虫,在清晨露水未干时便于捕捉,两栖动物如蛤士膜,则于秋末当其进入”冬眠期”时捕捉;鹿茸须在清明后适时采收,过时则角化。

  • 【实战宝典】加压流体萃取中,萃取循环次数对目标组分回收率的影响?

    [font=宋体]链接:[/font]https://bbs.instrument.com.cn/topic/2919342[font=宋体]问题描述:[/font][font=宋体]各位老师,我最近刚刚接触加速溶剂提取土壤中有机物,刚刚做了几个条件优化的实验,居然发现土壤中有机氯农药的回收率随着萃取循环次数[/font](cycles)[font=宋体]的增多而降低,[/font]1[font=宋体]次时最高,[/font]2[font=宋体]次降低,[/font]3[font=宋体]次更低,这是什么原因。[/font][font=宋体]解答:[/font][font=宋体]在其他萃取条件一定的情况下,由于新鲜萃取溶剂的引入,理论上目标组分的萃取回收率会随着萃取循环次数的增多而提高。然而实际工作中,萃取结束后,还需经过浓缩、净化、再浓缩等一系列步骤才能上机测试,而这些步骤恰恰对目标组分的回收率影响也很大。随着萃取循环次数的增加,最后得到的萃取溶液体积也增多,以致后续操作耗时增长,目标组分损失增多,进而影响目标组分的回收率。由此可见,萃取循环次数对目标组分回收率的影响需结合后续一系列步骤综合考查。[/font]以上内容来自仪器信息网《样品前处理实战宝典》

  • 华东交通大学孙旭东:手持式近红外光谱仪器预测水果最佳采收期

    [align=center]孙旭东[/align][align=center][font=arial, helvetica, sans-serif]华东交通大学机电与车辆工程学院 南昌 330013[/font][/align][font=arial, helvetica, sans-serif][size=18px]采收期预测源于精准农业的理念,适时采收是水果提质增效的重要技术手段。过早采收,果实内营养成分未转化完全,影响水果的品质和产量。过迟采收,增加落果、贮藏易烂,加重树体养分的消耗,使树势衰弱,影响次年生产。手持式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器具有快速、无损和原位测量等优点,是树上水果品质原位检测的最佳技术手段。[/size][/font][font=arial, helvetica, sans-serif][size=18px]目前,手持式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的模型多在实验室条件下建立。果园环境与实验室相比,存在多种影响因素,诸如温度、阳光等。果园环境下,阳光由早到晚,均处于动态变化中。阳光变化同时影响果实和参比的能量谱。吸光度(A=-log(S-D)/(R-D)),S为果实能量谱,D为暗电流,R为参比能量谱。在实验室建模时通常认为参比能量谱R不变,间隔若干采样次数采集一次参比能量谱,计算吸光度A。但果园环境中阳光是变化的,阳光一方面通过果实进入检测器探头,另一方面阳光变化导致参比能量谱动态变化,这往往容易导致实验室建立的模型在果园中部分失效。我们前期研究发现,果实尺寸越小,阳光的影响越显著,例如透过葡萄果实进入探头的平均阳光信号约占果实信号的1%,而脐橙约为1‰[sup][1,7][/sup][/size][size=18px]。[/size][size=18px]因此,可以从化学计量学角度,视阳光为外部影响参数,应用外部参数正交化(EPO)等方法进行校正,探索实验室模型的果园应用,提高历史数据的利用率,减少重复性的工作。采收期预测是手持式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]果园应用的典型案例之一。澳大利亚Walsh教授团队将手持式仪器成功用于芒果采收期预测,以干物质含量作为采收期预测指标,芒果协会将芒果增收的40%归结为采收期的创新应用[sup][2][/sup][/size][size=18px]。日本、比利时和意大利的科研团队也从事采收期预测的应用研究[sup][4-6][/sup][/size][size=18px]。我们近年也在探索手持仪器的柑桔采收期预测应用,例如验证满足采收标准脐橙果实占比随采收期的变化(图1)[sup][7][/sup][/size][size=18px]、生成采收决策处方图(图2)。果农可以依据采收处方图,合理安排采摘,未来也可以将处方图配对的品质指标和果树位置,下载至采收机械,按图采收,但某种程度上取决于采摘机械的产业应用进程。[/size][/font][align=center][img=,500,402]https://img1.17img.cn/17img/images/202403/uepic/6116251e-bcb5-442e-a87c-26473b11c3f6.jpg[/img][/align][align=center][font=arial, helvetica, sans-serif]图1 满足采收标准脐橙随采收期变化曲线[/font][/align][align=center][img=,500,283]https://img1.17img.cn/17img/images/202403/uepic/4e1e9536-d0a6-4166-9f82-cc6533ad327c.jpg[/img][/align][align=center][font=arial, helvetica, sans-serif]图2 脐橙采收决策处方图(紫色代表完熟、橙色代表成熟、粉色代表近熟)[/font][/align][font=arial, helvetica, sans-serif][size=18px]我国水果采收期预测尚处于基础研究阶段。技术、仪器和标准等都有待深入。例如,采收期预测标准应视水果种类、用途做出科学调整,例如出口的后熟型水果、立即上市销售和贮藏型水果的采收标准不同,采收期预测也应做相应的调整。[/size][/font][font=arial, helvetica, sans-serif][size=18px][/size][/font][size=18px]参考文献[/size][1] Sun, X., Wang, Z., Aydin, H., Liu, J., Chen, Z., Feng, S. First step for hand-held [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S instrument field use: Table grape quality assessment consideration of temperature and sunlight chemometrics correction[J]. Postharvest Biology and Technology, 2023, 201: 112374.[2] Granger, A. A. Plant & food research: New Zealand kiwifruit breeding programme [J]. Acta Hort., 2011, 913: 59-62.[3] Walsh, K. B., McGlone, V. A., Han, D. H. The use of near infra-red spectroscopy in postharvest decision support: A review [J]. Postharvest Biology and Technology, 2020, 163: 111139.[4] Osborne, B. G. Applications of near infrared spectroscopy in quality screening of early-generation material in cereal breeding programmes [J]. Journal of Near Infrared Spectroscopy, 2006, 14: 93-101.[5] Bertone, E., Venturello, A., Leardi, R., Geobaldo, F. Prediction of the optimum harvest time of ‘Scarlet’ apples using DR-UV-Vis and [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url] spectroscopy [J]. Postharvest Biology and Technology, 2012, 69: 15-23.[6] Peirs, A., Lammertyn, J., Ooms, K., Nicola?, B.M. Prediction of the optimal picking date of different apple cultivars by means of VIS/[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]-spectroscopy. Postharvest Biology and Technology, 2001, 21: 189–199.[7] 宮本久美. 果樹の生育診断への近赤外分光法の応用 [J]. 農業機械学会誌, 2007, 69(3): 11-14.[8] Sun, X., Guo, F., Liu, J., Chen, Z., Abobatta, W. F., Nawaz, M. A., Feng,S. From lab to orchard use for models of hand-held [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S instrument: A case for navel orange quality assessment considering ambient light correction[J]. Computers and Electronics in Agriculture, 2024, 219: 108797.[来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 蛋白沉淀法如何提高回收率

    水杨酸用TCA蛋白沉淀后回收率只有60%,怎么能提高回收率?在体内药分这方面蛋白沉淀的回收率应该是多少比较合适?

  • 【求助】如何提高Hg的回收率

    我们做塑料中的Hg含量的时候,Hg的加标回收率通常都很低,好一点的也只能达到60+%的水平,有的甚至没有回收率,不管是用湿法消解还是微波消解均无法得到满意的结果。我是加标100ug/mL的Hg,这个浓度水平ICP测出来是没有问题的,我是怀疑Hg是在消解的过程消失的,因为做过比对,上机前加标的回收率是满意的(90~105%),而全程加标则不行,所以Hg的回收率不行,应该是在消解的过程中损失了部分的Hg。上周来了个维修微波的工程师说在消解过程中加少量的硫酸能够提高Hg的回收率,但是考虑到我们同时还要测铅,我们就没这么做了。请教有什么办法能够提高Hg 的回收率?

  • 如何提高回收率(讨论有奖积分)

    昨天做了猪肝中的铅和镉?我配置标准曲线(配置最高浓度的母液标准,自动稀释配置标准系列),镉母液4ppb,铅母液40ppb,加标回收为:镉的加标液已知浓度2ppb测定值为1.3ppb,铅加标液已知浓度20ppb测定为17.5ppb;故镉的回收率65%,铅回收率85%;基体改进剂为1%磷酸二氢铵+0.05%硝酸镁。二者标准曲线线性很好,升温程序为最佳优化升温程序。我使用的是ZEEnit700AAS。期间我从单一的磷酸二氢铵、硝酸铵、硝酸镁做基体改进剂,回收率均低于上述混合改进剂。磷酸二氢铵和硝酸铵混合基体改进剂测定回收率没有上述混合改进剂高;也看到过用磷酸二氢铵做基体改进剂,但是本人没有,故没有用过。讨论:1、为什么回收率如此低?如何提高回收率???

  • 土壤半挥发替代物回收率低

    最近做土壤半挥发,替代物的回收率很低,有时候不到百分之三十,用的是加压流体萃取仪和旋蒸,大家有遇到过这种情况吗,有可以提高回收率的办法吗

  • 大家来讨论一下,如何提高固相萃取的回收率

    据说,采用固相萃取测定水中的半挥发物回收率都不是太好,我也是正在试验,还没有结论,请问有哪位大侠做过。关键性的步骤是什么呢,水样流速、洗脱流速等参数设置成什么才比较合适呢。大家来讨论讨论吧,我学习一下。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制